WO2021012838A1 - 矿化垃圾裂解油加氢裂化的方法及装置 - Google Patents
矿化垃圾裂解油加氢裂化的方法及装置 Download PDFInfo
- Publication number
- WO2021012838A1 WO2021012838A1 PCT/CN2020/096318 CN2020096318W WO2021012838A1 WO 2021012838 A1 WO2021012838 A1 WO 2021012838A1 CN 2020096318 W CN2020096318 W CN 2020096318W WO 2021012838 A1 WO2021012838 A1 WO 2021012838A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluidized bed
- gas
- heating furnace
- oil
- cold
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000000197 pyrolysis Methods 0.000 title claims abstract description 35
- 238000004517 catalytic hydrocracking Methods 0.000 title claims abstract description 32
- 150000001335 aliphatic alkanes Chemical class 0.000 claims abstract description 51
- 239000002028 Biomass Substances 0.000 claims abstract description 24
- 239000002243 precursor Substances 0.000 claims abstract description 22
- 239000000446 fuel Substances 0.000 claims abstract description 14
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims abstract description 13
- 238000012545 processing Methods 0.000 claims abstract description 8
- 239000003921 oil Substances 0.000 claims description 55
- 238000010438 heat treatment Methods 0.000 claims description 54
- 238000000926 separation method Methods 0.000 claims description 54
- 239000010813 municipal solid waste Substances 0.000 claims description 49
- 239000002699 waste material Substances 0.000 claims description 45
- 238000005984 hydrogenation reaction Methods 0.000 claims description 35
- 239000007787 solid Substances 0.000 claims description 33
- 230000008569 process Effects 0.000 claims description 19
- 239000000047 product Substances 0.000 claims description 16
- 238000011084 recovery Methods 0.000 claims description 15
- 238000010791 quenching Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 13
- 125000003118 aryl group Chemical group 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 238000000746 purification Methods 0.000 claims description 9
- 239000010724 circulating oil Substances 0.000 claims description 6
- 238000004821 distillation Methods 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 6
- 229920003023 plastic Polymers 0.000 claims description 6
- 239000005416 organic matter Substances 0.000 claims description 5
- 238000009434 installation Methods 0.000 claims description 3
- 238000005342 ion exchange Methods 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 230000000171 quenching effect Effects 0.000 claims description 3
- 239000012265 solid product Substances 0.000 claims description 3
- 239000002283 diesel fuel Substances 0.000 abstract description 13
- 239000012071 phase Substances 0.000 description 18
- 239000007789 gas Substances 0.000 description 16
- 238000005336 cracking Methods 0.000 description 15
- 230000008901 benefit Effects 0.000 description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- 239000001257 hydrogen Substances 0.000 description 12
- 239000003570 air Substances 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 9
- 238000012216 screening Methods 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- 238000009835 boiling Methods 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000010791 domestic waste Substances 0.000 description 7
- 238000004064 recycling Methods 0.000 description 7
- 239000007795 chemical reaction product Substances 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000005065 mining Methods 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 238000003763 carbonization Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000010819 recyclable waste Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000002910 solid waste Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- -1 aromatics Chemical class 0.000 description 1
- 230000033558 biomineral tissue development Effects 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000009264 composting Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 229920006238 degradable plastic Polymers 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000010811 mineral waste Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 235000021049 nutrient content Nutrition 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/42—Catalytic treatment
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/50—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1011—Biomass
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/30—Aromatics
Definitions
- the present disclosure belongs to the field of mineralized garbage recycling and utilization, and relates to a method and device for the combined treatment of recycling mineralized garbage by screening, pyrolysis and hydrocracking. Specifically, it relates to a method of integrating a crusher, a screw feeder, a fluidized bed pyrolyzer, a fluidized bed reactor and a fixed bed reactor for hydrogenation in series to achieve oil recovery, and a device for implementing the method.
- the total amount of municipal solid waste generated by the top 10 cities is 56.512 million tons, which accounts for 30% of the total amount generated by all information release cities.
- Landfill disposal is still the most important method of municipal solid waste disposal in my country, supplemented by other disposal methods such as incineration and composting, which has the advantages of saving time, money, and labor.
- incineration and composting which has the advantages of saving time, money, and labor.
- Mineralized garbage means that the landfill age is more than 8-10 years (more than 10-15 years in the north), the surface settlement is less than 10mm/year, the organic matter content in the garbage is less than 10%, and the easily degradable substances are completely or nearly completely degraded. In addition, the garbage itself hardly produces leachate, landfill gas and peculiar smell, and the landfill reaches a stable state, that is, harmless. The garbage at this time is called mineralized garbage.
- Mineralized waste has the advantages of high porosity, large surface area, high nutrient content, and rich microorganisms. The mining and resource utilization of mineralized waste in landfill sites can not only recover recyclable components, but also free up landfill space to realize dynamic circulation of landfill capacity. According to the scale of landfills in my country, the storage of mineralized waste is huge. Therefore, the mining of mineralized waste is of great significance for solving the way out of waste and reducing the land resources occupied by landfill waste.
- the separation of mineralized garbage mainly adopts traditional separation technologies in the fields of agriculture and mining, and uses wind, vibrating screening technology and drum screening technology to purify dominant minerals in minerals. Due to the complex composition and high moisture content of domestic garbage, the recyclable components in the garbage cannot achieve good separation effect, and some foreign equipment is not adaptable to the garbage in our country.
- Chinese patent application CNl01376834 discloses a fluidized bed combined process.
- the US patent application US6620311 introduces a combined process of fluidized bed hydrogenation, separation, hydrodesulfurization, and catalytic cracking to process petroleum fractions.
- the US patent application US6447671 introduces a fluidized bed hydrogenation-catalyst solid separation-fixed bed hydrogenation combined process.
- This application provides a novel, high-efficiency and environmentally-friendly method and device for hydrocracking of mineralized garbage pyrolysis oil, which solves the problem of the huge storage of mineralized garbage in my country at present, and provides advantages for the treatment of mineralized garbage and reduce the impact of mineralized garbage incineration.
- Environmental pollution provides a new way of thinking. The resource utilization of rural mineralized waste can not only recover recyclable components, but also free up space for planting crops, forming a good dynamic cycle.
- this application provides a method for hydrocracking mineralized garbage cracking oil, which includes the following steps:
- step (b) Hydrogenating the aromatic and alkane precursor biomass oil obtained in step (a), and separating the obtained hydrocracking product to obtain aromatics and alkanes;
- step (c) Optimize the purification and recovery of aromatics and alkanes obtained in step (b), and further process them to produce naphtha, jet fuel, light diesel and heavy diesel.
- the mineralized waste is a solid product that accounts for 9-15% by weight of organic matter content, an ion exchange capacity of 50-150 mEq/100g dry waste, and a pH of 6- 8's stable mineralized garbage.
- step (a) the biomass particles recovered by the crusher of the mineralized waste enter the fluidized bed pyrolyzer through the screw feeder, and the light phase is removed from the fluidized bed after pyrolysis. Discharge from the top of the pyrolyzer, and then pass through the gas-solid cyclone for gas-solid separation. The gas is discharged from the overflow of the gas-solid cyclone, and the pyrolysis residual carbon is heated by a heating furnace for heating.
- step (a) can recover 45% of compostable materials with a purity of 97% or more, 20% of compostable materials with a content of 70% to 80% by weight, and 25%.
- the purity of the plastic is more than 80%.
- the gas discharged from the overflow of the gas-solid cyclone is cooled and liquefied by the quench tower to generate biomass oil as a precursor of alkanes and aromatic hydrocarbons.
- step (b) the hydrogenation is carried out in a series combination of a boiling bed reactor and a fixed bed reactor.
- step (b) the obtained hydrocracked product is separated into alkanes and aromatics through high- and low-resolution separation.
- step (c) the alkanes and aromatics obtained in step (b) are optimized for high- and low-content purification and recovery, and then passed through the heating furnace to the distillation tower for further processing to generate naphtha Oil, jet fuel, light diesel and heavy diesel.
- the present disclosure provides a device for hydrocracking mineralized garbage cracking oil, which includes:
- the crusher and the fluidized bed pyrolyzer connected to the crusher are used to perform step (a): crushing and pyrolyzing the mineralized waste to obtain aromatic and alkane precursor biomass oil;
- a fluidized bed pyrolyzer connected to a fluidized bed reactor, and a two-stage fixed bed reactor connected to the fluidized bed reactor, used to carry out step (b): the aromatic hydrocarbon and alkane precursor obtained in step (a) Hydrogenation of biomass oil, the obtained hydrocracking products are separated to obtain aromatics and alkanes; and
- step (c) compare the results obtained in step (b) Aromatics and alkanes are refined and recovered and are further processed to produce naphtha, jet fuel, light diesel and heavy diesel.
- the device further includes: a material tank, the upper part of which is connected to a crusher, and the lower part is connected to the fluidized bed pyrolyzer through a screw feeder for collecting crushed mineralized waste, wherein,
- the installation angle of the screw feeder is set to 4.3° ⁇ 6.0°, and the ratio of the rotation speed to the limit rotation speed is 0.4 ⁇ 0.6;
- the gas-solid cyclone connected to the fluidized bed pyrolyzer is used for gas-solid separation of the light phase after pyrolysis in the fluidized bed pyrolyzer;
- the quench tower connected to the top of the gas-solid cyclone is used for
- the gas discharged from the overflow port of the gas-solid cyclone is cooled and liquefied to generate biomass oil as the precursors of alkanes and aromatic hydrocarbons; and a separation tank connected to the bottom of the gas-solid cyclone to collect residual carbon from pyrolysis;
- the heating furnace connected to the bottom of the separation tank is used to heat the pyrolysis residual carbon and the non-condensable gas sent by the compressor connected to it to supply heat to the fluidized bed pyrolyzer connected to it.
- the quench tower The upper part is connected with the heating furnace through a compressor, and the alkane and aromatic precursor biomass oil produced by the quenching tower cooling and liquefaction is sent to the connected boiling bed reactor for hydrogenation reaction;
- the hot high score and heating furnace connected to the fluidized bed reactor, the hot high score and the heating furnace are connected to each other, the air cooler connected to the hot high score, the cold high score connected to the air cooler, the cold high score and the heating furnace connected Compressor, cold high-segment and cold high-segment connected to the heat exchanger connected to the cold low-segment, the hot high-segment, cold high-segment and cold low-segment are used for the hydrogenation of the fluidized bed reactor
- the cracked products are separated to obtain aromatics and alkanes; the heating furnace is used to heat the circulating oil of the fluidized bed reactor;
- the cold low separation and the cold high separation are connected to the two-stage fixed-bed reactor through the heating furnace;
- the device has simple structure, small floor space, low failure rate, low pressure loss, high separation efficiency, easy implementation, convenient operation, and suitable for long-term operation;
- Waste screening has high recyclable efficiency.
- the recycling of catalysts and excess hydrogen in the hydrogenation process improves the overall utilization rate of catalysts and hydrogen in the entire process, greatly reduces investment costs and energy consumption, and has obvious energy-saving and emission-reduction effects.
- the effect is obvious; it not only realizes the efficient recovery of the available components in the mineralization, but also achieves the recovery of oil products to meet the requirements of use, and fully realizes the comprehensive and efficient utilization of mineralized emissions.
- the present invention can not only pyrolyze non-degradable plastic products, but also has good thermal pyrolysis for plastics, rubber, chemical fiber and biomass.
- the device of the present invention has no secondary pollution, stable operation and easy operation. , Comprehensive economic benefits are good.
- Fig. 1 is a process flow diagram of the hydrocracking of mineralized garbage cracking oil according to a preferred embodiment of the present invention.
- the inventor of the present application discovered that the existing mineralized waste separation mainly uses traditional separation technologies in the fields of agriculture and mining.
- the traditional separation technologies use wind, vibrating screening technology and drum screening. Separation technology purifies the dominant minerals in minerals.
- the recyclable components in the waste cannot achieve good separation effects.
- the garbage is not adaptable.
- the method of the present application passes the mining waste through a crusher, a fluidized bed, a cyclone separator, etc. to obtain aromatic and alkane precursor cracked oil; adopts a fluidized bed and a fixed bed series combination method to enhance hydrogenation
- the process realizes the hydrogenation of biomass oil, and obtains aromatics and alkanes through high and low fractions; at the same time, the rectification tower is used to separate the oil residue; finally, the high-quality separation tank and the low-separation tank are purified to recover high-quality optimization, and the rectification tower is appropriate Deep processing to produce naphtha, jet fuel, light diesel oil and heavy diesel oil, which can effectively improve the comprehensive utilization rate of garbage, and gradually replace the large amount of land resources occupied by garbage storage.
- the technical and economic benefits are obvious, and the environmental benefits are greatly improved. Social benefits.
- the device for the hydrocracking of mineralized garbage cracking residue of the present application can be widely used in the application of the hydrocracking of mineralized garbage cracking residue. It can effectively solve the continuous accumulation of mineralized garbage, and while ensuring considerable recovery economic benefits, It is of great strategic significance to gradually replace the large amount of land resources occupied by mineralized waste storage.
- the crackable components sieved from the crusher are passed through the fluidized bed pyrolyzer to generate cracked components.
- the cracked components are further purified and separated by the selected gas-solid cyclone at the top of the tower.
- the refractory residues are separated from the tower. Bottom discharge and recovery.
- the key is that the crackable components are sent to the fluidized bed pyrolyzer for cracking after preheating, and the serial combination of fluidized bed and fixed bed hydrogenation to achieve oil and ash separation is the core.
- the residual oil after preliminary purification by cyclone separation passes through a rectification tower to separate the oil phase. After the reaction in the fluidized bed reactor, it enters the fixed bed reactor.
- the reaction After the reaction is complete, it enters the thermal high separation tank to separate the oil and residue. After the hydrogenation reaction, the excess hydrogen is recycled, which improves the comprehensive utilization rate of the catalyst and hydrogen in the entire process. , Which greatly reduces investment costs and energy consumption.
- the oil at the top of the hot high separation tank will continue to undergo advanced treatment through the cold high separation and cold low separation, while the bottom slag will be cyclically hydrogenated or recycled depending on the quality and selected according to the feed quality of the cracking furnace to improve the integration of mineralized waste Utilization rate.
- the hydrogenation process adopts a fluidized bed reactor and a fixed-bed reactor series combination method to strengthen hydrogenation, and the fluidized bed effluent catalyst is purified and recovered by the micro-cyclone drying reduction method;
- the cyclone separator is small in size, light in weight and fast in processing speed. It is a novel, efficient, energy-saving, and economical separation equipment suitable for long-term operation. It can further purify the cracked components at the top of the fluidized bed pyrolyzer.
- the experimental device applicable to the present invention is not particularly limited, and its specific structure can be determined according to the overall requirements of the process.
- the cyclone separator can be a gas-solid cyclone, a gravity settling tank, etc., and a gas-solid cyclone is preferred.
- Flow device; the number of the microcyclone separation core tube can be single or a combination of multiple.
- the mineralized garbage pyrolysis oil hydrocracking process and device of the present invention can also be used in the recycling and utilization of other materials containing recyclable components such as compostable materials, plastics, rubber and chemical fibers.
- a method for hydrocracking mineralized garbage cracking oil comprising:
- the method includes:
- the reaction After the reaction is complete, it enters the hot high separation tank to separate the oil and slag components, and the excess hydrogen is recycled.
- the oil on the top of the hot high separation tank will continue to undergo advanced treatment with cold high separation and cold low separation, while the bottom slag depends on the quality Cycling hydrogenation or recovery is selected according to the feed quality of the cracking furnace.
- the mineralized waste is a solid product that accounts for 9-15% by weight of the organic matter content, an ion exchange capacity of 50-150 mEq/100g dry waste, and a stable mineralized waste with a pH of 6-8.
- step (a) the biomass particles recovered by the mineralized waste through the crusher enter the fluidized bed pyrolyzer through the screw feeder, and the light phase can be transformed from the fluidized bed under the action of the blower after pyrolysis.
- the top of the bed pyrolyzer is discharged, and then the gas-solid separation is carried out through the gas-solid cyclone.
- the gas is discharged from the overflow of the gas-solid cyclone, and the pyrolysis residual carbon is heated by the heating furnace for heating.
- garbage screening can recover about 45% of compostable materials with a purity of 97% or more, 20% of compostable materials with a content of 70% to 80% by weight, And 25% plastic with a purity of over 80%.
- a gas-solid cyclone is used for preliminary separation and purification to ensure the subsequent hydrogenation reaction effect.
- step (a) the mixed gas discharged from the overflow of the gas-solid cyclone is cooled and liquefied by the quench tower to generate alkane and aromatic hydrocarbon precursors.
- step (b) the hydrogenation is carried out in a series combination of a fluidized bed reactor and a fixed bed reactor.
- step (b) the hydrocracking products that have passed through the fluidized bed reactor and the fixed bed reactor are separated into alkanes and aromatics through high- and low-resolution separation.
- step (c) alkanes and aromatics are optimized for high and low fractions, and then further processed through the heating furnace to the rectification tower to produce naphtha, jet fuel, light diesel oil and heavy diesel oil.
- a device for hydrocracking of mineralized garbage cracking oil which includes:
- the crusher and the fluidized bed pyrolyzer connected to the crusher are used to perform the above step (a);
- a fluidized bed pyrolyzer connected to a fluidized bed reactor, and a two-stage fixed bed reactor connected to the fluidized bed reactor, used to perform the above step (b);
- the cold high fraction connected to the two-stage fixed bed reactor, the cold low fraction connected to the cold high fraction, and the rectification tower connected to the cold low fraction are used to carry out the above step (c).
- the device includes:
- a crusher used to recover the usable components of mineralized garbage. After the crushed mineralized garbage is collected into the material tank, it is sent to the fluidized bed pyrolyzer for carbonization of organic matter by a screw feeder, and the collection is fixed after pyrolysis The char and ash fall into the separation tank.
- the separated pyrolysis char and the non-condensable gas from the compressor are sent to the heating furnace for combustion, and the combustion heat supplies heat to the fluidized bed pyrolyzer; the light phase components after pyrolysis It is sent to the gas-solid cyclone, and the obtained gas phase passes through the quench tower to obtain the precursors of alkanes and aromatic hydrocarbons, which enter the boiling bed reactor together with the dilution oil for hydrogenation reaction, and the three phases after the boiling bed reaction are separated by the three-phase separator
- the reaction product enters the thermal high separation, air cooler, cold high separation, and cold low separation to separate partially hydrogenated aromatics and alkanes.
- the circulating oil and the circulating hydrogen from the compressor are sent to the heating furnace for heating.
- part of the hydrogenated aromatics and alkanes enter the two-stage fixed-bed reactor in turn after heat exchange through the heat exchanger for hydrocracking reaction.
- a heating furnace is installed between the two-stage fixed-bed reactor, and the reaction product After the heat exchanger to the air cooler, it enters the cold high fraction, cold low fraction, heating furnace, and then enters the distillation tower to separate naphtha, jet fuel, light diesel oil and heavy diesel oil.
- the circulating hydrogen from the cold high fraction passes through the heating furnace After heating, it is recycled to the fixed bed reactor for recycling.
- the fluidized bed pyrolyzer connected to the screw feeder is used to fluidize the recyclable waste components at high temperature through a rapid high temperature method, and heat the solid residue in the product through a gas-solid cyclone The furnace burns to supply heat to the fluidized bed.
- the quench tower connected to the cyclone cools the gas phase overflowed from the cyclone, and is heated by a pump and a heat exchanger and sent to the boiling bed reactor.
- the non-condensable gas at the upper outlet of the quench tower is passed through the compressor Introduce into the bottom inlet of the fluidized bed.
- the fluidized bed reactor connected with the heat exchanger is used to realize the hydrocracking of biomass oil, and the overflow product of the three-phase separator in the fluidized bed is formed by the heat high fraction, the cold high fraction, and the cold low fraction.
- a heating furnace connected to the thermal high fraction heats the circulating oil in the boiling bed to optimize the hydrogenation process.
- the oil phase and gas phase generated by the fixed bed reactor connected to the cold and low fraction are subjected to high fraction and low fraction deepening treatments and heated and then rectified to produce naphtha, jet fuel, light diesel oil and heavy diesel oil. .
- the installation angle of the screw feeder is set to 4.3° to 6.0°, and the ratio of the rotation speed to the limit rotation speed is 0.4 to 0.6.
- hot high-pressure separation tanks and rectification towers are selected for hydrogenated oil products to realize the separation of light phase and heavy oil residue.
- Fig. 1 is a process flow diagram of the hydrocracking of mineralized garbage cracking oil according to a preferred embodiment of the present invention. As shown in Figure 1, the mineralized waste is crushed by the crusher 1 and collected into the material tank 2 and then sent by the screw feeder 3 to the fluidized bed pyrolyzer 4 for organic carbonization.
- the fixed carbon collected after pyrolysis is combined with The ash falls into the separation tank 6, the separated pyrolysis charcoal and the non-condensable gas from the compressor 9 are sent to the heating furnace 7 for combustion, and the combustion heat supplies heat to the fluidized bed pyrolyzer 4; light phase after pyrolysis
- the components are sent to the gas-solid cyclone 5, and the obtained gas phase is passed through the quench tower 8 to obtain alkane and aromatic precursors, which enter the boiling bed reactor 10 together with the dilution oil for hydrogenation reaction.
- the phase separator is separated, the reaction products enter the hot high fraction 11, the air cooler 13, the cold high fraction 14, and the cold low fraction 15 to separate the partially hydrogenated aromatics and alkanes.
- the circulating oil is sent to the compressor 16 after the hot high fraction 11
- the circulating hydrogen is heated in the heating furnace 12 and returned to the fluidized bed reactor 10; after the heat exchange of the partially hydrogenated aromatics and alkanes, the heat exchange of the heat exchanger 20 enters the two-stage fixed-bed reactors 17, 19 in turn, and then undergoes hydrocracking.
- a heating furnace 18 is set between the two-stage fixed-bed reactors, and the reaction product passes through the heat exchanger 20 to the air cooler 21, and then enters the cold high fraction 22, the cold low fraction 24, purification and recovery, high quality optimization, and then sent to the heating furnace 25 for heating , And then enter the rectification tower 26 to separate naphtha, jet fuel, light diesel oil and heavy diesel oil.
- the circulating hydrogen from the cold high fraction 22 is heated by the heating furnace 23 and circulated to the fixed bed reactor for recycling.
- Example 1 10,000 tons/day mineralized garbage treatment process and equipment
- the mineralized waste is crushed by the crusher and collected into the material tank, then sent to the fluidized bed pyrolyzer for organic carbonization by the screw feeder, and collected after pyrolysis
- the fixed carbon and ash fall into the separation tank, the separated pyrolysis carbon and the non-condensable gas from the compressor are sent to the heating furnace for combustion, and the combustion heat supplies heat to the fluidized bed pyrolyzer;
- the components are sent to the gas-solid cyclone, the obtained gas phase is cooled and liquefied in the quench tower to obtain the precursors of alkanes and aromatic hydrocarbons, which enter the boiling bed reactor together with the diluent oil for hydrogenation reaction.
- the reaction product After the separator is separated, the reaction product enters the thermal high separation, air cooler, cold high separation, and cold low separation to separate partially hydrogenated aromatics and alkanes.
- the circulating oil is sent to the heating furnace together with the circulating hydrogen from the compressor after the thermal separation.
- the partially hydrogenated aromatics and alkanes After heating, return to the fluidized bed reactor; the partially hydrogenated aromatics and alkanes enter the two-stage fixed bed reactor after heat exchange through the heat exchanger and then undergo the hydrocracking reaction.
- a heating furnace is installed between the two-stage fixed bed reactor.
- the reaction product passes through the heat exchanger to the air cooler, then enters the cold high fraction, cold low fraction, purification and recovery, high quality optimization, and then sent to the heating furnace for heating, and then enters the rectification tower to separate naphtha, jet fuel, light diesel and heavy
- the circulating hydrogen from diesel oil and cold high content is heated by a heating furnace and then recycled to a fixed bed reactor for recycling.
- the domestic waste landfill in the hydrocracking unit of mineralized waste cracking residue is controlled according to the national standard "Pollution Control Standard for Domestic Waste Landfill" GB16889-1997.
- samples of domestic waste and ambient air quality around the fluidized bed and fixed bed combined hydrogenation unit were sampled and analyzed in accordance with the GB/T14678-93 air quality monitoring standard, and the odor, ammonia and hydrogen in the surrounding environment of the landfill were measured respectively. And the content, the measurement results proved to meet the requirements of experimental operation.
- the designed waste cracking residue hydrocracking unit has a mineral waste treatment capacity of 10,000 tons/day, and waste screening can recover about 45% of the purity. More than 97% of compostables, 20% of compostables with a content of 70% to 80% by weight, and 25% of plastics with a purity of 80% or more are combined with fluidized bed pyrolyzers and fluidized beds. The fixed bed series combined hydrogenation unit finally realizes oil recovery.
- the components in pyrolysis oil include: alkanes, aromatics, alkenes, phenols, alcohols, ketones, ethers, esters, acids, aldehydes.
- the components are complex; after being upgraded by hydrogenation, the components are aromatics (46.44%) and alkanes (35.09). %) and phenol (8.56%).
- the liquid phase product gasoline fraction yield is 55.02%, and the diesel fraction yield is 44.98%.
- the gasoline fraction has a high octane number and can be used as a blended oil.
- the method of the present invention solves the efficient recovery of the usable components in the garbage more perfectly, and at the same time enables the recovered oil to meet the demand for use.
- the device of the invention runs smoothly, is convenient to operate, and is easy to control, and reaches and satisfies the requirements of industrial production and environmental coordination.
- the hydrogenation process adopts a fluidized bed and a fixed bed series combination to strengthen hydrogenation.
- the fluidized bed external catalyst is purified and recovered by a micro-cyclone extraction washing method, which greatly improves the repetitive utilization rate of the catalyst and avoids the waste of resources. It can not only reduce the pollution of domestic garbage and achieve good social benefits; it can also gradually replace the large amount of land resources occupied by garbage storage, which improves the efficient use of land resources; it can also obtain oil phase by hydrocracking, and achieve good economic benefits for the enterprise.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
一种矿化垃圾裂解油加氢裂化的方法和装置,该方法包括以下步骤:(a)对矿化垃圾破碎及热解,得到芳烃和烷烃前驱体生物质油;(b)对步骤(a)中得到的芳烃和烷烃前驱体生物质油加氢,得到的加氢裂化产物分离得到芳烃和烷烃;以及(c)对步骤(b)中得到的芳烃和烷烃提纯回收优化,并深加工,以生产出石脑油、航煤、轻柴油和重柴油。
Description
本公开属于矿化垃圾回收利用领域,涉及一种回收矿化垃圾筛分、热解和加氢裂化组合处理的方法及装置。具体地说,涉及一种集成破碎机、螺旋进料机、流化床热解器、沸腾床反应器与固定床反应器串联加氢实现油品回收的方法,以及实施该方法所用的装置。
随着我国经济的飞速发展,城市化进程不断加快,生活垃圾数量也在不断攀升。据国家环保部公布《2017年全国大、中城市固体废物污染环境防治年报》,2016年,214个大、中城市生活垃圾产生量18850.5万吨,处置量18684.4万吨,处置率达99.1%。214个大中城市中,城市生活垃圾产生量最大的是上海市,产生量为879.9万吨,其次是北京、重庆、广州和深圳,产生量分别为872.6万吨、692.9万吨、688.4万吨和572.3万吨。前10位城市产生的城市生活垃圾总量为5651.2万吨,占全部信息发布城市产生总量的30%。填埋处理仍然是我国城市生活垃圾处置的最主要方式,辅之以焚烧、堆肥等其它处置方法,具有省时、省钱、省力等优势。随着国内卫生填埋场的大量建设,填埋库区所填垃圾量也越来越大,相应的矿化垃圾量也越来越大。
矿化垃圾是指垃圾填埋龄在8-10年以上(北方地区10-15年以上)、表面沉降量小于10mm/年、垃圾中有机质含量小于10%、易降解物质完全或接近完全降解、且垃圾自身几乎不再产生渗滤液、填埋气和异味、垃圾填埋场达到稳定状态即无害化状态,此时的垃圾称为矿化垃圾。矿化垃圾具有空隙率高、表面积大、营养物质含量高、微生物丰富等优点。对垃圾填埋场矿化垃圾的开采和资源化利用不仅可以回收可资源化的组分,还可以腾出填埋空间实现填埋场库容的动态循环。按照我国垃圾填埋场的规模,矿化垃圾的储存量是巨大的,因此矿化垃圾的开采对于解决垃圾出路,减少填埋垃圾占用土地资源等有着重大的意义。
目前,矿化垃圾分选主要采用农业、矿业等领域的传统分选技术,利用风力、振动筛分选技术和滚筒筛分选技术对矿物质中优势矿种进行提纯。由于生活垃圾具有组分复杂,含水率高等特点,使得垃圾中的可回收组分达不到较好的分离效 果,而国外的一些设备对我国的垃圾具有不适应性。
中国专利申请CNl01376834公开了一种沸腾床组合工艺。美国专利申请US6620311介绍了一种沸腾床加氢、分离、加氢脱硫、催化裂化分步骤加工石油馏分的组合工艺。美国专利申请US6447671介绍了一种沸腾床加氢-催化剂固体分离-固定床加氢组合工艺。上述专利申请虽然取得了一定效果,但普遍存在着后续固定床反应器加氢条件难保证、能量利用和实际工业应用价值不合理等顽疾。
总之,由于现有技术存在各种各样的问题,至今为止尚未有科学、合理地处理矿化垃圾的成熟体系和技术方法,远远不能满足矿化垃圾工业化的期望与要求。因此,针对上述现有技术的缺陷,本领域迫切需要开发出能量利用合理且工艺流程紧凑的矿化垃圾裂解油加氢裂化的方法及装置。
发明内容
本申请提供了一种新颖的高效环保型矿化垃圾裂解油加氢裂化的方法及装置,解决了目前我国矿化垃圾储存量巨大的问题,为矿化垃圾的处理和减少矿化垃圾焚烧对环境的污染提供了一种新的思路。对农村矿化垃圾的资源化利用不仅可以回收可资源化的组分,还可以腾出空间种植农作物,形成良好的动态循环。
本申请解决了现有技术中存在的一些问题,使得多年来由于焚烧矿化垃圾而受到污染的环境得到改善,在带来极其可观的经济效益的同时,极大地提高了环境效益和社会效益,对土地资源的再利用有着重要的意义。对矿化垃圾开发利用的研究也符合我国可持续发展技术的重要内容。
一方面,本申请提供了一种矿化垃圾裂解油加氢裂化的方法,它包括以下步骤:
(a)对矿化垃圾破碎及热解,得到芳烃和烷烃前驱体生物质油;
(b)对步骤(a)中得到的芳烃和烷烃前驱体生物质油加氢,得到的加氢裂化产物分离得到芳烃和烷烃;以及
(c)对步骤(b)中得到的芳烃和烷烃提纯回收优化,并深加工,以生产出石脑油、航煤、轻柴油和重柴油。
在一个优选的实施方式中,在步骤(a)中,所述矿化垃圾为固体产物占有机质含量的9~15重量%、离子交换容量为50~150mEq/100g干垃圾和pH值为6~8的稳 定矿化垃圾。
在另一个优选的实施方式中,在步骤(a)中,矿化垃圾经破碎机破碎回收的生物质颗粒经螺旋进料机进入流化床热解器,热解后轻相从流化床热解器顶部排出,再经过气固旋流器气固分离,气体从气固旋流器溢流口排出,热解残碳经加热炉加热后供热。
在另一个优选的实施方式中,步骤(a)处理可回收45%的纯度达97%以上的可堆腐物、20%的含量达70重量%~80重量%的可堆腐物和25%的纯度达80%以上的塑料。
在另一个优选的实施方式中,从气固旋流器溢流口排出的气体经急冷塔冷却液化生成烷烃和芳烃前驱体生物质油。
在另一个优选的实施方式中,在步骤(b)中,加氢采用沸腾床反应器和固定床反应器串联组合方式进行。
在另一个优选的实施方式中,在步骤(b)中,得到的加氢裂化产物经高分、低分分离生成烷烃和芳烃。
在另一个优选的实施方式中,在步骤(c)中,步骤(b)中得到的烷烃和芳烃经高分、低分提纯回收优化后,再经加热炉至精馏塔深加工以生成石脑油、航煤油、轻柴油和重柴油。
另一方面,本公开提供了一种矿化垃圾裂解油加氢裂化的装置,它包括:
破碎机,以及与破碎机连接的流化床热解器,用于进行步骤(a):对矿化垃圾破碎及热解,得到芳烃和烷烃前驱体生物质油;
与流化床热解器连接的沸腾床反应器,以及与沸腾床反应器连接的两级固定床反应器,用于进行步骤(b):对步骤(a)中得到的芳烃和烷烃前驱体生物质油加氢,得到的加氢裂化产物分离得到芳烃和烷烃;以及
与两级固定床反应器连接的冷高分,与冷高分连接的冷低分,以及与冷低分连接的精馏塔,用于进行步骤(c):对步骤(b)中得到的芳烃和烷烃提纯回收优化,并深加工,以生产出石脑油、航煤、轻柴油和重柴油。
在一个优选的实施方式中,该装置还包括:物料罐,其上方与破碎机连接,下方通过螺旋进料机与流化床热解器连接,用于收集经破碎的矿化垃圾,其中,所述螺旋进料机的安装角度设为4.3°~6.0°,转速与极限转速之比为0.4~0.6;
与流化床热解器连接的气固旋流器,用于对流化床热解器热解后的轻相进行气固分离;与气固旋流器上方连接的急冷塔,用于对从气固旋流器溢流口排出的气体进行 冷却液化生成烷烃和芳烃前驱体生物质油;以及与气固旋流器下方连接的分离罐,用于收集热解残碳;
与分离罐下方连接的加热炉,用于加热热解残碳和与之连接的压缩机送来的不凝性气体,以向与之连接的流化床热解器供热,其中,急冷塔上方通过压缩机与加热炉连接,急冷塔冷却液化生成的烷烃和芳烃前驱体生物质油送入与之连接的沸腾床反应器进行加氢反应;
与沸腾床反应器连接的热高分和加热炉,热高分和加热炉相互连接,与热高分连接的空冷器,与空冷器连接的冷高分,与冷高分和加热炉连接的压缩机,与热高分和冷高分连接的冷低分,与冷低分连接的换热器,该热高分、冷高分和冷低分用于对沸腾床反应器得到的加氢裂化产物进行分离得到芳烃和烷烃;该加热炉用于加热沸腾床反应器的循环油;
设置在两级固定床反应器之间的加热炉,换热器分别与两级固定床反应器连接,与换热器连接的空冷器,空冷器与冷高分连接,冷高分连接加热炉和冷低分,冷高分通过加热炉与两级固定床反应器连接;以及
置于冷低分与精馏塔之间的加热炉。
本申请的矿化垃圾裂解油加氢裂化的方法及装置的优点在于:
a)易维护,无任何废弃物产生,运行费用低,工艺流程十分紧凑;
b)可靠性高,使用寿命长;整体设备可以连续长时间运行,设备寿命长;
c)装置结构简单,占地面积小,故障率低,压力损失小,分离效率高,容易实施,操作方便,适合长周期运转;以及
d)垃圾筛分可回收效率高,催化剂和加氢过量氢气的循环利用,提高了整个工艺中催化剂和氢气的综合利用率,大幅降低了投资成本与能耗,节能减排效果明显,技术经济效果明显;不仅实现了矿化中可用成分的高效回收,同时也能达到回收油品满足使用要求,充分实现了矿化排放的综合高效利用。
与现有技术相比,本发明不但能裂解不可降解的塑料制品,同时对塑料、橡胶、化纤、生物质具有很好的热裂解性,本发明的装置无二次污染,运行稳定且易于操作,综合经济效益好。
附图是用以提供对本发明的进一步理解的,它只是构成本说明书的一部分以进一步解释本发明,并不构成对本发明的限制。
图1是根据本发明的一个优选实施方式的矿化垃圾裂解油加氢裂化的工艺流程图。
本申请的发明人经过广泛而深入的研究后发现,现有矿化垃圾分选主要采用农业、矿业等领域的传统分选技术,传统分选技术利用风力、振动筛分选技术和滚筒筛分选技术对矿物质中优势矿种进行提纯,而由于生活垃圾具有组分复杂,含水率高等特点,使得垃圾中的可回收组分达不到较好的分离效果,而国外的一些设备对我国的垃圾具有不适应性。
针对上述现有技术的缺陷,本申请的方法将开采矿化垃圾经过破碎机、流化床、旋风分离器等得到芳烃、烷烃前驱体裂解油;采取沸腾床和固定床串联组合方式强化加氢工艺实现生物质油加氢,经高分、低分得到芳烃、烷烃;同时利用精馏塔分离油渣;最后通过高分罐和低分罐提纯回收高品质优化,并通过精馏塔酌情适当深加工,以生产出石脑油、航煤、轻柴油和重柴油,从而能有效地提高垃圾的综合利用率,逐步退换垃圾存储占据的大量土地资源,技术经济效益明显,极大提高了环境效益和社会效益。
本申请的矿化垃圾裂解渣油加氢裂化的装置可广泛应用于矿化垃圾裂解渣油加氢裂化应用中,其可以有效解决矿化垃圾的不断积累,在确保可观回收经济效益的同时,更能逐步退换矿化垃圾存储占据的大量土地资源,具有重要的战略意义。
本发明的技术构思如下:
首先,从破碎机中筛分出的可裂解组分经过流化床热解器生成裂解组分,裂解组分经塔顶由选用的气固旋流器进一步净化分离,难降解渣分由塔底排出回收。整套矿化垃圾裂解油加氢裂化工艺流程中,可裂解组分经过预热处理送至流化床热解器裂解是关键,沸腾床与固定床加氢串联组合实现油分与灰分分离是核心。旋流分离初步净化后的渣油经过精馏塔分离出油相。在沸腾床反应器中反应后进 入固定床反应器,反应完全后进入热高分罐实现油分与渣分分离,加氢反应后过量氢气循环利用,提高了整个工艺中催化剂和氢气的综合利用率,大幅降低了投资成本与能耗。热高分罐顶的油品后续继续经过冷高分和冷低分继续深度处理,而罐底渣分视品质循环加氢或回收并根据裂解炉进料品质选择,以提高矿化垃圾的综合利用率。
本发明的上述技术构思可通过以下方式实现:
加氢工艺采用沸腾床反应器和固定床反应器串联组合方式强化加氢,且沸腾床外排催化剂采用微旋流干燥还原方法净化和回收;
旋流分离器体积小、重量轻、处理速度快,是一种新颖、高效、节能、适合长周期运行而又经济的分离设备,可将流化床热解器塔顶的裂解组分进一步净化分离;
适用于本发明的实验装置并没有特别的限制,其具体结构可以依据工艺总体要求而定,其中,所述旋流分离器可以为气固旋流器、重力沉降罐等,优先采用气固旋流器;所述微旋流分离芯管的数量可以是单个或多个的组合。
本发明的矿化垃圾裂解油加氢裂化工艺和装置还可以用于其他含可堆腐物、塑料、橡胶和化纤等可回收组分的物料的循环回收利用中。
在本公开的第一方面,提供了一种矿化垃圾裂解油加氢裂化的方法,该方法包括:
(a)开采矿化垃圾经过破碎机、流化床热解得到芳烃、烷烃前驱体生物质油;
(b)采取沸腾床与固定床串联组合加氢工艺实现生物质油加氢,经高分、低分得到芳烃、烷烃;以及
(c)通过高分罐和低分罐提纯回收高品质优化,并通过精馏塔酌情适当深加工,以生产出石脑油、航煤、轻柴油和重柴油。
较佳地,该方法包括:
从市场购置的矿化垃圾经过适当时间的自然晾晒后,再结合垃圾板结程度适当破碎后送至料仓筛分分选木质纤维等可裂解组分;
通过快速热解方法将可回收垃圾组分气化,并通过旋流分离将产物中的固体残渣脱除;
采取沸腾床与固定床串联组合加氢工艺实现渣油加氢;以及
反应完全后进入热高分罐实现油分与渣分分离,加氢过量氢气循环利用,热高分罐顶的油品后续继续经过冷高分和冷低分深度处理,而罐底渣分视品质循环加氢或回收并根据裂解炉进料品质选择。
在本公开中,矿化垃圾为固体产物占有机质含量的9~15重量%、离子交换容量为50~150mEq/100g干垃圾和pH值为6~8的稳定矿化垃圾。
在本公开中,在步骤(a)中,矿化垃圾经破碎机破碎回收的生物质颗粒经螺旋进料机进入流化床热解器,热解后轻相可在鼓风机作用下从流化床热解器顶部排出,再经过气固旋流器气固分离,气体从气固旋流器溢流口排出,热解残碳经加热炉加热后供热。
在本公开中,在步骤(a)中,垃圾筛分可回收约45%的纯度达97%以上的可堆腐物、20%的含量达70重量%~80重量%的可堆腐物、以及25%的纯度达80%以上的塑料。
较佳地,在对可裂解组分进行加氢反应之前,采用气固旋流器进行初步分离净化,以保证后续加氢反应效果。
在本公开中,在步骤(a)中,从气固旋流器溢流口排出的混合气体经急冷塔冷却液化生成烷烃和芳烃前驱体。
在本公开中,在步骤(b)中,加氢采用沸腾床反应器和固定床反应器串联组合方式进行。
在本公开中,在步骤(b)中,经过沸腾床反应器和固定床反应器的加氢裂化产物经高分、低分分离生成烷烃和芳烃。
在本公开中,在步骤(c)中,烷烃和芳烃经高分、低分深度优化后,再经加热炉至精馏塔深加工以生成石脑油、航煤油、轻柴油和重柴油。
在本公开的第二方面,提供了一种矿化垃圾裂解油加氢裂化的装置,它包括:
破碎机,以及与破碎机连接的流化床热解器,用于进行上述步骤(a);
与流化床热解器连接的沸腾床反应器,以及与沸腾床反应器连接的两级固定床反应器,用于进行上述步骤(b);以及
与两级固定床反应器连接的冷高分,与冷高分连接的冷低分,以及与冷低分连接的精馏塔,用于进行上述步骤(c)。
较佳地,该装置包括:
用于回收矿化垃圾可利用成分的破碎机,经破碎后的矿化垃圾收集至物料罐 后由螺旋进料机送入用于有机质碳化的流化床热解器,热解后收集的固定炭与灰分落入分离罐,分离后的热解炭与压缩机输送来的不凝性气体一同送入加热炉燃烧,燃烧热量给流化床热解器供热;热解后轻相组分送入气固旋流器,所得气相经急冷塔后得到烷烃、芳烃前驱体,其和稀释油一同进入沸腾床反应器进行加氢反应,沸腾床反应后的三相经三相分离器分离后,反应产物进入热高分、空冷器、冷高分、冷低分分出已部分加氢的芳烃和烷烃,循环油经热高分后与压缩机来的循环氢一同至加热炉加热后回到沸腾床反应器中;部分加氢的芳烃和烷烃经换热器换热后依次进入两级固定床反应器再进行加氢裂化反应,两级固定床反应器间设置加热炉,反应产物经换热器后至空冷器,然后进入冷高分、冷低分、加热炉后进入精馏塔分离得出石脑油、航煤、轻柴油和重柴油,冷高分出来的循环氢经加热炉加热后循环至固定床反应器循环使用。
在本公开中,与所述螺旋进料机连接的流化床热解器用以通过快速高温方法将可回收垃圾组分高温流化,并通过气固旋流器将产物中的固体残渣经加热炉燃烧给流化床供热。
在本公开中,与所述旋流器连接的急冷塔冷却旋流器溢流出来的气相,经泵、换热器加热送入沸腾床反应器,急冷塔的上出口不凝气经压缩机引入流化床的底部入口。
在本公开中,与所述换热器连接的沸腾床反应器用以实现生物质油加氢裂解,沸腾床内三相分离器的溢流产物经热高分、冷高分、冷低分形成芳烃、烷烃。
在本公开中,与所述热高分连接的加热炉加热沸腾床的循环油,优化加氢工艺。
在本公开中,与所述冷低分连接的固定床反应器所生成的油相和气相经高分、低分深化处理加热后精馏产出石脑油、航煤、轻柴油和重柴油。
在本公开中,所述螺旋进料机的安装角度设为4.3°~6.0°,转速与极限转速之比为0.4~0.6。
在本公开中,加氢油品选用热高压分离罐和精馏塔实现轻质相与重油渣分分离。
以下参看附图。
图1是根据本发明的一个优选实施方式的矿化垃圾裂解油加氢裂化的工艺流 程图。如图1所示,矿化垃圾经破碎机1破碎后收集至物料罐2后由螺旋进料机3送入用于有机质碳化的流化床热解器4,热解后收集的固定炭与灰分落入分离罐6,分离后的热解炭与压缩机9输送来的不凝性气体一同送入加热炉7燃烧,燃烧热量给流化床热解器4供热;热解后轻相组分送入气固旋流器5,所得气相经急冷塔8后得到烷烃、芳烃前驱体,其和稀释油一同进入沸腾床反应器10进行加氢反应,沸腾床反应后的三相经三相分离器分离后反应产物进入热高分11、空冷器13、冷高分14、冷低分15分出已部分加氢的芳烃和烷烃,循环油经热高分11后与压缩机16来的循环氢一同至加热炉12加热后回到沸腾床反应器10中;部分加氢的芳烃和烷烃经换热器20换热后依次进入两级固定床反应器17、19再进行加氢裂化反应,两级固定床反应器间设置加热炉18,反应产物经换热器20后至空冷器21,然后进入冷高分22、冷低分24提纯回收高品质优化后送入加热炉25加热,然后进入精馏塔26分离得出石脑油、航煤、轻柴油和重柴油,冷高分22出来的循环氢经加热炉23加热后循环至固定床反应器循环使用。
实施例
下面结合具体的实施例进一步阐述本发明。但是,应该明白,这些实施例仅用于说明本发明而不构成对本发明范围的限制。下列实施例中未注明具体条件的试验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另有说明,所有的百分比和份数按重量计。
实施例1:1万吨/天的矿化垃圾处理工艺与装置
在一个年处理能力1万吨/天的矿化垃圾处理装置中,设置了一套如图1所示的矿化垃圾裂解渣油加氢裂化处理装置,其具体运作过程及效果描述如下:
开采回收的矿化垃圾经过适当时间的自然晾晒后,矿化垃圾经破碎机破碎后收集至物料罐后由螺旋进料机送入用于有机质碳化的流化床热解器,热解后收集的固定炭与灰分落入分离罐,分离后的热解炭与压缩机输送来的不凝性气体一同送入加热炉燃烧,燃烧热量给流化床热解器供热;热解后轻相组分送入气固旋流器,所得气相经急冷塔后冷却液化得到烷烃、芳烃前驱体,其和稀释油一同进入沸腾床反应器进行加氢反应,沸腾床反应后的三相经三相分离器分离后反应产物进入热高分、空冷器、冷高分、冷低分分离出已部分加氢的芳烃和烷烃,循环油 经热高分后与压缩机来的循环氢一同至加热炉加热后回到沸腾床反应器中;部分加氢的芳烃和烷烃经换热器换热后依次进入两级固定床反应器再进行加氢裂化反应,两级固定床反应器间设置加热炉,反应产物经换热器后至空冷器,然后进入冷高分、冷低分提纯回收高品质优化后送入加热炉加热,然后进入精馏塔分离得出石脑油、航煤、轻柴油和重柴油,冷高分出来的循环氢经加热炉加热后循环至固定床反应器循环使用。
对矿化垃圾裂解渣油加氢裂化装置中的生活垃圾填埋按照国家标准《生活垃圾填埋污染控制标准》GB16889-1997规定进行垃圾污染控制。同时对生活垃圾样品和沸腾床与固定床串联组合加氢装置周围环境空气质量按照GB/T14678-93空气质量监控标准取样分析,分别测定填埋场周围环境中的臭气、氨和氢气的强度与含量,测定结果证明达到实验运行的要求。
针对该生活垃圾填埋场,结合其历年矿化垃圾处理量,设计垃圾裂解渣油加氢裂化装置的矿化垃圾处理能力为一万吨/天,垃圾筛分可回收约45%的纯度达97%以上的可堆腐物、20%的含量达70重量%~80重量%的可堆腐物、以及25%的纯度达80%以上的塑料,通过流化床热解器与沸腾床与固定床串联组合加氢装置最终实现油品的回收。
裂解油中组分包括:烷烃、芳烃、烯烃、苯酚、醇、酮、醚、酯、酸、醛,组分复杂;经加氢提质后,组分以芳烃(46.44%)、烷烃(35.09%)、苯酚(8.56%)为主。
裂解油经过初步加氢提质后,液相产品汽油馏分收率为55.02%,柴油馏分收率为44.98%,汽油馏分具有较高的辛烷值,可作为调和油使用。
由此可见,采用本发明的方法,比较完善地解决了垃圾中可用成分的高效回收,同时也能使回收油品满足使用需求。本发明装置运行平稳、操作方便、易于控制,达到并满足了工业生产和环境协调的要求。加氢工艺采用沸腾床和固定床串联组合方式强化加氢,同时沸腾床外排催化剂采用微旋流萃洗方法净化和回收,大幅提高了催化剂的重复利用率,避免了资源的浪费。既减少生活垃圾的污染,达到良好的社会效益;也能逐步退换垃圾存储占据的大量土地资源,提高了土地资源的高效利用;亦能加氢裂化获得油相,为企业取得良好的经济效益。
上述所列的实施例仅仅是本发明的较佳实施例,并非用来限定本发明的实施 范围。即凡依据本发明申请专利范围的内容所作的等效变化和修饰,都应为本发明的技术范畴。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
Claims (10)
- 一种矿化垃圾裂解油加氢裂化的方法,它包括以下步骤:(a)对矿化垃圾破碎及热解,得到芳烃和烷烃前驱体生物质油;(b)对步骤(a)中得到的芳烃和烷烃前驱体生物质油加氢,得到的加氢裂化产物分离得到芳烃和烷烃;以及(c)对步骤(b)中得到的芳烃和烷烃提纯回收优化,并深加工,以生产出石脑油、航煤、轻柴油和重柴油。
- 如权利要求1所述的方法,其特征在于,在步骤(a)中,所述矿化垃圾为固体产物占有机质含量的9~15重量%、离子交换容量为50~150mEq/100g干垃圾和pH值为6~8的稳定矿化垃圾。
- 如权利要求1所述的方法,其特征在于,在步骤(a)中,矿化垃圾经破碎机破碎回收的生物质颗粒经螺旋进料机进入流化床热解器,热解后轻相从流化床热解器顶部排出,再经过气固旋流器气固分离,气体从气固旋流器溢流口排出,热解残碳经加热炉加热后供热。
- 如权利要求1所述的方法,其特征在于,步骤(a)处理可回收45%的纯度达97%以上的可堆腐物、20%的含量达70重量%~80重量%的可堆腐物和25%的纯度达80%以上的塑料。
- 如权利要求3所述的方法,其特征在于,从气固旋流器溢流口排出的气体经急冷塔冷却液化生成烷烃和芳烃前驱体生物质油。
- 如权利要求1所述的方法,其特征在于,在步骤(b)中,加氢采用沸腾床反应器和固定床反应器串联组合方式进行。
- 如权利要求1所述的方法,其特征在于,在步骤(b)中,得到的加氢裂化产物经高分、低分分离生成烷烃和芳烃。
- 如权利要求1所述的方法,其特征在于,在步骤(c)中,步骤(b)中得到的烷烃和芳烃经高分、低分提纯回收优化后,再经加热炉至精馏塔深加工以生成石脑油、航煤油、轻柴油和重柴油。
- 一种矿化垃圾裂解油加氢裂化的装置,它包括:破碎机(1),以及与破碎机(1)连接的流化床热解器(4),用于进行步骤(a):对矿化垃圾破碎及热解,得到芳烃和烷烃前驱体生物质油;与流化床热解器(4)连接的沸腾床反应器(10),以及与沸腾床反应器(10)连接的两级固定床反应器(17)、(19),用于进行步骤(b):对步骤(a)中得到的芳烃和烷烃前驱体生物质油加氢,得到的加氢裂化产物分离得到芳烃和烷烃;以及与两级固定床反应器(17)、(19)连接的冷高分(22),与冷高分(22)连接的冷低分(24),以及与冷低分(24)连接的精馏塔(26),用于进行步骤(c):对步骤(b)中得到的芳烃和烷烃提纯回收优化,并深加工,以生产出石脑油、航煤、轻柴油和重柴油。
- 如权利要求9所述的装置,其特征在于,该装置还包括:物料罐(2),其上方与破碎机(1)连接,下方通过螺旋进料机(3)与流化床热解器(4)连接,用于收集经破碎的矿化垃圾,其中,所述螺旋进料机(3)的安装角度设为4.3°~6.0°,转速与极限转速之比为0.4~0.6;与流化床热解器(4)连接的气固旋流器(5),用于对流化床热解器热解后的轻相进行气固分离;与气固旋流器(5)上方连接的急冷塔(8),用于对从气固旋流器溢流口排出的气体进行冷却液化生成烷烃和芳烃前驱体生物质油;以及与气固旋流器(5)下方连接的分离罐(6),用于收集热解残碳;与分离罐(6)下方连接的加热炉(7),用于加热热解残碳和与之连接的压缩机(9)送来的不凝性气体,以向与之连接的流化床热解器(4)供热,其中,急冷塔(8)上方通过压缩机(9)与加热炉(7)连接,急冷塔(8)冷却液化生成的烷烃和芳烃前驱体生物质油送入与之连接的沸腾床反应器(10)进行加氢反应;与沸腾床反应器(10)连接的热高分(11)和加热炉(12),热高分(11)和加热炉(12)相互连接,与热高分(11)连接的空冷器(13),与空冷器(13)连接的冷高分(14),与冷高分(14)和加热炉(12)连接的压缩机(16),与热高分(11)和冷高分(14)连接的冷低分(15),与冷低分(15)连接的换热器(20),该热高分(11)、冷高分(14)和冷低分(15)用于对沸腾床反应器(10)得到的加氢裂化产物进行分离得到芳烃和烷烃;该加热炉(12)用于加热沸腾床反应器的循环油;设置在两级固定床反应器(17)、(19)之间的加热炉(18),换热器(20)分别与两级固定床反应器(17)、(19)连接,与换热器(20)连接的空冷器(21),空冷器(21)与冷高分(22)连接,冷高分(22)连接加热炉(23)和冷低分(24), 冷高分(22)通过加热炉(23)与两级固定床反应器(17)、(19)连接;以及置于冷低分(24)与精馏塔(26)之间的加热炉(25)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/627,824 US11952540B2 (en) | 2019-07-19 | 2020-06-16 | Method and apparatus for hydrocracking mineralized refuse pyrolysis oil |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910654073.5 | 2019-07-19 | ||
CN201910654073.5A CN110330996B (zh) | 2019-07-19 | 2019-07-19 | 矿化垃圾裂解油加氢裂化的方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021012838A1 true WO2021012838A1 (zh) | 2021-01-28 |
Family
ID=68145923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/096318 WO2021012838A1 (zh) | 2019-07-19 | 2020-06-16 | 矿化垃圾裂解油加氢裂化的方法及装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11952540B2 (zh) |
CN (1) | CN110330996B (zh) |
WO (1) | WO2021012838A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110330996B (zh) * | 2019-07-19 | 2021-10-29 | 华东理工大学 | 矿化垃圾裂解油加氢裂化的方法及装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4308411A (en) * | 1980-08-28 | 1981-12-29 | Occidental Research Corporation | Process for converting oxygenated hydrocarbons into hydrocarbons |
CN101020826A (zh) * | 2007-03-09 | 2007-08-22 | 华东理工大学 | 厨余垃圾的焦化处理方法及其处理装置 |
CN101402874A (zh) * | 2008-11-06 | 2009-04-08 | 天津大学 | 生物污泥与有机垃圾的燃油化方法 |
CN106554789A (zh) * | 2016-11-22 | 2017-04-05 | 新奥生态环境治理有限公司 | 一种垃圾综合处理方法 |
CN108026450A (zh) * | 2015-09-07 | 2018-05-11 | 国际壳牌研究有限公司 | 将生物质转化成液态烃物质 |
CN110330996A (zh) * | 2019-07-19 | 2019-10-15 | 华东理工大学 | 矿化垃圾裂解油加氢裂化的方法及装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1155571A (zh) * | 1995-08-08 | 1997-07-30 | 周鼎力 | 用废橡胶生产汽油柴油和炭黑的方法 |
CN2408118Y (zh) * | 1999-07-16 | 2000-11-29 | 周继福 | 一种用废塑料和或重油生产汽油柴油的设备 |
CN101433904B (zh) * | 2007-11-15 | 2010-09-22 | 深圳开普蓝生能源环保有限公司 | 城市生活垃圾能源再生及无废综合利用生产工艺 |
US9200207B2 (en) * | 2011-05-31 | 2015-12-01 | University Of Central Florida Research Foundation, Inc. | Methods of producing liquid hydrocarbon fuels from solid plastic wastes |
CN102408906A (zh) * | 2011-10-25 | 2012-04-11 | 中国科学院广州能源研究所 | 利用废旧塑料制备润滑油基础油的方法 |
JP6378368B2 (ja) * | 2014-02-25 | 2018-08-22 | サウジ ベーシック インダストリーズ コーポレイションSaudi Basic Industries Corporaiton | 混合廃プラスチック類(mwp)を有益な石油化学製品に変換する方法 |
CN204644280U (zh) * | 2014-11-13 | 2015-09-16 | 新冶高科技集团有限公司 | 一种废旧轮胎再生利用环保处理设备 |
CN104560100B (zh) * | 2014-12-26 | 2016-08-24 | 北京神雾环境能源科技集团股份有限公司 | 废旧轮胎热解系统和热解方法 |
CN109563413B (zh) * | 2016-08-01 | 2022-05-31 | 沙特基础工业全球技术公司 | 同步的混合塑料热解及热解油脱氯的催化方法 |
CN106734084B (zh) * | 2016-12-20 | 2019-08-27 | 湖南万容科技股份有限公司 | 一种固体废弃物处理方法 |
-
2019
- 2019-07-19 CN CN201910654073.5A patent/CN110330996B/zh active Active
-
2020
- 2020-06-16 WO PCT/CN2020/096318 patent/WO2021012838A1/zh active Application Filing
- 2020-06-16 US US17/627,824 patent/US11952540B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4308411A (en) * | 1980-08-28 | 1981-12-29 | Occidental Research Corporation | Process for converting oxygenated hydrocarbons into hydrocarbons |
CN101020826A (zh) * | 2007-03-09 | 2007-08-22 | 华东理工大学 | 厨余垃圾的焦化处理方法及其处理装置 |
CN101402874A (zh) * | 2008-11-06 | 2009-04-08 | 天津大学 | 生物污泥与有机垃圾的燃油化方法 |
CN108026450A (zh) * | 2015-09-07 | 2018-05-11 | 国际壳牌研究有限公司 | 将生物质转化成液态烃物质 |
CN106554789A (zh) * | 2016-11-22 | 2017-04-05 | 新奥生态环境治理有限公司 | 一种垃圾综合处理方法 |
CN110330996A (zh) * | 2019-07-19 | 2019-10-15 | 华东理工大学 | 矿化垃圾裂解油加氢裂化的方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
US20220275282A1 (en) | 2022-09-01 |
CN110330996A (zh) | 2019-10-15 |
CN110330996B (zh) | 2021-10-29 |
US11952540B2 (en) | 2024-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ding et al. | A review of China’s municipal solid waste (MSW) and comparison with international regions: Management and technologies in treatment and resource utilization | |
Xue et al. | Technical progress and the prospect of low‐rank coal pyrolysis in China | |
CN101230284B (zh) | 废弃塑料的延迟焦化处理方法及其处理装置 | |
CN105154121A (zh) | 低阶煤分级利用多联产系统及方法 | |
CN107117787B (zh) | 一种含油污泥添加微藻生物质协同热解的工艺方法 | |
CN106635079A (zh) | 一种固废rdf处理方法 | |
WO2014019332A1 (zh) | 一种废塑料炼油生产方法及其生产线 | |
WO2022067882A1 (zh) | 混合废塑料工业连续化按类裂解系统及工艺 | |
CN202576344U (zh) | 一种从含沙油泥或/和有机废弃物中提取燃油的设备 | |
CN103693805A (zh) | 一种煤热解废弃物的回收利用装置及方法 | |
CN102757803B (zh) | 废轮胎流化床蒸气低温干馏系统及方法 | |
CN108101572B (zh) | 高黏度罐底含油污泥耦合煤化工固废制备轻质陶粒的方法 | |
CN110467938A (zh) | 一种焦油渣的分级处理方法及系统 | |
CN1962818B (zh) | 快速热裂解技术制取生物质油的方法 | |
WO2021012838A1 (zh) | 矿化垃圾裂解油加氢裂化的方法及装置 | |
AU2013397663A1 (en) | Reactor and method for pyrolyzing hydrocarbon materials by solid heat carrier | |
CN205133505U (zh) | 低阶煤分级利用多联产系统 | |
Zhang | Review of coal tar preparation and processing technology | |
CN102408918A (zh) | 一种高品质高效率水煤气变换方法及装置 | |
CN109355086A (zh) | 一种废旧轮胎生产燃料油、焦炭的方法 | |
CN212076971U (zh) | 热解煤气分级冷凝且热量梯级利用系统 | |
CN206051957U (zh) | 一种热解油气的处理系统 | |
CN111996020B (zh) | 一种生物质废弃物耦合湿垃圾多态化联产综合利用系统及工艺 | |
CN103361089A (zh) | 一种利用自身裂解残渣促进厨余微波裂解制取焦油的方法 | |
CN209722040U (zh) | 一种城市生活垃圾深度资源化利用的系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20844254 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20844254 Country of ref document: EP Kind code of ref document: A1 |