WO2021015070A1 - 画素、固体撮像装置及び画素の製造方法 - Google Patents

画素、固体撮像装置及び画素の製造方法 Download PDF

Info

Publication number
WO2021015070A1
WO2021015070A1 PCT/JP2020/027504 JP2020027504W WO2021015070A1 WO 2021015070 A1 WO2021015070 A1 WO 2021015070A1 JP 2020027504 W JP2020027504 W JP 2020027504W WO 2021015070 A1 WO2021015070 A1 WO 2021015070A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion unit
light
region
pixel
photoelectric conversion
Prior art date
Application number
PCT/JP2020/027504
Other languages
English (en)
French (fr)
Inventor
信一 寺西
篤史 小野
Original Assignee
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人静岡大学 filed Critical 国立大学法人静岡大学
Priority to JP2021533975A priority Critical patent/JP7493250B2/ja
Publication of WO2021015070A1 publication Critical patent/WO2021015070A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/20Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
    • H04N23/21Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only from near infrared [NIR] radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present invention relates to a pixel, a solid-state image sensor, and a method for manufacturing a pixel.
  • the pixel and solid-state image sensor are formed using a substrate made of silicon. Silicon absorbs light and generates carriers corresponding to the absorbed light. As shown in FIG. 12, the property of silicon to absorb light corresponds to the wavelength of light. For example, silicon satisfactorily absorbs visible light having a wavelength of 360 nm or more and 830 nm or less. On the other hand, silicon is difficult to absorb near-infrared light having a wavelength of 830 nm or more. Therefore, in order to obtain a good image using a pixel using silicon and a solid-state image sensor, it is necessary to improve the light receiving sensitivity.
  • the imaging device disclosed in Non-Patent Document 1 has an uneven structure provided on an incident surface of light. According to this uneven structure, the substantial light transmission distance inside the silicon is extended. As the transmission distance increases, the chances of light being absorbed by silicon increase. As a result, the light receiving sensitivity is improved.
  • the image pickup apparatus disclosed in Patent Document 1 has a configuration for converting near-infrared light into evanescent light. Evanescent light is more easily absorbed by silicon than near-infrared light. Therefore, the image pickup apparatus disclosed in Patent Document 1 has improved light receiving sensitivity.
  • Crosstalk and dark current can be mentioned as factors of noise.
  • Crosstalk is a phenomenon in which the first pixel affects a second pixel adjacent to the first pixel. For example, when the thickness of silicon is increased in order to increase the light receiving sensitivity, crosstalk is likely to occur. Further, the structure that produces evanescent light is formed of metal. The imaging device then has an interface where the semiconductor comes into contact with the metal. Such interfaces form Schottky barrier or ohmic contacts. These bonding forms are factors that generate dark current.
  • the present invention provides a pixel, a solid-state image sensor, and a method for manufacturing a pixel for near-infrared light capable of obtaining a good image.
  • a pixel according to an embodiment of the present invention includes a photoelectric conversion unit that generates a signal voltage according to the absorbed light received from the light input surface, and an optical conversion unit that receives the incident light to generate the absorbed light. ..
  • the photoelectric conversion unit has a first region having a first impurity concentration and a second region having a second impurity concentration higher than the first impurity concentration.
  • the second region includes an optical input surface and is in direct contact with the optical conversion unit.
  • the light conversion unit receives the incident light and generates absorbed light including evanescent light.
  • the light conversion unit of this pixel receives the incident light and generates the absorbed light that is output to the photoelectric conversion unit.
  • the optical input surface of the photoelectric conversion unit is in direct contact with the optical conversion unit. Therefore, the absorbed light is input to the photoelectric conversion unit without being attenuated. Then, this absorbed light is more easily absorbed by the photoelectric conversion unit than the incident light. Therefore, the light receiving sensitivity can be increased.
  • the photoelectric conversion unit has a second region including an optical input surface. The second region has a higher impurity concentration than the first region. According to this configuration, the dark current that may occur at the interface can be suppressed. That is, the pixel can increase the light receiving sensitivity and suppress the dark current. As a result, according to the pixels, a good image can be obtained.
  • the concentration of the second impurity in the second region may decrease as it approaches the first region. According to this configuration, the minority carriers generated by the absorption of the absorbed light in the second region can be quickly moved to the first region. As a result, the signal voltage due to the minority carriers is well captured. That is, the proportion of minority carriers from the absorbed light contributing to the signal voltage without being recombined increases. As a result, the light receiving sensitivity can be further increased.
  • the second region may be formed by ion implantation with a dose of 1 ⁇ 10 14 cm- 2 or more and 3 ⁇ 10 15 cm- 2 or less. Further, the second region may be formed by ion implantation in which the implantation energy is 0.2 keV or more and 1 keV or less. By lowering the energy to 1 keV or less, the density profile after annealing in the second region decreases monotonically from the light incident surface toward the inside of the photoelectric conversion unit. As will be described later, the second region may have a dose amount of 1 ⁇ 10 14 cm- 2 or more in order to prevent a dark current generated from the optical input surface.
  • the second region may have a dose amount of 3 ⁇ 10 15 cm- 2 or less in order to prevent the occurrence of crystal defects. According to this configuration, it is possible to suppress the occurrence of crystal defects in the second region. Therefore, the life of the minority carriers generated according to the absorbed light can be extended. As a result, the signal voltage caused by the minority carrier can be captured well. That is, the conversion efficiency from the absorbed light to the signal voltage due to the minority carriers is increased. As a result, the light receiving sensitivity can be further increased.
  • the solid-state image sensor which is another embodiment of the present invention, has a plurality of pixels arranged in a two-dimensional shape, a pixel portion having an isolation wall provided between pixels adjacent to each other, and an operation of the pixel portion. It includes a pixel control unit that generates a control signal to be controlled, and a signal processing unit that receives a signal voltage generated by the pixel unit.
  • the pixels are provided on a photoelectric conversion unit that generates a signal voltage according to the absorbed light received from the optical input surface and on the optical input surface of the photoelectric conversion unit so as to receive the incident light and generate the absorbed light. It also has an optical conversion unit.
  • the photoelectric conversion unit has a first region having a first impurity concentration and a second region having a second impurity concentration higher than the first impurity concentration.
  • the second region includes an optical input surface and is in direct contact with the optical conversion unit.
  • the light conversion unit receives the incident light and generates absorbed light including evanescent light.
  • This solid-state image sensor has pixels having the same configuration as the above pixels. Therefore, a good image can be obtained.
  • one optical conversion unit adjacent to each other may be separated from the other optical conversion unit.
  • the side portion of the optical conversion unit may be formed on the optical input surface of the photoelectric conversion unit.
  • the pixel portion may be provided on the sensor substrate.
  • the sensor substrate may have a voltage application unit that applies a predetermined potential to the second region.
  • the voltage applying portion may include a dicing surface of the sensor substrate formed by dicing and a conductive portion that applies a voltage to the dicing surface.
  • the dicing surface may include at least the end surface of the second region and the end surface of the conductive portion.
  • the photoelectric conversion unit may generate electrons as signal carriers by absorbing the light to be absorbed.
  • the second region may receive a negative potential.
  • the photoelectric conversion unit may generate holes as signal carriers by absorbing the light to be absorbed.
  • the second region may receive a positive potential. According to these configurations, the electric field of the photoelectric conversion unit becomes strong. In addition, the collection of minority carriers will be facilitated. As a result, good light receiving sensitivity can be obtained.
  • the second region may be electrically connected to the optical converter.
  • the first optical conversion unit included in the first pixel may be electrically connected to the second optical conversion unit included in the second pixel adjacent to the first pixel.
  • the optical conversion unit may include a plurality of convex portions protruding from the main surface of the second region. The plurality of protrusions may be electrically connected to each other. According to this configuration, a configuration capable of suppressing dark current can be obtained by a simple step.
  • the solid-state image sensor which is still another embodiment of the present invention, may include a plurality of pixels arranged in a two-dimensional manner in the light receiving region.
  • the pixels are provided on the optical input surface of the photoelectric conversion unit so as to generate a signal voltage corresponding to the absorbed light received from the optical input surface and to generate the absorbed light by receiving the incident light. It may also have an optical conversion unit.
  • the photoelectric conversion unit may come into direct contact with the light conversion unit.
  • the light conversion unit may include a plurality of convex portions arranged according to a predetermined period, and may receive incident light to generate absorbed light including evanescent light. The predetermined period may be set based on the generation condition of the evanescent light and the direction of the incident light.
  • this solid-state image sensor even if the direction of the incident light is different for each pixel, it is possible to generate the evanescent light according to the direction of the incident light. Therefore, the decrease of evanescent light due to the difference in the angle of the incident light is suppressed. As a result, the absorbed light can be suitably generated from the incident light.
  • the period when the direction of the incident light is the normal direction of the main surface of the light conversion unit, the period may be a predetermined period (L).
  • the predetermined period of the pixels arranged at the side portion of the light receiving region may be larger than the predetermined period of the pixels arranged at the central portion of the light receiving region. Also with this configuration, the absorbed light can be suitably generated from the incident light.
  • the optical conversion unit of the pixel which is one form, may be provided on the optical input surface of the photoelectric conversion unit. According to this configuration, a pixel including an optical conversion unit and a photoelectric conversion unit can be easily manufactured.
  • the optical conversion unit of the pixel may include a light receiving surface that receives incident light and may be embedded in the photoelectric conversion unit so that the light receiving surface is exposed from the photoelectric conversion unit.
  • the bottom surface of the optical conversion unit comes into contact with the photoelectric conversion unit.
  • the side surface of the optical conversion unit also comes into contact with the photoelectric conversion unit. Therefore, it becomes possible to more efficiently absorb the evanescent light generated in the light conversion unit. As a result, the photoelectric conversion efficiency is further increased. Therefore, a better image can be obtained.
  • the pixel in one form may further include a covering portion that covers the photoelectric conversion portion and the optical conversion portion.
  • the permittivity of the coating may be higher than the permittivity of air.
  • the configuration of the light conversion unit that generates the absorbed light including the evanescent light is determined by the wavelength of the incident light. According to this covering portion, it is possible to give a degree of freedom to the configuration of the light conversion portion that is uniquely determined by the wavelength of the incident light.
  • the optical conversion unit of the pixel which is one form, may include a plurality of convex portions formed apart from each other.
  • the apparent period of the plurality of convex portions in the optical conversion portion covered with the covering portion may be determined by the dielectric constant of the covering portion and the actual period of the plurality of convex portions.
  • the apparent period may satisfy the resonance condition of generating the absorbed light including the evanescent light by the incident light. According to this configuration, it is possible to make the period of the plurality of convex portions constituting the light conversion unit shorter than the period of the light conversion unit determined by the wavelength of the incident light. As a result, the resonance condition can be satisfied. In addition, more light to be absorbed can be generated. Therefore, since the photoelectric conversion efficiency is further increased, a better image can be obtained.
  • the dielectric constant of the covering portion in the pixel which is one form, may be equal to the dielectric constant of the second region of the photoelectric conversion portion. According to this configuration, the difference in permittivity around the optical conversion unit becomes small. As a result, the absorbed light including the evanescent light can be generated more efficiently in the light conversion unit.
  • the coating portion of the pixel which is one form, may be formed of any one of aluminum oxide, hafnium oxide, zirconium oxide and tantalum oxide. According to these materials, the above-mentioned covering portion can be formed satisfactorily.
  • the pixel in one form may further include a microlens arranged on the covering portion. According to this configuration, the incident light can be efficiently collected in the light conversion unit. As a result, the absorbed light including the evanescent light can be generated more efficiently in the light conversion unit.
  • Yet another embodiment of the present invention includes a photoelectric conversion unit that generates a signal voltage according to the absorbed light received from the optical input surface, and an optical conversion unit that receives the incident light to generate the absorbed light.
  • the photoelectric conversion unit is a method for manufacturing a pixel having a first region having a first impurity concentration and a second region having a second impurity concentration higher than the first impurity concentration.
  • the pixel manufacturing method includes a first step of providing a plurality of recesses for embedding the optical conversion unit in the photoelectric conversion unit, and a second step of performing a process for forming at least a second region with respect to the wall surface of the recess. It has a third step of providing a plurality of metal portions constituting the optical conversion portion in the recess.
  • an optical conversion unit embedded in the photoelectric conversion unit is formed so as to be exposed from the photoelectric conversion unit. Then, the bottom surface of the photoelectric conversion unit comes into contact with the photoelectric conversion unit. Further, the side surface of the photoelectric conversion unit also includes a metal portion that comes into contact with the photoelectric conversion unit. Therefore, it is possible to manufacture a pixel capable of more efficiently absorbing the evanescent light generated in the light conversion unit.
  • a fourth step of providing a covering portion having a dielectric constant higher than the dielectric constant of air so as to cover the photoelectric conversion portion and the optical conversion portion is further added. You may have. According to this step, it is possible to efficiently collect the incident light in the light conversion unit, and it is possible to manufacture a pixel capable of more efficiently generating absorbed light including evanescent light in the light conversion unit. ..
  • the optical conversion unit of the pixel which is one form, may include a first metal layer, a dielectric layer, and a second metal layer laminated along the direction of the incident light.
  • the second metal layer may be provided on the light input surface. According to this configuration, the absorption loss of incident light in the light conversion unit can be reduced. Therefore, the light absorption efficiency in the photoelectric conversion unit can be further increased.
  • the optical conversion unit of the pixel which is one form, includes a light receiving surface that receives incident light, and may be embedded in the photoelectric conversion unit so that the light receiving surface is exposed from the photoelectric conversion unit.
  • the light conversion unit may include a first metal layer, a dielectric layer, and a second metal layer laminated along the direction of the incident light.
  • the first metal layer may form a light receiving surface. This configuration also reduces the absorption loss of incident light in the light conversion unit. Therefore, the light absorption efficiency in the photoelectric conversion unit can be further increased.
  • a good image can be obtained.
  • FIG. 1 is a diagram schematically showing a configuration of a solid-state image sensor according to an embodiment.
  • FIG. 2 is a diagram showing an electrical configuration of pixels.
  • FIG. 3 is an example of a control signal provided to the pixel.
  • FIG. 4 is a diagram showing a pixel structure.
  • FIG. 5 is an enlarged view showing the vicinity (S1) of the optical input surface which is a part of FIG.
  • FIG. 6 is an enlarged view of the pixel and the isolation wall (S2).
  • FIG. 7 is a diagram showing a configuration of an optical conversion unit.
  • FIG. 8 is a diagram for explaining the solid-state image sensor of the first modification.
  • FIG. 9 is an enlarged view showing a part of the solid-state image sensor of the first modification.
  • FIG. 8 is a diagram for explaining the solid-state image sensor of the first modification.
  • FIG. 10 is a diagram for explaining the solid-state image sensor of the second modification.
  • FIG. 11 is a diagram for explaining the solid-state image sensor of the second modification.
  • FIG. 12 is a graph showing the light absorption rate of silicon.
  • FIG. 13 is a graph showing the attenuation of light intensity in silicon.
  • FIG. 14 is an example of the distribution of impurity concentration in the pinning region.
  • FIG. 15 is a diagram showing a pixel structure of a reference example.
  • FIG. 16 is a diagram showing a pixel structure of another reference example.
  • FIG. 17 is an enlarged view showing a main part of the solid-state image sensor of the first embodiment.
  • FIG. 18 is an enlarged view showing a main part of the solid-state image sensor of the second embodiment.
  • FIG. 19 is a diagram showing a modified example of the solid-state image sensor of the third embodiment.
  • 20 (a) and 20 (b) are diagrams showing the main steps of the method for manufacturing the solid-state image sensor of the second embodiment, following FIG. 19.
  • FIG. 21 is a diagram showing a modified example of the solid-state image sensor of the third embodiment.
  • 22 (a) and 22 (b) are enlarged views showing a main part of a solid-state image sensor having a high-dielectric film.
  • 23 (a) and 23 (b) are views showing a modified example of a solid-state image sensor having a high-dielectric film.
  • FIG. 24 is a diagram showing a modified example of the solid-state image sensor of the third embodiment.
  • FIG. 25 is an enlarged view showing a main part of the solid-state image sensor of the third modification.
  • FIG. 26 is an enlarged view showing a main part of the solid-state image sensor of the modified example 4.
  • the following description relates to increasing the sensitivity of a photodiode or a CMOS image sensor in which each pixel is equipped with a photodiode.
  • the following description relates to increasing the sensitivity in the near infrared light region.
  • the solid-state image sensor 1 of the present embodiment is a so-called back-illuminated image sensor.
  • the solid-state image sensor 1 may receive light from the opposite side.
  • the solid-state image sensor 1 may receive light from the support substrate 11 side, which will be described later.
  • the solid-state image sensor 1 includes a pixel unit 2, a pixel control unit 3, a signal processing unit 4, a horizontal control line group 6 composed of a plurality of horizontal control lines, and a vertical signal line 7.
  • the pixel unit 2, the pixel control unit 3, the signal processing unit 4, and the like are provided on the sensor substrate 12, which will be described later.
  • the sensor board 12 is attached to the support board 11.
  • a pixel portion 2 is provided in a portion of the sensor substrate 12 corresponding to the light receiving region S.
  • the pixel unit 2 has a plurality of pixels 8 arranged in a two-dimensional manner.
  • the pixel 8 outputs the signal voltage corresponding to the incident light to the vertical signal line 7.
  • the pixel control unit 3 is connected to each pixel 8 via a horizontal control line group 6.
  • the pixel control unit 3 outputs a control signal ⁇ for controlling the operation of the pixel 8.
  • the signal processing unit 4 is connected to each pixel 8 via a vertical signal line 7.
  • the signal processing unit 4 receives the signal voltage ⁇ output by the pixel 8.
  • the signal processing unit 4 generates an image signal from the signal voltage ⁇ output from the pixel 8.
  • FIG. 2 shows the electrical configuration of the pixel 8.
  • Pixel 8 is a so-called 4-transistor type CMOS image sensor.
  • the pixel 8 of this embodiment is an N-channel type. That is, the signal of the pixel 8 is carried by the signal electron.
  • the pixel 8 may be a P-channel type.
  • the pixel 8 has a photodiode PD, a floating diffusion layer FD, a transfer gate TG, a reset transistor RG, a source follower transistor SF, and a selection transistor SEL.
  • the photodiode PD is a PN junction type.
  • the photodiode PD generates signal electrons as carriers.
  • the photodiode PD accumulates the generated signal electrons.
  • the transfer gate TG, the reset transistor RG, the source follower transistor SF, and the selection transistor SEL are field effect transistors, respectively.
  • the source of the transfer gate TG is connected to the photodiode PD.
  • the drain of the transfer gate TG is connected to the floating diffusion layer FD.
  • the gate of the transfer gate TG is connected to the horizontal control line group 6.
  • the transfer gate TG receives the control signal ⁇ 1 from the horizontal control line group 6.
  • the transfer gate TG controls the transfer of signal electrons from the photodiode PD to the floating diffusion layer FD based on the control signal ⁇ 1.
  • the floating diffusion layer FD is connected to the drain of the transfer gate TG.
  • the floating diffusion layer FD is connected to the photodiode PD via the transfer gate TG.
  • the floating diffusion layer FD converts signal electrons into a signal voltage.
  • the floating diffusion layer FD is connected to the source of the reset transistor RG.
  • the floating diffusion layer FD is also connected to the gate of the source follower transistor SF.
  • the source of the reset transistor RG is connected to the floating diffusion layer FD.
  • the drain of the reset transistor RG is connected to the reset drain.
  • the gate of the reset transistor RG is connected to the horizontal control line group 6.
  • the reset transistor RG receives the control signal ⁇ 2 from the horizontal control line group 6.
  • the reset transistor RG resets the potential of the floating diffusion layer FD based on the control signal ⁇ 2.
  • the source of the source follower transistor SF is connected to the selection transistor SEL.
  • the drain of the source follower transistor SF is connected to an analog power supply.
  • the gate of the source follower transistor SF is connected to the floating diffusion layer FD.
  • the source follower transistor SF outputs a signal voltage corresponding to the voltage input to the gate via the selection transistor SEL.
  • the source of the selection transistor SEL is connected to the vertical signal line 7.
  • the drain of the selection transistor SEL is connected to the source of the source follower transistor SF.
  • the gate of the selection transistor SEL is connected to the horizontal control line group 6.
  • the selection transistor SEL outputs a signal voltage ⁇ to the vertical signal line 7 based on the control signal ⁇ 3.
  • FIG. 3 shows the control signals ⁇ 1, ⁇ 2, ⁇ 3, RS, SS output by the pixel control unit 3.
  • FIG. 3 schematically shows the timings of the control signals ⁇ 1, ⁇ 2, ⁇ 3, RS, and SS during the read period of the nth row.
  • “(H)” indicates that the signal is high, that is, on.
  • “(L)” indicates that the signal is low, that is, off.
  • the pixel control unit 3 outputs a control signal ⁇ 3 (H). As a result, the line that received the control signal ⁇ 3 is selected. Subsequently, the pixel control unit 3 outputs the control signal ⁇ 2 (H) for a predetermined period. As a result, the reset drain voltage is output to the floating diffusion layer FD. Subsequently, the pixel control unit 3 outputs the control signal RS (H) for a predetermined period. As a result, the reset level is sampled. Next, the pixel control unit 3 outputs the control signal ⁇ 1 (H) for a predetermined period. As a result, signal electrons are transferred from the photodiode PD to the floating diffusion layer FD.
  • the pixel control unit 3 outputs the control signal SS (H) for a predetermined period.
  • the signal level caused by the signal electrons stored in the floating diffusion layer FD is sampled at the timing of the control signal SS (H).
  • the pixel control unit 3 outputs the control signal ⁇ 2 (H) again for a predetermined period.
  • the reset drain voltage is output to the floating diffusion layer FD. That is, the potential of the floating diffusion layer FD is reset.
  • the pixel control unit 3 outputs the control signal ⁇ 3 (L).
  • the reading of the nth row is completed.
  • the pixel control unit 3 outputs the control signal ⁇ 3 (H) to the next n + 1 line.
  • the difference between the sampled signal level and the reset level is created. This difference is correlated double sampling. Correlated double sampling plays a role in noise reduction and offset elimination.
  • the level difference component is treated as a signal. Next, the level difference component is converted from an analog value to a digital value. Then, the component of the level difference converted into a digital value is output to the outside of the solid-state image sensor 1.
  • FIG. 4 schematically shows a cross section of the pixel portion 2.
  • the pixel portion 2 is formed on the sensor substrate 12.
  • the sensor board 12 has a wiring region 13 and an element region 14.
  • the surface of the sensor board 12 on the wiring region 13 side is joined to the support board 11.
  • the pixel unit 2 has a color filter 16 and a microlens 17 provided on the sensor substrate 12.
  • the color filter 16 plays a role of colorization.
  • the microlens 17 plays a role of condensing light.
  • the wiring area 13 has a plurality of wirings 18, a plurality of vias 19, and gates 21, 21A.
  • the wiring 18 is made of copper or aluminum.
  • the via 19 electrically connects the wirings 18 to each other. Further, the via 19 electrically connects the wiring 18 to the gates 21 and 21A formed of polysilicon.
  • the wiring region 13 also has an insulating film (not shown) that covers the wiring 18 and the via 19.
  • the element region 14 has an isolation wall 22 and pixels 8.
  • the isolation wall 22 is provided between the pixels 8 adjacent to each other.
  • the isolation wall 22 has a deep trench 23 and a p + -shaped channel stop region 24.
  • the deep trench 23 is provided on the incident side.
  • the channel stop region 24 is provided on the wiring region 13 side.
  • a charge storage portion 33a and a floating diffusion layer FD which will be described later, are provided.
  • the deep trench 23 suppresses optical crosstalk between pixels 8. Further, the deep trench 23 suppresses crosstalk due to the diffusion of signal electrons.
  • the channel stop region 24 electrically separates the pixels 8. More specifically, the channel stop region 24 electrically separates the charge storage portion 33a and the N + type region 34d.
  • Pixel 8 has a photoelectric conversion unit 26 and an optical conversion unit 27.
  • the photoelectric conversion unit 26 generates a signal voltage corresponding to the absorbed light L2 received from the optical input surface 26a.
  • the optical conversion unit 27 is provided on the optical input surface 26a of the photoelectric conversion unit 26.
  • the light conversion unit 27 receives the incident light L1 (see FIG. 5) and generates the absorbed light L2 (see FIG. 5) that is output to the photoelectric conversion unit 26.
  • the optical input surface 26a is also the main surface of the pinning region 36 described later.
  • the photoelectric conversion unit 26 has a first region 29 and a second region 31.
  • the first region 29 has a base unit 32, a charge storage unit 33a, a photodiode pinning layer 33b, and a readout unit 34.
  • the base portion 32 is P-shaped and constitutes an optical input surface 26a.
  • the substrate portion 32 absorbs the light L2 to be absorbed. As a result, signal electrons are generated.
  • the charge storage portion 33a and the photodiode pinning layer 33b are provided between the base portion 32 and the wiring region 13. In other words, the charge storage unit 33a is provided near the surface on the wiring region 13 side.
  • the charge storage unit 33a cooperates with the P-type substrate unit 32 and the photodiode pinning layer 33b to form a PN junction diode.
  • the P + type photodiode pinning layer 33b is provided between the charge storage portion 33a and the wiring region 13.
  • the photodiode pinning layer 33b prevents the generation of dark current from the interface state of the silicon surface.
  • the photodiode pinning layer 33b is in contact with the channel stop region 24 and has the same potential.
  • the reading unit 34 has a threshold value adjusting region 34a, N + type regions 34b, 34c, 34d, and a P-type well 34e.
  • the threshold adjustment region 34a is in contact with the charge storage unit 33a and the photodiode pinning layer 33b.
  • the threshold adjustment region 34a cooperates with the gate 21A to form the transfer gate TG.
  • the N + type region 34b is in contact with the threshold adjustment region 34a.
  • the N + type region 34b constitutes the floating diffusion layer FD.
  • the N + type region 34b is provided on the opposite side of the threshold adjustment region 34a from the photodiode PD. That is, the threshold adjustment region 34a is provided between the charge storage unit 33a and the floating diffusion layer FD.
  • the P-type well 34e is adjacent to the charge storage unit 33a. In other words, the P-type well 34e is adjacent to the charge storage unit 33a via the threshold adjustment region 34a.
  • the N + type region 34c is adjacent to the N + type region 34b so as to sandwich the channel region which is the P type well 34e.
  • the N + type region 34c constitutes a transfer gate TG from the charge storage unit 33a.
  • the signal electrons are read out into the N + type region 34b, which is the floating diffusion layer FD, via the threshold adjustment region 34a.
  • the signal electrons are converted into a voltage signal in this floating diffusion layer FD.
  • the N + type region 34d is adjacent to the N + type region 34c so as to sandwich the channel region which is the P type well 34e.
  • the N + type region 34d, the N + type region 34c, and the gate 21 form a source follower transistor SF.
  • the channel stop region 24 is in contact with the N + type region 34d.
  • a reset transistor RG and a selection transistor SEL are provided.
  • the P-type well 34e includes a floating diffusion layer FD, a reset transistor RG, a source follower transistor SF, and a selection transistor SEL.
  • the P-type well 34e prevents the inflow of signal electrons from the P-type substrate portion 32. Further, the P-type well 34e controls the threshold values of the reset transistor RG, the source follower transistor SF, and the selection transistor SEL.
  • FIG. 5 is an enlarged view of the area S1 of FIG. As shown in FIG. 5, the photoelectric conversion unit 26 further has a pinning region 36 formed in the second region 31.
  • the pinning region 36 is provided on the incident side of the substrate portion 32. In other words, the pinning region 36 is provided on the surface of the base portion 32 opposite to the wiring region 13 side.
  • the thickness of the pinning region 36 is 3 nm or more and 100 nm or less.
  • the pinning region 36 has a high acceptor concentration.
  • the pinning region 36 is neutralized.
  • the pinning region 36 holds holes.
  • the pinning region 36 suppresses the generation of dark current.
  • the pinning region 36 will be described in more detail.
  • the region (photoelectric conversion unit) that generates signal electrons due to light absorption functions to suppress the generation of dark current (second region 31, pinning region). 36) is included. Therefore, the layer and the film that hinder the absorbed light L2 output from the light conversion unit 27 to the photoelectric conversion unit 26 are substantially not present between the light conversion unit 27 and the photoelectric conversion unit 26.
  • the sensor will be described as an N-channel type. That is, the signal caused by the incident light L1 will be described as being carried by the signal electrons.
  • the pinning region 36 is P-shaped.
  • the pinning region 36 is a surface pinning layer on the P + type incident side.
  • the acceptor concentration in the pinning region 36 is high.
  • holes having a concentration of 1 ⁇ 10 17 cm- 3 or more are always present. These holes suppress the dark current generated due to the interface state existing on the light input surface 26a on the incident side of the photoelectric conversion unit 26.
  • the pinning region 36 is even better if it satisfies at least the first condition and further satisfies the second condition and the third condition.
  • the first condition is that the pinning region 36 neutralized by accumulating holes on the light input surface 26a on the incident side suppresses the generation of dark current on the light input surface 26a.
  • a plurality of bandgap levels are included, such as at the Si / SiO 2 interface, electrons in the valence band are excited to the conduction band via the bandgap levels. As a result, a dark current is generated.
  • the value of the dark current is represented by equation (1) based on the Shockley-Read-Hall model.
  • Each parameter constituting the equation (1) is as follows.
  • U Recombination rate.
  • vs thermal velocity.
  • N t Bandgap level density.
  • n Electron density in the conduction band.
  • p Hole density in the valence band.
  • ni Intrinsic carrier density.
  • k Boltzmann constant.
  • T Absolute temperature. If the recombination rate is positive, it is recombination. When the recombination rate is negative, it is the dark current generation rate.
  • the equation (2) can be obtained from the equation (1).
  • Et E i
  • the recombination rate U dep becomes maximum when the interface of Si / SiO 2 is depleted. Therefore, the equation (3) can be obtained from the equation (2).
  • Equation (5) is the ratio between when the interface is depleted and when holes are accumulated.
  • the second condition is to extend the life of a small number of carriers.
  • the minority carrier here is an electron.
  • the second condition is that the electrons of the generated electron-hole pairs promptly drift through the P-type photoelectric conversion unit 26 and reach the charge storage unit 33a.
  • the lifetime of minority carriers is affected by the number of crystal defects contained in the pinning region 36. Specifically, as the number of crystal defects contained in the pinning region 36 decreases, the life of minority carriers is extended. Crystal defects are likely to occur when the impurity concentration contained in the pinning region 36 is high and the high concentration region is large. This is because the atom size of the impurity is different from the atom size of silicon.
  • the pinning region 36 is provided by ion implantation.
  • the amount of ions injected corresponds to the integral of the impurity concentration and the impurity distribution.
  • the amount of ion implantation that can suppress the occurrence of crystal defects is shown to be 3 ⁇ 10 15 cm- 2 or less.
  • ion implantation introduces impurities into silicon and at the same time brings energy into silicon. This energy is also a factor that causes crystal defects. Crystal defects are healed by an annealing treatment performed after ion implantation. However, the crystal defects do not disappear completely.
  • the formation of the pinning region 36 is performed after the wiring region 13 is formed. Therefore, the annealing method is limited to the laser annealing method and the like. Therefore, it is necessary to reduce the occurrence of crystal defects caused by ion implantation.
  • the energy brought into silicon by ion implantation is proportional to the amount of impurities and energy. As a condition for suppressing the occurrence of crystal defects, it is shown that the product of the amount of impurities and energy is 5 ⁇ 10 15 keVcm -2 or less.
  • the third condition is that the electrons of the electron-hole pairs generated by the photoelectric conversion are promptly reached to the charge storage unit 33a. After passing through the P-shaped substrate portion 32, the electrons reach the charge storage portion 33a. Such an operation is performed by the movement of electrons due to the drift motion caused by the potential gradient.
  • the P-shaped substrate portion 32 is depleted. Similarly, the portion of the pinning region 36 on the substrate portion 32 side where the impurity concentration is low is depleted. That is, a sufficient electric field can be obtained in these regions. On the other hand, holes are accumulated in the vicinity of the optical input surface 26a in the pinning region 36 in order to suppress the dark current. That is, the vicinity of the optical input surface 26a is neutralized. The difference in impurity concentration facilitates the movement of electrons in the non-depleted region.
  • the pinning region 36 has an impurity concentration distribution as shown in FIG.
  • the larger the acceptor concentration the smaller the energy difference between the Fermi level and the valence band end.
  • the impurity concentration which is an acceptor, decreases in the pinning region 36 from the surface on the incident side toward the substrate portion 32. According to this impurity concentration distribution, the signal electrons quickly move to the substrate portion 32 due to drift even in the region where holes are accumulated in the pinning region 36.
  • Such an impurity concentration distribution can be obtained by ion implantation. Specifically, it can be obtained by setting the peak position of the impurity concentration distribution in the light input surface 26a or the oxide film provided on the light input surface 26a. According to this step, a distribution of impurity concentration that monotonically decreases from the light input surface 26a toward the substrate portion 32 is formed.
  • the distribution of impurity concentration can also be realized by other conditions.
  • ion implantation is performed with a low energy of 0.2 keV.
  • the peak position in the impurity concentration distribution is about 0.5 nm.
  • the injection energy is preferably 1 keV or less, for example.
  • the method using low-energy ion implantation has an advantage that there is no complexity of removing the oxide film after ion implantation.
  • the method of forming by low-energy ion implantation will be mainly described.
  • the light conversion unit 27 is a metal film formed on the surface of the pinning region 36.
  • the optical conversion unit 27 is in direct contact with the pinning region 36.
  • the light conversion unit 27 is formed of a metal nitride containing aluminum, silver, gold, copper, and titanium nitride (TiN).
  • the thickness of the light conversion unit 27 is 10 nm or more and 30 nm or less.
  • FIG. 6 is an enlarged view of the area S2 of FIG.
  • the light conversion unit 27 of the pixel 8 is separated from the light conversion unit 27 of another pixel 8 adjacent to the pixel 8.
  • This separation means that the plasmon generated in one optical conversion unit 27 does not reach the adjacent optical conversion unit 27.
  • a gap G is provided at the boundary of the pixel 8.
  • the plasmon generated in one optical conversion unit 27 reaching the other adjacent optical conversion unit 27 is also referred to as interference of the optical conversion unit 27. According to this gap G, the interference of the optical conversion unit 27 can be suppressed between the pixels 8.
  • the electric field is strong at the edge 27e of the optical conversion unit 27.
  • the edge 27e emits a strong evanescent light L2a. Therefore, the edge 27e of the light conversion unit 27 is formed on the pinning region 36. That is, the edge 27e of the light conversion unit 27 is formed on the light input surface 26a. In other words, the edge 27e of the optical conversion unit 27 is not formed on the deep trench 23 (isolation wall 22) that separates the pixels 8. Further, the deep trench 23 is formed in the region corresponding to the gap G formed between the light conversion units 27. According to this configuration, the strong evanescent light L2a generated at the edge 27e can be absorbed in the pinning region 36 and the base portion 32.
  • the evanescent light L2a that can be converted into signal electrons can be increased. That is, it becomes possible to effectively use the evanescent light L2a.
  • the gap G also suppresses the propagation of plasmons to the adjacent pixels 8. As a result, the occurrence of crosstalk is suppressed.
  • the gap G reduces the area of the optical conversion unit 27 that generates the evanescent light L2a.
  • the solid-state image sensor 1 has a microlens 17 (see FIG. 4) provided on the light conversion unit 27. According to the microlens 17, the incident light L1 can be focused on the light conversion unit 27. As a result, it is possible to prevent a decrease in sensitivity.
  • the light conversion unit 27 receives incident light L1 such as near infrared light.
  • the light conversion unit 27 generates the absorbed light L2.
  • the absorbed light L2 includes an evanescent light L2a and a propagating light L2b.
  • the light conversion unit 27 outputs the evanescent light L2a to the pinning region 36 and the base unit 32.
  • the light conversion unit 27 may include a grain structure. The size of the grain structure is equal to or smaller than the wavelength of the incident light L1.
  • the light conversion unit 27 may include the uneven structure shown in FIG. 7.
  • the uneven structure includes a plurality of ridges 27a (a plurality of convex portions). The distance between the ridges 27a may be, for example, 100 nm or more and may be a wavelength or less.
  • the ridge 28a projects from the optical input surface 26a.
  • the light conversion unit 27 may include a periodic structure.
  • a periodic structure for example, a plurality of spherical structures or columnar structures may be used. Further, such a structure can be roughly classified into a pattern structure and a fine particle structure.
  • the pattern structure examples include a diffraction grating, a hall array, a disk array, a slit array, an antenna array, and a bullseye array.
  • the diffraction grating may be, for example, a striped one-dimensional array structure, a square lattice-like or a triangular lattice-like two-dimensional array structure.
  • the hole array may have holes of circular, rectangular and triangular shapes.
  • the disk array may have a disk shape of a disk, a rectangle, a triangle, and a hemisphere.
  • the slit array may have a one-dimensional structure, a cross-shaped structure, and an asterisk-shaped structure.
  • the slit arrays may be arranged in a square grid or a triangular grid, respectively.
  • the antenna array may have a particle pair structure, a rod pair structure and a bowtie type structure.
  • a structure including an opening and a concentric concavo-convex structure may be arranged in a square lattice or a triangular lattice.
  • fine particles formed of a metal material are exemplified.
  • a metal nitride containing aluminum, silver, gold, copper, titanium nitride and the like may be adopted.
  • the shape of the fine particles include spherical nanoparticles, metal nanoshells, metal nanorods, and metal nanowires.
  • the fine particle structure utilizes localized surface plasmon resonance. When spherical nanoparticles are used as the fine particle structure, near-infrared resonance can be obtained by applying a gap mode that works between the particles.
  • the diameter of the spherical nanoparticles and the nanoshell may be 10 nm or more and 1 ⁇ m or less.
  • the diameter of the nanorod and nanowire may be 10 nm or more and 300 nm or less.
  • the lengths of the nanorods and nanowires may be 50 nm or more and 10 ⁇ m or less.
  • nitrogen-based nanoparticles such as TiN and high refractive index nanoparticles such as Si utilizing Mie scattering are also exemplified.
  • These fine particle structures may be formed by using a chemical synthesis method, a sputtering method and a vacuum deposition method. According to the vacuum vapor deposition method, an island-shaped film having a grain structure is formed.
  • the structure utilizing surface plasmon resonance based on periodicity has a period of 100 nm or more and is equal to or less than the wavelength of incident light.
  • the structure utilizing surface plasmon resonance based on the gap mode preferably has an intermetal distance such as a particle pair equal to or less than the wavelength of incident light.
  • the distance between metals is more preferably 1 nm or more and 100 nm or less.
  • the solid-state image sensor 1 components such as a charge storage unit 33a, a photodiode pinning layer 33b, a transistor, and wiring 18 are formed on a part of the silicon wafer on the wiring region 13 side.
  • the sensor substrate 12 is formed.
  • the sensor substrate 12 is joined to the support substrate 11.
  • the surface on the side where the charge storage portion 33a or the like is formed in the previous step is joined to the support substrate 11.
  • the support substrate 11 may use a wafer on which a circuit is formed. In this case, the degree of integration can be further increased.
  • the thickness of the sensor substrate 12 is 2 ⁇ m or more and 3 ⁇ m or less in the case of normal visible light.
  • the thickness of the sensor substrate 12 is 3 ⁇ m or less, near-infrared light can be sufficiently detected.
  • the pinning region 36 is formed. Specifically, boron is ion-implanted into the optical input surface 26a of the sensor substrate 12.
  • the ion implantation energy is 0.2 keV or more and 1 keV or less.
  • laser annealing for activation is performed. Ion implantation may be performed through the oxide film. In this case, the distribution of impurity concentration has its peak formed at the interface on the incident side or in the oxide film.
  • the ion implantation amount is preferably 1 ⁇ 10 14 cm- 2 or more and 3 ⁇ 10 15 cm- 2 or less.
  • a deep trench 23 for preventing crosstalk is formed.
  • FIG. 14 is a graph showing the distribution of impurity concentrations when monovalent boron ions are ion-implanted based on predetermined conditions.
  • the predetermined conditions are that the ion implantation energy is 0.2 keV and the dose amount is 1 ⁇ 10 15 cm- 2 .
  • Graph G14a shows the concentration distribution formed under this condition.
  • the ion implantation energy is 0.5 keV and the dose amount is 1 ⁇ 10 15 cm- 2 .
  • Graph G14b shows the concentration distribution formed under this condition.
  • the position of the peak P14 is 0.5 nm.
  • the concentration of the peak P14 is about 2 ⁇ 10 + 21 cm- 3 . Considering the measurement limit, it can be said that boron ions are distributed to a depth of about 10 nm.
  • laser annealing is performed.
  • the annealing can be performed without damaging the transistor and the wiring formed on the wiring region 13 side.
  • the energy of laser annealing is reduced. That is, it does not melt the silicon. By satisfying this condition, it is possible to prevent the impurity concentration of the molten portion from becoming constant.
  • the state of insufficient impurity activity can be changed to the state of sufficient impurity activity.
  • the natural oxide film is removed.
  • the light conversion unit 27, which is a metal film is formed.
  • the light conversion unit 27 may be formed by using a method according to the above-mentioned structure. Then, the color filter 16 and the microlens 17 are formed on the light conversion unit 27.
  • the solid-state image sensor 1 of the embodiment generates evanescent light L2a in the light conversion unit 27 which is a metal film. Almost all the evanescent light L2a is absorbed by the photoelectric conversion unit 26. In other words, the evanescent light L2a is absorbed not only in the substrate portion 32 of the photoelectric conversion unit 26 but also in the pinning region 36. That is, the evanescent light L2a is converted into signal electrons in the substrate portion 32 and the pinning region 36.
  • the optical conversion unit 27 is in direct contact with the pinning region 36. In other words, there is no insulating film between the optical conversion unit 27 and the photoelectric conversion unit 26 which is composed of silicon and performs photoelectric conversion.
  • the evanescent light L2a reaches the photoelectric conversion unit 26 without being attenuated by the insulating film or the like.
  • the light conversion unit 27, which is a metal film, and the pinning region 36 are in direct contact with each other.
  • the “direct” includes not only a configuration in which no film or layer is sandwiched between the optical conversion unit 27 and the pinning region 36, but also a configuration in which a film or layer in which the attenuation of the evanescent light L2a can be ignored is sandwiched.
  • a natural oxide film exists between the light conversion unit 27 and the pinning region 36, it can be said that the light conversion unit 27 and the pinning region 36 are substantially in direct contact with each other.
  • Evancent light L2a has a rapid decay of strength in silicon.
  • the evanescent light L2a is easily absorbed by silicon. Therefore, when detecting near-infrared light, it is not necessary to increase the thickness of silicon for photoelectric conversion.
  • 1 ⁇ m is exemplified as the thickness of silicon for photoelectric conversion.
  • the depth of the trench for preventing crosstalk can be made shallow. The formation of the trench can be facilitated and the width of the trench can be reduced.
  • holes are accumulated on the surface of the pinning region 36 on the incident side. As a result, it is possible to suppress the generation of dark current due to the bandgap levels existing in large numbers at the Si / SiO 2 interface.
  • the internal quantum efficiency of the solid-state image sensor 1 having the above configuration is almost 100%.
  • the internal quantum efficiency is a ratio in which the number of photons incident on silicon is the denominator and the number of signal electrons is the numerator.
  • the internal quantum efficiency excludes losses such as reflectance on the sensor surface.
  • the solid-state image sensor 1 can be considered that a so-called dead layer is not substantially formed in the pinning region 36.
  • the pixel 8 of the embodiment has a photoelectric conversion unit 26 that generates a signal voltage corresponding to the absorbed light L2 received from the optical input surface 26a, and an absorbed light that receives the incident light L1 and is output to the photoelectric conversion unit 26.
  • An optical conversion unit 27 provided on the optical input surface 26a of the photoelectric conversion unit 26 is provided so as to generate light L2.
  • the photoelectric conversion unit 26 has a first region 29 having a first acceptor concentration (first impurity concentration) and a second acceptor concentration (second impurity concentration) higher than the first acceptor concentration. It has 2 regions 31 and 2.
  • the second region 31 includes the light input surface 26a and comes into direct contact with the light conversion unit 27.
  • the light conversion unit 27 receives the incident light L1 and generates the absorbed light L2 including the evanescent light L2a.
  • the solid-state image sensor 1 of the embodiment controls the operation of the pixel unit 2 having the isolation wall 22 provided between the plurality of pixels 8 arranged in a two-dimensional shape and the pixels 8 adjacent to each other, and the pixel unit 2. It includes a pixel control unit 3 that generates a control signal to be generated, and a signal processing unit 4 that receives a signal voltage generated by the pixel unit 2.
  • the pixel 8 generates a photoelectric conversion unit 26 that generates a signal voltage corresponding to the absorbed light L2 received from the optical input surface 26a and an absorbed light L2 that receives the incident light L1 and is output to the photoelectric conversion unit 26. As described above, it has an optical conversion unit 27 provided on the optical input surface 26a of the photoelectric conversion unit 26.
  • the photoelectric conversion unit 26 has a first region 29 having a first acceptor concentration and a second region 31 having a second acceptor concentration higher than the first acceptor concentration.
  • the second region 31 includes the light input surface 26a and comes into direct contact with the light conversion unit 27.
  • the light conversion unit 27 receives the incident light L1.
  • the light conversion unit 27 generates the absorbed light L2 including the evanescent light L2a.
  • the light conversion unit 27 of the pixel 8 receives the incident light L1.
  • the light conversion unit 27 generates the absorbed light L2 output to the photoelectric conversion unit 26.
  • the optical input surface 26a of the photoelectric conversion unit 26 is in direct contact with the optical conversion unit 27. Therefore, the absorbed light L2 is input to the photoelectric conversion unit 26 without being attenuated.
  • the absorbed light L2 is more easily absorbed by the photoelectric conversion unit 26 than the incident light L1. Therefore, the light receiving sensitivity can be increased.
  • the photoelectric conversion unit 26 has a second region 31 including an optical input surface 26a. Therefore, the second region 31 has a higher acceptor concentration than the first region 29. According to this configuration, the dark current generated at the interface can be suppressed. That is, according to the pixel 8, the light receiving sensitivity can be increased and the dark current can be suppressed. Therefore, a good image can be obtained by using the pixel 8.
  • the second acceptor concentration in the second region 31 decreases as it approaches the first region 29. According to this configuration, the minority carriers generated by the absorption of the absorbed light L2 in the second region 31 can be quickly moved to the first region 29. As a result, the minority carriers do not disappear, so that the signal voltage caused by the minority carriers can be captured well. That is, the conversion efficiency from the absorbed light L2 to the signal voltage due to the minority carriers is increased. Therefore, the light receiving sensitivity can be further increased.
  • the second region 31 is formed by doping having a dose amount of 1 ⁇ 10 14 cm- 2 or more and 3 ⁇ 10 15 cm- 2 or less. Further, the second region 31 is formed by doping so that the injection energy is 0.2 keV or more and 1 keV or less. According to this configuration, it is possible to suppress the occurrence of crystal defects in the second region 31. Therefore, the life of the minority carriers generated according to the absorbed light L2 can be extended. As a result, minority carriers will not disappear. Therefore, the signal voltage caused by the minority carrier can be captured well. That is, the conversion efficiency from the absorbed light L2 to the signal voltage due to the minority carriers is increased. Therefore, the light receiving sensitivity can be further increased.
  • the isolation wall 22 is provided between the photoelectric conversion units 26 in the pixels 8 adjacent to each other.
  • One optical conversion unit 27 adjacent to each other is separated from the other optical conversion unit 27.
  • the side portion of the optical conversion unit 27 is formed on the optical input surface 26a of the photoelectric conversion unit 26. According to this configuration, it is possible to prevent the absorbed light L2 generated by the light conversion unit 27 of one pixel 8 from reaching another adjacent pixel 8. Therefore, the occurrence of crosstalk can be suitably suppressed.
  • the pixel 8 and the solid-state image sensor 1 according to the present embodiment are not limited to the above embodiment.
  • ⁇ Modification example 1> 8 and 9 are diagrams for explaining the solid-state image sensor 1A according to the first modification.
  • the incident light L1 is not parallel light.
  • the incident angle ⁇ of the incident light L1 with respect to the pixel 8 arranged near the center and the incident angle ⁇ of the incident light L1 with respect to the pixel 8 arranged away from the center may be different from each other. is there. That is, the main ray of the incident light L1 extends from the center of the camera lens 90 toward the solid-state image sensor 1A.
  • the incident angle ⁇ is 0 degrees.
  • the incident angle ⁇ is large in the peripheral portion of the solid-state image sensor 1A.
  • the distance between the camera lens 90 and the solid-state image sensor 1A becomes narrower. According to this configuration, the incident angle ⁇ in the peripheral portion of the solid-state image sensor 1A is further increased.
  • the incident angle ⁇ with respect to the pixel 8 is different, the incident angle ⁇ with respect to the light conversion unit 27 is different.
  • the period of the ridge 27a is determined according to the wavelength of the incident light L1.
  • the period of the light conversion unit 27 corresponds to the wavelength of the incident light L1.
  • the period of the optical conversion unit 27 may not correspond to the wavelength of the incident light L1. That is, when the incident angle ⁇ is 0 degrees and the period is L, the substantial period when the incident angle ⁇ is L ⁇ cos ⁇ .
  • the incident angle ⁇ is an angle with respect to the normal direction A on the light input surface 26a.
  • FIG. 9A is an enlarged view showing the relationship between the pixel 8 arranged near the center of the light receiving surface in the solid-state image sensor 1A and the incident light L1 and the optical conversion unit 27.
  • FIG. 9B is an enlarged view showing the relationship between the pixel 8 arranged near the right end of the light receiving surface in the solid-state image sensor 1A and the incident light L1 and the optical conversion unit 27.
  • the period LS of the optical conversion unit 27 of the pixel 8 at a certain position can be obtained by the following equation (6).
  • L is the period of the optical conversion unit 27 when the incident angle ⁇ is zero.
  • the period of the optical conversion unit 27 included in the pixel 8 arranged at the edge of the light receiving surface is larger than the period of the optical conversion unit 27 included in the pixel 8 arranged in the center of the light receiving surface.
  • the solid-state image sensor 1A may adjust the position of the microlens 17 so as to correspond to the incident angle ⁇ of the incident light L1. In this case, the decrease in the amount of light in the pixel 8 having a large incident angle ⁇ is suppressed.
  • the solid-state image sensor 1A may be provided with a configuration in which a desired potential is applied to the optical conversion unit 27 included in the solid-state image sensor 1B of the modification 2 described later. This technique can be widely applied to the solid-state image pickup apparatus shown in FIGS. 15 and 16.
  • ⁇ Modification 2> 10 and 11 are diagrams for explaining the solid-state image sensor 1B according to the second modification.
  • the pinning region 36 and the optical conversion unit 27B are in direct electrical contact with each other.
  • the contact state between the pinning region 36 and the optical conversion unit 27B is ohm contact due to the high impurity concentration in the pinning region 36. Therefore, the potential of the optical conversion unit 27B is the same as the potential of the pinning region 36 where the holes are accumulated.
  • the potential of the pinning region 36 where holes are accumulated may be the ground potential.
  • the P-type photoelectric conversion unit 26 may be completely depleted and the electric field may be strengthened toward the charge storage unit 33a. In this case, the potential of the pinning region 36 where the holes are accumulated is a negative potential. When holes are used as signal carriers, a positive potential is applied.
  • the solid-state image sensor 1B according to the second modification has a configuration in which a desired potential is applied to the light conversion unit 27B.
  • FIG. 10 is a cross-sectional view schematically showing a peripheral portion of the sensor chip.
  • the solid-state image sensor 1B according to the second modification includes a voltage application unit 40 in addition to the configuration of the solid-state image sensor 1.
  • the voltage application portion 40 includes a wiring 18B provided in the wiring region 13, a dicing region 41 (conductive portion) having a large acceptor concentration provided in the base portion 32, and a dicing surface 26b formed on the end surface of the base portion 32. ,including.
  • the end of the wiring 18B which is an aluminum pad, is electrically connected to the dicing region 41.
  • the wiring 18B is adjacent to the guard ring region S4 including the N + type region 42 provided on the base portion 32.
  • the dicing region 41 is a P + type.
  • One end of the dicing region 41 forms a part of the dicing surface 26b.
  • the dicing region 41 is, for example, a region doped with boron by ion implantation. As a result, the electrical resistance of the dicing region 41 is small.
  • the dicing surface 26b is the end surface of the sensor chip.
  • the sensor chip is an element in which a support substrate 11 and a sensor substrate 12 on which a pixel portion 2 or the like is formed are bonded to each other.
  • a plurality of solid-state image sensors 1B are formed on a silicon wafer and are separated by dicing.
  • the dicing surface 26b is a surface formed by this dicing. That is, the dicing surface 26b is a cut surface generated when the solid-state image sensor 1B is cut out from the silicon wafer. Due to dicing, a plurality of defects are generated on the dicing surface 26b. This defect aids electrical conductivity. That is, the dicing surface 26b has electrical conductivity.
  • the dicing surface 26b includes at least a dicing region 41, a base portion 32, and a pinning region 36 included in the base portion 32.
  • the dicing surface 26b may include an optical conversion unit 27B.
  • the dicing region 41 is electrically connected to the pinning region 36 via the dicing surface 26b. That is, a negative potential can be applied to the pinning region 36. Then, the pinning region 36 forms ohmic contact with the optical conversion unit 27B. Therefore, the negative potential is also applied to the optical conversion unit 27B via the dicing region 41, the dicing surface 26b, and the pinning region 36.
  • the optical conversion unit 27B has a configuration in which the ridges 27b are electrically connected to each other. Further, the optical conversion units 27B included in the pixels 8 adjacent to each other may be electrically connected to each other.
  • the solid-state image sensor 1B has a bridge 45 that electrically connects the optical conversion units 27B adjacent to each other. The bridge 45 may connect two optical conversion units 27B. The bridge 45 may connect two or more optical conversion units 27B. As a result, even when the isolation wall 22 is present, the pinning region 36 and the optical conversion unit 27B are electrically connected between the pixels 8. That is, a negative potential is supplied to the pinning region 36 and the optical conversion unit 27B of all the pixels 8.
  • the step of removing the natural oxide film immediately before forming the light conversion unit 27B, which is a metal film, may be omitted in order to shorten the step. Further, if the film thickness of the natural oxide film is thick, for example, if about 1 nm remains, the light conversion unit 27B may be electrically suspended. However, there is no problem due to the light conversion unit 27B being electrically suspended. In the natural oxide film, there is a slight loss of evanescent light L2a. However, the loss of evanescent light L2a due to the natural oxide film can be ignored.
  • the solid-state imaging device of the second modification has a plurality of pixels arranged in a two-dimensional shape, a pixel portion having an isolation wall provided between the pixels adjacent to each other, and an operation of the pixel portion. It includes a pixel control unit that generates a control signal to be controlled, and a signal processing unit that receives a signal voltage generated by the pixel unit.
  • the pixels are a photoelectric conversion unit that generates a signal voltage according to the absorbed light received from the optical input surface, and the optical input surface of the photoelectric conversion unit so as to receive the incident light and generate the absorbed light. It has an optical conversion unit provided in.
  • the photoelectric conversion unit includes the optical input surface and comes into direct contact with the optical conversion unit.
  • the light conversion unit receives the incident light and generates the absorbed light including the evanescent light.
  • the optical conversion unit receives a negative potential when the signal carrier is an electron and a negative potential when the signal carrier is a hole.
  • the optical conversion unit 27B receives a negative potential. According to this configuration, the photoelectric conversion unit 26 is completely depleted. Further, according to this configuration, the electric field toward the charge storage unit 33a becomes large. As a result, the signal carriers are quickly drifted to the charge storage unit 33a without recombination. Therefore, the sensitivity is improved and the reaction speed is increased.
  • one optical conversion unit 27B adjacent to each other is electrically connected to the other optical conversion unit 27B by the bridge 45. According to this configuration, a configuration capable of suppressing dark current can be obtained by a simple step.
  • FIG. 12 is a graph showing the relationship between the absorption coefficient of silicon and the wavelength. As shown in the graph G12a, the absorption coefficient of silicon sharply decreases from the visible light band G12b (360 nm to 830 nm) to the near infrared light band G12c (830 nm or more). As a result, in order to sufficiently absorb near-infrared light, it is necessary to increase the thickness of silicon.
  • FIG. 13 is a graph showing the relationship between the incident depth and the intensity of near-infrared light. According to FIG. 13, the degree of attenuation of the light intensity of each wavelength of near-infrared light due to the light absorption generated inside the silicon can be seen.
  • the horizontal axis of FIG. 13 is the depth inside the silicon.
  • the vertical axis is the light intensity.
  • graph G13a shows the attenuation of light intensity when the wavelength is 800 nm.
  • Graph G13b shows the attenuation of light intensity when the wavelength is 850 nm.
  • Graph G13c shows the attenuation of light intensity when the wavelength is 900 nm.
  • Graph G13d shows the attenuation of light intensity when the wavelength is 950 nm.
  • Graph G13e shows the attenuation of light intensity when the wavelength is 1000 nm.
  • Graph G13f shows the attenuation of light intensity when the wavelength is 1050 nm.
  • graph G13b is light used in a gesture input device, and shows the state of attenuation when the wavelength is 850 nm.
  • a 12 ⁇ m silicon layer is required for half of the incident light L1 to be absorbed by the silicon.
  • the graph G13d is light used for an in-vehicle device, and shows the state of attenuation when the wavelength is 950 nm.
  • a silicon layer of 24 ⁇ m is required in order for 1/2 of the incident light L1 to be absorbed by silicon. When the incident light L1 is further absorbed, it is necessary to further increase the thickness of the silicon layer.
  • the thickness of the silicon layer such as 12 ⁇ m and 24 ⁇ m and the thickness of the silicon layer larger than these are large considering that the sensor thickness of the image sensor for visible light is about 3 ⁇ m.
  • the thickness of such a silicon layer is large even considering that the pixel size of the image sensor for surveillance is about 3 ⁇ m.
  • a PN junction type diode is mainly used for the photodiode.
  • the photodiode is photoelectrically converted in a reverse bias state.
  • the depletion layer extends from the PN junction surface to the N-type region and the P-type region.
  • An electric field is formed in the depletion layer. According to this electric field, among the electron-hole pairs generated by light absorption, electrons move to the N-type region. Then, the holes move to the P-type region.
  • CMOS image sensors electrons are generally used as signals.
  • Non-Patent Document 1 discloses a technique for bending light that has been incident substantially vertically by a pyramid-shaped uneven structure provided on the surface of an incident surface. The bending of the light beam in the pixel substantially increases the thickness of the silicon.
  • DTI Deep Trench Isolation
  • This DTI acts as a mirror. According to the above structure, it is reported that the quantum efficiency is improved about twice in the wavelength region of 850 nm or more and 950 nm or less. However, the degree of improvement in quantum efficiency is only about double.
  • a process for creating a pyramid-shaped structure and a process for creating a DTI are required.
  • Reference 1 discloses another technique.
  • Reference 1 discloses a technique of utilizing plasmons to improve the sensitivity of near-infrared light.
  • Reference 1 discloses a technique of utilizing plasmons to improve the sensitivity of near-infrared light.
  • Reference 1 discloses a technique of utilizing plasmons to improve the sensitivity of near-infrared light.
  • the solid-state image sensor disclosed in Reference 1 generally has the structure shown in FIG.
  • the solid-state image sensor 100 includes a wiring region 101, a photodiode pinning layer 102, an N-type storage layer 103, a base portion 104, an insulating film 105, a negative charge holding region 106, and a fine metal structure layer 107.
  • the N-type storage layer 103 cooperates with the photodiode pinning layer 102 and the P-type substrate portion 104 to form a PN junction photodiode PD.
  • the fine metal structure layer 107 generates plasmons.
  • the fine metal structure layer 107 is formed on the photodiode PD.
  • An insulating film 105 is provided on the optical input surface 104a.
  • Examples of the insulating film 105 include a silicon oxide film.
  • the film thickness of the insulating film 105 is about 1 nm or more and 2 nm or less.
  • a negative charge holding region 106 is formed on the insulating film 105.
  • Examples of the negative charge holding region 106 include a hafnium oxide film having a film thickness of 11 nm formed by an atomic layer deposition method (Atomic Layer Deposition: ALD). Further, as the negative charge holding region 106, a hafnium oxide film having a film thickness of 50 nm formed by a physical vapor deposition method (Physical Vapor Deposition: PVD) can be mentioned.
  • a fine metal structure layer 107 is provided on the negative charge holding region 106. Further, a color filter and a microlens are formed on the color filter.
  • the fine metal structural layer 107 is formed of aluminum, silver, gold, copper, a metal nitride containing titanium nitride, or the like.
  • the thickness of the fine metal structure layer 107 is 10 nm or more and 30 nm or less.
  • the fine metal structure layer 107 exhibits a mesh-like periodic structure or a strip-like periodic structure. When light is incident on such a fine metal structure layer 107, a strong electric field is generated at the edge portion of the metal structure.
  • the solid-state image sensor 100 of Reference 1 includes an insulating film 105 having a size of 1 nm or more and 2 nm or less.
  • the film thickness of the negative charge holding region 106 is 50 nm or more.
  • the insulating film 105 and the negative charge holding region 106 attenuate the evanescent light. 80% of the generated evanescent light is lost due to the attenuation of the insulating film 105 and the negative charge holding region 106. Therefore, the effect of reducing the thickness of the substrate portion 104, which is the light receiving layer, is limited. Furthermore, it was necessary to use an expensive atomic layer deposition method for forming the negative charge holding region 106.
  • FIG. 16 is an example of another solid-state image sensor 200 using plasmon.
  • the solid-state image sensor 200 has a wiring region 201, a photodiode pinning layer 202, an N-type storage layer 203, a base portion 204, an insulating film 205, and a fine metal structure layer 207. That is, the solid-state image sensor 200 omits the negative charge holding region 106 from the solid-state image sensor 100.
  • An insulating film 205 is formed on the optical input surface 204a of the solid-state image sensor 200. The film thickness of the insulating film 205 is 2 nm.
  • the insulating film 205 is composed of a silicon oxide film and a hafnium oxide film.
  • a fine metal structure layer 207 is provided on the insulating film 205.
  • the fine metal structural layer 207 is formed of a metal nitride containing aluminum, silver, gold, copper and titanium nitride.
  • the thickness of the fine metal structure layer 207 is 10 nm or more and 30 nm or less.
  • the fine metal structure layer 207 exhibits a mesh-like periodic structure or a strip-like periodic structure.
  • a negative voltage of -2V or more and -10V or less is applied to the fine metal structure layer 207.
  • the fine metal structure layer 207, the insulating film 205, and the P-type substrate portion 204 form a MOS structure.
  • a negative voltage is applied to the fine metal structure layer 207, holes are accumulated in the region of the substrate portion 204 in the vicinity of the insulating film 205. These holes suppress the dark current generated from the interface state existing on the optical input surface 204a of the substrate portion 204.
  • a strong electric field is generated at the edge portion of the fine metal structure layer 207. This strong electric field produces exponentially decaying evanescent light and propagating light. Evanescent light is almost completely absorbed by the time it reaches a depth of 1 ⁇ m. As a result, the thickness of the light receiving layer in which the substrate portion 204 and the N-type storage layer 203 are combined can be reduced.
  • the evanescent light is attenuated by the insulating film 105 having a film thickness of 2 nm.
  • insulating films 105 and 205 were provided between the region for generating the evanescent light and the region for absorbing the evanescent light. Since the evanescent light is attenuated by the insulating films 105 and 205, the improvement of the light receiving sensitivity is hindered. As a result, it was difficult to capture near-infrared light favorably.
  • the back-illuminated CMOS image sensor of the reference example as shown in FIGS. 15 and 16 has base portions 104 and 204 made of silicon.
  • the thickness of the base portions 104 and 204 is about 3 ⁇ m.
  • the wavelength when the wavelength is 950 nm, the light intensity is attenuated to 91% at the position where the depths of the base portions 104 and 204 are 3 ⁇ m.
  • the substrate portions 104 and 204 absorb 9% of light.
  • the wavelength is 850 nm
  • the light intensity is attenuated to 76% at the position where the depths of the substrate portions 104 and 204 are 3 ⁇ m.
  • the substrate portions 104 and 204 absorb 24% of the light.
  • the unabsorbed light passes through the substrate portions 104 and 204.
  • a microlens, an antireflection film, and the like are formed on the optical input surfaces 104a and 204a, which are the back surfaces of the solid-state image sensors 100 and 200. According to the antireflection film, the reflection of the incident light L1 is suppressed.
  • the reflectance on the light input surface is 0%. Further, it is assumed that 100% of the electrons generated by the light absorbed inside the silicon are utilized as a signal. In other words, we assume that the internal quantum efficiency is the same as the external quantum efficiency. These assumptions lead to higher sensitivities. Based on these assumptions, the quantum efficiency (number of signal electrons / number of incident photons) is 9% when the wavelength of light is 950 nm. Further, when the wavelength of light is 850 nm, it is 24%.
  • Non-Patent Document 1 scatters incident light to substantially increase the thickness of silicon.
  • the quantum efficiency is improved to 16% at a wavelength of 950 nm and 33% at a wavelength of 850 nm.
  • the quantum efficiency is 16% when the wavelength of the incident light L1 is 950 nm. Further, when the wavelength of the incident light L1 is 850 nm, the quantum efficiency is 33%.
  • Total film thickness of composite film 54 nm (silicon oxide film (1 nm), hafnium oxide film formed by ALD (3 nm), hafnium oxide film formed by PVD (sputtering) (50 nm)) Depth at which the intensity of the evanescent light L2a is attenuated to 1 / e: 45 nm (wavelength 950 nm), 36 nm (wavelength 850 nm). Further, the evanescent light is attenuated by the hafnium oxide film and the silicon oxide film. Further, the ratio of evanescent light reaching the silicon film is 23% when the wavelength of the incident light is 950 nm. Further, when the wavelength of the incident light is 850 nm, it is 30%. The film thickness of silicon is 3 ⁇ m. It is assumed that all evanescent light is absorbed in silicon. Reflections on the plane of incidence are assumed to be ignored.
  • the quantum efficiency based on evanescent light when the wavelength of the incident light is 950 nm is 23%. Further, when the wavelength of the incident light L1 is 850 nm, the quantum efficiency based on the evanescent light is 30%. Far-field light is not absorbed by the oxide film and hafnium oxide. As a result, the light in the distant field reaches the silicon film. Then, the light in the distant field is partially absorbed by the silicon film having a thickness of 3 ⁇ m. In this configuration, the far-field quantum efficiency is 9% when the wavelength of the incident light is 950 nm. Further, when the wavelength of the incident light is 850 nm, the quantum efficiency in the far field is 24%.
  • the intensity ratio of evanescent light to distant light is 3.5: 1.
  • the solid-state image sensor 1 of the present embodiment does not have an insulating film that attenuates the evanescent light L2a.
  • the quantum efficiency based on the evanescent light L2a will be examined.
  • the quantum efficiency of the evanescent light L2a generated when the wavelength of the incident light L1 is 950 nm is 100%.
  • the quantum efficiency of the evanescent light L2a generated when the wavelength of the incident light L1 is 850 nm is also 100%.
  • the quantum efficiency based on the light in the distant field will be examined.
  • the quantum efficiency of the far-field light generated when the wavelength of the incident light L1 is 950 nm is 9%.
  • the quantum efficiency of the far-field light generated when the wavelength of the incident light L1 is 850 nm is 24%. Further, the intensity ratio of the evanescent light L2a and the distant field light L1a is 3.5: 1.
  • the total quantum efficiency is 80% when the wavelength of the incident light L1 is 950 nm. Further, when the wavelength of the incident light L1 is 850 nm, the total quantum efficiency is 83%. Therefore, the quantum efficiency is significantly improved as compared with the solid-state image sensor that employs the techniques described in Non-Patent Documents 1 to 4.
  • Reference 3 discloses an image sensor having a metal film provided directly on silicon.
  • the technique disclosed in Reference 3 is a Schottky barrier type infrared CCD image sensor.
  • ⁇ Reference 3> Masafumi Kimata, Munetaka Ueno, "PtSi Schottky Barrier Infrared Image Sensor", Journal of the Infrared Society of Japan, Vol. 14, No. 2, pp. 17-21, Japan Infrared Society, 2005.
  • Reference 3 Fig. 2 (b) shows a cross-sectional view of the pixels of the Schottky barrier type infrared CCD image sensor.
  • the Schottky barrier type infrared CCD image sensor is simply referred to as "SBIRCCD".
  • the SBIRCCD has a detection unit using a Schottky barrier and a reading unit composed of a transfer gate and a CCD.
  • the detection unit has a Schottky barrier.
  • the Schottky barrier has a P-type substrate and a film made of platinum silicide (PtSi).
  • the film thickness of platinum silicide is about 5 nm.
  • the barrier height of the Schottky barrier is 0.2 eV.
  • the barrier height of the Schottky barrier is small. Therefore, the detector exhibits ohmic properties at room temperature. That is, the dark current is large.
  • the SBIRCCD is cooled using liquid nitrogen. Specifically, the SBIRCCD is cooled to about -196 ° C. As a result, the dark current is reduced, so that the Schottky characteristics can be confirmed.
  • the SBIRCCD receives light from the back side.
  • the light received by the SBIRCCD is mid-infrared light having a wavelength of 3 ⁇ m or more and 5 ⁇ m or less.
  • the energy of mid-infrared light is smaller than the silicon bandgap of 1.1 eV. Therefore, mid-infrared light is not absorbed by silicon.
  • Part of the mid-infrared light is absorbed by the platinum silicide film.
  • high-energy electrons and holes are generated by the photoelectric effect of the platinum silicide film. Holes with an energy of 0.2 eV or higher are injected into silicon across the Schottky barrier. That is, the holes become signals.
  • Reference 3 Fig. A potential diagram is shown in 1.
  • a pinning region cannot be provided in order to realize the Schottky barrier bonding. That is, it is not possible to reduce the dark current using the pinning region.
  • the platinum silicide film is formed on the silicon surface on the side opposite to the incident side of infrared light.
  • a reverse bias voltage is applied between the platinum silicide film and the substrate made of P-type silicon.
  • the SBIRCCD does not have a configuration corresponding to an optical conversion layer. That is, the SBIRCCD cannot utilize the plasmon effect.
  • FIG. 17 shows an enlarged view of the main parts of the optical conversion unit 27 and the photoelectric conversion unit 26 of the above embodiment (hereinafter referred to as “first embodiment”).
  • the optical conversion unit 27 of the first embodiment includes a plurality of ridges 27a.
  • the ridge 27a was provided so as to be in contact with the optical input surface 26a. That is, the ridge bottom surface 27a1 of the ridge 27a is in direct contact with the optical input surface 26a. In other words, the ridge bottom surface 27a1 is in direct contact with the surface of the pinning region 36.
  • the evanescent light generated in the optical conversion unit 27 is generated at the edge 27a2 sandwiching the ridge bottom surface 27a1.
  • the evanescent light is directly incident on the pinning region 36 located in the vicinity of the edge 27a2. That is, the light conversion unit 27 is in direct contact with the photoelectric conversion unit 26 without a layer such as an insulating layer. As a result, the attenuation of the evanescent light from the light conversion unit 27 to the photoelectric conversion unit 26 is suppressed. Therefore, the light receiving sensitivity can be increased.
  • the incident light L1 is incident on the pixel 8.
  • the incident direction of the incident light L1 is orthogonal to the direction in which the plurality of ridges 27a are separated from each other.
  • the incident light L1 is an electromagnetic wave. Therefore, the incident light L1 generates an electric field E1.
  • the direction of the electric field E1 is orthogonal to the traveling direction of the incident light L1. That is, the direction of the electric field E1 coincides with the direction in which the plurality of ridges 27a are separated from each other.
  • the electric field E1 causes a bias of free electrons. More specifically, the free electrons collect on the ridge side surface 27a3.
  • a strong electric field E2 is generated around the ridge 27a from one ridge side surface 27a3 toward the other ridge side surface 27a3.
  • Surface plasmon has a so-called electric field enhancing effect.
  • This electric field enhancing effect strongly depends on the vibration direction of the electric field E2. That is, a strong electric field E2 is generated in the vicinity of the ridge side surface 27a3 arranged in the vibration direction of the electric field E2. As a result, the surface plasmon is enhanced by this electric field E2. That is, the electric field E2 overlapping the region where the surface plasmon is generated enhances the surface plasmon.
  • a part of such an electric field E2 is referred to as an enhanced electric field E2a.
  • the position where the surface plasmon is generated is in the vicinity of the edge 27a2. Then, the enhanced electric field E2a is generated in the vicinity of the edge 27a2.
  • the inventors paid attention to the relationship between the position where the surface plasmon is generated, the position where the electric field E2 is generated, and the position of the pinning region 36 which absorbs the evanescent light. If the silicon sensitivity layer (including the pinning region 36) is arranged so as to overlap the region where the surface plasmon is enhanced, the evanescent light due to the enhanced surface plasmon can be efficiently absorbed. That is, the relationship between the position where the surface plasmon is generated and the position where the electric field E2 is generated is set to the positional relationship so that the electric field enhancing effect can be more preferably obtained. Further, the pinning region 36 is arranged at a position where the evanescent light due to the enhanced surface plasmon is efficiently absorbed.
  • the structures of the optical conversion unit 27C and the photoelectric conversion unit 26C included in the pixels 8C of the solid-state image sensor 1C of the second embodiment will be described in detail with reference to FIG.
  • the other configurations of the pixels 8C of the solid-state image sensor 1C of the second embodiment are the same as those of the pixels 8 of the solid-state image sensor 1 of the first embodiment. Therefore, detailed description about them will be omitted.
  • FIG. 18 shows an enlarged view of the main part of the pixel 8C of the solid-state image sensor 1C of the second embodiment.
  • the pixel 8C of the solid-state image sensor 1C includes an optical conversion unit 27C and a photoelectric conversion unit 26C. Then, similarly to the pixel 8 of the solid-state image sensor 1 of the first embodiment, the optical conversion unit 27C is in direct contact with the photoelectric conversion unit 26C. On the other hand, the optical conversion unit 27C of the second embodiment is embedded in the photoelectric conversion unit 26C.
  • the photoelectric conversion unit 26C includes a groove 51 (recess).
  • the groove 51 is provided on the main surface 50a that receives the incident light L1 in the substrate constituting the photoelectric conversion unit 26C.
  • the groove 51 is open to the main surface 50a.
  • the groove 51 is surrounded by a pair of groove wall surfaces 52 and a groove bottom surface 53.
  • a pinning region 36 (second region) having a high impurity concentration is formed at a predetermined depth from the main surface 50a, the groove wall surface 52, and the groove bottom surface 53. Therefore, the groove 51 is surrounded by the groove wall surface 52 and the groove bottom surface 53, which are the surfaces of the pinning region 36.
  • a metal layer 61 (metal portion) having a metal nanostructure is formed in the groove 51.
  • the plurality of metal layers 61 constitute the optical conversion unit 27C. That is, the metal layer 61 corresponds to the ridge 27a.
  • the side surface 62 of the metal layer 61 is in contact with the groove wall surface 52.
  • the bottom surface 63 of the metal layer 61 is in contact with the bottom surface 53 of the groove.
  • the upper surface 64 of the metal layer 61 is flush with the main surface 50a. That is, the metal layer 61 is surrounded by three surfaces except the upper surface 64.
  • the distance between one groove 51 and another groove 51 adjacent to the groove 51 matches the distance between the metal layers 61.
  • the spacing between the grooves 51 is, for example, greater than the thickness of the pinning region 36. Then, it can be said that the metal layers 61 and the photoelectric conversion unit 26C are alternately arranged along the direction orthogonal to the incident direction. Further, it can be said that the metal layer 61 is sandwiched between the pinning regions 36 along the direction orthogonal to the incident direction.
  • the light conversion unit 27C generates evanescent light from the side surface 62 of the metal layer 61.
  • An electric field E2 is generated in the vicinity of the side surface 62. Therefore, the region where evanescent light is generated by the surface plasmon and the enhanced electric field E2a that enhances the surface plasmon overlap. As a result, evanescent light is generated according to the enhanced surface plasmon. Then, the evanescent light is incident on the pinning region 36 in contact with the side surface 62.
  • the optical input surface of the photoelectric conversion unit 26C is the groove wall surface 52 of the groove 51.
  • the optical conversion unit 27C of the pixel 8C included in the solid-state image sensor 1C of the second embodiment includes the upper surface 64 which is a light receiving surface for receiving the incident light L1 and is photoelectric so that the upper surface 64 is exposed from the photoelectric conversion unit 26C. It is embedded in the conversion unit 26C. According to this configuration, the bottom surface 63 of the optical conversion unit 27C comes into contact with the photoelectric conversion unit 26C. Further, the side surface 62 of the optical conversion unit 27C also comes into contact with the photoelectric conversion unit 26C. Then, in the vicinity of the side surface 62, the surface plasmon is enhanced by the enhanced electric field E2a. Therefore, it becomes possible to more efficiently absorb the evanescent light enhanced by the enhanced electric field E2a. As a result, the photoelectric conversion efficiency is further increased. Therefore, a better image can be obtained.
  • the light conversion unit 27C has been described as being composed of a striped metal layer 61.
  • the metal nanostructure constituting the light conversion unit 27C is not limited to the striped metal layer 61.
  • the light conversion unit 27 may be composed of a plurality of rectangular parallelepiped or cubic metal layers arranged in a grid pattern.
  • the light conversion unit 27 may be composed of a metal layer which is a plurality of cylinders arranged in a grid pattern. That is, various metal nanostructures capable of generating evanescent light by surface plasmons caused by incident light L1 may be appropriately adopted.
  • the substrate 50 is prepared (process ST1).
  • This step ST1 may include a step of forming the charge storage unit 33a, the photodiode pinning layer 33b, the transistor, and the wiring 18. Further, the step ST1 may include a step of joining the sensor substrate 12 to the support substrate 11. The step ST1 may include a step of adjusting the thickness of the sensor substrate 12.
  • step ST2 first step.
  • An etching method may be used for forming the groove 51, for example.
  • the pinning region 36 is formed (step ST3: second step).
  • an ion implantation method may be used for the formation of the pinning region 36. Specific conditions such as the ion implantation energy and the ion implantation amount may be the same as the method for manufacturing the solid-state image sensor 1 of the first embodiment.
  • the injection directions of the impurity ions include a plurality of directions (arrows B1 and B2) different from each other. For example, when forming the pinning region 36 including the main surface 50a and the groove bottom surface 53, the injection direction of the impurity ions is set to the normal direction of the main surface 50a (see arrow B1).
  • the injection direction of the impurity ions is set in an oblique direction inclined with respect to the normal of the main surface 50a (see arrow B2).
  • laser annealing is performed. This laser annealing activates the ion-implanted boron.
  • the specific conditions for this laser annealing may be the same as the method for manufacturing the solid-state image sensor 1 of the first embodiment.
  • an intermediate cambium 66 to be a metal layer 61 is formed (step ST4).
  • a method such as plating, thin film deposition and sputtering may be used.
  • a part of the intermediate cambium 66 formed outside the groove 51 is removed (step ST5). Chemical mechanical polishing (CMP) may be used for this removal. As a result, only the portion of the groove 51 of the intermediate cambium 66 remains, and that portion becomes the metal layer 61.
  • CMP Chemical mechanical polishing
  • the solid-state image sensor 1C can be obtained by the above steps ST1 to ST5.
  • the evanescent light is emitted from the side surface 62 of the metal layer 61, it seems that the more the number of the metal layers 61 is, the more evanescent light is emitted.
  • increasing the number of metal layers 61 affects the spacing (cycle) of the metal layers 61.
  • the period of the metal layer 61 is determined according to the wavelength of the incident light L1 and the resonance condition of the surface plasmon. Then, if the number of the metal layers 61 is increased and the period of the metal layers 61 is changed, the resonance condition of the surface plasmon may not be satisfied.
  • the effective wavelength which is the apparent wavelength of the incident light L1
  • the refractive index of the medium is n and the wavelength of the incident light L1 is ⁇
  • the effective wavelength of the incident light L1 in the medium is ⁇ / n.
  • the wavelength of the incident light L1 and the period of the metal layer 61 satisfy the resonance condition. That is, the effective wavelength ( ⁇ / n) of the incident light L1 in the medium and the period (p) of the metal layer 61 covered with the medium need only satisfy the resonance condition.
  • the refractive index (n) of the medium may be set so that That is, by adjusting the refractive index (n) of the medium of the incident light L1 around the metal layer 61, the resonance condition of the surface plasmon is satisfied and the period (p) of the metal layer 61 is narrowed to increase the amount of light absorption. be able to.
  • the pixel 8D of the solid-state image sensor 1D of the third embodiment has a high-dielectric film 71 (coating portion) that covers the light conversion unit 27C.
  • the high dielectric film 71 may be formed as a fourth step (ST6) after the above-mentioned step ST5.
  • the refractive index is related to the dielectric constant of the material.
  • a material having a high refractive index also has a high dielectric constant. That is, the refractive index of the high-dielectric film 71 is larger than the refractive index of air.
  • the material of the high dielectric film 71 for example, aluminum oxide (AlO 3: 10), hafnium oxide (HfO: 19), zirconium oxide (ZrO 2: 12), tantalum oxide (TaO 5: 22), and the like.
  • AlO 3: 10 aluminum oxide
  • hafnium oxide (HfO: 19) hafnium oxide
  • zirconium oxide (ZrO 2: 12) tantalum oxide (TaO 5: 22), and the like.
  • the numerical value written inside the parentheses is an approximate relative permittivity of each material.
  • materials such as silicon oxide (SiO 2 : 3.9), silicon nitride (SiN), and acrylic organic substances can also be adopted as the material of the high dielectric film 71. That is, as the material of the high dielectric film 71, a material having a higher dielectric constant than vacuum or air may be adopted.
  • the relationship between the refractive index of the high-dielectric film 71 that fills the light conversion unit 27C and the refractive index of air or vacuum is important.
  • the refractive index of the high-dielectric film 71 may be larger or smaller than the refractive index of the photoelectric conversion unit 26.
  • the refractive index of the high-dielectric film 71 may be equal to the refractive index of the photoelectric conversion unit 26.
  • the refractive index of the high-dielectric film 71 is equal to the refractive index of the photoelectric conversion unit 26, for example, a more effective effect is exhibited in the pixel 8E of the solid-state image sensor 1E having the structure shown in FIG. 22A. ..
  • the pixel 8E of the solid-state image sensor 1E has the same structure as the optical conversion unit 27 and the photoelectric conversion unit 26 of the first embodiment. Further, the pixel 8E of the solid-state image sensor 1E has a high-dielectric film 71E in which the light conversion unit 27 is embedded. The high-dielectric film 71E is embedded between the ridges 27a adjacent to each other. Further, the high dielectric film 71 also covers the upper surface 27a4 of the ridge. The thickness of such a high-dielectric film 71E is thicker than the height of the metal layer 61. Therefore, the high dielectric film 71E has a flat light receiving surface 71Ea.
  • the refractive index (n) affects the effective wavelength ( ⁇ / n) of the incident light L1. It is assumed that there is a difference between the refractive index of the material in the vicinity of the ridge upper surface 27a4 and the refractive index of the material in the vicinity of the ridge bottom surface 27a1. Under this assumption, the resonance condition is satisfied in the vicinity of the upper surface of the ridge 27a4. However, in the vicinity of the ridge bottom surface 27a1, the effective wavelength changes due to the difference in the refractive index of the material. Therefore, there may be cases where the resonance condition is not satisfied.
  • the difference between the refractive index of the material in the vicinity of the ridge upper surface 27a4 and the refractive index of the material in the vicinity of the ridge bottom surface 27a1 becomes small.
  • deviation from the resonance condition is suppressed around the ridge 27a, so that the light conversion unit 27 can efficiently generate evanescent light.
  • the high-dielectric film is not limited to the configuration shown in FIG. 22 (a). That is, the high-dielectric film may be arranged in the vicinity of the ridge 27a where the surface plasmon is generated.
  • FIG. 22B shows a solid-state image sensor 1F provided with a high-dielectric film 71F having a configuration different from that of the high-dielectric film shown in FIG. 22A.
  • the high dielectric film 71F covers the main surface 36a of the pinning region 36, the ridge upper surface 27a4, and the ridge side surface 27a3.
  • the thickness of such a high-dielectric film 71F is thinner than the period of the ridge 27a.
  • the thickness of the high-dielectric film 71F is thinner than the height of the ridge 27a.
  • the ridges 27a adjacent to each other are not embedded by the high dielectric film 71F. Therefore, the light receiving surface of the pixel 8F has an uneven shape.
  • the solid-state image sensor having a high dielectric film may further include a microlens.
  • the pixels 8G of the solid-state image sensor 1G shown in FIG. 23 (a) are obtained by further providing a microlens 72 on the solid-state image sensor 1E shown in FIG. 22 (a).
  • the microlens 72 may be arranged for each ridge 27a, for example.
  • the pixels 8H of the solid-state image sensor 1H shown in FIG. 23 (b) are obtained by further providing a microlens 72 on the solid-state image sensor 1F shown in FIG. 22 (b).
  • the solid-state image sensor 1H it further has a flattening film 73 in which a high-dielectric film 71F is embedded to form a flat surface.
  • the microlens 72 is provided on the light receiving surface of the flattening film 73.
  • the material of the flattening film 73 for example, glass and silicon oxide (SiO 2 ) may be adopted.
  • the pixels 8K of the solid-state image sensor 1K shown in FIG. 24 are obtained by further providing the microlens 72 on the solid-state image sensor 1D shown in FIG. These microlenses 72 may be provided for each pixel.
  • the optical conversion unit 27 included in the solid-state image sensor 1 is provided with a metal ridge 27a.
  • the entire ridge 27a was made of a metallic material.
  • the ridge 81a constituting the optical conversion unit 27P may adopt a structure in which layers made of different materials are laminated, as in the pixel 8P of the solid-state image sensor 1P shown in FIG. 25.
  • the ridge 81a constituting the optical conversion unit 27P has the same outer shape as the ridge 27a of the embodiment. Specifically, the width of the ridge 81a is the same as that of the ridge 27a of the embodiment. Further, the distance between the ridges 81a adjacent to each other is also the same as that of the ridge 27a of the embodiment.
  • the ridge 81a of the modified example 3 has a structure in which a metal material and a dielectric material are laminated in the traveling direction of the incident light L1. Such a laminated structure is a so-called MIM (metal-insulator-metal: metal-insulator-metal) structure.
  • the ridge 81a has a first metal layer 82, a dielectric layer 83, and a second metal layer 84.
  • the second metal layer 84 is in contact with the optical input surface 26a. That is, the lower surface of the second metal layer 84 is the ridge bottom surface 81a1.
  • the lower surface of the dielectric layer 83 is in contact with the upper surface of the second metal layer 84.
  • the lower surface of the first metal layer 82 is in contact with the upper surface of the dielectric layer 83.
  • the ridge side surface 81a2 of the ridge 81a includes the side surfaces of the first metal layer 82, the dielectric layer 83, and the second metal layer 84.
  • the thickness of the first metal layer 82 may be the same as the thickness of the second metal layer 84.
  • the thickness of the first metal layer 82 and the second metal layer 84 may be thinner than the thickness of the dielectric layer 83.
  • the central portion of the ridge 81a that does not contribute to plasmon vibration is formed by the dielectric layer 83.
  • the area physically occupied by the metal material that causes absorption loss in the ridge 81a becomes smaller.
  • the absorption loss caused by the metal material in the ridge 81a is reduced.
  • an enhanced electric field E2a due to surface plasmon resonance is formed in the photoelectric conversion unit 26.
  • the absorption efficiency in the photoelectric conversion unit 26, which is a silicon sensitivity layer can be further improved.
  • the ridge 81a adopting the MIM structure may be embedded in the photoelectric conversion unit 26C like the optical conversion unit 27C included in the solid-state image sensor 1C shown in FIG. That is, the solid-state image sensor 1Q of the modification 4 shown in FIG. 26 has pixels 8Q, and the pixels 8Q include an optical conversion unit 27Q.
  • the optical conversion unit 27Q is composed of a ridge 81a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

画素8は、光入力面26aから受けた被吸収光L2に応じた信号電圧を発生する光電変換部26と、入射光L1を受けて光電変換部26に出力される被吸収光L2を生じさせるように、光電変換部26の光入力面26aに設けられた光変換部27と、を備える。光電変換部26は、第1の不純物濃度を有する第1の領域29と、第1の不純物濃度よりも大きい第2の不純物濃度を有する第2の領域31と、を有する。第2の領域31は、光入力面26aを含むと共に光変換部27に直接に接触する。光変換部27は、入射光L1を受けて、エバネセント光L2aを含む被吸収光L2を発生する。

Description

画素、固体撮像装置及び画素の製造方法
 本発明は、画素、固体撮像装置及び画素の製造方法に関する。
 近赤外光を対象とした画素および固体撮像装置の開発が進められている。近赤外光は、人間の目に感知されることがない、また、近赤外光は、空気中において散乱されにくいといった特徴を有する。そこで、近赤外光を対象とした画素および固体撮像装置は、自動運転技術およびセキュリティ技術などの分野への利用が検討されている。
特開2011-187857号公報
押山到、横川創造、池田晴美、姥子芳樹、平野智之、大井上昴志、斎藤卓、萩本賢哉、岩元勇人、「PSD構造を用いた裏面照射型CMOSイメージセンサの赤外線感度向上」、映像情報メディア学会技術報告、Vol.41、No.10、映像情報メディア学会、2018年3月。
 当該技術分野では、近赤外光を対象とした画素および固体撮像装置から良好な画像を得る技術が検討されている。良好な画像を得るためには、第1に受光感度を高める必要があり、第2にノイズを低減する必要がある。
 画素および固体撮像装置は、シリコンを素材とする基板を用いて形成されている。シリコンは、光を吸収すると共に吸収した光に対応するキャリアを発生させる。図12に示すように、シリコンが光を吸収する性質は、光の波長に対応する。例えば、シリコンは、波長が360nm以上830nm以下程度である可視光を良好に吸収する。一方、シリコンは、波長が830nm以上である近赤外光を吸収しにくい。そこで、シリコンを用いた画素および固体撮像装置を用いて良好な画像を得るためには、受光感度を向上させる必要がある。
 例えば、非特許文献1が開示する撮像装置は、光の入射面に設けられた凹凸構造を有する。この凹凸構造によれば、シリコンの内部における実質的な光の透過距離が延びる。透過距離が延びると光がシリコンに吸収される機会が増加する。その結果、受光感度が向上する。特許文献1が開示する撮像装置は、近赤外光をエバネセント光に変換する構成を有する。エバネセント光は、近赤外光よりもシリコンに吸収されやすい。従って、特許文献1が開示する撮像装置は、受光感度が向上している。
 ノイズの要因として、クロストークと暗電流とが挙げられる。クロストークは、第1の画素が、第1の画素に隣接する第2の画素に影響を及ぼす現象をいう。例えば、受光感度を高めるために、シリコンの厚みを増加させた場合には、クロストークが生じやすくなる。また、エバネセント光を生じさせる構成は、金属により形成される。そうすると、撮像装置は、半導体が金属に接触する界面を有する。このような界面は、ショットキバリア接合又はオーミック接合を形成する。これらの接合形態は、暗電流を生じさせる要因となる。
 本発明は、良好な画像を得ることが可能な近赤外光を対象とした画素、固体撮像装置及び画素の製造方法を提供する。
 本発明の一形態である画素は、光入力面から受けた被吸収光に応じた信号電圧を発生する光電変換部と、入射光を受けて被吸収光を生じさせる光変換部と、を備える。光電変換部は、第1の不純物濃度を有する第1の領域と、第1の不純物濃度よりも大きい第2の不純物濃度を有する第2の領域と、を有する。第2の領域は、光入力面を含むと共に光変換部に直接に接触する。光変換部は、入射光を受けて、エバネセント光を含む被吸収光を発生する。
 この画素の光変換部は、入射光を受けて光電変換部に出力される被吸収光を発生する。光電変換部の光入力面は、光変換部に直接に接している。従って、被吸収光は減衰することなく光電変換部に入力される。そして、この被吸収光は、光電変換部において入射光よりも吸収されやすい。従って、受光感度を高めることができる。さらに、光電変換部は、光入力面を含む第2の領域を有する。第2の領域は、第1の領域よりも不純物濃度が大きい。この構成によれば、界面に生じ得る暗電流を抑制することができる。つまり、画素は、受光感度を高めることができると共に暗電流を抑制することができる。その結果、画素によれば、良好な画像を得ることができる。
 一形態において、第2の領域における第2の不純物濃度は、第1の領域に近づくに従って減少してもよい。この構成によれば、第2の領域における被吸収光の吸収によって生じた少数キャリアを、第1の領域に速やかに移動させることが可能になる。その結果、少数キャリアに起因する信号電圧は、良好に捉えられる。つまり、被吸収光からの少数キャリアが再結合されずに信号電圧に寄与する割合が高まる。その結果、受光感度をさらに高めることができる。
 一形態において、第2の領域は、ドーズ量を1×1014cm-2以上3×1015cm-2以下とするイオン注入によって形成されてもよい。さらに、第2の領域は、注入エネルギを0.2keV以上1keV以下とするイオン注入によって形成されてもよい。1keV以下の低エネルギにすることによって、第2の領域におけるアニール後の濃度プロファイルは、光入射面から光電変換部の内部に向かって単調に減少する。第2の領域は、後述するように、光入力面から発生する暗電流を防ぐためには1×1014cm-2以上のドーズ量としてもよい。第2の領域は、結晶欠陥の発生を防ぐためには、3×1015cm-2以下のドーズ量としてもよい。この構成によれば、第2の領域における結晶欠陥の発生を抑制することが可能である。従って、被吸収光に応じて発生した少数キャリアの寿命を長くすることができる。その結果、少数キャリアに起因する信号電圧を良好に捉えられることができる。つまり、被吸収光から少数キャリアに起因する信号電圧への変換効率が高まる。その結果、受光感度をさらに高めることができる。
 本発明の別の形態である固体撮像装置は、二次元状に配置された複数の画素、および、互いに隣接し合う画素の間に設けられた隔離壁を有する画素部と、画素部の動作を制御する制御信号を発生する画素制御部と、画素部が発生する信号電圧を受ける信号処理部と、を備える。画素は、光入力面から受けた被吸収光に応じた信号電圧を発生する光電変換部と、入射光を受けて被吸収光を生じさせるように、光電変換部の光入力面上に設けられた光変換部と、を有する。光電変換部は、第1の不純物濃度を有する第1の領域と、第1の不純物濃度よりも大きい第2の不純物濃度を有する第2の領域と、を有する。第2の領域は、光入力面を含むと共に光変換部に直接に接触する。光変換部は、入射光を受けて、エバネセント光を含む被吸収光を発生する。
 この固体撮像装置は、上記の画素と同様の構成を備えた画素を有する。従って、良好な画像を得ることができる。
 別の形態において、互いに隣接し合う一方の光変換部は、他方の光変換部から離間してもよい。光変換部の辺部は、光電変換部の光入力面上に形成されていてもよい。この構成によれば、ある画素の光変換部で発生した被吸収光が隣接する別の画素に到達することを抑制できる。従って、クロストークの発生を好適に抑制することができる。
 別の形態において、少なくとも画素部は、センサ基板に設けられてもよい。センサ基板は、第2の領域に所定の電位を与える電圧印加部を有してもよい。さらに、電圧印加部は、ダイシングによって形成されたセンサ基板のダイシング面と、ダイシング面に電圧を与える導電部と、を含んでもよい。ダイシング面は、少なくとも第2の領域の端面と、導電部の端面と、を含んでもよい。そして、別の形態において、光電変換部は、被吸収光を吸収することにより信号キャリアとしての電子を発生してもよい。第2の領域は、負の電位を受けてもよい。あるいは、光電変換部は、被吸収光を吸収することにより信号キャリアとしての正孔を発生してもよい。第2の領域は、正の電位を受けてもよい。これらの構成によれば、光電変換部の電界が強くなる。さらに、少数キャリアの収集が円滑になる。その結果、良好な受光感度が得られる。
 別の形態において、第2の領域は、光変換部に対して電気的に接続されてもよい。第1の画素が有する第1の光変換部は、第1の画素に隣接する第2の画素が有する第2の光変換部に対して電気的に接続されてもよい。さらに、光変換部は、第2の領域の主面から突出する複数の凸部を含んでもよい。複数の凸部は、互いに電気的に接続されていてもよい。この構成によれば、暗電流を抑制可能な構成を簡易な工程によって得ることができる。
 本発明のさらに別の形態である固体撮像装置は、受光領域において、二次元状に配置された複数の画素を備えてもよい。画素は、光入力面から受けた被吸収光に応じた信号電圧を発生する光電変換部と、入射光を受けて被吸収光を生じさせるように、光電変換部の光入力面上に設けられた光変換部と、を有してもよい。光電変換部は、光変換部に直接に接触してもよい。光変換部は、所定の周期に従って配置された複数の凸部を含み、入射光を受けてエバネセント光を含む被吸収光を発生してもよい。所定の周期は、エバネセント光の発生条件と入射光の方向とに基づいて設定されてもよい。
 この固体撮像素子によれば、画素ごとに入射光の方向が異なる場合であっても、入射光の方向に応じて、エバネセント光を発生させることが可能になる。したがって、入射光の角度の相違に起因するエバネセント光の減少が抑制される。その結果、入射光から被吸収光を好適に発生させることができる。
 さらに別の形態である固体撮像装置において入射光の方向が光変換部の主面の法線方向である場合には、所定の周期(L)であってもよい。入射光の方向が光変換部の主面の法線方向に対して角度(θ)である場合には、所定の周期(LS)は、LS=L/cosθを満たしてもよい。この構成によれば、入射光から被吸収光をさらに好適に発生させることができる。
 さらに別の形態である固体撮像装置において、受光領域の辺部に配置された画素の所定の周期は、受光領域の中央部に配置された画素の所定の周期より大きくてもよい。この構成によっても、入射光から被吸収光を好適に発生させることができる。
 一形態である画素の光変換部は、光電変換部の光入力面上に設けられていてもよい。この構成によれば、光変換部と光電変換部とを備える画素を容易に製造することができる。
 一形態である画素の光変換部は、入射光を受ける受光面を含むと共に、受光面が光電変換部から露出するように光電変換部に埋め込まれていてもよい。この構成によれば、光変換部の底面は、光電変換部と接触する。さらに、光変換部の側面も光電変換部と接触する。従って、光変換部において生じたエバネセント光をさらに効率よく吸収することが可能になる。その結果、光電変換効率がさらに高まる。したがって、さらに良好な画像を得ることができる。
 一形態である画素は、光電変換部および光変換部を覆う被覆部をさらに備えてもよい。被覆部の誘電率は、空気の誘電率よりも高くてもよい。エバネセント光を含む被吸収光を発生させる光変換部の構成は、入射光の波長によって定まる。この被覆部によれば、入射光の波長によって一意に定まる光変換部の構成に自由度を与えることができる。
 一形態である画素の光変換部は、互いに離間して形成された複数の凸部を含んでもよい。被覆部に覆われた光変換部における複数の凸部の見かけの周期は、被覆部の誘電率及び複数の凸部の実周期により定めてもよい。見かけの周期は、入射光によりエバネセント光を含む被吸収光を発生する共鳴条件を満たしてもよい。この構成によれば、光変換部を構成する複数の凸部の周期を、入射光の波長によって定まる光変換部の周期よりも短くすることが可能である。その結果、共鳴条件を満たすことができる。さらに、より多くの被吸収光を生じさせることができる。従って、光電変換効率がさらに高まるので、さらに良好な画像を得ることができる。
 一形態である画素における被覆部の誘電率は、光電変換部の第2の領域の誘電率と等しくてもよい。この構成によれば、光変換部の周囲における誘電率の差異が小さくなる。その結果、光変換部においてエバネセント光を含む被吸収光をさらに効率的に発生させることができる。
 一形態である画素の被覆部は、酸化アルミニウム、酸化ハフニウム、酸化ジルコニウムおよび酸化タンタルのいずれかにより形成されてもよい。これらの材料によれば、上記の被覆部を良好に形成することができる。
 一形態である画素は、被覆部上に配置されたマイクロレンズをさらに備えてもよい。この構成によれば、入射光を光変換部に効率的に集めることが可能になる。その結果、光変換部においてエバネセント光を含む被吸収光をさらに効率的に発生させることができる。
 本発明のさらに別の形態は、光入力面から受けた被吸収光に応じた信号電圧を発生する光電変換部と、入射光を受けて被吸収光を生じさせる光変換部と、を備え、光電変換部は、第1の不純物濃度を有する第1の領域と、第1の不純物濃度よりも大きい第2の不純物濃度を有する第2の領域と、を有する画素の製造方法である。画素の製造方法は、光変換部を光電変換部に埋め込むための複数の凹部を設ける第1工程と、少なくとも凹部の壁面に対して第2の領域を形成するための処理を行う第2工程と、凹部に光変換部を構成する複数の金属部を設ける第3工程と、有する。
 この製造方法の第3工程では、光電変換部から露出するように光電変換部に埋め込まれた光変換部が形成される。そして、光電変換部の底面は、光電変換部と接触する。さらに、光電変換部の側面も光電変換部と接触するような金属部を含んでいる。従って、光変換部において生じたエバネセント光をさらに効率よく吸収することができる画素を製造することができる。
 さらに別の形態である画素の製造方法は、第3工程の後に、光電変換部および光変換部を覆うように、空気の誘電率よりも高い誘電率を有する被覆部を設ける第4工程をさらに有してもよい。この工程によれば、入射光を光変換部に効率的に集めることを可能とし、光変換部においてエバネセント光を含む被吸収光をさらに効率的に発生させることができる画素を製造することができる。
 一形態である画素の光変換部は、入射光の方向に沿って積層された第1金属層、誘電体層及び第2金属層を含んでもよい。第2金属層は、光入力面上に設けられていてもよい。この構成によれば、光変換部における入射光の吸収ロスを低減できる。従って、光電変換部における光吸収効率をさらに高めることができる。
 一形態である画素の光変換部は、入射光を受ける受光面を含むと共に、受光面が光電変換部から露出するように光電変換部に埋め込まれてもよい。光変換部は、入射光の方向に沿って積層された第1金属層、誘電体層及び第2金属層を含んでもよい。第1金属層は、受光面を構成してもよい。この構成によっても、光変換部における入射光の吸収ロスを低減できる。従って、光電変換部における光吸収効率をさらに高めることができる。
 本発明の画素、固体撮像装置及び画素の製造方法によれば、良好な画像を得ることができる。
図1は、実施形態に係る固体撮像装置の構成を概略的に示す図である。 図2は、画素の電気的な構成を示す図である。 図3は、画素に提供される制御信号の例示である。 図4は、画素の構造を示す図である。 図5は、図4の一部である光入力面の近傍(S1)を拡大して示す図である。 図6は、画素と隔離壁(S2)とを拡大して示す図である。 図7は、光変換部の構成を示す図である。 図8は、変形例1の固体撮像装置を説明するための図である。 図9は、変形例1の固体撮像装置の一部を拡大して示す図である。 図10は、変形例2の固体撮像装置を説明するための図である。 図11は、変形例2の固体撮像装置を説明するための図である。 図12は、シリコンの光吸収率を示すグラフである。 図13は、シリコン中における光強度の減衰を示すグラフである。 図14は、ピンニング領域における不純物濃度の分布の例示である。 図15は、参考例の画素の構造を示す図である。 図16は、別の参考例の画素の構造を示す図である。 図17は、第1実施形態の固体撮像装置の要部を拡大して示す図である。 図18は、第2実施形態の固体撮像装置の要部を拡大して示す図である。 図19(a)、図19(b)及び図19(c)は、第2実施形態の固体撮像装置を製造する方法の主要な工程を示す図である。 図20(a)及び図20(b)は、図19に続き、第2実施形態の固体撮像装置を製造する方法の主要な工程を示す図である。 図21は、第3実施形態の固体撮像装置の変形例を示す図である。 図22(a)及び図22(b)は、高誘電体膜を有する固体撮像装置の要部を拡大して示す図である。 図23(a)及び図23(b)は、高誘電体膜を有する固体撮像装置の変形例を示す図である。 図24は、第3実施形態の固体撮像装置の変形例を示す図である。 図25は、変形例3の固体撮像装置の要部を拡大して示す図である。 図26は、変形例4の固体撮像装置の要部を拡大して示す図である。
 以下、添付図面を参照しながら本発明を実施するための形態を詳細に説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 以下の説明は、フォトダイオードまたは個々の画素がフォトダイオードを備えたCMOSイメージセンサの高感度化に関する。特に、以下の説明は、近赤外光領域の高感度化に関する。
 図1に示すように、本実施形態の固体撮像装置1は、いわゆる裏面照射型のイメージセンサである。なお、固体撮像装置1は、逆側から光を受けてもよい。換言すると、固体撮像装置1は、後述する支持基板11側から光を受けてもよい。固体撮像装置1は、画素部2と、画素制御部3と、信号処理部4と、複数の水平制御線からなる水平制御線群6と、垂直信号線7と、を有する。画素部2、画素制御部3および信号処理部4などは、後述するセンサ基板12に設けられている。センサ基板12は、支持基板11に張り合わされている。画素部2が形成されたシリコンウェハであるセンサ基板12は、薄い。従って、センサ基板12は、機械的強度が得られない。そこで、支持基板11によって、センサ基板12に機械的強度を持たせる。センサ基板12の受光領域Sに対応する部分には、画素部2が設けられている。画素部2は、二次元状に配置された複数の画素8を有する。画素8は、入射した光に対応する信号電圧を垂直信号線7に出力する。画素制御部3は、水平制御線群6を介してそれぞれの画素8に接続されている。画素制御部3は、画素8の動作を制御するための制御信号φを出力する。信号処理部4は、垂直信号線7を介してそれぞれの画素8に接続されている。信号処理部4は、画素8が出力する信号電圧Δを受ける。信号処理部4は、画素8から出力された信号電圧Δから画像信号を生成する。
 図2は、画素8の電気的な構成を示す。画素8は、いわゆる4トランジスタ型のCMOSイメージセンサである。本実施形態の画素8は、Nチャネルタイプである。つまり、画素8の信号は、信号電子が担う。なお、画素8は、Pチャネルタイプであってもよい。
 画素8は、フォトダイオードPDと、浮遊拡散層FDと、トランスファゲートTGと、リセットトランジスタRGと、ソースフォロアトランジスタSFと、選択トランジスタSELと、を有する。
 フォトダイオードPDは、PN接合型である。フォトダイオードPDは、キャリアとしての信号電子を発生させる。フォトダイオードPDは、発生した信号電子を蓄積する。
 トランスファゲートTG、リセットトランジスタRG、ソースフォロアトランジスタSFおよび選択トランジスタSELは、それぞれ電界効果トランジスタである。
 トランスファゲートTGのソースは、フォトダイオードPDに接続されている。トランスファゲートTGのドレインは、浮遊拡散層FDに接続されている。トランスファゲートTGのゲートは、水平制御線群6に接続されている。トランスファゲートTGは、水平制御線群6から制御信号φ1を受ける。トランスファゲートTGは、制御信号φ1に基づいて、フォトダイオードPDから浮遊拡散層FDへの信号電子の転送を制御する。
 浮遊拡散層FDは、トランスファゲートTGのドレインに接続されている。浮遊拡散層FDは、トランスファゲートTGを介してフォトダイオードPDに接続されている。浮遊拡散層FDは、信号電子を信号電圧に変換する。浮遊拡散層FDは、リセットトランジスタRGのソースに接続されている。浮遊拡散層FDは、ソースフォロアトランジスタSFのゲートにも接続されている。
 リセットトランジスタRGのソースは、浮遊拡散層FDに接続されている。リセットトランジスタRGのドレインは、リセットドレインに接続されている。リセットトランジスタRGのゲートは、水平制御線群6に接続されている。リセットトランジスタRGは、水平制御線群6から制御信号φ2を受ける。リセットトランジスタRGは、制御信号φ2に基づいて、浮遊拡散層FDの電位をリセットする。
 ソースフォロアトランジスタSFのソースは、選択トランジスタSELに接続されている。ソースフォロアトランジスタSFのドレインは、アナログ電源に接続されている。ソースフォロアトランジスタSFのゲートは、浮遊拡散層FDに接続されている。ソースフォロアトランジスタSFは、ゲートに入力される電圧に対応する信号電圧を選択トランジスタSELを介して出力する。
 選択トランジスタSELのソースは、垂直信号線7に接続されている。選択トランジスタSELのドレインは、ソースフォロアトランジスタSFのソースに接続されている。選択トランジスタSELのゲートは、水平制御線群6に接続されている。選択トランジスタSELは、制御信号φ3に基づいて、信号電圧Δを垂直信号線7に出力する。
 図3は、画素制御部3が出力する制御信号φ1、φ2、φ3、RS、SSを示す。図3は、第n行の読み出し期間における制御信号φ1、φ2、φ3、RS、SSのタイミングを模式的に示す。以下の説明において「(H)」は、信号が高い(High)、つまりオンであること示す。「(L)」は、信号が低い(Low)、つまりオフであること示す。
 まず、画素制御部3は、制御信号φ3(H)を出力する。その結果、制御信号φ3を受けた行が選択される。続いて、画素制御部3は、制御信号φ2(H)を所定期間だけ出力する。その結果、浮遊拡散層FDにリセットドレイン電圧が出力される。続いて、画素制御部3は、制御信号RS(H)を所定期間だけ出力する。その結果、リセットレベルがサンプリングされる。次に、画素制御部3は、制御信号φ1(H)を所定期間だけ出力する。その結果、フォトダイオードPDから浮遊拡散層FDへ信号電子が転送される。次に、画素制御部3は、制御信号SS(H)を所定期間だけ出力する。その結果、浮遊拡散層FDに蓄えられた信号電子に起因する信号レベルが、制御信号SS(H)のタイミングでサンプリングされる。次に、画素制御部3は、制御信号φ2(H)を所定期間だけ再び出力する。その結果、浮遊拡散層FDにリセットドレイン電圧が出力される。つまり、浮遊拡散層FDの電位がリセットされる。そして、画素制御部3は、制御信号φ3(L)を出力する。その結果、第n行の読み出しが終了する。その後、画素制御部3は、制御信号φ3(H)を次の第n+1行に出力する。
 なお、信号処理部4では、サンプルされた信号レベルとリセットレベルとの差が作られる。この差は、相関二重サンプリングである。相関二重サンプリングは、雑音低減およびオフセット除去の役割を果たす。レベル差の成分は信号として扱われる。次に、レベル差の成分は、アナログ値からデジタル値に変換される。そして、デジタル値に変換されたレベル差の成分は、固体撮像装置1の外部に出力される。
 図4は、画素部2の断面を模式的に示す。画素部2は、センサ基板12に形成されている。センサ基板12は、配線領域13と、素子領域14と、を有する。センサ基板12の配線領域13側の面は、支持基板11に接合されている。また、画素部2は、センサ基板12上に設けられたカラーフィルタ16およびマイクロレンズ17を有する。カラーフィルタ16は、カラー化の役割を担う。マイクロレンズ17は、集光の役割を担う。
 配線領域13は、複数の配線18と、複数のビア19と、ゲート21、21Aと、を有する。配線18は、銅又はアルミニウムにより形成されている。ビア19は、配線18同士を電気的に接続する。また、ビア19は、配線18をポリシリコンにより形成されたゲート21、21Aに電気的に接続する。また、配線領域13は、配線18およびビア19を覆う絶縁膜(不図示)も有する。
 素子領域14は、隔離壁22と、画素8と、を有する。
 隔離壁22は、互いに隣接する画素8の間に設けられている。隔離壁22は、ディープトレンチ23と、p+型のチャネルストップ領域24と、を有する。ディープトレンチ23は、入射側に設けられている。チャネルストップ領域24は、配線領域13側に設けられている。ディープトレンチ23に挟まれた領域には、後述する電荷蓄積部33aおよび浮遊拡散層FDなどが設けられている。ディープトレンチ23は、画素8間の光学的なクロストークを抑制する。また、ディープトレンチ23は、信号電子の拡散によるクロストークを抑制する。チャネルストップ領域24は、画素8同士を電気的に分離する。より詳細には、チャネルストップ領域24は、電荷蓄積部33aおよびN+型領域34dを電気的に分離する。
 画素8は、光電変換部26と、光変換部27と、を有する。光電変換部26は、光入力面26aから受けた被吸収光L2に応じた信号電圧を発生する。光変換部27は、光電変換部26の光入力面26aに設けられる。光変換部27は、入射光L1(図5参照)を受けて光電変換部26に出力される被吸収光L2(図5参照)を生じさせる。光入力面26aは、後述するピンニング領域36の主面でもある。
 光電変換部26は、第1の領域29と、第2の領域31と、を有する。
 第1の領域29は、基体部32と、電荷蓄積部33aと、フォトダイオードピンニング層33bと、読み出し部34と、を有する。基体部32は、P型であって、光入力面26aを構成する。基体部32は、被吸収光L2を吸収する。その結果、信号電子が発生する。電荷蓄積部33aとフォトダイオードピンニング層33bとは、基体部32と配線領域13との間に設けられている。換言すると、電荷蓄積部33aは、配線領域13側の表面の近傍に設けられている。電荷蓄積部33aは、P型の基体部32およびフォトダイオードピンニング層33bと協働してPN接合ダイオードを構成する。P+型であるフォトダイオードピンニング層33bは、電荷蓄積部33aと配線領域13との間に設けられている。フォトダイオードピンニング層33bは、シリコン表面の界面準位からの暗電流の発生を防ぐ。フォトダイオードピンニング層33bは、チャネルストップ領域24に接し、同電位である。
 読み出し部34は、閾値調整領域34aと、N+型領域34b、34c、34dと、P型ウェル34eと、を有する。
 閾値調整領域34aは、電荷蓄積部33aとフォトダイオードピンニング層33bとに接する。閾値調整領域34aは、ゲート21Aと協働して、トランスファゲートTGを構成する。N+型領域34bは、閾値調整領域34aに接する。N+型領域34bは、浮遊拡散層FDを構成する。換言すると、N+型領域34bは、閾値調整領域34aのフォトダイオードPDとは反対側に設けられている。つまり、閾値調整領域34aは、電荷蓄積部33aと浮遊拡散層FDとの間に設けられている。P型ウェル34eは、電荷蓄積部33aに隣接する。換言すると、P型ウェル34eは、閾値調整領域34aを介して電荷蓄積部33aに隣接する。
 N+型領域34cは、P型ウェル34eであるチャネル領域を挟むようにN+型領域34bに隣接する。N+型領域34cは、電荷蓄積部33aからトランスファゲートTGを構成する。信号電子は、閾値調整領域34aを介して浮遊拡散層FDであるN+型領域34bに読み出される。信号電子は、この浮遊拡散層FDにおいて電圧信号に変換される。N+型領域34dは、P型ウェル34eであるチャネル領域を挟むようにN+型領域34cに隣接する。N+型領域34dとN+型領域34cとゲート21とは、ソースフォロアトランジスタSFを構成する。N+型領域34dには、チャネルストップ領域24が接する。図示されていないが、リセットトランジスタRGと選択トランジスタSELが設けられている。
 P型ウェル34eは、浮遊拡散層FDと、リセットトランジスタRGと、ソースフォロアトランジスタSFと、選択トランジスタSELと、を含む。P型ウェル34eは、P型の基体部32からの信号電子の流入を防ぐ。また、P型ウェル34eは、リセットトランジスタRGと、ソースフォロアトランジスタSFと、選択トランジスタSELと、の閾値を制御する。
 図5は、図4の領域S1の拡大図である。図5に示すように、光電変換部26は、第2の領域31に形成されるピンニング領域36をさらに有する。
<ピンニング領域>
 ピンニング領域36は、基体部32の入射側に設けられている。換言すると、ピンニング領域36は、基体部32の配線領域13側とは反対の表面に設けられている。ピンニング領域36の厚みは、3nm以上100nm以下である。ピンニング領域36は、アクセプタ濃度が高い。ピンニング領域36は、中性化している。ピンニング領域36は、正孔を保持する。ピンニング領域36は、暗電流の発生を抑制する。ピンニング領域36について、さらに詳細に説明する。
 つまり、本実施形態の固体撮像装置1は、光の吸収に起因する信号電子を発生させる領域(光電変換部)が暗電流の発生を抑制する機能を奏する領域(第2の領域31、ピンニング領域36)を含んでいる。従って、光変換部27から光電変換部26へ出力される被吸収光L2を妨げる層および膜は、光変換部27と光電変換部26との間には実質的に存在しない。
 センサをNチャネルタイプとして説明する。すなわち、入射光L1に起因する信号は、信号電子が担うとして説明する。なお、ピンニング領域36は、P型である。
 ピンニング領域36は、P+型入射側の表面ピンニング層である。ピンニング領域36のアクセプタ濃度は、高い。ピンニング領域36の光入力面26aの近傍には、常時1×1017cm―3以上の濃度の正孔が存在する。この正孔は、光電変換部26の入射側の光入力面26aに存在する界面準位に起因して発生する暗電流を抑制する。
 ピンニング領域36は、少なくとも第1の条件を満たし、さらに、第2の条件および第3の条件を満たすとさらに良好である。
 第1の条件は、入射側の光入力面26aに正孔を蓄積させることによって中性化したピンニング領域36が、光入力面26aにおける暗電流の発生を抑制することである。Si/SiOの界面のように、複数のバンドギャップ準位を含む場合、価電子帯の電子は、バンドギャップ準位を介して伝導帯体へ励起される。その結果、暗電流が生じる。暗電流の値は、ショックレー・リード・ホール(Schockley-Read-Hall)モデルに基づく式(1)に示される。
Figure JPOXMLDOC01-appb-M000001
 式(1)を構成する各パラメータは以下のとおりである。
  U:再結合率。
  σ=σ=σ:電子および正孔のバンドギャップ準位に対する捕獲断面積。
  vth:熱運動速度。
  N:バンドギャップ準位密度。
  n:伝導帯の電子密度。
  p:価電子帯の正孔密度。
  n:真性キャリア密度。
  k:ボルツマン定数。
  T:絶対温度。
 なお、再結合率が、正の場合は再結合である。再結合率が、負の場合は暗電流生成レートである。また、Si/SiOの界面が空乏化している場合、n,p<<nである。この条件によれば、式(1)から式(2)が得られる。
Figure JPOXMLDOC01-appb-M000002
 E=Eのとき、Si/SiOの界面が空乏化している場合の再結合率Udepは最大になる。従って、式(2)から式(3)が得られる。
Figure JPOXMLDOC01-appb-M000003
 この構成によれば、大きな暗電流が発生する。これに対して、界面近傍の正孔濃度が大きい場合、すなわち、p>>ni>>nの場合、かつ、もっとも暗電流の発生に寄与するバンドギャップ準位はE=Eである場合には、式(1)から式(4)が得られる。
Figure JPOXMLDOC01-appb-M000004
 式(5)は、界面が空乏化しているときと正孔が蓄積しているときの比である。
Figure JPOXMLDOC01-appb-M000005
 式(5)において、nは1.45×1010cm-3である。従って例えば、p=1017cm-3である場合には、暗電流は10―7倍に低減される。
 第2の条件は、少数キャリアを長寿命化させることである。少数キャリアとは、ここでは電子である。換言すると、第2の条件は、発生した電子正孔対のうちの電子がすみやかにP型の光電変換部26をドリフトし、電荷蓄積部33aに到達することである。
 少数キャリアの寿命は、ピンニング領域36が含む結晶欠陥の数の影響を受ける。具体的には、ピンニング領域36が含む結晶欠陥の数が減少すると、少数キャリアの寿命が延びる。結晶欠陥は、ピンニング領域36が含む不純物濃度が大きく、かつ、高濃度領域が大きい場合に生じやすい。不純物の原子の大きさは、シリコンの原子の大きさと異なるためである。
 ピンニング領域36は、イオン注入により設けられる。注入されるイオンの量は、不純物濃度と不純物分布との積分に相当する。結晶欠陥の発生を抑制し得るイオン注入量として、3×1015cm-2以下が示される。
 また、イオン注入は、不純物をシリコンに導入すると同時にエネルギをシリコンに持ち込む。このエネルギも、結晶欠陥を生じさせる要因である。結晶欠陥は、イオン注入後に実施されるアニール処理によって回復される。しかし、結晶欠陥は、完全に消失しない。
 ピンニング領域36の形成は、配線領域13を形成した後に行われる。そのため、アニール方法は、レーザアニール法などに限定される。そこで、イオン注入に起因する結晶欠陥の発生を少なくする必要がある。イオン注入によってシリコンに持ち込まれるエネルギは、不純物量とエネルギとに比例する。結晶欠陥の発生を抑制できる条件として、不純物量とエネルギとの積を5×1015keVcm-2以下とすることが示される。
 第3の条件は、光電変換によって発生した電子正孔対のうちの電子をすみやかに電荷蓄積部33aに到達させることである。電子は、P型である基体部32を通過した後に、電荷蓄積部33aに到達する。このような動作は、電位勾配に起因するドリフト運動によって電子が移動することによりなされる。
 P型である基体部32は、空乏化している。同様に、ピンニング領域36のうちの基体部32側の不純物濃度の低い部分は、空乏化している。つまり、これらの領域では、十分な電界が得られる。一方、ピンニング領域36のうち光入力面26aの近傍は、暗電流を抑制するために正孔が蓄積されている。つまり、光入力面26aの近傍は、中性化している。不純物濃度の差は、空乏化していない領域において電子の移動を円滑にする。
 すなわち、ピンニング領域36は、図14に示されるような不純物濃度の分布を有する。その結果、ピンニング領域36は、アクセプタ濃度が大きいほどフェルミレベルと価電子帯端とのエネルギ差が小さくなる。アクセプタである不純物濃度は、ピンニング領域36において入射側の表面から基体部32の方向に向かって減少する。この不純物濃度の分布によれば、ピンニング領域36において正孔が蓄積されている領域においても、信号電子は、ドリフトにより基体部32にすみやかに移動する。
 このような不純物濃度の分布は、イオン注入によって得られる。具体的には、不純物濃度の分布のピーク位置を、光入力面26a又は、光入力面26aに設けられた酸化膜中に設定することにより得られる。この工程によれば、光入力面26aから基体部32に向かって単調に減少する不純物濃度の分布が形成される。
 なお、不純物濃度の分布は、別の条件によっても実現可能である。まず、イオン注入を0.2keVといった低エネルギで行う。その結果、不純物濃度の分布におけるピーク位置は、0.5nm程度になる。このような分布を有する素子をアニールすると、ピークはほぼ消失する。その結果、入射側の表面から基体部32に向かって、単調に減少する不純物濃度の分布が得られる。注入エネルギは、例えば1keV以下が好ましい。低エネルギのイオン注入を用いる方法はイオン注入後に酸化膜を除去する煩雑さがないという利点がある。以下、低エネルギのイオン注入で形成する方法を中心に記載する。
<光変換部>
 光変換部27は、ピンニング領域36の表面に形成された金属膜である。光変換部27は、ピンニング領域36に直接に接している。光変換部27は、アルミニウム、銀、金、銅、窒化チタン(TiN)を含む金属窒化物により形成される。光変換部27の厚みは、10nm以上30nm以下である。
 図6は、図4の領域S2の拡大図である。図6に示すように、画素8の光変換部27は、画素8に隣接する別の画素8の光変換部27に対して分離されている。この分離とは、一方の光変換部27において生じたプラズモンが、隣接する他方の光変換部27に到達しないことを意味する。換言すると、画素8の境界部には、ギャップGが設けられている。また、一方の光変換部27において生じたプラズモンが、隣接する他方の光変換部27に到達することを、光変換部27の干渉とも呼ぶ。このギャップGによれば、画素8間で光変換部27の干渉を抑制することできる。
 光変換部27のエッジ27eは、電界が強い。その結果、エッジ27eは、強いエバネセント光L2aを放射する。そこで、光変換部27のエッジ27eは、ピンニング領域36上に形成する。つまり、光変換部27のエッジ27eは、光入力面26a上に形成する。換言すると、光変換部27のエッジ27eは、画素8を隔てるディープトレンチ23(隔離壁22)上には形成されない。さらには、ディープトレンチ23は、光変換部27の間に形成されるギャップGに対応する領域に形成される。この構成によれば、エッジ27eにおいて発生する強いエバネセント光L2aを、ピンニング領域36および基体部32において吸収させることが可能になる。その結果、信号電子に変換可能なエバネセント光L2aを増加させることができる。つまり、エバネセント光L2aを有効に利用することが可能になる。また、ギャップGは、隣接する画素8へのプラズモンの伝播を抑制する。その結果、クロストークの発生が抑制される。
 なお、ギャップGは、エバネセント光L2aを生じさせる光変換部27の面積を減少させる。固体撮像装置1は、光変換部27の上に設けられたマイクロレンズ17(図4参照)を有する。このマイクロレンズ17によれば、入射光L1を光変換部27に集光することが可能である。その結果、感度の低下を防ぐことができる。
 光変換部27は、近赤外光等の入射光L1を受ける。光変換部27は、被吸収光L2を発生する。被吸収光L2は、エバネセント光L2aと、伝搬光L2bと、を含む。光変換部27は、ピンニング領域36および基体部32にエバネセント光L2aを出力する。光変換部27は、グレイン構造を含んでもよい。グレイン構造の大きさは、入射光L1の波長以下である。光変換部27は、図7に示す凹凸構造を含んでもよい。凹凸構造は、複数のリッジ27a(複数の凸部)を含む。リッジ27aの間隔は、例えば100nm以上であり、かつ、波長以下であってもよい。リッジ28aは、光入力面26aから突出する。
 さらに、光変換部27として、エバネセント光L2aを発生可能な様々な構造を採用可能である。光変換部27は、周期的構造を含んでもよい。周期的構造として、例えば、複数の球状構造または柱状構造としてもよい。また、このような構造を大別すると、パターン構造体および微粒子構造体が挙げられる。
 パターン構造体として、例えば、回折格子、ホールアレイ、ディスクアレイ、スリットアレイ、アンテナアレイおよびブルズアイアレイが例示される。回折格子は、例えばストライプ状の一次元配列構造、正方格子状又は三角格子状の二次元配列構造であってもよい。ホールアレイは、ホールの形状が、円形、矩形および三角形であってもよい。ディスクアレイは、ディスクの形状が、円板形、矩形、三角形および半球形であってもよい。スリットアレイは、スリットの形状が一次元構造、十字型構造及びアスタリスク型構造であってもよい。スリットアレイは、それぞれ正方格子状又は三角格子状に配列されてよい。アンテナアレイは、粒子ペア型構造、ロッドペア型構造およびボウタイ型構造であってもよい。ブルズアイアレイは、開口と同心円状の凹凸構造とを含んだ構造が正方格子状又は三角格子状に配列されてよい。
 微粒子構造として、金属材料により形成された微粒子が例示される。金属材料は、例えば、アルミニウム、銀、金、銅、窒化チタンを含む金属窒化物などを採用してよい。微粒子の形状として、球形ナノ粒子、金属ナノシェル、金属ナノロッドおよび金属ナノワイヤが例示される。微粒子構造は、局在型表面プラズモン共鳴を利用する。微粒子構造として球形ナノ粒子を採用する場合には、粒子間に働くギャップモードを適用することにより近赤外共鳴を得ることができる。球形ナノ粒子およびナノシェルの直径は、10nm以上1μm以下としてよい。ナノロッドおよびナノワイヤの直径は、10nm以上300nm以下としてよい。ナノロッドおよびナノワイヤの長さは、50nm以上10μm以下としてよい。また、微粒子構造を形成する材料として、TiNなどのチッ化物系ナノ粒子、およびMie散乱を利用するSiなどの高屈折率ナノ粒子も例示される。これらの微粒子構造は、化学合成法、スパッタ法及び真空蒸着法を用いて形成してもよい。真空蒸着法によれば、グレイン構造である島状の成膜がなされる。
 周期性に基づく表面プラズモン共鳴を利用する構造は、周期が100nm以上であり、入射する光の波長以下であることが望ましい。ギャップモードに基づく表面プラズモン共鳴を利用する構造は、粒子ペアなどの金属間距離が入射する光の波長以下であることが望ましい。例えば、金属間距離として、1nm以上100nm以下がより望ましい。これら構造体は、エキシマレーザーリソグラフィ、電子線描画リソグラフィおよび集束イオンビーム加工技術などによって形成してよい。
 以下、固体撮像装置1の製造方法を説明する。
 まず、シリコンウェハを準備する。次に、固体撮像装置1において配線領域13側となるシリコンウェハの一部に、電荷蓄積部33a、フォトダイオードピンニング層33b、トランジスタ、および配線18などの構成物を形成する。この工程によって、センサ基板12が形成される。次にセンサ基板12を支持基板11に接合する。先の工程において電荷蓄積部33aなどが形成された側の面が支持基板11に接合される。なお、支持基板11は、回路が形成されたウェハを採用してもよい。この場合には、集積度をより高めることができる。
 次に、センサ基板12の厚みを調整する。具体的には、センサ基板12を光入力面26a側から削る。センサ基板12の厚みは、通常の可視光用の場合では2μm以上3μm以下である。一方、近赤外光用の場合では、通常この厚みでは十分に光を吸収することができない。しかし、固体撮像装置1の構成によれば、センサ基板12の厚みが3μm以下であっても、十分に近赤外光を検出可能である。
 次に、ピンニング領域36を形成する。具体的には、センサ基板12の光入力面26aにボロンをイオン注入する。イオン注入エネルギは、0.2keV以上1keV以下である。イオン注入の後に、活性化のためのレーザアニールを行う。なお、酸化膜を介してイオン注入を行ってもよい。この場合には、不純物濃度の分布は、そのピークが入射側の界面または酸化膜中に形成される。イオン注入量は、1×1014cm―2以上3×1015cm―2以下が望ましい。そして、クロストークを防止するためのディープトレンチ23を形成する。
 図14は、所定の条件に基づいて1価のボロンイオンをイオン注入したときの、不純物濃度の分布を示すグラフである。所定の条件とは、イオン注入エネルギが0.2keVであり、かつドーズ量が1×1015cm―2である。グラフG14aは、この条件の基に形成された濃度分布を示す。また、別の所定の条件として、イオン注入エネルギが0.5keVであり、かつドーズ量が1×1015cm―2である。グラフG14bは、この条件の基に形成された濃度分布を示す。
 グラフG14a、G14bを確認すると、ピークP14の位置は0.5nmである。ピークP14の濃度は、2×10+21cm―3程度である。測定の限界を考慮すると、ボロンイオンは、10nm程度の深さまで分布していると言える。
 次に、イオン注入後、レーザアニールを行う。レーザアニールによれば、配線領域13側に形成されたトランジスタおよび配線に損傷を与えることなくアニールを行うことができる。また、レーザアニールを行う際には、レーザアニールのエネルギを下げる。つまり、シリコンを溶融させない。この条件を満たすことにより、溶融部分の不純物濃度が一定になることを抑制できる。また、非溶融の条件のレーザアニールを複数回行うことにより、不十分な不純物の活性の状態を、十分な不純物の活性の状態に変化させることができる。そして、レーザアニール後、自然酸化膜を除去する。その結果、金属膜である光変換部27が形成される。光変換部27の形成には、上述した構造に応じた手法を用いて形成してよい。そして、光変換部27上にカラーフィルタ16およびマイクロレンズ17を形成する。
<作用効果>
 実施形態の固体撮像装置1は、金属膜である光変換部27においてエバネセント光L2aを発生させる。ほぼ全てのエバネセント光L2aは、光電変換部26において吸収される。換言すると、エバネセント光L2aは、光電変換部26における基体部32において吸収されるとともに、ピンニング領域36においても吸収される。つまり、エバネセント光L2aは、基体部32とピンニング領域36とにおいて信号電子に変換される。ここで、光変換部27は、ピンニング領域36に対して直接に接している。換言すると、光変換部27と、シリコンによって構成されると共に光電変換を行う光電変換部26との間に、絶縁膜が存在しない。従って、エバネセント光L2aは、絶縁膜などによって減衰されることなく、光電変換部26に到達する。その結果、エバネセント光L2aを十分に活用することが可能になる。つまり、金属膜である光変換部27とピンニング領域36とを直接に接触させている。この「直接」とは、光変換部27とピンニング領域36との間になんらの膜および層をも挟まない構成のほかに、エバネセント光L2aの減衰を無視できる膜および層を挟む構成も含む。例えば、光変換部27とピンニング領域36との間に自然酸化膜が存在する場合は、実質的に光変換部27とピンニング領域36とが互いに直接に接触しているといえる。
 エバネセント光L2aは、シリコン中における強度の減衰が早い。換言すると、エバネセント光L2aは、シリコンに吸収されやすい。従って、近赤外光を検出する場合に、光電変換のためのシリコンの厚みを大きくする必要はない。光電変換のためのシリコンの厚みとして、例えば1μmが例示される。その結果、画素8を微細化したときに生じ得るクロストークの発生を抑制できる。また、クロストークを防止するためのトレンチの深さを浅くすることが可能になる。トレンチの形成が容易になると共にトレンチの幅を小さくすることができる。
 さらには、ピンニング領域36の入射側の表面には、正孔が蓄積されている。その結果、Si/SiOの界面に多数存在するバンドギャップ準位に起因する暗電流の発生を抑制できる。
 上述の構成を備える固体撮像装置1の内部量子効率は、ほぼ100%である。内部量子効率とは、シリコンに入射した光子数を分母とし、信号電子数を分子とした比率である。内部量子効率は、センサ表面での反射率などの損失を除いたものである。固体撮像装置1は、ピンニング領域36にいわゆるデッドレイヤ(dead layer)が実質的に形成されていないとみなせる。
 要するに、実施形態の画素8は、光入力面26aから受けた被吸収光L2に応じた信号電圧を発生する光電変換部26と、入射光L1を受けて光電変換部26に出力される被吸収光L2を生じさせるように、光電変換部26の光入力面26aに設けられた光変換部27と、を備える。光電変換部26は、第1のアクセプタ濃度(第1の不純物濃度)を有する第1の領域29と、第1のアクセプタ濃度よりも大きい第2のアクセプタ濃度(第2の不純物濃度)を有する第2の領域31と、を有する。第2の領域31は、光入力面26aを含むと共に光変換部27に直接に接触する。光変換部27は、入射光L1を受けて、エバネセント光L2aを含む被吸収光L2を発生する。
 実施形態の固体撮像装置1は、二次元状に配置された複数の画素8および互いに隣接し合う画素8の間に設けられた隔離壁22を有する画素部2と、画素部2の動作を制御する制御信号を発生する画素制御部3と、画素部2が発生する信号電圧を受ける信号処理部4と、を備える。画素8は、光入力面26aから受けた被吸収光L2に応じた信号電圧を発生する光電変換部26と、入射光L1を受けて光電変換部26に出力される被吸収光L2を生じさせるように、光電変換部26の光入力面26aに設けられた光変換部27と、を有する。光電変換部26は、第1のアクセプタ濃度を有する第1の領域29と、第1のアクセプタ濃度よりも大きい第2のアクセプタ濃度を有する第2の領域31と、を有する。第2の領域31は、光入力面26aを含むと共に光変換部27に直接に接触する。光変換部27は、入射光L1を受ける。光変換部27は、エバネセント光L2aを含む被吸収光L2を発生する。
 この画素8の光変換部27は、入射光L1を受ける。光変換部27は、光電変換部26に出力される被吸収光L2を発生する。光電変換部26の光入力面26aは光変換部27に直接に接している。したがって、被吸収光L2は減衰することなく光電変換部26に入力される。そして、この被吸収光L2は、光電変換部26において入射光L1よりも吸収されやすい。従って、受光感度を高めることができる。さらに、光電変換部26は、光入力面26aを含む第2の領域31を有している。したがって、第2の領域31は第1の領域29よりもアクセプタ濃度が大きい。この構成によれば、界面に生じる暗電流を抑制することができる。つまり、画素8によれば、受光感度を高めることができると共に暗電流を抑制することができる。したがって、画素8を用いることにより、良好な画像を得ることができる。
 第2の領域31の第2のアクセプタ濃度は、第1の領域29に近づくに従って減少する。この構成によれば、第2の領域31における被吸収光L2の吸収によって生じた少数キャリアを、第1の領域29に速やかに移動させることが可能になる。その結果、少数キャリアが消滅することがないので、少数キャリアに起因する信号電圧を良好に捉えることができる。つまり、被吸収光L2から少数キャリアに起因する信号電圧への変換効率が高まる。したがって、受光感度をさらに高めることができる。
 第2の領域31は、ドーズ量を1×1014cm-2以上3×1015cm-2以下とするドーピングによって形成されている。さらに、第2の領域31は、注入エネルギを0.2keV以上1keV以下とするドーピングによって形成されている。この構成によれば、第2の領域31における結晶欠陥の発生を抑制することが可能である。従って、被吸収光L2に応じて発生した少数キャリアの寿命を長くすることができる。その結果、少数キャリアが消滅することがない。したがって、少数キャリアに起因する信号電圧を良好に捉えられる。つまり、被吸収光L2から少数キャリアに起因する信号電圧への変換効率が高まる。したがって、受光感度をさらに高めることができる。
 隔離壁22は、互いに隣接し合う画素8における光電変換部26の間に設けられる。互いに隣接し合う一方の光変換部27は、他方の光変換部27から離間する。光変換部27の辺部は、光電変換部26の光入力面26a上に形成されている。この構成によれば、ある画素8の光変換部27で発生した被吸収光L2が隣接する別の画素8に到達することを抑制できる。従って、クロストークの発生を好適に抑制することができる。
 本実施形態に係る画素8および固体撮像装置1は、上記実施形態に限定されない。
<変形例1>
 図8および図9は、変形例1に係る固体撮像装置1Aを説明するための図である。入射光L1が平行光でないときがあり得る。例えば、固体撮像装置1Aにおいて、中央付近に配置された画素8に対する入射光L1の入射角θと、中心から離れた配置された画素8に対する入射光L1の入射角θと、は互いに異なることがある。つまり、入射光L1の主光線は、カメラレンズ90の中心から固体撮像装置1Aに向かって広がっている。例えば、固体撮像装置1Aの中心付近では、入射角θは0度である。一方、固体撮像装置1Aの周辺部では、入射角θは大きい。例えば、固体撮像装置1Aを備えるカメラユニットの小型化に伴い、カメラレンズ90と固体撮像装置1Aとの間隔は狭くなる。この構成によれば、固体撮像装置1Aの周辺部における入射角θがさらに大きくなる。
 画素8に対する入射角θが異なると、光変換部27に対する入射角θが異なる。光変換部27は、入射光L1の波長に応じて、リッジ27aの周期が決まっている。そうすると、固体撮像装置1Aの中央付近の画素8において、光変換部27の周期は、入射光L1の波長に対応する。しかし、固体撮像装置1Aの周辺の画素8において、光変換部27の周期は、入射光L1の波長に対応しない場合が生じ得る。すなわち、入射角θが0度のとき周期をLとした場合に、入射角θであるときの実質的な周期はL×cosθである。この入射角θは、光入力面26aにおける法線方向Aを基準とした角度である。
 そこで、画素8の位置に応じて、光変換部27の周期を互いに異ならせる。図9の(a)部は、固体撮像装置1Aにおける受光面の中央付近に配置された画素8と入射光L1との関係および光変換部27を拡大して示す図である。図9の(b)部は、固体撮像装置1Aにおける受光面の右端付近に配置された画素8と入射光L1との関係および光変換部27を拡大して示す図である。画素8の位置が決まると入射光L1の入射角θが決まる。入射角θが決まると、光変換部27の周期が決まる。具体的には、ある位置における画素8の光変換部27の周期LSは、下記式(6)によって得ることができる。式(6)において、Lは、入射角θがゼロであるときの光変換部27の周期である。例えば、受光面の端に配置された画素8が備える光変換部27の周期は、受光面の中央に配置された画素8が備える光変換部27の周期より大きい。
 LS=L/cosθ…(6)
 さらに、固体撮像装置1Aは、入射光L1の入射角θに対応するようにマイクロレンズ17の位置を調整してもよい。この場合には、入射角θが大きい画素8における光量の減少が抑制される。
 なお、固体撮像装置1Aは、後述する変形例2の固体撮像装置1Bが備えている光変換部27に所望の電位を印加する構成を備えてもよい。本技術は、図15や図16に示した固体撮像装置などに広く適用が可能である。
<変形例2>
 図10および図11は、変形例2に係る固体撮像装置1Bを説明するための図である。ピンニング領域36と光変換部27Bとは電気的に直接接している。ピンニング領域36と光変換部27Bとの接触状態は、ピンニング領域36の不純物濃度が高いためにオーム接触である。このため、光変換部27Bの電位は、ピンニング領域36の正孔が蓄積された領域との電位と同電位である。例えば、ピンニング領域36の正孔が蓄積された領域の電位は、接地電位としてもよい。また、P型である光電変換部26を完全に空乏化させ、かつ、電荷蓄積部33aへ向けて電界を強くする場合があり得る。この場合には、ピンニング領域36の正孔が蓄積された領域の電位は、負電位とする。正孔を信号キャリアとする場合は正電位を印加する。
 そこで、変形例2に係る固体撮像装置1Bは、光変換部27Bに所望の電位を印加する構成を有する。図10はセンサチップの周辺部を模式的に示す断面図である。変形例2に係る固体撮像装置1Bは、固体撮像装置1の構成に加えて、電圧印加部40を備える。電圧印加部40は、配線領域13に設けられた配線18Bと、基体部32に設けられたアクセプタ濃度の大きいダイシング領域41(導電部)と、基体部32の端面に形成されたダイシング面26bと、を含む。
 アルミニウムパッドである配線18Bの端部は、ダイシング領域41に電気的に接続されている。配線18Bは、基体部32に設けられたN+型領域42を含むガードリング領域S4に隣接する。ダイシング領域41はP+型である。ダイシング領域41の一端は、ダイシング面26bの一部を構成する。ダイシング領域41は、例えば、イオン注入によってボロンがドープされた領域である。その結果、ダイシング領域41の電気抵抗は、小さい。
 ダイシング面26bは、センサチップの端面である。センサチップとは、支持基板11と、画素部2などが形成されたセンサ基板12と、が互いに張り合わされた素子である。固体撮像装置1Bは、シリコンウェハ上に複数形成され、ダイシングによって個片化される。ダイシング面26bは、このダイシングによって形成される面である。つまり、ダイシング面26bは、シリコンウェハから固体撮像装置1Bを切り出したときに生じる切断面である。ダイシングによって、ダイシング面26bには、複数の欠陥が発生する。この欠陥は、電気伝導を助ける。つまり、ダイシング面26bは、電気伝導性を有する。ダイシング面26bは、少なくともダイシング領域41と、基体部32と、基体部32に含まれるピンニング領域36と、を含む。なお、ダイシング面26bは、光変換部27Bを含んでもよい。この構成によれば、ダイシング領域41がピンニング領域36にダイシング面26bを介して電気的に接続される。つまり、ピンニング領域36に負の電位を与えることができる。そして、ピンニング領域36は、光変換部27Bに対してオーミック接触を構成する。そのため、負の電位は、ダイシング領域41、ダイシング面26bおよびピンニング領域36を介して、光変換部27Bにも印加される。
 そこで、図11に示すように、光変換部27Bは、リッジ27bが互いに電気的に接続された構成を有することが好ましい。さらに、互いに隣接する画素8が備える光変換部27B同士を電気的に接続してもよい。例えば、固体撮像装置1Bは、互いに隣接する光変換部27Bを電気的に接続するブリッジ45を有する。ブリッジ45は、2個の光変換部27Bを接続するものでもよい。ブリッジ45は、2個以上の光変換部27Bを接続するものでもよい。この結果、隔離壁22がある場合にも、ピンニング領域36と光変換部27Bとが画素8間で電気的に接続される。つまり、すべての画素8のピンニング領域36および光変換部27Bに負電位が供給される。
 なお、金属膜である光変換部27Bを形成する直前の自然酸化膜を除去する工程は、工程を短縮するために省略することがあり得る。また、自然酸化膜の膜厚が厚かった場合、例えば1nm程度残った場合、光変換部27Bは電気的に浮遊になる可能性がある。しかし、光変換部27Bが電気的に浮遊であることによる問題は生じない。自然酸化膜では、エバネセント光L2aの損失が僅かながら存在する。しかし、自然酸化膜に起因するエバネセント光L2aの損失は、無視してもよい。
 要するに、変形例2の固体撮像装置は、二次元状に配置された複数の画素、および、互いに隣接し合う前記画素の間に設けられた隔離壁を有する画素部と、前記画素部の動作を制御する制御信号を発生する画素制御部と、前記画素部が発生する信号電圧を受ける信号処理部と、を備える。前記画素は、光入力面から受けた被吸収光に応じた信号電圧を発生する光電変換部と、入射光を受けて前記被吸収光を生じさせるように、前記光電変換部の前記光入力面に設けられた光変換部と、を有する。前記光電変換部は、前記光入力面を含むと共に前記光変換部に直接に接触する。前記光変換部は、前記入射光を受けて、エバネセント光を含む前記被吸収光を発生する。前記光変換部は、信号キャリアが電子の場合負の電位を、信号キャリアが正孔の場合負の電位を受ける。
 つまり、光変換部27Bは、負の電位を受ける。この構成によれば、光電変換部26の完全空乏化を助ける。さらに、この構成によれば、電荷蓄積部33aへ向かう電界が大きくなる。その結果、信号キャリアが再結合することなく、すみやかに電荷蓄積部33aへドリフト移動する。したがって、感度が向上するとともに、反応速度が高まる。
 また、互いに隣接し合う一方の光変換部27Bは、ブリッジ45によって他方の光変換部27Bに対して電気的に接続される。この構成によれば、暗電流を抑制可能な構成を簡易な工程によって得ることができる。
<参考技術>
 近年、近赤外光を対象とするフォトダイオードおよびCMOSイメージセンサの開発が進められている。例えば、監視用途に用いるイメージセンサは、可視光および近赤外光の両方を検出対象とする。その結果、イメージセンサの感度が向上する。近赤外光は、人間の眼が検知できない。従って、可視光および近赤外光を検出対象とするイメージセンサは、病室の監視、Time of Flight(いわゆる「TOF」)を用いたジェスチャ入力、距離計測などに利用される。
 図12は、シリコンの吸収係数と波長との関係を示すグラフである。グラフG12aに示されるように、シリコンの吸収係数は、可視光の帯域G12b(360nmから830nm)から近赤外光の帯域G12c(830nm以上)に向けて、急激に小さくなる。その結果、近赤外光を十分に吸収するためには、シリコンの厚みを大きくする必要がある。
 近赤外光は、シリコンに入射したときにシリコンの内部で減衰する。図13は、入射深さと近赤外光の強度との関係を示すグラフである。図13によれば、シリコンの内部で生じる光吸収による近赤外光の各波長ごとの光強度の減衰の程度がわかる。図13の横軸は、シリコンの内部における深さである。縦軸は、光強度である。図13において、グラフG13aは、波長が800nmであるときの光強度の減衰を示す。グラフG13bは、波長が850nmであるときの光強度の減衰を示す。グラフG13cは、波長が900nmであるときの光強度の減衰を示す。グラフG13dは、波長が950nmであるときの光強度の減衰を示す。グラフG13eは、波長が1000nmであるときの光強度の減衰を示す。グラフG13fは、波長が1050nmであるときの光強度の減衰を示す。
 例えば、グラフG13bは、ジェスチャ入力装置に利用される光であり、その波長が850nmであるときの減衰の様子を示す。グラフG13bを参照すると、入射光L1の1/2がシリコンに吸収されるためには、12μmのシリコン層が必要である。また、グラフG13dは、車載用装置に利用される光であり、その波長が950nmであるときの減衰の様子を示す。グラフG13dを参照すると、入射光L1の1/2がシリコンに吸収されるためには、24μmのシリコン層が必要である。入射光L1をさらに吸収させる場合には、シリコン層の厚みをさらに増す必要がある。そうすると、12μmおよび24μmといったシリコン層の厚み、およびこれらよりもさらに大きいシリコン層の厚みは、可視光用のイメージセンサのセンサ厚が3μm程度であることを考えると大きいと言える。同様に、このようなシリコン層の厚みは、監視用途イメージセンサの画素サイズが3μm程度であることを考えても大きいと言える。
 フォトダイオードには、PN接合型のダイオードが主に用いられる。フォトダイオードは、逆バイアス状態で光電変換させる。逆バイアス状態では、空乏層は、PN接合面からN型領域およびP型領域に延びる。空乏層には、電界が形成されている。この電界によれば、光吸収で発生した電子正孔対のうち、電子はN型領域へ移動する。そして、正孔はP型領域へ移動する。CMOSイメージセンサでは電子が信号として用いられることが一般的である。近赤外光の領域では、光電変換のための厚いセンサの層を空乏化させることが必要となる。このために、可視光領域とは異なる画素構造およびプロセスが必要になる。また、空乏化した厚いセンサ層は、斜めに入射する光および信号電子の拡散に起因して、クロストークノイズが発生する。
 これらの課題を解決するために、いくつかの技術が提案されている。
 例えば、非特許文献1は、入射面の表面に設けたピラミッド型の凹凸構造によってほぼ垂直に入射してきた光を屈曲させる技術を開示する。画素内を光線が屈曲することによって、シリコンの厚みを実質的に増加させている。また、画素の間には、ディープトレンチアイソレーション(Deep Trench Isolation :DTI)が形成されている。このDTIは、鏡の役割を果たす。上記の構造によれば、850nm以上950nm以下の波長領域において、量子効率が2倍程度に改善されると報告されている。しかし、量子効率の改善度合いは、2倍程度に留まってしまう。また、ピラミッド型の構造を作成するプロセスおよびDTIを作成するプロセスが必要である。
 参考文献1は、別の技術を開示する。参考文献1は、近赤外光の感度を向上させるためにプラズモンを利用する技術を開示する。
<参考文献1>特開2011-187857号公報。
 参考文献1に開示された固体撮像装置は、おおむね図15に示す構造を有する。固体撮像装置100は、配線領域101と、フォトダイオードピンニング層102と、N型蓄積層103と、基体部104と、絶縁膜105と、負電荷保持領域106と、微細金属構造層107と、を有する。N型蓄積層103は、フォトダイオードピンニング層102およびP型の基体部104と協働して、PN接合のフォトダイオードPDを構成する。微細金属構造層107は、プラズモンを発生させる。微細金属構造層107は、フォトダイオードPDの上に形成されている。光入力面104aには、絶縁膜105が設けられている。絶縁膜105として、例えば、シリコン酸化膜が挙げられる。絶縁膜105の膜厚は、1nm以上2nm以下程度である。絶縁膜105の上には、負電荷保持領域106が形成されている。負電荷保持領域106として、原子層堆積法(Atomic Layer Deposition:ALD)で形成された膜厚が11nmである酸化ハフニウム膜が挙げられる。さらに、負電荷保持領域106として、物理蒸着法(Physical Vapor Deposition :PVD)で形成された膜厚が50nmである酸化ハフニウム膜が挙げられる。このような負電荷保持領域106の上には、微細金属構造層107が設けられている。さらにその上には、カラーフィルタとマイクロレンズが形成されている。
 負電荷保持領域106に対応して、基体部104の入射側の表面近傍には正孔が蓄積される。この正孔は、基体部104の入射側の表面に存在する界面準位から発生する暗電流を抑制する。微細金属構造層107は、アルミニウム、銀、金、銅、または窒化チタンを含む金属窒化物等により形成される。微細金属構造層107の厚みは、10nm以上30nm以下である。微細金属構造層107は、メッシュ状の周期的な構造またはストライプ状の周期的な構造を呈する。このような微細金属構造層107に光が入射すると、金属構造のエッジ部分に強い電界が発生する。この強い電界により、指数関数的に減衰するエバネセント光と伝搬光とが発生する。エバネセント光は、深さ1μmに到達するまでにほぼすべて吸収される。その結果、基体部104とN型蓄積層103を合わせた受光層の厚みを縮小することができる。
 しかし、参考文献1の固体撮像装置100は、1nm以上2nm以下である絶縁膜105を含む。また、負電荷保持領域106として酸化ハフニウムを採用する場合には、負電荷保持領域106の膜厚は、50nm以上になる。絶縁膜105および負電荷保持領域106は、エバネセント光を減衰させてしまう。発生したエバネセント光の80%は、絶縁膜105および負電荷保持領域106の減衰によって失われる。従って、受光層である基体部104の厚みを縮小する効果は、限定的である。さらには、負電荷保持領域106の形成には、高価で成膜速度が遅い原子層堆積法を用いる必要があった。
 図16は、プラズモンを利用する別の固体撮像装置200の例示である。固体撮像装置200は、配線領域201と、フォトダイオードピンニング層202と、N型蓄積層203と、基体部204と、絶縁膜205と、微細金属構造層207と、を有する。つまり、固体撮像装置200は、固体撮像装置100から負電荷保持領域106を省略したものである。固体撮像装置200の光入力面204aには、絶縁膜205が形成されている。絶縁膜205の膜厚は、2nmである。絶縁膜205は、シリコン酸化膜およびハフニウム酸化膜からなる。絶縁膜205の上には、微細金属構造層207が設けられている。微細金属構造層207は、アルミニウム、銀、金、銅および窒化チタンを含む金属窒化物などにより形成されている。微細金属構造層207の厚みは、10nm以上30nm以下である。微細金属構造層207は、メッシュ状の周期的な構造またはストライプ状の周期的な構造を呈する。
 この微細金属構造層207には、-2V以上-10V以下の負の電圧が印加される。微細金属構造層207、絶縁膜205およびP型の基体部204は、MOS構造を構成する。そうすると、微細金属構造層207に負の電圧を印加した場合には、基体部204における絶縁膜205の近傍の領域に正孔が蓄積される。この正孔は、基体部204の光入力面204aに存在する界面準位から発生する暗電流を抑制する。このような微細金属構造層207に光が入射すると、微細金属構造層207のエッジ部分に強い電界が発生する。この強い電界により、指数関数的に減衰するエバネセント光と伝搬光とが発生する。エバネセント光は、深さ1μmに到達するまでにほぼすべて吸収される。その結果、基体部204とN型蓄積層203を合わせた受光層の厚みを縮小することができる。
 しかし、膜厚が2nmである絶縁膜105によって、エバネセント光は、減衰してしまう。
 上述した参考例の固体撮像装置100、200は、エバネセント光を発生させる領域と、当該エバネセント光を吸収する領域との間に、絶縁膜105、205が設けられていた。この絶縁膜105、205によって、エバネセント光が減衰されるので、受光感度の向上が妨げられる。その結果、近赤外光を好適に捉えることが難しかった。
 さらに、参考例に係るイメージセンサを対象に、感度の改善の程度について考察する。図15および図16に示すような参考例の裏面照射型CMOSイメージセンサは、シリコンにより構成される基体部104、204を有する。基体部104、204の厚みは、3μm程度である。図12のグラフG12aを参照すると、波長が950nmである場合に、基体部104、204の深さが3μmの位置において、光強度は91%に減衰する。換言すると、基体部104、204は、9%の光を吸収する。波長が850nmである場合に、基体部104、204の深さが3μmの位置において、光強度は76%に減衰する。換言すると、基体部104、204は、24%の光を吸収する。吸収されなかった光は、基体部104、204を通過する。固体撮像装置100、200の裏面である光入力面104a、204aには、マイクロレンズおよび反射防止膜などが形成されている。反射防止膜によれば、入射光L1の反射が抑制されている。
 例えば、光入力面における反射率が0%と仮定する。さらに、シリコンの内部で吸収された光によって生成された電子の100%が信号として活用されると仮定する。換言すると、内部量子効率が外部量子効率と同じであると仮定する。これらの仮定は、感度を高めに見積もることになる。これらの仮定に基づけば、量子効率(信号電子数/入射した光子数)は、光の波長が950nmである場合には、9%である。また、光の波長が850nmである場合には、24%である。
 また、非特許文献1に開示された技術は、入射光を散乱させてシリコン厚を実質的に厚くさせるものである。この技術によれば、非特許文献1の図9および第4頁右欄下方に記載があるとおり、量子効率は波長950nmの場合16%であり、850nmの場合33%に改善されている。非特許文献1の図9および54ページ右蘭下方の段落に記載のように、入射光L1の波長が950nmである場合の量子効率は16%である。また、入射光L1の波長が850nmである場合の量子効率は33%である。
 さらに、参考文献1、2に記載された技術を用いたイメージセンサの量子効率を検討する。また、固体撮像装置の諸元は、以下のとおりに仮定する。
<参考文献1>特開2011-187857号公報。
<参考文献2>特開2008-306154号公報。
  シリコンの膜厚:3μm。
  複合膜の合計膜厚:54nm(シリコン酸化膜(1nm)、ALDで形成した酸化ハフニウム膜(3nm)、PVD(スパッタ)で形成された酸化ハフニウム膜(50nm))
  エバネセント光L2aの強度が1/eに減衰する深さ:45nm(波長950nm)、36nm(波長850nm)。
 また、エバネセント光は、酸化ハフニウム膜とシリコン酸化膜とで減衰する。さらに、シリコン膜に到達するエバネセント光の比率は、入射光の波長が950nmの場合には23%である。また、入射光の波長が850nmの場合には30%である。そして、シリコンの膜厚が3μmである。エバネセント光は、シリコンにおいてすべて吸収されるとする。入射面における反射は、無視すると仮定する。
 上記の諸元および仮定によれば、入射光の波長が950nmである場合のエバネセント光に基づく量子効率は、23%である。また、入射光L1の波長が850nmである場合のエバネセント光に基づく量子効率は、30%である。遠方場の光は、酸化膜および酸化ハフニウムでは吸収されない。その結果、遠方場の光は、シリコン膜に到達する。そして、遠方場の光は、厚さが3μmであるシリコン膜に一部吸収される。この構成において、入射光の波長が950nmの場合の遠方場の量子効率は9%である。また、入射光の波長が850nmの場合の遠方場の量子効率は24%である。エバネセント光と遠方場の光の強度比率は3.5:1である。この比率に基づいて固体撮像装置100、200の量子効率を総合的に評価すると、入射光の波長が950nmの場合の総合量子効率は20%である。入射光の波長が850nmの場合の総合量子効率は29%である。
 一方、本実施形態の固体撮像装置1は、エバネセント光L2aを減衰させる絶縁膜を有しない。エバネセント光L2aに基づく量子効率を検討する。入射光L1の波長が950nmである場合に発生するエバネセント光L2aの量子効率は100%である。また、入射光L1の波長が850nmである場合に発生するエバネセント光L2aの量子効率も100%である。さらに、遠方場の光に基づく量子効率を検討する。入射光L1の波長が950nmである場合に発生する遠方場の光の量子効率は9%である。また、入射光L1の波長が850nmである場合に発生する遠方場の光の量子効率は24%である。また、エバネセント光L2aと遠方場の光L1aの強度比率は3.5:1である。この比率に基づいて、固体撮像装置1の量子効率を総合的に評価すると、入射光L1の波長が950nmである場合の総合量子効率は80%である。また、入射光L1の波長が850nmである場合の総合量子効率は83%である。従って、非特許文献1~4などに記載された技術を採用する固体撮像装置と比べると、量子効率が大幅に改善される。
 参考文献3は、シリコンに対して直接に設けられた金属膜を有するイメージセンサを開示する。参考文献3が開示する技術は、ショットキバリア型赤外線CCDイメージセンサである。
<参考文献3>木股雅章、上野宗孝、「PtSiショットキバリア赤外線イメージセンサ」、日本赤外線学会誌、第14巻、第2号、pp.17-21、日本赤外線学会、2005年。
 参考文献3のFig.2(b)には、ショットキバリア型赤外線CCDイメージセンサの画素の断面図が示されている。以下、ショットキバリア型赤外線CCDイメージセンサを単に「SBIRCCD」と呼ぶ。SBIRCCDは、ショットキバリアを利用した検出部と、トランスファゲートおよびCCDにより構成される読み出し部と、を有する。
 検出部は、ショットキバリアを有する。ショットキバリアは、P型の基板と、白金シリサイド(PtSi)からなる膜と、を有する。白金シリサイドの膜厚は、5nm程度である。ショットキバリアの障壁高さは0.2eVである。ショットキバリアの障壁高さが小さい。したがって、検出部は、室温ではオーミックの特性を示す。すなわち、暗電流が大きい。
 そこで、暗電流を低減するために、液体窒素を用いてSBIRCCDを冷却する。具体的には、SBIRCCDを-196℃程度にまで冷却する。その結果、暗電流が低減するので、ショットキ特性が確認できる。
 SBIRCCDは、裏面側から光を受ける。SBIRCCDが受ける光は、波長が3μm以上5μm以下の中間赤外光である。中間赤外光のエネルギは、シリコンのバンドギャップ1.1eVより小さい。従って、中間赤外光は、シリコンでは吸収されない。中間赤外光の一部は、白金シリサイド膜において吸収される。その結果、白金シリサイド膜が奏する光電効果により、エネルギの高い電子および正孔が発生する。0.2eV以上のエネルギを持つ正孔は、ショットキバリアを越えてシリコンに注入される。つまり、正孔は信号となる。
 参考文献3のFig.1には、ポテンシャル図が示されている。ショットキバリア型のイメージセンサは、ショットキバリア接合を実現するために、ピンニング領域を設けることができない。つまり、ピンニング領域を利用した暗電流の低減を行うことができない。白金シリサイド膜は、赤外光の入射側とは反対側のシリコン表面に形成されている。白金シリサイド膜とP型のシリコンからなる基板との間には、逆バイアス電圧が印加されている。また、SBIRCCDは、光変換層に対応する構成を有しない。つまり、SBIRCCDは、プラズモン効果を利用できない。
<第2実施形態>
 図17は、上記実施形態(以下「第1実施形態」と称する。)の光変換部27及び光電変換部26の主要部を拡大して示す。第1実施形態の光変換部27は、複数のリッジ27aを含んでいる。当該リッジ27aは、光入力面26aに接するように設けられていた。つまり、リッジ27aのリッジ底面27a1は、光入力面26aに直接に接する。換言すると、リッジ底面27a1は、ピンニング領域36の表面に直接に接する。このような光変換部27の構成では、光変換部27において生じたエバネセント光は、リッジ底面27a1を挟むエッジ27a2に発生する。そして、エバネセント光は、エッジ27a2の近傍に位置するピンニング領域36に直接に入射する。つまり、光変換部27は光電変換部26に対して絶縁層といった層を介することなく直接に接している。その結果、光変換部27から光電変換部26へ至るまでのエバネセント光の減衰が抑制される。従って、受光感度を高めることができる。
 画素8に入射光L1が入射する場合を想定する。入射光L1の入射方向は、複数のリッジ27aが互いに離間する方向と直交する。入射光L1は電磁波である。したがって、入射光L1は電場E1を生じさせる。この電場E1の向きは、入射光L1の進む方向に対して直交する。つまり、電場E1の向きは、複数のリッジ27aが互いに離間する方向と一致する。そうすると、金属であるリッジ27aの内部では、電場E1によって自由電子の偏りが生じる。より詳細には、自由電子は、リッジ側面27a3に集まる。その結果、リッジ27aの周囲には、一方のリッジ側面27a3から他方のリッジ側面27a3に向かう強い電場E2が発生する。
 表面プラズモンは、いわゆる電場増強効果を有している。この電場増強効果は、電場E2の振動方向に強く依存する。つまり、電場E2の振動方向に並ぶリッジ側面27a3の近傍には、強い電場E2が生じている。その結果、表面プラズモンは、この電場E2によって増強される。つまり、表面プラズモンが生じる領域に重複する電場E2は、表面プラズモンを増強する。このような電場E2の一部を増強電場E2aと称する。図17に示す第1実施形態の画素8では、表面プラズモンが生じる位置はエッジ27a2の近傍である。そうすると、増強電場E2aは、エッジ27a2の近傍に生じる。
 発明者らは、表面プラズモンが生じる位置、電場E2が生じる位置、及びエバネセント光を吸収させるピンニング領域36の位置の関係に注目した。表面プラズモンが増強される領域に重複するようにシリコン感度層(ピンニング領域36を含む)を配置すれば、増強された表面プラズモンによるエバネセント光を効率よく吸収できる。つまり、表面プラズモンが生じる位置と電場E2が生じる位置との関係を電場増強効果がより好適に得られるような位置関係とした。さらに、増強された表面プラズモンによるエバネセント光を効率よく吸収させる位置にピンニング領域36を配置した。
 以下、図18を参照しながら第2実施形態の固体撮像装置1Cの画素8Cが有する光変換部27Cおよび光電変換部26Cの構造について詳細に説明する。なお、第2実施形態の固体撮像装置1Cの画素8Cが有するその他の構成は、第1実施形態の固体撮像装置1の画素8と同じである。したがって、それらについての詳細な説明は省略する。
 図18は、第2実施形態の固体撮像装置1Cの画素8Cの主要部を拡大して示す。図18に示すように、固体撮像装置1Cの画素8Cは、光変換部27Cと光電変換部26Cとを備えている。そして、第1実施形態の固体撮像装置1の画素8と同様に、光変換部27Cは光電変換部26Cに対して直接に接している。一方、第2実施形態の光変換部27Cは、光電変換部26Cに埋め込まれている。
 より詳細には、光電変換部26Cは、溝51(凹部)を含む。溝51は、光電変換部26Cを構成する基板において、入射光L1を受ける主面50aに設けられている。溝51は、主面50aに開口している。溝51は、一対の溝壁面52と、溝底面53と、に囲まれている。そして、主面50a、溝壁面52及び溝底面53から所定の深さまでは、不純物濃度が高いピンニング領域36(第2の領域)が形成されている。従って、溝51は、ピンニング領域36の表面である溝壁面52と溝底面53とに囲まれている。
 この溝51には、金属ナノ構造である金属層61(金属部)が形成されている。複数の金属層61は、光変換部27Cを構成する。つまり、金属層61は、リッジ27aに相当する。金属層61の側面62は、溝壁面52に接する。金属層61の底面63は、溝底面53に接する。金属層61の上面64は、主面50aと面一である。つまり、金属層61は、上面64を除き、3つの面が囲まれている。
 ひとつの溝51の内部にひとつの金属層61が設けられるので、ある溝51と当該溝51に隣接する別の溝51との間隔は、金属層61の間隔と一致する。溝51の間隔は、例えば、ピンニング領域36の厚さよりも大きい。そうすると、入射方向と直交する方向に沿って、金属層61と光電変換部26Cとが交互に配置されているといえる。また、入射方向と直交する方向に沿って、金属層61がピンニング領域36に挟まれているともいえる。
 このような構成によれば、光変換部27Cは、金属層61の側面62からエバネセント光が発生する。この側面62の近傍には、電場E2が生じている。従って、表面プラズモンによってエバネセント光が生じる領域と、当該表面プラズモンを増強する増強電場E2aとが重複する。その結果、増強された表面プラズモンに応じたエバネセント光が発生する。そして、エバネセント光は、側面62に接するピンニング領域36に入射する。第2実施形態においては、光電変換部26Cの光入力面とは、溝51の溝壁面52である。
<作用効果>
 要するに、第2実施形態の固体撮像装置1Cが備える画素8Cの光変換部27Cは、入射光L1を受ける受光面である上面64を含むと共に、上面64が光電変換部26Cから露出するように光電変換部26Cに埋め込まれている。この構成によれば、光変換部27Cの底面63は光電変換部26Cと接触する。さらに、光変換部27Cの側面62も光電変換部26Cと接触する。そして、側面62の近傍では、増強電場E2aによって表面プラズモンが増強される。従って、増強電場E2aによって増強されたエバネセント光をさらに効率よく吸収することが可能になる。その結果、光電変換効率がさらに高まる。したがって、さらに良好な画像を得ることができる。
 なお、図18等において示す第2実施形態では、光変換部27Cは、ストライプ形状の金属層61によって構成されるものとして説明した。しかし、光変換部27Cを構成する金属ナノ構造は、ストライプ形状の金属層61に限定されない。例えば、光変換部27は、格子状に配置された複数の直方体又は立方体である金属層により構成されてもよい。光変換部27は、格子状に配置された複数の円柱である金属層により構成されてもよい。つまり、入射光L1に起因する表面プラズモンによってエバネセント光を発生可能な種々の金属ナノ構造を適宜採用してよい。
<固体撮像装置の製造方法>
 次に、図19及び図20を参照しながら、第2実施形態の固体撮像装置1Cを製造する方法について説明する。
 図19(a)に示すように、基板50を準備する(工程ST1)。この工程ST1は、電荷蓄積部33a、フォトダイオードピンニング層33b、トランジスタ、および配線18を形成する工程を含んでよい。また、工程ST1は、センサ基板12を支持基板11に接合する工程を含んでもよい。工程ST1は、センサ基板12の厚みを調整する工程を含んでもよい。
 次に、図19(b)に示すように、溝51を形成する(工程ST2:第1工程)。溝51の形成には、例えば、エッチング法を用いてよい。
 次に、図19(c)に示すように、ピンニング領域36を形成する(工程ST3:第2工程)。ピンニング領域36の形成には、例えば、イオン注入法を用いてよい。イオン注入エネルギおよびイオン注入量といった具体的な条件は、第1実施形態の固体撮像装置1を製造する方法と同等としてよい。この工程ST3において不純物イオンの注入方向は、互いに異なる複数の方向(矢印B1、B2)を含む。例えば、主面50a及び溝底面53を含むピンニング領域36を形成する場合には、不純物イオンの注入方向を、主面50aの法線方向に設定する(矢印B1参照)。また、溝51の溝壁面52を含むピンニング領域36を形成する場合には、不純物イオンの注入方向を、主面50aの法線に対して傾いた斜め方向に設定する(矢印B2参照)。イオン注入処理が完了したのちに、レーザアニールを行う。このレーザアニールによって、イオン注入されたボロンが活性化する。このレーザアニールの具体的な条件も、第1実施形態の固体撮像装置1を製造する方法と同等としてよい。
 次に、金属層61を形成する(工程ST4、ST5:第3工程)。まず、図20(a)に示すように金属層61となる中間形成層66を形成する(工程ST4)。中間形成層66の成膜には、メッキ、蒸着及びスパッタといった方法を用いてよい。次に、図20(b)に示すように、溝51の外部に形成された中間形成層66の一部を除去する(工程ST5)。この除去には、ケミカル・メカニカル・ポリシング(chemical mechanical polishing: CMP)を用いてよい。その結果、中間形成層66のうち溝51の部分のみが残り、当該部分が金属層61となる。
 以上の工程ST1~ST5によって、固体撮像装置1Cが得られる。
<第3実施形態>
 発明者らは、さらに別の側面から、固体撮像装置が備える画素部の光吸収効率を高める構造を見出した。
 上述したように、金属層61の側面62からエバネセント光が放出されるならば、金属層61の数を増やすほど、エバネセント光もより多く放出されるように思われる。しかし、金属層61の数を増やすことは、金属層61の間隔(周期)に影響を及ぼす。金属層61の周期は、入射光L1の波長と表面プラズモンの共鳴条件とに応じて決まる。そうすると、金属層61の数を増やして金属層61の周期が変わってしまうと、表面プラズモンの共鳴条件を満たさなくなる場合があり得る。
 一方、入射光L1の見かけの波長である実効的な波長は、入射光L1が通る媒体の屈折率の影響を受ける。いま、媒体の屈折率をnとし、入射光L1の波長をλとすれば、媒質中における入射光L1の実効的な波長は、λ/nである。そして、入射光L1の波長と金属層61の周期とは共鳴条件を満たす。つまり、媒質中における入射光L1の実効的な波長(λ/n)と、媒質に覆われた金属層61の周期(p)とが共鳴条件を満たせばよい。そうすると、金属層61の周期(p)と入射光L1の波長(λ)とを所定の値に設定した場合には、実効的な波長(λ/n)と金属層61の周期(p)とが共鳴条件を満たすように、媒質の屈折率(n)を設定すればよい。つまり、金属層61の周囲における入射光L1の媒質の屈折率(n)を調整することにより、表面プラズモンの共鳴条件を満たすと共に金属層61の周期(p)を狭くして光吸収量を増やすことができる。
 そこで、図21に示すように、第3実施形態の固体撮像装置1Dの画素8Dは、光変換部27Cを覆う高誘電体膜71(被覆部)を有する。この高誘電体膜71は、上述した工程ST5の後に第4工程(ST6)として成形してもよい。屈折率は、材料の誘電率と関係を有する。屈折率の大きい材料は、誘電率も高い。つまり、高誘電体膜71の屈折率は、空気の屈折率よりも大きい。高誘電体膜71の材料として、例えば、酸化アルミニウム(AlO:10)、酸化ハフニウム(HfO:19)、酸化ジルコニウム(ZrO:12)、酸化タンタル(TaO:22)などが挙げられる。なお、かっこの内部に記載した数値は、各材料におけるおおよその比誘電率である。また、酸化シリコン(SiO:3.9)、窒化シリコン(SiN)、アクリル系の有機物などの材料も高誘電体膜71の材料として採用することができる。つまり、高誘電体膜71の材料は、真空や空気よりも誘電率が高いものを採用してよい。
<第3実施形態の変形例>
 上記の作用効果を得るにあたっては、光変換部27Cを埋める高誘電体膜71の屈折率と空気又は真空の屈折率との関係が重要である。一方、上記の作用効果を得るにあたっては、高誘電体膜71の屈折率と、光電変換部26(ピンニング領域36)の屈折率と、の関係については、特に制限はない。例えば、高誘電体膜71の屈折率は、光電変換部26の屈折率よりも大きい場合もあり得るし、小さい場合もあり得る。そして、高誘電体膜71の屈折率は、光電変換部26の屈折率と等しい場合もあり得る。高誘電体膜71の屈折率が光電変換部26の屈折率と等しい場合には、例えば、図22(a)に示すような構造を有する固体撮像装置1Eの画素8Eにおいてさらに有効な効果を奏する。
 図22(a)に示すように、固体撮像装置1Eの画素8Eは、第1実施形態の光変換部27及び光電変換部26と同様の構造を有する。さらに、固体撮像装置1Eの画素8Eは、光変換部27を埋め込む高誘電体膜71Eを有する。高誘電体膜71Eは、互いに隣接するリッジ27aの間を埋め込んでいる。さらに、高誘電体膜71は、リッジ上面27a4も覆っている。このような高誘電体膜71Eの厚さは、金属層61の高さよりも厚い。従って、高誘電体膜71Eは、平坦な受光面71Eaを有する。
 上述したように、屈折率(n)は、入射光L1の実効的な波長(λ/n)に影響する。リッジ上面27a4の近傍における材料の屈折率と、リッジ底面27a1の近傍における材料の屈折率とに差異がある場合を仮定する。この仮定の下では、リッジ上面27a4の近傍では共鳴条件を満たす。しかし、リッジ底面27a1の近傍では材料の屈折率の差異に起因して実効的な波長が変わる。したがって、共鳴条件を満たさない場合が生じ得る。
 一方、図22(a)に示す構造では、リッジ上面27a4の近傍における材料の屈折率と、リッジ底面27a1の近傍における材料の屈折率との差異が小さくなる。その結果、リッジ27aの周囲において、共鳴条件からのずれが抑制されるので、光変換部27において効率よくエバネセント光を発生させることができる。
 なお、高誘電体膜は、図22(a)に示す構成に限定されない。つまり、高誘電体膜は、表面プラズモンが生じるリッジ27aの近傍に配置されていればよい。例えば、図22(b)には、図22(a)に示す高誘電体膜とは異なる構成を有する高誘電体膜71Fを備える固体撮像装置1Fを示す。高誘電体膜71Fは、ピンニング領域36の主面36aとリッジ上面27a4とリッジ側面27a3とを覆う。このような高誘電体膜71Fの厚さは、リッジ27aの周期よりも薄い。また、高誘電体膜71Fの厚さは、リッジ27aの高さよりも薄い。この場合には、互いに隣接するリッジ27aの間は、高誘電体膜71Fによって埋め込まれない。従って、画素8Fの受光面は、凹凸形状を有する。
 さらに、高誘電体膜を有する固体撮像装置は、さらにマイクロレンズを備えてもよい。図23(a)に示す固体撮像装置1Gの画素8Gは、図22(a)に示す固体撮像装置1Eにさらに、マイクロレンズ72を設けたものである。マイクロレンズ72は、例えば、リッジ27aごとに配置されてもよい。図23(b)に示す固体撮像装置1Hの画素8Hは、図22(b)に示す固体撮像装置1Fにさらに、マイクロレンズ72を設けたものである。固体撮像装置1Hの場合には、高誘電体膜71Fを埋め込み、平坦な面を形成する平坦化膜73をさらに有する。マイクロレンズ72は、平坦化膜73の受光面に設けられる。平坦化膜73の材料は、例えば、ガラスおよび酸化シリコン(SiO)を採用してよい。さらに、図24に示す固体撮像装置1Kの画素8Kは、図21に示す固体撮像装置1Dにさらに、マイクロレンズ72を設けたものである。これらのマイクロレンズ72は画素ごとに設けてもよい。
 ところで、上記の固体撮像装置1が備える光変換部27は、金属であるリッジ27aを備えていた。リッジ27aの全体は、金属材料によって形成されていた。例えば、図25に示す変形例3の固体撮像装置1Pの画素8Pのように、光変換部27Pを構成するリッジ81aは、互いに異なる材料からなる層が積層された構造を採用してもよい。
 光変換部27Pを構成するリッジ81aは、実施形態のリッジ27aと同様の外形形状を有する。具体的には、リッジ81aの幅は、実施形態のリッジ27aと同じである。また、互いに隣接するリッジ81a同士の間隔も、実施形態のリッジ27aと同じである。一方、変形例3のリッジ81aは、入射光L1の進行方向に金属材料と誘電体材料とが積層された構造を有する。このような積層構造は、いわゆるMIM(metal-insulator-metal:金属-絶縁体-金属)構造と呼ばれる。より詳細には、リッジ81aは、第1金属層82と、誘電体層83と、第2金属層84と、を有する。第2金属層84は、光入力面26aに接する。つまり、第2金属層84の下面は、リッジ底面81a1である。第2金属層84の上面には、誘電体層83の下面が接する。誘電体層83の上面には、第1金属層82の下面が接する。なお、リッジ81aのリッジ側面81a2は、第1金属層82、誘電体層83及び第2金属層84の側面を含む。例えば、第1金属層82の厚みは、第2金属層84の厚みと同じであってもよい。また、第1金属層82及び第2金属層84の厚みは、誘電体層83の厚みより薄くてもよい。
 このような積層構造であるリッジ81aは、リッジ81aのうちプラズモン振動に寄与しない中央部分が誘電体層83によって形成されている。その結果、リッジ81aにおいて吸収ロスを生じさせる金属材料が物理的に占める領域が小さくなる。換言すると、リッジ81aにおいて金属材料によって生じる吸収ロスが低減される。さらに、表面プラズモン共鳴による増強電場E2aが光電変換部26に形成される。その結果、シリコン感度層である光電変換部26における吸収効率をさらに高めることができる。
 また、図26に示すように、MIM構造を採用するリッジ81aは、図18に示される固体撮像装置1Cが備える光変換部27Cのように、光電変換部26Cに埋め込まれてもよい。つまり、図26に示す変形例4の固体撮像装置1Qは、画素8Qを有しており、当該画素8Qは、光変換部27Qを含んでいる。光変換部27Qは、リッジ81aにより構成されている。
1,1A,1B,1C,1E,1F,1G,1H,1P,1Q,100,200…固体撮像装置、2…画素部、3…画素制御部、4…信号処理部、8,8C,8E,8F,8G…画素、22…隔離壁、26,26C…光電変換部、26a,104a,204a…光入力面、27,27B…光変換部、29…第1の領域、31…第2の領域、L1…入射光、L2…被吸収光、L2a…エバネセント光。

Claims (26)

  1.  光入力面から受けた被吸収光に応じた信号電圧を発生する光電変換部と、
     入射光を受けて前記被吸収光を生じさせる光変換部と、を備え、
     前記光電変換部は、第1の不純物濃度を有する第1の領域と、前記第1の不純物濃度よりも大きい第2の不純物濃度を有する第2の領域と、を有し、
     前記第2の領域は、前記光入力面を含むと共に前記光変換部に直接に接触し、
     前記光変換部は、前記入射光を受けて、エバネセント光を含む前記被吸収光を発生する、画素。
  2.  前記第2の領域における前記第2の不純物濃度は、前記第1の領域に近づくに従って減少する、請求項1に記載の画素。
  3.  前記第2の領域は、ドーズ量を1×1014cm-2以上3×1015cm-2以下とするイオン注入によって形成される、請求項1又は2に記載の画素。
  4.  前記第2の領域は、注入エネルギを0.2keV以上1keV以下とするイオン注入によって形成される、請求項1~3のいずれか一項に記載の画素。
  5.  二次元状に配置された複数の画素、および、互いに隣接し合う前記画素の間に設けられた隔離壁を有する画素部と、
     前記画素部の動作を制御する制御信号を発生する画素制御部と、
     前記画素部が発生する信号電圧を受ける信号処理部と、を備え、
     前記画素は、
     光入力面から受けた被吸収光に応じた信号電圧を発生する光電変換部と、
     入射光を受けて前記被吸収光を生じさせるように、前記光電変換部の前記光入力面上に設けられた光変換部と、を有し、
     前記光電変換部は、第1の不純物濃度を有する第1の領域と、前記第1の不純物濃度よりも大きい第2の不純物濃度を有する第2の領域と、を有し、
     前記第2の領域は、前記光入力面を含むと共に前記光変換部に直接に接触し、
     前記光変換部は、前記入射光を受けて、エバネセント光を含む前記被吸収光を発生する、固体撮像装置。
  6.  互いに隣接し合う一方の前記光変換部は、他方の前記光変換部から離間し、
     前記光変換部の辺部は、前記光電変換部の前記光入力面上に形成されている、請求項5に記載の固体撮像装置。
  7.  少なくとも前記画素部は、センサ基板に設けられ、
     前記センサ基板は、前記第2の領域に所定の電位を与える電圧印加部を有する、請求項5または6に記載の固体撮像装置。
  8.  前記電圧印加部は、ダイシングによって形成された前記センサ基板のダイシング面と、前記ダイシング面に電圧を与える導電部と、を含み、
     前記ダイシング面は、少なくとも前記第2の領域の端面と、前記導電部の端面と、を含む、請求項7に記載の固体撮像装置。
  9.  前記光電変換部は、前記被吸収光を吸収することにより信号キャリアとしての電子を発生し、
     前記第2の領域は、負の電位を受ける、請求項5~8のいずれか一項に記載の固体撮像装置。
  10.  前記光電変換部は、前記被吸収光を吸収することにより信号キャリアとしての正孔を発生し、
     前記第2の領域は、正の電位を受ける、請求項5~8のいずれか一項に記載の固体撮像装置。
  11.  前記第2の領域は、前記光変換部に対して電気的に接続され、
     第1の前記画素が有する第1の前記光変換部は、第1の前記画素に隣接する第2の前記画素が有する第2の前記光変換部に対して電気的に接続されている、請求項5~10のいずれか一項に記載の固体撮像装置。
  12.  前記光変換部は、前記第2の領域の主面から突出する複数の凸部を含み、
     前記複数の凸部は、互いに電気的に接続されている、請求項11に記載の固体撮像装置。
  13.  受光領域において、二次元状に配置された複数の画素を備え、
     前記画素は、
     光入力面から受けた被吸収光に応じた信号電圧を発生する光電変換部と、
     入射光を受けて前記被吸収光を生じさせるように、前記光電変換部の前記光入力面上に設けられた光変換部と、を有し、
     前記光電変換部は、前記光変換部に直接に接触し、
     前記光変換部は、所定の周期に従って配置された複数の凸部を含み、前記入射光を受けてエバネセント光を含む前記被吸収光を発生し、
     前記所定の周期は、前記エバネセント光の発生条件と前記入射光の方向とに基づいて設定されている、固体撮像装置。
  14.  前記入射光の方向が前記光変換部の主面の法線方向である場合には、前記所定の周期(L)であり、
     前記入射光の方向が前記光変換部の主面の法線方向に対して角度(θ)である場合には、前記所定の周期(LS)は、LS=L/cosθを満たす、請求項13に記載の固体撮像装置。
  15.  前記受光領域の辺部に配置された前記画素の前記所定の周期は、前記受光領域の中央部に配置された前記画素の前記所定の周期より大きい、請求項13または14に記載の固体撮像装置。
  16.  前記光変換部は、前記光電変換部の前記光入力面上に設けられている、請求項1~4のいずれか一項に記載の画素。
  17.  前記光変換部は、前記入射光を受ける受光面を含むと共に、前記受光面が前記光電変換部から露出するように前記光電変換部に埋め込まれている、請求項1~4のいずれか一項に記載の画素。
  18.  前記光電変換部および前記光変換部を覆う被覆部をさらに備え、
     前記被覆部の誘電率は、空気の誘電率よりも高い、請求項16又は17に記載の画素。
  19.  前記光変換部は、互いに離間して形成された複数の凸部を含み、
     前記被覆部に覆われた前記光変換部における前記複数の凸部の見かけの周期は、前記被覆部の誘電率及び前記複数の凸部の実周期により定まり、
     前記見かけの周期は、前記入射光によりエバネセント光を含む前記被吸収光を発生する共鳴条件を満たす、請求項18に記載の画素。
  20.  前記被覆部の誘電率は、前記光電変換部の前記第2の領域の誘電率と等しい、請求項19に記載の画素。
  21.  前記被覆部は、酸化アルミニウム、酸化ハフニウム、酸化ジルコニウムおよび酸化タンタルのいずれかにより形成される、請求項18~20のいずれか一項に記載の画素。
  22.  前記被覆部上に配置されたマイクロレンズをさらに備える、請求項18~21のいずれか一項に記載の画素。
  23.  光入力面から受けた被吸収光に応じた信号電圧を発生する光電変換部と、入射光を受けて前記被吸収光を生じさせる光変換部と、を備え、前記光電変換部は、第1の不純物濃度を有する第1の領域と、前記第1の不純物濃度よりも大きい第2の不純物濃度を有する第2の領域と、を有する画素の製造方法であって、
     前記光変換部を前記光電変換部に埋め込むための複数の凹部を設ける第1工程と、
     少なくとも前記凹部の壁面に対して前記第2の領域を形成するための処理を行う第2工程と、
     前記凹部に前記光変換部を構成する複数の金属部を設ける第3工程と、有する画素の製造方法。
  24.  前記第3工程の後に、前記光電変換部および前記光変換部を覆うように、空気の誘電率よりも高い誘電率を有する被覆部を設ける第4工程をさらに有する、請求項23に記載の画素の製造方法。
  25.  前記光変換部は、前記入射光の方向に沿って積層された第1金属層、誘電体層及び第2金属層を含み、
     前記第2金属層は、前記光入力面上に設けられている、請求項1~4のいずれか一項に記載の画素。
  26.  前記光変換部は、前記入射光を受ける受光面を含むと共に、前記受光面が前記光電変換部から露出するように前記光電変換部に埋め込まれ、
     前記光変換部は、前記入射光の方向に沿って積層された第1金属層、誘電体層及び第2金属層を含み、
     前記第1金属層は、前記受光面を構成する、請求項1~4のいずれか一項に記載の画素。
PCT/JP2020/027504 2019-07-22 2020-07-15 画素、固体撮像装置及び画素の製造方法 WO2021015070A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021533975A JP7493250B2 (ja) 2019-07-22 2020-07-15 画素、固体撮像装置及び画素の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-134322 2019-07-22
JP2019134322 2019-07-22
JP2020018082 2020-02-05
JP2020-018082 2020-08-27

Publications (1)

Publication Number Publication Date
WO2021015070A1 true WO2021015070A1 (ja) 2021-01-28

Family

ID=74193473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027504 WO2021015070A1 (ja) 2019-07-22 2020-07-15 画素、固体撮像装置及び画素の製造方法

Country Status (2)

Country Link
JP (1) JP7493250B2 (ja)
WO (1) WO2021015070A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509358A (ja) * 2002-12-09 2006-03-16 クォンタム セミコンダクター リミテッド ライアビリティ カンパニー Cmos画像センサー
JP2010263158A (ja) * 2009-05-11 2010-11-18 Sony Corp 2次元固体撮像装置、及び、2次元固体撮像装置における偏光光データ処理方法
JP2012064703A (ja) * 2010-09-15 2012-03-29 Sony Corp 撮像素子および撮像装置
JP2015232599A (ja) * 2014-06-09 2015-12-24 ソニー株式会社 光学フィルタ、固体撮像装置、および電子機器
WO2016136502A1 (ja) * 2015-02-26 2016-09-01 ソニー株式会社 固体撮像素子、および電子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509358A (ja) * 2002-12-09 2006-03-16 クォンタム セミコンダクター リミテッド ライアビリティ カンパニー Cmos画像センサー
JP2010263158A (ja) * 2009-05-11 2010-11-18 Sony Corp 2次元固体撮像装置、及び、2次元固体撮像装置における偏光光データ処理方法
JP2012064703A (ja) * 2010-09-15 2012-03-29 Sony Corp 撮像素子および撮像装置
JP2015232599A (ja) * 2014-06-09 2015-12-24 ソニー株式会社 光学フィルタ、固体撮像装置、および電子機器
WO2016136502A1 (ja) * 2015-02-26 2016-09-01 ソニー株式会社 固体撮像素子、および電子装置

Also Published As

Publication number Publication date
JPWO2021015070A1 (ja) 2021-01-28
JP7493250B2 (ja) 2024-05-31

Similar Documents

Publication Publication Date Title
JP7386830B2 (ja) 感光撮像素子および関連方法
US10484855B2 (en) Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US8569855B2 (en) Two-dimensional solid-state imaging device
US11929382B2 (en) Shallow trench textured regions and associated methods
TWI298947B (en) Solid-state imaging device and method for manufacturing the same
TW200906183A (en) Solid-state imaging device and camera
TWI841659B (zh) 用於檢測不同波長的光檢測裝置
JP2012151452A (ja) 裏面に設けられた金属テクスチャリングによって最適化された光検出器
CN107403816B (zh) 多光谱摄像装置及其制作方法
EP3794643B1 (en) Integration of a short-wave infrared detector with cmos compatible substrates
US11258971B2 (en) Multi-function transfer gate electrode for a photodetector and methods of operating the same
WO2021015070A1 (ja) 画素、固体撮像装置及び画素の製造方法
US11133349B2 (en) Short-wave infrared detector array and fabrication methods thereof
WO2010134063A2 (en) Image sensor and method of producing the same
CN117178367A (zh) 宽带图像装置及其制造方法
CN116724401A (zh) 固体拍摄装置以及固体拍摄装置的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844244

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533975

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844244

Country of ref document: EP

Kind code of ref document: A1