WO2021014579A1 - 電力変換装置及び分散型電源システム - Google Patents
電力変換装置及び分散型電源システム Download PDFInfo
- Publication number
- WO2021014579A1 WO2021014579A1 PCT/JP2019/028886 JP2019028886W WO2021014579A1 WO 2021014579 A1 WO2021014579 A1 WO 2021014579A1 JP 2019028886 W JP2019028886 W JP 2019028886W WO 2021014579 A1 WO2021014579 A1 WO 2021014579A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- value
- voltage
- interconnection point
- estimated value
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
- H02J3/16—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/001—Methods to deal with contingencies, e.g. abnormalities, faults or failures
- H02J3/00125—Transmission line or load transient problems, e.g. overvoltage, resonance or self-excitation of inductive loads
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
- H02J2300/26—The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Definitions
- An embodiment of the present invention relates to a power conversion device and a distributed power supply system.
- the distributed power supply is used to compensate for the voltage fluctuation at the interconnection point of the distributed power supply. Injecting reactive power into the interconnection point from. The injection of ineffective power is controlled by a power converter that converts the power of the distributed power source into power according to the power system.
- the voltage fluctuation at the interconnection point can be caused even in voltage suppression control using a linear approximation formula. It was difficult to control it properly. Therefore, in the distributed power supply system and the power conversion device used for the distributed power supply system, it is desired that the voltage at the interconnection point of the distributed power supply can be controlled to a specified value more appropriately.
- An embodiment of the present invention provides a power conversion device and a distributed power supply system capable of more appropriately controlling the voltage at the interconnection point of a distributed power supply to a specified value.
- the power of the distributed power supply is converted into AC power corresponding to the power system connected to the infinity bus power system, and the converted AC power is supplied to the power system to distribute the distribution.
- a power conversion device that connects a mold power supply to the power system, the operation of the main circuit unit that converts the power of the distributed power supply into the AC power corresponding to the power system, and the operation of the main circuit unit.
- the control unit includes a control unit for controlling, and the control unit uses a Kalman filter corresponding to a non-linear expression to obtain an active power value at an interconnection point with the power system, an ineffective power value at the interconnection point, and the interconnection.
- the estimated value of the resistance component of the system impedance of the power system Based on the voltage value of the system point, the estimated value of the resistance component of the system impedance of the power system, the estimated value of the reactorance component of the system impedance, and the estimated value of the voltage value of the infinite bus power system are calculated.
- the specified value of the voltage of the interconnection point is input to the estimated value calculation unit, the active power value of the interconnection point with the power system, the invalid power value of the interconnection point, the voltage value of the interconnection point, Based on the estimated value of the resistance component of the system impedance, the estimated value of the reactorance component of the system impedance, the estimated value of the voltage value of the infinity bus power system, and the specified value of the voltage of the interconnection point, the interconnection
- the invalid power calculation unit that calculates the invalid power command value of the invalid power supplied to the power system in order to bring the voltage value of the point close to the specified value, and the predetermined active power and the invalid power corresponding to the invalid power command value.
- a power conversion device and a distributed power supply system capable of more appropriately controlling the voltage at the interconnection point of the distributed power supply to a specified value.
- 4 (a) to 4 (c) are graphs schematically showing an example of simulation results of the distributed power supply system according to the embodiment. It is a graph which shows typically an example of the operation of the distributed power supply system which concerns on embodiment. It is an interference system diagram used for the simulation.
- 7 (a) to 7 (f) are graphs schematically showing an example of simulation.
- 8 (a) to 8 (e) are graphs schematically showing an example of simulation.
- 9 (a) to 9 (c) are graphs schematically showing an example of simulation.
- 10 (a) to 10 (g) are graphs schematically showing an example of simulation.
- 11 (a) to 11 (f) are graphs schematically showing an example of simulation. It is a graph which shows an example of a simulation schematically.
- 13 (a) to 13 (g) are graphs schematically showing an example of simulation.
- 14 (a) to 14 (f) are graphs schematically showing an example of simulation. It is a graph which shows an example of a simulation schematically.
- 16 (a) and 16 (b) are graphs schematically showing an example of the operation of the distributed power supply system according to the embodiment.
- FIG. 1 is a block diagram schematically showing a distributed power supply system according to an embodiment.
- the distributed power supply system 2 includes a power system 4 connected to an infinity bus power system 3, a distributed power supply 6, and a power conversion device 10.
- the electric power of the electric power system 4 is AC electric power.
- the electric power of the electric power system 4 is, for example, three-phase AC electric power.
- the distributed power source 6 is, for example, a solar panel.
- the electric power of the distributed power source 6 is DC electric power.
- the power conversion device 10 is connected to the distributed power source 6 and is also connected to the power system 4 via transformers 12, 14 and the like.
- the power conversion device 10 converts the DC power of the distributed power source 6 into AC power corresponding to the power system 4, and supplies the converted AC power to the power system 4, thereby converting the distributed power source 6 into the power system 4. To interconnect.
- the distributed power source 6 is not limited to the solar panel, and may be another generator such as a wind power generator or a gas turbine generator. Further, the distributed power source 6 may be, for example, a charge storage element such as a storage battery or a capacitor.
- a consumer 16 (load) and another generator 18 may be connected in the immediate vicinity of the power system 4.
- the power conversion device 10 supplies active power to the power system 4 and supplies optimum reactive power to the power system 4.
- the power conversion device 10 suppresses fluctuations in the voltage of the interconnection point LP with the power system 4 due to the supply of its own active power and the influence of the consumer 16 and the generator 18.
- FIG. 2 is a block diagram schematically showing a power conversion device of the distributed power supply system according to the embodiment.
- the power conversion device 10 includes a main circuit unit 40 and a control unit 42.
- the main circuit unit 40 converts the DC power or AC power supplied from the distributed power source 6 into AC power corresponding to the power system 4.
- the control unit 42 controls the operation of the main circuit unit 40.
- the main circuit unit 40 has, for example, a plurality of switching elements, and converts power by turning on / off the plurality of switching elements.
- the control unit 42 controls the conversion of electric power by the main circuit unit 40 by controlling the on / off switching of the plurality of switching elements of the main circuit unit 40.
- a well-known inverter circuit is used for the main circuit unit 40.
- the configuration of the main circuit unit 40 may be any configuration capable of performing the above power conversion.
- the distributed power supply system 2 further includes, for example, measuring devices 20 and 22.
- the measuring device 20 detects and detects the voltage value Vdc of the DC voltage input from the distributed power supply 6 to the power conversion device 10 and the current value Idc of the DC current input from the distributed power supply 6 to the power conversion device 10.
- the voltage value Vdc and the current value Idc are input to the control unit 42.
- the control unit 42 controls, for example, an MPPT (Maximum Power Point Tracking) method in which DC power is made to follow the maximum power point of the distributed power source 6.
- the control unit 42 extracts the maximum power point (optimal operating point) of the distributed power source 6 based on the voltage value Vdc and the current value Idc detected by the measuring device 20, and corresponds to the extracted maximum power point.
- the operation of the main circuit unit 40 is controlled so as to supply the active power to the power system 4.
- the method of determining the active power supplied from the power conversion device 10 to the power system 4 is not limited to the MPPT method.
- the active power supplied from the power conversion device 10 to the power system 4 may be determined based on, for example, an active power command value input from a higher-level controller or the like.
- the control unit 42 may control the operation of the main circuit unit 40 so as to supply the active power according to the input active power command value to the power system 4.
- the measuring device 22 detects the active power value P of the interconnection point LP with the power system 4 of the power conversion device 10, the invalid power value Q of the interconnection point LP, and the voltage value Vs of the interconnection point LP. , The detected active power value P, the ineffective power value Q, and the voltage value Vs are input to the control unit 42.
- the control unit 42 includes an estimated value calculation unit 50, an reactive power calculation unit 52, and a drive circuit 54.
- the control unit 42 inputs the active power value P, the active power value Q, and the voltage value Vs input from the measuring device 22 to the estimated value calculation unit 50.
- the estimated value calculation unit 50 determines the estimated value ⁇ R of the resistance component R of the system impedance of the power system 4 and the power based on the active power value P, the ineffective power value Q, and the voltage value Vs input from the measuring device 22.
- the estimated value ⁇ X of the reactance component X of the system impedance of the system 4 and the estimated value ⁇ Vr of the voltage value Vr of the infinite bus power system 3 are calculated.
- ⁇ (hat) representing an estimated value such as ⁇ R is written directly above R or the like as shown in FIG. 2, but in the specification, due to the convenience of the format, ⁇ It shall be expressed in a staggered manner, such as R.
- the estimated value calculation unit 50 estimates the system characteristics of the power system 4 based on the active power value P, the reactive power value Q, and the voltage value Vs. At this time, the estimated value calculation unit 50 considers the system model of the power system 4 as the simplest system model of only the resistance component R and the reactance component X of the system impedance, as shown in FIG.
- the estimated value calculation unit 50 calculates each estimated value ⁇ R, ⁇ X, ⁇ Vr from the active power value P, the inactive power value Q, and the voltage value Vs by using a Kalman filter corresponding to the non-linear formula. More specifically, the estimated value calculation unit 50 calculates each estimated value ⁇ R, ⁇ X, ⁇ Vr from the active power value P, the inactive power value Q, and the voltage value Vs by using the extended Kalman filter. The estimated value calculation unit 50 inputs the calculated estimated values ⁇ R, ⁇ X, and ⁇ Vr to the invalid power calculation unit 52. Further, the estimated value calculation unit 50 also inputs the active power value P, the ineffective power value Q, and the voltage value Vs used in the calculation to the ineffective power calculation unit 52 together with the estimated values ⁇ R, ⁇ X, and ⁇ Vr.
- the Kalman filter corresponding to the non-linear expression is not limited to the extended Kalman filter, and may be, for example, an Associated Kalman filter or an ensemble Kalman filter. However, by using the extended Kalman filter, the calculation load in the estimated value calculation unit 50 can be suppressed as compared with these.
- Each estimated value ⁇ R, ⁇ X, ⁇ Vr, active power value P, invalid power value Q, and voltage value Vs are input from the estimated value calculation unit 50 to the reactive power calculation unit 52, and the interconnection point LP
- the specified value Vsr of the voltage of is input.
- the specified value Vsr of the voltage of the interconnection point LP is input to the reactive power calculation unit 52 from the host controller via, for example, a network or the like.
- the specified value Vsr of the voltage of the interconnection point LP may be, for example, manually set by an operator or the like, or may be a predetermined constant value or the like.
- the invalid power calculation unit 52 is input from each estimated value ⁇ R, ⁇ X, ⁇ Vr, active power value P, invalid power value Q, voltage value Vs, and a higher-level controller input from the estimated value calculation unit 50. Based on the specified value Vsr of the voltage of the interconnection point LP, the invalid power command value Qn of the invalid power supplied to the power system 4 is calculated.
- the reactive power command value Qn is a command value of the reactive power supplied to the power system 4 in order to bring the voltage value Vs of the interconnection point LP closer to the designated value Vsr.
- the reactive power calculation unit 52 inputs the calculated reactive power command value Qn to the drive circuit 54.
- the reactive power command value Qn calculated by the reactive power calculation unit 52 is input to the drive circuit 54, and the voltage value Vdc and the current value Idc of the distributed power source 6 measured by the measuring device 20 are input.
- the drive circuit 54 determines the active power by controlling the MPPT method based on the voltage value Vdc and the current value Idc, and outputs the determined active power and the active power corresponding to the ineffective power command value Qn. To drive.
- the drive circuit 54 supplies the determined active power and the reactive power corresponding to the reactive power command value Qn from the main circuit unit 40 to the power system 4 by switching the on / off of the plurality of switching elements of the main circuit unit 40. To do.
- the measuring device 22 and the estimated value calculation unit 50 periodically acquire the active power value P, the active power value Q, and the voltage value Vs. Each time the estimated value calculation unit 50 acquires the active power value P, the active power value Q, and the voltage value Vs, the estimated value calculation unit 50 calculates (predicts) each estimated value ⁇ R, ⁇ X, ⁇ Vr, and sets the predicted state. Update the current state from the observation information.
- the invalid power calculation unit 52 calculates the invalid power command value Qn each time each estimated value ⁇ R, ⁇ X, ⁇ Vr is input from the estimated value calculation unit 50.
- the drive circuit 54 generates a control signal of the main circuit unit 40 each time an invalid power command value Qn is input, and supplies the active power and the active power to the power system 4 from the main circuit unit 40.
- the control unit 42 supplies the active power corresponding to the distributed power source 6 to the power system 4, and supplies the reactive power corresponding to the specified value Vsr of the voltage of the interconnection point LP to the power system 4. Supply at any time.
- the active power is supplied from the power conversion device 10 to the power system 4, and the interconnection point LP due to the influence of the consumer 16 and the generator 18 and the like. It is possible to suppress fluctuations in the voltage of. For example, the fluctuation of the voltage value Vs of the interconnection point LP can be suppressed within ⁇ 2% with respect to the specified value Vsr.
- each estimated value ⁇ R, ⁇ X, ⁇ Vr is calculated by using an extended Kalman filter (Kalman filter corresponding to a non-linear formula).
- Kalman filter corresponding to a non-linear formula
- the system characteristics of the power system 4 can be estimated more appropriately and the voltage fluctuation of the interconnection point LP can be suppressed. can do.
- the voltage value Vs of the interconnection point LP can be expressed by the non-linear equation of the following equation (1).
- each estimated value ⁇ R, ⁇ X, ⁇ Vr is calculated.
- the equation of state of the extended Kalman filter can be expressed by the following equation (2).
- the output equation of the extended Kalman filter can be expressed by the following equation (3).
- x is composed of the resistance component R of the system impedance of the power system 4, the reactance component X, and the voltage value Vr of the infinite bus power system 3 as expressed in the following equation (4). It is a state vector.
- "T" represents transposition.
- Equation (2) f is a non-linear function of the state vector x.
- w is a vector of system noise.
- the subscript "k” represents the time. In other words, the subscript "k” is the order of data corresponding to the periodically acquired active power value P, active power value Q, and voltage value Vs. “K-1” represents the data immediately before “k”. Therefore, Eq. (2) represents estimating the current state vector x from the previous state vector x.
- the subscript "k” is the same in each of the following equations.
- Equation (3) z is an observed value of the voltage value Vs.
- h is a non-linear function of x.
- v is the observed noise. Equation (3) represents the reaction of the observed value z to the state vector x.
- the observed value z is a measured value of the voltage value Vs by the measuring device 22.
- the extended Kalman filter has a prediction step and an update step.
- the estimated value calculation unit 50 predicts the state vector x by the following equation (5).
- x f represents a predicted value of the state vector x.
- x a represents the state vector x updated in the update step. As described above, in this example, the updated state vector x a is used as the predicted state vector x f .
- the estimated value calculation unit 50 calculates each component of the predicted state vector x f as the estimated values ⁇ R, ⁇ X, and ⁇ Vr, respectively. That is, each estimated value ⁇ R, ⁇ X, ⁇ Vr is, in other words, each component of the updated state vector x a . Further, the estimated value calculation unit 50 has an initial value of the state vector x, and uses this initial value as the predicted state vector x f in the initial state in which the update step is not performed.
- the control unit 42 controls the operation of the main circuit unit 40 as described above based on the estimated values ⁇ R, ⁇ X, and ⁇ Vr calculated in this way.
- the initial value of the state vector x may be a constant value.
- the average value of each estimated value ⁇ R, ⁇ X, ⁇ Vr for one day is used. You may calculate and use the average value of each estimated value ⁇ R, ⁇ X, ⁇ Vr as the initial value of the state vector x of the next day.
- the estimated value calculation unit 50 calculates the average value of each estimated value ⁇ R, ⁇ X, ⁇ Vr in each predetermined period, and sets the average value of the calculated estimated values ⁇ R, ⁇ X, ⁇ Vr as the next predetermined value. It may have a function of setting the initial value of the state vector x in the period.
- the estimated value calculation unit 50 predicts the state vector x and predicts the covariance matrix P f by the following equation (6).
- the covariance matrix P f is an error covariance matrix of the predicted state vector x f in consideration of the influence of the system noise w.
- J f (x) is a matrix defined by the Jacobian of the nonlinear function f. In this example, as shown in equation (7) below, the diagonal of (1,1,1) It is a matrix.
- P k-1 is the previous covariance matrix or the initial value of the covariance matrix.
- J f (x) T is the transposed matrix of the Jacobian matrix J f (x).
- Q k-1 is a covariance matrix of the system noise w.
- the covariance matrix Q k-1 of the system noise w is the expected value of the inner product of the system noise w and its transposed matrix as expressed by the following equation (8).
- the control unit 42 operates the main circuit unit 40 based on the estimated values ⁇ R, ⁇ X, and ⁇ Vr calculated in the prediction step, and the active power value P when the main circuit unit 40 is operated is invalid.
- the power value Q and the voltage value Vs are acquired.
- the estimated value calculation unit 50 executes the update step after the active power value P, the active power value Q, and the voltage value Vs are acquired.
- the estimated value calculation unit 50 updates the state vector x based on the acquired active power value P, active power value Q, and voltage value Vs.
- the estimated value calculation unit 50 first updates the state vector x based on the acquired measured values of the active power value P, the ineffective power value Q, and the voltage value Vs and the covariance matrix P f. Optimize the Kalman gain for this.
- the Kalman gain is obtained by the following equation (9).
- J h (x) is a matrix defined by the Jacobian of the nonlinear function h.
- J h (x) is expressed by the following equation (10).
- ⁇ Vs / ⁇ R, ⁇ Vs / ⁇ X, and ⁇ Vs / ⁇ Vr are the following equations (11), (12), and (13) from the above equation (1), respectively. It is expressed as. However, in the equations (11), (12), and (13), B is the following equation (14), and C is the following equation (15). Further, in the above equation (9), J h (x) T is a transposed matrix of the Jacobian matrix J h (x). In equation (9), R k is a covariance matrix of the observed noise v. The covariance matrix R k of the observed noise v is the expected value of the inner product of the observed noise v and its transposed matrix, as shown in the following equation (16). In equation (9), the part [J h (x) P f J h (x) T + R k ] -1 is, in other words, the error covariance with respect to the prediction error (z-h (x f )). ..
- the estimated value calculation unit 50 uses this Kalman gain to update the state vector x according to the following equation (17).
- h (x f ) is a predicted value of the voltage value Vs calculated from the predicted state vector x f using the equation (1). That is, the estimated value calculation unit 50, the measured values z of the voltage value Vs of the interconnection point LP, the predicted value h of the voltage Vs of the linking point LP computed using the state vector x f after prediction (x f ) And, the prediction error of the voltage value Vs of the interconnection point LP is obtained.
- the estimated value calculation unit 50 obtains a prediction error by subtracting the predicted value h (x f ) from the measured value z.
- the estimated value calculation unit 50 calculates the correction value of the state vector x by multiplying this prediction error by the Kalman gain, and adds the correction value to the predicted state vector x f to update the updated state vector x. Find a. As a result, the next state vector x can be predicted in consideration of the prediction error.
- the estimated value calculation unit 50 determines whether or not the absolute value of the prediction error (zh (x f )) is equal to or greater than a predetermined value.
- the estimated value calculation unit 50 resets the previous covariance matrix P k-1 to the initial value.
- the initial value of the covariance matrix is, for example, a covariance matrix having a relatively large value such as diag (200, 200, 200). As a result, the convergence of the covariance matrix P k-1 can be accelerated when the system characteristics change.
- the estimated value calculation unit 50 updates the state vector x and also updates the covariance matrix P by the following equation (18). As expressed in the equation (18), the estimated value calculation unit 50 updates the covariance matrix P based on the optimized Kalman gain.
- the estimated value calculation unit 50 repeatedly executes the above-mentioned prediction step and update step. As a result, each estimated value ⁇ R, ⁇ X, ⁇ Vr can be predicted by the extended Kalman filter, and the operation of the main circuit unit 40 can be controlled based on the prediction. As a result, fluctuations in the voltage value Vs of the interconnection point LP can be suppressed.
- I is an identity matrix.
- FIG. 3 is a graph diagram schematically showing an example of the operation of the invalid power calculation unit.
- the horizontal axis of FIG. 3 is the invalid power value Q of the interconnection point LP, and the vertical axis of FIG. 3 is the voltage value Vs of the interconnection point LP.
- the invalid power calculation unit 52 When the estimated value calculation unit 50 inputs the estimated values ⁇ R, ⁇ X, ⁇ Vr, the active power value P, the invalid power value Q, and the voltage value Vs, the invalid power calculation unit 52 is shown in FIG. As described above, the inclination K of the voltage value Vs with respect to the invalid power value Q is calculated based on the calculation result of the estimated value calculation unit 50.
- the invalid power calculation unit 52 calculates the slope K by the following equation (19). In the formula (19), B is represented by the formula (14), and C is represented by the formula (15).
- the voltage value of the next interconnection point LP is Vs (n)
- the voltage value of the previous interconnection point LP measured by the measuring device 22 is Vs (n-1)
- the invalid power value of the next interconnection point LP is
- the voltage value Vs (n) of the next interconnection point LP is the following equation (20). Can be represented by. Therefore, when the voltage value of the next interconnection point LP is Vs (n) as the specified value Vsr, the invalid power value Q n of the next interconnection point LP can be expressed by the following equation (21).
- the invalid power calculation unit 52 calculates the inclination K and the invalid power value Q n of the next interconnection point LP based on each value input from the estimated value calculation unit 50.
- the invalid power value Q n of the next interconnection point LP is calculated as the invalid power command value Q n .
- FIGS. 4 (a) to 4 (c) are graphs schematically showing an example of simulation results of the distributed power supply system according to the embodiment.
- the vertical axis of FIG. 4A is the voltage value Vs of the interconnection point LP and the voltage value Vr of the infinite bus power system 3.
- the designated value Vsr is the voltage value Vr of the infinite bus power system 3.
- the vertical axis of FIG. 4B is the reactive power value Q and the optimum reactive power value Qop for setting the voltage value Vs of the interconnection point LP to the voltage value Vr of the infinite bus power system 3.
- the vertical axis of FIG. 4C is the slope K.
- the horizontal axis of FIGS. 4 (a) to 4 (c) is time. Further, in FIGS. 4 (a) and 4 (b), the vertical axis represents the amount per unit whose rating is “1 pu”.
- the optimum ineffective power value Qop can be expressed by the following equation (22), where the specified value Vsr is ⁇ Vr.
- "sign" is a sign function.
- the voltage value Vs of the interconnection point LP becomes infinite by injecting the invalid power of the invalid power command value Qn into the interconnection point LP. It converged to the voltage value Vr of the large bus power system 3, and the reactive power value Q of the interconnection point LP converged to the optimum reactive power value Qop.
- the voltage of the interconnection point LP is appropriately controlled to the specified value Vsr by injecting an appropriate invalid power into the interconnection point LP. can do.
- Vs Vr can be achieved by the optimum invalid power value Qop, it is possible to increase the stable limit power.
- FIG. 5 is a graph schematically showing an example of the operation of the distributed power supply system according to the embodiment.
- the power conversion device 10 has a controllable range in which the power factor can be controlled.
- the controllable range of the power factor in the power conversion device 10 is, for example, a range of ⁇ 0.85 or more. That is, both the delay power factor and the advance power factor are in the range of 0.85 or more and 1.00 or less.
- the power conversion device 10 has a controllable range that can be controlled and a non-controllable range that cannot be controlled even at the voltage value Vs of the interconnection point LP.
- An example of the controllable range of Vs is schematically shown.
- the invalid power calculation unit 52 sets the maximum or minimum invalid power value that can be taken within the controllable range when the calculated invalid power command value Qn exceeds the controllable range. Set as the value Qn.
- FIG. 6 is an interference system diagram used in the simulation. As shown in FIG. 6, in the simulation, the case where the first and second two systems (power conversion device 10) are connected to the power system 4 is examined.
- FIG. 7A schematically shows the time change of the active power P10 output from the first system and the change in the active power P1x at the interconnection point due to the output of the active power of the first system.
- FIG. 7B schematically shows the time change of the active power P20 output by the second system and the change in the active power of the interconnection point P2x due to the output of the active power of the second system.
- FIG. 7C schematically shows the time change of the ineffective power Q10 output by the first system and the change in the ineffective power Q1x at the interconnection point due to the output of the ineffective power of the first system.
- FIG. 7D schematically shows the time change of the ineffective power Q21 output by the second system and the change in the ineffective power Q2x at the interconnection point due to the output of the ineffective power of the second system.
- FIG. 7E schematically shows the time change of the output voltage Vs1 of the first system.
- FIG. 7 (f) schematically shows the time change of the output voltage Vs2 of the second system.
- FIG. 8 (a) to 8 (e) are graphs schematically showing an example of simulation.
- FIG. 8A schematically shows the time change of the active power value P of the interconnection point and the optimum ineffective power value Qop.
- FIG. 8B schematically shows the time change of the voltage value Vs at the interconnection point.
- FIG. 8C schematically shows the time change of the estimated value ⁇ R of the resistance component R of the system impedance and the estimated value ⁇ X of the reactance component X of the system impedance of the power system 4.
- FIG. 8D schematically shows the time change of the estimated value ⁇ Vr of the voltage value Vr of the infinite bus power system 3.
- FIG. 8 (e) schematically shows the time change of the prediction error err represented by (z—h (x f )).
- FIG. 9A shows the active power P10 output from the first system, the change P1x of the active power at the interconnection point due to the output of the active power of the first system, the invalid power Q10 output from the first system, and the first system.
- the time change of Q1x which is the change in the disabling power at the interconnection point due to the output of the disabling power of one system, is schematically shown.
- FIG. 9B schematically shows the time change of the output voltage Vs1 of the first system.
- FIG. 9C schematically shows the time change of the power factor Pf1 of the first system.
- the first system and the second system operate at a power factor of 1, and the output voltage Vs1 of the first system changes so as to undulate due to the output of the active power of the first system.
- the power factor Pf1 of the first system changes from the delayed power factor to the leading power factor due to the change of the output voltage Vs1 of the first system.
- FIG. 10A shows the active power P10 output by the first system, the change P1x of the active power at the interconnection point due to the output of the active power of the first system, the invalid power Q10 output by the first system, and the first system.
- the time change of Q1x which is the change in the disabling power at the interconnection point due to the output of the disabling power of one system, is schematically shown.
- FIG. 10B schematically shows the time change of the output voltage Vs1 of the first system.
- FIG. 10 (c) schematically shows the time change of the power factor Pf1 of the first system.
- FIG. 10D schematically shows the time change of the estimated value ⁇ R of the resistance component R of the system impedance and the estimated value ⁇ X of the reactance component X of the system impedance of the power system 4.
- FIG. 10E schematically shows the time change of the estimated value ⁇ Vr of the voltage value Vr of the infinite bus power system 3.
- FIG. 10 (f) schematically shows the time change of the slope K.
- FIG. 10 (g) schematically shows the time change of the absolute value of the prediction error err.
- 10 (a) to 10 (g) show the slope K and the slope K with the specified value Vsr set to 1.05 (pu) under the condition that the output voltage Vs1 of the first system changes as shown in FIG. 9 (b). It represents each value of the first system when the control for injecting the invalid power based on the invalid power command value Qn into the interconnection point is performed by calculating the invalid power command value Qn.
- the output voltage Vs1 could not be controlled to the specified value Vsr in the non-controllable range, the output voltage Vs1 gradually approached the specified value Vsr, and in the controllable range,
- the output voltage Vs1 can be controlled to the specified value Vsr. In this way, even when the specified value Vsr is set to a predetermined value different from the voltage value Vr of the infinite bus power system 3, the fluctuation of the voltage value Vs is compared with the case where the constant power factor control of the power factor 1 is performed. Can be suppressed. Further, in this example, as shown in FIG. 10C, the power factor Pf1 of the first system can be controlled by the delay power factor.
- FIG. 11A shows the active power P20 output from the second system, the change P2x of the active power at the interconnection point due to the output of the active power of the second system, the invalid power Q21 output from the second system, and the second system.
- the time change of Q2x which is the change in the negative power at the interconnection point due to the output of the negative power of the two systems, is schematically shown.
- FIG. 11B schematically shows the time change of the output voltage Vs2 of the second system.
- FIG. 11C schematically shows the time change of the power factor Pf2 of the second system.
- FIG. 11D shows the active power P20 output from the second system, the change P2x of the active power at the interconnection point due to the output of the active power of the second system, the invalid power Q21 output from the second system, and the second
- the time change of Q2x which is the change in the negative power at the interconnection point due to the output of the negative power of the two systems, is schematically shown.
- FIG. 11E schematically shows the time change of the output voltage Vs2 of the second system.
- FIG. 11 (f) schematically shows the time change of the power factor Pf2 of the second system.
- 11 (a) to 11 (c) schematically show each value of the second system when the first system is operated with a power factor of 1.
- 11 (d) to 11 (f) schematically show each value of the second system when the first system is operated under the control shown in FIG.
- the second system is operated at a power factor of 1. Also in the second system, control for calculating the slope K and the invalid power command value Qn may be performed. As a result, fluctuations in the output voltage Vs2 of the second system can be suppressed more appropriately.
- FIG. 12 is a graph diagram schematically showing an example of simulation.
- FIG. 12 schematically shows the ineffective power Qf when the inclination K and the ineffective power command value Qn are calculated in the second system, and the theoretical solution Qs of the ineffective power in the second system.
- the theoretical solution Qs is a theoretical solution of the optimum reactive power for setting the output voltage Vs2 of the second system to the voltage value Vr of the infinite bus power system 3.
- the theoretical solution Qs is, in other words, the optimum ineffective power value Qop.
- the designated value Vsr is set to the voltage value Vr of the infinite bus power system 3.
- the ineffective power Qf is almost the same as the theoretical solution Qs in the controllable range. Therefore, by controlling the inclination K and the invalid power command value Qn to be calculated, the fluctuation of the output voltage Vs2 of the second system can be appropriately suppressed in the controllable range.
- the plurality of power conversion devices 10 connected to the power system 4 calculate the inclination K and the invalid power command value Qn, and the appropriate invalid power based on the invalid power command value Qn.
- FIGS. 13 (a) to 13 (g) are graphs schematically showing an example of simulation.
- Each of FIGS. 13 (a) to 13 (g) schematically represents a time change of the same characteristics as those of FIGS. 10 (a) to 10 (g).
- 13 (a) to 13 (g) show the slope K and the slope K with the specified value Vsr as 1.00 (pu) under the condition that the output voltage Vs1 of the first system changes as shown in FIG. 9 (b). It represents each value of the first system when the control for injecting the invalid power based on the invalid power command value Qn into the interconnection point is performed by calculating the invalid power command value Qn.
- the output voltage Vs1 can be controlled to the specified value Vsr within the controllable range.
- the power factor Pf1 of the first system is controlled by the advancing power factor. In this way, even under the condition of the advancing power factor, the output voltage Vs1 is controlled by calculating the slope K and the reactive power command value Qn and injecting the reactive power based on the reactive power command value Qn into the interconnection point. Can be appropriately controlled to the specified value Vsr.
- FIGS. 14 (a) to 14 (f) are graphs schematically showing an example of simulation.
- Each of FIGS. 14 (a) to 14 (f) schematically represents a time change of the same characteristics as those of FIGS. 11 (a) to 11 (f).
- the control for calculating the slope K and the reactive power command value Qn is the first control as in the case of the delayed power factor.
- FIG. 15 is a graph diagram schematically showing an example of simulation.
- FIG. 15 shows the invalid power Qf when the first system is operated under the condition of FIG. 13 and the control for calculating the inclination K and the invalid power command value Qn is performed in the second system, and the invalid power of the second system.
- the theoretical solution Qs of electric power is schematically represented.
- the reactive power Qf is almost the same as the theoretical solution Qs in the controllable range even under the condition of the leading power factor, as in the case of the delayed power factor. Therefore, by controlling the inclination K and the invalid power command value Qn to be calculated, the fluctuation of the output voltage Vs2 of the second system can be appropriately suppressed in the controllable range.
- FIG. 16 (a) and 16 (b) are graphs schematically showing an example of the operation of the distributed power supply system according to the embodiment.
- FIG. 16A schematically shows an example of the active power Ppf1 when the constant power factor control is performed and the active power Ppf2 when the estimation is performed using the extended Kalman filter.
- FIG. 16B schematically shows an example of the reactive power Qpf1 when the constant power factor control is performed and the reactive power Qpf2 when the estimation is performed using the extended Kalman filter.
- the reactive power is reduced and the power factor is smaller than that when the constant power factor control is performed. Can be improved. Therefore, active power can be efficiently supplied from the distributed power source 6 to the power system 4. For example, the owner of the distributed power source 6 can increase the profit on sale of electric power.
- the fluctuation of the voltage Vs of the interconnection point LP is suppressed more appropriately by injecting an appropriate invalid power into the interconnection point LP.
- the power factor of the output AC power can be improved, and the active power can be supplied to the power system 4 more efficiently.
- the embodiments of the present invention have been described above with reference to specific examples. However, the embodiments of the present invention are not limited to these specific examples.
- the present invention can be similarly carried out by appropriately selecting from a range known to those skilled in the art, and the same effect can be obtained. As far as possible, it is included in the scope of the present invention. Further, a combination of any two or more elements of each specific example to the extent technically possible is also included in the scope of the present invention as long as the gist of the present invention is included.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
図1に表したように、分散型電源システム2は、無限大母線電力系統3につながる電力系統4と、分散型電源6と、電力変換装置10と、を備える。電力系統4の電力は、交流電力である。電力系統4の電力は、例えば、三相交流電力である。
図2に表したように、電力変換装置10は、主回路部40と、制御部42と、を有する。主回路部40は、分散型電源6から供給された直流電力又は交流電力を、電力系統4に対応した交流電力に変換する。制御部42は、主回路部40の動作を制御する。
拡張カルマンフィルタの状態方程式は、次の(2)式で表すことができる。そして、拡張カルマンフィルタの出力方程式は、次の(3)式で表すことができる。
(2)式において、xは、次の(4)式に表すように、電力系統4の系統インピーダンスの抵抗成分R、リアクタンス成分X、及び無限大母線電力系統3の電圧値Vrを成分とする状態ベクトルである。但し、(4)式において、「T」は、転置を表す。
(2)式において、fは、状態ベクトルxの非線形関数である。(2)式において、wは、システムノイズのベクトルである。また、(2)式及び(3)式において、添え字の「k」は、時刻を表す。換言すれば、添え字「k」は、定期的に取得される有効電力値P、無効電力値Q、及び電圧値Vsに対応するデータの順序である。「k-1」は、「k」の1つ前のデータを表す。従って、(2)式は、1つ前の状態ベクトルxから現在の状態ベクトルxを推定することを表している。添え字「k」は、以下の各式においても同様である。
(5)式において、xfは、状態ベクトルxの予測値を表す。xaは、更新ステップにおいて更新された状態ベクトルxを表す。このように、この例では、更新後の状態ベクトルxaを、予測後の状態ベクトルxfとして用いる。
(6)式において、Jf(x)は、非線形関数fのヤコビアンで定義した行列であり、この例では、次の(7)式に表すように、(1,1,1)の対角行列である。
(6)式において、Pk-1は、1つ前の共分散行列、又は共分散行列の初期値である。(6)式において、Jf(x)Tは、ヤコビアン行列Jf(x)の転置行列である。また、(6)式において、Qk-1は、システムノイズwの共分散行列である。システムノイズwの共分散行列Qk-1は、次の(8)式に表すように、システムノイズw及びその転置行列の内積の期待値である。
制御部42は、予測ステップにおいて演算された各推定値^R、^X、^Vrに基づいて主回路部40を動作させるとともに、主回路部40を動作させた時の有効電力値P、無効電力値Q、及び電圧値Vsを取得する。推定値演算部50は、有効電力値P、無効電力値Q、及び電圧値Vsが取得された後、更新ステップを実行する。更新ステップにおいて、推定値演算部50は、取得された有効電力値P、無効電力値Q、及び電圧値Vsを基に、状態ベクトルxを更新する。
(9)式において、Jh(x)は、非線形関数hのヤコビアンで定義した行列である。この例において、非線形関数h(x)は、連系点LPの電圧値Vsであるから、Jh(x)は、次の(10)式のように表される。
(10)式において、∂Vs/∂R、∂Vs/∂X、∂Vs/∂Vrは、上記の(1)式から、それぞれ次の(11)式、(12)式、(13)式のように表される。
但し、(11)式、(12)式、(13)式において、Bは、次の(14)式、Cは、次の(15)式である。
また、上記の(9)式において、Jh(x)Tは、ヤコビアン行列Jh(x)の転置行列である。(9)式において、Rkは、観測ノイズvの共分散行列である。観測ノイズvの共分散行列Rkは、次の(16)式に表すように、観測ノイズv及びその転置行列の内積の期待値である。
(9)式において、[Jh(x)PfJh(x)T+Rk]-1の部分は、換言すれば、予測誤差(z-h(xf))に対する誤差共分散である。
(17)式において、h(xf)は、予測後の状態ベクトルxfから(1)式を用いて演算した電圧値Vsの予測値である。すなわち、推定値演算部50は、連系点LPの電圧値Vsの測定値zと、予測後の状態ベクトルxfを用いて演算した連系点LPの電圧値Vsの予測値h(xf)と、を基に、連系点LPの電圧値Vsの予測誤差を求める。推定値演算部50は、測定値zから予測値h(xf)を差し引くことで、予測誤差を求める。
推定値演算部50は、上記の予測ステップと更新ステップとを繰り返し実行する。これにより、拡張カルマンフィルタによって各推定値^R、^X、^Vrを予測し、予測に基づいて主回路部40の動作を制御することができる。これにより、連系点LPの電圧値Vsの変動を抑制することができる。なお、(18)式において、Iは、単位行列である。
図3は、無効電力演算部の動作の一例を模式的に表すグラフ図である。
図3の横軸は、連系点LPの無効電力値Qであり、図3の縦軸は、連系点LPの電圧値Vsである。
次回の連系点LPの電圧値をVs(n)、計測装置22で計測された前回の連系点LPの電圧値をVs(n-1)、次回の連系点LPの無効電力値をQn、計測装置22で計測された前回の連系点LPの無効電力値をQn-1とする時、次回の連系点LPの電圧値Vs(n)は、次の(20)式で表すことができる。
従って、次回の連系点LPの電圧値をVs(n)を指定値Vsrとした場合、次回の連系点LPの無効電力値Qnは、次の(21)式で表すことができる。
このように、無効電力演算部52は、推定値演算部50から入力された各値を基に、傾きKを演算するとともに、次回の連系点LPの無効電力値Qnを演算し、この次回の連系点LPの無効電力値Qnを無効電力指令値Qnとして演算する。
図4(a)の縦軸は、連系点LPの電圧値Vsと、無限大母線電力系統3の電圧値Vrである。このシミュレーションでは、指定値Vsrを無限大母線電力系統3の電圧値Vrとしている。
図4(b)の縦軸は、無効電力値Qと、連系点LPの電圧値Vsを無限大母線電力系統3の電圧値Vrとするための最適無効電力値Qopである。
図4(c)の縦軸は、傾きKである。
図4(a)~図4(c)の横軸は、時間である。また、図4(a)、図4(b)において、縦軸は、定格を「1p.u.」とする単位当たりの量で表している。
図4(a)~図4(c)に表したように、シミュレーションでは、無効電力指令値Qnの無効電力を連系点LPに注入することで、連系点LPの電圧値Vsは、無限大母線電力系統3の電圧値Vrに収束し、連系点LPの無効電力値Qは、最適無効電力値Qopに収束した。
電力変換装置10は、力率を制御可能な可制御範囲を有する。電力変換装置10における力率の可制御範囲は、例えば、±0.85以上の範囲である。すなわち、遅れ力率及び進み力率の双方で0.85以上1.00以下の範囲である。
図6は、シミュレーションに用いた干渉系統図である。
図6に表したように、シミュレーションでは、第1及び第2の2つの系統(電力変換装置10)が電力系統4に接続されている場合について検討する。
図7(a)は、第1系統の出力する有効電力P10、及び第1系統の有効電力の出力にともなう連系点の有効電力の変化分P1xの時間変化を模式的に表す。
図7(b)は、第2系統の出力する有効電力P20、及び第2系統の有効電力の出力にともなう連系点の有効電力の変化分P2xの時間変化を模式的に表す。
図7(c)は、第1系統の出力する無効電力Q10、及び第1系統の無効電力の出力にともなう連系点の無効電力の変化分Q1xの時間変化を模式的に表す。
図7(d)は、第2系統の出力する無効電力Q21、及び第2系統の無効電力の出力にともなう連系点の無効電力の変化分Q2xの時間変化を模式的に表す。
図7(e)は、第1系統の出力電圧Vs1の時間変化を模式的に表す。
図7(f)は、第2系統の出力電圧Vs2の時間変化を模式的に表す。
図8(a)は、連系点の有効電力値P、及び最適無効電力値Qopの時間変化を模式的に表す。
図8(b)は、連系点の電圧値Vsの時間変化を模式的に表す。
図8(c)は、系統インピーダンスの抵抗成分Rの推定値^R、及び電力系統4の系統インピーダンスのリアクタンス成分Xの推定値^Xの時間変化を模式的に表す。
図8(d)は、無限大母線電力系統3の電圧値Vrの推定値^Vrの時間変化を模式的に表す。
図8(e)は、(z-h(xf))で表される予測誤差errの時間変化を模式的に表す。
図9(a)は、第1系統の出力する有効電力P10、第1系統の有効電力の出力にともなう連系点の有効電力の変化分P1x、第1系統の出力する無効電力Q10、及び第1系統の無効電力の出力にともなう連系点の無効電力の変化分Q1xの時間変化を模式的に表す。
図9(b)は、第1系統の出力電圧Vs1の時間変化を模式的に表す。
図9(c)は、第1系統の力率Pf1の時間変化を模式的に表す。
図10(a)は、第1系統の出力する有効電力P10、第1系統の有効電力の出力にともなう連系点の有効電力の変化分P1x、第1系統の出力する無効電力Q10、及び第1系統の無効電力の出力にともなう連系点の無効電力の変化分Q1xの時間変化を模式的に表す。
図10(b)は、第1系統の出力電圧Vs1の時間変化を模式的に表す。
図10(c)は、第1系統の力率Pf1の時間変化を模式的に表す。
図10(d)は、系統インピーダンスの抵抗成分Rの推定値^R、及び電力系統4の系統インピーダンスのリアクタンス成分Xの推定値^Xの時間変化を模式的に表す。
図10(e)は、無限大母線電力系統3の電圧値Vrの推定値^Vrの時間変化を模式的に表す。
図10(f)は、傾きKの時間変化を模式的に表す。
図10(g)は、予測誤差errの絶対値の時間変化を模式的に表す。
図11(a)は、第2系統の出力する有効電力P20、第2系統の有効電力の出力にともなう連系点の有効電力の変化分P2x、第2系統の出力する無効電力Q21、及び第2系統の無効電力の出力にともなう連系点の無効電力の変化分Q2xの時間変化を模式的に表す。
図11(b)は、第2系統の出力電圧Vs2の時間変化を模式的に表す。
図11(c)は、第2系統の力率Pf2の時間変化を模式的に表す。
図11(d)は、第2系統の出力する有効電力P20、第2系統の有効電力の出力にともなう連系点の有効電力の変化分P2x、第2系統の出力する無効電力Q21、及び第2系統の無効電力の出力にともなう連系点の無効電力の変化分Q2xの時間変化を模式的に表す。
図11(e)は、第2系統の出力電圧Vs2の時間変化を模式的に表す。
図11(f)は、第2系統の力率Pf2の時間変化を模式的に表す。
図12は、第2系統で傾きK及び無効電力指令値Qnを演算する制御を行った場合の無効電力Qf、及び第2系統の無効電力の理論解Qsを模式的に表している。理論解Qsは、第2系統の出力電圧Vs2を無限大母線電力系統3の電圧値Vrとするための最適無効電力の理論解である。理論解Qsは、換言すれば、最適無効電力値Qopである。また、無効電力Qfの演算では、指定値Vsrを無限大母線電力系統3の電圧値Vrとしている。
図13(a)~図13(g)のそれぞれは、図10(a)~図10(g)のそれぞれと同じ特性の時間変化を模式的に表している。
図14(a)~図14(f)のそれぞれは、図11(a)~図11(f)のそれぞれと同じ特性の時間変化を模式的に表している。
図15は、図13の条件で第1系統を運転させた場合に、第2系統で傾きK及び無効電力指令値Qnを演算する制御を行った場合の無効電力Qf、及び第2系統の無効電力の理論解Qsを模式的に表している。
図16(a)は、定力率制御を行った場合の有効電力Ppf1と、拡張カルマンフィルタを用いた推定を行った場合の有効電力Ppf2の一例をそれぞれ模式的に表している。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
Claims (9)
- 分散型電源の電力を無限大母線電力系統につながる電力系統に対応した交流電力に変換し、変換後の交流電力を前記電力系統に供給することにより、前記分散型電源を前記電力系統と連系させる電力変換装置であって、
前記分散型電源の前記電力を、前記電力系統に対応した前記交流電力に変換する主回路部と、
前記主回路部の動作を制御する制御部と、
を備え、
前記制御部は、
非線形式に対応したカルマンフィルタを用いることにより、前記電力系統との連系点の有効電力値、前記連系点の無効電力値、及び前記連系点の電圧値を基に、前記電力系統の系統インピーダンスの抵抗成分の推定値と、前記系統インピーダンスのリアクタンス成分の推定値と、前記無限大母線電力系統の電圧値の推定値と、を演算する推定値演算部と、
前記連系点の電圧の指定値が入力され、前記電力系統との連系点の有効電力値、前記連系点の無効電力値、前記連系点の電圧値、前記系統インピーダンスの抵抗成分の推定値、前記系統インピーダンスのリアクタンス成分の推定値、前記無限大母線電力系統の電圧値の推定値、及び前記連系点の電圧の指定値を基に、前記連系点の電圧値を前記指定値に近付けるために前記電力系統に供給する無効電力の無効電力指令値を演算する無効電力演算部と、
所定の有効電力及び前記無効電力指令値に対応する無効電力を出力するように、前記主回路部を駆動する駆動回路と、
を有する電力変換装置。 - 前記無効電力演算部は、前記推定値演算部の演算結果を基に、前記連系点の電圧値の前記連系点の無効電力値に対する傾きを演算し、前回の連系点LPの無効電力値と、前回の連系点LPの電圧値と、前記指定値と、前記傾きと、を基に、前記無効電力指令値を演算する請求項1記載の電力変換装置。
- 前記推定値演算部は、前記非線形式に対応したカルマンフィルタとして拡張カルマンフィルタを用いる請求項1又は2に記載の電力変換装置。
- 前記推定値演算部は、前記系統インピーダンスの抵抗成分、前記系統インピーダンスのリアクタンス成分、及び前記無限大母線電力系統の電圧値を成分とする状態ベクトルの予測を行い、予測後の前記状態ベクトルの各成分を、それぞれ前記電力系統の系統インピーダンスの抵抗成分の推定値、前記系統インピーダンスのリアクタンス成分の推定値、及び前記無限大母線電力系統の電圧値の推定値として演算し、
前記制御部は、演算された前記推定値に基づいて前記主回路部を動作させるとともに、前記主回路部を動作させた時の前記有効電力値、前記無効電力値、及び前記連系点の電圧値を取得し、
前記推定値演算部は、取得された前記有効電力値、前記無効電力値、及び前記連系点の電圧値を基に、前記状態ベクトルを更新する請求項3記載の電力変換装置。 - 前記推定値演算部は、更新後の前記状態ベクトルを、予測後の前記状態ベクトルとして用いる請求項4記載の電力変換装置。
- 前記推定値演算部は、
前記状態ベクトルの予測を行うとともに、予測後の前記状態ベクトルの誤差に関する共分散行列の予測を行い、
前記有効電力値、前記無効電力値、及び前記連系点の電圧値の各測定値を取得した後、取得した各測定値と前記共分散行列とを基に、前記状態ベクトルを更新するためのカルマンゲインの最適化を行い、
前記連系点の電圧値の測定値と、予測後の前記状態ベクトルを用いて演算した前記連系点の電圧値の予測値と、を基に、前記連系点の電圧値の予測誤差を求め、
最適化した前記カルマンゲインと前記予測誤差とを基に前記状態ベクトルを更新するとともに、最適化した前記カルマンゲインを基に前記共分散行列を更新する請求項4又は5記載の電力変換装置。 - 前記推定値演算部は、前記予測誤差の絶対値が所定値以上である場合に、前記共分散行列を初期値にリセットする請求項6記載の電力変換装置。
- 前記推定値演算部は、前記系統インピーダンスの抵抗成分の推定値、前記系統インピーダンスのリアクタンス成分の推定値、及び前記無限大母線電力系統の電圧値の推定値のそれぞれの所定期間における平均値を算出し、算出した前記平均値を次の所定期間における前記状態ベクトルの初期値とする請求項4~7のいずれか1つに記載の電力変換装置。
- 分散型電源と、
前記分散型電源の電力を電力系統に対応した交流電力に変換し、変換後の交流電力を前記電力系統に供給することにより、前記分散型電源を前記電力系統と連系させる請求項1~8のいずれか1つに記載の電力変換装置と、
を備えた分散型電源システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/028886 WO2021014579A1 (ja) | 2019-07-23 | 2019-07-23 | 電力変換装置及び分散型電源システム |
AU2019425534A AU2019425534B2 (en) | 2019-07-23 | 2019-07-23 | Power conversion device and distributed power Source system |
EP19912195.5A EP4007106A4 (en) | 2019-07-23 | 2019-07-23 | POWER CONVERSION DEVICE AND DISTRIBUTED POWER SOURCE SYSTEM |
JP2020500764A JP6873587B1 (ja) | 2019-07-23 | 2019-07-23 | 電力変換装置及び分散型電源システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/028886 WO2021014579A1 (ja) | 2019-07-23 | 2019-07-23 | 電力変換装置及び分散型電源システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021014579A1 true WO2021014579A1 (ja) | 2021-01-28 |
Family
ID=74193550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/028886 WO2021014579A1 (ja) | 2019-07-23 | 2019-07-23 | 電力変換装置及び分散型電源システム |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4007106A4 (ja) |
JP (1) | JP6873587B1 (ja) |
AU (1) | AU2019425534B2 (ja) |
WO (1) | WO2021014579A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3141572A1 (fr) * | 2022-10-26 | 2024-05-03 | General Electric Company | Systèmes et procédés pour un stabilisateur de système électrique (pss) adaptatif |
FR3141573A1 (fr) * | 2022-10-26 | 2024-05-03 | General Electric Company | Systèmes et procédés pour un stabilisateur de système électrique (pss) adaptatif |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014199502A1 (ja) * | 2013-06-14 | 2014-12-18 | 株式会社 日立製作所 | 電力系統制御装置、システム及び方法 |
JP2017034739A (ja) * | 2015-07-28 | 2017-02-09 | 株式会社ダイヘン | 系統インピーダンス推定装置、インバータ装置、および、系統インピーダンス推定方法 |
JP2017063525A (ja) * | 2015-09-24 | 2017-03-30 | 東芝三菱電機産業システム株式会社 | 分散型電源システムの制御装置および制御方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4575272B2 (ja) * | 2005-10-27 | 2010-11-04 | 株式会社日立製作所 | 分散型電源システム及び系統安定化方法 |
US8406019B2 (en) * | 2008-09-15 | 2013-03-26 | General Electric Company | Reactive power compensation in solar power system |
US7923862B2 (en) * | 2009-10-06 | 2011-04-12 | General Electric Company | Reactive power regulation and voltage support for renewable energy plants |
US9389631B2 (en) * | 2012-05-30 | 2016-07-12 | General Electric Company | System and method for reactive power compensation |
LU92083B1 (en) * | 2012-10-15 | 2014-04-16 | Univ Luxembourg | Electrical inverter and method of operation |
EP3128637A1 (en) * | 2015-08-03 | 2017-02-08 | ABB Schweiz AG | Dc/ac converter apparatus comprising means for controlling the reactive power and power conversion and generation system comprising such dc/ac converter apparatus |
-
2019
- 2019-07-23 JP JP2020500764A patent/JP6873587B1/ja active Active
- 2019-07-23 EP EP19912195.5A patent/EP4007106A4/en active Pending
- 2019-07-23 AU AU2019425534A patent/AU2019425534B2/en active Active
- 2019-07-23 WO PCT/JP2019/028886 patent/WO2021014579A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014199502A1 (ja) * | 2013-06-14 | 2014-12-18 | 株式会社 日立製作所 | 電力系統制御装置、システム及び方法 |
JP2017034739A (ja) * | 2015-07-28 | 2017-02-09 | 株式会社ダイヘン | 系統インピーダンス推定装置、インバータ装置、および、系統インピーダンス推定方法 |
JP2017063525A (ja) * | 2015-09-24 | 2017-03-30 | 東芝三菱電機産業システム株式会社 | 分散型電源システムの制御装置および制御方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4007106A4 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021014579A1 (ja) | 2021-09-13 |
EP4007106A4 (en) | 2023-05-03 |
EP4007106A1 (en) | 2022-06-01 |
AU2019425534A1 (en) | 2021-02-11 |
JP6873587B1 (ja) | 2021-05-19 |
AU2019425534B2 (en) | 2021-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Abdelaziz et al. | Maximum loadability consideration in droop-controlled islanded microgrids optimal power flow | |
CN108054789A (zh) | 一种内嵌无功和电压的安全约束经济调度方法 | |
Haider et al. | A dual control strategy for power sharing improvement in islanded mode of AC microgrid | |
JP6873587B1 (ja) | 電力変換装置及び分散型電源システム | |
Saad et al. | Small-signal model predictive control based resilient energy storage management strategy for all electric ship MVDC voltage stabilization | |
Metry et al. | Sensorless current model predictive control for maximum power point tracking of single-phase subMultilevel inverter for photovoltaic systems | |
JP2016185018A (ja) | 系統電圧抑制制御装置及び系統電圧抑制制御方法 | |
Mohamed et al. | An adaptive control of remote hybrid microgrid based on the CMPN algorithm | |
Vu et al. | Model predictive control for power control in islanded DC microgrids | |
Haghighat et al. | A review of state-of-the-art flexible power point tracking algorithms in photovoltaic systems for grid support: Classification and application | |
CN110829448A (zh) | 面向交直流混合配电网的分布式电压互动支撑控制方法及系统 | |
JP6842815B1 (ja) | 電力変換装置及び分散型電源システム | |
Otomega et al. | Emergency alleviation of thermal overloads using model predictive control | |
JP7058056B2 (ja) | 電力変換装置及び分散型電源システム | |
JP2024136209A (ja) | 電力変換装置 | |
US10404185B2 (en) | Three phase medium voltage power conversion system for closed-loop applications | |
Mahmud et al. | Nonlinear partial feedback linearizing output feedback control of islanded DC microgrids | |
Roy et al. | Speed control of a DC-DC buck converter fed DC motor using an adaptive backstepping sliding mode control approach | |
CN116054120A (zh) | 直流微电网功率控制方法、系统、设备及存储介质 | |
JP6762078B1 (ja) | 電力系統特性アナライザ | |
Hussaini et al. | Droop coefficient design in droop control of power converters for improved load sharing: An artificial neural network approach | |
WO2023166676A1 (ja) | 電力変換装置、制御装置、及び分散型電源システム | |
Forozan Nasab et al. | Reactive power management in micro grid with considering power generation uncertainty and state estimation | |
Alhasheem et al. | Performance assessment of the VSC using two model predictive control schemes | |
Sami et al. | Reprint of: Adaptive supertwisting sliding mode control of multi-converter MVDC power systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020500764 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019425534 Country of ref document: AU Date of ref document: 20190723 Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19912195 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019912195 Country of ref document: EP Effective date: 20220223 |