WO2021014948A1 - Motor control device and motor system - Google Patents

Motor control device and motor system Download PDF

Info

Publication number
WO2021014948A1
WO2021014948A1 PCT/JP2020/026342 JP2020026342W WO2021014948A1 WO 2021014948 A1 WO2021014948 A1 WO 2021014948A1 JP 2020026342 W JP2020026342 W JP 2020026342W WO 2021014948 A1 WO2021014948 A1 WO 2021014948A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
period
motor
pwm
signal
Prior art date
Application number
PCT/JP2020/026342
Other languages
French (fr)
Japanese (ja)
Inventor
隆志 大場
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Publication of WO2021014948A1 publication Critical patent/WO2021014948A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention relates to a motor control device and a motor system.
  • a motor control device for a three-phase motor drives a motor by energizing a coil of each phase using a PWM (Pulse Width Modulation, pulse width modulation) signal corresponding to each of the U, V, and W phases. It is controlled (see Patent Document 1).
  • PWM Pulse Width Modulation, pulse width modulation
  • FIG. 7 shows a waveform of one cycle of PWM signals U, V, W corresponding to the U phase, V phase, and W phase generated by a conventional motor control device, and a PWM carrier that determines the PWM cycle (simply, “carrier”. An example of the waveform of the current of the motor is shown.
  • the PWM signals of the U phase, the V phase, and the W phase all become high levels, and when shifting to the zero vector section Tz, the current I of the motor decreases toward zero.
  • the U-phase PWM signal becomes low level at time t1
  • the current I rapidly increases and a large current ripple occurs.
  • This current ripple increases as the ratio of the zero vector interval (energization stop period) Tz to one cycle of the PWM signal increases due to the optimization of the zero vector in the motor control. Periodic changes in such large current ripples cause noise.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a motor control device capable of suppressing noise.
  • the motor control device includes a control unit that generates a PWM signal corresponding to each phase of a motor having a plurality of phases of coils, and a control unit for each phase based on the PWM signal.
  • the control unit includes an inverter circuit for driving a coil, and when a zero vector section in which the signal levels of the PWM signals of each phase match occurs, the control unit energizes the coil of each phase in the zero vector section. It is characterized in that an energized section is generated.
  • the motor control device (100) is applied to each phase (U, V, W) of the motor (4) having a multi-phase coil (Lu, Lv, Lw).
  • a control unit (20) that generates PWM signals (U, V, W, UH, UL, VH, VL, WH, WL) corresponding to each, and an inverter that drives the coil of each phase based on the PWM signal.
  • the control unit includes the circuit (23), and when a zero vector section (Tz) in which the signal levels of the PWM signals of each phase match is generated, the control unit sets the coil of each phase in the zero vector section. It is characterized in that an energization section (Te) to be energized is generated.
  • control unit may invert the PWM signals of each phase in the zero vector section for the same time (Te) at different timings.
  • the control unit is set by a duty ratio setting unit (39) for setting the duty ratio of the PWM signal of each phase and the duty ratio setting unit. It has a PWM signal generation unit (32) that generates the PWM signal of each phase based on the duty ratio, and one cycle of the PWM signal of each phase is the first period (A) and the remaining thirst. Including the two periods (B), the PWM signal generation unit inverts the PWM signals of each phase at different timings for a certain period of time in the first period, and is based on the duty ratio in the second period. The PWM signal may be inverted.
  • the control unit has a sawtooth-shaped first carrier (C1) having a period corresponding to the first period and a period corresponding to the second period. It further has a carrier generation unit (37) that generates a saw-like second carrier (C2), and the PWM signal generation unit has a fixed first threshold value (Udu1, Vdu1, Wdu1) and a second threshold value. Based on the result of comparison between (Udu2, Vdu2, Wdu2) and the level of the first carrier, the timing at which the PWM signal of each phase in the first period is inverted was determined and set based on the duty ratio.
  • the PWM signal of each phase in the second period is inverted.
  • the timing may be determined.
  • the motor system (1) includes the motor control device (100) and the motor (4) according to any one of [1] to [4]. It is characterized by being prepared.
  • FIG. 1 is a diagram showing a configuration example of a motor system according to an embodiment.
  • the motor system 1 shown in FIG. 1 controls the rotational operation of the motor 4.
  • the equipment on which the motor system 1 is mounted is, for example, a copier, a personal computer, a refrigerator, and the like, but the equipment is not limited thereto.
  • the motor system 1 includes at least a motor 4 and a motor control device 100.
  • the motor 4 has a plurality of coils.
  • the motor 4 has, for example, a three-phase coil including a U-phase coil Lu, a V-phase coil Lv, and a W-phase coil Lw.
  • Specific examples of the motor 4 include a three-phase brushless motor.
  • the U-phase coil Lu, the V-phase coil Lv, and the W-phase coil Lw are connected to each other by, for example, a star connection.
  • the motor control device 100 converts DC into three-phase AC by controlling ON / OFF of a plurality of switching elements connected by a three-phase bridge according to an energization pattern including a three-phase PWM signal. To drive.
  • the motor control device 100 includes an inverter circuit 23, a control unit 20, and a current detector 24.
  • the inverter circuit 23 converts the DC power supplied from the DC power supply 21 into three-phase AC by switching a plurality of switching elements, and causes the motor 4 to rotate the rotor of the motor 4 by passing the drive current of the three-phase AC to the motor 4. It is a circuit.
  • the inverter circuit 23 is applied to a plurality of energization patterns generated by the energization pattern generation unit 35 described later (more specifically, a three-phase PWM signal generated by the PWM signal generation unit 32 in the energization pattern generation unit 35). Based on this, the motor 4 is driven.
  • the inverter circuit 23 has a plurality of switching elements 25U +, 25V +, 25W +, 25U ⁇ , 25V ⁇ , 25W ⁇ connected by a three-phase bridge.
  • the switching elements 25U +, 25V +, and 25W + are high-side switching elements (upper arms) connected to the positive electrode side of the DC power supply 21 via the positive bus 22a, respectively.
  • the switching elements 25U-, 25V-, and 25W- are low-side switching elements (lower arms) connected to the negative electrode side (specifically, the ground side) of the DC power supply 21, respectively.
  • the plurality of switching elements 25U +, 25V +, 25W +, 25U-, 25V-, and 25W- correspond to each of the plurality of drive signals supplied from the drive circuit 33 based on the PWM signals included in the above-mentioned energization pattern. It turns on or off according to the drive signal.
  • a plurality of switching elements 25U +, 25V +, 25W +, 25U ⁇ , 25V ⁇ , 25W ⁇ may be simply referred to as switching elements unless otherwise specified.
  • connection point between the switching element 25U + and the switching element 25U- is connected to one end of the U-phase coil of the motor 4.
  • the connection point between the switching element 25V + and the switching element 25V- is connected to one end of the V-phase coil of the motor 4.
  • the connection point between the switching element 25W + and the switching element 25W ⁇ is connected to one end of the W-phase coil of the motor 4.
  • the other ends of the U-phase coil, the V-phase coil, and the W-phase coil are connected to each other.
  • the switching element include an N-channel MOSFET (Metal Oxide Semiconductor Field Transistor) and an IGBT (Insulated Gate Bipolar Transistor).
  • the switching element is not limited to these.
  • the current detector 24 outputs a detection signal Sd corresponding to the current value of the current flowing on the DC side of the inverter circuit 23.
  • the current detector 24 shown in FIG. 1 generates a detection signal Sd corresponding to the current value of the current flowing through the negative bus 22b.
  • the current detector 24 is, for example, a current detection element arranged on the negative bus 22b, and more specifically, a resistor (shunt resistance) inserted into the negative bus 22b.
  • a current detection element such as a shunt resistor generates a voltage signal corresponding to the current value of the current flowing through it as a detection signal Sd.
  • the current detector 24 may be a sensor such as a CT (Current Transformer) as long as it outputs a detection signal corresponding to the current value of the current flowing through the negative bus 22b.
  • the control unit 20 generates a plurality of PWM signals corresponding to each phase of the motor 4.
  • the control unit 20 includes, for example, a processor such as a CPU, various storage devices such as RAM and ROM, and peripherals such as a counter (timer), an A / D conversion circuit, a D / A conversion circuit, and an input / output I / F circuit. It is a program processing device (for example, a microcontroller) having a configuration in which circuits are connected to each other via a bus.
  • the control unit 20 is packaged as an IC (integrated circuit), but the present invention is not limited to this.
  • the control unit 20 is based on, for example, the rotation speed command ⁇ ref of the motor 4 input from the host device (not shown) and the phase current of each phase of the motor 4 based on the detection signal Sd of the current detector 24.
  • a PWM signal is generated so that the motor 4 operates properly.
  • the current flow section from the zero vector section (energization stop section) where the PWM signals of the U, V, and W phases are high level or low bell to the coil of each phase.
  • the zero vector section encode stop section
  • the PWM signals of the U, V, and W phases are high level or low bell to the coil of each phase.
  • an energized section for energizing the coils of each phase is generated in the zero vector section.
  • a PWM signal is generated so as to be performed.
  • FIG. 2 is a diagram for explaining an outline of a method for generating a PWM signal according to the present embodiment.
  • FIG. 2 shows a waveform of one cycle of PWM signals U, V, W corresponding to the U phase, V phase, and W phase generated by the motor control device 100 according to the present embodiment, and a waveform of the motor current. Is shown.
  • the PWM cycle is set by the motor based on the first period A for generating the energized section in the zero vector section and the command (rotational speed command ⁇ ref) from the host device. It is divided into a second period B for adjusting the duty ratio so that the motor rotates.
  • the first period A and the second period B are defined by two types of carriers C1 and C2.
  • Carrier C1 is a saw-like carrier whose level increases or decreases in a cycle corresponding to the first period A in the PWM cycle.
  • the carrier C2 is a saw-like carrier whose level increases or decreases in a cycle corresponding to the second period B in the PWM cycle.
  • carriers C1 and C2 are alternately generated, and one continuous set of carriers C1 and C2 determines one cycle (PWM cycle) of PWM signals U, L, and W.
  • the PWM signal U is a PWM signal for driving two switching elements constituting the upper and lower arms of the U phase.
  • the switching element of the lower arm of U phase is on (the switching element of the upper arm of U phase is off), and when the PWM signal U is at high level, the switching element of the lower arm of U phase is on. Is off (the switching element of the upper arm of the U phase is on).
  • the two switching elements constituting the upper and lower arms of the U phase complementarily operate on and off in response to a change in the level of the PWM signal U.
  • the PWM signal V is a PWM signal for driving two switching elements constituting the upper and lower arms of the V phase.
  • the switching element of the lower arm of V phase is on (the switching element of the upper arm of V phase is off), and when the PWM signal V is high level, the switching element of the lower arm of V phase is on. Is off (the switching element of the upper arm of the V phase is on).
  • the two switching elements constituting the upper and lower arms of the V phase complementarily operate on and off in response to a change in the level of the PWM signal V.
  • the PWM signal W is a PWM signal for driving two switching elements constituting the upper and lower arms of the W phase.
  • the switching element of the lower arm of W phase is on (the switching element of the upper arm of W phase is off), and when the PWM signal W is high level, the switching element of the lower arm of W phase is on. Is off (the switching element of the upper arm of the W phase is on).
  • the two switching elements constituting the upper and lower arms of the W phase complementarily operate on and off in response to a change in the level of the PWM signal W.
  • the control unit 20 inverts the signal level of the PWM signal at a predetermined timing to generate an energized section in the zero vector section, and in the second period B, the rotation speed command ⁇ ref and the phase current of each phase.
  • the signal level of the PWM signal of each phase is inverted based on the duty ratio calculated by the vector control based on.
  • the control unit 20 provides an energization period by inverting the PWM signals of each phase at different timings for a certain period of time.
  • the section Te in which the signal level of each PWM signal is inverted has the same length, and the section Te of each PWM signal is shifted from each other.
  • the control unit 20 includes a current detection unit 27, a current detection timing adjustment unit 34, a drive circuit 33, an energization pattern generation unit 35, and a clock generation as functional blocks for generating PWM signals for each phase. It has a unit 36 and a carrier generation unit 37.
  • the current detection unit 27 acquires the detection signal Sd based on a plurality of energization patterns (more specifically, three-phase PWM signals) generated by the energization pattern generation unit 35, so that the U flows through the motor 4. , V, W Phase currents Iu, Iv, Iw of each phase are detected.
  • the current detection unit 27 acquires the detection signal Sd at the acquisition timing synchronized with the plurality of energization patterns (more specifically, the three-phase PWM signals), so that the U, V flowing through the motor 4 , W The phase currents Iu, Iv, and Iw of each phase are detected.
  • the acquisition timing of the detection signal Sd is set by the current detection timing adjusting unit 34.
  • the current detection unit 27 takes in the detection signal Sd of the analog voltage generated by the current detector 24 into the A / D (Analog to Digital) converter at the acquisition timing set by the current detection timing adjustment unit 34.
  • the A / D converter is provided in the current detection unit 27.
  • the current detection unit 27 AD-converts the captured analog detection signal Sd into a digital detection signal Sd, and digitally processes the digital detection signal Sd after the AD conversion, thereby U, V, W of the motor 4.
  • the phase currents Iu, Iv, and Iw of each phase are measured.
  • the measured values of the phase currents Iu, Iv, and Iw of each phase measured by the current detection unit 27 are supplied to the energization pattern generation unit 35.
  • the clock generation unit 36 generates a clock having a predetermined frequency by the built-in oscillation circuit, and outputs the generated clock to the carrier generation unit 37.
  • the clock generation unit 36 starts operation at the same time when the power of the motor control device 100 is turned on, for example.
  • the energization pattern generation unit 35 determines the rotor position of the motor 4 based on the measured values of the phase currents Iu, Iv, and Iw of the motor 4 measured by the current detection unit 27, and the motor 4 is placed at the determined rotor position.
  • a signal for designating a pattern for energizing the inverter circuit 23 is generated so that the rotor follows.
  • the energization pattern of the inverter circuit 23 may be rephrased as a pattern for energizing the motor 4 (energization pattern of the motor 4).
  • the signal that specifies the energization pattern of the inverter circuit 23 includes, for example, a three-phase PWM signal that energizes the inverter circuit 23 so that the motor 4 rotates.
  • the energization pattern generation unit 35 generates the energization pattern of the inverter circuit 23 by vector control.
  • the method of generating the energization pattern of the inverter is not limited to vector control, and may be a method of obtaining the phase voltage of each phase by using vf control or the like.
  • the energization pattern generation unit 35 includes a duty ratio setting unit 39 and a PWM signal generation unit 32.
  • the duty ratio setting unit 39 is a functional unit for generating a PWM signal as a signal for designating the energization pattern of the inverter circuit 23.
  • the duty ratio setting unit 39 sets the duty ratio of the three-phase PWM signal based on the current detection result by the current detection unit 27.
  • the duty ratio setting unit 39 includes, for example, a vector control unit 30 and a duty ratio calculation unit 31.
  • the vector control unit 30 sets the torque current command Iqref and the exciting current based on the difference between the measured value or the estimated value of the rotation speed of the motor 4 and the rotation speed command ⁇ ref. Generate the command Idref.
  • the vector control unit 30 calculates the torque current Iq and the exciting current Id by the vector control calculation using the rotor position ⁇ based on the measured values of the phase currents Iu, Iv, and Iw by the current detection unit 27.
  • the vector control unit 30 performs, for example, a PI control calculation on the difference between the torque current command Iqref and the torque current Iq, and generates the voltage command Vq.
  • the vector control unit 30 performs, for example, a PI control calculation on the difference between the exciting current command Idref and the exciting current Id, and generates the voltage command Vd.
  • the vector control unit 30 converts the voltage commands Vq and Vd into phase voltage commands Vu *, Vv * and Vw * for each of the U, V and W phases using the rotor position ⁇ .
  • the phase voltage commands Vu *, Vv *, and Vw * of each phase are supplied to the duty ratio setting unit 39.
  • the duty ratio calculation unit 31 is a duty ratio (set value of the duty ratio of each phase) for generating a three-phase PWM signal based on the input phase voltage commands Vu *, Vv *, Vw * of each phase. Calculate Udu, Vdu, and Wdu.
  • the duty ratios Udu, Vdu, and Wdu of each phase are calculated based on the modulation factors modU, modV, and modW as shown in the following equations (1) to (3).
  • the duty ratios Udu, Vdu, and Wdu of each phase obtained based on the following equations (1) to (3) are, for example, sinusoidal waveforms having different phases by 120 degrees.
  • An example of waveforms of duty ratios Udu, Vdu, and Wud of each phase will be described later.
  • Udu modU ⁇ (carrier upper limit) ⁇ ⁇ ⁇ (1)
  • Vdu modV ⁇ (carrier upper limit) ⁇ ⁇ ⁇ (2)
  • Wdu modW ⁇ (carrier upper limit) ⁇ ⁇ ⁇ (3)
  • the PWM signal generation unit 32 is a three-phase PWM signal U, V as an energization pattern signal based on the duty ratios Udu, Vdu, Wdu of each phase set by the duty ratio setting unit 39 and the carriers C1 and C2. , W is generated.
  • carriers C1 and C2 are carrier signals whose levels increase and decrease periodically.
  • the PWM signal generation unit 32 generates three-phase PWM signals U, V, W based on the comparison result between the threshold values based on the duty ratios Udu, Vdu, and Wdu of each phase and the carriers C1 and C2.
  • the PWM signal U includes a PWM signal UH for driving the switching element of the U-phase upper arm and a PWM signal UL for driving the switching element of the U-phase lower arm.
  • the PWM signal V includes a PWM signal VH for driving the switching element of the V-phase upper arm and a PWM signal VL for driving the switching element of the V-phase lower arm.
  • the PWM signal W includes a PWM signal WH for driving the switching element of the W phase upper arm and a PWM signal WL for driving the switching element of the w phase lower arm.
  • the drive circuit 33 outputs a drive signal for switching the six switching elements 25U +, 25V +, 25W +, 25U ⁇ , 25V ⁇ , 25W ⁇ included in the inverter circuit 23 according to the energization pattern including the given PWM signal.
  • a three-phase alternating current drive current is supplied to the motor 4, and the rotor of the motor 4 rotates. Since each drive signal output from the drive circuit 33 is a signal having a logic level corresponding to the above-mentioned PWM signals UH, UL, PWM signals VH, VL, and PWM signals WH, WL, it is shown in FIG.
  • Each drive signal output from the drive circuit 33 has the same reference code as the PWM signal.
  • the current detection timing adjusting unit 34 determines the acquisition timing for the current detecting unit 27 to detect the phase currents of two of the three phases within one cycle of the PWM signal.
  • a processor for example, a CPU (Central Processing Unit) performs various calculations according to a program readable and stored in a storage device (not shown). It is realized by doing. For example, each of these functions is realized by the collaboration of hardware and software in a microcomputer including a CPU.
  • a processor for example, a CPU (Central Processing Unit)
  • FIG. 3 is a diagram showing a configuration example of a carrier generation unit 37 and a PWM signal generation unit 32 in the motor control device 100 according to the first embodiment.
  • the carrier generation unit 37 and the PWM signal generation unit 32 perform various calculations according to a program stored in a storage device such as a RAM or ROM in the MCU constituting the control unit 20 described above, and a timer (counter). It is realized by controlling peripheral circuits such as an A / D conversion circuit and an input / output I / F circuit.
  • the carrier generation unit 37 generates the above-mentioned two types of carriers C1 and C2 as the carrier C of the PWM signal of each phase.
  • the carrier generation unit 37 has a saw-like wavy carrier C1 whose level increases or decreases in a cycle corresponding to the first period A in the PWM cycle based on the clock CLK generated by the clock generation unit 36 shown in FIG.
  • a saw-like carrier C2 whose level increases or decreases in a cycle corresponding to the second period B is generated.
  • the carrier generation unit 37 includes a count unit 12, an upper limit value switching unit 13, a comparator 14, a switching control unit 15, and an upper limit value storage unit 16.
  • the counting unit 12 is realized by, for example, a counter (up counter) built in the microcontroller.
  • the clock CLK, the counting start signal, and the counting initial value signal are input to the counting unit 12.
  • the counting unit 12 starts counting the clock CLK, and by accumulating the counting values (adding 1 each time the clock CLK is input), the carriers C1 and C2 which are sawtooth carriers. Is output.
  • an initial value of counting is set in the counting unit 12, and this initial value is set by the above-mentioned initial counting value signal.
  • the comparator 14 compares the count value of the count unit 12 with the upper limit value Tx, and outputs a binary detection signal Cp indicating the comparison result. For example, when the counting value (C1 or C2) of the counting unit 12 is lower than the upper limit value Tx, the comparator 14 outputs a low-level detection signal Cp, and the counting value (C1 or C2) of the counting unit 12 is the upper limit. When the value is higher than the value Tx, the high level detection signal Cp is output.
  • the switching control unit 15 outputs a binary control signal Sc according to the detection signal Cp output from the comparator 14.
  • the switching control unit 15 is, for example, a flip-flop.
  • the switching control unit 15 switches the logic level of the control signal Sc according to the rising edge of the detection signal Cp from the comparator 14.
  • the counting unit 12 resets the clock counting value according to the detection signal Cp output from the comparator 14, and accumulates the clock counting value from the initial value specified by the counting initial value signal. For example, the counting unit 12 resets the clock count value according to the rising edge of the detection signal Cp, and accumulates the clock count value from the initial value.
  • the upper limit value storage unit 16 stores information for designating the cycles of carriers C1 and C2, that is, the lengths of the first period A and the second period B in one cycle of the PWM signal described above. Specifically, the upper limit value storage unit 16 stores the first upper limit value T1 and the second upper limit value T2.
  • the first upper limit value T1 is a value that specifies the period of the carrier C1, that is, the length of the first period A in the PWM cycle.
  • the second upper limit value T2 is a value that specifies the period of the carrier C2, that is, the length of the second period B in the PWM cycle.
  • T T1 + T2 and T1 ⁇ T2.
  • the upper limit value switching unit 13 switches the upper limit value Tx to be input to the comparator 14. Specifically, the upper limit value switching unit 13 sets the first upper limit value T1 and the second upper limit value T2 stored in the upper limit value storage unit 16 as upper limit values according to the control signal Sc output from the switching control unit 15. It is output alternately as Tx. For example, when the control signal Sc is at a low level, the upper limit value switching unit 13 gives the first upper limit value T1 to the comparator 14 as the upper limit value Tx. On the other hand, when the control signal Sc is at a high level, the upper limit value switching unit 13 gives the second upper limit value T2 to the comparator 14 as the upper limit value Tx.
  • FIG. 4 is a diagram for explaining the generation principle of carriers C1 and C2.
  • the counting unit 12 starts counting the clock CLK and accumulates the counting values.
  • the switching control unit 15 outputs, for example, a low-level control signal Sc.
  • the upper limit value switching unit 13 gives the first upper limit value T1 to the comparator 14 as the upper limit value Tx according to the low level control signal Sc.
  • the comparator 14 detects that the count value has reached the upper limit value Tx, and detects a high level. Output the signal Cp.
  • the counting unit 12 resets the counting value according to the high-level detection signal Cp, and starts the cumulative addition of the counting value of the clock CLK from zero again. As a result, the generation of the carrier C1 is completed, and the detection signal Cp of the comparator 14 is switched to the low level.
  • the switching control unit 15 inverts the logic level of the control signal Sc according to the rising edge of the detection signal Cp at time t1. That is, the logic level of the control signal Sc is switched from the low level to the high level.
  • the upper limit value switching unit 13 gives the second upper limit value T2 as the upper limit value Tx to the comparator 14 according to the high level control signal Sc.
  • the detection signal Cp is output.
  • the counting unit 12 resets the counting value according to the high-level detection signal Cp, and starts the cumulative addition of the counting value of the clock CLK from zero again. As a result, the generation of the carrier C2 is completed, and the detection signal Cp of the comparator 14 is switched to the low level.
  • the switching control unit 15 inverts the logic level of the control signal Sc according to the rising edge of the detection signal Cp at time t2. That is, the logic level of the control signal Sc is switched from the high level to the low level.
  • the upper limit value switching unit 13 again gives the first upper limit value T1 to the comparator 14 as the upper limit value Tx according to the low level control signal Sc. After that, the process is repeated in the same manner as the process from time t0 to time t2.
  • the PWM signal generation unit 32 includes a fixed threshold storage unit 40, a variable threshold calculation unit 41, a threshold switching unit 42U, 42V, 42W, a comparator 43U, 43V, 43W, a PWM circuit 44, and an interrupt controller. Has 45.
  • the fixed threshold storage unit 40 contains threshold information for providing an energization section in the zero vector section of the PWM signals U, V, W generated based on the duty ratios Udu, Vdu, Wdu calculated by the duty ratio calculation unit 31. It will be remembered. Specifically, the fixed threshold storage unit 40 corresponds to each of the U phase, the V phase, and the W phase as information for designating the timing at which the signal level of the PWM signal of each phase is switched in the second period B of the PWM cycle.
  • the fixed threshold values Udu1 and Udu2, the fixed threshold values Vdu1 and Vdu2, and the fixed threshold values Wdu1 and Wdu2 are stored.
  • the fixed threshold values Udu1 and Udu2 are values that specify the switching timing of the signal level of the U-phase PWM signal in the first period A of the PWM cycle.
  • the fixed threshold values Vdu1 and Vdu2 are values that specify the switching timing of the signal level of the V-phase PWM signal in the first period A of the PWM cycle.
  • the fixed threshold values Wdu1 and Wdu2 are values that specify the switching timing of the signal level of the W-phase PWM signal in the first period A of the PWM cycle.
  • Udu1 ⁇ Vdu1 ⁇ Wdu1 Udu2 ⁇ Vdu2 ⁇ Udu3 ⁇ Wdu2.
  • variable threshold value calculation unit 41 generates variable threshold value Udu3, Vdu3, Wdu3 so that PWM signals of U-phase, V-phase, and W-phase duty ratios Udu, Vdu, and Wdu set by the duty ratio setting unit 39 are generated. , Udu4, Vdu4, Wdu4 are calculated.
  • variable threshold values Udu3 and Udu4 are values that specify the switching timing of the signal level of the U-phase PWM signal in the second period B of the PWM cycle.
  • the variable threshold values Vdu3 and Vdu4 are values that specify the signal level switching timing of the U-phase PWM signal in the second period B of the PWM cycle.
  • the variable threshold values Wdu3 and Wdu4 are values that specify the switching timing of the signal level of the U-phase PWM signal in the second period B of the PWM cycle.
  • the variable threshold value calculation unit 41 calculates the variable threshold values Udu3 and Udu4 based on the duty ratio Udu of the U phase set by the duty ratio setting unit 39. Similarly, the variable threshold value calculation unit 41 calculates the variable threshold values Vdu3 and Vdu4 based on the duty ratio Vdu of the V phase set by the duty ratio setting unit 39, and of the W phase set by the duty ratio setting unit 39. The variable thresholds Wdu3 and Wdu4 are calculated based on the duty ratio Wdu.
  • the threshold switching units 42U, 42V, 42W switch the thresholds Udux, Vdux, Wdux to be input to the comparators 43U, 43V, 43W. Specifically, the threshold value switching units 42U, 42V, 42W set the threshold value of the output target to the fixed threshold values Udu1, Udu2, Vdu1, Vdu2, Wdu1, Wdu2 according to the switching between the first period A and the second period B. The variable threshold is switched between Udu3, Udu4, Vdu3, Vdu4, Wdu3, and Wdu4.
  • the threshold switching units 42U, 42V, 42W set the fixed thresholds Udu1, Vdu1, Wdu1 and the fixed thresholds Udu2, Vdu2, Wdu2 based on the output signals Cpu, Cpv, Cpw of the corresponding comparators 43U, 43V, 43W. It is switched alternately and output as threshold values Udux, Vdux, and Wdux.
  • the threshold value switching unit 42U sets the fixed threshold value Udu1 and the fixed threshold value Udu2 as the threshold values to be output.
  • the threshold switching unit 42 gives the fixed threshold value Udu1 as the initial value to the comparator 43U as the threshold value Udux.
  • the threshold value switching unit 42 gives the fixed threshold value Udu2 to the comparator 43U as the threshold value Udux when the signal level of the output signal Cpu of the comparator 43U is inverted.
  • the threshold switching unit 42U sets the variable threshold value Udu3 and the variable threshold value Udu4 as the threshold values to be output.
  • the threshold switching unit 42 gives the variable threshold value Udu3 as the initial value to the comparator 43U as the threshold value Udux.
  • the threshold value switching unit 42 gives the variable threshold value Udu4 to the comparator 43U as the threshold value Udux when the signal level of the output signal Cpu of the comparator 43U is inverted.
  • the threshold switching unit 42U again sets the fixed threshold value Udu1 and the fixed threshold value Udu2 as the threshold values to be output. After that, the above-mentioned process is repeated.
  • the PWM circuit 44 outputs PWM signals U, V, W having an on / off section according to a change in the voltage command of each phase based on the output signals Cpu, Cpv, Cpw from the comparators 43U, 43V, 43W.
  • the PWM signals U, V, W include six types of PWM signals, the PWM signals UH, UL, VH, VL, WH, and WL.
  • the above six types of PWM signals are given to the gate of each switching element of the inverter circuit 23. Each switching element is turned on / off by the six types of PWM signals. As a result, the U-phase, V-phase, and W-phase voltages are output from the inverter circuit 23 and applied to the motor 4.
  • the triangular wave comparison method is used in the first embodiment, but the voltage of each phase is output by using other methods such as the space vector method, not limited to the triangular wave comparison method. You may.
  • the PWM circuit 44 generates an interrupt signal Si at a predetermined timing in the second period B of the PWM cycle and gives it to the interrupt controller 45.
  • the PWM circuit 44 inputs the interrupt signal Si to the interrupt controller 45 at the timing when the PWM signal U rises, and inputs the interrupt signal Si to the interrupt controller 45 at the timing when the PWM signal V rises.
  • the interrupt controller 45 receives the interrupt signal Si from the PWM circuit 44 and gives an A / D conversion command to the current detection unit 27. For example, each time the interrupt signal Si is input, the interrupt controller 45 gives an A / D conversion command to the current detection unit 27 after a predetermined time has elapsed after receiving the interrupt signal Si. As a result, the current detection unit 27 performs A / D conversion of the detection signal Sd according to the switching of the signal level of the PWM signal of the specific phase in the second period B.
  • FIG. 5 is a diagram for explaining the principle of generating a PWM signal by the motor control device 100 according to the present embodiment.
  • the threshold switching units 42U, 42V, 42W select fixed thresholds Udu1, Vdu1, Wdu1 as initial values, and the comparator 43U is set as the thresholds Udux, Vdux, Wdux. , 43V, 43W, respectively.
  • the comparators 43U, 43V, 43W compare the carrier C1 with the fixed threshold values Udu1, Vdu1, Wdu1.
  • the comparator 43U inverts the logical level of the output signal Cpu (for example, switching from the low level to the high level).
  • the PWM circuit 44 switches the U-phase PWM signal U from the high level to the low level, and the threshold switching unit 42U selects the fixed threshold value Udu2 and gives it to the comparator 43U as the threshold value Udux.
  • the comparator 43V inverts the logical level of the output signal Cpv (for example, switching from the low level to the high level).
  • the PWM circuit 44 switches the U-phase PWM signal V from the high level to the low level, and the threshold switching unit 42V selects the fixed threshold Vdu2 and gives it to the comparator 43V as the threshold Vdux.
  • the comparator 43W inverts the logical level of the output signal Cpw (for example, switching from the low level to the high level).
  • the PWM circuit 44 switches the W-phase PWM signal W from the high level to the low level, and the threshold switching unit 42W selects the fixed threshold value Wdu2 and gives it to the comparator 43W as the threshold value Wdux.
  • the comparator 43V inverts the logical level of the output signal Cpv (for example, switching from the low level to the high level). As a result, the PWM circuit 44 switches the V-phase PWM signal V from the low level to the high level.
  • the comparator 43W inverts the logical level of the output signal Cpw (for example, switching from the low level to the high level). As a result, the PWM circuit 44 switches the W-phase PWM signal W from the low level to the high level.
  • the switching control unit 15 switches the control signal Sc from the low level to the high level.
  • the threshold switching units 42U, 42V, and 42W select variable thresholds Udu3, Vdu3, and Wdu3 according to the high-level control signal Sc, and give them to the comparators 43U, 43V, and 43W as thresholds Udux, Vdux, and Wdux, respectively.
  • the comparators 43U, 43V, 43W compare the carrier C2 with the variable threshold values Udu3, Vdu3, Wdu3.
  • the comparator 43U inverts the logical level of the output signal Cpu (for example, switching from a high level to a low level).
  • the PWM circuit 44 switches the U-phase PWM signal U from the high level to the low level, and the threshold switching unit 42U selects the variable threshold value Udu4 and gives it to the comparator 43U as the threshold value Udux.
  • the comparator 43V inverts the logical level of the output signal Cpv (for example, switching from the low level to the high level).
  • the PWM circuit 44 switches the V-phase PWM signal V from the high level to the low level, and the threshold switching unit 42V selects the variable threshold Vdu4 and gives it to the comparator 43V as the threshold Vdux.
  • the comparator 43W inverts the logical level of the output signal Cpw (for example, switching from the low level to the high level).
  • the PWM circuit 44 switches the W-phase PWM signal W from the high level to the low level, and the threshold switching unit 42W selects the variable threshold value Wdu4 and gives it to the comparator 43W as the threshold value Wdux.
  • the comparator 43U inverts the logical level of the output signal Cpu (for example, switching from the low level to the high level). As a result, the PWM circuit 44 switches the U-phase PWM signal U from low level to high level.
  • the comparator 43V inverts the logical level of the output signal Cpv (for example, switching from the low level to the high level). As a result, the PWM circuit 44 switches the V-phase PWM signal W from the low level to the high level.
  • the comparator 43W inverts the logical level of the output signal Cpw (for example, switching from the low level to the high level). As a result, the PWM circuit 44 switches the W-phase PWM signal W from the low level to the high level.
  • the switching control unit 15 switches the control signal Sc from the high level to the low level.
  • the threshold switching units 42U, 42V, and 42W select fixed thresholds Udu1, Vdu1, and Wdu1 according to the low-level control signal Sc, and output them as thresholds Udux, Vdux, and Wdux, respectively.
  • the PWM signals of each phase are repeatedly generated by the same processing as from time t0 to t12.
  • the PWM signals of each phase are generated, so that the energized sections T12, T23, T34, and T45 are generated in the zero vector section Tz.
  • reference numeral 501 indicates the current of the motor 4 when the energized sections T12, T23, T34, and T45 are generated in the zero vector section Tz of the PWM signal generated by the motor control device 100 according to the present embodiment.
  • the waveform is shown, and reference numeral 502 shows the waveform of the current of the motor 4 when the energization period does not occur in the zero vector section.
  • the motor is provided in the period from time t1 to time t5 as shown by reference numeral 501.
  • the current increases.
  • the current of the motor 4 at the end of the zero vector section Tz at time t7 becomes larger than that in the case where the energization section is not provided in the zero vector section Tz of the PWM signals U, V, W.
  • the amount of change in the current from the start time to the end time of the zero vector section Tz is smaller than that when the energization section is not provided in the zero vector section Tz of the PWM signals U, V, W, so that a large current It is possible to prevent the occurrence of ripple.
  • the energized sections T12, T23, T34, and T45 are generated in the zero vector section Tz of the PWM signals U, V, W, and a plurality of small current ripples are generated in the zero vector section to generate a large current ripple. Can be suppressed.
  • FIG. 6 is a flowchart showing the flow of the motor drive control process by the motor control device 100 according to the embodiment.
  • the motor control device 100 starts the drive control of the motor 4.
  • the motor control device 100 starts a process of generating an energization pattern for driving the motor 4 (step S10).
  • the duty ratio setting unit 39 sets the initial values of the U-phase, V-phase, and W-phase duty ratios Udu, Vdu, and Wdu
  • the carrier generation unit 37 generates carriers C1 and C2, and PWM.
  • the signal generation unit 32 generates 6 types of PWM signals that specify the energization pattern of the motor 4 by the above-mentioned method based on the carriers C1 and C2 and the duty ratios Udu, Vdu, and Wdu set as initial values. , Give to the motor 4.
  • the motor control device 100 measures the phase currents Iu, Iv, and Iw of each of the U, V, and W phases (step S11).
  • the vector control unit 30 performs current control such as PI control based on the current calculation values of the three-phase currents Iu, Iv, and Iw detected by the current detection unit 27 in step S11 (step S12).
  • the phase voltage commands Vu *, Vv *, and Vw * (control amount) of the phase are calculated (step S13).
  • the duty ratio setting unit 39 updates the duty ratio of each phase based on the phase voltage commands Vu *, Vv *, Vw * of each phase calculated in step S13 (step S14). Specifically, the duty ratio setting unit 39 calculates the duty ratios Udu, Vdu, Wdu based on the phase voltage commands Vu *, Vv *, Vw *, and the variable threshold value calculation unit 41 calculates the calculated duty ratio Udu. , Vdu, Wdu, and the variable thresholds Udu3, Udu4, Vdu3, Vdu4, Wdu3, Wdu4 are updated by the above-mentioned method.
  • the PWM signal generation unit 32 has a fixed threshold value Udu1, Udu2, Vdu1, Vdu2, Wdu1, Wdu2 and a variable threshold value Udu3, Udu4, Vdu3, Vdu4, Wdu3, Wdu4 corresponding to the updated duty ratio by the method described above. Based on the above, PWM signals U, V, and W are generated by the above-mentioned method (see FIG. 5) (step S15).
  • the motor control device 100 determines whether or not a motor stop command has been input from the host device (step S16). When the motor stop command is input, the motor control device 100 stops the generation of the PWM signal and stops the driving of the motor 4.
  • step S11 the motor control device 100 proceeds to step S11 and repeatedly executes the above processes (S11 to S16) until the motor stop command is input.
  • the motor control device 100 is a motor within the zero vector section when a zero vector section in which the signal levels of the PWM signals U, V, and W corresponding to each phase of the motor 4 match is generated.
  • the energization section of 4 is provided. According to this, as described above, it is possible to generate a plurality of small current ripples in the zero vector interval and suppress the generation of large current ripples, so that the operation of the motor due to the periodic change of large current ripples. It is possible to suppress the noise of time.
  • the motor control device 100 generates an energized section of the motor 4 by inverting the PWM signals U, V, W of each phase at different timings for the same time in the zero vector section (see FIG. 5). .. According to this, by generating an energized section in the zero vector section, it is possible to prevent each voltage of the U phase, the V phase, and the W phase from becoming a voltage different from the voltage command, and it is input from the host device. It is possible to prevent the generation of noise due to a large current ripple while realizing appropriate control of the motor 4 based on the rotation speed command ⁇ ref.
  • the motor control device 100 inverts the PWM signals U, V, and W of each phase at different timings for a certain period of time in the first period A of the PWM cycle, and sets them in the remaining second period B of the PWM cycle.
  • the PWM signals U, V, and W are inverted based on the calculated duty ratio.
  • the duty ratio is set so that the PWM cycle rotates the motor based on the first period A for generating the energized section in the zero vector section and the command (rotation speed command ⁇ ref) from the host device. Since it is divided into the second period B for adjustment, while adjusting the duty ratio of the PWM signals U, V, W of each phase so that the motor 4 rotates at the rotation speed according to the rotation speed command ⁇ ref. ,
  • the PWM signal can be easily generated so that the energized section of the motor 4 is provided in the zero vector section.
  • the motor control device 100 generates a saw-like carrier C1 having a period corresponding to the first period A and a saw-like carrier C2 having a period corresponding to the second period B, and has fixed threshold values Udu1 and Udu2.
  • Vdu1, Vdu2, Wdu1, Wdu2 and the carrier C1 level are compared with each other to determine the timing at which the PWM signals U, V, W of each phase in the first period A are inverted, and the calculated duty ratio is calculated. Timing at which the PWM signals U, V, W of each phase in the second period B are inverted based on the comparison result between the variable threshold values Udu3, Udu4, Vdu3, Vdu4, Wdu3, Wdu4 and the carrier C2 level set based on the above. To determine.
  • the threshold value of the comparison target is changed for each carrier, and the signal level of the PWM signal is inverted at an appropriate timing in each of the first period A and the second period B to obtain a desired PWM signal. It can be easily generated.
  • the first period A is provided in the first half and the second period B is provided in the second half of the PWM cycle is illustrated, but the present invention is not limited to this, and the second period B is provided in the first half of the PWM cycle.
  • the first period A may be provided in the latter half of the PWM cycle.
  • the above-mentioned flowchart shows an example for explaining the operation, and is not limited to this. That is, the steps shown in each figure of the flowchart are specific examples, and are not limited to this flow. For example, the order of some processes may be changed, other processes may be inserted between each process, and some processes may be performed in parallel.
  • Carrier generation Unit 39 ... duty ratio setting unit, 40 ... fixed threshold storage unit, 41 ... variable threshold calculation unit, 42U, 42V, 42W ... threshold switching unit, 43U, 43V, 43W ... comparer, 44 ... PWM circuit, 45 ... interrupt Controller, 100 ... Motor control device, A ... 1st period, B ... 2nd period, C, C1, C2 ... Carrier, CLK ... Clock, Cp ... Detection signal, Lu ... U phase coil, Lv ... V phase coil, Lw ... W phase coil, Sc ... control signal, Sd ... detection signal, Si ... interrupt signal, Cpu, Cpv, Cpw ... output signal, T1 ... first upper limit value, T2 ...
  • Udu, Vdu, Wdu duty Ratio, Udu1, Vdu1, Wdu1, Udu2, Vdu2, Wdu2 ... Fixed threshold, Udu3, Vdu3, Wdu3, Udu4, Vdu4, Wdu4 ... Variable threshold, UH, UL, VH, VL, WH, WL, U, V, W ... PWM signal.

Abstract

A motor control device capable of reducing noise is provided. A motor control device (100) is characterized by comprising: a control unit (20) that generates a respective PWM signal (U, V, W) for each phase (U, V, W) of a motor (4) having coils (Lu, Lv, Lw) in a plurality of phases; and an inverter circuit (23) that drives the coils in the phases on the basis of the PWM signals. The motor control device is also characterized in that, if there arises a zero-vector interval (Tz) in which the PWM signals of the phases are at the same signal level, the control unit produces within the zero-vector interval an energizing interval (Te) in which the coils in the phases are energized.

Description

モータ制御装置およびモータシステムMotor controller and motor system
 本発明は、モータ制御装置およびモータシステムに関する。 The present invention relates to a motor control device and a motor system.
 従来、3相モータ用のモータ制御装置は、U,V,W各相に対応するPWM(Pulse Width Modulation,パルス幅変調)信号を用いて各相のコイルを通電させることにより、モータの駆動を制御している(特許文献1参照)。 Conventionally, a motor control device for a three-phase motor drives a motor by energizing a coil of each phase using a PWM (Pulse Width Modulation, pulse width modulation) signal corresponding to each of the U, V, and W phases. It is controlled (see Patent Document 1).
特開2015-84632号公報JP-A-2015-84632
 上述した3相モータの制御において、U,V,W相のそれぞれのPWM信号がハイレベルまたはローベルとなるゼロベクトル区間では、各相のコイルに電流が流れない。 In the control of the three-phase motor described above, no current flows through the coils of each phase in the zero vector section where the PWM signals of the U, V, and W phases are high level or low bell.
 3相モータの制御中に、ゼロベクトル区間から、各相のコイルに電流が流れる通電区間へと切り替わったとき、モータの電流が急激に変化(上昇)するため、使用アプリケーションによっては電流リップルが大きくなる。その電流リップルの周期的な変化は、モータの動作時の騒音となり、モータを適用するアプリケーションによっては、ユーザに不快感を与えるという課題がある。以下、この課題について、図を用いて詳細に説明する。 When switching from the zero vector section to the energized section where current flows through the coils of each phase during control of the three-phase motor, the motor current changes (rises) rapidly, so the current ripple is large depending on the application used. Become. The periodic change of the current ripple causes noise during the operation of the motor, and there is a problem that the user is uncomfortable depending on the application to which the motor is applied. Hereinafter, this problem will be described in detail with reference to figures.
 図7は、従来のモータ制御装置によって生成されるU相、V相、およびW相に対応するPWM信号U,V,Wの1周期の波形と、PWM周期を定めるPWMキャリア(単に、「キャリア」とも称する。)と、モータの電流の波形の一例が示されている。 FIG. 7 shows a waveform of one cycle of PWM signals U, V, W corresponding to the U phase, V phase, and W phase generated by a conventional motor control device, and a PWM carrier that determines the PWM cycle (simply, “carrier”. An example of the waveform of the current of the motor is shown.
 図7に示すように、例えば、時刻t0においてU相、V相、W相のPWM信号が全てハイレベルとなり、ゼロベクトル区間Tzに移行すると、モータの電流Iがゼロに向かって減少する。その後、時刻t1において、U相のPWM信号がローレベルになると、電流Iが急激に増加し、大きな電流リップルが発生する。この電流リップルは、モータ制御におけるゼロベクトルの最適化により、PWM信号の1周期に対するゼロベクトル区間(通電停止期間)Tzの割合が大きくなるほど、大きくなる。このような大きな電流リップルの周期的変化は、騒音の原因となる。 As shown in FIG. 7, for example, at time t0, the PWM signals of the U phase, the V phase, and the W phase all become high levels, and when shifting to the zero vector section Tz, the current I of the motor decreases toward zero. After that, when the U-phase PWM signal becomes low level at time t1, the current I rapidly increases and a large current ripple occurs. This current ripple increases as the ratio of the zero vector interval (energization stop period) Tz to one cycle of the PWM signal increases due to the optimization of the zero vector in the motor control. Periodic changes in such large current ripples cause noise.
 本発明は、上記に鑑みてなされたものであり、騒音を抑制可能なモータ制御装置を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a motor control device capable of suppressing noise.
 本発明の代表的な実施の形態に係るモータ制御装置は、複数相のコイルを有するモータの各相にそれぞれ対応するPWM信号を生成する制御部と、前記PWM信号に基づいて、各相の前記コイルを駆動するインバータ回路と、を備え、前記制御部は、各相の前記PWM信号の信号レベルが一致するゼロベクトル区間が発生する場合に、前記ゼロベクトル区間内に各相の前記コイルを通電させる通電区間を発生させることを特徴とする。 The motor control device according to a typical embodiment of the present invention includes a control unit that generates a PWM signal corresponding to each phase of a motor having a plurality of phases of coils, and a control unit for each phase based on the PWM signal. The control unit includes an inverter circuit for driving a coil, and when a zero vector section in which the signal levels of the PWM signals of each phase match occurs, the control unit energizes the coil of each phase in the zero vector section. It is characterized in that an energized section is generated.
 本発明に係るモータ制御装置によれば、騒音を抑制することが可能となる。 According to the motor control device according to the present invention, it is possible to suppress noise.
実施の形態に係るモータシステムの構成例を示す図である。It is a figure which shows the structural example of the motor system which concerns on embodiment. 本実施の形態に係るPWM信号の生成方法の概要を説明するための図である。It is a figure for demonstrating the outline of the PWM signal generation method which concerns on this Embodiment. 実施の形態に係るモータ制御装置におけるキャリア発生部及びPWM信号生成部の構成例を示す図である。It is a figure which shows the structural example of the carrier generation part and the PWM signal generation part in the motor control device which concerns on embodiment. キャリアC1,C2の生成原理を説明するための図である。It is a figure for demonstrating the generation principle of carriers C1 and C2. PWM信号の生成原理を説明するための図である。It is a figure for demonstrating the generation principle of a PWM signal. 実施の形態に係るモータ制御装置によるモータ駆動制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the motor drive control processing by the motor control device which concerns on embodiment. 従来のモータ制御装置によって生成されるU相、V相、およびW相に対応するPWM信号の1周期の波形と、PWM周期を定めるPWMキャリアと、モータの電流の波形の一例を示す図である。It is a figure which shows an example of the waveform of one cycle of the PWM signal corresponding to U phase, V phase, and W phase generated by the conventional motor control device, the PWM carrier which determines the PWM cycle, and the waveform of the current of a motor. ..
1.実施の形態の概要
 先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。なお、以下の説明では、一例として、発明の構成要素に対応する図面上の参照符号を、括弧を付して記載している。
1. 1. Outline of Embodiment First, an outline of a typical embodiment of the invention disclosed in the present application will be described. In the following description, as an example, reference numerals on drawings corresponding to the components of the invention are described in parentheses.
 〔1〕本発明の代表的な実施の形態に係るモータ制御装置(100)は、複数相のコイル(Lu,Lv,Lw)を有するモータ(4)の各相(U,V,W)にそれぞれ対応するPWM信号(U,V,W,UH,UL,VH,VL,WH,WL)を生成する制御部(20)と、前記PWM信号に基づいて、各相の前記コイルを駆動するインバータ回路(23)と、を備え、前記制御部は、各相の前記PWM信号の信号レベルが一致するゼロベクトル区間(Tz)が発生する場合に、前記ゼロベクトル区間内に各相の前記コイルを通電させる通電区間(Te)を発生させることを特徴とする。 [1] The motor control device (100) according to a typical embodiment of the present invention is applied to each phase (U, V, W) of the motor (4) having a multi-phase coil (Lu, Lv, Lw). A control unit (20) that generates PWM signals (U, V, W, UH, UL, VH, VL, WH, WL) corresponding to each, and an inverter that drives the coil of each phase based on the PWM signal. The control unit includes the circuit (23), and when a zero vector section (Tz) in which the signal levels of the PWM signals of each phase match is generated, the control unit sets the coil of each phase in the zero vector section. It is characterized in that an energization section (Te) to be energized is generated.
 〔2〕上記〔1〕に記載のモータ制御装置において、前記制御部は、前記ゼロベクトル区間において各相の前記PWM信号を同じ時間(Te)だけ、互いに異なるタイミングで反転させてもよい。 [2] In the motor control device according to the above [1], the control unit may invert the PWM signals of each phase in the zero vector section for the same time (Te) at different timings.
 〔3〕上記〔2〕に記載のモータ制御装置において、前記制御部は、各相の前記PWM信号のデューティ比を設定するデューティ比設定部(39)と、前記デューティ比設定部によって設定された前記デューティ比に基づいて、各相の前記PWM信号を生成するPWM信号生成部(32)と、を有し、各相の前記PWM信号の1周期は、第1期間(A)と残りの第2期間(B)とを含み、前記PWM信号生成部は、前記第1期間において、各相の前記PWM信号を一定時間、互いに異なるタイミングで反転させ、前記第2期間において、前記デューティ比に基づいて前記PWM信号を反転させてもよい。 [3] In the motor control device according to the above [2], the control unit is set by a duty ratio setting unit (39) for setting the duty ratio of the PWM signal of each phase and the duty ratio setting unit. It has a PWM signal generation unit (32) that generates the PWM signal of each phase based on the duty ratio, and one cycle of the PWM signal of each phase is the first period (A) and the remaining thirst. Including the two periods (B), the PWM signal generation unit inverts the PWM signals of each phase at different timings for a certain period of time in the first period, and is based on the duty ratio in the second period. The PWM signal may be inverted.
 〔4〕上記〔3〕に記載のモータ制御装置において、前記制御部は、前記第1期間に対応する周期を有するのこぎり波状の第1キャリア(C1)と、前記第2期間に対応する周期を有するのこぎり波状の第2キャリア(C2)とを生成するキャリア発生部(37)を更に有し、前記PWM信号生成部は、固定値である第1閾値(Udu1,Vdu1,Wdu1)および第2閾値(Udu2,Vdu2,Wdu2)と前記第1キャリアのレベルとの比較結果に基づいて、前記第1期間における各相の前記PWM信号が反転するタイミングを決定し、前記デューティ比に基づいて設定された第3閾値(Udu3,Vdu3,Wdu3)および第4閾値(Udu4,Vdu4,Wdu4)と前記第2キャリアのレベルとの比較結果に基づいて、前記第2期間における各相の前記PWM信号が反転するタイミングを決定してもよい。 [4] In the motor control device according to the above [3], the control unit has a sawtooth-shaped first carrier (C1) having a period corresponding to the first period and a period corresponding to the second period. It further has a carrier generation unit (37) that generates a saw-like second carrier (C2), and the PWM signal generation unit has a fixed first threshold value (Udu1, Vdu1, Wdu1) and a second threshold value. Based on the result of comparison between (Udu2, Vdu2, Wdu2) and the level of the first carrier, the timing at which the PWM signal of each phase in the first period is inverted was determined and set based on the duty ratio. Based on the comparison result between the third threshold value (Udu3, Vdu3, Wdu3) and the fourth threshold value (Udu4, Vdu4, Wdu4) and the level of the second carrier, the PWM signal of each phase in the second period is inverted. The timing may be determined.
 〔5〕本発明の代表的な実施の形態に係るモータシステム(1)は、〔1〕乃至〔4〕の何れか一つに記載のモータ制御装置(100)と、モータ(4)とを備えることを特徴とする。 [5] The motor system (1) according to a typical embodiment of the present invention includes the motor control device (100) and the motor (4) according to any one of [1] to [4]. It is characterized by being prepared.
2.実施の形態の具体例
 以下、本発明の実施の形態の具体例について図を参照して説明する。なお、以下の説明において、各実施の形態において共通する構成要素には同一の参照符号を付し、繰り返しの説明を省略する。
2. 2. Specific Examples of Embodiments Hereinafter, specific examples of embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference numerals will be given to the components common to each embodiment, and repeated description will be omitted.
 図1は、一実施の形態に係るモータシステムの構成例を示す図である。
 図1に示されるモータシステム1は、モータ4の回転動作を制御する。モータシステム1が搭載される機器は、例えば、コピー機、パーソナルコンピュータ、冷蔵庫等であるが、当該機器は、これらに限られない。モータシステム1は、モータ4と、モータ制御装置100とを少なくとも備える。
FIG. 1 is a diagram showing a configuration example of a motor system according to an embodiment.
The motor system 1 shown in FIG. 1 controls the rotational operation of the motor 4. The equipment on which the motor system 1 is mounted is, for example, a copier, a personal computer, a refrigerator, and the like, but the equipment is not limited thereto. The motor system 1 includes at least a motor 4 and a motor control device 100.
 モータ4は、複数のコイルを有する。モータ4は、例えば、U相コイルLuと、V相コイルLvと、W相コイルLwとを含む3相コイルを有する。モータ4の具体例として、3相のブラシレスモータなどが挙げられる。U相コイルLuと、V相コイルLvと、W相コイルLwとは、例えば、スター結線により互いに接続されている。 The motor 4 has a plurality of coils. The motor 4 has, for example, a three-phase coil including a U-phase coil Lu, a V-phase coil Lv, and a W-phase coil Lw. Specific examples of the motor 4 include a three-phase brushless motor. The U-phase coil Lu, the V-phase coil Lv, and the W-phase coil Lw are connected to each other by, for example, a star connection.
 モータ制御装置100は、3相ブリッジ接続された複数のスイッチング素子を3相のPWM信号を含む通電パターンに従いオン/オフ(ON/OFF)制御することで、直流を3相交流に変換してモータを駆動する。 The motor control device 100 converts DC into three-phase AC by controlling ON / OFF of a plurality of switching elements connected by a three-phase bridge according to an energization pattern including a three-phase PWM signal. To drive.
 具体的に、モータ制御装置100は、インバータ回路23、制御部20、および電流検出器24を備える。 Specifically, the motor control device 100 includes an inverter circuit 23, a control unit 20, and a current detector 24.
 インバータ回路23は、直流電源21から供給される直流電力を複数のスイッチング素子のスイッチングによって3相交流に変換し、3相交流の駆動電流をモータ4に流すことによって、モータ4のロータを回転させる回路である。インバータ回路23は、後述する通電パターン生成部35によって生成される複数の通電パターン(より具体的には、通電パターン生成部35内のPWM信号生成部32によって生成される3相のPWM信号)に基づいて、モータ4を駆動する。 The inverter circuit 23 converts the DC power supplied from the DC power supply 21 into three-phase AC by switching a plurality of switching elements, and causes the motor 4 to rotate the rotor of the motor 4 by passing the drive current of the three-phase AC to the motor 4. It is a circuit. The inverter circuit 23 is applied to a plurality of energization patterns generated by the energization pattern generation unit 35 described later (more specifically, a three-phase PWM signal generated by the PWM signal generation unit 32 in the energization pattern generation unit 35). Based on this, the motor 4 is driven.
 インバータ回路23は、3相ブリッジ接続された複数のスイッチング素子25U+,25V+,25W+,25U-,25V-,25W-を有する。スイッチング素子25U+,25V+,25W+は、それぞれ、直流電源21の正極側に正側母線22aを介して接続されるハイサイドスイッチング素子(上アーム)である。スイッチング素子25U-,25V-,25W-は、それぞれ、直流電源21の負極側(具体的には、グランド側)に接続されるローサイドスイッチング素子(下アーム)である。複数のスイッチング素子25U+,25V+,25W+,25U-,25V-,25W-は、それぞれ、上述の通電パターンに含まれるPWM信号に基づいて駆動回路33から供給される複数の駆動信号のうち、対応する駆動信号に従って、オン又はオフとなる。以下では、複数のスイッチング素子25U+,25V+,25W+,25U-,25V-,25W-を、特に区別しない場合には、単にスイッチング素子と称する場合がある。 The inverter circuit 23 has a plurality of switching elements 25U +, 25V +, 25W +, 25U−, 25V−, 25W− connected by a three-phase bridge. The switching elements 25U +, 25V +, and 25W + are high-side switching elements (upper arms) connected to the positive electrode side of the DC power supply 21 via the positive bus 22a, respectively. The switching elements 25U-, 25V-, and 25W- are low-side switching elements (lower arms) connected to the negative electrode side (specifically, the ground side) of the DC power supply 21, respectively. The plurality of switching elements 25U +, 25V +, 25W +, 25U-, 25V-, and 25W- correspond to each of the plurality of drive signals supplied from the drive circuit 33 based on the PWM signals included in the above-mentioned energization pattern. It turns on or off according to the drive signal. Hereinafter, a plurality of switching elements 25U +, 25V +, 25W +, 25U−, 25V−, 25W− may be simply referred to as switching elements unless otherwise specified.
 スイッチング素子25U+とスイッチング素子25U-との接続点は、モータ4のU相コイルの一端に接続される。スイッチング素子25V+とスイッチング素子25V-との接続点は、モータ4のV相コイルの一端に接続される。スイッチング素子25W+とスイッチング素子25W-との接続点は、モータ4のW相コイルの一端に接続される。U相コイルとV相コイルとW相コイルとのそれぞれの他端は、互いに接続されている。 The connection point between the switching element 25U + and the switching element 25U- is connected to one end of the U-phase coil of the motor 4. The connection point between the switching element 25V + and the switching element 25V- is connected to one end of the V-phase coil of the motor 4. The connection point between the switching element 25W + and the switching element 25W− is connected to one end of the W-phase coil of the motor 4. The other ends of the U-phase coil, the V-phase coil, and the W-phase coil are connected to each other.
 スイッチング素子の具体例として、Nチャネル型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)などが挙げられる。しかしながら、スイッチング素子は、これらに限られない。 Specific examples of the switching element include an N-channel MOSFET (Metal Oxide Semiconductor Field Transistor) and an IGBT (Insulated Gate Bipolar Transistor). However, the switching element is not limited to these.
 電流検出器24は、インバータ回路23の直流側に流れる電流の電流値に対応する検出信号Sdを出力する。図1に示される電流検出器24は、負側母線22bに流れる電流の電流値に対応する検出信号Sdを発生させる。電流検出器24は、例えば、負側母線22bに配置される電流検出素子であり、より具体的には、負側母線22bに挿入される抵抗(シャント抵抗)である。シャント抵抗等の電流検出素子は、自身に流れる電流の電流値に対応する電圧信号を検出信号Sdとして発生する。なお、電流検出器24は、負側母線22bに流れる電流の電流値に対応する検出信号を出力するものであればよく、CT(Current Transformer)等のセンサでもよい。 The current detector 24 outputs a detection signal Sd corresponding to the current value of the current flowing on the DC side of the inverter circuit 23. The current detector 24 shown in FIG. 1 generates a detection signal Sd corresponding to the current value of the current flowing through the negative bus 22b. The current detector 24 is, for example, a current detection element arranged on the negative bus 22b, and more specifically, a resistor (shunt resistance) inserted into the negative bus 22b. A current detection element such as a shunt resistor generates a voltage signal corresponding to the current value of the current flowing through it as a detection signal Sd. The current detector 24 may be a sensor such as a CT (Current Transformer) as long as it outputs a detection signal corresponding to the current value of the current flowing through the negative bus 22b.
 制御部20は、モータ4の各相に対応する複数のPWM信号を生成する。
 制御部20は、例えば、CPU等のプロセッサと、RAM,ROM等の各種記憶装置と、カウンタ(タイマ)、A/D変換回路、D/A変換回路、および入出力I/F回路等の周辺回路とがバスを介して互いに接続された構成を有するプログラム処理装置(例えば、マイクロコントローラ)である。本実施の形態において、制御部20は、IC(集積回路)としてパッケージ化されているが、これに限られない。
The control unit 20 generates a plurality of PWM signals corresponding to each phase of the motor 4.
The control unit 20 includes, for example, a processor such as a CPU, various storage devices such as RAM and ROM, and peripherals such as a counter (timer), an A / D conversion circuit, a D / A conversion circuit, and an input / output I / F circuit. It is a program processing device (for example, a microcontroller) having a configuration in which circuits are connected to each other via a bus. In the present embodiment, the control unit 20 is packaged as an IC (integrated circuit), but the present invention is not limited to this.
 制御部20は、例えば、上位装置(図示せず)から入力されたモータ4の回転速度指令ωrefと、電流検出器24の検出信号Sdに基づくモータ4の各相の相電流とに基づいて、モータ4が適切に動作するように、PWM信号を生成する。 The control unit 20 is based on, for example, the rotation speed command ωref of the motor 4 input from the host device (not shown) and the phase current of each phase of the motor 4 based on the detection signal Sd of the current detector 24. A PWM signal is generated so that the motor 4 operates properly.
 上述したように、3相モータの制御中に、U,V,W相のそれぞれのPWM信号がハイレベルまたはローベルとなるゼロベクトル区間(通電停止区間)から各相のコイルに電流が流れる通電区間へと切り替わったとき、大きな電流リップルが発生し、モータの動作時の騒音の原因となる(図7参照)。 As described above, during the control of the three-phase motor, the current flow section from the zero vector section (energization stop section) where the PWM signals of the U, V, and W phases are high level or low bell to the coil of each phase. When switching to, a large current ripple is generated, which causes noise during motor operation (see FIG. 7).
 そこで、本実施の形態に係るモータ制御装置100は、ゼロベクトル区間から通電区間へ切り替わるときの大きな電流リップルの発生を防止するために、ゼロベクトル区間に各相のコイルを通電させる通電区間が発生するようにPWM信号を生成する。 Therefore, in the motor control device 100 according to the present embodiment, in order to prevent the generation of a large current ripple when switching from the zero vector section to the energized section, an energized section for energizing the coils of each phase is generated in the zero vector section. A PWM signal is generated so as to be performed.
 図2は、本実施の形態に係るPWM信号の生成方法の概要を説明するための図である。
 図2には、本実施の形態に係るモータ制御装置100によって生成されるU相、V相、およびW相に対応するPWM信号U,V,Wの1周期の波形と、モータの電流の波形とが示されている。
FIG. 2 is a diagram for explaining an outline of a method for generating a PWM signal according to the present embodiment.
FIG. 2 shows a waveform of one cycle of PWM signals U, V, W corresponding to the U phase, V phase, and W phase generated by the motor control device 100 according to the present embodiment, and a waveform of the motor current. Is shown.
 図2に示すように、モータ制御装置100では、PWM周期を、ゼロベクトル区間内に通電区間を発生させるための第1期間Aと、上位装置からの指令(回転速度指令ωref)に基づいてモータが回転するようにデューティ比を調整するための第2期間Bとに分ける。
 同図に示すように、第1期間Aと第2期間Bとは、2種類のキャリアC1,C2によって定められる。
As shown in FIG. 2, in the motor control device 100, the PWM cycle is set by the motor based on the first period A for generating the energized section in the zero vector section and the command (rotational speed command ωref) from the host device. It is divided into a second period B for adjusting the duty ratio so that the motor rotates.
As shown in the figure, the first period A and the second period B are defined by two types of carriers C1 and C2.
 キャリアC1は、PWM周期における第1期間Aに対応する周期でレベルが増減する、のこぎり波状のキャリアである。キャリアC2は、PWM周期における第2期間Bに対応する周期でレベルが増減する、のこぎり波状のキャリアである。 Carrier C1 is a saw-like carrier whose level increases or decreases in a cycle corresponding to the first period A in the PWM cycle. The carrier C2 is a saw-like carrier whose level increases or decreases in a cycle corresponding to the second period B in the PWM cycle.
 図2に示すように、キャリアC1とキャリアC2とは、交互に生成され、連続する一組のキャリアC1,C2によってPWM信号U,L,Wの1周期(PWM周期)が定められる。 As shown in FIG. 2, carriers C1 and C2 are alternately generated, and one continuous set of carriers C1 and C2 determines one cycle (PWM cycle) of PWM signals U, L, and W.
 PWM信号Uは、U相の上下アームを構成する2つのスイッチング素子を駆動するためのPWM信号である。PWM信号Uがローレベルのとき、U相の下アームのスイッチング素子がオン(U相の上アームのスイッチング素子がオフ)となり、PWM信号Uがハイレベルのとき、U相の下アームのスイッチング素子がオフ(U相の上アームのスイッチング素子がオン)となる。PWM信号Uのレベルの変化に対して、U相の上下アームを構成する2つのスイッチング素子は相補的にオンオフ動作する。 The PWM signal U is a PWM signal for driving two switching elements constituting the upper and lower arms of the U phase. When the PWM signal U is at low level, the switching element of the lower arm of U phase is on (the switching element of the upper arm of U phase is off), and when the PWM signal U is at high level, the switching element of the lower arm of U phase is on. Is off (the switching element of the upper arm of the U phase is on). The two switching elements constituting the upper and lower arms of the U phase complementarily operate on and off in response to a change in the level of the PWM signal U.
 PWM信号Vは、V相の上下アームを構成する2つのスイッチング素子を駆動するためのPWM信号である。PWM信号Vがローレベルのとき、V相の下アームのスイッチング素子がオン(V相の上アームのスイッチング素子がオフ)となり、PWM信号Vがハイレベルのとき、V相の下アームのスイッチング素子がオフ(V相の上アームのスイッチング素子がオン)となる。PWM信号Vのレベルの変化に対して、V相の上下アームを構成する2つのスイッチング素子は相補的にオンオフ動作する。 The PWM signal V is a PWM signal for driving two switching elements constituting the upper and lower arms of the V phase. When the PWM signal V is low level, the switching element of the lower arm of V phase is on (the switching element of the upper arm of V phase is off), and when the PWM signal V is high level, the switching element of the lower arm of V phase is on. Is off (the switching element of the upper arm of the V phase is on). The two switching elements constituting the upper and lower arms of the V phase complementarily operate on and off in response to a change in the level of the PWM signal V.
 PWM信号Wは、W相の上下アームを構成する2つのスイッチング素子を駆動するためのPWM信号である。PWM信号Wがローレベルのとき、W相の下アームのスイッチング素子がオン(W相の上アームのスイッチング素子がオフ)となり、PWM信号Wがハイレベルのとき、W相の下アームのスイッチング素子がオフ(W相の上アームのスイッチング素子がオン)となる。PWM信号Wのレベルの変化に対して、W相の上下アームを構成する2つのスイッチング素子は相補的にオンオフ動作する。 The PWM signal W is a PWM signal for driving two switching elements constituting the upper and lower arms of the W phase. When the PWM signal W is low level, the switching element of the lower arm of W phase is on (the switching element of the upper arm of W phase is off), and when the PWM signal W is high level, the switching element of the lower arm of W phase is on. Is off (the switching element of the upper arm of the W phase is on). The two switching elements constituting the upper and lower arms of the W phase complementarily operate on and off in response to a change in the level of the PWM signal W.
 制御部20は、第1期間Aにおいて、所定のタイミングでPWM信号の信号レベルを反転させてゼロベクトル区間に通電区間を発生させ、第2期間Bにおいて、回転速度指令ωrefと各相の相電流とに基づくベクトル制御によって算出したデューティ比に基づいて各相のPWM信号の信号レベルを反転させる。 In the first period A, the control unit 20 inverts the signal level of the PWM signal at a predetermined timing to generate an energized section in the zero vector section, and in the second period B, the rotation speed command ωref and the phase current of each phase. The signal level of the PWM signal of each phase is inverted based on the duty ratio calculated by the vector control based on.
 ここで、ゼロベクトル区間に通電区間を設けるためには、少なくとも一つの相のPWM信号の信号レベルを他の相のPWM信号の信号レベルと相違させる必要がある。また、ゼロベクトル区間に通電区間を設けることによってU相、V相、W相の各電圧が電圧指令と異なる電圧になることを防止する必要がある。 Here, in order to provide the energization section in the zero vector section, it is necessary to make the signal level of the PWM signal of at least one phase different from the signal level of the PWM signal of the other phase. Further, it is necessary to prevent the U-phase, V-phase, and W-phase voltages from becoming different from the voltage command by providing the energization section in the zero vector section.
 そこで、制御部20は、第1期間Aにおいて、各相のPWM信号を、一定期間互いに異なるタイミングで反転させることで、通電期間を設ける。具体的には、図2に示すように、ゼロベクトル区間Tzにおいて、各PWM信号の信号レベルが反転する区間Teを同一の長さとし、且つ各PWM信号の区間Teを互いにシフトさせる。例えば、各PWM信号Uの区間Teをts=Te/2ずつシフトさせる。その結果、ゼロベクトル区間Tzでは、モータの電流が低下する期間とモータの電流が増加する期間が混在することになり、小さな電流リップルが複数発生する。これにより、大きな電流リップルの発生を抑制することが可能となる。 Therefore, in the first period A, the control unit 20 provides an energization period by inverting the PWM signals of each phase at different timings for a certain period of time. Specifically, as shown in FIG. 2, in the zero vector section Tz, the section Te in which the signal level of each PWM signal is inverted has the same length, and the section Te of each PWM signal is shifted from each other. For example, the section Te of each PWM signal U is shifted by ts = Te / 2. As a result, in the zero vector section Tz, the period in which the motor current decreases and the period in which the motor current increases are mixed, and a plurality of small current ripples occur. This makes it possible to suppress the occurrence of a large current ripple.
 以下、制御部20によるPWM信号を生成するための具体的な構成について説明する。
 図1に示すように、制御部20は、各相のPWM信号を生成するための機能ブロックとして、電流検出部27、電流検出タイミング調整部34、駆動回路33、通電パターン生成部35、クロック発生部36、およびキャリア発生部37を有している。
Hereinafter, a specific configuration for generating a PWM signal by the control unit 20 will be described.
As shown in FIG. 1, the control unit 20 includes a current detection unit 27, a current detection timing adjustment unit 34, a drive circuit 33, an energization pattern generation unit 35, and a clock generation as functional blocks for generating PWM signals for each phase. It has a unit 36 and a carrier generation unit 37.
 電流検出部27は、通電パターン生成部35によって生成される複数の通電パターン(より具体的には、3相のPWM信号)に基づいて、検出信号Sdを取得することによって、モータ4に流れるU,V,W各相の相電流Iu,Iv,Iwを検出する。 The current detection unit 27 acquires the detection signal Sd based on a plurality of energization patterns (more specifically, three-phase PWM signals) generated by the energization pattern generation unit 35, so that the U flows through the motor 4. , V, W Phase currents Iu, Iv, Iw of each phase are detected.
 より詳細には、電流検出部27は、複数の通電パターン(より具体的には、3相のPWM信号)に同期する取得タイミングで検出信号Sdを取得することによって、モータ4に流れるU,V,W各相の相電流Iu,Iv,Iwを検出する。検出信号Sdの取得タイミングは、電流検出タイミング調整部34により設定される。 More specifically, the current detection unit 27 acquires the detection signal Sd at the acquisition timing synchronized with the plurality of energization patterns (more specifically, the three-phase PWM signals), so that the U, V flowing through the motor 4 , W The phase currents Iu, Iv, and Iw of each phase are detected. The acquisition timing of the detection signal Sd is set by the current detection timing adjusting unit 34.
 例えば、電流検出部27は、電流検出器24で発生するアナログ電圧の検出信号Sdを、電流検出タイミング調整部34により設定される取得タイミングでA/D(Analog to Digital)変換器に取り込む。当該A/D変換器は、電流検出部27に設けられている。そして、電流検出部27は、取り込んだアナログの検出信号Sdをデジタルの検出信号SdにAD変換し、AD変換後のデジタルの検出信号Sdをデジタル処理することによって、モータ4のU,V,W各相の相電流Iu,Iv,Iwを計測する。 For example, the current detection unit 27 takes in the detection signal Sd of the analog voltage generated by the current detector 24 into the A / D (Analog to Digital) converter at the acquisition timing set by the current detection timing adjustment unit 34. The A / D converter is provided in the current detection unit 27. Then, the current detection unit 27 AD-converts the captured analog detection signal Sd into a digital detection signal Sd, and digitally processes the digital detection signal Sd after the AD conversion, thereby U, V, W of the motor 4. The phase currents Iu, Iv, and Iw of each phase are measured.
 電流検出部27により計測された各相の相電流Iu,Iv,Iwの計測値は、通電パターン生成部35に供給される。クロック発生部36は、内蔵する発振回路により所定周波数のクロックを生成し、生成したクロックをキャリア発生部37へ出力する。なお、クロック発生部36は、例えば、モータ制御装置100の電源が投入されると同時に、動作を開始する。 The measured values of the phase currents Iu, Iv, and Iw of each phase measured by the current detection unit 27 are supplied to the energization pattern generation unit 35. The clock generation unit 36 generates a clock having a predetermined frequency by the built-in oscillation circuit, and outputs the generated clock to the carrier generation unit 37. The clock generation unit 36 starts operation at the same time when the power of the motor control device 100 is turned on, for example.
 通電パターン生成部35は、電流検出部27により計測されるモータ4の相電流Iu,Iv,Iwの計測値に基づいて、モータ4のロータ位置を決定し、その決定したロータ位置にモータ4のロータが追従するように、インバータ回路23を通電させるパターン(インバータ回路23の通電パターン)を指定する信号を生成する。 The energization pattern generation unit 35 determines the rotor position of the motor 4 based on the measured values of the phase currents Iu, Iv, and Iw of the motor 4 measured by the current detection unit 27, and the motor 4 is placed at the determined rotor position. A signal for designating a pattern for energizing the inverter circuit 23 (energization pattern for the inverter circuit 23) is generated so that the rotor follows.
 ここで、インバータ回路23の通電パターンは、モータ4を通電させるパターン(モータ4の通電パターン)と言い換えてもよい。インバータ回路23の通電パターンを指定する信号は、例えば、モータ4が回転するようにインバータ回路23を通電させる3相のPWM信号を含む。 Here, the energization pattern of the inverter circuit 23 may be rephrased as a pattern for energizing the motor 4 (energization pattern of the motor 4). The signal that specifies the energization pattern of the inverter circuit 23 includes, for example, a three-phase PWM signal that energizes the inverter circuit 23 so that the motor 4 rotates.
 本実施の形態において、通電パターン生成部35は、インバータ回路23の通電パターンを、ベクトル制御により生成する。なお、インバータの通電パターンを生成する方法は、ベクトル制御に限らず、vf制御等を用いて各相の相電圧を求める方法であってもよい。 In the present embodiment, the energization pattern generation unit 35 generates the energization pattern of the inverter circuit 23 by vector control. The method of generating the energization pattern of the inverter is not limited to vector control, and may be a method of obtaining the phase voltage of each phase by using vf control or the like.
 具体的に、通電パターン生成部35は、デューティ比設定部39およびPWM信号生成部32を有する。
 デューティ比設定部39は、インバータ回路23の通電パターンを指定する信号としてのPWM信号を生成するための機能部である。デューティ比設定部39は、電流検出部27による電流の検出結果に基づいて、3相のPWM信号のデューティ比を設定する。デューティ比設定部39は、例えば、ベクトル制御部30およびデューティ比算出部31を含む。
Specifically, the energization pattern generation unit 35 includes a duty ratio setting unit 39 and a PWM signal generation unit 32.
The duty ratio setting unit 39 is a functional unit for generating a PWM signal as a signal for designating the energization pattern of the inverter circuit 23. The duty ratio setting unit 39 sets the duty ratio of the three-phase PWM signal based on the current detection result by the current detection unit 27. The duty ratio setting unit 39 includes, for example, a vector control unit 30 and a duty ratio calculation unit 31.
 ベクトル制御部30は、外部からモータ4の回転速度指令ωrefが与えられると、モータ4の回転速度の計測値又は推定値と回転速度指令ωrefとの差分に基づいて、トルク電流指令Iqrefと励磁電流指令Idrefを生成する。ベクトル制御部30は、電流検出部27による相電流Iu,Iv,Iwの計測値に基づいて、ロータ位置θを用いたベクトル制御演算により、トルク電流Iq及び励磁電流Idを算出する。 When the rotation speed command ωref of the motor 4 is given from the outside, the vector control unit 30 sets the torque current command Iqref and the exciting current based on the difference between the measured value or the estimated value of the rotation speed of the motor 4 and the rotation speed command ωref. Generate the command Idref. The vector control unit 30 calculates the torque current Iq and the exciting current Id by the vector control calculation using the rotor position θ based on the measured values of the phase currents Iu, Iv, and Iw by the current detection unit 27.
 ベクトル制御部30は、トルク電流指令Iqrefとトルク電流Iqとの差分に対して例えばPI制御演算を行い、電圧指令Vqを生成する。ベクトル制御部30は、励磁電流指令Idrefと励磁電流Idとの差分に対して例えばPI制御演算を行い、電圧指令Vdを生成する。 The vector control unit 30 performs, for example, a PI control calculation on the difference between the torque current command Iqref and the torque current Iq, and generates the voltage command Vq. The vector control unit 30 performs, for example, a PI control calculation on the difference between the exciting current command Idref and the exciting current Id, and generates the voltage command Vd.
 ベクトル制御部30は、電圧指令Vq,Vdを上記のロータ位置θを用いてU,V,W各相の相電圧指令Vu*,Vv*,Vw*に変換する。各相の相電圧指令Vu*,Vv*,Vw*は、デューティ比設定部39に供給される。 The vector control unit 30 converts the voltage commands Vq and Vd into phase voltage commands Vu *, Vv * and Vw * for each of the U, V and W phases using the rotor position θ. The phase voltage commands Vu *, Vv *, and Vw * of each phase are supplied to the duty ratio setting unit 39.
 デューティ比算出部31は、入力される各相の相電圧指令Vu*,Vv*,Vw*に基づいて、3相のPWM信号を生成するためのデューティ比(各相のデューティ比の設定値)Udu,Vdu,Wduを算出する。 The duty ratio calculation unit 31 is a duty ratio (set value of the duty ratio of each phase) for generating a three-phase PWM signal based on the input phase voltage commands Vu *, Vv *, Vw * of each phase. Calculate Udu, Vdu, and Wdu.
 ここで、各相のデューティ比Udu,Vdu,Wduの算出方法の具体例を説明する。
 各相のデューティ比Udu,Vdu,Wduは、下記(1)~(3)式に示すように、変調率modU,modV及びmodWに基づき算出される。
Here, a specific example of a method of calculating the duty ratios Udu, Vdu, and Wdu of each phase will be described.
The duty ratios Udu, Vdu, and Wdu of each phase are calculated based on the modulation factors modU, modV, and modW as shown in the following equations (1) to (3).
 下記(1)~(3)式に基づいて得られる各相のデューティ比Udu,Vdu,Wduは、例えば120度ずつ位相が異なる正弦波状の波形となる。なお、各相のデューティ比Udu,Vdu,Wudの波形の例については後述する。 The duty ratios Udu, Vdu, and Wdu of each phase obtained based on the following equations (1) to (3) are, for example, sinusoidal waveforms having different phases by 120 degrees. An example of waveforms of duty ratios Udu, Vdu, and Wud of each phase will be described later.
 Udu=modU×(キャリア上限値)・・・(1)
 Vdu=modV×(キャリア上限値)・・・(2)
 Wdu=modW×(キャリア上限値)・・・(3)
Udu = modU × (carrier upper limit) ・ ・ ・ (1)
Vdu = modV × (carrier upper limit) ・ ・ ・ (2)
Wdu = modW × (carrier upper limit) ・ ・ ・ (3)
 PWM信号生成部32は、デューティ比設定部39により設定される各相のデューティ比Udu,Vdu,Wduと、キャリアC1,C2とに基づいて、通電パターン信号としての3相のPWM信号U,V,Wを生成する。 The PWM signal generation unit 32 is a three-phase PWM signal U, V as an energization pattern signal based on the duty ratios Udu, Vdu, Wdu of each phase set by the duty ratio setting unit 39 and the carriers C1 and C2. , W is generated.
 上述したように、キャリアC1,C2は、レベルが周期的に増減する搬送波信号である。PWM信号生成部32は、各相のデューティ比Udu,Vdu,Wduに基づく閾値とキャリアC1,C2との比較結果に基づいて、3相のPWM信号U,V,Wを生成する。 As described above, carriers C1 and C2 are carrier signals whose levels increase and decrease periodically. The PWM signal generation unit 32 generates three-phase PWM signals U, V, W based on the comparison result between the threshold values based on the duty ratios Udu, Vdu, and Wdu of each phase and the carriers C1 and C2.
 PWM信号Uは、U相上アームのスイッチング素子を駆動するためのPWM信号UHとU相下アームのスイッチング素子を駆動するためのPWM信号ULを含む。PWM信号Vは、V相上アームのスイッチング素子を駆動するためのPWM信号VHとV相下アームのスイッチング素子を駆動するためのPWM信号VLとを含む。PWM信号Wは、W相上アームのスイッチング素子を駆動するためのPWM信号WHとw相下アームのスイッチング素子を駆動するためのPWM信号WLとを含む。 The PWM signal U includes a PWM signal UH for driving the switching element of the U-phase upper arm and a PWM signal UL for driving the switching element of the U-phase lower arm. The PWM signal V includes a PWM signal VH for driving the switching element of the V-phase upper arm and a PWM signal VL for driving the switching element of the V-phase lower arm. The PWM signal W includes a PWM signal WH for driving the switching element of the W phase upper arm and a PWM signal WL for driving the switching element of the w phase lower arm.
 駆動回路33は、与えられたPWM信号を含む通電パターンに従い、インバータ回路23に含まれる6つのスイッチング素子25U+,25V+,25W+,25U-,25V-,25W-をスイッチングさせる駆動信号を出力する。これにより、3相交流の駆動電流がモータ4に供給され、モータ4のロータが回転する。
 なお、駆動回路33から出力される各駆動信号は、上述したPWM信号UH,UL、PWM信号VH,VL、およびPWM信号WH,WLに対応する論理レベルを有する信号であるため、図1では、駆動回路33から出力される各駆動信号にPWM信号と同一の参照符号を付している。
The drive circuit 33 outputs a drive signal for switching the six switching elements 25U +, 25V +, 25W +, 25U−, 25V−, 25W− included in the inverter circuit 23 according to the energization pattern including the given PWM signal. As a result, a three-phase alternating current drive current is supplied to the motor 4, and the rotor of the motor 4 rotates.
Since each drive signal output from the drive circuit 33 is a signal having a logic level corresponding to the above-mentioned PWM signals UH, UL, PWM signals VH, VL, and PWM signals WH, WL, it is shown in FIG. Each drive signal output from the drive circuit 33 has the same reference code as the PWM signal.
 電流検出タイミング調整部34は、電流検出部27がPWM信号の1周期内で3つの相の内、2つの相の相電流を検出するための取得タイミングを決定する。 The current detection timing adjusting unit 34 determines the acquisition timing for the current detecting unit 27 to detect the phase currents of two of the three phases within one cycle of the PWM signal.
 なお、電流検出部27、通電パターン生成部35及び電流検出タイミング調整部34は、不図示の記憶装置に読み出し可能に記憶されるプログラムに従ってプロセッサ(例えば、CPU(Central Processing Unit))が各種の演算を行うことによって実現される。例えば、これらの各機能は、CPUを含むマイクロコンピュータにおけるハードウェアとソフトウェアとの協働により実現される。 In the current detection unit 27, the energization pattern generation unit 35, and the current detection timing adjustment unit 34, a processor (for example, a CPU (Central Processing Unit)) performs various calculations according to a program readable and stored in a storage device (not shown). It is realized by doing. For example, each of these functions is realized by the collaboration of hardware and software in a microcomputer including a CPU.
 次に、キャリア発生部37及びPWM信号生成部32の詳細を説明する。
 図3は、実施の形態1に係るモータ制御装置100におけるキャリア発生部37及びPWM信号生成部32の構成例を示す図である。例えば、キャリア発生部37及びPWM信号生成部32は、上述した制御部20を構成するMCUにおいて、プロセッサがRAMやROM等の記憶装置に記憶されたプログラムに従って各種演算を行うとともにタイマ(カウンタ)、A/D変換回路、および入出力I/F回路等の周辺回路を制御することによって、実現される。
Next, the details of the carrier generation unit 37 and the PWM signal generation unit 32 will be described.
FIG. 3 is a diagram showing a configuration example of a carrier generation unit 37 and a PWM signal generation unit 32 in the motor control device 100 according to the first embodiment. For example, the carrier generation unit 37 and the PWM signal generation unit 32 perform various calculations according to a program stored in a storage device such as a RAM or ROM in the MCU constituting the control unit 20 described above, and a timer (counter). It is realized by controlling peripheral circuits such as an A / D conversion circuit and an input / output I / F circuit.
 キャリア発生部37は、各相のPWM信号のキャリアCとして、上述した2種類のキャリアC1,C2を生成する。キャリア発生部37は、図1に示すクロック発生部36によって生成されたクロックCLKに基づいて、PWM周期における第1期間Aに対応する周期でレベルが増減するのこぎり波状のキャリアC1と、PWM周期における第2期間Bに対応する周期でレベルが増減するのこぎり波状のキャリアC2とを生成する。 The carrier generation unit 37 generates the above-mentioned two types of carriers C1 and C2 as the carrier C of the PWM signal of each phase. The carrier generation unit 37 has a saw-like wavy carrier C1 whose level increases or decreases in a cycle corresponding to the first period A in the PWM cycle based on the clock CLK generated by the clock generation unit 36 shown in FIG. A saw-like carrier C2 whose level increases or decreases in a cycle corresponding to the second period B is generated.
 具体的に、キャリア発生部37は、カウント部12、上限値切替部13、比較器14、切替制御部15、および上限値記憶部16を備える。 Specifically, the carrier generation unit 37 includes a count unit 12, an upper limit value switching unit 13, a comparator 14, a switching control unit 15, and an upper limit value storage unit 16.
 カウント部12は、例えば、マイクロコントローラに内蔵されているカウンタ(アップカウンタ)によって実現される。カウント部12には、クロックCLKと、計数開始信号及び計数初期値信号とが入力される。 The counting unit 12 is realized by, for example, a counter (up counter) built in the microcontroller. The clock CLK, the counting start signal, and the counting initial value signal are input to the counting unit 12.
 カウント部12は、計数開始信号が与えられると、クロックCLKの計数を開始し、計数値の累加算(クロックCLKが入力されるたびに1を加算)により、のこぎり波キャリアであるキャリアC1,C2を出力する。 When the counting start signal is given, the counting unit 12 starts counting the clock CLK, and by accumulating the counting values (adding 1 each time the clock CLK is input), the carriers C1 and C2 which are sawtooth carriers. Is output.
 また、カウント部12には、計数の初期値が設定されており、この初期値は、前述した計数初期値信号により設定される。 Further, an initial value of counting is set in the counting unit 12, and this initial value is set by the above-mentioned initial counting value signal.
 比較器14は、カウント部12の計数値と、上限値Txとを比較し、比較結果を示す2値の検出信号Cpを出力する。例えば、比較器14は、カウント部12の計数値(C1またはC2)が上限値Txより低い場合に、ローレベルの検出信号Cpを出力し、カウント部12の計数値(C1またはC2)が上限値Txより高い場合に、ハイレベルの検出信号Cpを出力する。 The comparator 14 compares the count value of the count unit 12 with the upper limit value Tx, and outputs a binary detection signal Cp indicating the comparison result. For example, when the counting value (C1 or C2) of the counting unit 12 is lower than the upper limit value Tx, the comparator 14 outputs a low-level detection signal Cp, and the counting value (C1 or C2) of the counting unit 12 is the upper limit. When the value is higher than the value Tx, the high level detection signal Cp is output.
 切替制御部15は、比較器14からの出力された検出信号Cpに応じて、2値の制御信号Scを出力する。切替制御部15は、例えば、フリップフロップである。切替制御部15は、比較器14からの検出信号Cpの立ち上がりエッジに応じて、制御信号Scの論理レベルを切り替える。 The switching control unit 15 outputs a binary control signal Sc according to the detection signal Cp output from the comparator 14. The switching control unit 15 is, for example, a flip-flop. The switching control unit 15 switches the logic level of the control signal Sc according to the rising edge of the detection signal Cp from the comparator 14.
 カウント部12は、比較器14からの出力された検出信号Cpに応じて、クロックの計数値をリセットして、計数初期値信号によって指定された初期値からクロックの計数値を累加算する。例えば、カウント部12は、検出信号Cpの立ち上がりエッジに応じて、クロックの計数値をリセットして、初期値からクロックの計数値を累加算する。 The counting unit 12 resets the clock counting value according to the detection signal Cp output from the comparator 14, and accumulates the clock counting value from the initial value specified by the counting initial value signal. For example, the counting unit 12 resets the clock count value according to the rising edge of the detection signal Cp, and accumulates the clock count value from the initial value.
 上限値記憶部16は、キャリアC1,C2の周期、すなわち、上述したPWM信号の1周期における第1期間Aと第2期間Bの長さを指定するための情報を記憶する。具体的に、上限値記憶部16は、第1上限値T1と第2上限値T2を記憶する。 The upper limit value storage unit 16 stores information for designating the cycles of carriers C1 and C2, that is, the lengths of the first period A and the second period B in one cycle of the PWM signal described above. Specifically, the upper limit value storage unit 16 stores the first upper limit value T1 and the second upper limit value T2.
 第1上限値T1は、キャリアC1の周期、すなわち、PWM周期における第1期間Aの長さを指定する値である。第2上限値T2は、キャリアC2の周期、すなわち、PWM周期における第2期間Bの長さを指定する値である。 The first upper limit value T1 is a value that specifies the period of the carrier C1, that is, the length of the first period A in the PWM cycle. The second upper limit value T2 is a value that specifies the period of the carrier C2, that is, the length of the second period B in the PWM cycle.
 ここで、PWM周期をTとしたとき、T=T1+T2であり、T1<T2である。 Here, when the PWM cycle is T, T = T1 + T2 and T1 <T2.
 上限値切替部13は、比較器14に入力すべき上限値Txを切り替える。具体的に、上限値切替部13は、切替制御部15から出力された制御信号Scに応じて、上限値記憶部16に記憶されている第1上限値T1および第2上限値T2を上限値Txとして交互に出力する。例えば、制御信号Scがローレベルである場合には、上限値切替部13は、第1上限値T1を上限値Txとして比較器14に与える。一方、制御信号Scがハイレベルである場合には、上限値切替部13は、第2上限値T2を上限値Txとして比較器14に与える。 The upper limit value switching unit 13 switches the upper limit value Tx to be input to the comparator 14. Specifically, the upper limit value switching unit 13 sets the first upper limit value T1 and the second upper limit value T2 stored in the upper limit value storage unit 16 as upper limit values according to the control signal Sc output from the switching control unit 15. It is output alternately as Tx. For example, when the control signal Sc is at a low level, the upper limit value switching unit 13 gives the first upper limit value T1 to the comparator 14 as the upper limit value Tx. On the other hand, when the control signal Sc is at a high level, the upper limit value switching unit 13 gives the second upper limit value T2 to the comparator 14 as the upper limit value Tx.
 図4は、キャリアC1,C2の生成原理を説明するための図である。
 時刻t0において、計数開始信号がカウント部12に与えられると、カウント部12がクロックCLKの計数を開始し、計数値の累加算を行う。このとき、切替制御部15は、例えばローレベルの制御信号Scを出力する。上限値切替部13は、ローレベルの制御信号Scに応じて、第1上限値T1を上限値Txとして比較器14に与える。
FIG. 4 is a diagram for explaining the generation principle of carriers C1 and C2.
When the counting start signal is given to the counting unit 12 at time t0, the counting unit 12 starts counting the clock CLK and accumulates the counting values. At this time, the switching control unit 15 outputs, for example, a low-level control signal Sc. The upper limit value switching unit 13 gives the first upper limit value T1 to the comparator 14 as the upper limit value Tx according to the low level control signal Sc.
 その後、計数値が増加し、時刻t1において計数値が上限値Tx(=T1)と一致したとき、比較器14は、計数値が上限値Txに達したことを検出して、ハイレベルの検出信号Cpを出力する。 After that, when the count value increases and the count value matches the upper limit value Tx (= T1) at time t1, the comparator 14 detects that the count value has reached the upper limit value Tx, and detects a high level. Output the signal Cp.
 カウント部12は、ハイレベルの検出信号Cpに応じて、計数値をリセットし、再び、ゼロからクロックCLKの計数値の累加算を開始する。これにより、キャリアC1の生成が終了し、比較器14の検出信号Cpがローレベルに切り替わる。 The counting unit 12 resets the counting value according to the high-level detection signal Cp, and starts the cumulative addition of the counting value of the clock CLK from zero again. As a result, the generation of the carrier C1 is completed, and the detection signal Cp of the comparator 14 is switched to the low level.
 また、切替制御部15は、時刻t1における検出信号Cpの立ち上がりエッジに応じて、制御信号Scの論理レベルを反転させる。すなわち、制御信号Scの論理レベルをローレベルからハイレベルに切り替える。上限値切替部13は、ハイレベルの制御信号Scに応じて、第2上限値T2を上限値Txとして比較器14に与える。 Further, the switching control unit 15 inverts the logic level of the control signal Sc according to the rising edge of the detection signal Cp at time t1. That is, the logic level of the control signal Sc is switched from the low level to the high level. The upper limit value switching unit 13 gives the second upper limit value T2 as the upper limit value Tx to the comparator 14 according to the high level control signal Sc.
 その後、計数値が増加し、時刻t2において計数値が第2上限値T2と一致したとき、比較器14は、計数値が上限値Tx(=T2)に達したことを検出してハイレベルの検出信号Cpを出力する。 After that, when the count value increases and the count value coincides with the second upper limit value T2 at time t2, the comparator 14 detects that the count value has reached the upper limit value Tx (= T2) and is at a high level. The detection signal Cp is output.
 カウント部12は、ハイレベルの検出信号Cpに応じて、計数値をリセットし、再び、ゼロからクロックCLKの計数値の累加算を開始する。これにより、キャリアC2の生成が終了し、比較器14の検出信号Cpがローレベルに切り替わる。 The counting unit 12 resets the counting value according to the high-level detection signal Cp, and starts the cumulative addition of the counting value of the clock CLK from zero again. As a result, the generation of the carrier C2 is completed, and the detection signal Cp of the comparator 14 is switched to the low level.
 また、切替制御部15は、時刻t2における検出信号Cpの立ち上がりエッジに応じて、制御信号Scの論理レベルを反転させる。すなわち、制御信号Scの論理レベルをハイレベルからローレベルに切り替える。上限値切替部13は、ローレベルの制御信号Scに応じて、再び、第1上限値T1を上限値Txとして比較器14に与える。その後は、時刻t0から時刻t2までの処理と同様に処理が繰り返し行われる。 Further, the switching control unit 15 inverts the logic level of the control signal Sc according to the rising edge of the detection signal Cp at time t2. That is, the logic level of the control signal Sc is switched from the high level to the low level. The upper limit value switching unit 13 again gives the first upper limit value T1 to the comparator 14 as the upper limit value Tx according to the low level control signal Sc. After that, the process is repeated in the same manner as the process from time t0 to time t2.
 これによれば、PWM周期内に、2つののこぎり波のキャリアC1,C2を生成することができる。 According to this, it is possible to generate carriers C1 and C2 of two sawtooth waves within the PWM cycle.
 次に、PWM信号生成部32について、説明する。
 図3に示すように、PWM信号生成部32は、固定閾値記憶部40、可変閾値算出部41、閾値切替部42U,42V,42W、比較器43U,43V,43W、PWM回路44、および割り込みコントローラ45を有する。
Next, the PWM signal generation unit 32 will be described.
As shown in FIG. 3, the PWM signal generation unit 32 includes a fixed threshold storage unit 40, a variable threshold calculation unit 41, a threshold switching unit 42U, 42V, 42W, a comparator 43U, 43V, 43W, a PWM circuit 44, and an interrupt controller. Has 45.
 固定閾値記憶部40は、デューティ比算出部31によって算出されたデューティ比Udu,Vdu,Wduに基づいて生成したPWM信号U,V,Wのゼロベクトル区間に通電区間を設けるための閾値の情報が記憶される。具体的に、固定閾値記憶部40は、PWM周期の第2期間Bにおける各相のPWM信号の信号レベルが切り替わるタイミングを指定する情報として、U相、V相、およびW相の各々に対応する固定閾値Udu1,Udu2、固定閾値Vdu1,Vdu2、および固定閾値Wdu1,Wdu2を記憶する。 The fixed threshold storage unit 40 contains threshold information for providing an energization section in the zero vector section of the PWM signals U, V, W generated based on the duty ratios Udu, Vdu, Wdu calculated by the duty ratio calculation unit 31. It will be remembered. Specifically, the fixed threshold storage unit 40 corresponds to each of the U phase, the V phase, and the W phase as information for designating the timing at which the signal level of the PWM signal of each phase is switched in the second period B of the PWM cycle. The fixed threshold values Udu1 and Udu2, the fixed threshold values Vdu1 and Vdu2, and the fixed threshold values Wdu1 and Wdu2 are stored.
 固定閾値Udu1,Udu2(Udu1<Udu2)は、PWM周期の第1期間AにおけるU相のPWM信号の信号レベルの切り替りタイミングを指定する値である。固定閾値Vdu1,Vdu2(Vdu1<Vdu2)は、PWM周期の第1期間AにおけるV相のPWM信号の信号レベルの切り替りタイミングを指定する値である。固定閾値Wdu1,Wdu2は、PWM周期の第1期間AにおけるW相のPWM信号の信号レベルの切り替りタイミングを指定する値である。例えば、Udu1<Vdu1<Wdu1=Udu2<Vdu2<Udu3<Wdu2である。 The fixed threshold values Udu1 and Udu2 (Udu1 <Udu2) are values that specify the switching timing of the signal level of the U-phase PWM signal in the first period A of the PWM cycle. The fixed threshold values Vdu1 and Vdu2 (Vdu1 <Vdu2) are values that specify the switching timing of the signal level of the V-phase PWM signal in the first period A of the PWM cycle. The fixed threshold values Wdu1 and Wdu2 are values that specify the switching timing of the signal level of the W-phase PWM signal in the first period A of the PWM cycle. For example, Udu1 <Vdu1 <Wdu1 = Udu2 <Vdu2 <Udu3 <Wdu2.
 可変閾値算出部41は、デューティ比設定部39によって設定されたU相、V相、W相の各デューティ比Udu,Vdu,WduのPWM信号が生成されるように、可変閾値Udu3,Vdu3,Wdu3,Udu4,Vdu4,Wdu4を算出する。 The variable threshold value calculation unit 41 generates variable threshold value Udu3, Vdu3, Wdu3 so that PWM signals of U-phase, V-phase, and W-phase duty ratios Udu, Vdu, and Wdu set by the duty ratio setting unit 39 are generated. , Udu4, Vdu4, Wdu4 are calculated.
 可変閾値Udu3,Udu4(Udu3<Udu4)は、PWM周期の第2期間BにおけるU相のPWM信号の信号レベルの切り替りタイミングを指定する値である。可変閾値Vdu3,Vdu4(Vdu3<Vdu4)は、PWM周期の第2期間BにおけるU相のPWM信号の信号レベルの切り替りタイミングを指定する値である。可変閾値Wdu3,Wdu4(Wdu3<Wdu4)は、PWM周期の第2期間BにおけるU相のPWM信号の信号レベルの切り替りタイミングを指定する値である。 The variable threshold values Udu3 and Udu4 (Udu3 <Udu4) are values that specify the switching timing of the signal level of the U-phase PWM signal in the second period B of the PWM cycle. The variable threshold values Vdu3 and Vdu4 (Vdu3 <Vdu4) are values that specify the signal level switching timing of the U-phase PWM signal in the second period B of the PWM cycle. The variable threshold values Wdu3 and Wdu4 (Wdu3 <Wdu4) are values that specify the switching timing of the signal level of the U-phase PWM signal in the second period B of the PWM cycle.
 可変閾値算出部41は、デューティ比設定部39によって設定されたU相のデューティ比Uduに基づいて、可変閾値Udu3,Udu4を算出する。同様に、可変閾値算出部41は、デューティ比設定部39によって設定されたV相のデューティ比Vduに基づいて、可変閾値Vdu3,Vdu4を算出し、デューティ比設定部39によって設定されたW相のデューティ比Wduに基づいて、可変閾値Wdu3,Wdu4を算出する。 The variable threshold value calculation unit 41 calculates the variable threshold values Udu3 and Udu4 based on the duty ratio Udu of the U phase set by the duty ratio setting unit 39. Similarly, the variable threshold value calculation unit 41 calculates the variable threshold values Vdu3 and Vdu4 based on the duty ratio Vdu of the V phase set by the duty ratio setting unit 39, and of the W phase set by the duty ratio setting unit 39. The variable thresholds Wdu3 and Wdu4 are calculated based on the duty ratio Wdu.
 閾値切替部42U,42V,42Wは、比較器43U,43V,43Wに入力すべき閾値Udux,Vdux,Wduxを切り替える。具体的に、閾値切替部42U,42V,42Wは、第1期間Aと第2期間Bの切り替わりに応じて、出力対象の閾値を、固定閾値Udu1,Udu2,Vdu1,Vdu2,Wdu1,Wdu2と、可変閾値Udu3,Udu4,Vdu3,Vdu4,Wdu3,Wdu4との間で切り替える。 The threshold switching units 42U, 42V, 42W switch the thresholds Udux, Vdux, Wdux to be input to the comparators 43U, 43V, 43W. Specifically, the threshold value switching units 42U, 42V, 42W set the threshold value of the output target to the fixed threshold values Udu1, Udu2, Vdu1, Vdu2, Wdu1, Wdu2 according to the switching between the first period A and the second period B. The variable threshold is switched between Udu3, Udu4, Vdu3, Vdu4, Wdu3, and Wdu4.
 また、閾値切替部42U,42V,42Wは、対応する比較器43U,43V,43Wの出力信号Cpu,Cpv,Cpwに基づいて、固定閾値Udu1,Vdu1,Wdu1と固定閾値Udu2,Vdu2,Wdu2とを交互に切り替えて、閾値Udux,Vdux,Wduxとして出力する。 Further, the threshold switching units 42U, 42V, 42W set the fixed thresholds Udu1, Vdu1, Wdu1 and the fixed thresholds Udu2, Vdu2, Wdu2 based on the output signals Cpu, Cpv, Cpw of the corresponding comparators 43U, 43V, 43W. It is switched alternately and output as threshold values Udux, Vdux, and Wdux.
 例えば、切替制御部15からの制御信号Scがハイレベルからローレベルに切り替わったとき、閾値切替部42Uは、固定閾値Udu1および固定閾値Udu2を出力対象の閾値とする。この場合に、閾値切替部42は、初期値として固定閾値Udu1を閾値Uduxとして比較器43Uに与える。次に、閾値切替部42は、比較器43Uの出力信号Cpuの信号レベルが反転した場合に、固定閾値Udu2を閾値Uduxとして比較器43Uに与える。 For example, when the control signal Sc from the switching control unit 15 is switched from the high level to the low level, the threshold value switching unit 42U sets the fixed threshold value Udu1 and the fixed threshold value Udu2 as the threshold values to be output. In this case, the threshold switching unit 42 gives the fixed threshold value Udu1 as the initial value to the comparator 43U as the threshold value Udux. Next, the threshold value switching unit 42 gives the fixed threshold value Udu2 to the comparator 43U as the threshold value Udux when the signal level of the output signal Cpu of the comparator 43U is inverted.
 その後、制御信号Scがローレベルからハイレベルに切り替わったとき、閾値切替部42Uは、可変閾値Udu3および可変閾値Udu4を出力対象の閾値とする。この場合に、閾値切替部42は、初期値として可変閾値Udu3を閾値Uduxとして比較器43Uに与える。次に、閾値切替部42は、比較器43Uの出力信号Cpuの信号レベルが反転した場合に、可変閾値Udu4を閾値Uduxとして比較器43Uに与える。 After that, when the control signal Sc is switched from the low level to the high level, the threshold switching unit 42U sets the variable threshold value Udu3 and the variable threshold value Udu4 as the threshold values to be output. In this case, the threshold switching unit 42 gives the variable threshold value Udu3 as the initial value to the comparator 43U as the threshold value Udux. Next, the threshold value switching unit 42 gives the variable threshold value Udu4 to the comparator 43U as the threshold value Udux when the signal level of the output signal Cpu of the comparator 43U is inverted.
 その後、再び、制御信号Scがハイレベルからローレベルに切り替わったとき、閾値切替部42Uは、再び、固定閾値Udu1および固定閾値Udu2を出力対象の閾値とする。その後は、上述の処理が繰り返し行われる。 After that, when the control signal Sc is switched from the high level to the low level again, the threshold switching unit 42U again sets the fixed threshold value Udu1 and the fixed threshold value Udu2 as the threshold values to be output. After that, the above-mentioned process is repeated.
 比較器43Uは、U相の閾値UduxとキャリアC1,C2との比較を行い、2値の出力信号Cpuを生成する。具体的に、比較器43Uは、第1期間Aにおいて、閾値UduxとキャリアC1とを比較し、キャリアC1のレベルが閾値Udux(=Udu1、Udu2)と一致した場合に、出力信号Cpuの信号レベルを反転し、第2期間Bにおいて、閾値UduxとキャリアC2とを比較し、キャリアC2のレベルが閾値Udux(=Udu3,Udu4)と一致した場合に、出力信号Cpuの信号レベルを反転する。 The comparator 43U compares the U-phase threshold value Udux with the carriers C1 and C2, and generates a binary output signal Cpu. Specifically, the comparator 43U compares the threshold value Udux and the carrier C1 in the first period A, and when the level of the carrier C1 matches the threshold value Udux (= Udu1, Udu2), the signal level of the output signal Cpu. Is inverted, and in the second period B, the threshold value Udux and the carrier C2 are compared, and when the level of the carrier C2 matches the threshold value Udux (= Udu3, Udu4), the signal level of the output signal Cpu is inverted.
 比較器43Vは、V相の閾値VduxとキャリアC1,C2との比較を行い、2値の出力信号Cpvを生成する。具体的に、比較器43Vは、第1期間Aにおいて、閾値VduxとキャリアC1とを比較し、キャリアC1のレベルが閾値Vdux(=Vdu1,Vdu2)と一致した場合に、出力信号Cpvの論理レベルを反転し、第2期間Bにおいて、閾値VduxとキャリアC2とを比較し、キャリアC2のレベルが閾値Vdux(=Vdu3,Vdu4)と一致した場合に、出力信号Cpvの論理レベルを反転する。 The comparator 43V compares the V-phase threshold value Vdux with the carriers C1 and C2, and generates a binary output signal Cpv. Specifically, the comparator 43V compares the threshold value Vdux and the carrier C1 in the first period A, and when the level of the carrier C1 matches the threshold value Vdux (= Vdu1, Vdu2), the logical level of the output signal Cpv. Is inverted, and in the second period B, the threshold value Vdux and the carrier C2 are compared, and when the level of the carrier C2 matches the threshold value Vdux (= Vdu3, Vdu4), the logical level of the output signal Cpv is inverted.
 比較器43Wは、W相の閾値WduxとキャリアC1,C2との比較を行い、2値の出力信号Cpwを生成する。具体的に、比較器43Wは、第1期間Aにおいて、閾値WwuxとキャリアC1とを比較し、キャリアC1のレベルが閾値Wwux(=Wdu1,Wdu2)と一致した場合に、出力信号Cpwの論理レベルを反転し、第2期間Bにおいて、閾値WduxとキャリアC2とを比較し、キャリアC2のレベルが閾値Wdux(=Wdu2,Wdu2)と一致した場合に、出力信号Cpwの論理レベルを反転する。 The comparator 43W compares the threshold value Wdux of the W phase with the carriers C1 and C2, and generates a binary output signal Cpw. Specifically, the comparator 43W compares the threshold value Wwux and the carrier C1 in the first period A, and when the level of the carrier C1 matches the threshold value Wwux (= Wdu1, Wdu2), the logical level of the output signal Cpw. Is inverted, and in the second period B, the threshold value Wdux and the carrier C2 are compared, and when the level of the carrier C2 matches the threshold value Wdux (= Wdu2, Wdu2), the logical level of the output signal Cpw is inverted.
 PWM回路44は、比較器43U,43V,43Wからの出力信号Cpu,Cpv,Cpwに基づいて、各相の電圧指令の変化に応じたオンオフ区間をもつPWM信号U,V,Wを出力する。上述したように、PWM信号U,V,Wには、PWM信号UH,UL,VH,VL,WH,及びWLの6種類のPWM信号が含まれる。 The PWM circuit 44 outputs PWM signals U, V, W having an on / off section according to a change in the voltage command of each phase based on the output signals Cpu, Cpv, Cpw from the comparators 43U, 43V, 43W. As described above, the PWM signals U, V, W include six types of PWM signals, the PWM signals UH, UL, VH, VL, WH, and WL.
 上記6種類のPWM信号は、インバータ回路23の各スイッチング素子のゲートへ与えられる。6種類のPWM信号により、各スイッチング素子のオン/オフ動作が行われる。これによってインバータ回路23からU相、V相、W相の各電圧が出力されて、モータ4に印加される。なお、具体的な通電方式については、実施の形態1においては三角波比較法を用いているが、三角波比較法に限らず、空間ベクトル法などのその他の方式を用いて各相の電圧を出力してもよい。 The above six types of PWM signals are given to the gate of each switching element of the inverter circuit 23. Each switching element is turned on / off by the six types of PWM signals. As a result, the U-phase, V-phase, and W-phase voltages are output from the inverter circuit 23 and applied to the motor 4. As for the specific energization method, the triangular wave comparison method is used in the first embodiment, but the voltage of each phase is output by using other methods such as the space vector method, not limited to the triangular wave comparison method. You may.
 また、PWM回路44は、PWM周期の第2期間Bの所定のタイミングにおいて、割り込み信号Siを生成し、割り込みコントローラ45へ与える。例えば、PWM回路44は、PWM信号Uが立ち上がるタイミングにおいて、割り込み信号Siを割り込みコントローラ45へ入力し、PWM信号Vが立ち上がるタイミングにおいて、割り込み信号Siを割り込みコントローラ45へ入力する。 Further, the PWM circuit 44 generates an interrupt signal Si at a predetermined timing in the second period B of the PWM cycle and gives it to the interrupt controller 45. For example, the PWM circuit 44 inputs the interrupt signal Si to the interrupt controller 45 at the timing when the PWM signal U rises, and inputs the interrupt signal Si to the interrupt controller 45 at the timing when the PWM signal V rises.
 割り込みコントローラ45は、PWM回路44からの割り込み信号Siを受けて、電流検出部27に対してA/D変換の指令を与える。例えば、割り込みコントローラ45は、割り込み信号Siが入力される度に、割り込み信号Siを受けてから所定時間の経過後に、電流検出部27に対してA/D変換の指令を与える。これにより、電流検出部27は、第2期間Bにおける特定の相のPWM信号の信号レベルの切り替わりに応じて、検出信号SdのA/D変換を行う。 The interrupt controller 45 receives the interrupt signal Si from the PWM circuit 44 and gives an A / D conversion command to the current detection unit 27. For example, each time the interrupt signal Si is input, the interrupt controller 45 gives an A / D conversion command to the current detection unit 27 after a predetermined time has elapsed after receiving the interrupt signal Si. As a result, the current detection unit 27 performs A / D conversion of the detection signal Sd according to the switching of the signal level of the PWM signal of the specific phase in the second period B.
 図5は、本実施の形態に係るモータ制御装置100によるPWM信号の生成原理を説明するための図である。 FIG. 5 is a diagram for explaining the principle of generating a PWM signal by the motor control device 100 according to the present embodiment.
 先ず、時刻t0において、キャリアC1の生成が開始されるとき、閾値切替部42U,42V,42Wは、初期値として固定閾値Udu1,Vdu1,Wdu1を選択し、閾値Udux,Vdux,Wduxとして比較器43U,43V,43Wにそれぞれ与える。これにより、第1期間A(キャリアC1が生成されている期間)において、比較器43U,43V,43Wは、キャリアC1と固定閾値Udu1,Vdu1,Wdu1とを比較する。 First, at time t0, when the generation of the carrier C1 is started, the threshold switching units 42U, 42V, 42W select fixed thresholds Udu1, Vdu1, Wdu1 as initial values, and the comparator 43U is set as the thresholds Udux, Vdux, Wdux. , 43V, 43W, respectively. As a result, in the first period A (the period during which the carrier C1 is generated), the comparators 43U, 43V, 43W compare the carrier C1 with the fixed threshold values Udu1, Vdu1, Wdu1.
 時刻t1において、キャリアC1のレベルと固定閾値Udu1とが一致したとき、比較器43Uは、出力信号Cpuの論理レベルを反転する(例えば、ローレベルからハイレベルに切り替える)。これにより、PWM回路44は、U相のPWM信号Uをハイレベルからローレベルに切り替えるとともに、閾値切替部42Uが、固定閾値Udu2を選択し、閾値Uduxとして比較器43Uに与える。 At time t1, when the level of the carrier C1 and the fixed threshold value Udu1 match, the comparator 43U inverts the logical level of the output signal Cpu (for example, switching from the low level to the high level). As a result, the PWM circuit 44 switches the U-phase PWM signal U from the high level to the low level, and the threshold switching unit 42U selects the fixed threshold value Udu2 and gives it to the comparator 43U as the threshold value Udux.
 次に、時刻t2において、キャリアC1のレベルと固定閾値Vdu1とが一致したとき、比較器43Vは、出力信号Cpvの論理レベルを反転する(例えば、ローレベルからハイレベルに切り替える)。これにより、PWM回路44は、U相のPWM信号Vをハイレベルからローレベルに切り替えるとともに、閾値切替部42Vが、固定閾値Vdu2を選択し、閾値Vduxとして比較器43Vに与える。 Next, at time t2, when the level of the carrier C1 and the fixed threshold value Vdu1 match, the comparator 43V inverts the logical level of the output signal Cpv (for example, switching from the low level to the high level). As a result, the PWM circuit 44 switches the U-phase PWM signal V from the high level to the low level, and the threshold switching unit 42V selects the fixed threshold Vdu2 and gives it to the comparator 43V as the threshold Vdux.
 次に、時刻t3において、キャリアC1のレベルと固定閾値Wdu1とが一致したとき、比較器43Wは、出力信号Cpwの論理レベルを反転する(例えば、ローレベルからハイレベルに切り替える)。これにより、PWM回路44は、W相のPWM信号Wをハイレベルからローレベルに切り替えるとともに、閾値切替部42Wが、固定閾値Wdu2を選択し、閾値Wduxとして比較器43Wに与える。また、このとき、キャリアC1のレベルが固定閾値Udu2(=Wdu1)とも一致するため、比較器43Uは、出力信号Cpuの論理レベルを反転する(例えば、ローレベルからハイレベルに切り替える)。これにより、PWM回路44は、W相のPWM信号Wをローレベルからハイレベルに切り替える。 Next, at time t3, when the level of the carrier C1 and the fixed threshold value Wdu1 match, the comparator 43W inverts the logical level of the output signal Cpw (for example, switching from the low level to the high level). As a result, the PWM circuit 44 switches the W-phase PWM signal W from the high level to the low level, and the threshold switching unit 42W selects the fixed threshold value Wdu2 and gives it to the comparator 43W as the threshold value Wdux. Further, at this time, since the level of the carrier C1 also matches the fixed threshold value Udu2 (= Wdu1), the comparator 43U inverts the logical level of the output signal Cpu (for example, switching from the low level to the high level). As a result, the PWM circuit 44 switches the W-phase PWM signal W from the low level to the high level.
 次に、時刻t4において、キャリアC1のレベルと固定閾値Vdu2とが一致したとき、比較器43Vは、出力信号Cpvの論理レベルを反転する(例えば、ローレベルからハイレベルに切り替える)。これにより、PWM回路44は、V相のPWM信号Vをローレベルからハイレベルに切り替える。 Next, at time t4, when the level of the carrier C1 and the fixed threshold value Vdu2 match, the comparator 43V inverts the logical level of the output signal Cpv (for example, switching from the low level to the high level). As a result, the PWM circuit 44 switches the V-phase PWM signal V from the low level to the high level.
 次に、時刻t5において、キャリアC1のレベルと固定閾値Wdu2とが一致したとき、比較器43Wは、出力信号Cpwの論理レベルを反転する(例えば、ローレベルからハイレベルに切り替える)。これにより、PWM回路44は、W相のPWM信号Wをローレベルからハイレベルに切り替える。 Next, at time t5, when the level of the carrier C1 and the fixed threshold value Wdu2 match, the comparator 43W inverts the logical level of the output signal Cpw (for example, switching from the low level to the high level). As a result, the PWM circuit 44 switches the W-phase PWM signal W from the low level to the high level.
 その後、時刻t6において、キャリアC1の生成が終了し、キャリアC2の生成が開始されるとき、切替制御部15が制御信号Scをローレベルからハイレベルに切り替える。閾値切替部42U,42V,42Wは、ハイレベルの制御信号Scに応じて、可変閾値Udu3,Vdu3,Wdu3を選択し、閾値Udux,Vdux,Wduxとして比較器43U,43V,43Wにそれぞれ与える。これにより、第2期間B(キャリアC2が生成されている期間)において、比較器43U,43V,43Wは、キャリアC2と可変閾値Udu3,Vdu3,Wdu3を比較する。 After that, at time t6, when the generation of the carrier C1 is completed and the generation of the carrier C2 is started, the switching control unit 15 switches the control signal Sc from the low level to the high level. The threshold switching units 42U, 42V, and 42W select variable thresholds Udu3, Vdu3, and Wdu3 according to the high-level control signal Sc, and give them to the comparators 43U, 43V, and 43W as thresholds Udux, Vdux, and Wdux, respectively. As a result, in the second period B (the period during which the carrier C2 is generated), the comparators 43U, 43V, 43W compare the carrier C2 with the variable threshold values Udu3, Vdu3, Wdu3.
 時刻t7において、キャリアC2のレベルと可変閾値Udu3とが一致したとき、比較器43Uは、出力信号Cpuの論理レベルを反転する(例えば、ハイレベルからローレベルに切り替える)。これにより、PWM回路44は、U相のPWM信号Uをハイレベルからローレベルに切り替えるとともに、閾値切替部42Uが、可変閾値Udu4を選択し、閾値Uduxとして比較器43Uに与える。 At time t7, when the level of the carrier C2 and the variable threshold value Udu3 match, the comparator 43U inverts the logical level of the output signal Cpu (for example, switching from a high level to a low level). As a result, the PWM circuit 44 switches the U-phase PWM signal U from the high level to the low level, and the threshold switching unit 42U selects the variable threshold value Udu4 and gives it to the comparator 43U as the threshold value Udux.
 次に、時刻t8において、キャリアC2のレベルと可変閾値Vdu3とが一致したとき、比較器43Vは、出力信号Cpvの論理レベルを反転する(例えば、ローレベルからハイレベルに切り替える)。これにより、PWM回路44は、V相のPWM信号Vをハイレベルからローレベルに切り替えるとともに、閾値切替部42Vが、可変閾値Vdu4を選択し、閾値Vduxとして比較器43Vに与える。 Next, at time t8, when the level of the carrier C2 and the variable threshold value Vdu3 match, the comparator 43V inverts the logical level of the output signal Cpv (for example, switching from the low level to the high level). As a result, the PWM circuit 44 switches the V-phase PWM signal V from the high level to the low level, and the threshold switching unit 42V selects the variable threshold Vdu4 and gives it to the comparator 43V as the threshold Vdux.
 次に、時刻t9において、キャリアC2のレベルと可変閾値Wdu3とが一致したとき、比較器43Wは、出力信号Cpwの論理レベルを反転する(例えば、ローレベルからハイレベルに切り替える)。これにより、PWM回路44は、W相のPWM信号Wをハイレベルからローレベルに切り替えるとともに、閾値切替部42Wが、可変閾値Wdu4を選択し、閾値Wduxとして比較器43Wに与える。 Next, at time t9, when the level of the carrier C2 and the variable threshold value Wdu3 match, the comparator 43W inverts the logical level of the output signal Cpw (for example, switching from the low level to the high level). As a result, the PWM circuit 44 switches the W-phase PWM signal W from the high level to the low level, and the threshold switching unit 42W selects the variable threshold value Wdu4 and gives it to the comparator 43W as the threshold value Wdux.
 次に、時刻t10において、キャリアC2のレベルと可変閾値Udu4とが一致したとき、比較器43Uは、出力信号Cpuの論理レベルを反転する(例えば、ローレベルからハイレベルに切り替える)。これにより、PWM回路44は、U相のPWM信号Uをローレベルからハイレベルに切り替える。 Next, at time t10, when the level of the carrier C2 and the variable threshold value Udu4 match, the comparator 43U inverts the logical level of the output signal Cpu (for example, switching from the low level to the high level). As a result, the PWM circuit 44 switches the U-phase PWM signal U from low level to high level.
 次に、時刻t11において、キャリアC2のレベルと可変閾値Vdu4とが一致したとき、比較器43Vは、出力信号Cpvの論理レベルを反転する(例えば、ローレベルからハイレベルに切り替える)。これにより、PWM回路44は、V相のPWM信号Wをローレベルからハイレベルに切り替える。 Next, at time t11, when the level of the carrier C2 and the variable threshold value Vdu4 match, the comparator 43V inverts the logical level of the output signal Cpv (for example, switching from the low level to the high level). As a result, the PWM circuit 44 switches the V-phase PWM signal W from the low level to the high level.
 次に、時刻t12において、キャリアC2のレベルと可変閾値Wdu4とが一致したとき、比較器43Wは、出力信号Cpwの論理レベルを反転する(例えば、ローレベルからハイレベルに切り替える)。これにより、PWM回路44は、W相のPWM信号Wをローレベルからハイレベルに切り替える。 Next, at time t12, when the level of the carrier C2 and the variable threshold value Wdu4 match, the comparator 43W inverts the logical level of the output signal Cpw (for example, switching from the low level to the high level). As a result, the PWM circuit 44 switches the W-phase PWM signal W from the low level to the high level.
 その後、時刻t13において、キャリアC2の生成が終了し、キャリアC1の生成が開始されるとき、切替制御部15が制御信号Scをハイレベルからローレベルに切り替える。閾値切替部42U,42V,42Wは、ローレベルの制御信号Scに応じて、固定閾値Udu1,Vdu1,Wdu1を選択し、閾値Udux,Vdux,Wduxとしてそれぞれ出力する。その後は、時刻t0からt12までと同様の処理により、各相のPWM信号が繰り返し生成される。 After that, at time t13, when the generation of the carrier C2 is completed and the generation of the carrier C1 is started, the switching control unit 15 switches the control signal Sc from the high level to the low level. The threshold switching units 42U, 42V, and 42W select fixed thresholds Udu1, Vdu1, and Wdu1 according to the low-level control signal Sc, and output them as thresholds Udux, Vdux, and Wdux, respectively. After that, the PWM signals of each phase are repeatedly generated by the same processing as from time t0 to t12.
 図5に示すように、各相のPWM信号が生成されることにより、ゼロベクトル区間Tz内に通電区間T12,T23,T34,T45が発生する。図5において、参照符号501は、本実施の形態に係るモータ制御装置100によって生成するPWM信号のゼロベクトル区間Tz内に通電区間T12,T23,T34,T45が発生した場合のモータ4の電流の波形を示し、参照符号502は、ゼロベクトル区間に通電期間が発生しなかった場合のモータ4の電流の波形を示している。 As shown in FIG. 5, the PWM signals of each phase are generated, so that the energized sections T12, T23, T34, and T45 are generated in the zero vector section Tz. In FIG. 5, reference numeral 501 indicates the current of the motor 4 when the energized sections T12, T23, T34, and T45 are generated in the zero vector section Tz of the PWM signal generated by the motor control device 100 according to the present embodiment. The waveform is shown, and reference numeral 502 shows the waveform of the current of the motor 4 when the energization period does not occur in the zero vector section.
 図5に示すように、PWM信号U,V,Wのゼロベクトル区間Tz内に通電区間が発生しなかった場合、参照符号500に示すように、時刻t0から時刻t7までのゼロベクトル区間Tzにおいて、モータ4の電流が減少する。 As shown in FIG. 5, when the energization section does not occur in the zero vector section Tz of the PWM signals U, V, W, in the zero vector section Tz from time t0 to time t7 as shown by reference numeral 500. , The current of the motor 4 is reduced.
 これに対し、PWM信号U,V,Wのゼロベクトル区間Tz内に通電区間T12,T23,T34,T45を設けた場合、参照符号501に示すように、時刻t1から時刻t5までの期間においてモータ電流が増加する。これにより、時刻t7においてゼロベクトル区間Tzが終了した時点でのモータ4の電流は、PWM信号U,V,Wのゼロベクトル区間Tz内に通電区間を設けなかった場合に比べて、大きくなる。 On the other hand, when the energized sections T12, T23, T34, and T45 are provided in the zero vector section Tz of the PWM signals U, V, W, the motor is provided in the period from time t1 to time t5 as shown by reference numeral 501. The current increases. As a result, the current of the motor 4 at the end of the zero vector section Tz at time t7 becomes larger than that in the case where the energization section is not provided in the zero vector section Tz of the PWM signals U, V, W.
 すなわち、ゼロベクトル区間Tzの開始時点から終了時点までの電流の変化量が、PWM信号U,V,Wのゼロベクトル区間Tz内に通電区間を設けなかった場合に比べて小さくなるので、大きな電流リップルの発生を防止することができる。換言すれば、PWM信号U,V,Wのゼロベクトル区間Tz内に通電区間T12,T23,T34,T45を発生させて、ゼロベクトル区間中に小さな電流リップルを複数発生させることにより、大きな電流リップルの発生を抑制することができる。 That is, the amount of change in the current from the start time to the end time of the zero vector section Tz is smaller than that when the energization section is not provided in the zero vector section Tz of the PWM signals U, V, W, so that a large current It is possible to prevent the occurrence of ripple. In other words, the energized sections T12, T23, T34, and T45 are generated in the zero vector section Tz of the PWM signals U, V, W, and a plurality of small current ripples are generated in the zero vector section to generate a large current ripple. Can be suppressed.
 次に、本実施の形態に係るモータ制御装置100によるモータ駆動制御処理の流れについて説明する。 Next, the flow of the motor drive control process by the motor control device 100 according to the present embodiment will be described.
 図6は、実施の形態に係るモータ制御装置100によるモータ駆動制御処理の流れを示すフローチャートである。 FIG. 6 is a flowchart showing the flow of the motor drive control process by the motor control device 100 according to the embodiment.
 例えば、上位装置(図示せず)からモータ4の回転速度指令ωrefが入力されたとき、モータ制御装置100は、モータ4の駆動制御を開始する。先ず、モータ制御装置100は、モータ4を駆動するための通電パターンの生成処理を開始する(ステップS10)。具体的には、デューティ比設定部39がU相、V相、W相の各デューティ比Udu,Vdu,Wduの初期値を設定するとともに、キャリア発生部37がキャリアC1,C2を生成し、PWM信号生成部32が、キャリアC1,C2と初期値として設定されたデューティ比Udu,Vdu,Wduとに基づいて、上述した手法により、モータ4の通電パターンを指定する6種類のPWM信号を生成し、モータ4に与える。 For example, when the rotation speed command ωref of the motor 4 is input from the host device (not shown), the motor control device 100 starts the drive control of the motor 4. First, the motor control device 100 starts a process of generating an energization pattern for driving the motor 4 (step S10). Specifically, the duty ratio setting unit 39 sets the initial values of the U-phase, V-phase, and W-phase duty ratios Udu, Vdu, and Wdu, and the carrier generation unit 37 generates carriers C1 and C2, and PWM. The signal generation unit 32 generates 6 types of PWM signals that specify the energization pattern of the motor 4 by the above-mentioned method based on the carriers C1 and C2 and the duty ratios Udu, Vdu, and Wdu set as initial values. , Give to the motor 4.
 次に、モータ制御装置100は、U,V,W各相の相電流Iu,Iv,Iwを計測する(ステップS11)。次に、ベクトル制御部30が、ステップS11において電流検出部27により検出された3相電流Iu,Iv,Iwの電流算出値に基づいて、PI制御等の電流制御を行い(ステップS12)、各相の相電圧指令Vu*,Vv*,Vw*(制御量)を算出する(ステップS13)。 Next, the motor control device 100 measures the phase currents Iu, Iv, and Iw of each of the U, V, and W phases (step S11). Next, the vector control unit 30 performs current control such as PI control based on the current calculation values of the three-phase currents Iu, Iv, and Iw detected by the current detection unit 27 in step S11 (step S12). The phase voltage commands Vu *, Vv *, and Vw * (control amount) of the phase are calculated (step S13).
 次に、デューティ比設定部39が、ステップS13で算出された各相の相電圧指令Vu*,Vv*,Vw*に基づいて、各相のデューティ比を更新する(ステップS14)。具体的には、デューティ比設定部39が相電圧指令Vu*,Vv*,Vw*に基づいて、デューティ比Udu,Vdu,Wduを算出し、可変閾値算出部41が、算出されたデューティ比Udu,Vdu,Wduに基づいて、上述した手法により、可変閾値Udu3,Udu4,Vdu3,Vdu4,Wdu3,Wdu4を更新する。 Next, the duty ratio setting unit 39 updates the duty ratio of each phase based on the phase voltage commands Vu *, Vv *, Vw * of each phase calculated in step S13 (step S14). Specifically, the duty ratio setting unit 39 calculates the duty ratios Udu, Vdu, Wdu based on the phase voltage commands Vu *, Vv *, Vw *, and the variable threshold value calculation unit 41 calculates the calculated duty ratio Udu. , Vdu, Wdu, and the variable thresholds Udu3, Udu4, Vdu3, Vdu4, Wdu3, Wdu4 are updated by the above-mentioned method.
 次に、PWM信号生成部32が、上述した手法により、更新されたデューティ比に対応する固定閾値Udu1,Udu2,Vdu1,Vdu2,Wdu1,Wdu2と可変閾値Udu3,Udu4,Vdu3,Vdu4,Wdu3,Wdu4とに基づいて、上述した手法(図5参照)により、PWM信号U,V,Wを生成する(ステップS15)。 Next, the PWM signal generation unit 32 has a fixed threshold value Udu1, Udu2, Vdu1, Vdu2, Wdu1, Wdu2 and a variable threshold value Udu3, Udu4, Vdu3, Vdu4, Wdu3, Wdu4 corresponding to the updated duty ratio by the method described above. Based on the above, PWM signals U, V, and W are generated by the above-mentioned method (see FIG. 5) (step S15).
 その後、モータ制御装置100は、上位装置からモータの停止指令が入力されたか否かを判定する(ステップS16)。モータの停止指令が入力された場合には、モータ制御装置100はPWM信号の生成を停止して、モータ4の駆動を停止する。 After that, the motor control device 100 determines whether or not a motor stop command has been input from the host device (step S16). When the motor stop command is input, the motor control device 100 stops the generation of the PWM signal and stops the driving of the motor 4.
 一方、モータの停止指示が入力されていない場合には、モータ制御装置100は、ステップS11に移行し、モータの停止指令が入力されるまで、上述の処理(S11~S16)を繰り返し実行する。 On the other hand, when the motor stop instruction is not input, the motor control device 100 proceeds to step S11 and repeatedly executes the above processes (S11 to S16) until the motor stop command is input.
 以上、本実施の形態に係るモータ制御装置100は、モータ4の各相に対応するPWM信号U,V,Wの信号レベルが一致するゼロベクトル区間が発生する場合に、ゼロベクトル区間内にモータ4の通電区間を設ける。
 これによれば、上述したように、ゼロベクトル区間中に小さな電流リップルを複数発生させて、大きな電流リップルの発生を抑制することができるので、大きな電流リップルの周期的変化に起因するモータの動作時の騒音を抑制することが可能となる。
As described above, the motor control device 100 according to the present embodiment is a motor within the zero vector section when a zero vector section in which the signal levels of the PWM signals U, V, and W corresponding to each phase of the motor 4 match is generated. The energization section of 4 is provided.
According to this, as described above, it is possible to generate a plurality of small current ripples in the zero vector interval and suppress the generation of large current ripples, so that the operation of the motor due to the periodic change of large current ripples. It is possible to suppress the noise of time.
 また、モータ制御装置100は、ゼロベクトル区間において、各相のPWM信号U,V,Wを同じ時間だけ、互いに異なるタイミングで反転させることにより、モータ4の通電区間を発生させる(図5参照)。
 これによれば、ゼロベクトル区間に通電区間を発生させることによって、U相、V相、W相の各電圧が電圧指令と異なる電圧になることを防止することができ、上位装置から入力された回転速度指令ωrefに基づいたモータ4の適切な制御を実現しつつ、大きな電流リップルに起因する騒音の発生を防止することが可能となる。
Further, the motor control device 100 generates an energized section of the motor 4 by inverting the PWM signals U, V, W of each phase at different timings for the same time in the zero vector section (see FIG. 5). ..
According to this, by generating an energized section in the zero vector section, it is possible to prevent each voltage of the U phase, the V phase, and the W phase from becoming a voltage different from the voltage command, and it is input from the host device. It is possible to prevent the generation of noise due to a large current ripple while realizing appropriate control of the motor 4 based on the rotation speed command ωref.
 また、モータ制御装置100は、PWM周期の第1期間Aにおいて、各相のPWM信号U,V,Wを一定時間、互いに異なるタイミングで反転させ、PWM周期の残りの第2期間Bにおいて、設定されたデューティ比に基づいてPWM信号U,V,Wを反転させる。
 これによれば、PWM周期が、ゼロベクトル区間内に通電区間を発生させるための第1期間Aと、上位装置からの指令(回転速度指令ωref)に基づいてモータが回転するようにデューティ比を調整するための第2期間Bとに分けられているので、モータ4が回転速度指令ωrefに応じた回転速度で回転するように各相のPWM信号U,V,Wのデューティ比を調整しつつ、ゼロベクトル区間内にモータ4の通電区間を設けるように、PWM信号を生成することが容易となる。
Further, the motor control device 100 inverts the PWM signals U, V, and W of each phase at different timings for a certain period of time in the first period A of the PWM cycle, and sets them in the remaining second period B of the PWM cycle. The PWM signals U, V, and W are inverted based on the calculated duty ratio.
According to this, the duty ratio is set so that the PWM cycle rotates the motor based on the first period A for generating the energized section in the zero vector section and the command (rotation speed command ωref) from the host device. Since it is divided into the second period B for adjustment, while adjusting the duty ratio of the PWM signals U, V, W of each phase so that the motor 4 rotates at the rotation speed according to the rotation speed command ωref. , The PWM signal can be easily generated so that the energized section of the motor 4 is provided in the zero vector section.
 また、モータ制御装置100は、第1期間Aに対応する周期を有するのこぎり波状のキャリアC1と、第2期間Bに対応する周期を有するのこぎり波状のキャリアC2とを生成し、固定閾値Udu1,Udu2,Vdu1,Vdu2,Wdu1,Wdu2とキャリアC1のレベルとの比較結果に基づいて、第1期間Aにおける各相のPWM信号U,V,Wが反転するタイミングを決定し、算出されたデューティ比に基づいて設定された可変閾値Udu3,Udu4,Vdu3,Vdu4,Wdu3,Wdu4とキャリアC2のレベルとの比較結果に基づいて、第2期間Bにおける各相のPWM信号U,V,Wが反転するタイミングを決定する。 Further, the motor control device 100 generates a saw-like carrier C1 having a period corresponding to the first period A and a saw-like carrier C2 having a period corresponding to the second period B, and has fixed threshold values Udu1 and Udu2. , Vdu1, Vdu2, Wdu1, Wdu2 and the carrier C1 level are compared with each other to determine the timing at which the PWM signals U, V, W of each phase in the first period A are inverted, and the calculated duty ratio is calculated. Timing at which the PWM signals U, V, W of each phase in the second period B are inverted based on the comparison result between the variable threshold values Udu3, Udu4, Vdu3, Vdu4, Wdu3, Wdu4 and the carrier C2 level set based on the above. To determine.
 これによれば、キャリア毎に比較対象の閾値を変更し、第1期間Aと第2期間Bのそれぞれの期間において適切なタイミングでPWM信号の信号レベルを反転させることにより、所望のPWM信号を容易に生成することができる。 According to this, the threshold value of the comparison target is changed for each carrier, and the signal level of the PWM signal is inverted at an appropriate timing in each of the first period A and the second period B to obtain a desired PWM signal. It can be easily generated.
 ≪実施の形態の拡張≫
 以上、本発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
≪Expansion of embodiment≫
The invention made by the present inventor has been specifically described above based on the embodiments, but it goes without saying that the present invention is not limited thereto and can be variously modified without departing from the gist thereof. ..
 例えば、上記実施の形態では、PWM周期において、前半に第1期間Aを、後半に第2期間Bを設ける場合を例示したが、これに限られず、PWM周期の前半に第2期間Bを、PWM周期の後半に第1期間Aを設けてもよい。 For example, in the above embodiment, the case where the first period A is provided in the first half and the second period B is provided in the second half of the PWM cycle is illustrated, but the present invention is not limited to this, and the second period B is provided in the first half of the PWM cycle. The first period A may be provided in the latter half of the PWM cycle.
 また、上述のフローチャートは、動作を説明するための一例を示すものであって、これに限定されない。すなわち、フローチャートの各図に示したステップは具体例であって、このフローに限定されるものではない。例えば、一部の処理の順番が変更されてもよいし、各処理間に他の処理が挿入されてもよいし、一部の処理が並列に行われてもよい。 Further, the above-mentioned flowchart shows an example for explaining the operation, and is not limited to this. That is, the steps shown in each figure of the flowchart are specific examples, and are not limited to this flow. For example, the order of some processes may be changed, other processes may be inserted between each process, and some processes may be performed in parallel.
 1…モータシステム、4…モータ、12…カウント部、13…上限値切替部、14…比較器、15…切替制御部、16…上限値記憶部、20…制御部、21…直流電源、22a…正側母線、22b…負側母線、23…インバータ回路、24…電流検出器(シャント抵抗)、25U+,25U-,25V+,25V-,25W+,25W-…スイッチング素子、27…電流検出部、30…ベクトル制御部、31…デューティ比算出部、32…PWM信号生成部、33…駆動回路、34…電流検出タイミング調整部、35…通電パターン生成部、36…クロック発生部、37…キャリア発生部、39…デューティ比設定部、40…固定閾値記憶部、41…可変閾値算出部、42U,42V,42W…閾値切替部、43U,43V,43W…比較器、44…PWM回路、45…割り込みコントローラ、100…モータ制御装置、A…第1期間、B…第2期間、C,C1,C2…キャリア、CLK…クロック、Cp…検出信号、Lu…U相コイル、Lv…V相コイル、Lw…W相コイル、Sc…制御信号、Sd…検出信号、Si…割り込み信号、Cpu,Cpv,Cpw…出力信号、T1…第1上限値、T2…第2上限値、Udu,Vdu,Wdu…デューティ比、Udu1,Vdu1,Wdu1、Udu2,Vdu2,Wdu2…固定閾値、Udu3,Vdu3,Wdu3、Udu4,Vdu4,Wdu4…可変閾値、UH,UL,VH,VL,WH,WL,U,V,W…PWM信号。 1 ... motor system, 4 ... motor, 12 ... count unit, 13 ... upper limit value switching unit, 14 ... comparator, 15 ... switching control unit, 16 ... upper limit value storage unit, 20 ... control unit, 21 ... DC power supply, 22a ... Positive bus, 22b ... Negative bus, 23 ... Inverter circuit, 24 ... Current detector (shunt resistance), 25U +, 25U-, 25V +, 25V-, 25W +, 25W- ... Switching element, 27 ... Current detector, 30 ... Vector control unit, 31 ... Duty ratio calculation unit, 32 ... PWM signal generation unit, 33 ... Drive circuit, 34 ... Current detection timing adjustment unit, 35 ... Energization pattern generation unit, 36 ... Clock generation unit, 37 ... Carrier generation Unit, 39 ... duty ratio setting unit, 40 ... fixed threshold storage unit, 41 ... variable threshold calculation unit, 42U, 42V, 42W ... threshold switching unit, 43U, 43V, 43W ... comparer, 44 ... PWM circuit, 45 ... interrupt Controller, 100 ... Motor control device, A ... 1st period, B ... 2nd period, C, C1, C2 ... Carrier, CLK ... Clock, Cp ... Detection signal, Lu ... U phase coil, Lv ... V phase coil, Lw ... W phase coil, Sc ... control signal, Sd ... detection signal, Si ... interrupt signal, Cpu, Cpv, Cpw ... output signal, T1 ... first upper limit value, T2 ... second upper limit value, Udu, Vdu, Wdu ... duty Ratio, Udu1, Vdu1, Wdu1, Udu2, Vdu2, Wdu2 ... Fixed threshold, Udu3, Vdu3, Wdu3, Udu4, Vdu4, Wdu4 ... Variable threshold, UH, UL, VH, VL, WH, WL, U, V, W ... PWM signal.

Claims (5)

  1.  複数相のコイルを有するモータの各相にそれぞれ対応するPWM信号を生成する制御部と、
     前記PWM信号に基づいて、各相の前記コイルを駆動するインバータ回路と、を備え、
     前記制御部は、各相の前記PWM信号の信号レベルが一致する通電停止期間が発生する場合に、前記通電停止期間内に各相の前記コイルを通電させる通電期間を設ける
     モータ制御装置。
    A control unit that generates PWM signals corresponding to each phase of a motor having a multi-phase coil,
    An inverter circuit for driving the coil of each phase based on the PWM signal is provided.
    The control unit is a motor control device that provides an energization period for energizing the coil of each phase within the energization stop period when an energization stop period in which the signal levels of the PWM signals of each phase match occurs.
  2.  請求項1に記載のモータ制御装置において、
     前記制御部は、前記通電停止期間において、各相の前記PWM信号を同じ時間だけ、互いに異なるタイミングで反転させる
     モータ制御装置。
    In the motor control device according to claim 1,
    The control unit is a motor control device that inverts the PWM signals of each phase at different timings for the same time during the energization stop period.
  3.  請求項2に記載のモータ制御装置において、
     前記制御部は、各相の前記PWM信号のデューティ比を設定するデューティ比設定部と、前記デューティ比設定部によって設定された前記デューティ比に基づいて、各相の前記PWM信号を生成するPWM信号生成部と、を有し、
     各相の前記PWM信号の1周期は、第1期間と残りの第2期間とを含み、
     前記PWM信号生成部は、前記第1期間において、各相の前記PWM信号を一定時間、互いに異なるタイミングで反転させ、前記第2期間において、前記デューティ比に基づいて前記PWM信号を反転させる
     モータ制御装置。
    In the motor control device according to claim 2,
    The control unit is a duty ratio setting unit that sets the duty ratio of the PWM signal of each phase, and a PWM signal that generates the PWM signal of each phase based on the duty ratio set by the duty ratio setting unit. Has a generator and
    One cycle of the PWM signal in each phase includes a first period and a remaining second period.
    The PWM signal generation unit inverts the PWM signals of each phase for a certain period of time at different timings in the first period, and inverts the PWM signals based on the duty ratio in the second period. apparatus.
  4.  請求項3に記載のモータ制御装置において、
     前記制御部は、前記第1期間に対応する周期を有するのこぎり波状の第1キャリアと、前記第2期間に対応する周期を有するのこぎり波状の第2キャリアとを生成するキャリア発生部を更に有し、
     前記PWM信号生成部は、固定値である第1閾値および第2閾値と前記第1キャリアのレベルとの比較結果に基づいて、前記第1期間における各相の前記PWM信号が反転するタイミングを決定し、前記デューティ比に基づいて設定された第3閾値および第4閾値と前記第2キャリアのレベルとの比較結果に基づいて、前記第2期間における各相の前記PWM信号が反転するタイミングを決定する
     ことを特徴とするモータ制御装置。
    In the motor control device according to claim 3,
    The control unit further includes a carrier generating unit that generates a saw-like first carrier having a period corresponding to the first period and a saw-like second carrier having a period corresponding to the second period. ,
    The PWM signal generation unit determines the timing at which the PWM signal of each phase in the first period is inverted based on the comparison result between the first threshold value and the second threshold value, which are fixed values, and the level of the first carrier. Then, based on the comparison result between the third threshold value and the fourth threshold value set based on the duty ratio and the level of the second carrier, the timing at which the PWM signal of each phase in the second period is inverted is determined. A motor control device characterized by
  5.  請求項1乃至4の何れか一項に記載のモータ制御装置と、
     前記モータと、
     を備えるモータシステム。
    The motor control device according to any one of claims 1 to 4.
    With the motor
    Motor system with.
PCT/JP2020/026342 2019-07-22 2020-07-06 Motor control device and motor system WO2021014948A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-134651 2019-07-22
JP2019134651A JP2021019459A (en) 2019-07-22 2019-07-22 Motor controller and motor system

Publications (1)

Publication Number Publication Date
WO2021014948A1 true WO2021014948A1 (en) 2021-01-28

Family

ID=74193142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026342 WO2021014948A1 (en) 2019-07-22 2020-07-06 Motor control device and motor system

Country Status (2)

Country Link
JP (1) JP2021019459A (en)
WO (1) WO2021014948A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279141A (en) * 2009-05-28 2010-12-09 Omron Automotive Electronics Co Ltd Electric motor control device
JP4671000B1 (en) * 2009-09-28 2011-04-13 ダイキン工業株式会社 Phase current detection device and power conversion device using the same
WO2011064970A1 (en) * 2009-11-26 2011-06-03 パナソニック株式会社 Load drive system, electric motor drive system and vehicle control system
JP2013162536A (en) * 2012-02-01 2013-08-19 Mitsubishi Electric Corp Power conversion device
WO2017154239A1 (en) * 2016-03-11 2017-09-14 日立オートモティブシステムズ株式会社 Motor drive device and method for detecting phase current in motor drive device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279141A (en) * 2009-05-28 2010-12-09 Omron Automotive Electronics Co Ltd Electric motor control device
JP4671000B1 (en) * 2009-09-28 2011-04-13 ダイキン工業株式会社 Phase current detection device and power conversion device using the same
WO2011064970A1 (en) * 2009-11-26 2011-06-03 パナソニック株式会社 Load drive system, electric motor drive system and vehicle control system
JP2013162536A (en) * 2012-02-01 2013-08-19 Mitsubishi Electric Corp Power conversion device
WO2017154239A1 (en) * 2016-03-11 2017-09-14 日立オートモティブシステムズ株式会社 Motor drive device and method for detecting phase current in motor drive device

Also Published As

Publication number Publication date
JP2021019459A (en) 2021-02-15

Similar Documents

Publication Publication Date Title
US8816612B2 (en) Controller for multi-phase rotary device
JP5178799B2 (en) Motor control device
WO2020196397A1 (en) Motor control device, motor system, and motor control method
JP2018164347A (en) Inverter device, air conditioner, control method for inverter device, and program
WO2020059814A1 (en) Motor control device, motor system and inverter control method
WO2021014947A1 (en) Motor control device and motor system
JP5972545B2 (en) Motor control device
WO2021014948A1 (en) Motor control device and motor system
US11804797B2 (en) Motor controller, motor system and method for controlling motor
JP2012182874A (en) Motor control device
JP2016103886A (en) Motor control device
WO2021200389A1 (en) Motor control device, motor system, and motor control method
WO2020059815A1 (en) Motor control device, motor system, and inverter control method
WO2020196398A1 (en) Motor control device, motor system, and motor control method
JP2011109848A (en) Motor drive control device
JP2022044290A (en) Motor control device, motor system, and motor control method
JP2006081322A (en) Ac motor control unit
WO2021200845A1 (en) Motor control device, motor system, and motor control method
JP2022055205A (en) Motor control device, motor system, and motor control method
JP2016036231A (en) Inverter device
JP2021164281A (en) Motor controller, motor system, and motor control method
JP2021164280A (en) Motor controller, motor system, and motor control method
JP2019216566A (en) Motor control device
KR20100101478A (en) Motor controlling apparatus and controlling method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844912

Country of ref document: EP

Kind code of ref document: A1