WO2021013249A1 - 局部放电检测传感器及其制造方法 - Google Patents

局部放电检测传感器及其制造方法 Download PDF

Info

Publication number
WO2021013249A1
WO2021013249A1 PCT/CN2020/104501 CN2020104501W WO2021013249A1 WO 2021013249 A1 WO2021013249 A1 WO 2021013249A1 CN 2020104501 W CN2020104501 W CN 2020104501W WO 2021013249 A1 WO2021013249 A1 WO 2021013249A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic core
ring magnetic
core piece
ring
partial discharge
Prior art date
Application number
PCT/CN2020/104501
Other languages
English (en)
French (fr)
Inventor
刘昕
孙科
陈川
郭经红
孙亮
祝志祥
刘弘景
钱森
丁一
吴麟琳
任志刚
弓艳朋
王广真
杜非
Original Assignee
全球能源互联网研究院有限公司
电子科技大学
国网北京市电力公司
中国电力科学研究院有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全球能源互联网研究院有限公司, 电子科技大学, 国网北京市电力公司, 中国电力科学研究院有限公司, 国家电网有限公司 filed Critical 全球能源互联网研究院有限公司
Publication of WO2021013249A1 publication Critical patent/WO2021013249A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/16Magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/186Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using current transformers with a core consisting of two or more parts, e.g. clamp-on type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements

Definitions

  • This application relates to the technical field of partial discharge detection, for example, to a partial discharge detection sensor and a manufacturing method thereof.
  • partial discharge In the insulator, only the discharge occurs in a local area, and there is no penetration between the conductors that apply voltage. It can occur near the conductor or in other places. This phenomenon is called partial discharge. Although partial discharge is only a very small release of energy, usually the discharge electricity is only pC (piculomb), but the harm of partial discharge should not be underestimated. Due to the small discharge volume of partial discharge, it is difficult to detect. Long-term partial discharge will accelerate the aging and deterioration of key equipment materials, and ultimately cause equipment functional damage, causing serious damage to power outages, explosions, and even casualties.
  • Chinese patent document CN208188187U discloses a high-frequency current sensor for cable partial discharge detection.
  • the main body of the current sensor in the related art is composed of two half-ring magnetic cores and a package shell. Ferrite is often used as the magnetic core material. Ferrite cores need to be sintered by applying high pressure during the manufacturing process. However, due to process conditions, the maximum inner diameter of the high-frequency current sensor can only reach 60mm. Therefore, the current sensor in the related art needs to install the high-frequency current sensor at a location with a smaller installation cross-sectional diameter such as a ground wire.
  • the present application provides a partial discharge detection sensor and a manufacturing method thereof, which solves the problem that the partial discharge detection sensor used in the device under test with a large cross-sectional diameter in the related art is difficult to manufacture, has high production and use costs, and is difficult to achieve mass production. Unable to produce the problem.
  • the detection range of the partial discharge detection sensor is 3 MHz to 36 MHz.
  • the partial discharge detection sensor includes:
  • the second half-ring magnetic core piece is arranged corresponding to the first half-ring magnetic core piece, and the first half-ring magnetic core piece and the second half-ring magnetic core piece are arranged to surround the component under test in the circumferential direction ;
  • the first half-ring magnetic core component includes at least two core segments connected together, or the second half-ring core component includes at least two core segments connected together, or the first Both the half-ring magnetic core piece and the second half-ring magnetic core piece include at least two magnetic core segments connected together.
  • At least two of the magnetic cores are divided into pieces and fixed together by an adhesive such as epoxy resin.
  • Both the first half-ring magnetic core piece and the second half-ring magnetic core piece are provided with wires, and the wires transmit signals to the outside through the bayonet nut connector BNC connector or the terminal node controller TNC connector.
  • the BNC connector is a connector used for coaxial cables.
  • BNC has the advantages of long transmission distance and stable signal.
  • the TNC connector is a deformation of the BNC connector, which uses a threaded connection mechanism to connect coaxial cables in radio equipment and test instruments. TNC connectors have better performance than BNC connectors at microwave frequencies.
  • the wire is wound with a Rogowski coil structure.
  • the first half-ring magnetic core piece includes at least two magnetic core segments connected together, at least two of the magnetic core segments constituting the first half-ring magnetic core piece are equal in size and The same shape is divided into equal parts; in the case that the second half-ring magnetic core piece includes at least two magnetic core pieces connected together, at least two of the magnetic core pieces constituting the second half-ring magnetic core piece
  • the core segments are equally divided pieces of the same size and shape; in the case that the first half-ring magnetic core piece and the second half-ring magnetic core piece both include at least two magnetic core pieces connected together ,
  • the at least two magnetic core segments constituting the first half-ring magnetic core piece are equal in size and the same shape, and at least two of the magnetic cores constituting the second half-ring magnetic core piece Blocks are equal parts of the same size and shape.
  • Both the first half-ring magnetic core piece and the second half-ring magnetic core piece are composed of at least two of the magnetic core blocks, and all the magnetic core blocks are of the same size and shape.
  • the first half-ring magnetic core piece includes at least two magnetic core segments connected together, the first half-ring magnetic core piece is composed of 4 or 8 magnetic core segments;
  • the second half-ring magnetic core piece includes at least two magnetic core segments connected together, the second half-ring magnetic core piece is composed of 4 or 8 said magnetic core segments;
  • the first half-ring magnetic core piece and the second half-ring magnetic core piece both include at least two core segments connected together
  • the first half-ring magnetic core piece consists of 4 or
  • the eight magnetic cores are divided into blocks
  • the second half-ring magnetic core piece is composed of 4 or 8 magnetic core blocks.
  • the outer surfaces of the first half-ring magnetic core piece and the second half-ring magnetic core piece are both provided with a metal shell.
  • the first half-ring magnetic core piece and the second half-ring magnetic core piece are hinged together, and are opened or closed by a buckle structure.
  • a manufacturing method of a partial discharge detection sensor includes the following steps:
  • Coils are wound on the magnetic core sub-blocks and wire connectors are installed
  • a plurality of the magnetic cores are fixed together in blocks to form the first half-ring magnetic core piece; the first half-ring magnetic core piece and the second half-ring magnetic core piece are connected together; or a plurality of The magnetic cores are fixed together in pieces to form the second half-ring magnetic core piece, and the first half-ring magnetic core piece and the second half-ring magnetic core piece are connected together; or a plurality of the magnetic cores are divided
  • the blocks are fixed together to form a first half-ring magnetic core piece and a plurality of said magnetic cores are fixed together to form a second half-ring magnetic core piece.
  • the first half-ring magnetic core piece and the second half The ring core pieces are connected together.
  • FIG. 1 is a schematic cross-sectional view of a partial discharge detection sensor for detecting a component under test provided by this application;
  • FIG. 2 is a schematic diagram of the three-dimensional structure of the first half-ring magnetic core member provided by this application;
  • FIG. 3 is a schematic diagram of the three-dimensional structure of the second half-ring magnetic core member provided by this application.
  • FIG. 4 is a diagram of the performance test results of the partial discharge detection sensor provided by this application.
  • the terms “center”, “upper”, “lower”, “left”, “right”, “vertical”, “horizontal”, “inner”, “outer”, etc. indicate the orientation or position The relationship is based on the orientation or positional relationship shown in the drawings, which is only for the convenience of describing the application and simplifying the description, and does not indicate or imply that the device or element referred to must have a specified orientation, be constructed and operated in a specified orientation, therefore It cannot be understood as a restriction on this application.
  • the terms “first”, “second”, and “third” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance.
  • the terms “installed”, “connected”, and “connected” shall be interpreted broadly. For example, it may be a fixed connection, a detachable connection, or an integral Connection; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed may be a fixed connection, a detachable connection, or an integral Connection
  • it can be a mechanical connection or an electrical connection
  • it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • This embodiment provides a partial discharge detection sensor.
  • the detection range of the partial discharge detection sensor is 3MHz to 36MHz.
  • the partial discharge detection sensor is shown in Figures 1 to 3, and includes: a first half-ring magnetic core member 1 consisting of 8 The magnetic core is composed of sub-blocks 4, and two adjacent magnetic core sub-blocks 4 are fixed together by epoxy resin adhesive; the second half-ring magnetic core piece 2 is arranged corresponding to the first half-ring magnetic core piece 1 , The second half-ring magnetic core piece 2 is composed of 8 magnetic core sub-blocks 4, and all the magnetic core sub-blocks 4 constituting the first half-ring magnetic core piece 1 and the second half-ring magnetic core piece 2 have the same size and shape , And two adjacent magnetic core blocks 4 are fixed together by epoxy resin adhesive; the above-mentioned first half-ring magnetic core piece 1 and second half-ring magnetic core piece 2 constitute an inner diameter of 160mm and an outer diameter of 220mm , A toroidal magnetic ring with a thickness of 20mm.
  • the manufacturer can combine multiple magnetic cores 4 together as needed, so that the first half ring can be completed without using a thousand-ton press
  • the production and manufacture of the magnetic core piece 1 or the second half-ring magnetic core piece 2 not only reduces the production and manufacturing cost of the large-diameter partial discharge detection sensor, but also solves the problem of some large-sized components under test 3, related technologies
  • the problem that the sensor cannot measure; in addition, the size and shape of all the magnetic core blocks 4 on the first half-ring magnetic core piece 1 and the second half-ring magnetic core piece 2 are the same in size and shape by equal angle and equal division, so that the composition
  • the core sub-blocks 4 of the first half-ring magnetic core piece 1 and the second half-ring magnetic core piece 2 can be used in common, which is convenient for manufacturers to manufacture the magnetic core sub-blocks 4, and reduces the production and manufacturing cost of the partial discharge detection sensor; the above resin glue
  • the adhesive is a two-component glue that needs to be mixed
  • the first half-ring magnetic core piece 1 and the second half-ring magnetic core piece 2 are provided with wires inside, and the wires are wound by using a Rogowski coil structure.
  • the wire transmits a signal to the outside through a bayonet nut connector (BNC) connector, and the transmission signal is data information measured by a partial discharge detection sensor.
  • BNC connector is a connector used for coaxial cables. BNC has the advantages of long transmission distance and stable signal.
  • the metal casing is arranged on the outer surface of the first half-ring magnetic core piece 1 and the second half-ring magnetic core piece 2; the above-mentioned metal casing can effectively protect the first half-ring magnetic core composed of the magnetic core segments 4 The core piece 1 and the second half-ring magnetic core piece 2.
  • the first half-ring magnetic core piece 1 and the second half-ring magnetic core piece 2 are hinged together and opened or closed by a snap structure.
  • the first end of the first half-ring magnetic core piece 1 and the second half-ring The first end of the magnetic core piece 2 is connected together by a hinge pin, the second end of the first half-ring magnetic core piece 1 and the second end of the second half-ring magnetic core piece 2 are formed by hooks and slots.
  • the buckle structure can be detached and connected, so that the partial discharge detection sensor can be arranged in the circumferential direction of the component under test 3 to measure whether the partial discharge phenomenon occurs in the cable body and the casing waiting component 3.
  • the manufacturing method of the partial discharge detection sensor includes the following steps:
  • step S10 the magnetic core block 4 is manufactured through the manufacturing steps of ferrite batching, blanking, pressing, and sintering.
  • Step S20 winding a coil on the magnetic core block 4 and installing a wire connector.
  • Step S30 fixing a plurality of magnetic core blocks 4 together to form the first half-ring magnetic core part 1, and fixing a plurality of magnetic core blocks 4 together to form the second half-ring magnetic core part 2;
  • the first half-ring magnetic core piece 1 and the second half-ring magnetic core piece 2 are connected together.
  • the production and manufacturing cost of the large-diameter partial discharge detection sensor can be effectively reduced, and the product competitiveness can be improved.
  • the wire transmits signals to the outside through a terminal node controller (Terminal Node Controller, TNC) connector, and the above-mentioned transmission signal is a partial discharge detection sensor. Measured data information.
  • TNC connector is a deformation of the BNC connector.
  • the TNC connector adopts a threaded connection mechanism for connecting coaxial cables in radio equipment and test instruments. TNC connectors have better performance than BNC connectors at microwave frequencies.
  • the present application does not limit the number of magnetic core segments 4 that constitute the first half-ring magnetic core piece 1 and the second half-ring magnetic core piece 2.
  • the first half-ring magnetic core piece 1 and the The second half-ring magnetic core member 2 is composed of four magnetic core blocks 4 respectively.
  • the first half-ring magnetic core piece 1 consists of 8
  • Each of the magnetic core blocks 4 is composed of; the second half-ring magnetic core member 2 is composed of four of the magnetic core blocks 4.
  • the partial discharge detection sensor provided by the present application includes: a first half-ring magnetic core piece; a second half-ring magnetic core piece, which is arranged corresponding to the first half-ring magnetic core piece, and the first half-ring magnetic core piece And the second half-ring magnetic core piece is arranged to surround the component under test in the circumferential direction; the first half-ring magnetic core piece and the second half-ring magnetic core piece or one of the two is composed of at least two Two connected magnetic cores are divided into blocks.
  • the partial discharge detection sensor in the related art is composed of two half-ring magnetic cores and a package shell, and ferrite is often used as the magnetic core material. However, due to process conditions, the inner diameter of the high-frequency current sensor can only reach up to 60mm.
  • the partial discharge detection sensor in the related technology cannot meet the partial discharge measurement needs of the cable body and the casing waiting component with a large cross-sectional diameter.
  • the present application forms the first half-ring magnetic core piece and/or the second half-ring magnetic core piece by connecting a plurality of magnetic cores together in blocks.
  • the manufacturer can combine multiple magnetic cores together according to the needs, so that the first half-ring magnetic can be completed without using a thousand-ton press
  • the production of the core piece or the second half-ring magnetic core piece not only reduces the production and manufacturing cost of the large-diameter partial discharge detection sensor, but also solves the problem that the sensor of some large-sized component under test cannot be measured.
  • Epoxy resin adhesive is a two-component glue that needs to be mixed with AB to fill larger gaps. It is suitable for general environments and has the advantages of waterproof, oil resistance, and strong acid and alkali resistance. The epoxy resin adhesive can effectively fix multiple magnetic cores together firmly and reliably.
  • the first half-ring magnetic core member and the second half-ring magnetic core member are both provided with wires, and the wires are wound by using a Rogowski coil structure.
  • the wire can stably and reliably transmit signals to the outside through the BNC connector or the TNC connector.
  • the aforementioned transmission signal is the data information measured by the partial discharge detection sensor.
  • At least two of the magnetic core segments constituting the first half-ring magnetic core component are equal segments of the same size and shape; and/or, constituting the second half At least two of the magnetic core pieces of the ring magnetic core piece are equal pieces of the same size and shape.
  • Multiple magnetic cores of the same size and shape are divided into blocks to form the first half-ring magnetic core piece or the second half-ring magnetic core piece, which can facilitate the manufacture of magnetic core pieces and reduce the manufacturing cost of the partial discharge detection sensor.
  • the first half-ring magnetic core piece and the second half-ring magnetic core piece are respectively formed by at least two of the magnetic core blocks, and all the above-mentioned magnetic core blocks Are the same size and shape.
  • the first half-ring core piece and the second half-ring core piece have the same size and shape by dividing them at equal angles, so that the first half-ring core piece and the second half-ring core piece are formed.
  • the magnetic core block of the magnetic core part can be used universally, which is convenient for the manufacturer to manufacture the magnetic core block to reduce the production and manufacturing cost of the partial discharge detection sensor.
  • the outer surfaces of the first half-ring magnetic core member and the second half-ring magnetic core member are provided with a metal shell, and the metal shell can effectively protect the second part composed of the magnetic core.
  • Half-ring magnetic core piece and second half-ring magnetic core piece are provided with a metal shell, and the metal shell can effectively protect the second part composed of the magnetic core.
  • the first half-ring magnetic core member and the second half-ring magnetic core member are hinged together, and are opened or closed by a buckle structure.
  • the first end of the first half-ring magnetic core piece and the first end of the second half-ring magnetic core piece are connected together by a hinge pin, the second end of the first half-ring magnetic core piece and the second half-ring magnetic core piece
  • the second end of the device is detachably connected by a buckle structure composed of a hook and a groove, so that the partial discharge detection sensor can be arranged around the circumferential direction of the component to be tested.
  • the manufacturing method of the partial discharge detection sensor includes the following steps: step S10, manufacturing magnetic core blocks through the steps of ferrite batching, billeting, pressing, and sintering; step S20, on the magnetic core blocks Wound the coil and install the wire connector; step S30, fix a plurality of magnetic cores together to form the first half-ring magnetic core piece and/or the second half-ring magnetic core piece; The toroidal core piece and the second half toroidal core piece are connected together.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种局部放电检测传感器及其制造方法,局部放电检测传感器包括:第一半环磁芯件(1);第二半环磁芯件(2),与所述第一半环磁芯件(1)对应设置,所述第一半环磁芯件(1)和所述第二半环磁芯件(2)设置为环绕在待测元件(3)周向方向;所述第一半环磁芯件(1)包括至少两个连接在一起的磁芯分块(4),或所述第二半环磁芯件(2)包括至少两个连接在一起的磁芯分块(4),或所述第一半环磁芯件(1)和所述第二半环磁芯件(2)均包括至少两个连接在一起的磁芯分块(4)。

Description

局部放电检测传感器及其制造方法
本申请要求在2019年07月24日提交中国专利局、申请号为201910671458.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及局部放电检测技术领域,例如涉及一种局部放电检测传感器及其制造方法。
背景技术
绝缘体中只有局部区域发生的放电,而没有贯穿施加电压的导体之间,可以发生在导体附近,也可以发生在其他地方,这种现象称为局部放电。虽然局部放电仅是一种很微小的能量释放,通常放电电量仅为pC(皮库伦),但是局部放电的危害不容小觑。由于局部放电的放电量微小,难以探测,长期的局部放电会加速设备关键材料的老化、劣化,最终造成设备功能性损坏,引起断电、爆炸甚至人员伤亡的严重危害。
中国专利文献CN208188187U公开了一种用于电缆局部放电检测的高频电流传感器,相关技术中的电流传感器的主体由两个半环磁芯和封装外壳组成,常选用铁氧体作为磁芯材料。铁氧体磁芯在制作过程需要施加高压进行烧结。而受限于工艺条件,高频电流传感器的内径最大仅能到60mm。所以相关技术中的电流传感器需要将高频电流传感器安装在接地线等安装横截面直径较小的位置。
若要制备100mm范围以上的半环磁芯以对应大横截面直径的电缆、套管等待测物,则需要千吨级的压机才能在制备过程中提供足够的压力,导致仪器使用成本高,难以实现批量生产,不具备经济性的问题。甚至,对于电缆本体、套管等待测直径较大的装置设备,还存在相关技术的局部放电检测传感器无法安装在装置设备的本体上的问题。
发明内容
本申请提供一种局部放电检测传感器及其制造方法,解决相关技术中用于横截面直径较大待测设备的局部放电检测传感器,难以生产制造,具有生产使用成本高、难以实现批量生产,甚至无法生产制造的问题。
本申请提供一种局部放电检测传感器,局部放电检测传感器的检测范围为3MHz至36MHz,局部放电检测传感器包括:
第一半环磁芯件;
第二半环磁芯件,与所述第一半环磁芯件对应设置,所述第一半环磁芯件和所述第二半环磁芯件设置为环绕在待测元件周向方向;
所述第一半环磁芯件包括至少两个连接在一起的磁芯分块,或所述第二半环磁芯件包括至少两个连接在一起的磁芯分块,或所述第一半环磁芯件和所述第二半环磁芯件均包括至少两个连接在一起的磁芯分块。
至少两个所述磁芯分块通过环氧树脂等胶黏剂固定在一起。
所述第一半环磁芯件和所述第二半环磁芯件内部均设置有导线,所述导线通过卡口螺母连接器BNC接头或终端节点控制器TNC接头向外传输信号。
BNC接头是一种用于同轴电缆的连接器。BNC有传送距离长、信号稳定的优点。
TNC接头是BNC接头的变形,采用螺纹连接机构,用于无线电设备和测试仪表中连接同轴电缆。TNC接头在微波频率下具有比BNC接头更好的性能。
所述导线采用罗哥夫斯基线圈结构绕制而成。
在所述第一半环磁芯件包括至少两个连接在一起的磁芯分块的情况下,构成所述第一半环磁芯件的至少两个所述磁芯分块为大小相等和形状相同的等分件;在所述第二半环磁芯件包括至少两个连接在一起的磁芯分块的情况下,构成所述第二半环磁芯件的至少两个所述磁芯分块为大小相等和形状相同的等分件;在所述第一半环磁芯件和所述第二半环磁芯件均包括至少两个连接在一起的磁芯分块的情况下,构成所述第一半环磁芯件的至少两个所述磁芯分块为大小相等和形状相同的等分件且构成所述第二半环磁芯件的至少两个所述磁芯分块为大小相等和形状相同的等分件。
所述第一半环磁芯件和所述第二半环磁芯件均由至少两个所述磁芯分块构 成,全部所述磁芯分块的大小相等且形状相同。
在所述第一半环磁芯件包括至少两个连接在一起的磁芯分块的情况下,所述第一半环磁芯件由4个或8个所述磁芯分块构成;
在所述第二半环磁芯件包括至少两个连接在一起的磁芯分块的情况下,所述第二半环磁芯件由4个或8个所述磁芯分块构成;
在所述第一半环磁芯件和所述第二半环磁芯件均包括至少两个连接在一起的磁芯分块的情况下,所述第一半环磁芯件由4个或8个所述磁芯分块构成且所述第二半环磁芯件由4个或8个所述磁芯分块构成。
所述第一半环磁芯件和所述第二半环磁芯件外表面均设置有金属外壳。
所述第一半环磁芯件和所述第二半环磁芯件铰接在一起,通过卡扣结构打开或闭合。
一种局部放电检测传感器的制造方法,包括以下步骤:
通过铁氧体配料、制坯、压制、烧结制作步骤制造磁芯分块;
在所述磁芯分块上绕置线圈并安装导线接头;
将多个所述磁芯分块固定在一起构成所述第一半环磁芯件;将所述第一半环磁芯件和第二半环磁芯件连接在一起;或将多个所述磁芯分块固定在一起构成所述第二半环磁芯件,将第一半环磁芯件和所述第二半环磁芯件连接在一起;或将多个所述磁芯分块固定在一起构成第一半环磁芯件并将多个所述磁芯分块固定在一起构成第二半环磁芯件,将所述第一半环磁芯件和所述第二半环磁芯件连接在一起。
附图说明
为了说明本申请实施方式或相关技术中的技术方案,下面将对实施方式或相关技术描述中所需要使用的附图作简单地介绍。
图1为本申请提供的用于检测待测元件的局部放电检测传感器的横截面示意图;
图2为本申请提供的第一半环磁芯件的立体结构示意图;
图3为本申请提供的第二半环磁芯件的立体结构示意图;
图4为本申请提供的局部放电检测传感器的性能测试结果图。
具体实施方式
下面将结合附图对本申请的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。
在本申请的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有指定的方位、以指定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本申请中的含义。
实施例1
本实施例提供一种局部放电检测传感器,局部放电检测传感器的检测范围为3MHz至36MHz,局部放电检测传感器如图1至图3所示,包括:第一半环磁芯件1,由8个磁芯分块4构成,相邻的两个磁芯分块4通过环氧树脂胶黏剂固定在一起;第二半环磁芯件2,与所述第一半环磁芯件1对应设置,第二半环磁芯件2由8个磁芯分块4构成,组成第一半环磁芯件1和第二半环磁芯件2的全部磁芯分块4的大小和形状均相同,且相邻的两个磁芯分块4通过环氧树脂胶黏剂固定在一起;上述第一半环磁芯件1和第二半环磁芯件2构成内径为160mm、外径为220mm、厚度为20mm的环形磁环。当需要生产制造横截面直径较大的局部放电检测传感器时,生产厂家可以根据需要将多个磁芯分块4组合连接在一起,从而无需使用千吨级的压机即可完成第一半环磁芯件1或第二半环磁芯件2的生产制造,不但降低了大直径尺寸的局部放电检测传感器的生产制造成本,而且还能够解决对于部分大尺寸的待测元件3,相关技术的传感器无法测量的问题;另外,通过等角度等分的方式使第一半环磁芯件1和第二半 环磁芯件2上的全部磁芯分块4大小和形状都相同,从而使构成第一半环磁芯件1和第二半环磁芯件2的磁芯分块4可以通用,方便生产厂商生产制造磁芯分块4,降低局部放电检测传感器的生产制造成本;上述树脂胶黏剂为双组份胶水,需AB混合使用,可填充较大的空隙,适用于一般环境,具有防水、耐油,耐强酸强碱的优点。通过上述环氧树脂胶黏剂可以有效地将多个磁芯分块4牢固可靠地固定在一起。
所述第一半环磁芯件1和所述第二半环磁芯件2内部设置有导线,上述导线采用罗哥夫斯基线圈结构绕制而成。所述导线通过卡口螺母连接器(Bayonet Nut Connector,BNC)接头向外传输信号,上述传输信号为局部放电检测传感器测量到的数据信息。BNC接头是一种用于同轴电缆的连接器。BNC有传送距离长、信号稳定的优点。
金属外壳,设置在所述第一半环磁芯件1和所述第二半环磁芯件2的外表面;上述金属外壳可以有效地保护由磁芯分块4构成的第一半环磁芯件1和第二半环磁芯件2。
所述第一半环磁芯件1和所述第二半环磁芯件2铰接在一起,通过卡扣结构打开或闭合,第一半环磁芯件1的第一端和第二半环磁芯件2的第一端通过铰链轴销连接在一起,第一半环磁芯件1的第二端和第二半环磁芯件2的第二端再通过卡钩和卡槽组成的卡扣结构可拆卸相连,从而使局部放电检测传感器可以环绕待测元件3周向方向设置,测量电缆本体、套管等待测元件3是否发生局部放电现象。
局部放电检测传感器的制造方法,包括以下步骤:
步骤S10,通过铁氧体配料、制坯、压制、烧结制作步骤制造磁芯分块4。
步骤S20,在所述磁芯分块4上绕置线圈并安装导线接头。
步骤S30,将多个磁芯分块4固定在一起构成所述第一半环磁芯件1,且将多个磁芯分块4固定在一起构成所述第二半环磁芯件2;将所述第一半环磁芯件1和所述第二半环磁芯件2连接在一起。
通过将磁芯分块4单独生产,再通过多个磁芯分块4组成局部放电检测传感器,可以有效地降低大直径尺寸的局部放电检测传感器的生产制造成本,提高产品竞争力。
本申请对导线上向外传输信号的接头不做限制,在其它实施例中,所述导线通过终端节点控制器(Terminal Node Controller,TNC)接头向外传输信号,上述传输信号为局部放电检测传感器测量到的数据信息。TNC接头是BNC接头的变形,TNC接头采用螺纹连接机构,用于无线电设备和测试仪表中连接同轴电缆。TNC接头在微波频率下具有比BNC接头更好的性能。
本申请对构成第一半环磁芯件1和第二半环磁芯件2的磁芯分块4数量不做限制,在其它实施例中,所述第一半环磁芯件1和所述第二半环磁芯件2分别由4个所述磁芯分块4构成。
本申请对构成第一半环磁芯件1和第二半环磁芯件2的磁芯分块4数量不做限制,在其它实施例中,所述第一半环磁芯件1由8个所述磁芯分块4构成;所述第二半环磁芯件2由4个所述磁芯分块4构成。
本申请提供的局部放电检测传感器,包括:第一半环磁芯件;第二半环磁芯件,与所述第一半环磁芯件对应设置,且所述第一半环磁芯件和所述第二半环磁芯件设置为环绕在待测元件周向方向;所述第一半环磁芯件和所述第二半环磁芯件两者或两者之一由至少两个连接在一起的磁芯分块构成。相关技术中的局部放电检测传感器由两个半环磁芯和封装外壳组成,常选用铁氧体作为磁芯材料。而受限于工艺条件,高频电流传感器的内径最大仅能到60mm上下。若要制备100mm范围以上的半环磁芯,则需要千吨级的压机才能在制备过程中提供足够的压力。但是,千吨级的压机使用成本高,并且难以实现批量生产,相关技术中的局部放电检测传感器无法满足对横截面直径较大的电缆本体、套管等待测元件的局部放电测量需要。本申请通过将多个磁芯分块连接在一起构成第一半环磁芯件和/或所述第二半环磁芯件。当需要生产制造横截面直径较大的局部放电检测传感器时,生产厂家可以根据需要将多个磁芯分块组合连接在一起,从而无需使用千吨级的压机即可完成第一半环磁芯件或第二半环磁芯件的生产制造,不但降低了大直径尺寸的局部放电检测传感器的生产制造成本,而且还能够解决部分大尺寸的待测元件的传感器无法测量的问题。
本申请提供的局部放电检测传感器,多个磁芯分块通过环氧树脂胶黏剂固定在一起,从而构成第一半环磁芯件或者第二半环磁芯件。环氧树脂胶黏剂为双组份胶水,需AB混合使用,可填充较大的空隙,适用于一般环境,具有防水、耐油,耐强酸强碱的优点。通过上述环氧树脂胶黏剂可以有效地将多个磁 芯分块牢固可靠地固定在一起。
本申请提供的局部放电检测传感器,第一半环磁芯件和第二半环磁芯件均设置有导线,上述导线采用罗哥夫斯基线圈结构绕制而成。所述导线通过BNC接头或TNC接头可以稳定可靠地向外传输信号。上述传输信号为局部放电检测传感器测量到的数据信息。
本申请提供的局部放电检测传感器,构成所述第一半环磁芯件的至少两个所述磁芯分块为大小相等和形状相同的等分件;和/或,构成所述第二半环磁芯件的至少两个所述磁芯分块为大小相等和形状相同的等分件。通过大小相等和形状相同的多个磁芯分块构成第一半环磁芯件或者第二半环磁芯件,可以方便生产厂商生产制造磁芯分块降低局部放电检测传感器的生产制造成本。
本申请提供的局部放电检测传感器,所述第一半环磁芯件和所述第二半环磁芯件二者分别通过至少两个所述磁芯分块构成,且全部上述磁芯分块的大小相等和形状相同。通过等角度等分的方式使第一半环磁芯件和第二半环磁芯件上的磁芯分块大小相等和形状相同,从而使构成第一半环磁芯件和第二半环磁芯件的磁芯分块可以通用,方便生产厂商生产制造磁芯分块降低局部放电检测传感器的生产制造成本。
本申请提供的局部放电检测传感器,所述第一半环磁芯件和所述第二半环磁芯件外表面设置有金属外壳,上述金属外壳可以有效地保护由磁芯分块构成的第一半环磁芯件和第二半环磁芯件。
本申请提供的局部放电检测传感器,所述第一半环磁芯件和所述第二半环磁芯件铰接在一起,通过卡扣结构打开或闭合。第一半环磁芯件的第一端和第二半环磁芯件的第一端通过铰链轴销连接在一起,第一半环磁芯件的第二端和第二半环磁芯件的第二端再通过卡钩和卡槽组成的卡扣结构可拆卸相连,从而使局部放电检测传感器可以环绕待测元件周向方向设置。
本申请提供的局部放电检测传感器的制造方法,包括以下步骤:步骤S10,通过铁氧体配料、制坯、压制、烧结制作步骤制造磁芯分块;步骤S20,在所述磁芯分块上绕置线圈并安装导线接头;步骤S30,将多个磁芯分块固定在一起构成所述第一半环磁芯件和/或所述第二半环磁芯件;将所述第一半环磁芯件和所述第二半环磁芯件连接在一起。通过将磁芯分块单独生产,再通过将多个磁芯 分块组成局部放电检测传感器,可以有效地降低了大直径尺寸的局部放电检测传感器的生产制造成本,提高产品竞争力。

Claims (10)

  1. 一种局部放电检测传感器,包括:
    第一半环磁芯件(1);
    第二半环磁芯件(2),与所述第一半环磁芯件(1)对应设置,所述第一半环磁芯件(1)和所述第二半环磁芯件(2)设置为环绕在待测元件(3)周向方向;
    所述第一半环磁芯件(1)包括至少两个连接在一起的磁芯分块(4),或所述第二半环磁芯件(2)包括至少两个连接在一起的磁芯分块(4),或所述第一半环磁芯件(1)和所述第二半环磁芯件(2)均包括至少两个连接在一起的磁芯分块(4)。
  2. 根据权利要求1所述的局部放电检测传感器,其中,至少两个所述磁芯分块(4)通过环氧树脂胶黏剂固定在一起。
  3. 根据权利要求1所述的局部放电检测传感器,其中,所述第一半环磁芯件(1)和所述第二半环磁芯件(2)内部均设置有导线,所述导线通过卡口螺母连接器BNC接头或终端节点控制器TNC接头向外传输信号。
  4. 根据权利要求3所述的局部放电检测传感器,其中,所述导线采用罗哥夫斯基线圈结构绕制而成。
  5. 根据权利要求1至4中任一项所述的局部放电检测传感器,其中,在所述第一半环磁芯件(1)包括至少两个连接在一起的磁芯分块(4)的情况下,构成所述第一半环磁芯件(1)的至少两个所述磁芯分块(4)为大小相等和形状相同的等分件;
    在所述第二半环磁芯件(2)包括至少两个连接在一起的磁芯分块(4)的情况下,构成所述第二半环磁芯件(2)的至少两个所述磁芯分块(4)为大小相等和形状相同的等分件;
    在所述第一半环磁芯件(1)和所述第二半环磁芯件(2)均包括至少两个连接在一起的磁芯分块(4)的情况下,构成所述第一半环磁芯件(1)的至少两个所述磁芯分块(4)为大小相等和形状相同的等分件且构成所述第二半环磁芯件(2)的至少两个所述磁芯分块(4)为大小相等和形状相同的等分件。
  6. 根据权利要求5所述的局部放电检测传感器,其中,所述第一半环磁芯件 (1)和所述第二半环磁芯件(2)均由至少两个所述磁芯分块(4)构成,全部所述磁芯分块(4)的大小相等且形状相同。
  7. 根据权利要求1至6中任一项所述的局部放电检测传感器,其中,在所述第一半环磁芯件(1)包括至少两个连接在一起的磁芯分块(4)的情况下,所述第一半环磁芯件(1)由4个或8个所述磁芯分块(4)构成;
    在所述第二半环磁芯件(2)包括至少两个连接在一起的磁芯分块(4)的情况下,所述第二半环磁芯件(2)由4个或8个所述磁芯分块(4)构成;
    在所述第一半环磁芯件(1)和所述第二半环磁芯件(2)均包括至少两个连接在一起的磁芯分块(4)的情况下,所述第一半环磁芯件(1)由4个或8个所述磁芯分块(4)构成且所述第二半环磁芯件(2)由4个或8个所述磁芯分块(4)构成。
  8. 根据权利要求1至7中任一项所述的局部放电检测传感器,其中,所述第一半环磁芯件(1)和所述第二半环磁芯件(2)外表面均设置有金属外壳。
  9. 根据权利要求1至8中任一项所述的局部放电检测传感器,其中,所述第一半环磁芯件(1)和所述第二半环磁芯件(2)铰接在一起,通过卡扣结构打开或闭合。
  10. 一种局部放电检测传感器的制造方法,包括:
    通过铁氧体配料、制坯、压制、烧结制作步骤制造磁芯分块(4);
    在所述磁芯分块(4)上绕置线圈并安装导线接头;
    将多个所述磁芯分块(4)固定在一起构成第一半环磁芯件(1);将所述第一半环磁芯件(1)和第二半环磁芯件(2)连接在一起;或将多个所述磁芯分块(4)固定在一起构成第二半环磁芯件(2),将第一半环磁芯件(1)和所述第二半环磁芯件(2)连接在一起;或将多个所述磁芯分块(4)固定在一起构成第一半环磁芯件(1)并将多个所述磁芯分块(4)固定在一起构成第二半环磁芯件(2),将所述第一半环磁芯件(1)和所述第二半环磁芯件(2)连接在一起。
PCT/CN2020/104501 2019-07-24 2020-07-24 局部放电检测传感器及其制造方法 WO2021013249A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910671458.2A CN110376495A (zh) 2019-07-24 2019-07-24 一种局部放电检测传感器及其制造方法
CN201910671458.2 2019-07-24

Publications (1)

Publication Number Publication Date
WO2021013249A1 true WO2021013249A1 (zh) 2021-01-28

Family

ID=68255424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104501 WO2021013249A1 (zh) 2019-07-24 2020-07-24 局部放电检测传感器及其制造方法

Country Status (2)

Country Link
CN (1) CN110376495A (zh)
WO (1) WO2021013249A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110376495A (zh) * 2019-07-24 2019-10-25 全球能源互联网研究院有限公司 一种局部放电检测传感器及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051566A (ja) * 2006-08-23 2008-03-06 Meidensha Corp Aeセンサによるモールド型計器用変成器の部分放電測定方法
CN201247303Y (zh) * 2008-08-20 2009-05-27 西安供电局 电缆局部放电在线监测用电流传感器
CN101782622A (zh) * 2009-11-25 2010-07-21 西安博源电气有限公司 电力电缆及接头局部放电在线监测装置
US20110006802A1 (en) * 2009-07-09 2011-01-13 General Electric Company High sensitivity differential current transformer for insulation health monitoring
CN103529366A (zh) * 2013-09-22 2014-01-22 华北电力大学 基于罗氏线圈原理的uhf宽频带电流传感器及联合监测系统
CN108008264A (zh) * 2017-12-04 2018-05-08 重庆臻远电气有限公司 用于高压电气设备局部放电监测的传感器
CN110376495A (zh) * 2019-07-24 2019-10-25 全球能源互联网研究院有限公司 一种局部放电检测传感器及其制造方法
CN210534264U (zh) * 2019-07-24 2020-05-15 全球能源互联网研究院有限公司 一种局部放电检测传感器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1172334C (zh) * 2001-12-12 2004-10-20 浙江天通电子股份有限公司 软磁铁氧体磁芯成型方法及模具结构
FR2931945B1 (fr) * 2008-05-22 2010-06-18 Billanco Capteur de circulation de champ magnetique et capteur de courant mettant en oeuvre un tel capteur
JP5747212B2 (ja) * 2011-10-03 2015-07-08 アルプス・グリーンデバイス株式会社 電流センサ
JP6338489B2 (ja) * 2014-08-20 2018-06-06 日置電機株式会社 センサ部品、電流センサおよび電流測定装置
CN105842595B (zh) * 2016-05-20 2018-09-11 国网河北省电力有限公司石家庄供电分公司 一种宽频带扫描式电缆局部放电测量装置
CN205920148U (zh) * 2016-05-20 2017-02-01 国家电网公司 一种局部放电测量用高频电流传感器
CN106249116A (zh) * 2016-08-31 2016-12-21 北京兴泰学成仪器有限公司 高频电流传感器
CN208489070U (zh) * 2018-08-08 2019-02-12 平湖乔智电子有限公司 一种节能吊扇磁环

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051566A (ja) * 2006-08-23 2008-03-06 Meidensha Corp Aeセンサによるモールド型計器用変成器の部分放電測定方法
CN201247303Y (zh) * 2008-08-20 2009-05-27 西安供电局 电缆局部放电在线监测用电流传感器
US20110006802A1 (en) * 2009-07-09 2011-01-13 General Electric Company High sensitivity differential current transformer for insulation health monitoring
CN101782622A (zh) * 2009-11-25 2010-07-21 西安博源电气有限公司 电力电缆及接头局部放电在线监测装置
CN103529366A (zh) * 2013-09-22 2014-01-22 华北电力大学 基于罗氏线圈原理的uhf宽频带电流传感器及联合监测系统
CN108008264A (zh) * 2017-12-04 2018-05-08 重庆臻远电气有限公司 用于高压电气设备局部放电监测的传感器
CN110376495A (zh) * 2019-07-24 2019-10-25 全球能源互联网研究院有限公司 一种局部放电检测传感器及其制造方法
CN210534264U (zh) * 2019-07-24 2020-05-15 全球能源互联网研究院有限公司 一种局部放电检测传感器

Also Published As

Publication number Publication date
CN110376495A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
WO2021013249A1 (zh) 局部放电检测传感器及其制造方法
CN106353654A (zh) 一种用于电缆局放检测的高频电磁耦合传感器
CN205749844U (zh) 一种电源纹波测试装置及系统
CN210534264U (zh) 一种局部放电检测传感器
CN110658226B (zh) 一种微波谐振腔及使用它的电子顺磁共振探头
CN109782200B (zh) 一种材料电磁参数测量方法
CN108508242B (zh) 一种用于材料屏蔽效能测试的法兰同轴装置
CN208013318U (zh) 一种通用电源滤波器的高频参数测试适配器
US9276355B2 (en) High voltage plug in and unplugged type gas immersed cable termination with locking system
CN202916306U (zh) 一种宽频带电流测试卡钳装置
CN206945895U (zh) 一种用于电缆检测的复合传感器
US20090315576A1 (en) Probe card assembly and test probes therein
CN109449699A (zh) 一种射频同轴转接器
KR20100095142A (ko) 검사용 소켓
CN106053534B (zh) 基于传输线结构的宽带非接触式镀层无源互调测试装置
CN212514676U (zh) 连接器件以及电子设备
CN207215922U (zh) 便携式射频同轴电缆相位精修设备
CN203932359U (zh) 一种射频同轴电缆检测夹具
CN206479571U (zh) 一种新型柔性电流质量探测线圈
KR101095907B1 (ko) 검사용 소켓
CN215986224U (zh) 一种插拔式的柔性罗氏线圈互感器
CN206132921U (zh) 一种用于电缆局放检测的高频电磁耦合传感器
CN215894682U (zh) 电流检测卡钳和电流检测设备
US8111205B1 (en) Mast clamp current probe (MCCP) insertion loss determining methods and systems
CN112505361B (zh) 一种磁环测试线圈外壳

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20843767

Country of ref document: EP

Kind code of ref document: A1