WO2021012729A1 - 一种基于电磁推射的航天发射系统及方法 - Google Patents

一种基于电磁推射的航天发射系统及方法 Download PDF

Info

Publication number
WO2021012729A1
WO2021012729A1 PCT/CN2020/086022 CN2020086022W WO2021012729A1 WO 2021012729 A1 WO2021012729 A1 WO 2021012729A1 CN 2020086022 W CN2020086022 W CN 2020086022W WO 2021012729 A1 WO2021012729 A1 WO 2021012729A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear motor
subsystem
rocket
control
energy
Prior art date
Application number
PCT/CN2020/086022
Other languages
English (en)
French (fr)
Inventor
马伟明
张育兴
张明元
张向明
李卫超
龙鑫林
邓晨
Original Assignee
中国人民解放军海军工程大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军海军工程大学 filed Critical 中国人民解放军海军工程大学
Priority to JP2021577441A priority Critical patent/JP7251845B2/ja
Priority to KR1020227001407A priority patent/KR20220020381A/ko
Priority to EP20843573.5A priority patent/EP4005933A4/en
Publication of WO2021012729A1 publication Critical patent/WO2021012729A1/zh
Priority to US17/580,727 priority patent/US20220144456A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/002Launch systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/13Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and AC motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B6/00Electromagnetic launchers ; Plasma-actuated launchers
    • F41B6/006Rail launchers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/006Motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/74Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof combined with another jet-propulsion plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention belongs to the technical field of aerospace launch systems for electromagnetic propulsion objects, and in particular relates to a space launch system and method based on electromagnetic propulsion.
  • This traditional satellite launch method has the following shortcomings: First, the rocket needs to be ignited on the rocket launch pad, and the launch pad needs to be maintained after launch, which leads to long rocket launch preparation and maintenance time, and it is difficult to achieve high-frequency fast launch; With the continuous advancement of electronic information technology, the cost of satellites has become lower and lower, but the cost of rocket launch has remained high for a long time; third, the traditional rocket launch method is designed with large payload and high orbit as the design goal, and the carried satellite can only adapt to the launch conditions , The launch opportunities are limited and the launch flexibility is seriously insufficient.
  • the purpose of the present invention is to provide a space launch system and method based on electromagnetic propulsion.
  • the electromagnetic launch system solves the three major problems of traditional rocket launch: one is to solve the problem that traditional rocket launch cannot meet the high frequency continuous launch; The cost of a single rocket launch is about an order of magnitude lower than that of a traditional rocket launch; the third is to solve the problem of limited launch opportunities and insufficient launch flexibility of traditional satellites.
  • the technical scheme adopted by the present invention is: a space launch system based on electromagnetic propulsion, including:
  • the energy storage subsystem is used to transfer the stored energy to the energy conversion subsystem when launching the rocket;
  • the energy conversion subsystem is used to convert the energy delivered by the energy storage subsystem into alternating current and output to the linear motor subsystem;
  • the linear motor sub-system is used to receive the alternating current output by the energy conversion sub-system to generate electromagnetic force to propel the rocket to a certain speed within a certain distance;
  • the control and maintenance sub-system is used to issue different control commands to the energy storage sub-system, the energy conversion sub-system and the linear motor sub-system respectively, and control the energy storage sub-system, the energy conversion sub-system and the linear motor sub-system to execute according to a predetermined program.
  • the energy storage subsystem is also used to absorb energy from the power supply system and store energy during the interval between launching the rocket.
  • the energy storage subsystem includes n ⁇ m mutually independent power modules, where n is the number of linear motors, and m is the number of phases of each linear motor.
  • each power module is divided into p groups of power supply units, and each group of power supply units is respectively connected to a corresponding inverter unit in an inverter in the energy conversion subsystem.
  • each group of power supply units includes a battery pack array and a charging cabinet, and the charging cabinet is a charging interface connected between the power supply system and the battery pack array.
  • each group of power supply units further includes an energy storage switch cabinet, which is connected between the battery array and the inverter unit.
  • the energy conversion subsystem includes n ⁇ m mutually independent inverters, each inverter supplies power to one phase of a linear motor, n is the number of linear motors, and m is the number of phases of each linear motor .
  • each inverter is composed of k inverter cabinets in parallel, and each inverter cabinet is composed of p inverter units in cascade.
  • the linear motor sub-system includes n linear motors and a rocket adapter, each linear motor includes a stator and a mover installed on the stator, and the rocket adapter is respectively connected to the movers of the n linear motors.
  • the stators of the n linear motors are evenly arranged along the circumferential direction of the rocket adapter.
  • the stators of the n linear motors are evenly arranged along the radial direction of the rocket adapter, and n is an even number.
  • the angle between the stator of the linear motor and the horizontal plane is 0 to 90 degrees.
  • stator of the linear motor is powered in a segmented manner.
  • control and maintenance subsystem includes top-level control equipment, energy storage control equipment, energy conversion control equipment, and linear motor control equipment.
  • top-level control equipment energy storage control equipment, energy conversion control equipment, and linear motor control equipment, Connected through the control ring network;
  • the top-level control device is used to provide a human-computer interaction control interface, and respectively send control instructions to the energy storage control device, the energy conversion control device, and the linear motor control device;
  • the energy storage control device is used to realize the charge and discharge control of the energy storage subsystem according to the received control instruction
  • the energy conversion control device is used to implement energy conversion control of the energy conversion subsystem according to the received control instruction
  • the linear motor control device is used for real-time control of the mover motion of the linear motor in the linear motor sub-system and control of the stator segment power supply according to the received control instruction.
  • control and maintenance subsystem further includes energy storage monitoring equipment, energy conversion monitoring equipment, linear motor monitoring equipment, and management and maintenance equipment.
  • the energy storage monitoring equipment, energy conversion monitoring equipment, linear motor monitoring equipment, and management and maintenance equipment They are connected through a healthy ring network.
  • the energy storage monitoring equipment is used to collect the working data of the energy storage subsystem and upload it to the management and maintenance equipment;
  • the energy conversion monitoring equipment is used to collect the working data of the energy conversion subsystem and upload it to the management and maintenance equipment;
  • the linear motor monitoring equipment is used to collect the working data of the linear motor sub-system and upload it to the management and maintenance equipment.
  • the management and maintenance equipment is used to analyze, display, store, and query the health status and information of the energy storage subsystem, the energy conversion subsystem, and the linear motor subsystem according to the received data, and provide maintenance testing functions.
  • An aerospace launch method based on electromagnetic propulsion The process is: converting electrical energy into electromagnetic force, pushing the rocket through the electromagnetic force, and accelerating the rocket to a certain speed along the electromagnetic launch orbit to achieve the launch of the rocket.
  • the direct current electric energy is converted into alternating current to supply the linear motor, and then the electric energy is converted into electromagnetic force by the linear motor, and the rocket is propelled by the electromagnetic force.
  • multiple linear motors propel the rocket through the rocket adapter.
  • the linear motor subsystem includes n linear motors and rocket adapters.
  • Each linear motor includes a stator and a mover mounted on the stator.
  • the stator forms the electromagnetic launch track
  • the rocket adapter is respectively connected to the movers of n linear motors
  • the rocket is mounted on the rocket adapter
  • the stators of the n linear motors are symmetrically arranged along the circumference of the rocket adapter; or
  • the stators of the n linear motors are arranged symmetrically along the radial direction of the rocket adapter, and n is an even number.
  • the angle between the stator of the linear motor and the horizontal plane is 0-90 degrees.
  • the electromagnetic launch system Because of the cold launch method that the electromagnetic launch system generates electromagnetic force to push the rocket, that is, the rocket does not ignite before leaving the launch pad, and then ignites after launching into the air, which can achieve zero damage to the launch pad and the launch pad
  • the recovery time is increased to hundreds of seconds. Even considering the transit time of the launch load, the interval between continuous launches can be increased to less than 1 hour, which can achieve the purpose of launching the rocket multiple times within a launch window time period, and solves the high frequency of the rocket. The problem of continuous launch.
  • the electromagnetic launch system accelerates the rocket to several Mach before the rocket is ignited, compared with the traditional rocket, the first stage part of the rocket is eliminated, which greatly saves the rocket fuel, reduces the weight of the rocket, and simplifies The rocket structure is greatly reduced, and the cost of the rocket is greatly reduced.
  • the electromagnetic launch system When the electromagnetic launch system is used to launch the satellite, because the electromagnetic force of the linear motor is continuously adjustable, it can be adapted to different rockets of large, medium and small according to the actual needs of the satellite, and can adapt to a wider launch time and orbital requirements. Flexible and convenient.
  • the entire electromagnetic launch system has redundancy capability to ensure that the current launch task can still be completed when part of the equipment fails, which greatly reduces the risk of rocket launch failure when the electromagnetic launch system fails. Solve the reliability problem.
  • Figure 1 is a schematic diagram of the principle of the present invention.
  • FIG. 2 is a schematic diagram of the energy storage subsystem and the energy conversion subsystem of the present invention.
  • Fig. 3 is a schematic diagram of a single power module and a single inverter in block A in Fig. 2.
  • Figure 4 is a schematic diagram of the circumferential symmetrical arrangement of the linear motor sub-system of the present invention.
  • Figure 5 is a schematic diagram of the radially symmetrical arrangement of the linear motor sub-system of the present invention.
  • FIG. 6 is a schematic diagram of the control and maintenance subsystem of the present invention.
  • the present invention provides a space launch system based on electromagnetic propulsion, including an energy storage subsystem 1, an energy conversion subsystem 2, a linear motor subsystem 3, and a management and maintenance subsystem 4, among the four
  • the relationship is mainly divided into energy flow and information flow.
  • the energy flow direction is: before each launch, the power supply system supplies electric energy to the energy storage subsystem 1 for storage, and the energy storage subsystem 1 supplies electric energy to the energy conversion subsystem 2 during transmission.
  • the energy conversion subsystem 2 supplies the modulated electric energy to the linear motor subsystem 3;
  • the information flow is:
  • the control and maintenance subsystem 4 is connected to the other three subsystems through a redundant distributed industrial Ethernet network, and the devices that control the energy flow are Scheduled program execution, and real-time diagnosis of the other three sub-systems and their own health status.
  • the functions of each sub-system are as follows:
  • the energy storage subsystem 1 is used to absorb energy from the power supply system and store energy for a longer period of time during the launch of the rocket according to the control command; it is used to transfer the stored energy to the rocket during the launch of the rocket according to the received control command Energy conversion subsystem 2.
  • the energy conversion sub-system 2 is used to convert the energy delivered by the energy storage sub-system 1 into the required frequency and voltage-regulated alternating current to output to the linear motor sub-system 3 according to a control instruction.
  • the linear motor sub-system 3 is used to receive the alternating current output by the energy conversion sub-system 2 according to the control command, and generate electromagnetic force to propel the rocket to a set speed within a certain distance.
  • the control and maintenance sub-system 4 is used to issue different control commands to the energy storage sub-system 1, the energy conversion sub-system 2 and the linear motor sub-system 3 respectively, and control the energy storage sub-system 1, the energy conversion sub-system 2 and the linear motor sub-system 3 Perform in accordance with the scheduled procedure.
  • the control and maintenance sub-system 4 is connected to the other three sub-systems through the network, mainly to provide the human-machine interface for the operators and the system equipment, to control each sub-system to complete the work in accordance with the predetermined process, and to monitor and manage the status of each sub-system equipment .
  • the energy storage component of the energy storage subsystem 1 adopts a high-safety large-rate discharge lithium battery scheme, which specifically includes n ⁇ m mutually independent power modules, and n is the number of linear motors , M is the number of phases of each linear motor, n and m are integers greater than or equal to 1, and each power module independently supplies power to one phase of a linear motor.
  • Each power supply module is divided into p groups of power supply units, and each group of power supply units is connected to the corresponding multiple inverter units in an inverter in the energy conversion sub-system (that is, the corresponding parallel connection in the following k inverter cabinets).
  • the inverter unit is connected, and p is an integer greater than or equal to 1.
  • Each group of sub-modules includes a battery pack array, a charging cabinet and an energy storage switch cabinet.
  • the battery pack array is composed of multiple lithium batteries in series and parallel.
  • the charging cabinet is a charging interface connected between the power grid and the battery pack array.
  • the energy storage switch cabinet is connected between the battery pack array and the inverter unit.
  • the energy conversion sub-system 2 adopts a centralized inverter arrangement scheme, which specifically includes n ⁇ m mutually independent inverters, where n is the number of linear motors, and m is each The number of linear motor phases, each inverter supplies power to one phase of a linear motor, each inverter is composed of k inverter cabinets in parallel, and each inverter cabinet is composed of p inverter units cascaded, namely Corresponding inverter units in the k inverter cabinets on the DC side are connected in parallel; after the inverter units in a single inverter cabinet on the AC side are cascaded, their output terminals are connected in parallel with the outputs of other inverter cabinets.
  • the first inverter unit of the first inverter cabinet, the first inverter unit of the second inverter cabinet...the first inverter of the kth inverter cabinet The units are connected in parallel,..., the p-th inverter unit of the first inverter cabinet, the p-th inverter unit of the second inverter cabinet...the p-th inverter unit in the kth inverter cabinet In parallel with each other; AC side (ie output end), the first inverter unit of the first inverter cabinet...the cascade connection between the p-th inverter unit,..., the first inverter of the k-th inverter cabinet Units...the p-th inverter units are cascaded, and the output terminals of the first inverter cabinet...the output terminals of the kth inverter cabinet are connected in parallel.
  • a single inverter unit is an H-bridge structure formed by q power tubes in parallel, and n, m, k, p, and q are integers greater than or equal to 1. Since the energy conversion subsystem has a gigavolt-ampere capacity, and the current single-tube performance of power electronic devices is limited, it can only be realized by cascading and paralleling.
  • the power device used in the example of this case is an IGBT, but the topology shown in Figure 3 is also applicable to other types of power devices.
  • the linear motor sub-system 3 includes n m-phase linear motors and a rocket adapter.
  • the rocket adapter is the interface between the linear motor mover and the rocket to match different types of rockets and transmit the electromagnetic force of the linear motor.
  • Each linear motor includes a stator (primary) and a mover (secondary) mounted on the stator.
  • the rocket adapter is respectively connected to the movers of n linear motors, the rocket is mounted on the rocket adapter, and the stators of the n linear motors An electromagnetic launch track is formed. As shown in Fig.
  • the stators of the n linear motors are evenly arranged along the circumferential direction of the rocket adapter, and n is an integer greater than or equal to 1, and further the stators of the n linear motors are arranged along the circumferential direction of the rocket adapter. Evenly and symmetrically; or as shown in Figure 5, the stators of the n linear motors are evenly arranged along the radial direction of the rocket adapter, and further the stators of the n linear motors are evenly and symmetrically arranged along the radial direction of the rocket adapter, n is even.
  • the length of the stator of the linear motor is a set value, which is about several kilometers long. Therefore, the stator of the linear motor is supplied in a segmented manner.
  • the angle between the stator of the linear motor and the horizontal plane is 0 to 90 degrees, preferably 30 degrees, 60 degrees Or 90 degrees, as shown in Figures 4 and 5, it is 90 degrees.
  • the variable frequency and voltage AC power is delivered to the motor stator through the energy conversion subsystem, which generates electromagnetic force on the motor mover, drives the rocket adapter, and pushes the rocket along the electromagnetic launch track to accelerate it to a speed of several Mach.
  • the control and maintenance subsystem 4 includes top-level control equipment 4-1, energy storage control equipment 4-2, energy conversion control equipment 4-3, linear motor control equipment 4-4, and energy storage monitoring Equipment 4-5, energy conversion monitoring equipment 4-6, linear motor monitoring equipment 4-7 and management and maintenance equipment 4-8, among which, top-level control equipment 4-1, energy storage control equipment 4-2, energy conversion control equipment 4 -3.
  • Linear motor control equipment 4-4 are connected by a control ring network, energy storage monitoring equipment 4-5, energy conversion monitoring equipment 4-6, linear motor monitoring equipment 4-7 and management and maintenance equipment 4-8 They are connected to each other through a healthy ring network, and the top-level control device 4-1 is separately connected to the management and maintenance device 4-8.
  • some equipment can be combined into one equipment.
  • energy storage monitoring equipment and energy conversion monitoring equipment have a single function and have a small computing load. They can usually be combined into one equipment. Similar situations should also be covered by this case. .
  • the top-level control equipment 4-1 and the management and maintenance equipment 4-8 adopt hardware solutions such as industrial computers, hardened computers, and PC104.
  • the control equipment and monitoring equipment of each sub-system adopt DSP, FPGA, PLC, PC104 and other hardware solutions to control the ring network and health
  • the ring network and the top-level control equipment and management and maintenance equipment are individually connected using industrial Ethernet, and the control equipment and monitoring equipment of each sub-system are connected to the corresponding sub-systems through the bus, serial port, and signal line.
  • the top-level control device 4-1 is used to provide a human-computer interaction control interface, and respectively send control instructions to the energy storage control device 4-2, the energy conversion control device 4-3 and the linear motor control device 4-4 to realize receiving, processing, and sending Various instructions control each sub-system to complete the work according to the predetermined process, with interlocking function to prevent misoperation.
  • the energy storage control device 4-2 is used to implement the charging and discharging control of the energy storage subsystem according to the received control instruction.
  • the energy conversion control device 4-3 is used to implement the energy conversion control of the energy conversion subsystem according to the received control instruction.
  • the linear motor control device 4-4 is used for real-time control of the mover motion of the linear motor in the linear motor sub-system and control of the stator segment power supply according to the received control instruction.
  • the energy storage monitoring equipment 4-5 is used to collect the working data of the energy storage subsystem (including data such as battery voltage and temperature) and upload it to the management and maintenance equipment. can
  • the quantity conversion monitoring equipment 4-6 is used to collect the working data (including current, voltage, temperature, etc.) of the energy conversion subsystem and upload it to the management and maintenance equipment.
  • Linear motor monitoring equipment 4-7 is used to collect the working data of the linear motor sub-system (including data such as temperature and mover position) and upload it to the management and maintenance equipment.
  • Management and maintenance equipment 4-8 is used to analyze, display, store and query the health status and information functions of each sub-system (energy storage sub-system, energy conversion sub-system and linear motor sub-system) according to the received data, and provide maintenance and test functions , To achieve functions such as device health management.
  • the present invention also provides a space launch method based on electromagnetic propulsion.
  • the process is: the above-mentioned space launch system is used to convert electrical energy into electromagnetic force, and the rocket is propelled by the electromagnetic force to move the rocket along the electromagnetic launch orbit. Accelerate to several Machs to achieve the launch of the rocket, thereby replacing the current primary engine of the traditional rocket.

Abstract

一种基于电磁推射的航天发射系统及方法。航天发射系统包括能量存储分系统(1)、能量变换分系统(2)、直线电机分系统(3)和控制维护分系统(4)。航天发射系统将电能转换为电磁力,通过电磁力推动火箭,将火箭沿着电磁发射轨道加速到一定速度,实现火箭的发射。

Description

一种基于电磁推射的航天发射系统及方法 技术领域
本发明属于电磁力推射物体的航天发射系统技术领域,具体涉及一种基于电磁推射的航天发射系统及方法。
背景技术
近年来随着技术水平不断进步,卫星的性能指标和应用范围大幅提高,尤其是200公斤以下小卫星在商业遥感、对地观测、物联网、卫星通信等领域得到广泛应用。未来的太空经济以地球轨道上密布的卫星星座为基础,实现天网地网的“天地一体化”无缝连接,为人类社会的智能化发展提供从信息感知到信息交互的坚实基础。欧美等发达国家都在大力发展太空经济,有实力的国家纷纷布局太空产业。据统计,目前全球已公布的小卫星发射需求高达数万颗,这还不包括未公布的星座组网计划及星座补充卫星的数量。
面对庞大的卫星发射需求,现有卫星发射技术难以提供高效、经济的服务,发射数量和周期无法保证,严重阻碍了卫星技术的大规模应用。自1957年前苏联发射世界上第一颗人造地球卫星以来,所有的卫星发射均采用单纯依靠火箭推力将卫星发射到所需空间轨道的方式,火箭的推力来源于燃烧化学燃料时喷射的尾流。这种传统卫星发射方式存在如下缺点:一是火箭需要在火箭发射台上点火,发射后需要对发射台进行维护,导致火箭发射准备及维护时间长,难以实现高频次快速发射;二是随着电子信息技术的不断进步,卫星成本越来越低,但火箭发射的成本却长期居高不下;三是传统火箭发射方式以大载荷、高轨道为设计目标,搭载的卫星只能适应发射条件,发射机会有限,发射灵活性严重不足。
发明内容
本发明的目的在于提供一种基于电磁推射的航天发射系统及方法,该电磁发射系统解决了传统火箭发射的三大问题:一是解决了传统火箭发射不能满足高频率连续发射的问题;二是单次火箭发射的成本比传统火箭发射降低约一个数量级;三是解决了传统卫 星发射机会有限、发射灵活性不足的问题。
本发明采用的技术方案是:一种基于电磁推射的航天发射系统,包括:
能量存储分系统,用于在推射火箭时,将存储的能量输送至能量变换分系统;
能量变换分系统,用于将能量存储分系统输送的能量变换为交流电输出至直线电机分系统;
直线电机分系统,用于接收能量变换分系统输出的交流电,产生电磁力,推动火箭在一定距离内加速到一定速度;
控制维护分系统,用于分别向能量存储分系统、能量变换分系统和直线电机分系统发出不同的控制指令,控制能量存储分系统、能量变换分系统和直线电机分系统按照预定程序执行。
进一步地,所述能量存储分系统还用于在推射火箭间歇,从供电系统吸收能量并储存能量。
进一步地,所述能量存储分系统包括n×m个相互独立的电源模块,n为直线电机台数,m为每台直线电机相数。
进一步地,每个电源模块分为p组电源单元,每组电源单元分别与能量变换分系统中一个逆变器中的对应逆变单元连接。
进一步地,所述每组电源单元包括电池组阵列和充电柜,所述充电柜为充电接口连接在供电系统与电池组阵列之间。
进一步地,所述每组电源单元还包括储能开关柜,储能开关柜连接在电池组阵列与逆变单元之间。
进一步地,所述能量变换分系统包括n×m个相互独立的逆变器,每个逆变器向一台直线电机的一相供电,n为直线电机台数,m为每台直线电机相数。
进一步地,所述每个逆变器由由k个逆变柜并联组成,每个逆变柜由p个逆变单元级联组成。
进一步地,所述直线电机分系统包括n台直线电机和火箭适配器,每台直线电机包括定子和安装于定子上的动子,所述火箭适配器分别与n台直线电机的动子相连。
进一步地,所述n台直线电机的定子沿火箭适配器的周向均匀布置。
进一步地,所述n台直线电机的定子沿火箭适配器的径向均匀布置,n为偶数。
进一步地,所述直线电机的定子与水平面之间的角度为0~90度。
进一步地,直线电机的定子采用分段的方式供电。
进一步地,所述控制维护分系统包括顶层控制设备、能量存储控制设备、能量变换控制设备、直线电机控制设备,所述顶层控制设备、能量存储控制设备、能量变换控制设备、直线电机控制设备之间通过控制环网的方式连接;
所述顶层控制设备用于提供人机交互控制接口,分别向能量存储控制设备、能量变换控制设备和直线电机控制设备发出控制指令;
所述能量存储控制设备用于根据接收的控制指令,实现对能量存储分系统的充电、放电控制;
所述能量变换控制设备用于根据接收的控制指令,实现对能量变换分系统的能量变换控制;
所述直线电机控制设备用于根据接收的控制指令,实现对直线电机分系统中直线电机的动子运动的实时控制、定子分段供电的控制。
进一步地,所述控制维护分系统还包括能量存储监测设备、能量变换监测设备、直线电机监测设备和管理维护设备,所述能量存储监测设备、能量变换监测设备、直线电机监测设备和管理维护设备之间相互通过健康环网的方式连接。
所述能量存储监测设备用于采集能量存储分系统的工作数据并上传给管理维护设备;
所述能量变换监测设备用于采集能量变换分系统的工作数据并上传给管理维护设备;
所述直线电机监测设备用于采集直线电机分系统的工作数据并上传给管理维护设备。
所述管理维护设备用于根据接收的数据分析、显示、存储和查询能量存储分系统、能量变换分系统及直线电机分系统的健康状态和信息,提供维护测试功能。
一种基于电磁推射的航天发射方法,过程为:将电能转换为电磁力,通过电磁力推动火箭,将火箭沿着电磁发射轨道加速到一定速度,实现火箭的发射。
进一步地,利用直流电能转换成交流电供给直线电机,再通过直线电机将电能转换为电磁力,通过电磁力推动火箭。
进一步地,多个直线电机通过火箭适配器推动火箭。
进一步地,通过直线电机分系统将电能转换为电磁力,所述直线电机分系统包括n台直线电机和火箭适配器,每台直线电机包括定子和安装于定子上的动子,n台直线电 机的定子形成所述电磁发射轨道,所述火箭适配器分别与n台直线电机的动子相连,所述火箭安装于火箭适配器上,所述n台直线电机的定子沿火箭适配器的周向对称布置;或所述n台直线电机的定子沿火箭适配器的径向对称布置,n为偶数。
更进一步地,所述直线电机的定子与水平面之间的角度为0~90度。
本发明的有益效果是:
(1)、由于采用了电磁发射系统产生电磁力推动火箭的冷发射方式,即火箭在离开发射台前不点火,发射到高空中之后再点火,可做到对发射台零损伤,发射台的恢复时间提高到数百秒,即使考虑发射载荷的转运时间,连续发射的间隔时间可提高到1小时以内,可达到在1个发射窗口时间段内多次发射火箭的目的,解决了火箭高频率连续发射的难题。
(2)、由于通过电磁发射系统在火箭点火前预先将火箭加速到数马赫,因此相比于传统火箭,取消了火箭的一级部分,极大的节省了火箭燃料,减轻了火箭重量、简化了火箭结构,大幅降低了火箭成本。
(3)、采用电磁发射系统发射卫星时,由于直线电机的电磁力连续可调,可根据卫星的实际需求,适配大中小不同的火箭,可适应更加宽泛的发射时间和轨道要求,发射方式灵活便捷。
(4)、由于采用冗余设计的方法,整个电磁发射系统具有冗余能力,保证当其中部分设备故障时仍能完成当次发射任务,使得电磁发射系统故障时火箭发射失败的风险大大降低,解决了可靠性问题。
附图说明
图1为本发明的原理示意图。
图2为本发明能量存储分系统与能量变换分系统的示意图。
图3为图2中方框A内的单个电源模块与单个逆变器的示意图。
图4为本发明直线电机分系统周向对称布置的示意图。
图5为本发明直线电机分系统径向对称布置的示意图。
图6为本发明控制维护分系统的示意图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以互相结合。
如图1所示,本发明提供一种基于电磁推射的航天发射系统,包括能量存储分系统1、能量变换分系统2、直线电机分系统3和管理维护分系统组成4,四者之间的关系主要分为能量流和信息流,其中能量流向为:在每次发射前供电系统将电能供给能量存储分系统1存储,在发射时能量存储分系统1将电能供给能量变换分系统2,并由能量变换分系统2将调制后的电能供给直线电机分系统3;信息流向为:控制维护分系统4通过冗余分布式工业以太网络与其它三大分系统相连,控制能量流的各装置按预定程序执行,并可实时诊断其它三大分系统以及自身的健康状态。各分系统的功能具体如下:
能量存储分系统1,用于根据控制指令在推射火箭间歇,从供电系统吸收能量并以较长的时间储存能量;用于根据接收的控制指令在推射火箭时,将存储的能量输送至能量变换分系统2。
能量变换分系统2,用于根据控制指令将能量存储分系统1输送的能量变换为所需要的调频调压的交流电输出至直线电机分系统3。
直线电机分系统3,用于根据控制指令接受能量变换分系统2输出的交流电,产生电磁力,推动火箭在一定距离内加速到设定速度。
控制维护分系统4,用于分别向能量存储分系统1、能量变换分系统2和直线电机分系统3发出不同的控制指令,控制能量存储分系统1、能量变换分系统2和直线电机分系统3按照预定程序执行。控制维护分系统4与其它三个分系统通过网络连接,主要是提供操作人员和系统装置的人机接口,控制各分系统按照预定流程完成作业,并对各分系统设备的状态进行监测和管理。
上述方案中,如图2、图3所示,能量存储分系统1的储能元件采用高安全性大倍率放电锂电池方案,具体包括n×m个相互独立的电源模块,n为直线电机台数,m为每台直线电机相数,n和m均为大于等于1的整数,每个电源模块独立给一台直线电机的其中一相供电。每个电源模块又分为p组电源单元,每组电源单元分别与能量变换分 系统中一个逆变器中的对应的多个逆变单元(即下面的k个逆变柜中对应的并联的逆变单元)连接,p为大于等于1的整数。每组子模块包括电池组阵列、充电柜和储能开关柜,电池组阵列采用多块锂电池以串、并联的方式组成,所述充电柜为充电接口连接在电网与电池组阵列之间,所述储能开关柜连接在电池组阵列与逆变单元之间。在推射火箭间隙,由供电系统通过充电柜向能量存储分系统小功率充电;推射火箭时,能量存储分系统通过能量变换分系统向直线电机提供大功率的电能。
上述方案中,如图2、图3所示,能量变换分系统2采用集中式逆变器布置方案,具体包括n×m个相互独立的逆变器,n为直线电机台数,m为每台直线电机相数,每个逆变器向一台直线电机的一相供电,每个逆变器由k台逆变柜并联组成,每台逆变柜由p个逆变单元级联组成,即直流侧k台逆变柜中对应的逆变单元之间并联;交流侧单台逆变柜中的逆变单元之间级联后,其输出端再与其他逆变柜的输出一起并联。如直流侧(即输入端),第1台逆变柜的第一个逆变单元、第二台逆变柜的第一个逆变单元…第k台逆变柜中的第一个逆变单元之间并联,…,第1台逆变柜的第p个逆变单元、第二台逆变柜的第p个逆变单元…第k台逆变柜中的第p个逆变单元之间并联;交流侧(即输出端),第1台逆变柜的第一个逆变单元…第p个逆变单元之间级联,…,第k台逆变柜的第一个逆变单元…第p个逆变单元之间级联,第1台逆变柜的输出端…第k台逆变柜的输出端之间并联。单个逆变单元为由q个功率管并联形成的H桥式的结构,n、m、k、p和q为大于等于1的整数。能量变换分系统由于容量为吉伏安级,而目前电力电子器件单管性能有限,故只能采用级联加并联的方式才可能实现。本案示例采用的功率器件为IGBT,但图3所示的拓扑方案同样适应于其它类型的功率器件。
上述方案中,直线电机分系统3包括n台m相直线电机和火箭适配器,火箭适配器为直线电机动子与火箭的接口,用以匹配不同型号的火箭以及传递直线电机电磁力。每台直线电机包括定子(初级)和安装于定子上的动子(次级),所述火箭适配器分别与n台直线电机的动子相连,火箭安装于火箭适配器上,n台直线电机的定子形成电磁发射轨道,如图4所示,所述n台直线电机的定子沿火箭适配器的周向均匀布置,n为大于等于1的整数,进一步地n台直线电机的定子沿火箭适配器的周向均匀且对称布置;或如图5所示,所述n台直线电机的定子沿火箭适配器的径向均匀布置,进一步地n台直线电机的定子沿火箭适配器的径向均匀且对称布置,n为偶数。直线电机的定子长度为 设定值,大约有数公里长,因此直线电机的定子采用分段的方式供电,直线电机的定子与水平面之间的角度为0~90度,优选为30度、60度或90度,图4、图5所示的即为90度。系统工作时,通过能量变换分系统向电机定子输送变频变压的交流电,在电机动子上产生电磁力,带动火箭适配器,沿着电磁发射轨道推动火箭,将其加速到数马赫的速度。
上述方案中,如图6所示,控制维护分系统4包括顶层控制设备4-1、能量存储控制设备4-2、能量变换控制设备4-3、直线电机控制设备4-4、能量存储监测设备4-5、能量变换监测设备4-6、直线电机监测设备4-7和管理维护设备4-8,其中,顶层控制设备4-1、能量存储控制设备4-2、能量变换控制设备4-3、直线电机控制设备4-4之间通过控制环网的方式连接,能量存储监测设备4-5、能量变换监测设备4-6、直线电机监测设备4-7和管理维护设备4-8之间相互通过健康环网的方式连接,顶层控制设备4-1另外单独与管理维护设备4-8相连。另外值得指出某些设备可合并为一个设备,例如能量存储监测设备和能量变换监测设备功能比较单一,运算负荷不大,通常可合并为一个设备,类似的情况也应该在本案的保护范围之内。
顶层控制设备4-1和管理维护设备4-8采用工控机、加固计算机、PC104等硬件方案,各分系统控制设备和监测设备采用DSP、FPGA、PLC、PC104等硬件方案,控制环网、健康环网以及顶层控制设备和管理维护设备单独连接采用工业以太网,各分系统控制设备和监测设备通过总线、串口、信号线等与相应的分系统相连。
顶层控制设备4-1用于提供人机交互控制接口,分别向能量存储控制设备4-2、能量变换控制设备4-3和直线电机控制设备4-4发出控制指令,实现接受、处理、发送各种指令,控制各分系统按照预定流程完成作业,具有互锁功能,可防止误操作。能量存储控制设备4-2用于根据接收的控制指令,实现对能量存储分系统的充电、放电控制。能量变换控制设备4-3用于根据接收的控制指令,实现对能量变换分系统的能量变换控制。直线电机控制设备4-4用于根据接收的控制指令,实现对直线电机分系统中直线电机的动子运动的实时控制、定子分段供电的控制。能量存储监测设备4-5用于采集能量存储分系统的工作数据(包括电池电压、温度等数据)并上传给管理维护设备。能
量变换监测设备4-6用于采集能量变换分系统的工作数据(包括电流、电压、温度等数据)并上传给管理维护设备。直线电机监测设备4-7用于采集直线电机分系统的工 作数据(包括温度、动子位置等数据)并上传给管理维护设备。管理维护设备4-8用于根据接收的数据进行分析、显示、存储和查询各分系统(能量存储分系统、能量变换分系统及直线电机分系统)的健康状态和信息功能,提供维护测试功能,实现装置的健康管理等功能。
基于上述的航天发射系统,本发明还提供一种基于电磁推射的航天发射方法,过程为:采用上述航天发射系统将电能转换为电磁力,通过电磁力推动火箭,将火箭沿着电磁发射轨道加速到数马赫,实现火箭的发射,从而取代目前传统火箭的一级发动机。
本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (20)

  1. 一种基于电磁推射的航天发射系统,其特征在于,包括:
    能量存储分系统(1),用于在推射火箭时,将存储的能量输送至能量变换分系统(2);
    能量变换分系统(2),用于将能量存储分系统输送的能量变换为交流电输出至直线电机分系统(3);
    直线电机分系统(3),用于接收能量变换分系统(2)输出的交流电,产生电磁力,推动火箭在一定距离内加速到一定速度;
    控制维护分系统(4),用于分别向能量存储分系统(1)、能量变换分系统(2)和直线电机分系统(3)发出不同的控制指令,控制能量存储分系统(1)、能量变换分系统(2)和直线电机分系统(3)按照预定程序执行。
  2. 根据权利要求1所述的基于电磁推射的航天发射系统,其特征在于:所述能量存储分系统(1)还用于在推射火箭间歇,从供电系统吸收能量并储存能量。
  3. 根据权利要求1或2所述的基于电磁推射的航天发射系统,其特征在于:所述能量存储分系统(1)包括n×m个相互独立的电源模块,n为直线电机台数,m为每台直线电机相数。
  4. 根据权利要求3所述的基于电磁推射的航天发射系统,其特征在于:每个电源模块分为p组电源单元,每组电源单元分别与能量变换分系统中一个逆变器中的对应逆变单元连接。
  5. 根据权利要求4所述的基于电磁推射的航天发射系统,其特征在于:所述每组电源单元包括电池组阵列和充电柜,所述充电柜为充电接口连接在供电系统与电池组阵列之间。
  6. 根据权利要求5所述的基于电磁推射的航天发射系统,其特征在于:所述每组电源单元还包括储能开关柜,储能开关柜连接在电池组阵列与逆变单元之间。
  7. 根据权利要求1所述的基于电磁推射的航天发射系统,其特征在于:所述能量变换分系统(2)包括n×m个相互独立的逆变器,每个逆变器向一台直线电机的一相供电,n为直线电机台数,m为每台直线电机相数。
  8. 根据权利要求7所述的基于电磁推射的航天发射系统,其特征在于:所述每个逆变器由k个逆变柜并联组成,每个逆变柜由p个逆变单元级联组成。
  9. 根据权利要求1所述的基于电磁推射的航天发射系统,其特征在于:所述直线电机分系统(3)包括n台直线电机和火箭适配器,每台直线电机包括定子和安装于定子上的动子,所述火箭适配器分别与n台直线电机的动子相连。
  10. 根据权利要求9所述的基于电磁推射的航天发射系统,其特征在于:所述n台直线电机的定子沿火箭适配器的周向均匀布置。
  11. 根据权利要求9所述的基于电磁推射的航天发射系统,其特征在于:所述n台直线电机的定子沿火箭适配器的径向均匀布置,n为偶数。
  12. 根据权利要求9-11所述的任意一项基于电磁推射的航天发射系统,其特征在于:所述直线电机的定子与水平面之间的角度为0~90度。
  13. 根据权利要求9-11所述的任意一项基于电磁推射的航天发射系统,其特征在于:直线电机的定子采用分段的方式供电。
  14. 根据权利要求1所述的基于电磁推射的航天发射系统,其特征在于:所述控制维护分系统(4)包括顶层控制设备、能量存储控制设备、能量变换控制设备、直线电机控制设备,所述顶层控制设备、能量存储控制设备、能量变换控制设备、直线电机控制设备之间通过控制环网的方式连接;
    所述顶层控制设备用于提供人机交互控制接口,分别向能量存储控制设备、能量变换控制设备和直线电机控制设备发出控制指令;
    所述能量存储控制设备用于根据接收的控制指令,实现对能量存储分系统的充电、放电控制;
    所述能量变换控制设备用于根据接收的控制指令,实现对能量变换分系统的能量变换控制;
    所述直线电机控制设备用于根据接收的控制指令,实现对直线电机分系统中直线电机的动子运动的实时控制、定子分段供电的控制。
  15. 根据权利要求1所述的基于电磁推射的航天发射系统,其特征在于:所述控制维护分系统(4)还包括能量存储监测设备、能量变换监测设备、直线电机监测设备和管理维护设备,所述能量存储监测设备、能量变换监测设备、直线电机监测设备和管理维护设备之间相互通过健康环网的方式连接,
    所述能量存储监测设备用于采集能量存储分系统的工作数据并上传给管理维护设备;
    所述能量变换监测设备用于采集能量变换分系统的工作数据并上传给管理维护设备;
    所述直线电机监测设备用于采集直线电机分系统的工作数据并上传给管理维护设备。
    所述管理维护设备用于根据接收的数据分析、显示、存储和查询能量存储分系统、能量变换分系统及直线电机分系统的健康状态和信息,提供维护测试功能。
  16. 一种基于电磁推射的航天发射方法,其特征在于:将电能转换为电磁力,通过电磁力推动火箭,将火箭沿着电磁发射轨道加速到一定速度,实现火箭的发射。
  17. 根据权利要求16所述的基于电磁推射的航天发射方法,其特征在于:利用直流电能转换成交流电供给直线电机,再通过直线电机将电能转换为电磁力,通过电磁力推动火箭。
  18. 根据权利要求16所述的基于电磁推射的航天发射方法,其特征在于:多个直线电机通过火箭适配器推动火箭。
  19. 根据权利要求16-18所述的任意一项基于电磁推射的航天发射方法,其特征在于:通过直线电机分系统将电能转换为电磁力,所述直线电机分系统包括n台直线电机和火箭适配器,每台直线电机包括定子和安装于定子上的动子,n台直线电机的定子形成所述电磁发射轨道,所述火箭适配器分别与n台直线电机的动子相连,所述火箭安装于火箭适配器上,所述n台直线电机的定子沿火箭适配器的周向均匀布置;或所述n台直线电机的定子沿火箭适配器的径向均匀布置,n为偶数。
  20. 根据权利要求19所述的基于电磁推射的航天发射方法,其特征在于:直线电机的定子与水平面之间的角度为0~90度。
PCT/CN2020/086022 2019-07-24 2020-04-22 一种基于电磁推射的航天发射系统及方法 WO2021012729A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021577441A JP7251845B2 (ja) 2019-07-24 2020-04-22 電磁推進に基づく宇宙発射システム及び方法
KR1020227001407A KR20220020381A (ko) 2019-07-24 2020-04-22 전자기 푸싱에 기반한 우주 발사 시스템 및 방법
EP20843573.5A EP4005933A4 (en) 2019-07-24 2020-04-22 SPACE LAUNCH SYSTEM AND PROCEDURES BASED ON ELECTROMAGNETIC THRUST
US17/580,727 US20220144456A1 (en) 2019-07-24 2022-01-21 Space launch system and method through electromagnetic pushing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910671431.3A CN110406698B (zh) 2019-07-24 2019-07-24 一种基于电磁推射的航天发射系统及方法
CN201910671431.3 2019-07-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/580,727 Continuation-In-Part US20220144456A1 (en) 2019-07-24 2022-01-21 Space launch system and method through electromagnetic pushing

Publications (1)

Publication Number Publication Date
WO2021012729A1 true WO2021012729A1 (zh) 2021-01-28

Family

ID=68362874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086022 WO2021012729A1 (zh) 2019-07-24 2020-04-22 一种基于电磁推射的航天发射系统及方法

Country Status (6)

Country Link
US (1) US20220144456A1 (zh)
EP (1) EP4005933A4 (zh)
JP (1) JP7251845B2 (zh)
KR (1) KR20220020381A (zh)
CN (1) CN110406698B (zh)
WO (1) WO2021012729A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517749A (zh) * 2021-12-29 2022-05-20 中国航天系统科学与工程研究院 一种运载火箭自动点火控制系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110406698B (zh) * 2019-07-24 2020-05-08 中国人民解放军海军工程大学 一种基于电磁推射的航天发射系统及方法
CN113054739B (zh) * 2021-03-12 2022-04-01 上海华翌电气有限公司 一种应急逆变电源

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299764A (zh) * 1999-12-13 2001-06-20 徐志军 发射台助推火箭发射法
US20070234893A1 (en) * 2006-04-07 2007-10-11 Lockheed Martin Corporation Augmented EM Propulsion System
US20080006144A1 (en) * 2006-07-05 2008-01-10 Lockheed Martin Corporation Unitary Electro Magnetic Coil Launch Tube
CN205081480U (zh) * 2015-09-17 2016-03-09 比亚迪股份有限公司 电池储能系统
CN109297356A (zh) * 2018-11-02 2019-02-01 中国运载火箭技术研究院 一种运载火箭电磁发射系统和方法
CN110406698A (zh) * 2019-07-24 2019-11-05 中国人民解放军海军工程大学 一种基于电磁推射的航天发射系统及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024137A (en) * 1989-11-13 1991-06-18 Schroeder Jon M Fuel assisted electromagnetic launcher
JP2861569B2 (ja) * 1992-01-09 1999-02-24 日産自動車株式会社 飛翔体の加速装置
US7549365B2 (en) * 2003-08-01 2009-06-23 Lockheed Martin Corporation Electromagnetic missile launcher
JP4111903B2 (ja) 2003-10-20 2008-07-02 東海旅客鉄道株式会社 飛翔体発射装置および飛翔体発射方法
US7444919B1 (en) * 2006-08-29 2008-11-04 The United States Of America As Represented By The Secretary Of The Navy Tubular linear synchronous motor gun
CN107539493A (zh) * 2017-04-07 2018-01-05 程建评 一种用山体做支架、尽自然本力为动力的航空发射器
CN106921280B (zh) * 2017-05-05 2019-01-08 哈尔滨工业大学 柔性脉冲动力耦合系统
CN109445308B (zh) 2018-12-05 2022-09-06 中国科学院电工研究所 基于rt-lab的高速磁悬浮列车半实物仿真平台
CN209776831U (zh) * 2019-04-08 2019-12-13 中国人民解放军国防科技大学 一种无人机连发型电磁弹射系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299764A (zh) * 1999-12-13 2001-06-20 徐志军 发射台助推火箭发射法
US20070234893A1 (en) * 2006-04-07 2007-10-11 Lockheed Martin Corporation Augmented EM Propulsion System
US20080006144A1 (en) * 2006-07-05 2008-01-10 Lockheed Martin Corporation Unitary Electro Magnetic Coil Launch Tube
CN205081480U (zh) * 2015-09-17 2016-03-09 比亚迪股份有限公司 电池储能系统
CN109297356A (zh) * 2018-11-02 2019-02-01 中国运载火箭技术研究院 一种运载火箭电磁发射系统和方法
CN110406698A (zh) * 2019-07-24 2019-11-05 中国人民解放军海军工程大学 一种基于电磁推射的航天发射系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517749A (zh) * 2021-12-29 2022-05-20 中国航天系统科学与工程研究院 一种运载火箭自动点火控制系统
CN114517749B (zh) * 2021-12-29 2023-12-12 中国航天系统科学与工程研究院 一种运载火箭自动点火控制系统

Also Published As

Publication number Publication date
JP2022542783A (ja) 2022-10-07
KR20220020381A (ko) 2022-02-18
JP7251845B2 (ja) 2023-04-04
CN110406698A (zh) 2019-11-05
EP4005933A4 (en) 2023-08-23
CN110406698B (zh) 2020-05-08
EP4005933A1 (en) 2022-06-01
US20220144456A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
WO2021012729A1 (zh) 一种基于电磁推射的航天发射系统及方法
CN102185333B (zh) 双向变流器在微电网中实现并离网双模式运行的方法
CN202057733U (zh) 变桨距系统的超级电容组状态监测系统
CN212114874U (zh) 模块化能量存储系统
CN209046262U (zh) 联合储能调频系统
CN105515209A (zh) 一种微电网混合储能系统及其控制方法
Valente et al. Design methodology and parametric design study of the on-board electrical power system for hybrid electric aircraft propulsion
EP3582364A1 (en) Method and apparatus for uninterrupted power transfer in a power distribution system
CN114337349B (zh) 一种用于模拟太阳风的脉冲功率源
CN105438483A (zh) 一种适用于太阳能飞行器的动力总成及其输出控制方法
Zhao et al. Feasibility of fast restoration of power systems by micro‐grids
Spagnolo et al. Smart controller design for safety operation of the MEA electrical distribution system
Santhoshi et al. A novel multiport bidirectional dual active bridge dc-dc converter for renewable power generation systems
Daneshvardehnavi et al. A case study for connecting bidirectional PEV station for reactive power support to the GLEAMM prototype microgrid
Elbrecht et al. 1U CubeSat design for increased power generation
CN104539223A (zh) 一种家用太阳能风能供电系统
Akhter et al. Enhanced multi-terminal HVDC grid management for reliable AC network integration
Zhang et al. Research on wireless power transfer in modular spacecraft
CN110979616A (zh) 一种基于三电系统的纯电动船动力总成系统
Herwald et al. Development of A Load Control Algorithm to Enhance Energy Sustainability for the International Space Station
Bai et al. Equivalent Consumption Minimization Strategy based on fuzzy logic control for the energy management of hybrid Unmanned Aerial Vehicle
Ding et al. Distributed Cooperative Control of Flywheel Energy Storage Systems for Power Distribution
Zhao et al. Research on Distributed Measurement and Control System Based on FlexRay Bus
Wang et al. A fault-tolerant method of the second-use batteries at an energy storage power station
Song et al. Study on Hardware-in-the-loop-simulation of Wind Power Based on dSPACE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021577441

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227001407

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020843573

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020843573

Country of ref document: EP

Effective date: 20220224