WO2021013012A1 - 用于车辆的动力传动系统及车辆 - Google Patents

用于车辆的动力传动系统及车辆 Download PDF

Info

Publication number
WO2021013012A1
WO2021013012A1 PCT/CN2020/102110 CN2020102110W WO2021013012A1 WO 2021013012 A1 WO2021013012 A1 WO 2021013012A1 CN 2020102110 W CN2020102110 W CN 2020102110W WO 2021013012 A1 WO2021013012 A1 WO 2021013012A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor generator
power
transmission system
ring gear
gear
Prior art date
Application number
PCT/CN2020/102110
Other languages
English (en)
French (fr)
Inventor
陈小江
刘洪杰
Original Assignee
蜂巢电驱动科技河北有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201921174082.6U external-priority patent/CN210212022U/zh
Priority claimed from CN201910672384.4A external-priority patent/CN111605394A/zh
Application filed by 蜂巢电驱动科技河北有限公司 filed Critical 蜂巢电驱动科技河北有限公司
Publication of WO2021013012A1 publication Critical patent/WO2021013012A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to the field of vehicles, and in particular to a power transmission system for a vehicle and a vehicle.
  • the single-mode power transmission system of a hybrid vehicle cannot meet the large load demand of the vehicle, while the power transmission system of a dual-mode hybrid vehicle can meet the large load demand of the vehicle.
  • the power transmission system of the motor vehicle realizes pure electric drive, single-mode input power split series parallel hybrid hybrid, dual-mode compound power split hybrid hybrid, two-speed parallel hybrid and engine direct drive drive modes, the structure Complex and low transmission efficiency.
  • an object of the present invention is to provide a power transmission system, which has multiple power transmission modes, can realize the hybrid output of the engine and the electric motor, and has a simple structure and high transmission efficiency.
  • the present invention also provides a vehicle with the above-mentioned power transmission system.
  • the power transmission system of the vehicle includes: a first planetary gear train, the first planetary gear train including a first sun gear, a first planet carrier, and a first ring gear; a second planetary gear train, the second The planetary gear train includes a second sun gear, a second planet carrier, and a second ring gear.
  • the first planet carrier is linked with the second ring gear; wherein the first ring gear and the first sun gear At least one and one of the second sun gear and the second planet carrier are configured as a power input end, and the other of the second sun gear and the second planet carrier or the second ring gear is configured as a power output end .
  • the power transmission system of the present invention by connecting the first planet carrier of the first planetary gear train with the second ring gear of the second planetary gear train, the power of the first planetary gear train can be coupled to the second planetary gear
  • the power transmission system can realize a power transmission system with three power input terminals and one power output terminal, the power transmission is stable and reliable, and the power transmission requirements under a variety of different working conditions can be realized.
  • the power transmission system further includes: a first power source, a second power source, and a third power source, the first power source is connected to the first ring gear, and the second power source It is connected to the first sun gear, and the third power source is connected to the second sun gear.
  • the first power source is an engine
  • the second power source is a first motor generator
  • the third power source is a second motor generator
  • the power transmission system further includes: an output shaft, the output shaft being linked with the second ring gear.
  • At least two of the input shaft of the engine, the input shaft of the first motor generator and the input shaft of the second motor generator are coaxially arranged.
  • the input shaft of the engine is coaxially arranged with the second ring gear, the input shaft of the first motor generator, the input shaft of the second motor generator and the first
  • the axes of the two ring gears are arranged in parallel and arranged in sequence along the radial direction of the second ring gear.
  • the power transmission system further includes: a clutch for selectively linking the first ring gear and the second planet carrier.
  • the power transmission system further includes: a first brake, which can selectively lock the first ring gear or the second planet carrier.
  • the power train further includes: a second brake, which selectively locks the second sun gear.
  • the power transmission system further includes: a third brake, which selectively locks the first sun gear.
  • the vehicle according to the present invention is provided with the power transmission system of the above-mentioned embodiment. Since the vehicle according to the present invention is provided with the power transmission system of the above-mentioned embodiment, the vehicle has a variety of different power modes, the shift of gears is stable, and the transmission High efficiency, light weight, low cost, good reliability, and good applicability.
  • Fig. 1 is a schematic diagram of a scheme of a power transmission system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of another solution of the power transmission system according to the embodiment of the present invention.
  • Fig. 3 is a schematic diagram of yet another solution of a power transmission system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another solution of the power transmission system according to the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another solution of the power transmission system according to the embodiment of the present invention.
  • Figure 6a is a schematic diagram of yet another solution of a power transmission system according to an embodiment of the present invention.
  • Figure 6b is a schematic diagram of yet another solution of a power transmission system according to an embodiment of the present invention.
  • Figure 6c is a schematic diagram of yet another solution of the power transmission system according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another solution of the power transmission system according to the embodiment of the present invention.
  • FIG. 8 is a schematic diagram of yet another solution of a power transmission system according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of yet another solution of the power transmission system according to the embodiment of the present invention.
  • FIG. 10 is a schematic diagram of yet another solution of a power transmission system according to an embodiment of the present invention.
  • Fig. 11 is a schematic diagram of yet another solution of the power transmission system according to an embodiment of the present invention.
  • the first planetary gear train PG1 The first planetary gear train PG1,
  • the second planetary gear train PG2 The second planetary gear train PG2,
  • the power transmission system 100 for a vehicle includes a first planetary gear train PG1 and a second planetary gear train PG2, wherein the first planetary gear train PG1 includes a first sun gear S1, a first planet carrier C1, and a first planetary gear train. Ring gear R1, the second planetary gear train PG2 includes a second sun gear S2, a second planet carrier C2 and a second ring gear R2.
  • the first planet carrier C1 is linked with the second ring gear R2, and the first ring gear R1 and the first At least one of the sun gear S1 and one of the second sun gear S2 and the second planet carrier C2 is configured as a power input end, and the other of the second sun gear S2 and the second planet carrier C2 or the second ring gear R2 is configured It is the power output terminal.
  • the first planetary carrier C1 of the first planetary gear train PG1 is connected with the second ring gear R2 of the second planetary gear train PG2 to realize the first planetary gear train PG1 and the second planetary gear train. Power transmission between PG2 gear train.
  • any one or both of the first sun gear S1, the second planet carrier C2, and the first ring gear R1 can be used as power input terminals, where the first ring gear R1 and the first sun gear At least one of the wheels S1 input power, the power of the two can be coupled in the first planet carrier C1 and transmitted to the second ring gear R2 of the second planetary gear train PG2; one of the first ring gear R1 and the first sun gear S1 It can be used as a power input end to input power, and the other of the first ring gear R1 and the first sun gear S1 can be locked, so that the power of the first ring gear R1 or the first sun gear S1 is transmitted to the first planet carrier C1, Then it is transmitted from the first planet carrier C1 to the second ring gear R2 of the second planetary gear train PG2.
  • the power of one or two power sources can be coupled and transmitted to the second ring gear R2 through the first planet carrier C1.
  • the second sun gear S2 and the second planet carrier C2 may be configured as a power input end.
  • the second ring gear R2 receives the The power after the gear train PG1 is coupled.
  • the power of the second ring gear R2 is coupled to the second sun gear S2 and the second planet carrier C2. another. And then realize the dynamic coupling of the three power sources.
  • one of the second sun gear S2, the second planet carrier C2, and the second ring gear R2 that is not used as a power input terminal may be used as a power output terminal.
  • the power transmission system 100 of the present invention by connecting the first planet carrier C1 of the first planetary gear train PG1 with the second ring gear R2 of the second planetary gear train PG2, the power of the first planetary gear train PG1 can be coupled Transmitted to the second planetary gear train PG2, the power transmission system 100 can realize the power transmission system 100 with three power input ends and one power output end, the power transmission is stable and reliable, and the power transmission can be realized under a variety of different working conditions demand.
  • the power transmission system 100 includes a first power source, a second power source, and a third power source.
  • the first power source is connected to the first ring gear R1
  • the second power source is connected to the first sun gear S1.
  • the third power source is connected to the second sun gear S2.
  • the first power source is the engine 110
  • the second power source is the first motor generator 120
  • the third power source can be the second motor generator 130.
  • Both the second power source and the third power source can be related to the power of the vehicle.
  • the battery is connected; and, in the power split stepless speed control hybrid mode, the first motor generator 120 or the second motor generator 130 can be used as a power split speed control motor, which can continuously adjust the working speed of the engine 110 and input the engine 110
  • the power is split to optimize the operating point of the engine 110.
  • the situation of the power split can be that the first motor generator 120 or the second motor generator 130 is used as a generator to receive part of the torque and speed to generate power, so as to realize the power generation of the engine 110.
  • the speed regulation of the power transmission system 100 ensures higher efficiency.
  • the power input of the second power source and the third power source is negative power.
  • the power transmission system 100 further includes an output shaft, the output shaft is linked with the second ring gear R2.
  • the second ring gear R2 is connected with the output shaft to ensure that the power in the power transmission system 100 is transmitted to the outside, and the output shaft can connect the second ring gear R2 with the differential input gear 141.
  • At least two of the input shaft of the engine 110, the input shaft of the first motor generator 120, and the input shaft of the second motor generator 130 are coaxially arranged.
  • the first planetary gear train PG1 and the second planetary gear train PG2 are arranged coaxially, that is, the first sun gear S1 and the second sun gear S2 are arranged coaxially.
  • Arranging the input shaft of the engine 110, the input shaft of the first motor generator 120, and the input shaft of the second motor generator 130 coaxially can reduce the number of components in the power transmission system 100 and make the components of the power transmission system 100 Being in the same axis, the power transmission system 100 can be made symmetrical in the left and right directions, the weight of the vehicle in the left and right directions can be more balanced, and the stability of the vehicle can be improved.
  • the coaxial arrangement can reduce the number of parts linked between each power source and the power transmission system 100, without the need to use chain transmission or gear transmission for power transmission, reducing the number of power transmission system 100 components and simplifying
  • the structure of the power transmission system 100 is reduced, the difficulty of assembly and manufacturing of the power transmission system 100 is reduced, and the efficiency of the transmission system is improved.
  • the input shafts of two of the power sources are arranged coaxially, and the input shaft of the other power source is offset from the input shafts of the two power sources, that is, the other power source
  • the input shafts of the two power sources are arranged in parallel with the input shafts of the two power sources, which can reduce the size of the power transmission system 100 in the axial direction, and reduce the length of the power transmission system 100 in the axial direction, which facilitates the layout of the power transmission system 100.
  • the input shaft does not need to be arranged, which simplifies the assembly of the power transmission system 100 and facilitates the power transmission system 100 to disassemble and repair any power source.
  • the input shaft of the engine 110 is coaxially arranged with the second ring gear R2, the input shaft of the first motor generator 120 and the input shaft of the second motor generator 130
  • the shaft and the axis of the second ring gear R2 are arranged in parallel and arranged in sequence along the radial direction of the second ring gear R2.
  • the input shaft of the engine 110, the input shaft of the first motor generator 120, and the input shaft of the second motor generator 130 are arranged in parallel, and the first motor generator 120 and the second motor generator 130 are all in an offset layout, which can be
  • the fixed speed ratio gear or chain drive connects the input shafts of the first motor generator 120 and the second motor generator 130 with the first planetary gear train PG1 and the second planetary gear train PG2, which can greatly reduce the power transmission system 100
  • the axial size facilitates the integration of the power transmission system 100.
  • the axial space of the first motor generator 120 and the second motor generator 130 is sufficient, which is convenient for adjusting the parameters of the first motor generator 120 and the second motor generator 130, and can be applied to different vehicle platforms. Demand has improved the applicability of the power transmission system 100.
  • the power transmission system 100 further includes a clutch CL1 for selectively linking the first ring gear R1 and the second planet carrier C2, and a clutch CL1 is provided between the first ring gear R1 and the second planet carrier C2 ,
  • the clutch CL1 can selectively engage the first ring gear R1 and the second planet carrier C2, so that the power transmission system 100 has more options for working conditions, and enriches the power transmission modes of the power transmission system 100.
  • the clutch CL1 combines the first ring gear R1 with the second planet carrier C2
  • the engine 110 and one of the first motor generator 120 and the second motor generator 130 serve as a power input terminal
  • the other of the first motor generator 120 and the second motor generator 130 is used as a speed-regulating motor to split the power input of the engine 110.
  • the power transmission system 100 can work within the full vehicle speed range and maintain high efficiency
  • the speed-regulating motor can be used to keep the rotation speed of the engine 110 in the optimized range, ensure that the engine 110 is in an efficient state, make the power transmission more efficient, and reduce the fuel consumption of the entire vehicle.
  • the power transmission system 100 further includes a first brake BK1, the first brake BK1 can selectively lock the first ring gear R1 or the second planet carrier C2, and the first brake BK1 can enable the power transmission system 100 has more power transmission modes, which makes the speed adjustment of the power transmission system 100 more abundant, and enables the power transmission system 100 to perform better speed adjustment.
  • the second planet carrier C2 in the pure electric mode, can be locked, while only the second motor generator 130 is used as the power input terminal, and the power is reduced in the second planetary gear train PG2.
  • the torque increases rapidly, the second planet carrier C2 is locked by the first brake BK1, and the power is transmitted to the second ring gear R2 and output through the second sun gear S2, through the planet wheels on the second planet carrier C2, and the first electric
  • the input shaft of the generator 120 rotates with the first sun gear S1.
  • the first brake BK1 locks the second planet carrier C2
  • the engine 110 is used as a power input terminal
  • the first motor generator 120 is used as a speed-regulating motor for speed regulation.
  • the rotation speed of the engine 110 is within the optimized range
  • part of the power of the engine 110 is transmitted to the second ring gear R2 through the first planet carrier C1
  • the second motor generator 130 serves as another power input terminal in the second planetary gear train PG2
  • the power of the second motor generator 130 is transmitted to the second ring gear R2 through the second sun gear S2, the planetary gears on the second planet carrier C2 and is coupled with part of the power of the engine 110, and the second ring gear R2 outputs the power to The differential input gear 141.
  • the single-mode input split-flow hybrid hybrid is realized.
  • the second planet carrier C2 in the second planetary gear train PG2 cannot rotate under the braking of the first brake BK1, and the second motor generator 130 The power of is coupled with the second ring gear R2 through the planetary gear.
  • the power transmission system 100 further includes a second brake BK2, and the second brake BK2 selectively locks the second sun gear S2.
  • the power transmission system 100 is in a medium and high speed stepless speed regulation independent split hybrid hybrid.
  • the clutch CL1 connects the first ring gear R1 with the second planet carrier of the second planetary gear train PG2 C2 is engaged, the engine 110 and the first motor generator 120 are used as power input terminals.
  • the second motor generator 130 is used as a speed-regulating motor for power splitting, so that the speed of the engine 110 is in the high efficiency range .
  • the speed of the second motor generator 130 is controlled at zero speed, and the output power split torque is required to maintain the input of the second motor generator 130
  • the shaft and the second sun gear S2 have zero speed, so the power split torque will cause loss of the second motor generator 130.
  • the second sun gear S2 can be locked, ensuring the high efficiency of the power transmission system 100, and eliminating the zero-speed power shunt loss of the second motor generator 130.
  • the power transmission system 100 further includes a third brake BK3, and the third brake BK3 can selectively lock the second sun gear S2.
  • the engine 110, the second motor generator 130 are used as power input terminals, and the first motor generator 120 is used as a speed-regulating motor for power splitting.
  • the first brake BK1 will divide the second planet carrier C2. Locked so that the rotation speed of the engine 110 is in the high efficiency range. After the power of the engine 110 is in the high-efficiency range, in order to ensure sufficient power and high-efficiency performance of the system, the speed of the first motor generator 120 is controlled at zero speed, and the output power split torque is required to maintain the input of the first motor generator 120 The shaft and the first sun gear S1 have zero speed, which will cause the loss of the first motor generator 120. Through the setting of the third brake BK3, the first sun gear S1 can be locked, ensuring the high efficiency of the power transmission system 100, and eliminating the zero-speed power shunt loss of the first motor generator 120.
  • the power transmission system 100 includes a first planetary gear train PG1 and a second planetary gear train PG2.
  • the first ring gear R1 is linked with the engine 110
  • the first sun gear S1 is linked with the first motor generator 120.
  • the first sun gear S1 is provided with a third brake BK3 (BK3 is an optional installation part) for selectively locking the first sun gear S1, the first planet carrier C1 and the second planetary gear train PG2
  • BK3 is an optional installation part
  • the two ring gears R2 are connected, the first ring gear R1 and the second planet carrier C2 are selectively connected through a clutch CL1, the second planet carrier C2 is provided with a first brake BK1, and the second sun gear S2 is connected to the second motor generator 130
  • the second sun gear S2 is also provided with a second brake BK2 (BK2 is an optional mounting part), and the second ring gear R2 is connected with the differential input gear 141.
  • the first brake BK1 locks the second planet carrier C2
  • the clutch CL1 is in the open state
  • the engine 110 is stationary
  • the second motor generator 130 is the only power input terminal
  • the first motor generator 120 does not provide effective
  • the driving torque is in a follow-up state.
  • the power of the second motor generator 130 is transmitted to the second ring gear R2 through the second sun gear S2, the planetary gears on the second planet carrier C2, and the second ring gear R2 transmits the power to The differential 140 realizes power output.
  • the second motor generator 130 works in the negative steering zone to provide negative torque to achieve the positive acceleration demand of the pure electric drive of the vehicle, while the first motor generator 120 does not output power and keeps following the rotation state;
  • the generator 130 works in the negative steering zone to provide positive torque to realize the regenerative braking function of the vehicle;
  • the second motor generator 130 works in the positive steering zone to provide positive torque to realize the pure electric reversing acceleration demand of the vehicle.
  • the second motor generator 130 can provide negative torque to provide the reverse braking feedback of the vehicle.
  • the first motor generator 120 does not output power and maintains a follow-up state.
  • the first brake BK1 and the clutch CL1 are closed at the same time, the engine 110 stops at a standstill, the first motor generator 120 and the second motor generator 130 provide power together, in the first planetary gear train PG1 and the second planetary gear In the system PG2, the first ring gear R1 and the second planet carrier C2 are linked, the first ring gear R1 and the second planet carrier C2 are simultaneously locked by the first brake BK1, and the power of the first motor generator 120 passes through the first sun gear S1 is transmitted to the first planet carrier C1, while the first planet carrier C1 rotates to transmit power to the second ring gear R2, the power of the second motor generator 130 is transmitted to the second sun gear S2, and the power of the second sun gear S2 It is transmitted to the second ring gear R2 through the second planetary gear and is coupled to the first motor generator 120 to the differential input gear 141.
  • the engine 110 is stopped without providing any torque output, and the torque of the first motor generator 120 and the second motor generator 130 are output to the output end of the second ring gear R2 through independent fixed speed ratio gains. Since the first motor generator 120 and the second motor generator 130 can provide driving at the same time, the first motor generator 120 and the second motor generator 130 can drive the vehicle at the same time to reduce the torque demand of each motor, which is beneficial to reduce the first motor generator.
  • the volume and weight of the generator 120 and the second motor generator 130 reduce the cost of the dual-motor system, and in particular, it is possible to replace a smaller-power motor and its supporting inverters and other equipment.
  • the electric mode 2 can effectively improve the motor heat loss under the continuous high torque and severe working conditions required by the vehicle in the parking or low-speed climbing requirements.
  • the first motor generator 120 works in the positive speed zone and outputs positive torque to provide part of the torque required for the positive acceleration of the vehicle's pure electric drive
  • the second motor generator 130 works in the reverse speed zone to output negative torque to provide the vehicle Part of the torque required by the pure electric drive for positive acceleration.
  • hybrid mode 1 the first brake BK1 is closed and the clutch CL1 is opened.
  • This hybrid mode is an input power split hybrid hybrid, the engine 110 provides power input, and the first motor generator 120 acts as a speed-regulating motor for power split If the power demand of the vehicle is lower than the high-efficiency working area of the engine 110, the engine 110 increases the speed and enters the high-efficiency working area, the power split power of the first motor generator 120 increases, and the first electric motor 120 adjusts the speed to generate electricity in the negative steering zone. Part of the generated electric energy can be used to charge the power battery, and the other part can be directly supplied to the second motor generator 130.
  • the second motor generator 130 provides additional torque at a fixed speed ratio as the power input terminal and passes through the second sun gear. S2.
  • the second planetary gear to the second ring gear R2 are output to the differential input gear 141 after the second ring gear R2 is coupled with part of the power of the engine 110.
  • the power of the engine 110 enters the first gear train through the first ring gear R1, the first ring gear R1 and the planetary gears on the first planet carrier C1 are transmitted, part of the power is transmitted to the first sun gear S1, and the other part is passed through
  • the power transmitted from the first planet carrier C1 to the second ring gear R2 and the second motor generator 130 is coupled to the differential input gear 141; the closed-loop control of the speed of the first motor generator 120 must provide positive torque to counteract the engine 110
  • the power of the first sun gear S1 splits the negative torque.
  • the first motor generator 120 operates in the negative steering zone, and the first motor generator 120 provides positive torque to generate electricity; Rising, the first motor generator 120 will gradually adjust its speed to enter the positive steering zone.
  • the first motor generator 120 must continue to provide positive torque in order to offset the negative shunt torque of the generator 110, thereby causing the first motor generator 120 to turn into Speed regulation assists driving conditions, and at this time, the second motor generator 130 can only provide negative torque to enter the power generation state to balance the power of the vehicle’s power battery. In this mode of operation, it will cause energy circulation in the transmission power system. The efficiency will decrease rapidly as the forward rotation speed of the first motor generator 120 increases. Therefore, the hybrid mode 1 is not suitable for high-speed operation and efficient driving.
  • the power split torque of the first motor generator 120 to the engine 110 remains positive, but the power split power is zero.
  • This operating point is the first mechanical point. Ignoring the mechanical loss of the system, the power of the engine 110 is all output through the first planetary gear train PG1 to the second ring gear R2 and the second motor generator 130 is coupled and output. At the first mechanical point, it reaches the hybrid mode 2 (under the Described in the text).
  • the hybrid mode 1 can basically cover the driving and driving in the full speed range, as the power split and speed regulation of the first motor generator 120 enters the forward high speed region, the first motor generator 120 also enters the positive high speed region. , The power split efficiency of the power transmission system 100 will rapidly decrease, and the driving fuel consumption will increase, so the hybrid mode 1 is mainly used for driving from low speed to medium speed.
  • the first brake BK1 and the third brake BK3 are closed, the engine 110 and the second motor generator 130 are used as power sources as input terminals, and the third brake BK3 locks the first sun gear S1 to make the first The motor generator 120 is in the stop state with the speed of zero.
  • the hybrid mode 2 is equivalent to the special working mode of the hybrid mode 1 at the first mechanical point.
  • the third brake BK3 actively locks the first sun gear S1, and the engine 110 and The second motor generator 130 outputs power in parallel linkage.
  • the first motor generator 120 needs to provide torque to ensure that the power of the engine 110 is fully output to the second planetary gear train PG2.
  • the greater the loss in the state if the hybrid vehicle remains in the hybrid mode 2 working condition for a long time, for example, the vehicle is used in the mountain climbing condition for a long time, the third brake BK3 is required to lock the first sun gear S1 , To reduce the loss of the first motor generator 120.
  • the third brake BK3 can adopt a synchronous lock that can lock the first motor generator 120, which can reduce brake loss during locking, and can also reduce the drag of the third brake BK3 when the first motor generator 120 is operating normally. loss.
  • the clutch CL1 is closed to engage the first ring gear R1 and the second planet carrier C2, and the three power sources of the engine 110, the first motor generator 120, and the second motor generator 130 pass through the first planetary gear PG1 and the second planetary gear train PG2 are simultaneously linked to realize compound power split and stepless speed control hybrid.
  • either the first motor generator 120 or the second motor generator 130 can be used as a speed-adjustable shunt motor.
  • the first motor-generator 120 is suitable for power shunting as a speed-adjustable motor in the middle and low speed regions.
  • the generator 130 is suitable for speed regulation and shunting in the medium and high speed area, but the first motor generator 120 and the second motor generator 130 cannot operate in the speed regulation and shunt mode at the same time.
  • the first motor generator 120 When the first motor generator 120 is used as a speed-regulating motor for power splitting, the first part of the power of the engine 110 is transmitted to the second ring gear R2 through the first ring gear R1, the first planetary gear C1, and the first planet carrier C1. Part of the power is transmitted to the first sun gear S1 through the first ring gear R1 and the first planetary gear C1.
  • the second motor generator 130 is used as a power input terminal and is connected to the second sun gear S2.
  • the first part of the power of the second motor generator 130 passes through the second sun gear S2, the first planetary gear C1, the first ring gear R1 and the second planetary gear.
  • the composite transmission path of the wheel C2 and the first ring gear R2 is output through the second planet carrier C2 and the second ring gear R2.
  • the second part of the power of the second motor generator 130 passes through the second sun gear S2, the first planet gear C1, and The combined transmission path of the first ring gear R1 and the second planet gear C2 and the first ring gear R2 is transmitted to the first sun gear S1 through the first planet carrier, and the second part of the power of the engine 110 is in the first sun gear S1
  • the first motor generator 120 drives the first sun gear S1 to perform speed-regulating power splitting, and provides reverse torque to offset the combined split torque of the engine 110 and the second motor generator 130 on the first sun gear S1.
  • the first part of the power of the second motor generator 130 and the first part of the power of the engine 110 are coupled and linked in the second ring gear R2 and output.
  • the second motor generator 130 When the second motor generator 130 is used as a speed-regulating motor for power splitting, the first part of the power of the engine 110 passes through the first ring gear R1, the clutch CL1, and the second planet carrier C2, and then is transmitted to the second ring gear R2 for output, and the engine 110 The second part of the power of the engine 110 is transmitted to the second sun gear S2 through the first ring gear R1, the clutch CL1, and the second planet carrier C2.
  • the first motor generator 120 is driven by the auxiliary engine 110 to provide assistance.
  • the first part of the power of the first motor generator 120 passes through the combined transmission path of the first sun gear S1, the first planet gear C1, the first ring gear R1 and the second planet gear C2, and the second ring gear R2, and finally passes through the second
  • the ring gear R2 is linked with the first part of the power of the engine 110 and then output.
  • the second part of the power of the first motor generator 120 passes through the first sun gear S1, the first planetary gear C1, the first ring gear R1, and the second planetary gear C2.
  • the second part of the reverse split torque of the first motor generator 120 is transmitted to the second sun gear S2, and is linked with the second part of the forward split torque of the engine 110.
  • the second motor generator 130 When the first motor generator 120 120 provides forward driving assistance, which will offset part of the shunt torque of the engine 110 in the second sun gear S2, and help improve the efficiency of the transmission system; therefore, the second motor generator 130 will be mainly used as The speed regulating motor is used for power splitting.
  • hybrid mode 3 when the first motor generator 120 is used as a speed-regulating motor and the shunt power of the first motor generator 120 is zero, this operating point is the first mechanical point, and the first motor generator at the first mechanical point The speed of the motor shaft of 120 is zero, and the second motor generator 130 will be connected in parallel with the engine 110 and output to the second ring gear R2 of the second planetary gear train PG2.
  • hybrid mode 3 when the second motor generator 130 is used as a speed-regulating motor and the shunt power of the second motor generator 130 is zero, the operating point is the second mechanical point, and the second motor generator at the second mechanical point The speed of the motor shaft of 130 is zero, and the power of the first motor generator 120 is connected in parallel with the power of the engine 110 to output to the second ring gear R2 of the second planetary gear train PG2.
  • the clutch CL1 combines the first ring gear R1 with the second planet carrier C2, the engine 110 and the first motor generator 120 work, the second motor generator 130 no longer generates electricity, and the second brake BK2 turns The second sun gear S2 brakes.
  • Hybrid mode 4 is suitable for high-speed and steady-state driving of the vehicle.
  • Hybrid mode 4 is equivalent to locking the motor shaft of the second motor generator 130 at the second mechanical point of the hybrid mode 3.
  • the second brake BK2 can be closed to realize the efficient direct drive of the engine 110 or the power parallel linkage of the engine 110 and the first motor generator 120.
  • the generator 130 is in a shutdown state and no additional loss occurs.
  • clutch CL1 When switching from electric mode 1 to electric mode 2, clutch CL1 can be directly engaged.
  • the first motor generator 120 When the electric mode 2 is switched to the electric mode 1, the first motor generator 120 enters a zero torque control state, the second motor generator 130 provides driving, and the clutch CL1 is opened to make the power transmission system 100 enter the electric mode 1.
  • the first motor generator 120 acts as a starter motor to close-loop speed control output torque and quickly starts the engine 110.
  • the second motor generator 130 provides driving. After the engine 110 starts, the ignition output torque is
  • the motor generator 120 functions as a speed-regulating motor for power distribution.
  • the hybrid mode 1 When the hybrid mode 1 is switched to the electric mode 1, the engine 110 is cut off to stop, the first motor generator 120 enters the zero torque control mode, the first brake BK1 is kept closed, and the second motor generator 130 continues to provide driving.
  • the first brake BK1 is opened, the clutch CL1 remains engaged, the second motor generator 130 enters the speed control mode, the engine 110 is started, and the second motor generator 130 serves as the power split of the speed control motor.
  • the first motor generator 120 continues to drive control.
  • the engine 110 When the hybrid mode 3 is switched to the electric mode 2, the engine 110 is cut off, the first motor generator 120 provides pure electric drive, the second motor generator 130 adjusts the speed of the engine 110 to zero speed, the first brake BK1 is closed, and the first The motor generator 120 and the second motor generator 130 jointly provide pure electric drive.
  • the speed of the first motor generator 120 is adjusted to zero speed, and the engine 110 and the second motor generator 130 continue to provide power and perform linkage, or the engine 110 is driven separately, if the system does not
  • the third brake BK3 is installed, and the first motor generator 120 maintains zero-speed control. If the third brake BK3 is installed in the system, the third brake BK3 is closed, and the first motor generator 120 stops.
  • the hybrid mode 2 When the hybrid mode 2 is switched to the hybrid mode 1, if the third brake BK3 is installed and the third brake BK3 is opened, the first motor generator 120 enters the speed regulation mode for speed regulation and diversion; if the third brake BK3 is not installed, the first The motor generator 120 directly performs speed regulation and shunting.
  • the hybrid mode 3 is switched to the hybrid mode 4, the speed of the second motor generator 130 is adjusted to zero speed, the engine 110 and the first motor generator 120 continue to provide power, and the engine 110 and the first motor generator 120 are mixed in parallel, or The engine 110 is driven alone. If the power transmission system 100 is not equipped with the second brake BK2, the second motor generator 130 maintains zero-speed control; if the system is equipped with the second brake BK2, the second brake BK2 is closed and the second motor stops.
  • the hybrid mode 4 is switched to the hybrid mode 3. If the second brake BK2 is installed, the second brake BK2 is opened, and the second motor generator 130 enters the speed regulation mode for speed regulation and shunting. If the second brake BK2 is not installed, the second brake The motor generator 130 directly enters the speed regulation mode for speed regulation and diversion.
  • the hybrid mode 1 is switched to the hybrid mode 3.
  • the first motor generator 120 continues to maintain the speed regulation mode to shunt the engine 110, the second motor generator 130 enters the zero torque control mode, opens the first brake BK1, and the second motor generator
  • the 130 speed control keeps the speeds of the first ring gear R1 and the second planet carrier C2 consistent, and synchronizes the first ring gear R1 with the second planet carrier C2.
  • the second motor enters the zero torque control mode, the clutch CL1 is closed, and the first electric
  • the generator 120 may continue to maintain the speed regulation power split, and the second motor generator 130 provides driving torque; or the second motor generator 130 enters the speed regulation split mode, and the first motor generator 120 provides driving torque.
  • the hybrid mode 3 is switched to the hybrid mode 1.
  • the first motor generator 120 enters the speed-regulating shunt mode
  • the second motor generator 130 enters the zero torque control mode
  • the clutch CL1 is disconnected
  • the second motor generator The engine 130 quickly adjusts the speed of the second planet carrier C2 to zero speed, closes the first brake BK1, the first motor generator 120 acts as a speed regulating motor to continue power distribution, and the second motor generator 130 enters the driving mode to provide torque.
  • the power transmission system 100 has an electric mode 1 and an electric mode 2.
  • the electric mode 1 and the electric mode 2 can meet the requirements of the full speed range and different loads of the vehicle, and can be applied to strong hybrid HEV, plug-in hybrid PHEV and plug-in The application requirements of pure electric drive for the powertrain of electric extended REEV vehicles. It can smoothly switch to any hybrid mode at any vehicle speed in electric mode 1 and electric mode 2.
  • the power transmission system 100 also has a hybrid mode 1, a hybrid mode 2, a hybrid mode 3, and a hybrid mode 4 to cover the power transmission of the full vehicle speed and realize the efficient operation of the power transmission system 100.
  • hybrid mode 1 and hybrid mode 3 can maintain the speed of the engine 110 in the optimal range, and use the first motor generator 120 or the second motor generator 130 as a speed-regulating motor for power splitting and power generation to ensure that the engine 110 is in The high efficiency state helps reduce the energy consumption of the entire vehicle and improve the efficiency of the power transmission system 100.
  • the second brake BK2 is provided to ensure the highest output of the overall efficiency in the hybrid mode 4, while reducing the loss of the second motor generator 130 in the zero-speed control state.
  • the brake BK2 locks the second sun gear S2, which helps to improve the engine transmission efficiency during high-speed and steady-state operation of the vehicle.
  • the third brake BK3 reduces the first sun gear S1 lock-up helps to improve the engine transmission efficiency during steady-state operation of the vehicle at low speed, medium and high load.
  • the engine 110, the first motor generator 120, and the second motor generator 130 are coaxially arranged.
  • the engine 110 and the first motor generator 120 are arranged on the same side of the first planetary gear train PG1.
  • the generator 130 is arranged on the other side of the first planetary gear train PG1, the first motor shaft of the first motor generator 120 is configured as a hollow shaft and is connected to the first sun gear S1, and the engine shaft of the engine 110 passes through the first motor
  • the shaft is connected to the first ring gear R1
  • the second motor shaft of the second motor generator 130 is also configured as a hollow shaft and is connected to the second sun gear S2, the engine shaft passes through the second motor shaft, and the clutch CL1 is provided on the engine shaft.
  • the first brake BK1 is arranged on the other end of the second planet carrier C2, the second brake BK2 is arranged between the second sun gear S2 and the second motor shaft, and the third brake BK3 is arranged on the first motor shaft and the first sun gear S1 In between, an intermediate transmission gear is provided between the first planet carrier C1 or the second ring gear R2 and the differential input gear 141.
  • the engine 110, the first motor generator 120, and the second motor generator 130 are coaxially arranged.
  • the engine 110 and the first motor generator 120 are arranged on the same side of the first planetary gear train PG1.
  • the generator 130 is arranged on the other side of the first planetary gear train PG1, the first motor shaft of the first motor generator 120 is configured as a hollow shaft and is connected to the first sun gear S1, and the engine shaft of the engine 110 passes through the first motor
  • the shaft is connected to the first ring gear R1.
  • the first ring gear R1 is provided with a clutch CL1 selectively connected to the second planet carrier C2.
  • the clutch CL1 is provided between the first motor generator 120 and the second motor generator 130
  • the first brake BK1 is provided between the second planet carrier C2 and the second motor generator 130
  • the second brake BK2 is provided on the second motor shaft
  • the third brake BK3 is provided on the first motor shaft.
  • the engine 110, the first motor generator 120, and the second motor generator 130 are coaxially arranged.
  • the engine 110 and the second motor generator 130 are arranged on the same side of the second planetary gear train PG2.
  • the generator 120 is arranged on the other side of the second planetary gear train PG2.
  • the second motor shaft of the second motor generator 130 is configured as a hollow shaft and is connected to the second sun gear S2.
  • the engine shaft passes through the second motor shaft and the second motor shaft.
  • a planetary ring gear R1 is connected.
  • the first ring gear R1 is provided with a clutch CL1 that is selectively connected to the second planet carrier C2.
  • the clutch CL1 is provided between the first motor generator 120 and the second motor generator 130.
  • the brake BK1 is arranged on the second planet carrier C2, the second brake BK2 is arranged on the outer circumference of the second motor shaft, the first brake BK1 and the second brake BK2 can use the same braking structure, and the third brake BK3 is arranged on the first electric generator The outer circumference of the motor shaft of the machine 120.
  • the engine 110, the first motor generator 120, and the second motor generator 130 are coaxially arranged, the first planetary gear train PG1 is arranged between the engine 110 and the first motor generator 120, and the second planetary gear
  • the system PG2 is arranged between the first motor generator 120 and the second motor generator 130.
  • the first motor shaft of the first motor generator 120 is configured as a hollow shaft, and one end of the first motor shaft is connected to the first sun gear S1, The other end of the first motor shaft is provided with a third brake BK3. At least part of the first planet carrier C1 passes through the first motor shaft and is connected to the second ring gear R2.
  • the second brake BK2 is provided on the first motor generator 130.
  • the first brake BK1 is arranged on the second planet carrier C2 and is close to one end of the second motor generator 130.
  • the engine 110 and the first motor generator 120 are coaxially arranged, the second motor generator 130 is offset, and the first planetary gear train PG1 is arranged between the engine 110 and the first motor generator 120.
  • the second planetary gear train PG2 is coaxially arranged with the second motor generator 130, the first planet carrier C1 is connected to the second ring gear R2 through the first or second gear output, and the first brake BK1 is arranged on the second planetary gear train PG2
  • the second motor generator 130 is provided on the other side of the second planetary gear train PG2, the second brake BK2 is provided on the second motor shaft, and the third brake BK3 is provided on the first motor shaft.
  • This arrangement can simplify the structures of the first planetary gear train PG1 and the second planetary gear train PG2.
  • the first motor generator 120 and the second motor generator 130 all adopt an offset arrangement.
  • the engine 110, the first planetary gear train PG1 and the second planetary gear train PG2 are arranged coaxially.
  • a motor generator 120 and a second motor generator 130 are parallel to the motor shaft of the engine 110 and are arranged in sequence in the radial direction of the first planetary gear train PG1.
  • the first sun gear S1 can be configured as a double gear, the engine shaft passes through the first sun gear S1 and is connected to the first ring gear R1, the other end of the engine shaft passes through the second planetary gear train PG2, and the clutch CL1 is arranged on the engine shaft
  • the other end of the first sun gear S1 and the motor shaft of the first motor generator 120 are connected by a one-stage or two-stage gear
  • the second sun gear S2 can be configured as a double gear, and is connected with the second motor shaft through a one-stage or The two-stage gears are connected, at least part of the second planet carrier C2 is penetrated by the second sun gear S2, and the end of the second planet carrier C2 is selectively connected with the motor shaft through the clutch CL1, and the first brake BK1 is arranged in the second At the other end of the ring gear R2, the second brake BK2 is provided on the second sun gear S2, and the third brake BK3 is provided on the first sun gear S1.
  • the first motor generator 120 is coaxially arranged with the engine 110, the second motor generator 130 is offset, and the second motor shaft of the second motor generator 130 is linked with the second sun gear S2 through a transmission gear.
  • the first motor generator 120 is arranged between the engine 110 and the first planetary gear system PG1.
  • the motor shaft of the first motor generator 120 is configured as a hollow shaft, and the engine shaft is respectively penetrated by the first sun gear S1 and the second sun gear S2 ,
  • a clutch CL1 is provided at the end of the engine shaft
  • the second sun gear S2 is configured as a double gear
  • at least part of the second planet carrier C2 passes through the second sun gear S2
  • one end of the second planet carrier C2 is connected to the engine shaft
  • the other end of the second planet carrier C2 is provided with a first brake BK1
  • the second brake BK2 is provided on the second sun gear S2
  • the third brake BK3 is provided on the first sun gear S1.
  • the first motor generator 120 is coaxially arranged with the engine 110, the second motor generator 130 is offset, and the second motor shaft of the second motor generator 130 is linked with the second sun gear S2 through a transmission gear.
  • the first motor generator 120 is arranged between the engine 110 and the first planetary gear train PG1, the motor shaft of the first motor generator 120 is configured as a hollow shaft, and the clutch CL1 is arranged on the first planetary gear train PG1 and the second planetary gear train
  • the engine shaft is connected to the first ring gear R1, a clutch CL1 is arranged between the first ring gear R1 and the second planet carrier C2, and the first brake BK1 is arranged on the second planet carrier C2 away from the first planetary gear train PG1
  • the second brake BK2 is arranged on the second sun gear S2, the first brake BK1 and the second brake BK2 can share the same braking structure, and the third brake BK3 is arranged on the outer circumference of the first motor shaft.
  • the first motor generator 120 is coaxially arranged with the engine 110, the second motor generator 130 is biased, and the second motor shaft of the second motor generator 130 is linked with the second sun gear S2 through a transmission gear.
  • the first planetary gear train PG1 and the second planetary gear train PG2 are arranged between the engine 110 and the first motor generator 120, the first planetary gear train PG1 is close to the first motor generator 120, and the second planetary gear train PG2 is close to the engine 110
  • the second sun gear S2 can be configured as a double gear.
  • the engine shaft passes through the second sun gear S2 and is connected to the first ring gear R1.
  • a clutch CL1 is provided between the first ring gear R1 and one end of the second planet carrier C2.
  • the first brake BK1 is arranged on the other end of the second planet carrier C2
  • the second brake BK2 is arranged on the outer circumference of the second sun gear S2
  • the first brake BK1 and the second brake BK2 can use the same braking structure
  • the third brake BK3 is arranged on the outer circumference of the first motor shaft.
  • the engine 110, the first planetary gear train PG1, the first motor generator 120, and the second planetary gear train PG2 are arranged on one side on the same axis.
  • the second motor generator 130 is arranged offset, and the second motor
  • the motor shaft of the generator 130 and the second sun gear S2 are connected by gears
  • the first motor shaft of the first motor generator 120 is configured as a hollow shaft
  • at least part of the second planet carrier C2 passes through the motor shaft
  • the clutch CL1 is provided between the engine shaft and the second planet carrier C2 and in the first planetary gear train PG1, the first brake BK1 is arranged at the other end of the second planet carrier C2, and the second brake BK2 is arranged at the second motor generator 130 motor Shaft
  • the third brake BK3 is arranged on the side of the first motor shaft close to the second planetary gear train PG2.
  • the engine 110 and the first motor generator 120 are arranged coaxially, the second motor generator 130 is arranged offset, and the first planetary gear train PG1 is arranged between the engine 110 and the first motor generator 120 and is connected to the The engine 110 is coaxial, and the second planetary gear train PG2 and the second motor generator 130 are coaxially arranged.
  • a first gear meshing with the second ring gear R2 is fixed on the outer periphery of the first planet carrier C1, a second gear is also fixed on the outer periphery of the first planet carrier C1, the first gear meshes with the second gear ring R2, and the second gear and
  • the output shaft is linked, the engine 110 is connected with the first ring gear R1, a third gear is arranged on the outer circumference of one end of the second planet carrier C2, a clutch CL1 is arranged between the third gear and the second planet carrier C2, and the third gear and the first gear A ring gear R1 is engaged, the first brake BK1 is arranged on the outside of one end of the second planet carrier C2 and selectively brakes the second planet carrier C2, and the second brake BK2 is arranged on the motor shaft of the second motor generator 130.
  • the three brake BK3 is provided on the motor shaft of the first motor generator 120.
  • the vehicle according to the present invention is provided with the power transmission system 100 of the above-mentioned embodiment. Since the vehicle according to the present invention is provided with the power transmission system 100 of the above-mentioned embodiment, the vehicle has a variety of different power modes, and the gear shift is stable. , High transmission efficiency, light weight, low cost, good reliability and good applicability.
  • first feature and second feature may include one or more of these features.
  • plural means two or more.
  • first feature may include the first and second features in direct contact, or may include the first and second features not in direct contact but through them Another feature contact between.
  • the "above”, “above” and “above” of the first feature on the second feature include the first feature directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than The second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Structure Of Transmissions (AREA)

Abstract

本发明公开了一种用于车辆的动力传动系统及车辆,动力传动系统包括:第一行星轮系,所述第一行星轮系包括第一太阳轮、第一行星架和第一齿圈;第二行星轮系,所述第二行星轮系包括第二太阳轮、第二行星架和第二齿圈,所述第一行星架与所述第二齿圈联动;其中所述第一齿圈和所述第一太阳轮中的至少一个以及第二太阳轮和所述第二行星架中的一个构造为动力输入端,所述第二太阳轮和所述第二行星架中的另一个或第二齿圈构造为动力输出端。根据本发明的动力传动系统具有多种动力传动模式,可以实现发动机与电动机的混动输出,同时该动力系统的传动效率高。

Description

用于车辆的动力传动系统及车辆 技术领域
本发明涉及车辆领域,尤其是涉及一种用于车辆的动力传动系统及车辆。
背景技术
相关技术中,对于混动车辆的单模动力传动系统,不能满足车辆的大负载需求,而具有双模的混动车辆的动力传动系统可以满足车辆大负载的需求,但由于具有双模的混动车辆的动力传动系统在实现纯电驱动、单模输入式动力分流串并混联混动、双模复合式动力分流混联混动及两挡并联混动及发动机直驱驱动模式时,结构复杂,且传动效率低。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明的一个目的在于提出一种动力传动系统,该动力传动系统具有多种动力传动模式,可以实现发动机与电动机的混动输出,同时该动力系统结构简单、传动效率高。
本发明还提出一种具有上述动力传动系统的车辆。
根据本发明的车辆的动力传动系统包括:第一行星轮系,所述第一行星轮系包括第一太阳轮、第一行星架和第一齿圈;第二行星轮系,所述第二行星轮系包括第二太阳轮、第二行星架和第二齿圈,所述第一行星架与所述第二齿圈联动;其中所述第一齿圈和所述第一太阳轮中的至少一个以及第二太阳轮和所述第二行星架中的一个构造为动力输入端,所述第二太阳轮和所述第二行星架中的另一个或第二齿圈构造为动力输出端。
根据本发明的动力传动系统,通过将第一行星轮系的第一行星架与第二行星轮系的第二齿圈连接,使第一行星轮系的动力耦合后可以传递至第二行星轮系,动力传动系统可以实现具有三个动力输入端和一个动力输出端的动力传动系统,动力的传输稳定可靠,且可以实现在多种不同工况下的动力传动需求。
根据本发明的一个实施例,动力传动系统还包括:第一动力源、第二动力源和第三动力源,所述第一动力源与所述第一齿圈相连,所述第二动力源与所述第一太阳轮相连,所述第三动力源与所述第二太阳轮相连。
根据本发明的一个实施例,所述第一动力源为发动机,所述第二动力源为第一电动发电机,所述第三动力源为第二电动发电机。
根据本发明的一个实施例,动力传动系统还包括:输出轴,所述输出轴与所述第二齿圈联动。
根据本发明的一个实施例,所述发动机的输入轴、所述第一电动发电机的输入轴和所述第二电动发电机的输入轴中的至少两个同轴布置。
根据本发明的一个实施例,所述发动机的输入轴与所述第二齿圈同轴布置,所述第一电动发 电机的输入轴、所述第二电动发电机的输入轴和所述第二齿圈的轴线平行设置且沿所述第二齿圈的径向依次排布。
根据本发明的一个实施例,动力传动系统还包括:使所述第一齿圈与所述第二行星架可选择联动的离合器。
根据本发明的一个实施例,动力传动系统还包括:第一制动器,所述第一制动器可选择地将所述第一齿圈或所述第二行星架锁止。
根据本发明的一个实施例,动力传动系还包括:第二制动器,所述第二制动器可选择地将所述第二太阳轮锁止。
根据本发明的一个实施例,动力传动系统还包括:第三制动器,所述第三制动器可选择地将所述第一太阳轮锁止。
下面简单描述根据本发明的车辆。
根据本发明的车辆上设置有上述实施例的动力传动系统,由于根据本发明的车辆上设置有上述实施例的动力传动系统,因此该车辆具有多种不同的动力模式,挡位切换稳定,传动效率高,车辆的重量轻成本低、可靠性好、适用性好。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明实施例的动力传动系统的一种方案的示意图;
图2是根据本发明实施例的动力传动系统的另一种方案的示意图;
图3是根据本发明实施例的动力传动系统的又一种方案的示意图;
图4是根据本发明实施例的动力传动系统的又一种方案的示意图;
图5是根据本发明实施例的动力传动系统的又一种方案的示意图;
图6a是根据本发明实施例的动力传动系统的又一种方案的示意图;
图6b是根据本发明实施例的动力传动系统的又一种方案的示意图;
图6c是根据本发明实施例的动力传动系统的又一种方案的示意图;
图7是根据本发明实施例的动力传动系统的又一种方案的示意图;
图8是根据本发明实施例的动力传动系统的又一种方案的示意图;
图9是根据本发明实施例的动力传动系统的又一种方案的示意图;
图10是根据本发明实施例的动力传动系统的又一种方案的示意图;
图11是根据本发明实施例的动力传动系统的又一种方案的示意图。
附图标记:
动力传动系统100,
发动机110,第一电动发电机120,第二电动发电机130,差速器140,差速器输入齿轮141,
第一行星轮系PG1,
第一太阳轮S1,第一行星架C1,第一齿圈R1,
第二行星轮系PG2,
第二太阳轮S2,第二行星架C2,第二齿圈R2,
离合器CL1,第一制动器BK1,第二制动器BK2,第三制动器BK3。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
下面参考图1-图11描述根据本发明实施例的用于车辆的动力传动系统100。
根据本发明的用于车辆的动力传动系统100包括第一行星轮系PG1和第二行星轮系PG2,其中,第一行星轮系PG1包括第一太阳轮S1、第一行星架C1和第一齿圈R1,第二行星轮系PG2包括第二太阳轮S2、第二行星架C2和第二齿圈R2,第一行星架C1与第二齿圈R2联动,第一齿圈R1和第一太阳轮S1中的至少一个以及第二太阳轮S2和第二行星架C2中的一个构造为动力输入端,第二太阳轮S2和第二行星架C2中的另一个或第二齿圈R2构造为动力输出端。
根据本发明的动力传动系统100,通过将第一行星轮系PG1的第一行星架C1与第二行星轮系PG2的第二齿圈R2相连,实现了第一行星轮系PG1与第二行星轮系PG2之间的动力传动。
在第一行星轮系PG1中,第一太阳轮S1、第二行星架C2和第一齿圈R1中的任意一个或两个可以作为动力输入端,其中,第一齿圈R1和第一太阳轮S1中的至少一个输入动力,二者动力可以在第一行星架C1耦合并传递至第二行星轮系PG2的第二齿圈R2;第一齿圈R1和第一太阳轮S1中的一个可以作为动力输入端输入动力,而第一齿圈R1和第一太阳轮S1中的另一个可以锁止,使第一齿圈R1或第一太阳轮S1的动力传递至第一行星架C1,再由第一行星架C1传递至第二行星轮系PG2的第二齿圈R2。
在第一行星轮系PG1中,可以将一个或两个动力源的动力进行耦合,并通过第一行星架C1传递至第二齿圈R2。
在第二行星轮系PG2中,第二太阳轮S2和第二行星架C2中的至少一个可以构造为动力输入端,在第二行星轮系PG2中,第二齿圈R2接受来自第一行星轮系PG1耦合后的动力,第二太阳轮S2与第二行星架C2中的一个作为动力输入端时与第二齿圈R2的动力耦合在第二太阳轮S2与第二行星架C2中的另一个。进而实现三个动力源的动力耦合。
在第二行星轮系PG2中,第二太阳轮S2、第二行星架C2和第二齿圈R2中不作为动力输入端 的一个可以作为动力输出端。
根据本发明的动力传动系统100,通过将第一行星轮系PG1的第一行星架C1与第二行星轮系PG2的第二齿圈R2连接,使第一行星轮系PG1的动力耦合后可以传递至第二行星轮系PG2,动力传动系统100可以实现具有三个动力输入端和一个动力输出端的动力传动系统100,动力的传输稳定可靠,且可以实现在多种不同工况下的动力传动需求。
根据本发明的一个实施例,动力传动系统100包括第一动力源、第二动力源和第三动力源,第一动力源与第一齿圈R1相连,第二动力源与第一太阳轮S1相连,第三动力源与第二太阳轮S2相连。
其中,第一动力源为发动机110,第二动力源为第一电动发电机120,第三动力源可以为第二电动发电机130,第二动力源与第三动力源均可以与车辆的动力电池相连;并且,在动力分流无极调速混动模式下,第一电动发电机120或第二电动发电机130可以作为动力分流调速电机,可以连续地调节发动机110工作转速,将发动机110输入动力进行动力分流,优化发动机110工作点,其中,动力分流的形势可以是将第一电动发电机120或第二电动发电机130作为发电机,接收部分扭矩和转速进行发电,来实现对发动机110的调速,从而保证动力传动系统100具有更高的效率。
在第一电动发电机120和第二电动发电机130进行发电的工况下可以理解为第二动力源和第三动力源的动力输入为负功率。
根据本发明的一个实施例,动力传动系统100还包括输出轴,输出轴与第二齿圈R2联动,在第二行星轮系PG2中,动力传动系统100在任何工况下,第二齿圈R2与输出轴相连,以保证动力传动系统100中的动力向外部传输,输出轴可以将第二齿圈R2与差速器输入齿轮141相连。
根据本发明的一个实施例,发动机110的输入轴、第一电动发电机120的输入轴和第二电动发电机130的输入轴中的至少两个同轴布置。
如图1-图4所示,第一行星轮系PG1与第二行星轮系PG2的同轴布置,也就是说第一太阳轮S1与第二太阳轮S2同轴布置。将发动机110的输入轴、第一电动发电机120的输入轴和第二电动发电机130的输入轴同轴布置,可以减少动力传动系统100中的零部件数量,使动力传动系统100的零部件处于在同一轴线内,可以使动力传动系统100在左右方向上对称,使车辆在左右方向上的重量更加均衡,可以提高车辆转弯的稳定性。同时采用同轴布置的方案可以减少各个动力源与动力传动系统100之间联动的零部件数量,无需采用链传动或齿轮传动的方式进行动力传输,减少了动力传动系统100零部件的数量,简化了动力传动系统100的结构,降低了动力传动系统100装配和制造难度,提升传动系统的效率。
如图5、图7-图11所示,将其中两个动力源的输入轴同轴布置,另一个动力源的输入轴与这两个动力源的输入轴偏置,也就是另一个动力源的输入轴与这两个动力源的输入轴平行布置,可以降低动力传动系统100在轴向上的尺寸,降低动力传动系统100在轴向上的长度,方便于动力传动系统100的布置,同时三动力源中的一个偏置布置的情况下,输入轴不需要套设布置,简化了动力传动系统100的装配,方便于动力传动系统100对任意一个动力源进行拆卸和维修。
如图6a-图6c所示,根据本发明的一个实施例,发动机110的输入轴与第二齿圈R2同轴布置,第一电动发电机120的输入轴、第二电动发电机130的输入轴和第二齿圈R2的轴线平行设置且沿第二齿圈R2的径向依次排布。
发动机110的输入轴、第一电动发电机120的输入轴和第二电动发电机130的输入轴平行布置,将第一电动发电机120、第二电动发电机130均采用偏置布局,可以通过固定速比的齿轮或链式传动将第一电动发电机120和第二电动发电机130的输入轴与第一行星轮系PG1和第二行星轮系PG2相连,可以大幅降低动力传动系统100的轴向尺寸,有利于动力传动系统100的集成。同时,第一电动发电机120、第二电动发电机130的轴向空间充裕,方便于对第一电动发电机120和第二电动发电机130的参数进行调整,可以适用于不同的整车平台需求,提高了动力传动系统100的适用性。
根据本发明的一个实施例,动力传动系统100还包括使第一齿圈R1和第二行星架C2可选择联动的离合器CL1,在第一齿圈R1和第二行星架C2之间设置离合器CL1,离合器CL1可地选择接合第一齿圈R1与第二行星架C2,使动力传动系统100具有更多的工况选择,丰富了动力传动系统100的动力传动模式。
在本发明的一个实施例中,离合器CL1将第一齿圈R1与第二行星架C2结合后,发动机110以及第一电动发电机120和第二电动发电机130中的一个作为动力输入端,第一电动发电机120和第二电动发电机130中的另一个作为调速电机对发动机110的动力输入进行动力分流,在此模式下,动力传动系统100可以全车速范围内进行工作并保持高效,调速电机可以用于保持发动机110的转速在优化区间,保证发动机110的处于高效的状态,使动力传动更加高效,降低整车油耗。
根据本发明的一个实施例,动力传动系统100还包括第一制动器BK1,第一制动器BK1可选择地将第一齿圈R1或第二行星架C2锁止,第一制动器BK1可以使动力传动系统100具有更多的动力传动模式,使动力传动系统100的调速更加丰富,使动力传动系统100更好地进行调速。
在本发明的一个具体实施例中,在纯电动模式下,可以将第二行星架C2锁止,同时只有第二电动发电机130作为动力输入端,动力在第二行星轮系PG2中进行降速增扭,第二行星架C2被第一制动器BK1锁止,动力通过第二太阳轮S2、经过第二行星架C2上的行星轮传递至第二齿圈R2并输出,此时第一电动发电机120的输入轴与第一太阳轮S1随转。
在本发明的一个具体实施例中,混动模式下,第一制动器BK1将第二行星架C2锁止,发动机110作为动力输入端,第一电动发电机120作为调速电机进行调速,以保证发动机110的转速处于优化区间内,发动机110的部分动力通过第一行星架C1传递至第二齿圈R2,第二电动发电机130作为另一个动力输入端,在第二行星轮系PG2中,第二电动发电机130的动力经过第二太阳轮S2、第二行星架C2上的行星轮传递至第二齿圈R2并与发动机110的部分动力耦合,第二齿圈R2将动力输出至差速器输入齿轮141。
在此混动模式下,实现了单模输入式分流混联混动,第二行星轮系PG2中的第二行星架C2在第一制动器BK1的制动下无法转动,第二电动发电机130的动力经过行星轮与第二齿圈R2耦合。
根据本发明的一个实施例,动力传动系统100还包括第二制动器BK2,第二制动器BK2可选 择地将第二太阳轮S2锁止。
在车辆的复合式动力分流混动模式下,动力传动系统100处于中高速无级调速独立分流混联混动,离合器CL1将第一齿圈R1与第二行星轮系PG2的第二行星架C2接合,发动机110和第一电动发电机120作为动力输入端,为保证动力传动系统100的高效工作,第二电动发电机130作为调速电机进行动力分流,以使发动机110的转速处于高效区间。在发动机110的动力已经处于高效区间后,为保证动力的充沛以及系统的高效性能,第二电动发电机130调速控制在零转速,而需要输出动力分流扭矩保持第二电动发电机130的输入轴以及第二太阳轮S2零转速,这样动力分流扭矩会导致第二电动发电机130产生损耗。通过第二制动器BK2的设置,可以锁止第二太阳轮S2,保证动力传动系统100的高效,同时消除了第二电动发电机130的零转速动力分流损耗。
根据本发明的一个实施例,动力传动系统100还包括第三制动器BK3,第三制动器BK3可选择地将第二太阳轮S2锁止。
在车辆的输入式动力分流混动模式下,发动机110、第二电动发电机130作为动力输入端、第一电动发电机120作为调速电机进行动力分流,第一制动器BK1将第二行星架C2锁止,以使发动机110的转速处于高效区间。在发动机110的动力已经处于高效区间后,为保证动力的充沛以及系统的高效性能,第一电动发电机120调速控制在零转速,而需要输出动力分流扭矩保持第一电动发电机120的输入轴以及第一太阳轮S1零转速,这样会导致第一电动发电机120损耗。通过第三制动器BK3的设置,可以锁止第一太阳轮S1,保证动力传动系统100的高效,同时消除第一电动发电机120的零转速动力分流损耗。
下面根据本发明的一个具体实施例对上述装置进行补充描述。
动力传动系统100包括第一行星轮系PG1和第二行星轮系PG2,第一行星轮系PG1中,第一齿圈R1与发动机110联动,第一太阳轮S1与第一电动发电机120联动,第一太阳轮S1上设置有第三制动器BK3(BK3为选配安装件)以用于可选择地将第一太阳轮S1锁止,第一行星架C1与第二行星轮系PG2的第二齿圈R2相连,第一齿圈R1与第二行星架C2通过离合器CL1可选择地连接,第二行星架C2上设置有第一制动器BK1,第二太阳轮S2与第二电动发电机130联动,第二太阳轮S2还设置有第二制动器BK2(BK2为选配安装件),第二齿圈R2与差速器输入齿轮141相连。
电动模式1
在电动模式1中,第一制动器BK1将第二行星架C2锁止,离合器CL1处于打开状态,发动机110静止,第二电动发电机130作为唯一动力输入端,第一电动发电机120不提供有效驱动扭矩,处于随转状态。在第二行星轮系PG2中,第二电动发电机130的动力通过第二太阳轮S2、第二行星架C2上的行星齿轮传递至第二齿圈R2,第二齿圈R2将动力传递至差速器140,实现动力的输出。
在车辆前进时,第二电动发电机130工作在负转向区提供负扭矩,以实现车辆纯电动驱动的正向加速需求,同时第一电动发电机120不输出动力保持随转状态;第二电动发电机130工作在负转向区提供正扭矩,以实现车辆的回馈制动功能;第二电动发电机130工作在正转向区提供正扭矩, 以实现车辆的纯电动倒车加速需求,在车辆的倒车过程第二电动发电机130可以提供负扭矩以提供车辆的倒车制动回馈,同样,第一电动发电机120不输出动力保持随转状态。
电动模式2
在电动模式2中,第一制动器BK1和离合器CL1同时闭合,发动机110停机静止,第一电动发电机120与第二电动发电机130共同提供动力,在第一行星轮系PG1和第二行星轮系PG2中,第一齿圈R1与第二行星架C2联动,第一齿圈R1与第二行星架C2同时被第一制动器BK1锁止,第一电动发电机120的动力通过第一太阳轮S1传递至第一行星架C1,同时第一行星架C1转动,将动力传递至第二齿圈R2,第二电动发电机130的动力传递至第二太阳轮S2,第二太阳轮S2的动力通过第二行星轮传递至第二齿圈R2并与第一电动发电机120的耦合后传递至差速器输入齿轮141。
在电动模式2中,发动机110停机不提供任何扭矩输出,第一电动发电机120和第二电动发电机130的扭矩通过各自独立的固定速比增益输出到第二齿圈R2的输出端。由于第一电动发电机120及第二电动发电机130可以同时提供驱动,第一电动发电机120和第二电动发电机130同时驱动车辆可以降低每个电机的扭矩需求,有利于降低第一电动发电机120和第二电动发电机130的体积及重量,从而降低双电机系统的成本,特别是可以更换功率较小的电机及其配套的逆变器等设备。此外,在电动模式2下能够有效改善车辆在驻坡或低车速爬坡需求所需要的持续大扭矩恶劣工况下的电机热损耗。
在车辆前进时,第一电动发电机120工作在正向转速区输出正扭矩提供车辆纯电驱动正向加速需要的部分扭矩,第二电动发电机130工作在反向转速区输出负扭矩提供车辆纯电驱动正向加速需要的部分扭矩需求。
混动模式1
在混动模式1中,第一制动器BK1闭合,离合器CL1打开,该混动模式为输入式动力分流混联混动,发动机110提供动力输入,第一电动发电机120作为调速电机进行动力分流,如果车辆的动力需求低于发动机110的高效工作区域,发动机110提高转速并进入高效工作区域,第一电动发电机120的动力分流功率增大,第一电动发动机120在负转向区调速发电所产生的电能一部分可以对动力电池进行充电,其他部分可以直接供给第二电动发电机130,第二电动发电机130以固定的速比提供额外的扭矩作为动力输入端,并经过第二太阳轮S2、第二行星轮至第二齿圈R2,在第二齿圈R2与发动机110的部分动力耦合后输出至差速器输入齿轮141。
发动机110的动力通过第一齿圈R1进入到第一轮系中,第一齿圈R1与第一行星架C1上的行星轮传动,其中一部分动力传递至第一太阳轮S1,另一部分动力通过第一行星架C1传递至第二齿圈R2与第二电动发电机130的动力耦合后传输至差速器输入齿轮141;第一电动发电机120转速闭环控制必须提供正扭矩以便抵消发动机110在第一太阳轮S1的动力分流负扭矩,在车辆运行在低车速区间,第一电动发电机120调速工作在负转向区,第一电动发电机120提供正扭矩处于发电状态;但随着车速上升,第一电动发电机120将逐渐调速进入正转向区,第一电动发电机120必须依然继续提供正扭矩以便抵消发电机110的负向分流扭矩,从而导致第一电动发电机120转入调速助力驱 动工况,而此时第二电动发电机130只有提供负向扭矩进入发电状态才能平衡车辆动力电池的电量,在此种运转模式下,将导致传动动力系统内的能量循环,传动效率将随着第一电动发电机120的正向转速上升而快速下降,由此混动模式1不适合高速工况高效驱动。
当第一电动发电机120调速至转速为零时,第一电动发电机120对发动机110的动力分流扭矩保持为正扭矩,但动力分流功率为零,该工作点为第一机械点,如果忽略系统机械损耗,发动机110的动力通过第一行星轮系PG1全部输出至第二齿圈R2与第二电动发电机130耦合后输出,在第一机械点时,达到了混动模式2(在下文中描述)的状态。
虽然混动模式1可以基本覆盖全速范围的驾驶驱动,但随着第一电动发电机120的动力分流调速进入正转高转速区域,第一电动发电机120也随着进入正向高转速区,动力传动系统100的动力分流效率将快速降低,驾驶油耗增加,所以混动模式1主要应用在从低速到中速区域的驱动。
混动模式2
在混动模式2中,第一制动器BK1和第三制动器BK3闭合,发动机110以及第二电动发电机130作为动力源作为输入端,第三制动器BK3将第一太阳轮S1锁止,使第一电动发电机120处于转速为零的停机状态,混动模式2相当于混动模式1在第一机械点时的特殊工作模式,第三制动器BK3将第一太阳轮S1主动锁止,发动机110与第二电动发电机130输出动力并列联动。
在第一机械点时,第一电动发电机120需要提供扭矩以保证发动机110的动力完全输出至第二行星轮系PG2,而发动机110的扭矩越大,第一电动发电机120在保持零速状态下的损耗越大,如果混动车辆长时间保持在混动模式2的工况下,例如在长时间山区爬坡工况下用车,需要第三制动器BK3将第一太阳轮S1锁止,以降低第一电动发电机120的损耗。
第三制动器BK3可以采用能够锁止第一电动发电机120的同步锁止器,既可以降低锁止时制动器损耗,也可以降低第三制动器BK3在第一电动发电机120正常运转时的拖滞损耗。
混动模式3
在混动模式3中,离合器CL1闭合将第一齿圈R1与第二行星架C2接合,发动机110、第一电动发电机120、第二电动发电机130的三个动力源通过第一行星轮系PG1和第二行星轮系PG2同时联动实现复合动力分流无极调速混动。
在混动模式3中,第一电动发电机120或第二电动发电机130都可以作为调速分流电机,第一电动发电机120适合在中低速区域做调速电机进行动力分流,第二电动发电机130适合在中高速区域进行调速分流,但第一电动发电机120和第二电动发电机130不能同时运行在调速分流模式。
在第一电动发电机120作为调速电机进行动力分流时,发动机110的第一部分动力通过第一齿圈R1、第一行星轮C1、第一行星架C1传递至第二齿圈R2,第二部分动力通过第一齿圈R1、第一行星轮C1传递至第一太阳轮S1。第二电动发电机130作为动力输入端,与第二太阳轮S2相连,第二电动发电机130第一部分动力通过第二太阳轮S2、第一行星轮C1、第一齿圈R1及第二行星轮C2、第一齿圈R2的合成传输路径、通过第二行星架C2及第二齿圈R2输出,第二电动发电机130第二部分动力通过第二太阳轮S2、第一行星轮C1、第一齿圈R1及第二行星轮C2、第一齿圈R2的 合成传输路径、通过第一行星架传递到第一太阳轮S1,与发动机110的第二部分动力在第一太阳轮S1的进行联动,第一电动发电机120带动第一太阳轮S1进行调速动力分流,提供反向扭矩以便抵消发动机110及第二电动发电机130共同在第一太阳轮S1的合成分流扭矩。第二电动发电机130的第一部分动力与发动机110的第一部分动力在第二齿圈R2耦合联动并输出。
在第二电动发电机130作为调速电机进行动力分流时,发动机110的第一部分动力通过第一齿圈R1、离合器CL1、第二行星架C2,再传递至第二齿圈R2输出,发动机110的第二部分动力通过第一齿圈R1、离合器CL1、第二行星架C2,发动机110正向分流扭矩传递至第二太阳轮S2;第一电动发电机120作为动力驱动,辅助发动机110提供助力,第一电动发电机120的第一部分动力通过第一太阳轮S1、第一行星轮C1、第一齿圈R1及第二行星轮C2、第二齿圈R2的合成传输路径,最终通过第二齿圈R2与发动机110的第一部分动力联动后输出,第一电动发电机120的第二部分动力通过第一太阳轮S1、第一行星轮C1、第一齿圈R1及第二行星轮C2、第二齿圈R2的合成传输路径,第一电动发电机120第二部分反向分流扭矩传递至第二太阳轮S2,与发动机110的第二部分正向分流扭矩联动,当第一电动发电机120提供正向驱动助力,将抵消发动机110在第二太阳轮S2的部分分流扭矩,有助于提升传动系统效率;因此车辆运行在中高速区,第二电动发电机130将被主要用来作为动力分流的调速电机使用。
在混动模式3中,第一电动发电机120作为调速电机且第一电动发电机120的分流功率为零时,该工作点为第一机械点,第一机械点的第一电动发电机120的电机轴的速度为零,第二电动发电机130将与发动机110进行并联联动后输出至第二行星轮系PG2的第二齿圈R2。
在混动模式3中,第二电动发电机130作为调速电机且第二电动发电机130的分流功率为零时,该工作点为第二机械点,第二机械点的第二电动发电机130的电机轴的速度为零,第一电动发电机120与发动机110的动力并联联动输出到第二行星轮系PG2的第二齿圈R2。
混动模式4
在混动模式4中,离合器CL1将第一齿圈R1与第二行星架C2结合,发动机110和第一电动发电机120工作,第二电动发电机130不再进行发电,第二制动器BK2将第二太阳轮S2制动。
混动模式4适用于车辆中高速稳态驾驶状态,混动模式4相当于在混动模式3的第二机械点,将第二电动发电机130的电机轴锁止,当第二电动发电机130调速至零速时,实现混动模式3下第二机械点的控制,第二制动器BK2可以闭合实现发动机110高效直接驱动或发动机110与第一电动发电机120动力并联联动,第二电动发电机130处于停机状态不产生额外损耗。
其中,发动机110的全部动力通过第一齿圈R1、离合器CL1、第二行星架C2、第二行星轮传递至第二齿圈R2;第一电动发电机120的动力通过第一太阳轮S1、第一行星轮C1、第一齿圈R1及第二行星轮C2、第一齿圈R2的合成传输路径,传递至第二齿圈R2,发动机110与第一电动发电机120的动力最终在第二齿圈R2并联耦合后输出。
下面简单描述根据本发明的动力传动系统100在各个模式下的切换。
电动模式1向电动模式2切换时,可以直接将离合器CL1接合。
电动模式2向电动模式1切换时,第一电动发电机120进入零扭矩控制状态,第二电动发电机130提供驱动,打开离合器CL1使动力传动系统100进入电动模式1。
电动模式1向混动模式1切换时,第一电动发电机120作为启动电机转速闭环控制输出扭矩并快速启动发动机110,第二电动发电机130提供驱动,发动机110启动后点火输出扭矩,第一电动发电机120作为调速电机进行动力分流。
混动模式1向电动模式1切换时,发动机110断油至停机,第一电动发电机120进入零扭矩控制模式,保持第一制动器BK1闭合,第二电动发电机130继续提供驱动。
电动模式2向混动模式3切换时,第一制动器BK1打开,离合器CL1保持接合,第二电动发电机130进入调速模式,启动发动机110,第二电动发电机130作为调速电机动力分流,第一电动发电机120继续驱动控制。
混动模式3向电动模式2切换时,发动机110断油,第一电动发电机120提供纯电驱动,第二电动发电机130将发动机110调速至零速,第一制动器BK1闭合,第一电动发电机120与第二电动发电机130共同提供纯电驱动。
混动模式1向混动模式2切换时,第一电动发电机120调速至零速,发动机110和第二电动发电机130继续提供动力,并进行联动,或者发动机110单独驱动,如果系统没有安装第三制动器BK3,第一电动发电机120保持零速控制,系统如果安装了第三制动器BK3,那么闭合第三制动器BK3,第一电动发电机120停机。
混动模式2向混动模式1切换时,如果安装第三制动器BK3,打开第三制动器BK3,第一电动发电机120进入调速模式进行调速分流;如果没有安装第三制动器BK3,第一电动发电机120直接进行调速分流。
混动模式3向混动模式4切换,第二电动发电机130调速至零速,发动机110与第一电动发电机120继续提供动力,发动机110与第一电动发电机120并联混动,或者发动机110单独驱动,如果动力传动系统100没有安装第二制动器BK2,第二电动发电机130保持零速控制;如果系统安装了第二制动器BK2,闭合第二制动器BK2,第二电机停机。
混动模式4向混动模式3切换,如果安装有第二制动器BK2,打开第二制动器BK2,第二电动发电机130进入调速模式进行调速分流,如果没有安装第二制动器BK2,第二电动发电机130直接进入到调速模式进行调速分流。
混动模式1向混动模式3切换,第一电动发电机120继续保持调速模式对发动机110分流,第二电动发电机130进入零扭矩控制模式,打开第一制动器BK1,第二电动发电机130调速将第一齿圈R1与第二行星架C2的速度保持一致,使第一齿圈R1与第二行星架C2同步,第二电机进入零扭矩控制模式,离合器CL1闭合,第一电动发电机120或继续保持调速动力分流,第二电动发电机130提供驱动扭矩;或者第二电动发电机130进入调速分流模式,第一电动发电机120提供驱动扭矩。
混动模式3向混动模式1切换,在第二机械点,第一电动发电机120进入调速分流模式,第二电动发电机130进入零扭矩控制模式,离合器CL1断开,第二电动发电机130快速将第二行星架 C2调速至零速,闭合第一制动器BK1,第一电动发电机120作为调速电机继续动力分流,第二电动发电机130进入驱动模式提供扭矩。
根据本发明的动力传动系统100具有电动模式1和电动模式2,电动模式1和电动模式2可以满足车辆的全速范围、不同载荷的需求,可适用于强混HEV、插电混动PHEV以及插电增程REEV汽车动力总成的纯电动驱动应用要求。在电动模式1和电动模式2的任何车速下均可以平顺切换至任何一个混动模式。
进一步地,根据本发明的动力传动系统100还具有混动模式1、混动模式2、混动模式3和混动模式4,以覆盖全车速的动力传动,实现动力传动系统100的高效运行。
特别是混动模式1和混动模式3可以将发动机110的转速维持在最优区间,将第一电动发电机120或第二电动发电机130作为调速电机进行动力分流发电,保证发动机110处于高效的状态,有助于降低整车的能耗,提高动力传动系统100的效率。
另外根据本申请的动力传动系统100,通过设置第二制动器BK2,在混动模式4下保证整体效率的最高输出,同时减少第二电动发电机130保持在零速控制状态下的损耗,第二制动器BK2将第二太阳轮S2锁止,有助于改善车辆中高速稳态运行的发动机传动效率。
同样地,通过设置第三制动器BK3,在混动模式2下保证整体效率的最高输出,同时减少第一电动发电机120保持在零速控制状态下的损耗,第三制动器BK3将第一太阳轮S1锁止,有助于改善车辆中低速中高负载稳态运行的发动机传动效率。
下面根据具体的实施例描述根据本发明的动力传动系统100的布置结构。
如图1所示,发动机110、第一电动发电机120、第二电动发电机130同轴布置,发动机110与第一电动发电机120设置在第一行星轮系PG1的同一侧,第二电动发电机130设置在第一行星轮系PG1的另一侧,第一电动发电机120的第一电机轴构造为空心轴且与第一太阳轮S1相连,发动机110的发动机轴穿过第一电机轴与第一齿圈R1相连,第二电动发电机130的第二电机轴也构造为空心轴且与第二太阳轮S2相连,发动机轴穿过第二电机轴,离合器CL1设置于发动机轴的末端,第二行星架C2的至少部分穿过第二电机轴,在第二电机的外部与发动机轴通过离合器CL1可选择地相连。第一制动器BK1设置于第二行星架C2的另一端,第二制动器BK2设置于第二太阳轮S2与第二电机轴之间,第三制动器BK3设置于第一电机轴与第一太阳轮S1之间,第一行星架C1或第二齿圈R2与差速器输入齿轮141之间设置有中间传动齿轮。
如图2所示,发动机110、第一电动发电机120、第二电动发电机130同轴布置,发动机110与第一电动发电机120设置在第一行星轮系PG1的同一侧,第二电动发电机130设置在第一行星轮系PG1的另一侧,第一电动发电机120的第一电机轴构造为空心轴且与第一太阳轮S1相连,发动机110的发动机轴穿过第一电机轴与第一齿圈R1相连,第一齿圈R1上设置有与第二行星架C2可选择相连的离合器CL1,离合器CL1设置于第一电动发电机120与第二电动发电机130之间,第一制动器BK1设置于第二行星架C2与第二电动发电机130之间,第二制动器BK2设置于第二电机轴上,第三制动器BK3设置于第一电机轴。
如图3所示,发动机110、第一电动发电机120、第二电动发电机130同轴布置,发动机110与第二电动发电机130设置在第二行星轮系PG2的同一侧,第一电动发电机120设置在第二行星轮系PG2的另一侧,第二电动发电机130的第二电机轴构造为空心轴并与第二太阳轮S2相连,发动机轴穿过第二电机轴与第一行星齿圈R1相连,第一齿圈R1上设置有与第二行星架C2可选择相连的离合器CL1,离合器CL1设置于第一电动发电机120与第二电动发电机130之间,第一制动器BK1设置于第二行星架C2,第二制动器BK2设置于第二电机轴的外周,第一制动器BK1和第二制动器BK2可以利用同一个制动结构,第三制动器BK3设置于第一电动发电机120电机轴的外周。
如图4所示,发动机110、第一电动发电机120、第二电动发电机130同轴布置,第一行星轮系PG1设置于发动机110与第一电动发电机120之间,第二行星轮系PG2设置于第一电动发电机120与第二电动发电机130之间,第一电动发电机120的第一电机轴构造为空心轴,第一电机轴的一端与第一太阳轮S1相连,第一电机轴的另一端设置有第三制动器BK3,第一行星架C1的至少部分穿过第一电机轴与第二齿圈R2相连,第二制动器BK2设置于第二电动发电机130的第二电机轴上,第一制动器BK1设置于第二行星架C2上且靠近第二电动发电机130的一端。
如图5所示,发动机110与第一电动发电机120同轴布置,第二电动发电机130偏置布置,第一行星轮系PG1设置于发动机110与第一电动发电机120之间,第二行星轮系PG2与第二电动发电机130同轴布置,第一行星架C1通过一级或二级齿轮输出与第二齿圈R2连接,第一制动器BK1设置于第二行星轮系PG2的一侧,第二电动发电机130设置于第二行星轮系PG2的另一侧,第二制动器BK2设置于第二电机轴,第三制动器BK3设置于第一电机轴。采用这种布置形式可以简化第一行星轮系PG1和第二行星轮系PG2的结构。
如图6a-6c所示,第一电动发电机120、第二电动发电机130均采用偏置的布置方案,发动机110、第一行星轮系PG1和第二行星轮系PG2同轴布置,第一电动发电机120、第二电动发电机130与发动机110的电机轴平行且在第一行星轮系PG1的径向上依次排布。第一太阳轮S1可以构造为双联齿轮,发动机轴穿过第一太阳轮S1并与第一齿圈R1相连,发动机轴的另一端穿过第二行星轮系PG2,离合器CL1设置于发动机轴的另一端;第一太阳轮S1与第一电动发电机120的电机轴通过一级或二级齿轮相连,第二太阳轮S2可以构造为双联齿轮,并与第二电机轴通过一级或二级齿轮相连,第二行星架C2的至少部分穿设第二太阳轮S2,且在第二行星架C2的端部与电机轴通过离合器CL1可选择地相连,第一制动器BK1设置于第二齿圈R2的另一端,第二制动器BK2设置于第二太阳轮S2,第三制动器BK3设置于第一太阳轮S1。
如图7所示,第一电动发电机120与发动机110同轴布置,第二电动发电机130偏置,第二电动发电机130的第二电机轴与第二太阳轮S2通过传动齿轮联动,第一电动发电机120设置于发动机110与第一行星轮系PG1之间,第一电动发电机120的电机轴构造为空心轴,发动机轴分别穿设第一太阳轮S1和第二太阳轮S2,在发动机轴的端部设置有离合器CL1,第二太阳轮S2构造为双联齿轮,第二行星架C2的至少部分穿设第二太阳轮S2,且第二行星架C2的一端与发动机轴可选择地连接,第二行星架C2的另一端设置有第一制动器BK1,第二制动器BK2设置于第二太阳轮S2,第三 制动器BK3设置于第一太阳轮S1。
如图8所示,第一电动发电机120与发动机110同轴布置,第二电动发电机130偏置,第二电动发电机130的第二电机轴与第二太阳轮S2通过传动齿轮联动,第一电动发电机120设置于发动机110与第一行星轮系PG1之间,第一电动发电机120的电机轴构造为空心轴,离合器CL1设置于第一行星轮系PG1与第二行星轮系PG2之间,发动机轴与第一齿圈R1相连,第一齿圈R1与第二行星架C2之间设置有离合器CL1,第一制动器BK1设置于第二行星架C2远离第一行星轮系PG1的一端,第二制动器BK2设置于第二太阳轮S2,第一制动器BK1和第二制动器BK2可以共用同一个制动结构,第三制动器BK3设置于第一电机轴的外周。
如图9所示,第一电动发电机120与发动机110同轴布置,第二电动发电机130偏置,第二电动发电机130的第二电机轴与第二太阳轮S2通过传动齿轮联动,第一行星轮系PG1和第二行星轮系PG2设置于发动机110与第一电动发电机120之间,第一行星轮系PG1靠近第一电动发电机120,第二行星轮系PG2靠近发动机110设置,第二太阳轮S2可以构造为双联齿轮,发动机轴穿过第二太阳轮S2与第一齿圈R1相连,第一齿圈R1与第二行星架C2的一端之间设置有离合器CL1,第一制动器BK1设置于第二行星架C2的另一端,第二制动器BK2设置于第二太阳轮S2的外周,第一制动器BK1和第二制动器BK2可以利用同一个制动结构,第三制动器BK3设置于第一电机轴的外周。
如图10所示,发动机110、第一行星轮系PG1、第一电动发电机120、第二行星轮系PG2在同一轴线上一侧布置,第二电动发电机130偏置布置,第二电动发电机130的电机轴与第二太阳轮S2之间通过齿轮连接,第一电动发电机120的第一电机轴构造为空心轴,第二行星架C2的至少部分穿设电机轴,离合器CL1设置于发动机轴与第二行星架C2之间,且位于第一行星轮系PG1内,第一制动器BK1设置于第二行星架C2的另一端,第二制动器BK2设置于第二电动发电机130电机轴,第三制动器BK3设置于第一电机轴靠近第二行星轮系PG2的一侧。
如图11所示,发动机110、第一电动发电机120同轴布置,第二电动发电机130偏置布置,第一行星轮系PG1设置于发动机110与第一电动发电机120之间且与发动机110同轴,第二行星轮系PG2与第二电动发电机130同轴布置。第一行星架C1的外周固定有与第二齿圈R2啮合的第一齿轮,第一行星架C1的外周还固定有第二齿轮,第一齿轮与第二齿圈R2啮合,第二齿轮与输出轴联动,发动机110与第一齿圈R1相连,第二行星架C2的一端的外周设置有第三齿轮,第三齿轮与第二行星架C2之间设置有离合器CL1,第三齿轮与第一齿圈R1啮合,第一制动器BK1设置于第二行星架C2一端的外侧且可选择地制动第二行星架C2,第二制动器BK2设置于第二电动发电机130的电机轴上,第三制动器BK3设置于第一电动发电机120的电机轴上。
下面简单描述根据本发明的车辆。
根据本发明的车辆上设置有上述实施例的动力传动系统100,由于根据本发明的车辆上设置有上述实施例的动力传动系统100,因此该车辆具有多种不同的动力模式,挡位切换稳定,传动效率高,车辆的重量轻成本低、可靠性好、适用性好。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,“第一特征”、“第二特征”可以包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上。在本发明的描述中,第一特征在第二特征“之上”或“之下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。在本发明的描述中,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (11)

  1. 一种用于车辆的动力传动系统,其特征在于,包括:
    第一行星轮系,所述第一行星轮系包括第一太阳轮、第一行星架和第一齿圈;
    第二行星轮系,所述第二行星轮系包括第二太阳轮、第二行星架和第二齿圈,所述第一行星架与所述第二齿圈联动;其中
    所述第一齿圈和所述第一太阳轮中的至少一个以及第二太阳轮和所述第二行星架中的一个构造为动力输入端,所述第二太阳轮和所述第二行星架中的另一个或第二齿圈构造为动力输出端。
  2. 根据权利要求1所述的用于车辆的动力传动系统,其特征在于,还包括:第一动力源、第二动力源和第三动力源,所述第一动力源与所述第一齿圈相连,所述第二动力源与所述第一太阳轮相连,所述第三动力源与所述第二太阳轮相连。
  3. 根据权利要求2所述的用于车辆的动力传动系统,其特征在于,所述第一动力源为发动机,所述第二动力源为第一电动发电机,所述第三动力源为第二电动发电机。
  4. 根据权利要求3所述的用于车辆的动力传动系统,其特征在于,还包括:输出轴,所述输出轴与所述第二齿圈联动。
  5. 根据权利要求3所述的用于车辆的动力传动系统,其特征在于,所述发动机的输入轴、所述第一电动发电机的输入轴和所述第二电动发电机的输入轴中的至少两个同轴布置。
  6. 根据权利要求3所述的用于车辆的动力传动系统,其特征在于,所述发动机的输入轴与所述第二齿圈同轴布置,所述第一电动发电机的输入轴、所述第二电动发电机的输入轴和所述第二齿圈的轴线平行设置且沿所述第二齿圈的径向依次排布。
  7. 根据权利要求2所述的用于车辆的动力传动系统,其特征在于,还包括:使所述第一齿圈与所述第二行星架可选择联动的离合器。
  8. 根据权利要求7所述的用于车辆的动力传动系统,其特征在于,还包括:第一制动器,所述第一制动器可选择地将所述第一齿圈或所述第二行星架锁止。
  9. 根据权利要求3所述的用于车辆的动力传动系统,其特征在于,还包括:第二制动器,所述第二制动器可选择地将所述第二太阳轮锁止。
  10. 根据权利要求9所述的用于车辆的动力传动系统,其特征在于,还包括:第三制动器,所述第三制动器可选择地将所述第一太阳轮锁止。
  11. 一种车辆,其特征在于,包括权利要求1-10中任意一项所述的动力传动系统。
PCT/CN2020/102110 2019-07-24 2020-07-15 用于车辆的动力传动系统及车辆 WO2021013012A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910672384.4 2019-07-24
CN201921174082.6U CN210212022U (zh) 2019-07-24 2019-07-24 用于车辆的动力传动系统及车辆
CN201921174082.6 2019-07-24
CN201910672384.4A CN111605394A (zh) 2019-07-24 2019-07-24 用于车辆的动力传动系统及车辆

Publications (1)

Publication Number Publication Date
WO2021013012A1 true WO2021013012A1 (zh) 2021-01-28

Family

ID=74193311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102110 WO2021013012A1 (zh) 2019-07-24 2020-07-15 用于车辆的动力传动系统及车辆

Country Status (1)

Country Link
WO (1) WO2021013012A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103889753A (zh) * 2011-10-27 2014-06-25 丰田自动车株式会社 混合动力车辆用驱动装置
CN104786818A (zh) * 2015-04-30 2015-07-22 重庆蓝黛动力传动机械股份有限公司 混合动力汽车混联式双行星轮系动力耦合装置及方法
CN206551858U (zh) * 2017-03-08 2017-10-13 重庆青山工业有限责任公司 一种插电式混合动力汽车传动系统
CN206551859U (zh) * 2017-03-08 2017-10-13 重庆青山工业有限责任公司 一种插电式混合动力汽车动力总成
DE102017002509A1 (de) * 2017-03-15 2018-09-20 Daimler Ag Mehrstufengetriebe mit zumindest vier Vorwärtsgetriebegängen
CN109649151A (zh) * 2019-01-15 2019-04-19 无锡商业职业技术学院 一种插电式双行星排混合动力车辆的传动系统
CN210212022U (zh) * 2019-07-24 2020-03-31 长城汽车股份有限公司 用于车辆的动力传动系统及车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103889753A (zh) * 2011-10-27 2014-06-25 丰田自动车株式会社 混合动力车辆用驱动装置
CN104786818A (zh) * 2015-04-30 2015-07-22 重庆蓝黛动力传动机械股份有限公司 混合动力汽车混联式双行星轮系动力耦合装置及方法
CN206551858U (zh) * 2017-03-08 2017-10-13 重庆青山工业有限责任公司 一种插电式混合动力汽车传动系统
CN206551859U (zh) * 2017-03-08 2017-10-13 重庆青山工业有限责任公司 一种插电式混合动力汽车动力总成
DE102017002509A1 (de) * 2017-03-15 2018-09-20 Daimler Ag Mehrstufengetriebe mit zumindest vier Vorwärtsgetriebegängen
CN109649151A (zh) * 2019-01-15 2019-04-19 无锡商业职业技术学院 一种插电式双行星排混合动力车辆的传动系统
CN210212022U (zh) * 2019-07-24 2020-03-31 长城汽车股份有限公司 用于车辆的动力传动系统及车辆

Similar Documents

Publication Publication Date Title
KR101700676B1 (ko) 하이브리드 전기 차량의 동력 시스템
CN107599823B (zh) 差动多模混合动力车辆驱动系统
CN108116218B (zh) 基于行星轮系的多档位混联驱动系统
CN108621776B (zh) 混合动力车辆用驱动装置
CN210174607U (zh) 混合动力汽车及其传动系统
CN210212022U (zh) 用于车辆的动力传动系统及车辆
EP3640068A1 (en) Series-parallel hybrid power system and vehicle comprising same
JP6263889B2 (ja) ハイブリッド車両用駆動装置
CN111605394A (zh) 用于车辆的动力传动系统及车辆
CN111319449A (zh) 混合动力耦合系统及车辆
KR20080027638A (ko) 하이브리드 전기 자동차용 무단변속 동력전달장치
CN210174606U (zh) 混合动力汽车及其传动系统
WO2023071093A1 (zh) 混合动力系统和车辆
CN112659881A (zh) 一种双行星排混联双模传动系统
WO2024045403A1 (zh) 变速箱、混合动力系统和汽车
WO2021013012A1 (zh) 用于车辆的动力传动系统及车辆
CN108274987B (zh) 双行星排动力耦合驱动系统
CN112277620B (zh) 用于车辆的动力传动系统及车辆
CN111692299B (zh) 一种两段式双电机混合动力自动变速器
CN108819698B (zh) 单电机混合动力汽车多模耦合动力传动系统
JP2015020725A (ja) ハイブリッド車両用駆動装置
CN113602076A (zh) 车辆的动力系统、动力系统的控制方法以及车辆
CN113602074A (zh) 动力驱动系统以及车辆
CN108859729B (zh) 一种单电机混合动力汽车多模耦合动力传动系统
CN113602075A (zh) 车辆的动力系统以及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844595

Country of ref document: EP

Kind code of ref document: A1