WO2021014257A1 - 電極スラリーの作製方法、電極の作製方法、正極の作製方法、二次電池用電極、二次電池用正極 - Google Patents

電極スラリーの作製方法、電極の作製方法、正極の作製方法、二次電池用電極、二次電池用正極 Download PDF

Info

Publication number
WO2021014257A1
WO2021014257A1 PCT/IB2020/056445 IB2020056445W WO2021014257A1 WO 2021014257 A1 WO2021014257 A1 WO 2021014257A1 IB 2020056445 W IB2020056445 W IB 2020056445W WO 2021014257 A1 WO2021014257 A1 WO 2021014257A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
active material
negative electrode
mixture
Prior art date
Application number
PCT/IB2020/056445
Other languages
English (en)
French (fr)
Inventor
米田祐美子
栗城和貴
三上真弓
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2021014257A1 publication Critical patent/WO2021014257A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the uniformity of the present invention relates to an electrode for a secondary battery, a positive electrode for a secondary battery, a secondary battery, and a method for manufacturing the same.
  • the present invention relates to a product, process, machine, manufacture, or composition (composition of matter).
  • One aspect of the present invention relates to a semiconductor device, a display device, a light emitting device, a power storage device, a lighting device or an electronic device, or a method for manufacturing the same.
  • a power storage device refers to an element having a power storage function and a device in general.
  • a storage battery also referred to as a secondary battery
  • a storage battery such as a lithium ion secondary battery, a lithium ion capacitor, an all-solid-state battery, an electric double layer capacitor, and the like.
  • the electronic device refers to all devices having a power storage device, and an electro-optical device having a power storage device, an information terminal device having a power storage device, and the like are all electronic devices.
  • Lithium-ion secondary batteries which have particularly high output and high capacity, are mobile information terminals such as mobile phones, smartphones, or notebook computers, portable music players, digital cameras, medical devices, hybrid vehicles (HVs), and electric vehicles.
  • HVs hybrid vehicles
  • electric vehicles demand for next-generation clean energy vehicles such as (EV) or plug-in hybrid vehicles (PHV) is expanding rapidly with the development of the semiconductor industry, and it is becoming a modern computerized society as a source of rechargeable energy. It has become indispensable.
  • the lithium ion secondary battery has at least a positive electrode and a negative electrode having an active material capable of reversibly inserting and removing lithium ions, a separator located between the positive electrode and the negative electrode, and a non-aqueous electrolytic solution.
  • the positive electrode has a positive electrode active material and a positive electrode current collector, and is formed by applying a positive electrode slurry having a conductive auxiliary agent, a binder, and a positive electrode active material to the positive electrode current collector.
  • the negative electrode also has a negative electrode active material and a negative electrode current collector, and is formed by applying a negative electrode slurry having a conductive additive binder and a negative electrode active material to the negative electrode current collector.
  • the conductive auxiliary agent is added in order to efficiently obtain a conductive path from the active material to the current collector.
  • the positive electrode or the negative electrode contains a large amount of the conductive auxiliary agent, the amount of active material per electrode weight decreases, so that the battery capacity decreases. Therefore, there is a demand for a highly conductive conductive auxiliary agent that can efficiently secure a conductive path with a small amount.
  • Patent Document 1 the electron conductivity between the active materials or between the active material and the current collector is improved by mixing a conductive auxiliary agent such as acetylene black (AB) or graphite (graphite) particles.
  • a conductive auxiliary agent such as acetylene black (AB) or graphite (graphite) particles.
  • the average particle size of a generally used granular conductive auxiliary agent such as acetylene black is as large as several tens of nm to several hundreds of nm, surface contact with the active material is difficult and point contact is likely to occur. Therefore, the contact resistance between the active material and the conductive auxiliary agent is high.
  • the amount of the conductive auxiliary agent is increased in order to increase the contact points between the active material and the conductive auxiliary agent, the ratio of the amount of the active material in the electrode decreases, and the charge / discharge capacity of the battery decreases.
  • Patent Document 2 discloses that a single layer or a laminate of graphene (which is referred to as two-dimensional carbon in the document) is used as the conductive auxiliary agent instead of the particulate conductive auxiliary agent such as acetylene black. Has been done. Since the single layer or laminate of graphene has a two-dimensional spread, the adhesiveness between the active material and the conductive auxiliary agent is improved, and thus the conductivity of the electrode is improved.
  • Non-Patent Document 1 discloses an example in which graphene oxide (GO (Graphene Oxide) is reduced with thiourea to produce graphene.
  • GO graphene Oxide
  • RGO Reduced Graphene Oxide
  • JP-A-2002-110162 Japanese Unexamined Patent Publication No. 2012-64571
  • graphene has a high specific surface area, so it is difficult to disperse it, and graphene may aggregate.
  • agglomerated graphene is used as a conductive auxiliary agent, it is difficult to make it sufficiently function as a conductive auxiliary agent.
  • RGO has many defective structures due to oxidation and reduction, there is a concern about conductivity. Therefore, there is a demand for a method of combining graphene, which has few defective structures, with an active material without agglutinating.
  • an object of one aspect of the present invention to provide a method for producing a novel electrode slurry. Another object of the present invention is to provide a method for producing a novel positive electrode. Alternatively, one aspect of the present invention makes it an object to provide a new power storage device. Another object of the present invention is to provide a novel positive electrode slurry. Another object of the present invention is to provide a new positive electrode.
  • One aspect of the present invention is to mix a first mixture having a dispersion medium and an active material with a material having conductivity and having a hexagonal hexagon composed of six carbon atoms formed in a two-dimensional sheet shape. It has a first step of obtaining a second mixture, a second step of mixing the binder with the second mixture to obtain a third mixture, and a third step of kneading the third mixture. This is a method for producing an electrode slurry.
  • another aspect of the present invention is a first step of mixing a dispersion medium and an active material to obtain a first mixture, and the first mixture having conductivity and six carbon atoms.
  • the weight ratio of the material having conductivity and having a hexagon composed of six carbon atoms formed into a two-dimensional sheet in the electrode slurry is preferably 0.1 wt% or more and 10 wt% or less. ..
  • the oxygen content of the material having conductivity and having a hexagon composed of six carbon atoms formed in a two-dimensional sheet shape is 4 atm% or less.
  • the material having conductivity and having a hexagon composed of six carbon atoms formed in a two-dimensional sheet shape has a thickness of 1 nm or more and 100 nm or less.
  • the two-dimensional sheet shape does not mean only a two-dimensional plane, but includes a curved cross-sectional shape and a bent cross-sectional shape.
  • another aspect of the present invention is a material in which a hexagon composed of six carbon atoms is formed into a two-dimensional sheet having conductivity in a first mixture having a dispersion medium and an active material.
  • the first step of mixing to obtain a second mixture the second step of mixing the binder with the second mixture to obtain a third mixture, and the third step of kneading the third mixture to obtain an electrode slurry. It has a third step of obtaining the electrode slurry, a fourth step of applying the electrode slurry to the positive electrode current collector, and a fifth step of drying the electrode slurry, and the first step to the fifth step are performed in this order.
  • another aspect of the present invention is a first step of mixing a dispersion medium and an active material to obtain a first mixture, and the first mixture having conductivity and six carbon atoms.
  • a method for producing a positive electrode, wherein the first step to the sixth step are performed in this order.
  • the weight ratio of the material having conductivity and having a hexagon composed of six carbon atoms formed into a two-dimensional sheet in the electrode slurry is preferably 0.1 wt% or more and 10 wt% or less. ..
  • the oxygen content of the material having conductivity and having a hexagon composed of six carbon atoms formed in a two-dimensional sheet shape is 4 atm% or less.
  • the material having conductivity and having a hexagon composed of six carbon atoms formed in a two-dimensional sheet shape has a thickness of 1 nm or more and 100 nm or less.
  • another aspect of the present invention is a material and a connection in which a positive electrode active material, a conductive material, and a hexagon composed of six carbon atoms are formed in a two-dimensional sheet shape on a positive electrode current collector. It has a coating material, has a positive electrode active material, has conductivity, and has conductivity in the total weight of the material in which a hexagon composed of six carbon atoms is formed into a two-dimensional sheet and the binder.
  • the weight ratio of the material in which the hexagon consisting of six carbon atoms is formed into a two-dimensional sheet is 0.1 wt% or more and 10 wt% or less, and the hexagon composed of six carbon atoms is formed into a two-dimensional sheet.
  • the conductive material formed in 1 has an oxygen content of 4 atm% or less, and the conductive material in which a hexagon composed of six carbon atoms is formed into a two-dimensional sheet has a thickness of 1 nm or more and 100 nm or less. Is the positive electrode.
  • a method for producing a novel electrode slurry can be provided.
  • one aspect of the present invention can provide a novel method for producing a positive electrode.
  • a novel power storage device can be provided.
  • a novel positive electrode slurry can be provided.
  • a novel positive electrode can be provided by one aspect of the present invention.
  • FIG. 1 is a diagram illustrating an example of a method for manufacturing an electrode.
  • FIG. 2 is a diagram illustrating an example of a method for manufacturing an electrode.
  • 3A and 3B are cross-sectional views of the active material layer when graphene is used as the conductive additive.
  • 4A and 4B are diagrams illustrating a coin-type secondary battery.
  • 5A to 5D are diagrams illustrating a cylindrical secondary battery.
  • 6A and 6B are diagrams illustrating an example of a secondary battery.
  • 7A to 7D are diagrams illustrating an example of a secondary battery.
  • 8A and 8B are diagrams illustrating an example of a secondary battery.
  • 9A and 9B are diagrams illustrating an example of a secondary battery.
  • FIG. 10 is a diagram illustrating an example of a secondary battery.
  • 11A to 11C are views for explaining a laminated type secondary battery.
  • 12A and 12B are diagrams illustrating a laminated secondary battery.
  • FIG. 13 is a diagram showing the appearance of a laminated type secondary battery.
  • FIG. 14 is a diagram showing the appearance of a laminated type secondary battery.
  • 15A to 15C are diagrams illustrating a method for manufacturing a secondary battery.
  • 16A to 16E are diagrams illustrating a bendable secondary battery.
  • 17A and 17B are diagrams illustrating a bendable secondary battery.
  • 18A to 18G are diagrams illustrating an example of an electronic device.
  • 19A to 19C are diagrams illustrating an example of an electronic device.
  • FIG. 20 is a diagram illustrating an example of an electronic device.
  • 21A to 21D are diagrams illustrating an example of transportation equipment.
  • Graphene can be said to be a material having a structure in which a hexagon composed of six carbon atoms is formed in a two-dimensional sheet shape while having conductivity. Other such materials include carbon nanotubes and the like. Further, the number of layers of graphene is not particularly limited in the present specification, and may be single-layer graphene, multi-layer graphene, thin-layer graphene, or minor-layer graphene.
  • Examples of the method for producing graphene include a method of reducing graphene oxide to obtain RGO and a method of physically exfoliating graphite as described above.
  • reducing graphene oxide it is difficult to desorb all the oxygen contained in graphene oxide, and some oxygen remains on the RGO.
  • graphene is prepared by a method of physically exfoliating graphene, the obtained graphene contains only a small amount of oxygen.
  • the oxygen content of graphene produced by the method of physically exfoliating graphite is preferably 0 atm% or more and 4 atm% or less or more than 0 atm% and 4 atm% or less, more preferably 0 atm% or more and 2 atm% or less or more than 0 atm% and 2 atm. % Or less.
  • Electrode 1 A method for producing the electrode slurry and the electrode according to one aspect of the present invention will be described with reference to FIG. In this embodiment, a case where graphene is used as the conductive auxiliary agent will be described.
  • the conductive auxiliary agent is also called a conductive imparting agent or a conductive material, and a carbon material is used.
  • a mixture 101 having at least a dispersion medium (also referred to as a solvent) and an active material and graphene as a conductive auxiliary agent are prepared (step S11 in FIG. 1). Mixing these (step S12 in FIG. 1) gives the mixture 102 (step S13 in FIG. 1). RGO may be used as graphene.
  • the amount of the active material and graphene mixed is important. If the amount of the active material is large, the capacity of the positive electrode or the negative electrode produced is large, while the content of graphene, which is a conductive additive, is relatively small. If the amount of the conductive auxiliary agent is too small, the conductivity becomes low and the battery characteristics deteriorate. Therefore, the mixing amount of the active material and graphene is preferably the mixing amount that maximizes the amount of the active material while containing graphene capable of ensuring conductivity.
  • the compounding ratio (wt%) when the electrode slurry described later was prepared, the graphene which is the conductive auxiliary agent
  • the weight ratio is preferably 0.1 wt% or more and 10 wt% or less, and more preferably 0.2 wt% or more and 6 wt% or less.
  • the dispersion medium it is preferable to use a polar solvent.
  • a polar solvent N-methyl-2-pyrrolidone (abbreviation: NMP), N, N-dimethylformamide (abbreviation: DMF), dimethyl sulfoxide (abbreviation: DMSO) and the like can be used.
  • a binder is prepared (step S21 in FIG. 1), and the mixture 102 and the binder are mixed (step S22 in FIG. 1) to obtain a mixture 103 (step S23 in FIG. 1).
  • the mixing amount of the binder may be set according to the amount of graphene and the active material, and may be added so as to be 1 wt% or more and 5 wt% or less with respect to the electrode slurry.
  • PVDF polyvinylidene fluoride
  • polyimide polytetrafluoroethylene
  • polyvinyl chloride ethylenepropylene diene polymer
  • styrene-butadiene rubber acrylonitrile-butadiene rubber
  • fluororubber polyvinyl acetate, polymethylmethacrylate, polyethylene , Nitrocellulose and the like
  • PVDF polyvinylidene fluoride
  • polyimide polytetrafluoroethylene
  • polyvinyl chloride ethylenepropylene diene polymer
  • styrene-butadiene rubber acrylonitrile-butadiene rubber
  • fluororubber polyvinyl acetate, polymethylmethacrylate, polyethylene , Nitrocellulose and the like
  • a dispersion medium is prepared (step S31 in FIG. 1), and the dispersion medium is added to and mixed with the mixture 103 until a predetermined viscosity is reached (step S32 in FIG. 1), and then kneaded (step S31 in FIG. 1). S33).
  • an electrode slurry can be produced (step S34 in FIG. 1).
  • the electrode slurry may be prepared by kneading the mixture 103 without adding a dispersion medium (without performing S31 and S32).
  • the above-mentioned polar solvent can be used as the dispersion medium in this step.
  • Kneading refers to stirring or mixing using a kneader, but in a broad sense, it is synonymous with mixing. Therefore, the mixing performed in other steps may also be mixed using a kneader.
  • a current collector is prepared (step S41 in FIG. 1), and the electrode slurry prepared in step S34 is applied to one or both sides of the current collector by a roll coating method such as an applicator roll, a screen printing method, or a doctor blade. It is provided by a coating method such as a method, a spin coating method, or a bar coating method (step S42 in FIG. 1).
  • the electrode slurry coated on the current collector is dried by a method such as ventilation drying or vacuum drying (step S43 in FIG. 1).
  • This drying may be performed, for example, using hot air at 50 ° C. or higher and 170 ° C. or lower for 1 minute or longer and 10 hours or shorter, preferably 1 minute or longer and 1 hour or shorter.
  • This step evaporates the dispersion medium contained in the electrode slurry.
  • the dry atmosphere is not particularly limited.
  • a positive electrode or a negative electrode having graphene as a conductive auxiliary agent can be produced (step S44 in FIG. 1).
  • the electrode slurry has a dispersion medium, an active material, a conductive additive, and a binder.
  • the procedure for mixing the dispersion medium, the active material, the conductive auxiliary agent, and the binder is not particularly limited.
  • graphene having a low oxygen content which is produced by a method of physically (mechanically) peeling graphene, particularly graphite
  • a dispersion medium, an active material Depending on the procedure for mixing the conductive additive and the binder, graphene may aggregate, making it difficult to produce an electrode that exhibits good battery characteristics.
  • graphene is added to and mixed with the mixture of the dispersion medium and the active material, and then a binder is added, so that graphene does not aggregate and is good. It has been found that an electrode that exhibits various battery characteristics can be produced.
  • graphene having a large specific surface area may aggregate.
  • the aggregation of graphene and the adsorption of graphene on the surface of the active material compete with each other.
  • the mixture 102 since the amount of the active material is very large compared to the amount of graphene, it is considered that most of the graphene is adsorbed on the surface of the active material. Therefore, the procedure of adding graphene to the mixture of the dispersion medium and the active material is preferable.
  • active material particles having a small particle size for example, active material particles having a particle size of 1 ⁇ m or less are used, the specific surface area of the active material particles is large, and more conductive paths connecting the active material particles are required. In such a case, it is particularly preferable to use graphene, which can efficiently form a conductive path even with a small amount.
  • positive electrode active material include LiFePO 4 (lithium iron phosphate).
  • graphene produced by a method of physically (mechanically) exfoliating graphite can be used.
  • the graphene has a lower oxygen content and fewer defects than RGO. Therefore, it is a material having good conductivity.
  • the graphene as a conductive auxiliary agent, the content of the conductive auxiliary agent in the electrode and the electrode slurry can be reduced, so that a high-capacity secondary battery can be produced.
  • the graphene has a very low content of functional groups containing oxygen such as a carboxyl group, a hydroxyl group and an ether group, and therefore has low hydrophilicity. Therefore, an electrode having low water absorption or hygroscopicity can be produced by one aspect of the present invention. Moisture contained in the electrode may adversely affect the battery characteristics, but one aspect of the present invention makes it possible to produce an electrode that is not easily affected by water. Further, the electrode is not easily affected by moisture even if it is stored for a long time.
  • the film thickness of graphene is preferably 1 nm or more and 100 nm or less, more preferably 2 nm or more and 50 nm or less, and further preferably 5 nm or more and 10 nm or less.
  • the mixture 101 may be adjusted in steps S01 and S02. It is preferable to perform step S01 and step S02 because the mixture 101 having a suitable viscosity or concentration can be adjusted.
  • step S01 and step S02 because the mixture 101 having a suitable viscosity or concentration can be adjusted.
  • FIG. 2 the same operations as those in FIG. 1 are the same as those in FIG. 1, and detailed description thereof will be omitted.
  • the material that can be used for the above-mentioned active material may be any material that can insert and remove carrier ions such as lithium ions, and a positive electrode active material or a negative electrode active material can be used.
  • ⁇ Positive electrode active material for example, compounds such as LiFeO 2 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , Cr 2 O 5 , and MnO 2 can be used.
  • a lithium-containing composite phosphate (general formula LiMPO 4 (M is one or more of Fe (II), Mn (II), Co (II), Ni (II)) can be used.
  • Typical examples of the general formula LiMPO 4 are LiFePO 4 , LiNiPO 4 , LiCoPO 4 , LiMnPO 4 , LiFe a Ni b PO 4 , LiFe a Co b PO 4 , LiFe a Mn b PO 4 , LiNi a Co b PO 4 .
  • LiNi a Mn b PO 4 (a + b is 1 or less, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1), LiFe c Ni d Co e PO 4 , LiFe c Ni d Mn e PO 4 , LiNi c Co d Mn e PO 4 (c + d + e ⁇ 1, 0 ⁇ c ⁇ 1,0 ⁇ d ⁇ 1,0 ⁇ e ⁇ 1), LiFe f Ni g Co h Mn i PO 4 (f + g + h + i is 1 or less, 0 ⁇ f ⁇ 1,0 ⁇ Examples thereof include g ⁇ 1, 0 ⁇ h ⁇ 1, 0 ⁇ i ⁇ 1).
  • LiFePO 4 is preferable because it satisfies the requirements for the positive electrode active material in a well-balanced manner, such as safety, stability, high capacity density, high potential, and the presence of lithium ions extracted during initial oxidation (charging).
  • lithium-containing composite metal oxide having a layered rock salt type crystal structure examples include lithium cobalt oxide (LiCoO 2 ), LiNiO 2 , LiMnO 2 , Li 2 MnO 3 , LiNi 0.8 Co 0.2 O 2, and the like.
  • NiCo-based general formula is LiNi x Co 1-x O 2 (0 ⁇ x ⁇ 1)
  • LiNi 0.5 Mn 0.5 O 2 and other NiMn-based general formula is LiNi x Mn 1-x O) 2 (0 ⁇ x ⁇ 1)
  • LiNi 1/3 Mn 1/3 Co 1/3 O 2 and other NiMnCo-based materials also referred to as NMC.
  • LiCoO 2 has a large capacity, is stable in the atmosphere as compared to LiNiO 2, because of the advantages such a thermally stable than LiNiO 2, preferred.
  • lithium-containing composite manganese oxide having a spinel-type crystal structure examples include LiMn 2 O 4 , Li 1 + x Mn 2-x O 4 (0 ⁇ x ⁇ 2), and LiMn 2-x Al x O 4 (0 ⁇ . There are x ⁇ 2), LiMn 1.5 Ni 0.5 O 4, and the like.
  • Lithium-containing composite manganese oxide having a spinel-type crystal structure containing manganese such as LiMn 2 O 4 and a small amount of lithium nickelate (LiNi 1-x M x O 2 (0 ⁇ x ⁇ 1)) and LiNi 1- Mixing x M x O 2 (0 ⁇ x ⁇ 1) (M Co, Al, etc.) is preferable because it has advantages such as suppressing the elution of manganese.
  • Li (2-j) MSiO 4 is one or more of Fe (II), Mn (II), Co (II), Ni (II), 0 ⁇ j ⁇ 2).
  • Silicates can be used.
  • Typical examples of the general formula Li (2-j) MSiO 4 are Li (2-j) FeSiO 4 , Li (2-j) NiSiO 4 , Li (2-j) CoSiO 4 , Li (2-j) MnSiO.
  • the pear-con type compound include Fe 2 (MnO 4 ) 3 , Fe 2 (SO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3, and the like.
  • the carrier ion is an alkali metal ion other than lithium ion or an alkaline earth metal ion
  • the positive electrode active material in the above-mentioned substance containing lithium, instead of lithium, an alkali metal (for example, sodium, potassium, etc.), Alkaline earth metals (eg, calcium, strontium, barium beryllium, magnesium, etc.) may be used.
  • the positive electrode active material is a granular active material composed of secondary particles having an average particle size and a particle size distribution obtained by pulverizing, granulating and classifying a calcined product obtained by mixing a raw material compound in a predetermined ratio and firing it by an appropriate means. Substances can be used.
  • Niobium electrode active material for example, an alloy-based material, a carbon-based material, or the like can be used.
  • an element capable of performing a charge / discharge reaction by an alloying / dealloying reaction with lithium can be used.
  • a material containing at least one of silicon, tin, gallium, aluminum, germanium, lead, antimony, bismuth, silver, zinc, cadmium, indium and the like can be used.
  • Such elements have a larger capacity than carbon, and silicon in particular has a high theoretical capacity of 4200 mAh / g. Therefore, it is preferable to use silicon as the negative electrode active material. Moreover, you may use the compound which has these elements.
  • an element capable of performing a charge / discharge reaction by an alloying / dealloying reaction with lithium, a compound having the element, and the like may be referred to as an alloy-based material.
  • SiO refers to, for example, silicon monoxide.
  • SiO can also be expressed as SiO x .
  • x preferably has a value in the vicinity of 1.
  • x is preferably 0.2 or more and 1.5 or less, and preferably 0.3 or more and 1.2 or less.
  • any one or more of graphite, graphitizable carbon (soft carbon), graphitizable carbon (hard carbon), carbon nanotubes (CNT), graphene, carbon black and the like can be used. Just do it.
  • Examples of graphite include artificial graphite and natural graphite.
  • Examples of the artificial graphite include mesocarbon microbeads (MCMB), coke-based artificial graphite, pitch-based artificial graphite and the like.
  • MCMB mesocarbon microbeads
  • the artificial graphite spheroidal graphite having a spherical shape can be used.
  • MCMB may have a spherical shape, which is preferable.
  • MCMB is relatively easy to reduce its surface area and may be preferable.
  • Examples of natural graphite include scaly graphite and spheroidized natural graphite.
  • Graphite exhibits a potential as low as lithium metal when lithium ions are inserted into graphite (during the formation of a lithium-graphite interlayer compound) (0.05 V or more and 0.3 V or less vs. Li / Li + ). As a result, the lithium ion secondary battery can exhibit a high operating voltage. Further, graphite is preferable because it has advantages such as relatively high capacity per unit volume, relatively small volume expansion, low cost, and high safety as compared with lithium metal.
  • titanium dioxide TiO 2
  • lithium titanium oxide Li 4 Ti 5 O 12
  • lithium-graphite interlayer compound Li x C 6
  • niobium pentoxide Nb 2 O 5
  • oxidation Oxides such as tungsten (WO 2 ) and molybdenum oxide (MoO 2 ) can be used.
  • Li 2.6 Co 0.4 N 3 shows a large charge / discharge capacity (900 mAh / g, 1890 mAh / cm 3 ) and is preferable.
  • lithium ions are contained in the negative electrode active material, so that it can be combined with materials such as V 2 O 5 and Cr 3 O 8 which do not contain lithium ions as the positive electrode active material, which is preferable. .. Even when a material containing lithium ions is used as the positive electrode active material, a double nitride of lithium and a transition metal can be used as the negative electrode active material by desorbing the lithium ions contained in the positive electrode active material in advance.
  • a material that causes a conversion reaction can also be used as the negative electrode active material.
  • a transition metal oxide that does not form an alloy with lithium such as cobalt oxide (CoO), nickel oxide (NiO), and iron oxide (FeO)
  • CoO cobalt oxide
  • NiO nickel oxide
  • FeO iron oxide
  • oxides such as Fe 2 O 3 , CuO, Cu 2 O, RuO 2 , Cr 2 O 3 and sulfides such as CoS 0.89 , NiS and CuS, Zn 3 N 2 , Cu 3 N, Ge 3 N 4, etc., sulphides such as NiP 2 , FeP 2 , CoP 3 , and fluorides such as FeF 3 , BiF 3 .
  • the same materials as the conductive auxiliary agent and the binder that the positive electrode active material layer can have can be used.
  • a positive electrode current collector is used when producing a positive electrode
  • a negative electrode current collector is used when producing a negative electrode
  • the positive electrode current collector a material having high conductivity such as metals such as stainless steel, gold, platinum, aluminum and titanium, and alloys thereof can be used. Further, it is preferable that the material used for the positive electrode current collector does not elute at the potential of the positive electrode. Further, an aluminum alloy to which an element for improving heat resistance such as silicon, titanium, neodymium, scandium, and molybdenum is added can be used. Further, it may be formed of a metal element that reacts with silicon to form silicide.
  • metal elements that react with silicon to form silicide include zirconium, titanium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, cobalt, and nickel.
  • a foil shape, a plate shape (sheet shape), a net shape, a punching metal shape, an expanded metal shape, or the like can be appropriately used. It is preferable to use a current collector having a thickness of 5 ⁇ m or more and 30 ⁇ m or less.
  • the same material as the positive electrode current collector can be used for the negative electrode current collector.
  • the negative electrode current collector preferably uses a material that does not alloy with carrier ions such as lithium.
  • a lithium ion secondary battery including a positive electrode and / or a negative electrode manufactured by the manufacturing method of one aspect of the present invention will be described.
  • the lithium ion secondary battery has at least a positive electrode, a negative electrode and an electrolytic solution.
  • the positive electrode has a positive electrode active material layer and a positive electrode current collector, and is preferably manufactured by the manufacturing method shown in the first embodiment.
  • the positive electrode active material layer has a positive electrode active material, a conductive auxiliary agent, and a binder (also referred to as a binder).
  • a material having a structure in which a hexagon composed of six carbon atoms such as graphene is formed into a two-dimensional sheet is used as the conductive auxiliary agent.
  • graphene it is preferable to use graphene produced by a method of physically exfoliating graphite. As described above, graphene produced by the method of physically exfoliating graphite has few defects and low oxygen content, and therefore functions as a conductive auxiliary agent efficiently.
  • the film thickness of graphene is preferably 1 nm or more and 50 nm or less, and more preferably 5 nm or more and 10 nm or less.
  • the oxygen content of graphene is preferably 0 atm% or more and 2 atm% or less, and more preferably 0 atm% or more and 1 atm% or less.
  • FIG. 3A shows a vertical cross-sectional view of the active material layer 200 on the current collector 203.
  • the active material layer 200 includes a granular positive electrode active material 104, graphene 201 as a conductive auxiliary agent, and a binder (not shown).
  • graphene or multigraphene may be used as graphene 201.
  • graphene 201 preferably has a sheet-like shape.
  • the graphene 201 may be in the form of a sheet in which a plurality of multigraphenes or / or a plurality of graphenes are partially overlapped.
  • the positive electrode active material 104 may be primary particles or secondary particles.
  • the sheet-shaped graphene 201 is dispersed substantially uniformly inside the active material layer 200.
  • graphene 201 is schematically represented by a thick line in FIG. 3A, it is actually a thin film having a thickness of a single layer or multiple layers of carbon molecules.
  • the plurality of graphenes 201 are in surface contact with each other because they are formed so as to wrap and cover the plurality of granular positive electrode active materials 104 or to stick to the surface of the plurality of granular positive electrode active materials 104. .. Further, it is preferable that a part of graphene 201 is in close contact with the current collector 203.
  • a mesh-like graphene sheet (hereinafter referred to as graphene) can be formed by binding a plurality of graphenes to each other.
  • the graphene net can also function as a binder for binding the active materials to each other. Therefore, the total amount of the binder can be reduced or not used, so that the ratio of the active material to the electrode volume and the electrode weight can be improved. That is, the capacity of the lithium ion secondary battery can be increased.
  • the conductive auxiliary agent for the positive electrode is not particularly limited.
  • the conductive auxiliary agent a carbon material, a metal material, a conductive ceramic material, or the like can be used.
  • the content of the conductive additive with respect to the total amount of the active material layer is preferably 1 wt% or more and 10 wt% or less, and more preferably 1 wt% or more and 5 wt% or less.
  • graphene the above-mentioned content may be used.
  • the conductive auxiliary agent can form a network of electrical conductivity in the electrodes.
  • the conductive auxiliary agent can maintain the path of electrical conduction between the positive electrode active materials.
  • the conductive auxiliary agent for example, natural graphite, artificial graphite such as mesocarbon microbeads, carbon fiber, or the like can be used.
  • carbon fibers for example, carbon fibers such as mesophase pitch carbon fibers and isotropic pitch carbon fibers can be used.
  • carbon fiber, carbon nanofiber, carbon nanotube, or the like can be used.
  • the carbon nanotubes can be produced by, for example, a vapor phase growth method.
  • a carbon material such as carbon black (acetylene black (AB) or the like), graphite (graphite) particles, graphene, fullerene or the like can be used.
  • metal powders such as copper, nickel, aluminum, silver and gold, metal fibers, conductive ceramic materials and the like can be used.
  • the binder for example, it is preferable to use a rubber material such as styrene-butadiene rubber (SBR), styrene-isoprene-styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, or ethylene-propylene-diene copolymer. Further, fluororubber can be used as the binder.
  • SBR styrene-butadiene rubber
  • fluororubber can be used as the binder.
  • a water-soluble polymer for example, a polysaccharide or the like can be used.
  • a polysaccharide for example, cellulose derivatives such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose and regenerated cellulose, starch and the like can be used. Further, it is more preferable to use these water-soluble polymers in combination with the above-mentioned rubber material.
  • polystyrene methyl polyacrylate, polymethyl methacrylate (PMMA), sodium polyacrylate, polyvinyl alcohol (PVA), polyethylene oxide (PEO), polypropylene oxide, polyimide, polyvinyl chloride, poly
  • PVA polyvinyl alcohol
  • PEO polyethylene oxide
  • PEO polypropylene oxide
  • polyimide polyvinyl chloride
  • materials such as tetrafluoroethylene, polyethylene, polypropylene, polyisobutylene, polyethylene terephthalate, nylon, polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), ethylenepropylene diene polymer, polyvinyl acetate, and nitrocellulose.
  • a plurality of the above may be used in combination.
  • a material having a particularly excellent viscosity adjusting effect may be used in combination with another material.
  • a rubber material or the like has excellent adhesive strength and elastic strength, but it may be difficult to adjust the viscosity when mixed with a solvent. In such a case, for example, it is preferable to mix with a material having a particularly excellent viscosity adjusting effect.
  • a material having a particularly excellent viscosity adjusting effect for example, a water-soluble polymer may be used.
  • the water-soluble polymer having a particularly excellent viscosity adjusting effect the above-mentioned polysaccharides such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose and cellulose derivatives such as diacetyl cellulose and regenerated cellulose, and starch are used. be able to.
  • CMC carboxymethyl cellulose
  • methyl cellulose methyl cellulose
  • ethyl cellulose methyl cellulose
  • hydroxypropyl cellulose hydroxypropyl cellulose
  • cellulose derivatives such as diacetyl cellulose and regenerated cellulose
  • the solubility of a cellulose derivative such as carboxymethyl cellulose is increased by using a salt such as a sodium salt or an ammonium salt of carboxymethyl cellulose, and the effect as a viscosity adjusting agent is easily exhibited.
  • a salt such as a sodium salt or an ammonium salt of carboxymethyl cellulose
  • the cellulose and the cellulose derivative used as the binder for the electrode include salts thereof.
  • the water-soluble polymer stabilizes its viscosity by being dissolved in water, and can stably disperse an active material and other materials to be combined as a binder, such as styrene-butadiene rubber, in an aqueous solution. Further, since it has a functional group, it is expected that it can be easily stably adsorbed on the surface of the active material. In addition, many cellulose derivatives such as carboxymethyl cellulose have functional groups such as hydroxyl groups and carboxyl groups, and because they have functional groups, the polymers interact with each other and exist widely covering the surface of the active material. There is expected.
  • the passivation film is a film having no electrical conductivity or a film having extremely low electron conductivity.
  • the battery reaction potential may be changed. Decomposition of the electrolytic solution can be suppressed. Further, it is more desirable that the passivation membrane suppresses the conductivity of electricity and can conduct lithium ions.
  • ⁇ Positive current collector> As the positive electrode current collector, the material described in the first embodiment can be used.
  • the negative electrode has a negative electrode active material layer and a negative electrode current collector. Further, the negative electrode active material layer may have a conductive auxiliary agent and a binder. It may be produced by the production method shown in the first embodiment.
  • a material having a structure in which a hexagon composed of six carbon atoms such as graphene is formed into a two-dimensional sheet is used as the conductive auxiliary agent. ..
  • graphene it is preferable to use graphene produced by a method of physically exfoliating graphite.
  • the film thickness of graphene is preferably 1 nm or more and 50 nm or less, and more preferably 5 nm or more and 10 nm or less.
  • the oxygen content of graphene is preferably 0 atm% or more and 2 atm% or less, and more preferably 0 atm% or more and 1 atm% or less.
  • the material used for the negative electrode is not particularly limited.
  • ⁇ Negative electrode active material> As the negative electrode active material, the material described in the first embodiment can be used.
  • ⁇ Negative electrode current collector> The material described in the first embodiment can be used for the negative electrode current collector.
  • the electrolyte has a solvent and an electrolyte.
  • the solvent of the electrolytic solution is preferably an aprotic organic solvent, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, chloroethylene carbonate, vinylene carbonate, ⁇ -butylolactone, ⁇ -valerolactone, dimethyl carbonate.
  • DMC diethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • methyl formate methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, 1,3-dioxane, 1,4 -Use one of dioxane, dimethoxyethane (DME), dimethyl sulfoxide, diethyl ether, methyl diglyme, acetonitrile, benzonitrile, tetrahydrofuran, sulfolane, sulton, etc., or two or more of them in any combination and ratio. be able to.
  • Ionic liquids normal temperature molten salt
  • Ionic liquids which are flame-retardant and volatile as the solvent of the electrolytic solution
  • the internal temperature rises due to an internal short circuit of the power storage device, overcharging, or the like.
  • Ionic liquids consist of cations and anions, including organic cations and anions.
  • organic cation used in the electrolytic solution examples include aliphatic onium cations such as quaternary ammonium cation, tertiary sulfonium cation, and quaternary phosphonium cation, and aromatic cations such as imidazolium cation and pyridinium cation.
  • organic cation used in the electrolytic solution monovalent amide anion, monovalent methide anion, fluorosulfonic acid anion, perfluoroalkyl sulfonic acid anion, tetrafluoroborate anion, perfluoroalkyl borate anion, hexafluorophosphate anion. , Or perfluoroalkyl phosphate anion and the like.
  • the electrolytic solution used in the power storage device it is preferable to use a highly purified electrolytic solution having a small content of elements other than granular dust and constituent elements of the electrolytic solution (hereinafter, also simply referred to as "impurities").
  • the weight ratio of impurities to the electrolytic solution is preferably 1% or less, preferably 0.1% or less, and more preferably 0.01% or less.
  • the electrolytic solution contains vinylene carbonate, propane sultone (PS), tert-butylbenzene (TBB), fluoroethylene carbonate (FEC), lithium bis (oxalate) borate (LiBOB), and dinitrile compounds such as succinonitrile and adiponitrile.
  • Additives may be added.
  • the concentration of the additive may be, for example, 0.1 wt% or more and 5 wt% or less with respect to the entire solvent.
  • a polymer gel electrolyte obtained by swelling the polymer with an electrolytic solution may be used.
  • the secondary battery can be made thinner and lighter.
  • silicone gel silicone gel, acrylic gel, acrylonitrile gel, polyethylene oxide gel, polypropylene oxide gel, fluorine polymer gel and the like
  • a polymer having a polyalkylene oxide structure such as polyethylene oxide (PEO), PVDF, polyacrylonitrile, and the like, and a copolymer containing them
  • PVDF-HFP which is a copolymer of PVDF and hexafluoropropylene (HFP)
  • the polymer to be formed may have a porous shape.
  • a solid electrolyte having an inorganic material such as a sulfide type or an oxide type, or a solid electrolyte having a polymer material such as PEO (polyethylene oxide) type can be used.
  • PEO polyethylene oxide
  • the positive electrode slurry or electrode produced by the production method of one aspect of the present invention can also be applied to an all-solid-state battery.
  • an all-solid-state battery having high safety and good characteristics can be obtained.
  • FIG. 4A is an external view of a coin-type (single-layer flat type) secondary battery
  • FIG. 4B is a cross-sectional view thereof.
  • a positive electrode can 301 that also serves as a positive electrode terminal and a negative electrode can 302 that also serves as a negative electrode terminal are insulated and sealed with a gasket 303 that is made of polypropylene or the like.
  • the positive electrode 304 is formed by a positive electrode current collector 305 and a positive electrode active material layer 306 provided in contact with the positive electrode current collector 305.
  • the negative electrode 307 is formed by a negative electrode current collector 308 and a negative electrode active material layer 309 provided in contact with the negative electrode current collector 308.
  • the positive electrode 304 and the negative electrode 307 used in the coin-type secondary battery 300 may have an active material layer formed on only one side thereof.
  • the positive electrode can 301 and the negative electrode can 302 metals such as nickel, aluminum, and titanium that are corrosion resistant to the electrolytic solution, or alloys thereof or alloys of these and other metals (for example, stainless steel) may be used. it can. Further, in order to prevent corrosion by the electrolytic solution, it is preferable to coat with nickel, aluminum or the like.
  • the positive electrode can 301 is electrically connected to the positive electrode 304
  • the negative electrode can 302 is electrically connected to the negative electrode 307.
  • the electrolyte is immersed in the negative electrode 307, the positive electrode 304, and the separator 310, and as shown in FIG. 4B, the positive electrode 304, the separator 310, the negative electrode 307, and the negative electrode can 302 are laminated in this order with the positive electrode can 301 facing down, and the positive electrode can 301 is laminated. And the negative electrode can 302 are crimped via the gasket 303 to manufacture a coin-shaped secondary battery 300.
  • the secondary battery preferably has a separator.
  • the separator include fibers having cellulose such as paper, non-woven fabrics, glass fibers, ceramics, or synthetic fibers using nylon (polyamide), vinylon (polyvinyl alcohol-based fiber), polyester, acrylic, polyolefin, and polyurethane. It is possible to use the one formed by. It is preferable that the separator is processed into a bag shape and arranged so as to wrap either the positive electrode or the negative electrode.
  • the separator may have a multi-layer structure.
  • an organic material film such as polypropylene or polyethylene can be coated with a ceramic material, a fluorine material, a polyamide material, or a mixture thereof.
  • the ceramic material for example, aluminum oxide particles, silicon oxide particles and the like can be used.
  • the fluorine-based material for example, PVDF, polytetrafluoroethylene and the like can be used.
  • the polyamide-based material for example, nylon, aramid (meth-based aramid, para-based aramid) and the like can be used.
  • the oxidation resistance is improved by coating with a ceramic material, deterioration of the separator during high voltage charging / discharging can be suppressed, and the reliability of the secondary battery can be improved. Further, when a fluorine-based material is coated, the separator and the electrode are easily brought into close contact with each other, and the output characteristics can be improved. Coating a polyamide-based material, particularly aramid, improves heat resistance and thus can improve the safety of the secondary battery.
  • a mixed material of aluminum oxide and aramid may be coated on both sides of a polypropylene film.
  • the surface of the polypropylene film in contact with the positive electrode may be coated with a mixed material of aluminum oxide and aramid, and the surface in contact with the negative electrode may be coated with a fluorine-based material.
  • the safety of the secondary battery can be maintained even if the thickness of the entire separator is thin, so that the capacity per volume of the secondary battery can be increased.
  • the cylindrical secondary battery 600 has a positive electrode cap (battery lid) 601 on the upper surface and a battery can (outer can) 602 on the side surface and the bottom surface.
  • the positive electrode cap and the battery can (outer can) 602 are insulated by a gasket (insulating packing) 610.
  • FIG. 5B is a diagram schematically showing a cross section of a cylindrical secondary battery.
  • a battery element in which a strip-shaped positive electrode 604 and a negative electrode 606 are wound with a separator 605 sandwiched between them is provided inside the hollow cylindrical battery can 602.
  • the battery element is wound around the center pin.
  • One end of the battery can 602 is closed and the other end is open.
  • a metal such as nickel, aluminum, or titanium having corrosion resistance to an electrolytic solution, or an alloy thereof or an alloy between these and another metal (for example, stainless steel or the like) can be used. .. Further, in order to prevent corrosion by the electrolytic solution, it is preferable to coat with nickel, aluminum or the like.
  • the battery element in which the positive electrode, the negative electrode, and the separator are wound is sandwiched between a pair of insulating plates 608 and 609 facing each other. Further, a non-aqueous electrolytic solution (not shown) is injected into the inside of the battery can 602 provided with the battery element.
  • the non-aqueous electrolyte solution the same one as that of a coin-type secondary battery can be used.
  • a positive electrode terminal (positive electrode current collecting lead) 603 is connected to the positive electrode 604, and a negative electrode terminal (negative electrode current collecting lead) 607 is connected to the negative electrode 606.
  • a metal material such as aluminum can be used for both the positive terminal 603 and the negative terminal 607.
  • the positive electrode terminal 603 is resistance welded to the safety valve mechanism 612, and the negative electrode terminal 607 is resistance welded to the bottom of the battery can 602.
  • the safety valve mechanism 612 is electrically connected to the positive electrode cap 601 via a PTC element (Positive Temperature Coefficient) 611.
  • the safety valve mechanism 612 disconnects the electrical connection between the positive electrode cap 601 and the positive electrode 604 when the increase in the internal pressure of the battery exceeds a predetermined threshold value.
  • the PTC element 611 is a heat-sensitive resistance element whose resistance increases when the temperature rises, and the amount of current is limited by the increase in resistance to prevent abnormal heat generation.
  • Barium titanate (BaTIO 3 ) -based semiconductor ceramics or the like can be used as the PTC element.
  • a plurality of secondary batteries 600 may be sandwiched between the conductive plate 613 and the conductive plate 614 to form the module 615.
  • the plurality of secondary batteries 600 may be connected in parallel, may be connected in series, or may be connected in parallel and then further connected in series.
  • FIG. 5D is a top view of the module 615.
  • the conductive plate 613 is shown by a dotted line for clarity.
  • the module 615 may have a lead wire 616 that electrically connects a plurality of secondary batteries 600.
  • a conductive plate can be superposed on the conducting wire 616.
  • the temperature control device 617 may be provided between the plurality of secondary batteries 600. When the secondary battery 600 is overheated, it can be cooled by the temperature control device 617, and when the secondary battery 600 is too cold, it can be heated by the temperature control device 617. Therefore, the performance of the module 615 is less affected by the outside air temperature.
  • the power storage device includes a circuit board 900 and a secondary battery 913.
  • a label 910 is affixed to the secondary battery 913.
  • the power storage device has a terminal 951, a terminal 952, an antenna 914, and an antenna 915.
  • the circuit board 900 has a terminal 911 and a circuit 912.
  • Terminal 911 is connected to terminal 951, terminal 952, antenna 914, antenna 915, and circuit 912.
  • a plurality of terminals 911 may be provided, and each of the plurality of terminals 911 may be used as a control signal input terminal, a power supply terminal, or the like.
  • the circuit 912 may be provided on the back surface of the circuit board 900.
  • the antenna 914 and the antenna 915 are not limited to the coil shape, and may be, for example, a linear shape or a plate shape. Further, antennas such as a flat antenna, an open surface antenna, a traveling wave antenna, an EH antenna, a magnetic field antenna, and a dielectric antenna may be used. Alternatively, the antenna 914 or the antenna 915 may be a flat conductor. This flat plate-shaped conductor can function as one of the conductors for electric field coupling. That is, the antenna 914 or the antenna 915 may function as one of the two conductors of the capacitor. As a result, electric power can be exchanged not only by an electromagnetic field and a magnetic field but also by an electric field.
  • the line width of the antenna 914 is preferably larger than the line width of the antenna 915. As a result, the amount of electric power received by the antenna 914 can be increased.
  • the power storage device has a layer 916 between the antenna 914 and the antenna 915 and the secondary battery 913.
  • the layer 916 has a function of shielding the electromagnetic field generated by the secondary battery 913, for example.
  • a magnetic material can be used as the layer 916.
  • the structure of the power storage device is not limited to FIG.
  • antennas may be provided on each of the pair of facing surfaces of the secondary battery 913 shown in FIGS. 6A and 6B.
  • FIG. 7A is an external view of the pair of surfaces viewed from one side
  • FIG. 7B is an external view of the pair of surfaces viewed from the other side.
  • the description of the power storage device shown in FIGS. 6A and 6B can be appropriately referred to for the same portion as the power storage device shown in FIGS. 6A and 6B.
  • the antenna 914 is provided on one side of the pair of surfaces of the secondary battery 913 with the layer 916 interposed therebetween, and as shown in FIG. 7B, the layer 917 is provided on the other side of the pair of surfaces of the secondary battery 913.
  • An antenna 915 is provided on the sandwich.
  • the layer 917 has a function of shielding the electromagnetic field generated by the secondary battery 913, for example.
  • a magnetic material can be used as the layer 917.
  • the sizes of both the antenna 914 and the antenna 915 can be increased.
  • FIGS. 7C and 7D separate antennas may be provided on each of the pair of facing surfaces of the secondary battery 913 shown in FIGS. 6A and 6B.
  • FIG. 7C is an external view of the pair of surfaces viewed from one side
  • FIG. 7D is an external view of the pair of surfaces viewed from the other side.
  • the description of the power storage device shown in FIGS. 6A and 6B can be appropriately referred to for the same portion as the power storage device shown in FIGS. 6A and 6B.
  • the antenna 914 and the antenna 915 are provided on one of the pair of surfaces of the secondary battery 913 with the layer 916 interposed therebetween, and as shown in FIG. 7D, the other of the pair of surfaces of the secondary battery 913 is provided.
  • the antenna 918 is provided across the layer 917.
  • the antenna 918 has, for example, a function capable of performing data communication with an external device.
  • an antenna having a shape applicable to the antenna 914 and the antenna 915 can be applied.
  • a response method that can be used between the power storage device and the other device such as NFC can be applied.
  • the display device 920 may be provided in the secondary battery 913 shown in FIGS. 6A and 6B.
  • the display device 920 is electrically connected to the terminal 911 via the terminal 919. It is not necessary to provide the label 910 on the portion where the display device 920 is provided.
  • the description of the power storage device shown in FIGS. 6A and 6B can be appropriately referred to for the same portion as the power storage device shown in FIGS. 6A and 6B.
  • the display device 920 may display, for example, an image showing whether or not charging is in progress, an image showing the amount of stored electricity, and the like.
  • an electronic paper for example, a liquid crystal display device, an electroluminescence (also referred to as EL) display device, or the like can be used.
  • the power consumption of the display device 920 can be reduced by using electronic paper.
  • the sensor 921 may be provided in the secondary battery 913 shown in FIGS. 6A and 6B.
  • the sensor 921 is electrically connected to the terminal 911 via the terminal 922.
  • the description of the power storage device shown in FIGS. 6A and 6B can be appropriately referred to for the same portion as the power storage device shown in FIGS. 6A and 6B.
  • the sensor 921 includes, for example, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current, voltage, power, radiation, flow rate. , Humidity, inclination, vibration, odor, or infrared rays may be measured.
  • data temperature or the like
  • indicating the environment in which the power storage device is placed can be detected and stored in the memory in the circuit 912.
  • the secondary battery 913 shown in FIG. 9A has a winding body 950 provided with terminals 951 and 952 inside the housing 930.
  • the wound body 950 is impregnated with the electrolytic solution inside the housing 930.
  • the terminal 952 is in contact with the housing 930, and the terminal 951 is not in contact with the housing 930 by using an insulating material or the like.
  • the housing 930 is shown separately for convenience, but in reality, the winding body 950 is covered with the housing 930, and the terminals 951 and 952 extend outside the housing 930.
  • a metal material for example, aluminum
  • a resin material can be used as the housing 930.
  • the housing 930 shown in FIG. 9A may be formed of a plurality of materials.
  • the housing 930a and the housing 930b are bonded to each other, and the winding body 950 is provided in the region surrounded by the housing 930a and the housing 930b.
  • an insulating material such as an organic resin can be used.
  • an antenna such as an antenna 914 or an antenna 915 may be provided inside the housing 930a.
  • a metal material can be used as the housing 930b.
  • the wound body 950 has a negative electrode 931, a positive electrode 932, and a separator 933.
  • the wound body 950 is a wound body in which the negative electrode 931 and the positive electrode 932 are overlapped and laminated with the separator 933 interposed therebetween, and the laminated sheet is wound.
  • a plurality of layers of the negative electrode 931, the positive electrode 932, and the separator 933 may be further laminated.
  • the negative electrode 931 is connected to the terminal 911 shown in FIG. 6 via one of the terminal 951 and the terminal 952.
  • the positive electrode 932 is connected to the terminal 911 shown in FIG. 6 via the other of the terminal 951 and the terminal 952.
  • the laminated type secondary battery has a flexible structure
  • the secondary battery can be bent according to the deformation of the electronic device if it is mounted on an electronic device having at least a part of the flexible portion. it can.
  • the laminated type secondary battery 980 will be described with reference to FIGS. 11A to 11C.
  • the laminated secondary battery 980 has a wound body 993 shown in FIG. 11A.
  • the wound body 993 has a negative electrode 994, a positive electrode 995, and a separator 966. Similar to the winding body 950 described with reference to FIG. 6, the wound body 993 is formed by laminating a negative electrode 994 and a positive electrode 995 on top of each other with a separator 966 interposed therebetween, and winding the laminated sheet.
  • the number of layers of the negative electrode 994, the positive electrode 995, and the separator 966 may be appropriately designed according to the required capacity and the element volume.
  • the negative electrode 994 is connected to the negative electrode current collector (not shown) via one of the lead electrode 997 and the lead electrode 998
  • the positive electrode 995 is connected to the positive electrode current collector (not shown) via the other of the lead electrode 997 and the lead electrode 998. Is connected to.
  • the above-mentioned winding body 993 is housed in a space formed by bonding a film 981 as an exterior body and a film 982 having a recess by thermocompression bonding or the like, and is shown in FIG. 11C.
  • the secondary battery 980 can be manufactured as described above.
  • the wound body 993 has a lead electrode 997 and a lead electrode 998, and the inside of the space surrounded by the film 981 and the film 982 having a recess is impregnated with the electrolytic solution.
  • a metal material such as aluminum or a resin material can be used. If a resin material is used as the material of the film 981 and the film 982 having a recess, the film 981 and the film 982 having a recess can be deformed when an external force is applied to produce a flexible storage battery. be able to.
  • FIGS. 11B and 11C show an example in which two films are used, a space may be formed by bending one film, and the above-mentioned winding body 993 may be stored in the space.
  • FIGS. 11A to 11C an example of the secondary battery 980 having a wound body in the space formed by the film serving as the exterior body has been described.
  • a strip-shaped battery is formed in the space formed by the film serving as the exterior body. It may be a secondary battery having a plurality of positive electrodes, separators and negative electrodes.
  • the laminated secondary battery 500 shown in FIG. 12A includes a positive electrode 503 having a positive electrode current collector 501 and a positive electrode active material layer 502, a negative electrode 506 having a negative electrode current collector 504 and a negative electrode active material layer 505, and a separator 507. , The electrolytic solution 508, and the exterior body 509. A separator 507 is installed between the positive electrode 503 and the negative electrode 506 provided in the exterior body 509. Further, the inside of the exterior body 509 is filled with the electrolytic solution 508. As the electrolytic solution 508, the electrolytic solution shown in the second embodiment can be used.
  • the positive electrode current collector 501 and the negative electrode current collector 504 also serve as terminals for obtaining electrical contact with the outside. Therefore, a part of the positive electrode current collector 501 and the negative electrode current collector 504 may be arranged so as to be exposed to the outside from the exterior body 509. Further, the positive electrode current collector 501 and the negative electrode current collector 504 are not exposed to the outside from the exterior body 509, and the lead electrode is ultrasonically bonded to the positive electrode current collector 501 or the negative electrode current collector 504 using a lead electrode. It may be allowed to expose the lead electrode to the outside.
  • the exterior body 509 has a highly flexible metal such as aluminum, stainless steel, copper, and nickel on a film made of a material such as polyethylene, polypropylene, polycarbonate, ionomer, and polyamide.
  • a three-layer structure laminate film in which a thin film is provided and an insulating synthetic resin film such as a polyamide resin or a polyester resin is provided on the metal thin film as the outer surface of the exterior body can be used.
  • FIG. 12B an example of the cross-sectional structure of the laminated secondary battery 500 is shown in FIG. 12B.
  • FIG. 12A shows an example of being composed of two current collectors for simplicity, it is actually composed of a plurality of electrode layers.
  • the number of electrode layers is 16 as an example. Even if the number of electrode layers is 16, the secondary battery 500 has flexibility.
  • FIG. 12B shows a structure in which the negative electrode current collector 504 has eight layers and the positive electrode current collector 501 has eight layers, for a total of 16 layers. Note that FIG. 12B shows a cross section of the negative electrode extraction portion, in which eight layers of negative electrode current collectors 504 are ultrasonically bonded.
  • the number of electrode layers is not limited to 16, and may be large or small. When the number of electrode layers is large, a secondary battery having a larger capacity can be used. Further, when the number of electrode layers is small, the thickness can be reduced and a secondary battery having excellent flexibility can be obtained.
  • FIGS. 13 and 14 have a positive electrode 503, a negative electrode 506, a separator 507, an exterior body 509, a positive electrode lead electrode 510, and a negative electrode lead electrode 511.
  • FIG. 15A shows an external view of the positive electrode 503 and the negative electrode 506.
  • the positive electrode 503 has a positive electrode current collector 501, and the positive electrode active material layer 502 is formed on the surface of the positive electrode current collector 501. Further, the positive electrode 503 has a region (hereinafter, referred to as a tab region) in which the positive electrode current collector 501 is partially exposed.
  • the negative electrode 506 has a negative electrode current collector 504, and the negative electrode active material layer 505 is formed on the surface of the negative electrode current collector 504. Further, the negative electrode 506 has a region where the negative electrode current collector 504 is partially exposed, that is, a tab region.
  • the area and shape of the tab region of the positive electrode and the negative electrode are not limited to the example shown in FIG. 15A.
  • FIG. 15B shows the negative electrode 506, the separator 507, and the positive electrode 503 laminated.
  • an example in which 5 sets of negative electrodes and 4 sets of positive electrodes are used is shown.
  • the tab regions of the positive electrode 503 are joined to each other, and the positive electrode lead electrode 510 is joined to the tab region of the positive electrode on the outermost surface.
  • bonding for example, ultrasonic welding or the like may be used.
  • the tab regions of the negative electrode 506 are bonded to each other, and the negative electrode lead electrode 511 is bonded to the tab region of the negative electrode on the outermost surface.
  • the negative electrode 506, the separator 507, and the positive electrode 503 are arranged on the exterior body 509.
  • the exterior body 509 is bent at the portion shown by the broken line. After that, the outer peripheral portion of the exterior body 509 is joined. For example, thermocompression bonding may be used for joining. At this time, a region (hereinafter, referred to as an introduction port) that is not joined to a part (or one side) of the exterior body 509 is provided so that the electrolytic solution 508 can be put in later.
  • an introduction port a region that is not joined to a part (or one side) of the exterior body 509 is provided so that the electrolytic solution 508 can be put in later.
  • the electrolytic solution 508 is introduced into the exterior body 509 from the introduction port provided in the exterior body 509.
  • the electrolytic solution 508 is preferably introduced in a reduced pressure atmosphere or an inert atmosphere.
  • the inlet is joined.
  • the secondary battery 500 which is a laminated type secondary battery, can be manufactured.
  • the secondary battery 500 with less deterioration and high safety can be obtained.
  • FIG. 16A shows a schematic top view of the bendable battery 250.
  • 16B, 16C and 16D are schematic cross-sectional views taken along the cutting lines C1-C2, cutting lines C3-C4 and cutting lines A1-A2 in FIG. 16A, respectively.
  • the battery 250 has an exterior body 251 and a positive electrode 211a and a negative electrode 211b housed inside the exterior body 251.
  • the lead 212a electrically connected to the positive electrode 211a and the lead 212b electrically connected to the negative electrode 211b extend to the outside of the exterior body 251. Further, in the region surrounded by the exterior body 251, an electrolytic solution (not shown) is sealed in addition to the positive electrode 211a and the negative electrode 211b.
  • FIG. 17A is a perspective view illustrating the stacking order of the positive electrode 211a, the negative electrode 211b, and the separator 214.
  • FIG. 17B is a perspective view showing leads 212a and leads 212b in addition to the positive electrode 211a and the negative electrode 211b.
  • the battery 250 has a plurality of strip-shaped positive electrodes 211a, a plurality of strip-shaped negative electrodes 211b, and a plurality of separators 214.
  • the positive electrode 211a and the negative electrode 211b each have a protruding tab portion and a portion other than the tab.
  • a positive electrode active material layer is formed on a portion other than the tab on one surface of the positive electrode 211a, and a negative electrode active material layer is formed on a portion other than the tab on one surface of the negative electrode 211b.
  • the positive electrode 211a and the negative electrode 211b are laminated so that the surfaces of the positive electrode 211a on which the positive electrode active material layer is not formed and the surfaces of the negative electrode 211b on which the negative electrode active material is not formed are in contact with each other.
  • a separator 214 is provided between the surface of the positive electrode 211a on which the positive electrode active material is formed and the surface of the negative electrode 211b on which the negative electrode active material is formed.
  • the separator 214 is shown by a dotted line for easy viewing.
  • the plurality of positive electrodes 211a and the leads 212a are electrically connected at the joint portion 215a. Further, the plurality of negative electrodes 211b and the leads 212b are electrically connected at the joint portion 215b.
  • the exterior body 251 has a film-like shape, and is bent in two so as to sandwich the positive electrode 211a and the negative electrode 211b.
  • the exterior body 251 has a bent portion 261, a pair of seal portions 262, and a seal portion 263.
  • the pair of seal portions 262 are provided so as to sandwich the positive electrode 211a and the negative electrode 211b, and can also be referred to as a side seal.
  • the seal portion 263 has a portion that overlaps with the lead 212a and the lead 212b, and can also be called a top seal.
  • the exterior body 251 preferably has a wavy shape in which ridge lines 271 and valley lines 272 are alternately arranged at a portion overlapping the positive electrode 211a and the negative electrode 211b. Further, the seal portion 262 and the seal portion 263 of the exterior body 251 are preferably flat.
  • FIG. 16B is a cross section cut at a portion overlapping the ridge line 271
  • FIG. 16C is a cross section cut at a portion overlapping the valley line 272.
  • 16B and 16C both correspond to the widthwise cross sections of the battery 250 and the positive electrode 211a and the negative electrode 211b.
  • the distance between the widthwise ends of the positive electrode 211a and the negative electrode 211b, that is, the ends of the positive electrode 211a and the negative electrode 211b and the seal portion 262 is defined as the distance La.
  • the positive electrode 211a and the negative electrode 211b are deformed so as to be displaced from each other in the length direction as described later.
  • the distance La is too short, the exterior body 251 may be strongly rubbed against the positive electrode 211a and the negative electrode 211b, and the exterior body 251 may be damaged.
  • the metal film of the exterior body 251 is exposed, the metal film may be corroded by the electrolytic solution. Therefore, it is preferable to set the distance La as long as possible.
  • the distance La is made too large, the volume of the battery 250 will increase.
  • the distance La is 0.8 times or more and 3.0 times or less, preferably 0. It is preferably 9 times or more and 2.5 times or less, more preferably 1.0 times or more and 2.0 times or less.
  • the distance between the pair of sealing portions 262 is the distance Lb
  • the distance Lb is sufficiently larger than the width of the positive electrode 211a and the negative electrode 211b (here, the width Wb of the negative electrode 211b).
  • the difference between the distance La between the pair of seal portions 262 and the width Wb of the negative electrode 211b is 1.6 times or more and 6.0 times or less, preferably 1.8 times the thickness t of the positive electrode 211a and the negative electrode 211b. It is preferable to satisfy 5 times or more and 5.0 times or less, more preferably 2.0 times or more and 4.0 times or less.
  • the distance Lb, the width Wb, and the thickness t satisfy the relationship of the following formula 1.
  • a satisfies 0.8 or more and 3.0 or less, preferably 0.9 or more and 2.5 or less, and more preferably 1.0 or more and 2.0 or less.
  • FIG. 16D is a cross section including the lead 212a, which corresponds to a cross section of the battery 250, the positive electrode 211a, and the negative electrode 211b in the length direction.
  • the bent portion 261 has a space 273 between the end portions of the positive electrode 211a and the negative electrode 211b in the length direction and the exterior body 251.
  • FIG. 16E shows a schematic cross-sectional view when the battery 250 is bent.
  • FIG. 16E corresponds to the cross section at the cutting line B1-B2 in FIG. 16A.
  • the battery 250 When the battery 250 is bent, a part of the exterior body 251 located outside the bend is stretched, and the other part located inside is deformed so as to shrink. More specifically, the portion located outside the exterior body 251 is deformed so that the amplitude of the wave is small and the period of the wave is large. On the other hand, the portion located inside the exterior body 251 is deformed so that the amplitude of the wave is large and the period of the wave is small.
  • the positive electrode 211a and the negative electrode 211b are relatively displaced from each other.
  • one end of the laminated positive electrode 211a and the negative electrode 211b on the seal portion 263 side is fixed by the fixing member 217, they are displaced so that the closer to the bent portion 261 is, the larger the deviation amount is.
  • the stress applied to the positive electrode 211a and the negative electrode 211b is relaxed, and the positive electrode 211a and the negative electrode 211b themselves do not need to expand or contract.
  • the battery 250 can be bent without damaging the positive electrode 211a and the negative electrode 211b.
  • the space 273 is provided between the positive electrode 211a and the negative electrode 211b and the exterior body 251 so that the positive electrode 211a and the negative electrode 211b located inside are relative to each other without contacting the exterior body 251 when bent. Can be deviated.
  • the battery 250 illustrated in FIGS. 16 and 17 is a battery in which the exterior body is not easily damaged, the positive electrode 211a and the negative electrode 211b are not easily damaged, and the battery characteristics are not easily deteriorated even if the battery 250 is repeatedly bent and stretched.
  • the positive electrode active material particles described in the previous embodiment for the positive electrode 211a of the battery 250 it is possible to obtain a secondary battery with less deterioration and higher safety.
  • FIG. 18 shows an example in which a bendable secondary battery described in a part of the third embodiment is mounted on an electronic device.
  • Electronic devices to which a bendable secondary battery is applied include, for example, television devices (also called televisions or television receivers), monitors for computers, digital cameras, digital video cameras, digital photo frames, mobile phones. Examples include mobile phones (also referred to as mobile phones and mobile phone devices), portable game machines, mobile information terminals, sound reproduction devices, and large game machines such as pachinko machines.
  • a rechargeable battery having a flexible shape along the inner or outer wall of a house or building, or along the curved surface of the interior or exterior of an automobile.
  • FIG. 18A shows an example of a mobile phone.
  • the mobile phone 7400 includes an operation button 7403, an external connection port 7404, a speaker 7405, a microphone 7406, and the like, in addition to the display unit 7402 incorporated in the housing 7401.
  • the mobile phone 7400 has a secondary battery 7407.
  • FIG. 18B shows a state in which the mobile phone 7400 is curved.
  • the secondary battery 7407 provided inside the mobile phone 7400 is also bent.
  • the state of the bent secondary battery 7407 is shown in FIG. 18C.
  • the secondary battery 7407 is a thin storage battery.
  • the secondary battery 7407 is fixed in a bent state.
  • FIG. 18D shows an example of a bangle type display device.
  • the portable display device 7100 includes a housing 7101, a display unit 7102, an operation button 7103, and a secondary battery 7104.
  • FIG. 18E shows the state of the bent secondary battery 7104.
  • the housing is deformed and the curvature of a part or the whole of the secondary battery 7104 changes.
  • the degree of bending at an arbitrary point of the curve is represented by the value of the radius of the corresponding circle, which is called the radius of curvature, and the reciprocal of the radius of curvature is called the curvature.
  • a part or all of the main surface of the housing or the secondary battery 7104 changes within the range of the radius of curvature of 40 mm or more and 150 mm or less. High reliability can be maintained as long as the radius of curvature on the main surface of the secondary battery 7104 is in the range of 40 mm or more and 150 mm or less.
  • FIG. 18F shows an example of a wristwatch-type portable information terminal.
  • the mobile information terminal 7200 includes a housing 7201, a display unit 7202, a band 7203, a buckle 7204, an operation button 7205, an input / output terminal 7206, and the like.
  • the personal digital assistant 7200 can execute various applications such as mobile phone, e-mail, text viewing and creation, music playback, Internet communication, and computer games.
  • the display unit 7202 is provided with a curved display surface, and can display along the curved display surface. Further, the display unit 7202 is provided with a touch sensor and can be operated by touching the screen with a finger or a stylus. For example, the application can be started by touching the icon 7207 displayed on the display unit 7202.
  • the operation button 7205 can have various functions such as power on / off operation, wireless communication on / off operation, manner mode execution / cancellation, and power saving mode execution / cancellation. ..
  • the function of the operation button 7205 can be freely set by the operating system incorporated in the mobile information terminal 7200.
  • the personal digital assistant 7200 can execute short-range wireless communication standardized for communication. For example, by communicating with a headset capable of wireless communication, it is possible to make a hands-free call.
  • the mobile information terminal 7200 is provided with an input / output terminal 7206, and data can be directly exchanged with another information terminal via a connector. It is also possible to charge via the input / output terminal 7206. The charging operation may be performed by wireless power supply without going through the input / output terminal 7206.
  • the display unit 7202 of the portable information terminal 7200 has a secondary battery of one aspect of the present invention.
  • the secondary battery 7104 shown in FIG. 18E can be incorporated in a curved state inside the housing 7201 or in a bendable state inside the band 7203.
  • the portable information terminal 7200 preferably has a sensor.
  • a human body sensor such as a fingerprint sensor, a pulse sensor, or a body temperature sensor, a touch sensor, a pressure sensor, an acceleration sensor, or the like is preferably mounted.
  • FIG. 18G shows an example of an armband type display device.
  • the display device 7300 has a display unit 7304 and has a secondary battery according to an aspect of the present invention. Further, the display device 7300 can be provided with a touch sensor in the display unit 7304, and can also function as a portable information terminal.
  • the display surface of the display unit 7304 is curved, and display can be performed along the curved display surface.
  • the display device 7300 can change the display status by communication standard short-range wireless communication or the like.
  • the display device 7300 is provided with an input / output terminal, and data can be directly exchanged with another information terminal via a connector. It can also be charged via the input / output terminals.
  • the charging operation may be performed by wireless power supply without going through the input / output terminals.
  • FIGS. 19A and 19B show an example of a tablet terminal that can be folded in half.
  • the tablet terminal 9600 shown in FIGS. 19A and 19B has a housing 9630a, a housing 9630b, a movable portion 9640 connecting the housing 9630a and the housing 9630b, a display unit 9631, a display mode changeover switch 9626, a power switch 9627, and a saving. It has a power mode changeover switch 9625, a fastener 9629, and an operation switch 9628.
  • FIG. 19A shows a state in which the tablet terminal 9600 is opened
  • FIG. 19B shows a state in which the tablet terminal 9600 is closed.
  • the tablet type terminal 9600 has a power storage body 9635 inside the housing 9630a and the housing 9630b.
  • the power storage body 9635 passes through the movable portion 9640 and is provided over the housing 9630a and the housing 9630b.
  • a part of the display unit 9631 can be used as a touch panel area, and data can be input by touching the displayed operation keys. Further, the keyboard button can be displayed on the display unit 9631 by touching the position where the keyboard display switching button on the touch panel is displayed with a finger or a stylus.
  • the display mode changeover switch 9626 can switch the display direction such as vertical display or horizontal display, and can select switching between black and white display and color display.
  • the power saving mode changeover switch 9625 can optimize the brightness of the display according to the amount of external light during use detected by the optical sensor built in the tablet terminal 9600.
  • the tablet terminal may incorporate not only an optical sensor but also another detection device such as a gyro, an acceleration sensor, or other sensor for detecting inclination.
  • FIG. 19B is a closed state, and the tablet terminal has a charge / discharge control circuit 9634 including a housing 9630b, a solar cell 9633, and a DCDC converter 9636. Further, as the power storage body 9635, a secondary battery according to one aspect of the present invention is used.
  • the tablet terminal 9600 can be folded in two, it can be folded so that the housing 9630a and the housing 9630b overlap each other when not in use. Since the display unit 9631 can be protected by folding, the durability of the tablet terminal 9600 can be improved. Further, since the power storage body 9635 using the secondary battery of one aspect of the present invention has a high capacity and good cycle characteristics, it is possible to provide a tablet type terminal that can be used for a long time over a long period of time.
  • the tablet terminals shown in FIGS. 19A and 19B have a function of displaying various information (still images, moving images, text images, etc.), a function of displaying a calendar, a date, a time, and the like on the display unit.
  • a touch input function for touch input operation or editing of information displayed on the display unit, a function for controlling processing by various software (programs), and the like can be provided.
  • Electric power can be supplied to a touch panel, a display unit, a video signal processing unit, or the like by a solar cell 9633 mounted on the surface of a tablet terminal.
  • the solar cell 9633 can be provided on one side of the housing 9630b, one side of the housing 9630a, or both, and can be configured to efficiently charge the power storage body 9635.
  • FIG. 19C shows the solar cell 9633, the storage body 9635, the DCDC converter 9636, the converter 9637, the switches SW1 to SW3, and the display unit 9631.
  • the storage body 9635, the DCDC converter 9636, the converter 9637, and the switches SW1 to SW3 This is the location corresponding to the charge / discharge control circuit 9634 shown in FIG. 19B.
  • the electric power generated by the solar cell is stepped up or down by the DCDC converter 9636 so as to be a voltage for charging the storage body 9635. Then, when the electric power from the solar cell 9633 is used for the operation of the display unit 9631, the switch SW1 is turned on, and the converter 9637 boosts or lowers the voltage required for the display unit 9631. Further, when the display is not performed on the display unit 9631, the SW1 may be turned off and the SW2 may be turned on to charge the power storage body 9635.
  • the solar cell 9633 is shown as an example of the power generation means, but is not particularly limited, and the storage body 9635 is charged by another power generation means such as a piezoelectric element (piezo element) or a thermoelectric conversion element (Peltier element). It may be.
  • a non-contact power transmission module that wirelessly (non-contactly) transmits and receives power to charge the battery, or a configuration in which other charging means are combined may be used.
  • FIG. 20 shows an example of another electronic device.
  • the display device 8000 is an example of an electronic device using the secondary battery 8004 according to one aspect of the present invention.
  • the display device 8000 corresponds to a display device for receiving TV broadcasts, and includes a housing 8001, a display unit 8002, a speaker unit 8003, a secondary battery 8004, and the like.
  • the secondary battery 8004 according to one aspect of the present invention is provided inside the housing 8001.
  • the display device 8000 can be supplied with electric power from a commercial power source, or can use the electric power stored in the secondary battery 8004. Therefore, even when power cannot be supplied from the commercial power source due to a power failure or the like, the display device 8000 can be used by using the secondary battery 8004 according to one aspect of the present invention as an uninterruptible power supply.
  • the display unit 8002 includes a light emitting device equipped with a light emitting element such as a liquid crystal display device and an organic EL element in each pixel, an electrophoretic display device, a DMD (Digital Micromirror Device), a PDP (Plasma Display Panel), and a FED (Field Emission Display). ), Etc., a semiconductor display device can be used.
  • a light emitting element such as a liquid crystal display device and an organic EL element in each pixel
  • an electrophoretic display device such as a liquid crystal display device and an organic EL element in each pixel
  • DMD Digital Micromirror Device
  • PDP Plasma Display Panel
  • FED Field Emission Display
  • the display device includes all information display devices such as those for receiving TV broadcasts, those for personal computers, and those for displaying advertisements.
  • the stationary lighting device 8100 is an example of an electronic device using the secondary battery 8103 according to one aspect of the present invention.
  • the lighting device 8100 includes a housing 8101, a light source 8102, a secondary battery 8103, and the like.
  • FIG. 20 illustrates a case where the secondary battery 8103 is provided inside the ceiling 8104 in which the housing 8101 and the light source 8102 are installed, but the secondary battery 8103 is provided inside the housing 8101. It may have been done.
  • the lighting device 8100 can be supplied with electric power from a commercial power source, or can use the electric power stored in the secondary battery 8103. Therefore, even when the power cannot be supplied from the commercial power supply due to a power failure or the like, the lighting device 8100 can be used by using the secondary battery 8103 according to one aspect of the present invention as an uninterruptible power supply.
  • FIG. 20 illustrates the stationary lighting device 8100 provided on the ceiling 8104
  • the secondary battery according to one aspect of the present invention includes, for example, a side wall 8105, a floor 8106, a window 8107, etc. other than the ceiling 8104. It can be used for a stationary lighting device provided in the above, or for a desktop lighting device or the like.
  • the light source 8102 an artificial light source that artificially obtains light by using electric power can be used.
  • incandescent lamps, discharge lamps such as fluorescent lamps, and light emitting elements such as LEDs and organic EL elements are examples of the artificial light sources.
  • the air conditioner having the indoor unit 8200 and the outdoor unit 8204 is an example of an electronic device using the secondary battery 8203 according to one aspect of the present invention.
  • the indoor unit 8200 has a housing 8201, an air outlet 8202, a secondary battery 8203, and the like.
  • FIG. 20 illustrates the case where the secondary battery 8203 is provided in the indoor unit 8200, the secondary battery 8203 may be provided in the outdoor unit 8204. Alternatively, the secondary battery 8203 may be provided in both the indoor unit 8200 and the outdoor unit 8204.
  • the air conditioner can be supplied with electric power from a commercial power source, or can use the electric power stored in the secondary battery 8203.
  • the secondary battery 8203 when the secondary battery 8203 is provided in both the indoor unit 8200 and the outdoor unit 8204, the secondary battery 8203 according to one aspect of the present invention is provided even when power cannot be supplied from a commercial power source due to a power failure or the like.
  • the power supply as an uninterruptible power supply, the air conditioner can be used.
  • FIG. 20 illustrates a separate type air conditioner composed of an indoor unit and an outdoor unit
  • the integrated air conditioner having the functions of the indoor unit and the outdoor unit in one housing may be used.
  • a secondary battery according to one aspect of the present invention can also be used.
  • the electric refrigerator-freezer 8300 is an example of an electronic device using the secondary battery 8304 according to one aspect of the present invention.
  • the electric refrigerator-freezer 8300 has a housing 8301, a refrigerator door 8302, a freezer door 8303, a secondary battery 8304, and the like.
  • the secondary battery 8304 is provided inside the housing 8301.
  • the electric refrigerator-freezer 8300 can be supplied with electric power from a commercial power source, or can use the electric power stored in the secondary battery 8304. Therefore, even when the power cannot be supplied from the commercial power source due to a power failure or the like, the electric refrigerator-freezer 8300 can be used by using the secondary battery 8304 according to one aspect of the present invention as an uninterruptible power supply.
  • the power usage rate the ratio of the amount of power actually used (called the power usage rate) to the total amount of power that can be supplied by the source of commercial power.
  • the power usage rate By storing power in the next battery, it is possible to suppress an increase in the power usage rate outside the above time zone.
  • the electric refrigerator-freezer 8300 electric power is stored in the secondary battery 8304 at night when the temperature is low and the refrigerator door 8302 and the freezer door 8303 are not opened and closed. Then, in the daytime when the temperature rises and the refrigerator door 8302 and the freezer door 8303 are opened and closed, the power consumption rate in the daytime can be suppressed low by using the secondary battery 8304 as an auxiliary power source.
  • the secondary battery of one aspect of the present invention can be mounted on any electronic device. According to one aspect of the present invention, a secondary battery with little deterioration and high safety can be obtained. Therefore, by mounting the secondary battery, which is one aspect of the present invention, in the electronic device described in the present embodiment, it is possible to obtain an electronic device having a longer life and higher safety.
  • This embodiment can be implemented in combination with other embodiments as appropriate.
  • a next-generation clean energy vehicle such as a hybrid vehicle (HV), an electric vehicle (EV), or a plug-in hybrid vehicle (PHV)
  • HV hybrid vehicle
  • EV electric vehicle
  • PSV plug-in hybrid vehicle
  • agricultural machinery motorized bicycles including electrically assisted bicycles, motorcycles, electric wheelchairs, electric carts, small or large vessels, submarines, aircraft such as fixed-wing aircraft and rotorcraft, rockets, artificial satellites, space probes, etc.
  • a power storage device on transportation equipment such as planetary explorers and spacecraft.
  • the power storage device according to one aspect of the present invention can be a high-capacity power storage device. Therefore, the power storage device according to one aspect of the present invention is suitable for miniaturization and weight reduction, and can be suitably used for transportation equipment.
  • the automobile 2001 shown in FIG. 21A is an electric vehicle that uses an electric motor as a power source for traveling. Alternatively, it is a hybrid vehicle in which an electric motor and an engine can be appropriately selected and used as a power source for driving.
  • an example of the secondary battery shown in the third embodiment is installed at one place or a plurality of places.
  • the automobile 2001 shown in FIG. 21A has a battery pack 2100, and the battery pack has a secondary battery module to which a plurality of secondary batteries are connected. Further, it is preferable to have a charge control device that is electrically connected to the secondary battery module.
  • the automobile 2001 can be charged by receiving electric power from an external charging facility by a plug-in method, a non-contact power supply method, or the like in the power storage device of the automobile 2001.
  • the charging method, the connector standard, etc. may be appropriately performed by a predetermined method such as CHAdeMO (registered trademark) or combo.
  • the charging device may be a charging station provided in a commercial facility or a household power source.
  • the plug-in technology can charge the power storage device mounted on the automobile 2001 by supplying electric power from the outside. Charging can be performed by converting AC power into DC power via a conversion device such as an ACDC converter.
  • the power receiving device on the vehicle and supply electric power from the ground power transmission device in a non-contact manner to charge the vehicle.
  • this non-contact power supply system by incorporating a power transmission device on the road or the outer wall, it is possible to charge the battery not only while the vehicle is stopped but also while the vehicle is running. Further, power may be transmitted and received between the two vehicles by using this contactless power supply method. Further, a solar cell may be provided on the exterior of the vehicle to charge the power storage device when the vehicle is stopped or running. An electromagnetic induction method or a magnetic field resonance method can be used to supply power in such a non-contact manner.
  • FIG. 21B shows a large transport vehicle 2002 having a motor controlled by electricity as an example of transport equipment.
  • the secondary battery module of the transport vehicle 2002 has, for example, a secondary battery of 3.5 V or more and 4 V or less as a four-cell unit, and has a maximum voltage of 170 V in which 48 cells are connected in series. Since it has the same functions as those in FIG. 21A except that the number of secondary batteries constituting the secondary battery module of the battery pack 2101 is different, the description thereof will be omitted.
  • FIG. 21C shows, as an example, a large transport vehicle 2003 having a motor controlled by electricity.
  • the secondary battery module of the transport vehicle 2003 has, for example, a maximum voltage of 600 V in which 100 or more secondary batteries of 3.5 V or more and 4 V or less are connected in series. Since it has the same functions as those in FIG. 21A except that the number of secondary batteries constituting the secondary battery module of the battery pack 2102 is different, the description thereof will be omitted.
  • FIG. 21D shows, as an example, an aircraft 2004 having an engine that burns fuel.
  • the aircraft 2004 shown in FIG. 21D has a battery pack 2103 including a secondary battery module and a charge control device, in which a plurality of secondary batteries are connected to form a secondary battery module.
  • the secondary battery module of the aircraft 2004 has, for example, a maximum voltage of 32V in which eight 4V secondary batteries are connected in series. Since it has the same functions as those in FIG. 21A except that the number of secondary batteries constituting the secondary battery module of the battery pack 2103 is different, the description thereof will be omitted.
  • This embodiment can be implemented by appropriately combining at least a part thereof with other embodiments described in the present specification.

Abstract

容量が大きい電極の作製方法を提供する。 分散媒及び活物質を有する第1の混合物に、導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料を混合し、第2の混合物を得る第1の工程と、第2の混合物に結着材を混合し、第3の混合物を得る第2の工程と、第3の混合物を混練する第3の工程を有する、電極スラリーの作製方法。

Description

電極スラリーの作製方法、電極の作製方法、正極の作製方法、二次電池用電極、二次電池用正極
本発明の一様態は、二次電池用電極、二次電池用正極、二次電池、及びその製造方法に関する。または、本発明は、物、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関する。本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、照明装置または電子機器またはそれらの製造方法に関する。
なお、本明細書中において、蓄電装置とは、蓄電機能を有する素子及び装置全般を指すものである。例えば、リチウムイオン二次電池などの蓄電池(二次電池ともいう)、リチウムイオンキャパシタ、全固体電池及び電気二重層キャパシタなどを含む。
また、本明細書中において電子機器とは、蓄電装置を有する装置全般を指し、蓄電装置を有する電気光学装置、蓄電装置を有する情報端末装置などは全て電子機器である。
近年、リチウムイオン二次電池、リチウムイオンキャパシタ、空気電池等、全固体電池、種々の蓄電装置の開発が盛んに行われている。特に高出力、高容量であるリチウムイオン二次電池は、携帯電話、スマートフォン、もしくはノート型コンピュータ等の携帯情報端末、携帯音楽プレーヤ、デジタルカメラ、医療機器、又は、ハイブリッド車(HV)、電気自動車(EV)、もしくはプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車など、半導体産業の発展と併せて急速にその需要が拡大し、充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。
リチウムイオン二次電池は少なくとも、リチウムイオンを可逆的に挿入及び脱離可能な活物質を有する正極及び負極、正極と負極の間に位置するセパレータ、さらに非水電解液を有している。
正極は正極活物質と正極集電体を有し、導電助剤、結着材及び正極活物質を有する正極スラリーを正極集電体に塗布することで形成される。同様に負極も負極活物質と負極集電体を有し、導電助剤結着材及び負極活物質を有する負極スラリーを負極集電体に塗布することで形成される。
ここで導電助剤は活物質から集電体へ導電パスを効率よく得るために添加される。しかし、正極または負極において導電助剤の含有量が多いと電極重量当たりの活物質量が低下するため、電池容量が低下してしまう。そのため、少量で効率よく導電パスが確保できる高電導性の導電助剤が求められている。
そこで、特許文献1では、アセチレンブラック(AB)やグラファイト(黒鉛)粒子などの導電助剤を混合することで活物質間又は活物質−集電体間の電子伝導性を向上させている。これにより電子伝導性の高い正極活物質の提供を可能としている。
しかし、一般に用いられるアセチレンブラック等の粒状の導電助剤は平均粒径が数10nmから数100nmと大きいため、活物質との面接触が難しく点接触となりやすい。このため活物質と導電助剤との接触抵抗は高いものとなる。一方、活物質と導電助剤との接触点を増やすために導電助剤の量を増加すると、電極中の活物質量の比率が低下して、電池の充放電容量は低下する。
これに対し特許文献2では、アセチレンブラック等の粒子状の導電助剤に代えて、グラフェンの単層又は積層(文献中ではこれを2次元カーボンとよんでいる)を導電助剤として用いることが開示されている。グラフェンの単層又は積層は2次元的な拡がりを有するため、活物質や導電助剤同士の接着性を向上させ、ひいては電極の導電性を向上させる。
グラフェンは電気的、機械的または化学的に驚異的な特性を有することから、グラフェンを利用した電界効果トランジスタや太陽電池等様々な分野の応用が期待される炭素材料である。しかし、グラフェンは分散しにくいことが知られている。導電助剤としてグラフェンを活用するためには、グラフェンを分散させる必要がある。非特許文献1には酸化グラフェン(GO(Graphene Oxide)をチオウレアにより還元してグラフェンを作製する例が開示されている。なお、上述のように酸化グラフェンを還元することによって得られるグラフェンをRGO(Reduced Graphene Oxide)と呼ぶ。
特開2002−110162号公報 特開2012−64571号公報
Liu Y,et al.Journal of Nanoscience and Nanotechnology Carbon,2011,11,10082
上述のようにグラフェンは高い比表面積を有するため分散させることが困難であり、グラフェンが凝集してしまう場合がある。凝集したグラフェンを導電助剤として用いた場合、導電助剤として十分に機能させることが困難である。また、RGOは酸化や還元によって多くの欠陥構造を有するため、導電性が懸念される。そのため、欠陥構造の少ないグラフェンを凝集することなく活物質と複合する方法が求められている。
上記に鑑み、本発明の一態様は、新規な電極スラリーの作製方法を提供することを課題とする。または、本発明の一態様は、新規な正極の作製方法を提供することを課題とする。または、本発明の一態様は、新規な蓄電装置を提供することを課題とする。また、本発明の一態様は、新規な正極スラリーを提供することを課題とする。また、本発明の一態様は、新規な正極を提供することを課題とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、分散媒及び活物質を有する第1の混合物に、導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料を混合し、第2の混合物を得る第1の工程と、第2の混合物に結着材を混合し、第3の混合物を得る第2の工程と、第3の混合物を混練する第3の工程を有する、電極スラリーの作製方法である。
また、本発明の別の一態様は、分散媒及び活物質を混合し、第1の混合物を得る第1の工程と、第1の混合物に、導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料を混合し、第2の混合物を得る第2の工程と、第2の混合物に結着材を混合し、第3の混合物を得る第3の工程と、第3の混合物を混練する第4の工程を有する、電極スラリーの作製方法である。
上記構成において、電極スラリーにおいて、導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料の重量比は0.1wt%以上10wt%以下であると好ましい。
また、上記構成において、導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料が有する酸素は4atm%以下であると好ましい。
また、上記構成において、導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料は1nm以上100nm以下の厚さであると好ましい。2次元シート状とは、二次元平面のみを指すのではなく、湾曲している断面形状や、折れ曲がった断面形状を含むものとする。
また、本発明の別の一態様は、分散媒及び活物質を有する第1の混合物に、導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料を混合し、第2の混合物を得る第1の工程と、第2の混合物に結着材を混合し、第3の混合物を得る第2の工程と、第3の混合物を混練し、電極スラリーを得る第3の工程と、電極スラリーを正極集電体に塗布する第4の工程と、電極スラリーを乾燥させる第5の工程を有し、第1の工程乃至第5の工程をこの順で行う、正極の作製方法である。
また、本発明の別の一態様は、分散媒及び活物質を混合し、第1の混合物を得る第1の工程と、第1の混合物に、導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料を混合し、第2の混合物を得る第2の工程と、第2の混合物に結着材を混合し、第3の混合物を得る第3の工程と、第3の混合物を混練し、電極スラリーを得る第4の工程と、電極スラリーを正極集電体に塗布する第5の工程と、電極スラリーを乾燥させる第6の工程を有し、第1の工程乃至第6の工程をこの順で行う、正極の作製方法である。
上記構成において、電極スラリーにおいて、導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料の重量比は0.1wt%以上10wt%以下であると好ましい。
また、上記構成において、導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料が有する酸素は4atm%以下であると好ましい。
また、上記構成において、導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料は1nm以上100nm以下の厚さであると好ましい。
また、本発明の別の一態様は、正極集電体上に、正極活物質、導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料及び結着材を有し、正極活物質、導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料及び結着材の総重量において、導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料の重量比は0.1wt%以上10wt%以下であり、六個の炭素原子からなる六角形が2次元シート状に形成された導電性を有する材料が有する酸素は4atm%以下であり、六個の炭素原子からなる六角形が2次元シート状に形成された導電性を有する材料は1nm以上100nm以下の厚さである正極である。
本発明の一態様によって、新規な電極スラリーの作製方法を提供することができる。また、本発明の一態様によって、新規な正極の作製方法を提供することができる。また、本発明の一態様によって、新規な蓄電装置を提供することができる。また、本発明の一態様によって、新規な正極スラリーを提供することができる。また、本発明の一態様によって、新規な正極を提供することができる。
図1は電極の作製方法の一例を説明する図である。
図2は電極の作製方法の一例を説明する図である。
図3A及び図3Bは導電助剤としてグラフェンを用いた場合の活物質層の断面図である。
図4A及び図4Bはコイン型二次電池を説明する図である。
図5A乃至図5Dは円筒型二次電池を説明する図である。
図6A及び図6Bは二次電池の例を説明する図である。
図7A乃至図7Dは二次電池の例を説明する図である。
図8A及び図8Bは二次電池の例を説明する図である。
図9A及び図9Bは二次電池の例を説明する図である。
図10は二次電池の例を説明する図である。
図11A乃至図11Cはラミネート型の二次電池を説明する図である。
図12A及び図12Bはラミネート型の二次電池を説明する図である。
図13はラミネート型の二次電池の外観を示す図である。
図14はラミネート型の二次電池の外観を示す図である。
図15A乃至図15Cは二次電池の作製方法を説明する図である。
図16A乃至図16Eは曲げることのできる二次電池を説明する図である。
図17A及び図17Bは曲げることのできる二次電池を説明する図である。
図18A乃至図18Gは電子機器の一例を説明する図である。
図19A乃至図19Cは電子機器の一例を説明する図である。
図20は電子機器の一例を説明する図である。
図21A乃至図21Dは輸送用機器の一例を説明する図である。
以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
グラフェンは導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された構造を有する材料ということができる。このような材料は他にカーボンナノチューブ等があげられる。また、本明細書においてグラフェンの層数に特に限定はなく、単層グラフェンであっても、多層グラフェンであっても、薄層グラフェンであっても、少数層グラフェンであっても構わない。
グラフェンを作製する方法は、上述のように酸化グラフェンを還元し、RGOを得る方法や、グラファイトを物理的に剥離する方法が挙げられる。酸化グラフェンを還元する場合、酸化グラフェンに含まれる全ての酸素を脱離させることは難しく、RGO上に一部酸素が残存する。一方、グラフェンを物理的に剥離する方法によって作製した場合、得られるグラフェンには酸素は微量にしか含まれない。グラファイトを物理的に剥離する方法によって作製されたグラフェンの酸素含有量は0atm%以上4atm%以下または0atm%より大きく4atm%以下が好ましく、より好ましくは0atm%以上2atm%以下または0atm%より大きく2atm%以下である。
(実施の形態1)
図1を用いて本発明の一態様の電極スラリー及び電極の作製方法について説明する。なお、本実施の形態では、導電助剤としてグラフェンを用いた場合について説明する。導電助剤は、導電付与剤、導電材とも呼ばれ、炭素材料が用いられる。
まず分散媒(溶媒ともいう。)及び活物質を少なくとも有する混合物101及び導電助剤となるグラフェンを用意する(図1のステップS11)。これらを混合すること(図1のステップS12)で混合物102を得る(図1のステップS13)。なお、グラフェンとしてはRGOを用いてもよい。
ステップS11において、活物質とグラフェンの混合量が重要である。活物質の量が多ければ作製される正極または負極の容量が大きくなる一方で、相対的に導電助剤であるグラフェンの含有量が少なくなる。導電助剤の量が少なすぎる場合、導電性が低くなり電池特性が低下する。そのため、活物質とグラフェンの混合量は導電性を確保できるだけのグラフェンを含みつつ、活物質量が最大となる混合量が好ましい。具体的には、後述する電極スラリーを作製した際の配合比、すなわち、活物質、導電助剤及び結着材の総重量におけるそれぞれの重量比(wt%)において、導電助剤であるグラフェンの重量比が0.1wt%以上10wt%以下であると好ましく、より好ましくは0.2wt%以上6wt%以下である。
分散媒としては、極性溶媒を用いることが好ましい。該極性溶媒としては、N−メチル−2−ピロリドン(略称:NMP)、N,N−ジメチルホルムアミド(略称:DMF)、ジメチルスルホキシド(略称:DMSO)等を用いることができる。
次に、結着材を用意し、(図1のステップS21)、混合物102と結着材を混合する(図1のステップS22)ことで混合物103を得る(図1のステップS23)。該結着材の混合量は、グラフェン及び活物質の量によって設定すればよく、電極スラリーに対して、1wt%以上5wt%以下となるように添加すればよい。グラフェンが、複数の活物質粒子と面接触するように分散されている状態で、結着材を混合することにより、分散状態を維持したまま、活物質とグラフェンとを結着することができる。また、活物質とグラフェンの割合によっては、結着材を添加しなくてもよいが、結着材を添加した場合は電極の強度を向上させることができる。
結着材としては、ポリフッ化ビニリデン(PVDF)、ポリイミド、ポリテトラフルオロエチレン、ポリビニルクロライド、エチレンプロピレンジエンポリマー、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等を用いることができる。
次に、分散媒を用意し(図1のステップS31)、混合物103に、所定の粘度になるまで分散媒を添加、混合し(図1のステップS32)、その後に混練する(図1のステップS33)。以上の工程で、電極スラリーを作製することができる(図1のステップS34)。なお、混合物103の粘度が所定の粘度程度である場合、分散媒を添加せず(S31及びS32を行わず)混合物103を混練することで電極スラリーを作製してもよい。なお、この工程の分散媒は上述の極性溶媒を用いることができる。また、S11で用意した分散媒と同一の分散媒を用いると好ましい。ここでの混練は、混練機を用いた撹拌または混合を指しているが、広義には混合と同義である。従って他ステップで行われる混合も混練機を用いて混合してもよい。
次に、集電体を用意し(図1のステップS41)、ステップS34により作製した電極スラリーを、集電体の片面又は両面に、アプリケータロールなどのロールコート法、スクリーン印刷法、ドクターブレード法、スピンコート法、バーコート法等の塗布方法などにより設ける(図1のステップS42)。
集電体上に塗布した電極スラリーを、通風乾燥又は減圧(真空)乾燥等の方法で乾燥させる(図1のステップS43)。この乾燥は、例えば、50℃以上170℃以下の熱風を用いて1分以上10時間以下、好ましくは1分以上1時間以下の時間行うとよい。このステップにより、電極スラリーに含まれる分散媒を蒸発させる。なお、乾燥の雰囲気は特に限定されない。
以上の工程により、グラフェンを導電助剤として有する正極または負極を作製することができる(図1のステップS44)。
上述のように、電極スラリーは分散媒、活物質、導電助剤、結着材を有する。導電助剤によく用いられるアセチレンブラックを用いて電極スラリーを作製する場合、分散媒、活物質、導電助剤、結着材を混合する手順に特に制限はない。しかし、本発明の一態様のように導電助剤としてグラフェン、特にグラファイトを物理的(機械的)に剥離する方法によって作製された、酸素含有量が少ないグラフェンを用いる場合、分散媒、活物質、導電助剤、結着材を混合する手順によっては、グラフェンが凝集してしまい、良好な電池特性を発現する電極を作製するのが困難である。
そこで、本発明者らは鋭意検討した結果、上述のように、分散媒及び活物質の混合物にグラフェンを加えて混合し、その後、結着材を加えることで、グラフェンが凝集することなく、良好な電池特性を発現する電極を作製できることを見出した。
活物質が混合されていない分散媒とグラフェンを混合すると、比表面積が大きいグラフェンは凝集してしまう場合がある。ここで、活物質が分散媒に混合されている状態(混合物101)でグラフェンを添加すると、グラフェンの凝集と、グラフェンが活物質表面に吸着することが競合する。混合物102において、グラフェンの量に比べて、活物質の量は非常に多く混合されているので、グラフェンの多くは活物質表面に吸着すると考えられる。そのため、分散媒と活物質の混合物に対してグラフェンを加える手順が好ましい。
粒子径の小さい活物質粒子、例えば1μm以下の活物質粒子を用いる場合には、活物質粒子の比表面積が大きく、活物質粒子同士を繋ぐ導電パスがより多く必要となる。このような場合には、少ない量でも効率よく導電パスを形成することができるグラフェンを用いることが、特に好ましい。このような正極活物質としては、LiFePO(リン酸鉄リチウム)等があげられる。
また、分散媒、活物質及び結着材の混合物にグラフェンを混合する場合を考える。この場合、活物質の表面の一部に結着材が存在すると考えられる。この状態でグラフェンを混合した場合、結着材とグラフェンの接触面積が少なくなる。そのため、グラフェンが効率よく導電助剤として機能するのが困難になると考えられる。また、結着材は粘度が高いため、分散媒、活物質及び結着材の混合物にグラフェンを混合する場合、グラフェンを効率よく分散させるのが困難になる。そのため、結着材を混合するより先にグラフェンを活物質と混合することが好ましい。よってステップS12、S13の後に、ステップS22を行うと好ましい。
本発明の一態様の作製方法では、グラファイトを物理的(機械的)に剥離する方法によって作製されたグラフェンを用いることができる。該グラフェンはRGOに比べて酸素含有量が少なく欠陥も少ない。そのため、良好な導電性を有する材料である。該グラフェンを導電助剤として用いることによって、電極及び電極スラリーにおける導電助剤の含有量を減らすことができるため、高容量の二次電池を作製することができる。
また、該グラフェンはカルボキシル基やヒドロキシル基、エーテル基等の酸素を含む官能基の含有量が非常に少ないため、親水性が低い。そのため、本発明の一態様によって吸水性または吸湿性が低い電極を作製することができる。電極に含まれる水分は電池特性に悪影響を与える場合があるが、本発明の一態様によって水分の影響を受けにくい電極を作製することができる。また、該電極は長時間保存しても水分の影響を受けにくい。
また、グラフェンの膜厚は著しく薄い場合には電極の導電性向上に寄与しないが、厚すぎると活物質密度が低下する。このため、適宜所望の電池特性に合わせた適切な膜厚が好ましい。例えば、グラフェンの膜厚は1nm以上100nm以下が好ましく、より好ましくは、2nm以上50nm以下であり、さらに好ましくは5nm以上10nm以下である。
また、図2に示すように混合物101をステップS01及びステップS02によって調整しても構わない。ステップS01及びステップS02を行うことによって、適した粘度または濃度の混合物101を調整できるため好ましい。なお、図2において、図1と同様の操作については、図1と同様であるため詳細な説明を省略する。
<材料>
ここで、本発明の一態様の作製方法及び電極の構成要素について説明する。
≪活物質≫
上述の活物質に用いることができる材料は、リチウムイオン等のキャリアイオンの挿入及び脱離が可能な材料であればよく、正極活物質または負極活物質を用いることができる。
<正極活物質>
正極活物質としては、例えば、LiFeO、LiCoO、LiNiO、LiMn、V、Cr、MnO等の化合物を用いることができる。
または、リチウム含有複合リン酸塩(一般式LiMPO(Mは、Fe(II)、Mn(II)、Co(II)、Ni(II)の一以上))を用いることができる。一般式LiMPOの代表例としては、LiFePO、LiNiPO、LiCoPO、LiMnPO、LiFeNiPO、LiFeCoPO、LiFeMnPO、LiNiCoPO、LiNiMnPO(a+bは1以下、0<a<1、0<b<1)、LiFeNiCoPO、LiFeNiMnPO、LiNiCoMnPO(c+d+eは1以下、0<c<1、0<d<1、0<e<1)、LiFeNiCoMnPO(f+g+h+iは1以下、0<f<1、0<g<1、0<h<1、0<i<1)等が挙げられる。
特にLiFePOは、安全性、安定性、高容量密度、高電位、初期酸化(充電)時に引き抜けるリチウムイオンの存在等、正極活物質に求められる事項をバランスよく満たしているため、好ましい。
層状岩塩型の結晶構造を有するリチウム含有複合金属酸化物としては、例えば、コバルト酸リチウム(LiCoO)、LiNiO、LiMnO、LiMnO、LiNi0.8Co0.2等のNiCo系(一般式は、LiNiCo1−x(0<x<1))、LiNi0.5Mn0.5等のNiMn系(一般式は、LiNiMn1−x(0<x<1))、LiNi1/3Mn1/3Co1/3等のNiMnCo系(NMCともいう。一般式は、LiNiMnCo1−x−y(x>0、y>0、x+y<1))が挙げられる。さらに、Li(Ni0.8Co0.15Al0.05)O、LiMnO−LiMO(M=Co、Ni、Mn)等も挙げられる。
特に、LiCoOは、容量が大きい、LiNiOに比べて大気中で安定である、LiNiOに比べて熱的に安定である等の利点があるため、好ましい。
スピネル型の結晶構造を有するリチウム含有複合マンガン酸化物としては、例えば、LiMn、Li1+xMn2−x(0<x<2)、LiMn2−xAl(0<x<2)、LiMn1.5Ni0.5等がある。
LiMn等のマンガンを含むスピネル型の結晶構造を有するリチウム含有複合マンガン酸化物に、少量のニッケル酸リチウム(LiNi1−x(0<x<1))やLiNi1−x(0<x<1)(M=Co、Al等))を混合すると、マンガンの溶出を抑制する等の利点があり好ましい。
または、一般式Li(2−j)MSiO(Mは、Fe(II)、Mn(II)、Co(II)、Ni(II)の一以上、0≦j≦2)等のリチウム含有複合ケイ酸塩を用いることができる。一般式Li(2−j)MSiOの代表例としては、Li(2−j)FeSiO、Li(2−j)NiSiO、Li(2−j)CoSiO、Li(2−j)MnSiO、Li(2−j)FeNiSiO、Li(2−j)FeCoSiO、Li(2−j)FeMnSiO、Li(2−j)NiCoSiO、Li(2−j)NiMnSiO(k+lは1以下、0<k<1、0<l<1)、Li(2−j)FeNiCoSiO、Li(2−j)FeNiMnSiO、Li(2−j)NiCoMnSiO(m+n+qは1以下、0<m<1、0<n<1、0<q<1)、Li(2−j)FeNiCoMnSiO(r+s+t+uは1以下、0<r<1、0<s<1、0<t<1、0<u<1)等が挙げられる。
また、正極活物質として、A(XO(A=Li、Na、Mg、M=Fe、Mn、Ti、V、Nb、Al、X=S、P、Mo、W、As、Si)の一般式で表されるナシコン型化合物を用いることができる。ナシコン型化合物としては、Fe(MnO、Fe(SO、LiFe(PO等が挙げられる。また、正極活物質として、LiMPOF、LiMP、LiMO(M=Fe、Mn)の一般式で表される化合物、FeF等のペロブスカイト型フッ化物、TiS、MoS等の金属カルコゲナイド(硫化物、セレン化物、テルル化物)、LiMVO等の逆スピネル型の結晶構造を有するリチウム含有複合バナジウム酸化物、バナジウム酸化物系(V、V13、LiV等)、マンガン酸化物、有機硫黄化合物等の材料を用いることができる。
なお、キャリアイオンが、リチウムイオン以外のアルカリ金属イオン、アルカリ土類金属イオンの場合、正極活物質として、上記リチウムを含む物質において、リチウムの代わりに、アルカリ金属(例えば、ナトリウムやカリウム等)、アルカリ土類金属(例えば、カルシウム、ストロンチウム、バリウムベリリウム、マグネシウム等)を用いてもよい。
正極活物質には、原料化合物を所定の比率で混合し焼成した焼成物を、適当な手段により粉砕、造粒及び分級した、平均粒径や粒径分布を有する二次粒子からなる粒状の活物質を用いることができる。
<負極活物質>
負極活物質としては、例えば合金系材料や炭素系材料等を用いることができる。
負極活物質として、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素を用いることができる。例えば、シリコン、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、インジウム等のうち少なくとも一つを含む材料を用いることができる。このような元素は炭素と比べて容量が大きく、特にシリコンは理論容量が4200mAh/gと高い。このため、負極活物質にシリコンを用いることが好ましい。また、これらの元素を有する化合物を用いてもよい。例えば、SiO、MgSi、MgGe、SnO、SnO、MgSn、SnS、VSn、FeSn、CoSn、NiSn、CuSn、AgSn、AgSb、NiMnSb、CeSb、LaSn、LaCoSn、CoSb、InSb、SbSn等がある。ここで、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素、および該元素を有する化合物等を合金系材料と呼ぶ場合がある。
本明細書等において、SiOは例えば一酸化シリコンを指す。あるいはSiOは、SiOと表すこともできる。ここでxは1近傍の値を有することが好ましい。例えばxは、0.2以上1.5以下が好ましく、0.3以上1.2以下が好ましい。
炭素系材料としては、黒鉛、易黒鉛化性炭素(ソフトカーボン)、難黒鉛化性炭素(ハードカーボン)、カーボンナノチューブ(CNT)、グラフェン、カーボンブラック等のうち、いずれか一または複数種を用いればよい。
黒鉛としては、人造黒鉛や、天然黒鉛等が挙げられる。人造黒鉛としては例えば、メソカーボンマイクロビーズ(MCMB)、コークス系人造黒鉛、ピッチ系人造黒鉛等が挙げられる。ここで人造黒鉛として、球状の形状を有する球状黒鉛を用いることができる。例えば、MCMBは球状の形状を有する場合があり、好ましい。また、MCMBはその表面積を小さくすることが比較的容易であり、好ましい場合がある。天然黒鉛としては例えば、鱗片状黒鉛、球状化天然黒鉛等が挙げられる。
黒鉛はリチウムイオンが黒鉛に挿入されたとき(リチウム−黒鉛層間化合物の生成時)にリチウム金属と同程度に低い電位を示す(0.05V以上0.3V以下 vs.Li/Li)。これにより、リチウムイオン二次電池は高い作動電圧を示すことができる。さらに、黒鉛は、単位体積当たりの容量が比較的高い、体積膨張が比較的小さい、安価である、リチウム金属に比べて安全性が高い等の利点を有するため、好ましい。
また、負極活物質として、二酸化チタン(TiO)、リチウムチタン酸化物(LiTi12)、リチウム−黒鉛層間化合物(Li)、五酸化ニオブ(Nb)、酸化タングステン(WO)、酸化モリブデン(MoO)等の酸化物を用いることができる。
また、負極活物質として、リチウムと遷移金属の複窒化物である、LiN型構造をもつLi3−xN(M=Co、Ni、Cu)を用いることができる。例えば、Li2.6Co0.4は大きな充放電容量(900mAh/g、1890mAh/cm)を示し好ましい。
リチウムと遷移金属の複窒化物を用いると、負極活物質中にリチウムイオンを含むため、正極活物質としてリチウムイオンを含まないV、Cr等の材料と組み合わせることができ好ましい。なお、正極活物質にリチウムイオンを含む材料を用いる場合でも、あらかじめ正極活物質に含まれるリチウムイオンを脱離させることで、負極活物質としてリチウムと遷移金属の複窒化物を用いることができる。
また、コンバージョン反応が生じる材料を負極活物質として用いることもできる。例えば、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化鉄(FeO)等の、リチウムとの合金を作らない遷移金属酸化物を負極活物質に用いてもよい。コンバージョン反応が生じる材料としては、さらに、Fe、CuO、CuO、RuO、Cr等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn、CuN、Ge等の窒化物、NiP、FeP、CoP等のリン化物、FeF、BiF等のフッ化物でも起こる。
負極活物質層が有することのできる導電助剤および結着材としては、正極活物質層が有することのできる導電助剤および結着材と同様の材料を用いることができる。
≪集電体≫
上述の集電体は正極を作製する場合には、正極集電体を用い、負極を作製する場合には負極集電体を用いる。
正極集電体としては、ステンレス、金、白金、アルミニウム、チタン等の金属、及びこれらの合金など、導電性が高い材料をもちいることができる。また正極集電体に用いる材料は、正極の電位で溶出しないことが好ましい。また、シリコン、チタン、ネオジム、スカンジウム、モリブデンなどの耐熱性を向上させる元素が添加されたアルミニウム合金を用いることができる。また、シリコンと反応してシリサイドを形成する金属元素で形成してもよい。シリコンと反応してシリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、ニッケル等がある。集電体は、箔状、板状(シート状)、網状、パンチングメタル状、エキスパンドメタル状等の形状を適宜用いることができる。集電体は、厚みが5μm以上30μm以下のものを用いるとよい。
負極集電体には、正極集電体と同様の材料を用いることができる。なお負極集電体は、リチウム等のキャリアイオンと合金化しない材料を用いることが好ましい。
(実施の形態2)
本実施の形態では、本発明の一態様の作製方法によって作製された正極及びまたは負極を含むリチウムイオン二次電池について説明する。リチウムイオン二次電池は正極、負極及び電解液を少なくとも有する。
[正極]
正極は、正極活物質層および正極集電体を有し、実施の形態1に示した作製方法によって作製されると好ましい。
<正極活物質層>
正極活物質層は、正極活物質、導電助剤及び結着材(バインダとも呼ぶ)を有する。本発明の一態様の作製方法によって正極を作製した場合、導電助剤にはグラフェンのような6個の炭素原子からなる六角形が2次元シート状に形成された構造を有する材料が用いられる。グラフェンを用いる場合、グラファイトを物理的に剥離する方法によって作製されたグラフェンを用いると好ましい。上述のように、グラファイトを物理的に剥離する方法によって作製されたグラフェンは欠陥が少なく、酸素含有量も少ないため、効率よく導電助剤して機能する。そのため、導電助剤の添加量を少なくすることができ、高容量のリチウムイオン二次電池を作製することができる。具体的にはグラフェンの膜厚は1nm以上50nm以下が好ましく、より好ましくは5nm以上10nm以下である。また、グラフェンの酸素含有量は0atm%以上2atm%以下が好ましく、0atm%以上1atm%以下であるとより好ましい。
以下では一例として、活物質層200に、導電助剤としてグラフェンまたはその化合物を用いる場合の断面構成例を説明する。
図3Aに、集電体203上の活物質層200の縦断面図を示す。活物質層200は、粒状の正極活物質104と、導電助剤としてのグラフェン201と、結着材(図示せず)と、を含む。ここで、グラフェン201として例えばグラフェンまたはマルチグラフェンを用いればよい。ここで、グラフェン201はシート状の形状を有することが好ましい。また、グラフェン201は、複数のマルチグラフェン、または(および)複数のグラフェンが部分的に重なりシート状となっていてもよい。なお、正極活物質104は一次粒子であっても、二次粒子であってもよい。
活物質層200の縦断面においては、図3Aに示すように、活物質層200の内部において概略均一にシート状のグラフェン201が分散する。図3Aにおいてはグラフェン201を模式的に太線で表しているが、実際には炭素分子の単層又は多層の厚みを有する薄膜である。複数のグラフェン201は、複数の粒状の正極活物質104を包むように、覆うように、あるいは複数の粒状の正極活物質104の表面上に張り付くように形成されているため、互いに面接触している。またグラフェン201の一部は、集電体203と密に接していることが好ましい。
ここで、複数のグラフェン同士が結合することにより、網目状のグラフェンシート(以下グラフェンと呼ぶ)を形成することができる。活物質をグラフェンネットが被覆する場合に、グラフェンネットは活物質同士を結合するバインダとしても機能することができる。よって、トータルの結着材の量を少なくすることができる、又は使用しないことができるため、電極体積や電極重量に占める活物質の比率を向上させることができる。すなわち、リチウムイオン二次電池の容量を増加させることができる。
本発明の一態様の作製方法を用いて、後述する負極を作製した場合、正極の導電助剤に特に制限はない。この場合、導電助剤としては、炭素材料、金属材料、又は導電性セラミックス材料等を用いることができる。また、導電助剤として繊維状の材料を用いてもよい。活物質層の総量に対する導電助剤の含有量は、グラフェンを含まない材料を用いる場合は、1wt%以上10wt%以下が好ましく、1wt%以上5wt%以下がより好ましい。グラフェンを用いる場合は上述の含有量を用いればよい。
導電助剤により、電極中に電気伝導のネットワークを形成することができる。導電助剤により、正極活物質どうしの電気伝導の経路を維持することができる。活物質層中に導電助剤を添加することにより、高い電子伝導性を有する活物質層を実現することができる。
導電助剤としては、例えば天然黒鉛、メソカーボンマイクロビーズ等の人造黒鉛、炭素繊維などを用いることができる。炭素繊維としては、例えばメソフェーズピッチ系炭素繊維、等方性ピッチ系炭素繊維等の炭素繊維を用いることができる。また炭素繊維として、カーボンナノファイバーやカーボンナノチューブなどを用いることができる。カーボンナノチューブは、例えば気相成長法などで作製することができる。また、導電助剤として、例えばカーボンブラック(アセチレンブラック(AB)など)、グラファイト(黒鉛)粒子、グラフェン、フラーレンなどの炭素材料を用いることができる。また、例えば、銅、ニッケル、アルミニウム、銀、金などの金属粉末や金属繊維、導電性セラミックス材料等を用いることができる。
結着材としては、例えば、スチレン−ブタジエンゴム(SBR)、スチレン−イソプレン−スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン−プロピレン−ジエン共重合体などのゴム材料を用いることが好ましい。また結着材として、フッ素ゴムを用いることができる。
また、結着材としては、例えば水溶性の高分子を用いることが好ましい。水溶性の高分子としては、例えば多糖類などを用いることができる。多糖類としては、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ジアセチルセルロース、再生セルロースなどのセルロース誘導体や、澱粉などを用いることができる。また、これらの水溶性の高分子を、前述のゴム材料と併用して用いると、さらに好ましい。
または、結着材としては、ポリスチレン、ポリアクリル酸メチル、ポリメタクリル酸メチル(PMMA)、ポリアクリル酸ナトリウム、ポリビニルアルコール(PVA)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド、ポリイミド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート、ナイロン、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル(PAN)、エチレンプロピレンジエンポリマー、ポリ酢酸ビニル、ニトロセルロース等の材料を用いることが好ましい。
結着材は上記のうち複数を組み合わせて使用してもよい。例えば粘度調整効果の特に優れた材料と、他の材料とを組み合わせて使用してもよい。例えばゴム材料等は接着力や弾性力に優れる反面、溶媒に混合した場合に粘度調整が難しい場合がある。このような場合には例えば、粘度調整効果の特に優れた材料と混合することが好ましい。粘度調整効果の特に優れた材料としては、例えば水溶性高分子を用いるとよい。また、粘度調整効果に特に優れた水溶性高分子としては、前述の多糖類、例えばカルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロースおよびジアセチルセルロース、再生セルロースなどのセルロース誘導体や、澱粉を用いることができる。
なお、カルボキシメチルセルロースなどのセルロース誘導体は、例えばカルボキシメチルセルロースのナトリウム塩やアンモニウム塩などの塩とすることにより溶解度が上がり、粘度調整剤としての効果を発揮しやすくなる。溶解度が高くなることにより電極のスラリーを作製する際に活物質や他の構成要素との分散性を高めることもできる。本明細書においては、電極の結着材として使用するセルロースおよびセルロース誘導体としては、それらの塩も含むものとする。
水溶性高分子は水に溶解することにより粘度を安定化させ、また活物質や、結着材として組み合わせる他の材料、例えばスチレンブタジエンゴムなどを、水溶液中に安定して分散させることができる。また、官能基を有するために活物質表面に安定に吸着しやすいことが期待される。また、例えばカルボキシメチルセルロースなどのセルロース誘導体は、例えば水酸基やカルボキシル基などの官能基を有する材料が多く、官能基を有するために高分子同士が相互作用し、活物質表面を広く覆って存在することが期待される。
活物質表面を覆う、または表面に接する結着材が膜を形成する場合には、不動態膜としての役割を果たして電解液の分解を抑える効果も期待される。ここで、不動態膜とは、電気の伝導性のない膜、または電子伝導性の極めて低い膜であり、例えば活物質の表面に不動態膜が形成された場合には、電池反応電位において、電解液の分解を抑制することができる。また、不動態膜は、電気の伝導性を抑えるとともに、リチウムイオンは伝導できるとさらに望ましい。
<正極集電体>
正極集電体としては、実施の形態1で述べた材料を用いることができる。
[負極]
負極は、負極活物質層および負極集電体を有する。また、負極活物質層は、導電助剤および結着材を有していてもよい。実施の形態1に示した作製方法によって作製してもよい。実施の形態1に示した作製方法によって負極を作製した場合、導電助剤にはグラフェンのような6個の炭素原子からなる六角形が2次元シート状に形成された構造を有する材料が用いられる。グラフェンを用いる場合、グラファイトを物理的に剥離する方法によって作製されたグラフェンを用いると好ましい。上述のように、グラファイトを物理的に剥離する方法によって作製されたグラフェンは欠陥が少なく、酸素含有量も少ないため、効率よく導電助剤して機能する。そのため、導電助剤の添加量を少なくすることができ、高容量のリチウムイオン二次電池を作製することができる。具体的にはグラフェンの膜厚は1nm以上50nm以下が好ましく、より好ましくは5nm以上10nm以下である。また、グラフェンの酸素含有量は0atm%以上2atm%以下が好ましく、0atm%以上1atm%以下であるとより好ましい。
本発明の一態様によって正極が作製された場合、負極に用いる材料に特に限定は無い。
<負極活物質>
負極活物質には、実施の形態1で述べた材料を用いることができる。
<負極集電体>
負極集電体には、実施の形態1で述べた材料を用いることができる。
[電解液]
 電解液は、溶媒と電解質を有する。電解液の溶媒としては、非プロトン性有機溶媒が好ましく、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ギ酸メチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、1,3−ジオキサン、1,4−ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシド、ジエチルエーテル、メチルジグライム、アセトニトリル、ベンゾニトリル、テトラヒドロフラン、スルホラン、スルトン等の1種、又はこれらのうちの2種以上を任意の組み合わせおよび比率で用いることができる。
 また、電解液の溶媒として、難燃性および難揮発性であるイオン液体(常温溶融塩)を一つ又は複数用いることで、蓄電装置の内部短絡や、過充電等によって内部温度が上昇しても、蓄電装置の破裂や発火などを防ぐことができる。イオン液体は、カチオンとアニオンからなり、有機カチオンとアニオンとを含む。電解液に用いる有機カチオンとして、四級アンモニウムカチオン、三級スルホニウムカチオン、および四級ホスホニウムカチオン等の脂肪族オニウムカチオンや、イミダゾリウムカチオンおよびピリジニウムカチオン等の芳香族カチオンが挙げられる。また、電解液に用いるアニオンとして、1価のアミド系アニオン、1価のメチド系アニオン、フルオロスルホン酸アニオン、パーフルオロアルキルスルホン酸アニオン、テトラフルオロボレートアニオン、パーフルオロアルキルボレートアニオン、ヘキサフルオロホスフェートアニオン、またはパーフルオロアルキルホスフェートアニオン等が挙げられる。
 また、上記の溶媒に溶解させる電解質としては、例えばLiPF、LiClO、LiAsF、LiBF、LiAlCl、LiSCN、LiBr、LiI、LiSO、Li10Cl10、Li12Cl12、LiCFSO、LiCSO、LiC(CFSO、LiC(CSO、LiN(CFSO、LiN(CSO)(CFSO)、LiN(CSO等のリチウム塩を一種、又はこれらのうちの二種以上を任意の組み合わせおよび比率で用いることができる。
 蓄電装置に用いる電解液は、粒状のごみや電解液の構成元素以外の元素(以下、単に「不純物」ともいう。)の含有量が少ない高純度化された電解液を用いることが好ましい。具体的には、電解液に対する不純物の重量比を1%以下、好ましくは0.1%以下、より好ましくは0.01%以下とすることが好ましい。
 また、電解液にビニレンカーボネート、プロパンスルトン(PS)、tert−ブチルベンゼン(TBB)、フルオロエチレンカーボネート(FEC)、リチウムビス(オキサレート)ボレート(LiBOB)、またスクシノニトリル、アジポニトリル等のジニトリル化合物などの添加剤を添加してもよい。添加剤の濃度は、例えば溶媒全体に対して0.1wt%以上5wt%以下とすればよい。
 また、ポリマーを電解液で膨潤させたポリマーゲル電解質を用いてもよい。
 ポリマーゲル電解質を用いることで、漏液性等に対する安全性が高まる。また、二次電池の薄型化および軽量化が可能である。
 ゲル化されるポリマーとして、シリコーンゲル、アクリルゲル、アクリロニトリルゲル、ポリエチレンオキサイド系ゲル、ポリプロピレンオキサイド系ゲル、フッ素系ポリマーのゲル等を用いることができる。例えばポリエチレンオキシド(PEO)などのポリアルキレンオキシド構造を有するポリマーや、PVDF、およびポリアクリロニトリル等、およびそれらを含む共重合体等を用いることができる。例えばPVDFとヘキサフルオロプロピレン(HFP)の共重合体であるPVDF−HFPを用いることができる。また、形成されるポリマーは、多孔質形状を有してもよい。
 また、電解液の代わりに、硫化物系や酸化物系等の無機物材料を有する固体電解質や、PEO(ポリエチレンオキシド)系等の高分子材料を有する固体電解質を用いることができる。固体電解質を用いる場合には、セパレータやスペーサの設置が不要となる。また、電池全体を固体化できるため、漏液のおそれがなくなり安全性が飛躍的に向上する。
よって、本発明の一態様の作製方法によって作製された正極スラリーまたは電極は全固体電池にも応用が可能である。全固体電池に該正極スラリーまたは電極を応用することによって、安全性が高く、特性が良好な全固体電池を得ることができる。
(実施の形態3)
本実施の形態では、先の実施の形態で説明した作製方法によって作製された正極または負極を有する二次電池の形状の例について説明する。
[コイン型二次電池]
まずコイン型の二次電池の一例について説明する。図4Aはコイン型(単層偏平型)の二次電池の外観図であり、図4Bは、その断面図である。
コイン型の二次電池300は、正極端子を兼ねた正極缶301と負極端子を兼ねた負極缶302とが、ポリプロピレン等で形成されたガスケット303で絶縁シールされている。正極304は、正極集電体305と、これと接するように設けられた正極活物質層306により形成される。また、負極307は、負極集電体308と、これに接するように設けられた負極活物質層309により形成される。
なお、コイン型の二次電池300に用いる正極304および負極307は、それぞれ活物質層は片面のみに形成すればよい。
正極缶301、負極缶302には、電解液に対して耐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金やこれらと他の金属との合金(例えばステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルやアルミニウム等を被覆することが好ましい。正極缶301は正極304と、負極缶302は負極307とそれぞれ電気的に接続する。
これら負極307、正極304およびセパレータ310に電解質を浸し、図4Bに示すように、正極缶301を下にして正極304、セパレータ310、負極307、負極缶302をこの順で積層し、正極缶301と負極缶302とをガスケット303を介して圧着してコイン形の二次電池300を製造する。
正極304に、先の実施の形態で説明した正極活物質粒子を用いることで、劣化が少なく、安全性の高いコイン型の二次電池300とすることができる。
[セパレータ]
また二次電池は、セパレータを有することが好ましい。セパレータとしては、例えば、紙をはじめとするセルロースを有する繊維、不織布、ガラス繊維、セラミックス、或いはナイロン(ポリアミド)、ビニロン(ポリビニルアルコール系繊維)、ポリエステル、アクリル、ポリオレフィン、ポリウレタンを用いた合成繊維等で形成されたものを用いることができる。セパレータは袋状に加工し、正極または負極のいずれか一方を包むように配置することが好ましい。
セパレータは多層構造であってもよい。例えばポリプロピレン、ポリエチレン等の有機材料フィルムに、セラミック系材料、フッ素系材料、ポリアミド系材料、またはこれらを混合したもの等をコートすることができる。セラミック系材料としては、例えば酸化アルミニウム粒子、酸化シリコン粒子等を用いることができる。フッ素系材料としては、例えばPVDF、ポリテトラフルオロエチレン等を用いることができる。ポリアミド系材料としては、例えばナイロン、アラミド(メタ系アラミド、パラ系アラミド)等を用いることができる。
セラミック系材料をコートすると耐酸化性が向上するため、高電圧充放電の際のセパレータの劣化を抑制し、二次電池の信頼性を向上させることができる。またフッ素系材料をコートするとセパレータと電極が密着しやすくなり、出力特性を向上させることができる。ポリアミド系材料、特にアラミドをコートすると、耐熱性が向上するため、二次電池の安全性を向上させることができる。
例えばポリプロピレンのフィルムの両面に酸化アルミニウムとアラミドの混合材料をコートしてもよい。また、ポリプロピレンのフィルムの、正極と接する面に酸化アルミニウムとアラミドの混合材料をコートし、負極と接する面にフッ素系材料をコートしてもよい。
多層構造のセパレータを用いると、セパレータ全体の厚さが薄くても二次電池の安全性を保つことができるため、二次電池の体積あたりの容量を大きくすることができる。
[円筒型二次電池]
円筒型の二次電池の例について図5A乃至図5Dを参照して説明する。円筒型の二次電池600は、図5Aに示すように、上面に正極キャップ(電池蓋)601を有し、側面および底面に電池缶(外装缶)602を有している。これら正極キャップと電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
図5Bは、円筒型の二次電池の断面を模式的に示した図である。中空円柱状の電池缶602の内側には、帯状の正極604と負極606とがセパレータ605を間に挟んで捲回された電池素子が設けられている。図示しないが、電池素子はセンターピンを中心に捲回されている。電池缶602は、一端が閉じられ、他端が開いている。電池缶602には、電解液に対して耐腐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金やこれらと他の金属との合金(例えば、ステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルやアルミニウム等を被覆することが好ましい。電池缶602の内側において、正極、負極およびセパレータが捲回された電池素子は、対向する一対の絶縁板608、609により挟まれている。また、電池素子が設けられた電池缶602の内部は、非水電解液(図示せず)が注入されている。非水電解液は、コイン型の二次電池と同様のものを用いることができる。
円筒型の蓄電池に用いる正極および負極は捲回するため、集電体の両面に活物質を形成することが好ましい。正極604には正極端子(正極集電リード)603が接続され、負極606には負極端子(負極集電リード)607が接続される。正極端子603および負極端子607は、ともにアルミニウムなどの金属材料を用いることができる。正極端子603は安全弁機構612に、負極端子607は電池缶602の底にそれぞれ抵抗溶接される。安全弁機構612は、PTC素子(Positive Temperature Coefficient)611を介して正極キャップ601と電気的に接続されている。安全弁機構612は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ601と正極604との電気的な接続を切断するものである。また、PTC素子611は温度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO)系半導体セラミックス等を用いることができる。
また、図5Cのように複数の二次電池600を、導電板613および導電板614の間に挟んでモジュール615を構成してもよい。複数の二次電池600は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後さらに直列に接続されていてもよい。複数の二次電池600を有するモジュール615を構成することで、大きな電力を取り出すことができる。
図5Dはモジュール615の上面図である。図を明瞭にするために導電板613を点線で示した。図5Dに示すようにモジュール615は、複数の二次電池600を電気的に接続する導線616を有していてもよい。導線616上に導電板を重畳して設けることができる。また複数の二次電池600の間に温度制御装置617を有していてもよい。二次電池600が過熱されたときは、温度制御装置617により冷却し、二次電池600が冷えすぎているときは温度制御装置617により加熱することができる。そのためモジュール615の性能が外気温に影響されにくくなる。
正極604に、先の実施の形態で説明した作製法により作製した正極活物質を用いることで、劣化が少なく、安全性の高い円筒型の二次電池600とすることができる。
[蓄電装置の構造例]
蓄電装置の別の構造例について、図6乃至図10を用いて説明する。
図6A及び図6Bは、蓄電装置の外観図を示す図である。蓄電装置は、回路基板900と、二次電池913と、を有する。二次電池913には、ラベル910が貼られている。さらに、図6Bに示すように、蓄電装置は、端子951と、端子952と、アンテナ914と、アンテナ915と、を有する。
回路基板900は、端子911と、回路912と、を有する。端子911は、端子951、端子952、アンテナ914、アンテナ915、及び回路912に接続される。なお、端子911を複数設けて、複数の端子911のそれぞれを、制御信号入力端子、電源端子などとしてもよい。
回路912は、回路基板900の裏面に設けられていてもよい。なお、アンテナ914及びアンテナ915は、コイル状に限定されず、例えば線状、板状であってもよい。また、平面アンテナ、開口面アンテナ、進行波アンテナ、EHアンテナ、磁界アンテナ、誘電体アンテナ等のアンテナを用いてもよい。又は、アンテナ914若しくはアンテナ915は、平板状の導体でもよい。この平板状の導体は、電界結合用の導体の一つとして機能することができる。つまり、コンデンサの有する2つの導体のうちの一つの導体として、アンテナ914若しくはアンテナ915を機能させてもよい。これにより、電磁界、磁界だけでなく、電界で電力のやり取りを行うこともできる。
アンテナ914の線幅は、アンテナ915の線幅よりも大きいことが好ましい。これにより、アンテナ914により受電する電力量を大きくできる。
蓄電装置は、アンテナ914及びアンテナ915と、二次電池913との間に層916を有する。層916は、例えば二次電池913による電磁界を遮蔽する機能を有する。層916としては、例えば磁性体を用いることができる。
なお、蓄電装置の構造は、図6に限定されない。
例えば、図7A及び図7Bに示すように、図6A及び図6Bに示す二次電池913のうち、対向する一対の面のそれぞれにアンテナを設けてもよい。図7Aは、上記一対の面の一方側方向から見た外観図であり、図7Bは、上記一対の面の他方側方向から見た外観図である。なお、図6A及び図6Bに示す蓄電装置と同じ部分については、図6A及び図6Bに示す蓄電装置の説明を適宜援用できる。
図7Aに示すように、二次電池913の一対の面の一方に層916を挟んでアンテナ914が設けられ、図7Bに示すように、二次電池913の一対の面の他方に層917を挟んでアンテナ915が設けられる。層917は、例えば二次電池913による電磁界を遮蔽する機能を有する。層917としては、例えば磁性体を用いることができる。
上記構造にすることにより、アンテナ914及びアンテナ915の両方のサイズを大きくすることができる。
又は、図7C及び図7Dに示すように、図6A及び図6Bに示す二次電池913のうち、対向する一対の面のそれぞれに別のアンテナを設けてもよい。図7Cは、上記一対の面の一方側方向から見た外観図であり、図7Dは、上記一対の面の他方側方向から見た外観図である。なお、図6A及び図6Bに示す蓄電装置と同じ部分については、図6A及び図6Bに示す蓄電装置の説明を適宜援用できる。
図7Cに示すように、二次電池913の一対の面の一方に層916を挟んでアンテナ914及びアンテナ915が設けられ、図7Dに示すように、二次電池913の一対の面の他方に層917を挟んでアンテナ918が設けられる。アンテナ918は、例えば、外部機器とのデータ通信を行うことができる機能を有する。アンテナ918には、例えばアンテナ914及びアンテナ915に適用可能な形状のアンテナを適用することができる。アンテナ918を介した蓄電装置と他の機器との通信方式としては、NFCなど、蓄電装置と他の機器との間で用いることができる応答方式などを適用することができる。
又は、図8Aに示すように、図6A及び図6Bに示す二次電池913に表示装置920を設けてもよい。表示装置920は、端子919を介して端子911に電気的に接続される。なお、表示装置920が設けられる部分にラベル910を設けなくてもよい。なお、図6A及び図6Bに示す蓄電装置と同じ部分については、図6A及び図6Bに示す蓄電装置の説明を適宜援用できる。
表示装置920には、例えば充電中であるか否かを示す画像、蓄電量を示す画像などを表示してもよい。表示装置920としては、例えば電子ペーパー、液晶表示装置、エレクトロルミネセンス(ELともいう)表示装置などを用いることができる。例えば、電子ペーパーを用いることにより表示装置920の消費電力を低減することができる。
又は、図8Bに示すように、図6A及び図6Bに示す二次電池913にセンサ921を設けてもよい。センサ921は、端子922を介して端子911に電気的に接続される。なお、図6A及び図6Bに示す蓄電装置と同じ部分については、図6A及び図6Bに示す蓄電装置の説明を適宜援用できる。
センサ921としては、例えば、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定することができる機能を有すればよい。センサ921を設けることにより、例えば、蓄電装置が置かれている環境を示すデータ(温度など)を検出し、回路912内のメモリに記憶しておくこともできる。
さらに、二次電池913の構造例について図9及び図10を用いて説明する。
図9Aに示す二次電池913は、筐体930の内部に端子951と端子952が設けられた捲回体950を有する。捲回体950は、筐体930の内部で電解液に含浸される。端子952は、筐体930に接し、端子951は、絶縁材などを用いることにより筐体930に接していない。なお、図9Aでは、便宜のため、筐体930を分離して図示しているが、実際は、捲回体950が筐体930に覆われ、端子951及び端子952が筐体930の外に延在している。筐体930としては、金属材料(例えばアルミニウムなど)又は樹脂材料を用いることができる。
なお、図9Bに示すように、図9Aに示す筐体930を複数の材料によって形成してもよい。例えば、図9Bに示す二次電池913は、筐体930aと筐体930bが貼り合わされており、筐体930a及び筐体930bで囲まれた領域に捲回体950が設けられている。
筐体930aとしては、有機樹脂など、絶縁材料を用いることができる。特に、アンテナが形成される面に有機樹脂などの材料を用いることにより、二次電池913による電界の遮蔽を抑制できる。なお、筐体930aによる電界の遮蔽が小さければ、筐体930aの内部にアンテナ914やアンテナ915などのアンテナを設けてもよい。筐体930bとしては、例えば金属材料を用いることができる。
さらに、捲回体950の構造について図10に示す。捲回体950は、負極931と、正極932と、セパレータ933と、を有する。捲回体950は、セパレータ933を挟んで負極931と、正極932が重なり合って積層され、該積層シートを捲回させた捲回体である。なお、負極931と、正極932と、セパレータ933と、の積層を、さらに複数重ねてもよい。
負極931は、端子951及び端子952の一方を介して図6に示す端子911に接続される。正極932は、端子951及び端子952の他方を介して図6に示す端子911に接続される。
正極932に、先の実施の形態で説明した正極活物質粒子を用いることで、劣化が少なく、安全性の高い二次電池913とすることができる。
[ラミネート型二次電池]
次に、ラミネート型の二次電池の例について、図11乃至図15を参照して説明する。ラミネート型の二次電池は、可撓性を有する構成とすれば、可撓性を有する部位を少なくとも一部有する電子機器に実装すれば、電子機器の変形に合わせて二次電池も曲げることもできる。
図11A乃至図11Cを用いて、ラミネート型の二次電池980について説明する。ラミネート型の二次電池980は、図11Aに示す捲回体993を有する。捲回体993は、負極994と、正極995と、セパレータ966と、を有する。捲回体993は、図6で説明した捲回体950と同様に、セパレータ966を挟んで負極994と、正極995とが重なり合って積層され、該積層シートを捲回したものである。
なお、負極994、正極995およびセパレータ966からなる積層の積層数は、必要な容量と素子体積に応じて適宜設計すればよい。負極994はリード電極997およびリード電極998の一方を介して負極集電体(図示せず)に接続され、正極995はリード電極997およびリード電極998の他方を介して正極集電体(図示せず)に接続される。
図11Bに示すように、外装体となるフィルム981と、凹部を有するフィルム982とを熱圧着などにより貼り合わせて形成される空間に上述した捲回体993を収納することで、図11Cに示すように二次電池980を作製することができる。捲回体993は、リード電極997およびリード電極998を有し、フィルム981と、凹部を有するフィルム982とに囲まれた空間の内部は電解液に含浸される。
フィルム981と、凹部を有するフィルム982は、例えばアルミニウムなどの金属材料や樹脂材料を用いることができる。フィルム981および凹部を有するフィルム982の材料として樹脂材料を用いれば、外部から力が加わったときにフィルム981と、凹部を有するフィルム982を変形させることができ、可撓性を有する蓄電池を作製することができる。
また、図11B及び図11Cでは2枚のフィルムを用いる例を示しているが、1枚のフィルムを折り曲げることによって空間を形成し、その空間に上述した捲回体993を収納してもよい。
正極995に、先の実施の形態で説明した正極活物質粒子を用いることで、劣化が少なく、安全性の高い二次電池980とすることができる。
また図11A乃至図11Cでは外装体となるフィルムにより形成された空間に捲回体を有する二次電池980の例について説明したが、例えば、外装体となるフィルムにより形成された空間に、短冊状の複数の正極、セパレータおよび負極を有する二次電池としてもよい。
図12Aに示すラミネート型の二次電池500は、正極集電体501および正極活物質層502を有する正極503と、負極集電体504および負極活物質層505を有する負極506と、セパレータ507と、電解液508と、外装体509と、を有する。外装体509内に設けられた正極503と負極506との間にセパレータ507が設置されている。また、外装体509内は、電解液508で満たされている。電解液508には、実施の形態2で示した電解液を用いることができる。
図12Aに示すラミネート型の二次電池500において、正極集電体501および負極集電体504は、外部との電気的接触を得る端子の役割も兼ねている。そのため、正極集電体501および負極集電体504の一部は、外装体509から外側に露出するように配置してもよい。また、正極集電体501および負極集電体504を、外装体509から外側に露出させず、リード電極を用いてそのリード電極と正極集電体501、或いは負極集電体504と超音波接合させてリード電極を外側に露出するようにしてもよい。
ラミネート型の二次電池500において、外装体509には、例えばポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アルミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂膜を設けた三層構造のラミネートフィルムを用いることができる。
また、ラミネート型の二次電池500の断面構造の一例を図12Bに示す。図12Aでは簡略のため、2つの集電体で構成する例を示しているが、実際は、複数の電極層で構成する。
図12Bでは、一例として、電極層数を16としている。なお、電極層数を16としても二次電池500は、可撓性を有する。図12Bでは負極集電体504が8層と、正極集電体501が8層の合計16層の構造を示している。なお、図12Bは負極の取り出し部の断面を示しており、8層の負極集電体504を超音波接合させている。勿論、電極層数は16に限定されず、多くてもよいし、少なくてもよい。電極層数が多い場合には、より多くの容量を有する二次電池とすることができる。また、電極層数が少ない場合には、薄型化でき、可撓性に優れた二次電池とすることができる。
ここで、ラミネート型の二次電池500の外観図の一例を図13及び図14に示す。図13及び図14は、正極503、負極506、セパレータ507、外装体509、正極リード電極510及び負極リード電極511を有する。
図15Aは正極503及び負極506の外観図を示す。正極503は正極集電体501を有し、正極活物質層502は正極集電体501の表面に形成されている。また、正極503は正極集電体501が一部露出する領域(以下、タブ領域という)を有する。負極506は負極集電体504を有し、負極活物質層505は負極集電体504の表面に形成されている。また、負極506は負極集電体504が一部露出する領域、すなわちタブ領域を有する。正極及び負極が有するタブ領域の面積や形状は、図15Aに示す例に限られない。
[ラミネート型二次電池の作製方法]
ここで、図13に外観図を示すラミネート型二次電池の作製方法の一例について、図15B及び図15Cを用いて説明する。
まず、負極506、セパレータ507及び正極503を積層する。図15Bに積層された負極506、セパレータ507及び正極503を示す。ここでは負極を5組、正極を4組使用する例を示す。次に、正極503のタブ領域同士の接合と、最表面の正極のタブ領域への正極リード電極510の接合を行う。接合には、例えば超音波溶接等を用いればよい。同様に、負極506のタブ領域同士の接合と、最表面の負極のタブ領域への負極リード電極511の接合を行う。
次に外装体509上に、負極506、セパレータ507及び正極503を配置する。
次に、図15Cに示すように、外装体509を破線で示した部分で折り曲げる。その後、外装体509の外周部を接合する。接合には例えば熱圧着等を用いればよい。この時、後に電解液508を入れることができるように、外装体509の一部(または一辺)に接合されない領域(以下、導入口という)を設ける。
次に、外装体509に設けられた導入口から、電解液508を外装体509の内側へ導入する。電解液508の導入は、減圧雰囲気下、或いは不活性雰囲気下で行うことが好ましい。そして最後に、導入口を接合する。このようにして、ラミネート型の二次電池である二次電池500を作製することができる。
正極503に、先の実施の形態で説明した正極活物質粒子を用いることで、劣化が少なく、安全性の高い二次電池500とすることができる。
[曲げることのできる二次電池]
次に、曲げることのできる二次電池の例について図16及び図17を参照して説明する。
図16Aに、曲げることのできる電池250の上面概略図を示す。図16B、図16C及び図16Dにはそれぞれ、図16A中の切断線C1−C2、切断線C3−C4、切断線A1−A2における断面概略図である。電池250は、外装体251と、外装体251の内部に収容された正極211aおよび負極211bを有する。正極211aと電気的に接続されたリード212a、および負極211bと電気的に接続されたリード212bは、外装体251の外側に延在している。また外装体251で囲まれた領域には、正極211aおよび負極211bに加えて電解液(図示しない)が封入されている。
電池250が有する正極211aおよび負極211bについて、図17を用いて説明する。図17Aは、正極211a、負極211bおよびセパレータ214の積層順を説明する斜視図である。図17Bは正極211aおよび負極211bに加えて、リード212aおよびリード212bを示す斜視図である。
図17Aに示すように、電池250は、複数の短冊状の正極211a、複数の短冊状の負極211bおよび複数のセパレータ214を有する。正極211aおよび負極211bはそれぞれ突出したタブ部分と、タブ以外の部分を有する。正極211aの一方の面のタブ以外の部分に正極活物質層が形成され、負極211bの一方の面のタブ以外の部分に負極活物質層が形成される。
正極211aの正極活物質層の形成されていない面同士、および負極211bの負極活物質の形成されていない面同士が接するように、正極211aおよび負極211bは積層される。
また、正極211aの正極活物質が形成された面と、負極211bの負極活物質が形成された面の間にはセパレータ214が設けられる。図17Aでは見やすくするためセパレータ214を点線で示す。
また図17Bに示すように、複数の正極211aとリード212aは、接合部215aにおいて電気的に接続される。また複数の負極211bとリード212bは、接合部215bにおいて電気的に接続される。
次に、外装体251について図16B、図16C、図16D及び図16Eを用いて説明する。
外装体251は、フィルム状の形状を有し、正極211aおよび負極211bを挟むように2つに折り曲げられている。外装体251は、折り曲げ部261と、一対のシール部262と、シール部263と、を有する。一対のシール部262は、正極211aおよび負極211bを挟んで設けられ、サイドシールとも呼ぶことができる。また、シール部263は、リード212a及びリード212bと重なる部分を有し、トップシールとも呼ぶことができる。
外装体251は、正極211aおよび負極211bと重なる部分に、稜線271と谷線272が交互に並んだ波形状を有することが好ましい。また、外装体251のシール部262及びシール部263は、平坦であることが好ましい。
図16Bは、稜線271と重なる部分で切断した断面であり、図16Cは、谷線272と重なる部分で切断した断面である。図16B及び図16Cは共に、電池250及び正極211aおよび負極211bの幅方向の断面に対応する。
ここで、正極211aおよび負極211bの幅方向の端部、すなわち正極211aおよび負極211bの端部と、シール部262との間の距離を距離Laとする。電池250に曲げるなどの変形を加えたとき、後述するように正極211aおよび負極211bが長さ方向に互いにずれるように変形する。その際、距離Laが短すぎると、外装体251と正極211aおよび負極211bとが強く擦れ、外装体251が破損してしまう場合がある。特に外装体251の金属フィルムが露出すると、当該金属フィルムが電解液により腐食されてしまう恐れがある。したがって、距離Laを出来るだけ長く設定することが好ましい。一方で、距離Laを大きくしすぎると、電池250の体積が増大してしまう。
また、積層された正極211aおよび負極211bの合計の厚さが厚いほど、正極211aおよび負極211bと、シール部262との間の距離Laを大きくすることが好ましい。
より具体的には、積層された正極211aおよび負極211bの合計の厚さを厚さtとしたとき、距離Laは、厚さtの0.8倍以上3.0倍以下、好ましくは0.9倍以上2.5倍以下、より好ましくは1.0倍以上2.0倍以下であることが好ましい。距離Laをこの範囲とすることで、コンパクトで、且つ曲げに対する信頼性の高い電池を実現できる。
また、一対のシール部262の間の距離を距離Lbとしたとき、距離Lbを正極211aおよび負極211bの幅(ここでは、負極211bの幅Wb)よりも十分大きくすることが好ましい。これにより、電池250に繰り返し曲げるなどの変形を加えたときに、正極211aおよび負極211bと外装体251とが接触しても、正極211aおよび負極211bの一部が幅方向にずれることができるため、正極211aおよび負極211bと外装体251とが擦れてしまうことを効果的に防ぐことができる。
例えば、一対のシール部262の間の距離Laと、負極211bの幅Wbとの差が、正極211aおよび負極211bの厚さtの1.6倍以上6.0倍以下、好ましくは1.8倍以上5.0倍以下、より好ましくは、2.0倍以上4.0倍以下を満たすことが好ましい。
言い換えると、距離Lb、幅Wb、及び厚さtが、下記数式1の関係を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000001
ここで、aは、0.8以上3.0以下、好ましくは0.9以上2.5以下、より好ましくは1.0以上2.0以下を満たす。
また、図16Dはリード212aを含む断面であり、電池250、正極211aおよび負極211bの長さ方向の断面に対応する。図16Dに示すように、折り曲げ部261において、正極211aおよび負極211bの長さ方向の端部と、外装体251との間に空間273を有することが好ましい。
図16Eに、電池250を曲げたときの断面概略図を示している。図16Eは、図16A中の切断線B1−B2における断面に相当する。
電池250を曲げると、曲げの外側に位置する外装体251の一部は伸び、内側に位置する他の一部は縮むように変形する。より具体的には、外装体251の外側に位置する部分は、波の振幅が小さく、且つ波の周期が大きくなるように変形する。一方、外装体251の内側に位置する部分は、波の振幅が大きく、且つ波の周期が小さくなるように変形する。このように、外装体251が変形することにより、曲げに伴って外装体251にかかる応力が緩和されるため、外装体251を構成する材料自体が伸縮する必要がない。その結果、外装体251は破損することなく、小さな力で電池250を曲げることができる。
また、図16Eに示すように、電池250を曲げると、正極211aおよび負極211bとがそれぞれ相対的にずれる。このとき、複数の積層された正極211aおよび負極211bは、シール部263側の一端が固定部材217で固定されているため、折り曲げ部261に近いほどずれ量が大きくなるように、それぞれずれる。これにより、正極211aおよび負極211bにかかる応力が緩和され、正極211aおよび負極211b自体が伸縮する必要がない。その結果、正極211aおよび負極211bが破損することなく電池250を曲げることができる。
また、正極211aおよび負極211bと外装体251との間に空間273を有していることにより、曲げた時、内側に位置する正極211aおよび負極211bが、外装体251に接触することなく、相対的にずれることができる。
図16及び図17で例示した電池250は、繰り返し曲げ伸ばしを行っても、外装体の破損、正極211aおよび負極211bの破損などが生じにくく、電池特性も劣化しにくい電池である。電池250が有する正極211aに、先の実施の形態で説明した正極活物質粒子を用いることで、さらに劣化が少なく、安全性の高い二次電池とすることができる。
(実施の形態4)
本実施の形態では、本発明の一態様である二次電池を電子機器に実装する例について説明する。
まず実施の形態3の一部で説明した、曲げることのできる二次電池を電子機器に実装する例を図18に示す。曲げることのできる二次電池を適用した電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジョン 受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
また、フレキシブルな形状を備える二次電池を、家屋やビルの内壁または外壁や、自動車の内装または外装の曲面に沿って組み込むことも可能である。
図18Aは、携帯電話機の一例を示している。携帯電話機7400は、筐体7401に組み込まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、スピーカ7405、マイク7406などを備えている。なお、携帯電話機7400は、二次電池7407を有している。
図18Bは、携帯電話機7400を湾曲させた状態を示している。携帯電話機7400を外部の力により変形させて全体を湾曲させると、その内部に設けられている二次電池7407も湾曲される。また、その時、曲げられた二次電池7407の状態を図18Cに示す。二次電池7407は薄型の蓄電池である。二次電池7407は曲げられた状態で固定されている。
図18Dは、バングル型の表示装置の一例を示している。携帯表示装置7100は、筐体7101、表示部7102、操作ボタン7103、及び二次電池7104を備える。また、図18Eに曲げられた二次電池7104の状態を示す。二次電池7104は曲げられた状態で使用者の腕への装着時に、筐体が変形して二次電池7104の一部または全部の曲率が変化する。なお、曲線の任意の点における曲がり具合を相当する円の半径の値で表したものを曲率半径であり、曲率半径の逆数を曲率と呼ぶ。具体的には、曲率半径が40mm以上150mm以下の範囲内で筐体または二次電池7104の主表面の一部または全部が変化する。二次電池7104の主表面における曲率半径が40mm以上150mm以下の範囲であれば、高い信頼性を維持できる。
図18Fは、腕時計型の携帯情報端末の一例を示している。携帯情報端末7200は、筐体7201、表示部7202、バンド7203、バックル7204、操作ボタン7205、入出力端子7206などを備える。
携帯情報端末7200は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。
表示部7202はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、表示部7202はタッチセンサを備え、指やスタイラスなどで画面に触れることで操作することができる。例えば、表示部7202に表示されたアイコン7207に触れることで、アプリケーションを起動することができる。
操作ボタン7205は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、携帯情報端末7200に組み込まれたオペレーティングシステムにより、操作ボタン7205の機能を自由に設定することもできる。
また、携帯情報端末7200は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。
また、携帯情報端末7200は入出力端子7206を備え、他の情報端末とコネクタを介して直接データのやりとりを行うことができる。また入出力端子7206を介して充電を行うこともできる。なお、充電動作は入出力端子7206を介さずに無線給電により行ってもよい。
携帯情報端末7200の表示部7202には、本発明の一態様の二次電池を有している。例えば、図18Eに示した二次電池7104を、筐体7201の内部に湾曲した状態で、またはバンド7203の内部に湾曲可能な状態で組み込むことができる。
携帯情報端末7200はセンサを有することが好ましい。センサとして例えば、指紋センサ、脈拍センサ、体温センサ等の人体センサや、タッチセンサ、加圧センサ、加速度センサ、等が搭載されることが好ましい。
図18Gは、腕章型の表示装置の一例を示している。表示装置7300は、表示部7304を有し、本発明の一態様の二次電池を有している。また、表示装置7300は、表示部7304にタッチセンサを備えることもでき、また、携帯情報端末として機能させることもできる。
表示部7304はその表示面が湾曲しており、湾曲した表示面に沿って表示を行うことができる。また、表示装置7300は、通信規格された近距離無線通信などにより、表示状況を変更することができる。
また、表示装置7300は入出力端子を備え、他の情報端末とコネクタを介して直接データのやりとりを行うことができる。また入出力端子を介して充電を行うこともできる。なお、充電動作は入出力端子を介さずに無線給電により行ってもよい。
次に、図19A及び図19Bに、2つ折り可能なタブレット型端末の一例を示す。図19A及び図19Bに示すタブレット型端末9600は、筐体9630a、筐体9630b、筐体9630aと筐体9630bを接続する可動部9640、表示部9631、表示モード切り替えスイッチ9626、電源スイッチ9627、省電力モード切り替えスイッチ9625、留め具9629、操作スイッチ9628、を有する。表示部9631には、可撓性を有するパネルを用いることで、より広い表示部を有するタブレット端末とすることができる。図19Aは、タブレット型端末9600を開いた状態を示し、図19Bは、タブレット型端末9600を閉じた状態を示している。
また、タブレット型端末9600は、筐体9630aおよび筐体9630bの内部に蓄電体9635を有する。蓄電体9635は、可動部9640を通り、筐体9630aと筐体9630bに渡って設けられている。
表示部9631は、一部をタッチパネルの領域とすることができ、表示された操作キーにふれることでデータ入力をすることができる。また、タッチパネルのキーボード表示切り替えボタンが表示されている位置に指やスタイラスなどでふれることで表示部9631にキーボードボタン表示することができる。
また、表示モード切り替えスイッチ9626は、縦表示又は横表示などの表示の向きを切り替え、白黒表示やカラー表示の切り替えなどを選択できる。省電力モード切り替えスイッチ9625は、タブレット型端末9600に内蔵している光センサで検出される使用時の外光の光量に応じて表示の輝度を最適なものとすることができる。タブレット型端末は光センサだけでなく、ジャイロ、加速度センサ等の傾きを検出するセンサなどの他の検出装置を内蔵させてもよい。
図19Bは、閉じた状態であり、タブレット型端末は、筐体9630b、太陽電池9633、DCDCコンバータ9636を含む充放電制御回路9634有する。また、蓄電体9635として、本発明の一態様に係る二次電池を用いる。
なお、タブレット型端末9600は2つ折り可能なため、未使用時に筐体9630aおよび筐体9630bを重ね合せるように折りたたむことができる。折りたたむことにより、表示部9631を保護できるため、タブレット型端末9600の耐久性を高めることができる。また、本発明の一態様の二次電池を用いた蓄電体9635は高容量、良好なサイクル特性を有するため、長期間に渡って長時間の使用ができるタブレット型端末を提供できる。
また、この他にも図19A及び図19Bに示したタブレット型端末は、様々な情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻などを表示部に表示する機能、表示部に表示した情報をタッチ入力操作又は編集するタッチ入力機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有することができる。
タブレット型端末の表面に装着された太陽電池9633によって、電力をタッチパネル、表示部、又は映像信号処理部等に供給することができる。なお、太陽電池9633は、筐体9630bの片面、又は筐体9630aの片面、または両方に設けることができ、蓄電体9635の充電を効率的に行う構成とすることができる。
また、図19Bに示す充放電制御回路9634の構成、および動作について図19Cにブロック図を示し説明する。図19Cには、太陽電池9633、蓄電体9635、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3、表示部9631について示しており、蓄電体9635、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3が、図19Bに示す充放電制御回路9634に対応する箇所となる。
まず外光により太陽電池9633により発電がされる場合の動作の例について説明する。太陽電池で発電した電力は、蓄電体9635を充電するための電圧となるようDCDCコンバータ9636で昇圧又は降圧がなされる。そして、表示部9631の動作に太陽電池9633からの電力が用いられる際にはスイッチSW1をオンにし、コンバータ9637で表示部9631に必要な電圧に昇圧又は降圧をすることとなる。また、表示部9631での表示を行わない際には、SW1をオフにし、SW2をオンにして蓄電体9635の充電を行う構成とすればよい。
なお太陽電池9633については、発電手段の一例として示したが、特に限定されず、圧電素子(ピエゾ素子)や熱電変換素子(ペルティエ素子)などの他の発電手段による蓄電体9635の充電を行う構成であってもよい。例えば、無線(非接触)で電力を送受信して充電する無接点電力伝送モジュールや、また他の充電手段を組み合わせて行う構成としてもよい。
図20に、他の電子機器の例を示す。図20において、表示装置8000は、本発明の一態様に係る二次電池8004を用いた電子機器の一例である。具体的に、表示装置8000は、TV放送受信用の表示装置に相当し、筐体8001、表示部8002、スピーカ部8003、二次電池8004等を有する。本発明の一態様に係る二次電池8004は、筐体8001の内部に設けられている。表示装置8000は、商用電源から電力の供給を受けることもできるし、二次電池8004に蓄積された電力を用いることもできる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る二次電池8004を無停電電源として用いることで、表示装置8000の利用が可能となる。
表示部8002には、液晶表示装置、有機EL素子などの発光素子を各画素に備えた発光装置、電気泳動表示装置、DMD(Digital Micromirror Device)、PDP(Plasma Display Panel)、FED(Field Emission Display)などの、半導体表示装置を用いることができる。
なお、表示装置には、TV放送受信用の他、パーソナルコンピュータ用、広告表示用など、全ての情報表示用表示装置が含まれる。
図20において、据え付け型の照明装置8100は、本発明の一態様に係る二次電池8103を用いた電子機器の一例である。具体的に、照明装置8100は、筐体8101、光源8102、二次電池8103等を有する。図20では、二次電池8103が、筐体8101及び光源8102が据え付けられた天井8104の内部に設けられている場合を例示しているが、二次電池8103は、筐体8101の内部に設けられていても良い。照明装置8100は、商用電源から電力の供給を受けることもできるし、二次電池8103に蓄積された電力を用いることもできる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る二次電池8103を無停電電源として用いることで、照明装置8100の利用が可能となる。
なお、図20では天井8104に設けられた据え付け型の照明装置8100を例示しているが、本発明の一態様に係る二次電池は、天井8104以外、例えば側壁8105、床8106、窓8107等に設けられた据え付け型の照明装置に用いることもできるし、卓上型の照明装置などに用いることもできる。
また、光源8102には、電力を利用して人工的に光を得る人工光源を用いることができる。具体的には、白熱電球、蛍光灯などの放電ランプ、LEDや有機EL素子などの発光素子が、上記人工光源の一例として挙げられる。
図20において、室内機8200及び室外機8204を有するエアコンディショナーは、本発明の一態様に係る二次電池8203を用いた電子機器の一例である。具体的に、室内機8200は、筐体8201、送風口8202、二次電池8203等を有する。図20では、二次電池8203が、室内機8200に設けられている場合を例示しているが、二次電池8203は室外機8204に設けられていても良い。或いは、室内機8200と室外機8204の両方に、二次電池8203が設けられていても良い。エアコンディショナーは、商用電源から電力の供給を受けることもできるし、二次電池8203に蓄積された電力を用いることもできる。特に、室内機8200と室外機8204の両方に二次電池8203が設けられている場合、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る二次電池8203を無停電電源として用いることで、エアコンディショナーの利用が可能となる。
なお、図20では、室内機と室外機で構成されるセパレート型のエアコンディショナーを例示しているが、室内機の機能と室外機の機能とを1つの筐体に有する一体型のエアコンディショナーに、本発明の一態様に係る二次電池を用いることもできる。
図20において、電気冷凍冷蔵庫8300は、本発明の一態様に係る二次電池8304を用いた電子機器の一例である。具体的に、電気冷凍冷蔵庫8300は、筐体8301、冷蔵室用扉8302、冷凍室用扉8303、二次電池8304等を有する。図20では、二次電池8304が、筐体8301の内部に設けられている。電気冷凍冷蔵庫8300は、商用電源から電力の供給を受けることもできるし、二次電池8304に蓄積された電力を用いることもできる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る二次電池8304を無停電電源として用いることで、電気冷凍冷蔵庫8300の利用が可能となる。
また、電子機器が使用されない時間帯、特に、商用電源の供給元が供給可能な総電力量のうち、実際に使用される電力量の割合(電力使用率と呼ぶ)が低い時間帯において、二次電池に電力を蓄えておくことで、上記時間帯以外において電力使用率が高まるのを抑えることができる。例えば、電気冷凍冷蔵庫8300の場合、気温が低く、冷蔵室用扉8302、冷凍室用扉8303の開閉が行われない夜間において、二次電池8304に電力を蓄える。そして、気温が高くなり、冷蔵室用扉8302、冷凍室用扉8303の開閉が行われる昼間において、二次電池8304を補助電源として用いることで、昼間の電力使用率を低く抑えることができる。
上述の電子機器の他、本発明の一態様の二次電池はあらゆる電子機器に搭載することができる。本発明の一態様により、劣化が少なく、安全性の高い二次電池とすることができる。そのため本発明の一態様である二次電池を、本実施の形態で説明した電子機器に搭載することで、より長寿命で、より安全性の高い電子機器とすることができる。本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態5)
本実施の形態では、本発明の一態様である二次電池を輸送用機器に実装する例について説明する。
また、実施の形態3に示した二次電池の一例を車両に搭載すると、ハイブリッド車(HV)、電気自動車(EV)、又はプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車を実現できる。また、農業機械、電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、電動カート、小型又は大型船舶、潜水艦、固定翼機や回転翼機等の航空機、ロケット、人工衛星、宇宙探査機や惑星探査機、宇宙船などの輸送用機器に蓄電装置を搭載することもできる。本発明の一態様の蓄電装置は高容量の蓄電装置とすることができる。そのため本発明の一態様の蓄電装置は、小型化、軽量化に適しており、輸送用機器に好適に用いることができる。
図21A乃至図21Dにおいて、本発明の一態様を用いた輸送用機器を例示する。図21Aに示す自動車2001は、走行のための動力源として電気モーターを用いる電気自動車である。または、走行のための動力源として電気モーターとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。二次電池を車両に搭載する場合、実施の形態3で示した二次電池の一例を一箇所または複数個所に設置する。図21Aに示す自動車2001は、電池パック2100を有し、電池パックは、複数の二次電池を接続させた二次電池モジュールを有する。さらに二次電池モジュールに電気的に接続する充電制御装置を有すると好ましい。
また、自動車2001は、自動車2001が有する蓄電装置にプラグイン方式や非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。充電に際しては、充電方法やコネクタの規格等はCHAdeMO(登録商標)やコンボ等の所定の方式で適宜行えばよい。充電装置は、商用施設に設けられた充電ステーションでもよく、また家庭の電源であってもよい。例えば、プラグイン技術によって、外部からの電力供給により自動車2001に搭載された蓄電装置を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。
また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路や外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、2台の車両どうしで電力の送受信を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時や走行時に蓄電装置の充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式や磁界共鳴方式を用いることができる。
 図21Bは、輸送用機器の一例として電気により制御するモーターを有した大型の輸送車2002を示している。輸送車2002の二次電池モジュールは、例えば3.5V以上4V以下の二次電池を4個セルユニットとし、48セルを直列に接続した170Vの最大電圧とする。電池パック2101の二次電池モジュールを構成する二次電池の数などが違う以外は、図21Aと同様な機能を備えているので説明は省略する。
 図21Cは、一例として電気により制御するモーターを有した大型の輸送車両2003を示している。輸送車両2003の二次電池モジュールは、例えば3.5V以上4V以下の二次電池を百個以上直列に接続した600Vの最大電圧とする。電池パック2102の二次電池モジュールを構成する二次電池の数などが違う以外は、図21Aと同様な機能を備えているので説明は省略する。
 図21Dは、一例として燃料を燃焼するエンジンを有した航空機2004を示している。図21Dに示す航空機2004は、複数の二次電池を接続させて二次電池モジュールを構成し、二次電池モジュールと充電制御装置とを含む電池パック2103を有している。
航空機2004の二次電池モジュールは、例えば4Vの二次電池を8個直列に接続した32Vの最大電圧とする。電池パック2103の二次電池モジュールを構成する二次電池の数などが違う以外は、図21Aと同様な機能を備えているので説明は省略する。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
101:混合物、102:混合物、103:混合物、104:正極活物質、200:活物質層、201:グラフェン、203:集電体、311a:正極、211b:負極、212a:リード、212b:リード、214:セパレータ、215a:接合部、215b:接合部、217:固定部材、250:電池、251:外装体、261:折り曲げ部、262:シール部、263:シール部、271:稜線、272:谷線、273:空間、300:二次電池、301:正極缶、302:負極缶、303:ガスケット、304:正極、305:正極集電体、306:正極活物質層、307:負極、308:負極集電体、309:負極活物質層、310:セパレータ、500:二次電池、501:正極集電体、502:正極活物質層、503:正極、504:負極集電体、505:負極活物質層、506:負極、507:セパレータ、508:電解液、509:外装体、510:正極リード電極、511:負極リード電極、600:二次電池、601:正極キャップ、602:電池缶、603:正極端子、604:正極、605:セパレータ、606:負極、607:負極端子、608:絶縁板、609:絶縁板、611:PTC素子、612:安全弁機構、613:導電板、614:導電板、615:モジュール、616:導線、617:温度制御装置、900:回路基板、910:ラベル、911:端子、912:回路、913:二次電池、914:アンテナ、915:アンテナ、916:層、917:層、918:アンテナ、919:端子、920:表示装置、921:センサ、922:端子、930:筐体、930a:筐体、930b:筐体、931:負極、932:正極、933:セパレータ、950:捲回体、951:端子、952:端子、966:セパレータ、980:二次電池、981:フィルム、982:フィルム、993:捲回体、994:負極、995:正極、997:リード電極、998:リード電極、2001:自動車、2002:輸送車、2003:輸送車両、2004:航空機、2100:電池パック、2101:電池パック、2102:電池パック、2103:電池パック、7100:携帯表示装置、7101:筐体、7102:表示部、7103:操作ボタン、7104:二次電池、7200:携帯情報端末、7201:筐体、7202:表示部、7203:バンド、7204:バックル、7205:操作ボタン、7206:入出力端子、7207:アイコン、7300:表示装置、7304:表示部、7400:携帯電話機、7401:筐体、7402:表示部、7403:操作ボタン、7404:外部接続ポート、7405:スピーカ、7406:マイク、7407:二次電池、8000:表示装置、8001:筐体、8002:表示部、8003:スピーカ部、8004:二次電池、8100:照明装置、8101:筐体、8102:光源、8103:二次電池、8104:天井、8105:側壁、8106:床、8107:窓、8200:室内機、8201:筐体、8202:送風口、8203:二次電池、8204:室外機、8300:電気冷凍冷蔵庫、8301:筐体、8302:冷蔵室用扉、8303:冷凍室用扉、8304:二次電池、9600:タブレット型端末、9625:スイッチ、9626:スイッチ、9627:電源スイッチ、9628:操作スイッチ、9629:留め具、9630a:筐体、9630b:筐体、9631:表示部、9633:太陽電池、9634:充放電制御回路、9635:蓄電体、9636:DCDCコンバータ、9637:コンバータ、9640:可動部

Claims (11)

  1. 分散媒及び活物質を有する第1の混合物に、導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料を混合し、第2の混合物を得る第1の工程と、
    前記第2の混合物に結着材を混合し、第3の混合物を得る第2の工程と、
    前記第3の混合物を混練する第3の工程と、を有する、電極スラリーの作製方法。
  2. 分散媒及び活物質を混合し、第1の混合物を得る第1の工程と、
    前記第1の混合物に、導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料を混合し、第2の混合物を得る第2の工程と、
    前記第2の混合物に結着材を混合し、第3の混合物を得る第3の工程と、
    前記第3の混合物を混練する第4の工程と、を有する、電極スラリーの作製方法。
  3. 請求項1または請求項2において、
    前記電極スラリーにおいて、前記導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料の重量比は0.1wt%以上10wt%以下である、電極スラリーの作製方法。
  4. 請求項1乃至請求項3のいずれか一項において、
    前記導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料が有する酸素は4atm%以下である、電極スラリーの作製方法。
  5. 請求項1乃至請求項4のいずれか一項において、
    前記導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料は1nm以上50nm以下の厚さである、電極スラリーの作製方法。
  6. 分散媒及び活物質を有する第1の混合物に、導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料を混合し、第2の混合物を得る第1の工程と、
    前記第2の混合物に結着材を混合し、第3の混合物を得る第2の工程と、
    前記第3の混合物を混練し、電極スラリーを得る第3の工程と、
    前記電極スラリーを正極集電体に塗布する第4の工程と、
    前記電極スラリーを乾燥させる第5の工程を有し、
    前記第1の工程乃至前記第5の工程をこの順で行う、正極の作製方法。
  7. 分散媒及び活物質を混合し、第1の混合物を得る第1の工程と、
    前記第1の混合物に、導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料を混合し、第2の混合物を得る第2の工程と、
    前記第2の混合物に結着材を混合し、第3の混合物を得る第3の工程と、
    前記第3の混合物を混練し、電極スラリーを得る第4の工程と、
    前記電極スラリーを正極集電体に塗布する第5の工程と、
    前記電極スラリーを乾燥させる第6の工程を有し、
    前記第1の工程乃至前記第6の工程をこの順で行う、正極の作製方法。
  8. 請求項6または請求項7において、
    前記電極スラリーにおいて、前記導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料の重量比は0.1wt%以上10wt%以下である、正極の作製方法。
  9. 請求項6乃至請求項8のいずれか一項において、
    前記導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料が有する酸素は4atm%以下である、正極の作製方法。
  10. 請求項6乃至請求項9のいずれか一項において、
    前記導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料は1nm以上100nm以下の厚さである、正極の作製方法。
  11. 正極集電体上に、正極活物質、導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料及び結着材と、を有し、
    前記正極活物質、前記導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料及び前記結着材の総重量において、前記導電性を有しかつ、六個の炭素原子からなる六角形が2次元シート状に形成された材料の重量比は0.1wt%以上10wt%以下であり、
    前記六個の炭素原子からなる六角形が2次元シート状に形成された導電性を有する材料が有する酸素は4atm%以下であり、
    前記六個の炭素原子からなる六角形が2次元シート状に形成された導電性を有する材料は1nm以上100nm以下の厚さである、正極。
PCT/IB2020/056445 2019-07-19 2020-07-09 電極スラリーの作製方法、電極の作製方法、正極の作製方法、二次電池用電極、二次電池用正極 WO2021014257A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019133711 2019-07-19
JP2019-133711 2019-07-19

Publications (1)

Publication Number Publication Date
WO2021014257A1 true WO2021014257A1 (ja) 2021-01-28

Family

ID=74193583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/056445 WO2021014257A1 (ja) 2019-07-19 2020-07-09 電極スラリーの作製方法、電極の作製方法、正極の作製方法、二次電池用電極、二次電池用正極

Country Status (1)

Country Link
WO (1) WO2021014257A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169217A (ja) * 2011-02-16 2012-09-06 Asahi Glass Co Ltd リチウムイオン二次電池用の正極活物質およびその製造方法
JP2012219010A (ja) * 2011-04-06 2012-11-12 Samsung Electro-Mechanics Co Ltd ナノ複合素材及びその製造方法並びにこれを含むエネルギ貯藏装置
WO2017010093A1 (ja) * 2015-07-14 2017-01-19 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
JP2017063032A (ja) * 2015-09-25 2017-03-30 株式会社半導体エネルギー研究所 蓄電池用電極の製造方法
JP2017183292A (ja) * 2012-11-07 2017-10-05 株式会社半導体エネルギー研究所 非水系二次電池用正極
WO2018021480A1 (ja) * 2016-07-27 2018-02-01 Tdk株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極およびこれを用いたリチウムイオン二次電池
WO2018123778A1 (ja) * 2016-12-27 2018-07-05 東レ株式会社 電極材料の製造方法、電極材料および二次電池用電極

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169217A (ja) * 2011-02-16 2012-09-06 Asahi Glass Co Ltd リチウムイオン二次電池用の正極活物質およびその製造方法
JP2012219010A (ja) * 2011-04-06 2012-11-12 Samsung Electro-Mechanics Co Ltd ナノ複合素材及びその製造方法並びにこれを含むエネルギ貯藏装置
JP2017183292A (ja) * 2012-11-07 2017-10-05 株式会社半導体エネルギー研究所 非水系二次電池用正極
WO2017010093A1 (ja) * 2015-07-14 2017-01-19 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
JP2017063032A (ja) * 2015-09-25 2017-03-30 株式会社半導体エネルギー研究所 蓄電池用電極の製造方法
WO2018021480A1 (ja) * 2016-07-27 2018-02-01 Tdk株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極およびこれを用いたリチウムイオン二次電池
WO2018123778A1 (ja) * 2016-12-27 2018-07-05 東レ株式会社 電極材料の製造方法、電極材料および二次電池用電極

Similar Documents

Publication Publication Date Title
JP7002496B2 (ja) 蓄電装置
KR102637323B1 (ko) 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
JP7117343B2 (ja) リチウムイオン二次電池
JP6735061B2 (ja) 蓄電体
US9673454B2 (en) Sodium-ion secondary battery
JP2022023097A (ja) 蓄電装置
US20170338489A1 (en) Method for manufacturing positive electrode active material, and lithium ion battery
JP7088898B2 (ja) リチウムイオン二次電池、電子機器、携帯情報端末、自動車、及び建物
JP7081908B2 (ja) リチウムイオン二次電池
JP7011020B2 (ja) 蓄電装置
JP6664184B2 (ja) 電極、及び電極の作製方法
JP2022008877A (ja) 蓄電装置
US20150140396A1 (en) Power storage unit and electronic device
JP2015118929A (ja) 蓄電体、およびそれを備えた電子機器
JP6912893B2 (ja) 蓄電池、電池制御ユニット、および電子機器
JP2018046011A (ja) 電極、および蓄電装置
JP7097690B2 (ja) 電極および蓄電池
WO2016055908A1 (ja) 蓄電装置および電子機器
US20150099161A1 (en) Power storage unit
CN106169560B (zh) 电极、蓄电装置及电子设备
JPWO2020099978A1 (ja) 正極活物質、二次電池、電子機器及び車両
JP2022105709A (ja) リチウムイオン二次電池
WO2021014257A1 (ja) 電極スラリーの作製方法、電極の作製方法、正極の作製方法、二次電池用電極、二次電池用正極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP