WO2021012724A1 - 一种协同调度的方法和相关装置 - Google Patents

一种协同调度的方法和相关装置 Download PDF

Info

Publication number
WO2021012724A1
WO2021012724A1 PCT/CN2020/085015 CN2020085015W WO2021012724A1 WO 2021012724 A1 WO2021012724 A1 WO 2021012724A1 CN 2020085015 W CN2020085015 W CN 2020085015W WO 2021012724 A1 WO2021012724 A1 WO 2021012724A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
carrier set
transmission rate
target
target carrier
Prior art date
Application number
PCT/CN2020/085015
Other languages
English (en)
French (fr)
Inventor
吴国亮
董伟
焦飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20844239.2A priority Critical patent/EP3996442A4/en
Publication of WO2021012724A1 publication Critical patent/WO2021012724A1/zh
Priority to US17/580,803 priority patent/US20220141840A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0053Interference mitigation or co-ordination of intercell interference using co-ordinated multipoint transmission/reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures

Definitions

  • This application relates to the field of communication technologies, and in particular to a method and related devices for collaborative scheduling.
  • the current method is to combine two cells with co-frequency interference at each frequency point.
  • the above method solves the problem of large co-channel interference and poor signal quality of overlapping users between cells, it also brings other problems: before the two cells are merged, the same frequency resources can be used at the same time in the two cells After the cell is merged, the two terminals cannot use the same frequency resources at the same time, that is, the use of frequency resources is limited, which will cause the average transmission rate of the terminals in the multi-frequency ultra-dense network to decrease, especially In the case of heavy multi-frequency ultra-dense network load.
  • the embodiments of the present application provide a coordinated scheduling method and related devices, which can reduce co-frequency interference while ensuring the average transmission rate of terminals in a multi-frequency ultra-dense network.
  • the base station In a multi-frequency ultra-dense network, on the premise that the capacity layer and the coverage layer are divided according to the frequency points, the base station will determine the respective frequency points of the capacity layer cell and the cover layer cell;
  • the coverage layer includes cells obtained by combining at least two cells with co-frequency interference, which can reduce the co-frequency interference of the current network; the cells in the capacity layer are all cells without cell combination, which can ensure the current network The overall capacity.
  • the base station also obtains network information of the first terminal under at least one carrier set, where the carrier set includes at least one carrier, and each carrier set corresponds to a cell;
  • the division of coverage layer and capacity layer can reduce co-channel interference while ensuring the overall capacity of the current network, so that the average transmission rate of terminals in a multi-frequency ultra-dense network can be optimized, and the current network can be optimized according to network information to further improve multi-frequency The average transmission rate of the terminal in the ultra-dense network.
  • Optimizing the current network based on network information includes:
  • the base station determines the target carrier set of the first terminal according to the network information
  • the base station schedules the first terminal to the target carrier set, so that the first terminal is located in a target cell corresponding to the target carrier set, and the target cell is a cell of a capacity layer or a cell of an overlay layer.
  • the base station optimizes the current network by means of carrier scheduling, and can schedule the first terminal to a target carrier set with better signal quality and transmission rate, and the scheduling of the carrier will place the first terminal in the target cell, thereby balancing the load between cells.
  • the embodiments of the present application also provide the second implementation manner of the first aspect.
  • scheduling the first terminal to the target carrier set so that the first terminal is located in the target cell corresponding to the target carrier set includes:
  • the base station schedules the first terminal from the co-frequency interference overlap area in the capacity layer to the target cell corresponding to the target carrier set of the overlay layer, and realizes the cross-layer handover of the first terminal to balance the load between the overlay layer and the capacity layer. Make full use of the frequency resources of the capacity layer and the overlay layer to increase the average transmission rate of the terminals in the current network.
  • the embodiments of the present application also provide a third implementation manner of the first aspect.
  • Scheduling the first terminal to the target carrier set so that the first terminal is located in the target cell corresponding to the target carrier set includes:
  • the first terminal is scheduled from the cell of the coverage layer to the target cell corresponding to the target set of the capacity layer, and cross-layer handover of the first terminal is also realized to balance the load between the coverage layer and the capacity layer, and make full use of the capacity layer and coverage Layer frequency resources, thereby increasing the average transmission rate of terminals in the current network.
  • the embodiments of the present application also provide the fourth implementation manner of the first aspect.
  • scheduling the first terminal to the target carrier set so that the first terminal is located in the target cell corresponding to the target carrier set includes:
  • the first terminal is scheduled from the capacity layer to the target cell corresponding to the target carrier set of the capacity layer, so that the first terminal can switch between different cells in the capacity layer.
  • the embodiments of the present application also provide the fifth implementation manner of the first aspect.
  • Scheduling the first terminal to the target carrier set so that the first terminal is located in the target cell corresponding to the target carrier set includes:
  • Scheduling the first terminal from the cell of the coverage layer to the target cell corresponding to the target set of the coverage layer realizes the handover of the first terminal between different cells in the coverage layer.
  • determining the target carrier set of the first terminal according to network information includes:
  • the base station determines the transmission rate set of the first terminal according to the network information, and the transmission rate set includes the transmission rate of the first terminal under each carrier set;
  • the base station determines the target carrier set of the first terminal according to the transmission rate set.
  • the base station determines the target carrier set according to the transmission rate, so that the scheduled transmission rate of the first terminal can be guaranteed.
  • the embodiments of the present application also provide the seventh implementation manner of the first aspect, when the first terminal is an already connected terminal;
  • Determining the target carrier set of the first terminal according to the transmission rate set includes:
  • the base station determines the carrier set corresponding to the largest transmission rate in the transmission rate set as the target carrier set of the first terminal;
  • the base station determines the carrier set corresponding to the current transmission rate as the target carrier set of the first terminal.
  • the base station compares the transmission rate in the transmission rate set with the current transmission rate, and when there is a transmission rate larger than the current transmission rate in the carrier set, the first terminal is scheduled to the carrier set corresponding to the larger transmission rate. When there is no transmission rate greater than the current transmission rate in the current transmission rate, maintaining the first terminal at the carrier set corresponding to the current transmission rate helps ensure the transmission rate of the first terminal.
  • the embodiments of the present application also provide the eighth implementation manner of the first aspect, when the first terminal is a terminal to be accessed;
  • Determining the target carrier set of the first terminal according to the transmission rate set includes:
  • the base station determines the carrier set corresponding to the largest transmission rate in the transmission rate set as the target carrier set of the first terminal to ensure that the transmission rate can reach the maximum after the first terminal accesses.
  • scheduling the first terminal to the target carrier set includes:
  • the base station preferentially schedules the second terminal to the target carrier set, and the second terminal is the first terminal with the largest ratio of the transmission rate to the current transmission rate in order to obtain the maximum benefit of one scheduling.
  • scheduling the first terminal to the target carrier set includes:
  • the base station preferentially schedules the first terminal with the largest transmission rate under the target carrier set to ensure that more first terminals have a larger transmission rate.
  • a second aspect of the embodiments of the present application provides a coordinated scheduling device, including:
  • the determining unit is used to determine the frequency points corresponding to the capacity layer cell and the overlay layer cell;
  • An obtaining unit configured to obtain network information of the first terminal under at least one carrier set, the carrier set includes at least one carrier, and each carrier set corresponds to a cell;
  • the coverage layer includes cells obtained by combining at least two cells with co-frequency interference, and the cells in the capacity layer are all cells that have not been combined.
  • the embodiments of the present application also provide the first implementation manner of the second aspect, and the processing unit is configured to:
  • the first terminal is scheduled to the target carrier set, so that the first terminal is located in a target cell corresponding to the target carrier set, and the target cell is a cell of a capacity layer or a cell of an overlay layer.
  • the embodiments of the present application also provide the second implementation manner of the second aspect.
  • the processing unit is used to:
  • the first terminal is scheduled from the co-channel interference overlap area in the capacity layer to the target cell corresponding to the target carrier set of the coverage layer.
  • the embodiments of the present application also provide a third implementation manner of the second aspect.
  • the processing unit is used for:
  • the first terminal is scheduled from the cell of the coverage layer to the target cell corresponding to the target set of the capacity layer.
  • the embodiments of the present application also provide the fourth implementation manner of the second aspect.
  • the processing unit is used to:
  • the first terminal is scheduled from the capacity layer to the target cell corresponding to the target carrier set of the capacity layer, so that the first terminal can switch between different cells in the capacity layer.
  • the embodiments of this application also provide the fifth implementation manner of the second aspect.
  • the processing unit is used for:
  • Scheduling the first terminal from the cell of the coverage layer to the target cell corresponding to the target set of the coverage layer realizes the handover of the first terminal between different cells in the coverage layer.
  • the processing unit is used for:
  • the target carrier set of the first terminal is determined according to the transmission rate set.
  • the embodiments of the present application also provide the seventh implementation manner of the second aspect, when the first terminal is an already connected terminal;
  • Determining the target carrier set of the first terminal according to the transmission rate set includes:
  • the base station determines the carrier set corresponding to the largest transmission rate in the transmission rate set as the target carrier set of the first terminal;
  • the base station determines the carrier set corresponding to the current transmission rate as the target carrier set of the first terminal.
  • the embodiments of the present application also provide the eighth implementation manner of the second aspect, when the first terminal is a terminal to be accessed;
  • Determining the target carrier set of the first terminal according to the transmission rate set includes:
  • the base station determines the carrier set corresponding to the largest transmission rate in the transmission rate set as the target carrier set of the first terminal.
  • scheduling the first terminal to the target carrier set includes:
  • the base station preferentially schedules the second terminal to the target carrier set, and the second terminal is the first terminal with the largest ratio of the transmission rate to the current transmission rate.
  • scheduling the first terminal to the target carrier set includes:
  • the base station preferentially schedules the first terminal with the largest transmission rate under the target carrier set.
  • a third aspect of the embodiments of the present application provides a communication device, including: at least one processor and a power supply circuit, the power supply circuit is used to supply power to the processor, and related program instructions are executed in the at least one processor , So that the communication device implements the method described in any one of the first aspect of the present application.
  • the fourth aspect of the embodiments of the present application provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method according to any one of the first aspects of the present application.
  • the fifth aspect of the embodiments of the present application provides a computer program product.
  • the computer program product includes computer software instructions that can be loaded by a processor to implement the coordinated scheduling method of any one of the first aspects described above. The process.
  • the two interfering cells are merged, so that the first terminal in the coverage layer has less co-channel interference, higher signal quality, and the transmission rate will not be too low due to co-channel interference; in the capacity layer, there is no combination of cells. Therefore, when the first terminal is located in a cell of the capacity layer, the transmission rate will not be reduced due to limited frequency resources; therefore, the coverage layer and the capacity layer can cooperate to reduce the current network interference while ensuring the current The overall capacity of the network can thus ensure the average transmission rate of the terminals in the current network.
  • optimizing the current network based on network information can further increase the average transmission rate of the terminals in the current network.
  • Figure 1 is a schematic diagram of the network architecture of a multi-frequency ultra-dense network
  • Figure 2 is a schematic diagram of cell merging
  • FIG. 3 is a schematic diagram of another network architecture of a multi-frequency super dense network provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of an embodiment of a collaborative scheduling method provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of an embodiment of target carrier set scheduling in an embodiment of this application.
  • FIG. 6 is a schematic diagram of another embodiment of target carrier set scheduling in an embodiment of this application.
  • FIG. 7 is a schematic diagram of another embodiment of target carrier set scheduling in an embodiment of this application.
  • FIG. 8 is a schematic diagram of an embodiment of a coordinated scheduling apparatus provided by an embodiment of the application.
  • Fig. 9 is a schematic diagram of an embodiment of a communication device provided by an embodiment of the application.
  • the embodiment of the present application provides a coordinated scheduling method, which can reduce co-frequency interference while ensuring the average transmission rate of terminals in a multi-frequency ultra-dense network.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple Address
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE-FDD frequency division duplex LTE
  • LTE-TDD time division duplex LTE
  • UMTS universal mobile telecommunications system
  • OFDM orthogonal frequency division multiplexing
  • the embodiments of the present application can be applied to the network architecture of the multi-frequency ultra-dense network shown in FIG. 1, and the network architecture includes multiple frequency points, where the frequency point refers to the number of the center frequency of the used frequency band.
  • the frequency point refers to the number of the center frequency of the used frequency band.
  • Figure 1 shows five cells in a multi-frequency ultra-dense network. These five cells can share one frequency point, two frequency points, or three frequency points. Taking two frequency points as an example here, assuming that five cells use two frequency points in total, three of the cells can use one frequency point, and the other two cells can use another frequency point.
  • one base station corresponds to one cell. It should be understood that in a multi-frequency ultra-dense network, there can be multiple cells under one base station, and The frequency points of all cells can be the same or different.
  • the base station may be a macro base station, a micro base station, a pico base station, a small station, a relay station, etc. Multiple base stations can support the network of one or more technologies mentioned above, or the future evolution network.
  • the base station may include one or more co-site or non co-site transmission receiving points (Transmission Receiving Point, TRP).
  • TRP Transmission Receiving Point
  • the terminals involved in the embodiments of this application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem.
  • the terminal can be a mobile station (MS), subscriber unit (subscriber unit), cellular phone, smart phone, wireless data card, or personal digital assistant (PDA) computer , Tablet computers, wireless modems (modem), handheld devices (handset), laptop computers (laptop computers), machine type communication (machine type communication, MTC) terminals, etc.
  • the embodiment of the present application layered the multi-frequency ultra-dense networking, and specifically divided the multi-frequency ultra-dense networking into an overlay layer and a capacity layer.
  • the specific method of layering the multi-frequency ultra-dense network is to select some frequency points from all the frequency points of the multi-frequency ultra-dense network as the overlay layer, and the remaining frequency points as the capacity layer.
  • the coverage layer the two cells with co-frequency interference to a certain degree are merged, while in the capacity layer, cells with co-frequency interference are not merged.
  • an embodiment of the present application provides another schematic diagram of a network architecture of a multi-frequency ultra-dense networking.
  • this network architecture includes three frequency points F1, F2, and F3, and also includes two base stations.
  • Each base station has three cells, and the frequency points of the three cells under each base station are F1, F2, and F3.
  • the F1 frequency point is selected as the coverage layer, and the F2 and F3 frequency points are selected as the capacity layer.
  • the overlay layer there is co-frequency interference between the cells of the two base stations, so the cells of the two base stations are combined to obtain a cell as shown in FIG. 3.
  • the capacity layer there are four cells. It can be seen from Figure 3 that the cells of the two base stations under the F2 frequency point have overlapping areas, that is, the two cells have co-frequency interference, but the two cells are not affected. Perform cell consolidation.
  • the overlay layer can meet the requirements of reducing the co-frequency interference of the multi-frequency ultra-dense network, and the capacity layer ensures the capacity of the multi-frequency ultra-dense network, avoiding the reduction of the terminal transmission rate due to resource constraints. It can increase the average transmission rate of multi-frequency ultra-dense networking terminals.
  • an embodiment of the present application provides a coordinated scheduling method, which will be described in detail below.
  • an embodiment of a method for collaborative scheduling provided in an embodiment of the present application includes:
  • Operation 101 Determine the frequency points corresponding to the cells of the capacity layer and the cells of the overlay layer.
  • the base station in the multi-frequency ultra-dense network will be configured.
  • the base station can determine the cell of the quantity layer and the cell of the overlay layer through the configuration file.
  • Corresponding frequency point; operation 101 may be performed by one base station in a multi-frequency ultra-dense network, or two or more base stations.
  • the coverage layer includes cells obtained by combining at least two cells with co-frequency interference, and the cells in the capacity layer are all cells that have not been combined.
  • the cover layer can be one frequency point or multiple frequency points. In order to ensure the maximum coverage of the cell, the lowest frequency point in the multi-frequency ultra-dense network can be selected as the coverage layer.
  • the cells in the overlay are all cells corresponding to the frequency points selected as the overlay.
  • the co-frequency interference between two cells reaches a certain level, the two cells will be merged.
  • the degree of co-frequency interference for example, it can be judged by the degree of cell overlap.
  • the first terminal receives that the downlink level difference of the two cells is less than the threshold, it is considered that the first terminal is located in the overlapping area of the two cells. Then the number of first terminals located in the overlapping area can be counted, and the degree of overlap of the two cells can be further determined according to the number of first terminals. If the degree of overlap reaches a preset degree of overlap, the two cells are merged.
  • the capacity layer can be one frequency point or multiple frequency points. In order to ensure the overall capacity of the multi-frequency ultra-dense network, you can select as many frequency points as the capacity layer; for example, if the lowest frequency point in the multi-frequency ultra-dense network is selected as the coverage layer, all other frequency points Both serve as the capacity layer.
  • the cells of the capacity layer are all the cells corresponding to the frequency points selected as the capacity layer.
  • Operation 102 Acquire network information of the first terminal under at least one carrier set, where the carrier set includes at least one carrier, and each carrier set corresponds to a cell.
  • the number of the first terminal may be one, or two or more.
  • the first terminal may be a terminal to be accessed.
  • the base station needs to access the first terminal to a specific carrier set, so it needs to obtain the information of the first terminal under at least one carrier set. Network information to determine the specific carrier set.
  • the first terminal may also be an already-connected terminal.
  • the first terminal is an already-connected terminal, if the signal quality of the first terminal is lower than the preset signal quality or the transmission rate is lower than the preset transmission rate, it can Perform the operation of obtaining network information; the operation of obtaining network information may be periodic.
  • the embodiment of the present application does not limit the length of the period. For example, it may be ten minutes or one hour.
  • the carrier set is related to the type of the first terminal.
  • the first terminal When the first terminal is a non-carrier aggregation user, the first terminal communicates with the base station through a single carrier, so the carrier set includes one carrier; when the first terminal is a carrier aggregation user, the first terminal communicates with the base station through the carrier group, Therefore, the carrier set includes two or more carriers.
  • the carrier set For a specific first terminal and a configured multi-frequency ultra-dense network, the total number and all types of carrier sets are determined.
  • one carrier corresponds to one cell.
  • the carrier group contains two or more carriers, only one carrier in the carrier group is the primary carrier, and the other carriers are secondary carriers.
  • the cell corresponding to the primary carrier is The cell corresponding to the carrier group. Therefore, no matter how many carriers are contained in the carrier set, each carrier set corresponds to a cell.
  • the network information of the first terminal under each carrier set may be obtained by direct measurement.
  • the base station may send an instruction to the first terminal to instruct the first terminal to measure the network information and obtain the measured information.
  • the network information is fed back to the base station; the network information of the first terminal under each carrier set can also be obtained in a non-measurement manner.
  • the base station obtains network information by querying historical data, and the base station can also obtain relevant network information from other base stations.
  • the network information may include one type, or two or more types.
  • it may include the reference signal received power, the load of the cell corresponding to the carrier set, and the bandwidth information corresponding to the carrier set.
  • the sum type is not specifically limited; in order to better reflect the status of the first terminal under each carrier set, various network information can be obtained as much as possible.
  • the way to obtain network information also depends on the type of network information.
  • the base station can measure the reference signal received power through the first terminal; and when the network information is the load of the cell corresponding to the carrier set, the base station cannot obtain it through the first terminal measurement.
  • the load of the cell corresponding to the carrier set can be obtained from the X2 interface signaling in the interaction process.
  • the current network is optimized according to the network information.
  • the first terminal can be scheduled to the carrier set corresponding to the cell with the smaller load.
  • the first terminal can be scheduled to a carrier set with a higher reference signal received power to optimize the current network.
  • the current network can be optimized according to the multiple parameters to increase the average transmission rate of the terminals in the current network.
  • methods for optimizing the current network which are not limited in the embodiment of the present application.
  • optimizing the current network according to network information includes:
  • the method for determining the target carrier set is also different for different network information.
  • the target carrier set is determined according to the load, and the target carrier set may be the carrier set corresponding to the minimum load.
  • the target carrier set is determined according to the reference signal received power, and the target carrier set may be the carrier set corresponding to the maximum reference signal received power.
  • the method of determining the target carrier set must be different from the method of determining the target carrier set when the network information is one type.
  • the embodiment of the present application does not limit the specific manner of determining the target carrier set.
  • the first terminal is scheduled to the target carrier set, so that the first terminal is located in the target cell corresponding to the target carrier set, and the target cell is a cell in the capacity layer or a cell in the coverage layer.
  • the target carrier set corresponds to the target cell
  • the first terminal when the first terminal is scheduled to the target carrier set, the first terminal will be located in the target cell corresponding to the target carrier set.
  • the specific process is related to the type and target of the first terminal.
  • the carrier sets are all related, which will be described in detail below.
  • the first terminal When the first terminal is a user to be accessed, the first terminal is scheduled to the target carrier set, no matter how many carriers the target carrier set includes, the first terminal will be accessed into the target cell corresponding to the target carrier set.
  • cell handover may be required, or cell handover may not be performed first.
  • the first terminal when the first terminal communicates with the base station through a single carrier, if the target carrier set is not the current carrier set of the first terminal, in the process of scheduling the first terminal to the target carrier set, the first terminal needs to be switched from the current carrier set. The cell is switched to the target cell.
  • the target carrier set has not changed, and it is still the current carrier set of the first terminal, so no scheduling operation is required, and only the first terminal needs to be maintained in the current cell;
  • the target carrier set and the current carrier The sets are different, but the primary carrier in the target carrier set is the same as the primary carrier in the current carrier set, which means that the target cell is still the current cell, so only the secondary carrier in the target carrier set needs to be changed, without cell handover;
  • the target carrier set is different from the current carrier set, and the primary carrier in the target carrier set is the same as the primary carrier in the current carrier set, which means that the target cell is not the current cell, so in the process of scheduling the first terminal to the target carrier set , The first terminal needs to be handed over from the current cell to the target cell.
  • the target cell may be either an overlay cell or a capacity cell.
  • the overlay layer and the capacity layer cooperate to reduce the current network co-channel interference while ensuring the overall capacity of the current network, thereby ensuring the average transmission rate of the terminals in the current network.
  • Optimizing the current network can also further increase the average transmission rate of the terminals in the current network.
  • the current cell of the first terminal can be located in the coverage layer or the capacity layer.
  • the target cell can be located in the coverage layer or the capacity layer.
  • the first terminal is scheduled to the target carrier set, so that the first terminal is located in the target cell corresponding to the target carrier set.
  • the scheduling process will be specifically based on the difference between the current cell of the first terminal and the target cell. Introduction.
  • the scheduling of the first terminal to the target carrier set so that the first terminal is located in the target cell corresponding to the target carrier set includes:
  • the first terminal is scheduled from the co-channel interference overlap area in the capacity layer to the target cell corresponding to the target carrier set of the coverage layer.
  • the current cell of the first terminal is located in the capacity layer, and the first terminal is located in the overlapping area of co-channel interference; if the capacity layer is overloaded or co-channel interference is severe, both will cause the first terminal to transmit Rate and signal quality are degraded.
  • the target cell corresponding to the target carrier set may be located in the coverage layer; if the target cell is a cell in the coverage layer, the base station will eventually switch the first terminal from the capacity layer to the coverage layer Layer in the target cell.
  • FIG. 5 is a schematic diagram of an embodiment of target carrier set scheduling in an embodiment of the present application.
  • the current cell of the first terminal is a cell under the F2 frequency point, and the cell corresponding to the target carrier set is under the F1 frequency point.
  • the first terminal A terminal is scheduled to the target carrier set, and at the same time, the first terminal is handed over to the cell under the F1 frequency.
  • switching the first terminal from the capacity layer to the overlay layer can not only solve the problem of co-channel interference of the first terminal, improve the transmission rate and signal quality of the first terminal, but also balance the capacity layer and the overlay layer. Between the load, the coverage of the capacity layer and the load of the coverage layer are relatively balanced, and the frequency resources of the coverage layer and the capacity layer are fully utilized, thereby increasing the average transmission rate of the terminals in the current network.
  • Scheduling the first terminal to the target carrier set so that the first terminal is located in the target cell corresponding to the target carrier set includes:
  • the first terminal is scheduled from the capacity layer to the target cell corresponding to the target carrier set of the capacity layer.
  • the first terminal in the process of scheduling the first terminal to the target carrier set, the first terminal is switched from the capacity layer to the coverage layer.
  • the current cell and the target cell of the first terminal are both located in The capacity layer enables the first terminal to switch between different cells in the capacity layer.
  • the first terminal is located in an overlapping area of co-channel interference. Affected by co-channel interference, the signal quality and transmission rate of the first terminal will be reduced.
  • the target cell corresponding to the target carrier set may be other cells in the capacity layer that do not have co-frequency interference; if the target cell is another cell in the capacity layer, the base station will A terminal switches from the current cell of the capacity layer to the target cell of the capacity layer, which can reduce the co-channel interference of the first terminal, increase the transmission rate of the first terminal, and does not occupy the frequency resources of the coverage layer, ensuring the transmission of the terminal in the coverage layer rate.
  • the current cell of the first terminal is located in the capacity layer, and the first terminal is located in the overlapping area of co-channel interference. It can be understood that the current cell of the first terminal may also be in the capacity layer.
  • the process of scheduling the first terminal to the target carrier set is similar to the scheduling process in the foregoing embodiment, and will not be described in detail here.
  • the first terminal when the first terminal is located in a cell of the coverage layer, if the cell corresponding to the target carrier set is in the capacity layer, the first terminal is scheduled to the target carrier set , So that the first terminal is located in the target cell corresponding to the target carrier set includes:
  • the first terminal is scheduled from the cell of the coverage layer to the target cell corresponding to the target set of the capacity layer.
  • the base station when the target cell is in the capacity layer, the base station will switch the first terminal from the coverage layer to the capacity layer to use sufficient frequency resources in the capacity layer to increase the transmission rate of the first terminal and reduce the limited use of frequency resources in the coverage layer. This can increase the average transmission rate of terminals in the current network.
  • FIG. 6 is a schematic diagram of another embodiment of target carrier set scheduling in an embodiment of the present application.
  • the current cell of the first terminal is located under the F1 frequency point
  • the target carrier set is located at a set under the F2 frequency point.
  • the first terminal needs to be A terminal switches from the current cell under the F1 frequency point to the target cell under the F2 frequency point to realize the handover of the first terminal from the coverage layer to the capacity layer.
  • the target cell corresponding to the target carrier set shown in FIG. 6 is the cell of the left base station under the F2 frequency point.
  • the target cell can also be the cell of the right base station under the F2 frequency point. It can also be two cells under the F3 frequency.
  • the first terminal when the first terminal is located in a cell of the coverage layer, if the cell corresponding to the target carrier set is located in the coverage layer, the first terminal is scheduled to the target carrier set , So that the first terminal is located in the target cell corresponding to the target carrier set includes:
  • the first terminal is scheduled from the cell of the coverage layer to the target cell corresponding to the target set of the coverage layer.
  • the current cell of the first terminal is located in the coverage layer, but the load of the current cell may be very large, which affects the signal quality and transmission rate of the first terminal.
  • the final target cell may be other cells in the coverage layer; when the target cell is other cells in the coverage layer, the base station will remove the first terminal from the coverage layer
  • the current cell is switched to the target cell of the overlay layer.
  • the above four embodiments are specific descriptions of the process of scheduling the first terminal to the target carrier set when the first terminal is a terminal that has already been accessed.
  • FIG. 7 is a schematic diagram of another embodiment of target carrier set scheduling in an embodiment of the present application.
  • the target cell corresponding to the target carrier set is a cell under the F1 frequency point of the coverage layer, so the first mobile terminal will directly access the cell under the F1 frequency point of the coverage layer.
  • the first terminal will directly access the cell in the capacity layer.
  • determining the target carrier set of the first terminal according to network information includes:
  • the target carrier set of the first terminal is determined according to the transmission rate set.
  • the embodiment of the present application estimates the transmission rate of the first terminal under each target carrier set according to network information, and then determines the target carrier set of the first terminal according to the estimation result.
  • the first terminal may be an accessed terminal or a terminal to be accessed
  • the embodiment of the present application will respectively describe in detail the process of determining the target carrier set in the two cases.
  • Determining the target carrier set of the first terminal according to the transmission rate set includes:
  • the carrier set corresponding to the current transmission rate is determined as the target carrier set of the first terminal.
  • the application embodiment takes the carrier set corresponding to the maximum transmission rate as the target carrier set.
  • a carrier set corresponding to any transmission rate higher than the current transmission rate in the carrier set may also be used as the target carrier set.
  • Determining the target carrier set of the first terminal according to the transmission rate set includes:
  • the carrier set corresponding to the largest transmission rate in the transmission rate set is determined as the target carrier set of the first terminal.
  • the current transmission rate is zero, so there is no need to compare the estimated transmission rate with the current transmission rate.
  • the carrier set corresponding to the largest transmission rate is the target Carrier collection.
  • the target carrier set of the first terminal may also be determined in other ways. For example, in the transmission rate set, the transmission rate corresponding to the top three Select any carrier set in the carrier set as the target carrier set.
  • the process of obtaining network information and determining the target carrier set according to the network information may be periodically.
  • a cycle there may be two or more first terminals that need to be scheduled, so it needs to be scheduled according to All first terminals are scheduled with a certain priority.
  • scheduling the first terminal to the target carrier set may include:
  • the second terminal is preferentially scheduled to the target carrier set, and the second terminal is the first terminal with the largest ratio of the transmission rate to the current transmission rate.
  • the first terminal with a larger transmission rate gain ratio is preferentially scheduled.
  • the number of first terminals is two
  • the current transmission rates of the two first terminals are both 10Kbps/s
  • the transmission rate of one first terminal under the target carrier set is 1 Mbps/s
  • the transmission rate of the other first terminal under the target carrier set is 500 Kbps/s.
  • this embodiment of the present application will prioritize scheduling of the first terminal with a transmission rate of 1Mbps/s under the target carrier set.
  • all first terminals can also be scheduled according to other priorities.
  • the first terminal with the highest transmission rate under the target carrier set can be scheduled first; specifically, it is still assumed that the number of first terminals is two, and the current transmission rate of one first terminal is 100Kbps/s, and the current transmission rate of the first terminal is 100Kbps/s.
  • the transmission rate under the set is 1Mbps/s
  • the current transmission rate of the other first terminal is 10Kbps/s
  • the transmission rate under the target carrier set is 500Kbps/s.
  • the ratio of 1Mbps/s to 100Kbps/s It is less than the ratio of 500Kbps/s to 10Kbps/s, but according to the scheduling method of the embodiment of the present application, the first terminal whose transmission rate under the target carrier set is 1Mbps/s will be adjusted preferentially.
  • FIG. 8 is a schematic diagram of an embodiment of a cooperative scheduling apparatus provided in an embodiment of the present application.
  • the embodiment of the present application provides an embodiment of a coordinated scheduling apparatus, including:
  • the determining unit 201 is configured to determine the frequency points corresponding to the capacity layer cell and the overlay layer cell;
  • the obtaining unit 202 is configured to obtain network information of the first terminal under at least one carrier set, the carrier set includes at least one carrier, and each carrier set corresponds to a cell;
  • the processing unit 203 is configured to optimize the current network according to network information
  • the coverage layer includes cells obtained by combining at least two cells with co-frequency interference, and the cells in the capacity layer are all cells that have not been combined.
  • the processing unit 203 is configured to:
  • the first terminal is scheduled to the target carrier set, so that the first terminal is located in a target cell corresponding to the target carrier set, and the target cell is a cell in the capacity layer or a cell in the coverage layer.
  • the processing unit 203 when the first terminal is located in the co-frequency interference overlapping area of two cells in the capacity layer, if the cell corresponding to the target carrier set is located in the coverage layer, Then the processing unit 203 is used to:
  • the first terminal is scheduled from the co-channel interference overlap area in the capacity layer to the target cell corresponding to the target carrier set of the coverage layer.
  • the processing unit 203 when the first terminal is located in the cell of the coverage layer, if the cell corresponding to the target carrier set is located in the capacity layer, the processing unit 203 is configured to:
  • the first terminal is scheduled from the cell of the coverage layer to the target cell corresponding to the target set of the capacity layer.
  • the processing unit 203 is used to:
  • Scheduling the first terminal from the capacity layer to the target cell corresponding to the target carrier set of the capacity layer realizes the handover of the first terminal between different cells in the capacity layer.
  • the processing unit 203 when the first terminal is located in the coverage layer cell, if the cell corresponding to the target carrier set is located in the coverage layer, the processing unit 203 is configured to:
  • Scheduling the first terminal from the cell of the coverage layer to the target cell corresponding to the target set of the coverage layer realizes the handover of the first terminal between different cells in the coverage layer.
  • the processing unit 203 is configured to:
  • the target carrier set of the first terminal is determined according to the transmission rate set.
  • determining the target carrier set of the first terminal according to the transmission rate set includes:
  • the base station determines the carrier set corresponding to the largest transmission rate in the transmission rate set as the target carrier set of the first terminal;
  • the base station determines the carrier set corresponding to the current transmission rate as the target carrier set of the first terminal.
  • determining the target carrier set of the first terminal according to the transmission rate set includes:
  • the base station determines the carrier set corresponding to the largest transmission rate in the transmission rate set as the target carrier set of the first terminal.
  • scheduling the first terminal to the target carrier set includes:
  • the base station preferentially schedules the second terminal to the target carrier set, and the second terminal is the first terminal with the largest ratio of the transmission rate to the current transmission rate.
  • scheduling the first terminal to the target carrier set includes:
  • the base station preferentially schedules the first terminal with the largest transmission rate under the target carrier set.
  • FIG. 9 is a schematic diagram of an embodiment of a communication device provided in an embodiment of the present application.
  • the embodiment of the present application also provides an embodiment of a communication device, including: at least one processor 301 and a power supply circuit 302.
  • the power supply circuit 302 is used to supply power to the processor 301, and the related program instructions are in the At least one processor 301 is executed, so that the communication device implements the method described in any one of the embodiments of the present application.
  • the processor 301 may perform operations performed by the cooperative scheduling apparatus in the foregoing embodiment shown in FIG. 8, and details are not described herein again.
  • the specific functional module division of the processor 301 may be similar to the functional module division of the determination unit, acquisition unit, processing unit and other units described in FIG. 8, and will not be repeated here.
  • the power supply circuit 302 described in the embodiment of the present application includes but is not limited to at least one of the following: a power supply subsystem, a power management chip, a power management processor, or a power management control circuit.
  • An embodiment of the present application provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method described in any of the embodiments of the present application.
  • the embodiment of the present application also provides a computer program product, the computer program product includes computer software instructions, and the computer software instructions can be loaded by a processor to implement the process in the coordinated scheduling method in FIG. 4 above.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种协调调度的方法和相关装置。本申请实施例可以应用于多频超密组网中,方法包括:基站先确定容量层的小区和覆盖层的小区各自对应的频点,由于覆盖层的部分小区是由存在同频干扰的至少两个小区经过小区合并得到的,容量层的小区均为未经小区合并的小区,所以能够保证当前网络下终端的平均传输速率;并且,基站还会获取第一终端在至少一个载波集合下的网络信息,并根据网络信息优化当前网络,从而进一步提高当前网络下终端的平均传输速率。

Description

一种协同调度的方法和相关装置
本申请要求于2019年7月24日提交中国专利局、申请号为201910679626.2、发明名称为“一种协同调度的方法和相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种协同调度的方法和相关装置。
背景技术
随着移动互联网的快速发展,业务对移动网络的要求越来越高,例如视频电话、流媒体和移动支付等。然而,在网络中,同频干扰是难以避免的,同频干扰会降低交叠区域用户的信号质量,基站间距越小,同频干扰越严重,信号质量越差。尤其是在多频超密组网中,对于每个频点,都面临基站间距小的现状,所以每个频点都存在同频干扰大以及小区间交叠用户信号质量差的问题。
为了解决该问题,目前的方法是将每个频点下存在同频干扰的两个小区进行小区合并。然而,上述方法在解决同频干扰大以及小区间交叠用户信号质量差问题的同时,也带来了其他的问题:两个小区合并前,在这两个小区内相同时刻可以使用相同频率资源的两个终端,经过小区合并后,这两个终端在相同时刻下不能使用相同的频率资源,即频率资源使用受限,进而会导致多频超密组网中终端的平均传输速率降低,尤其在多频超密组网负载较重的情况下。
发明内容
本申请实施例提供了一种协同调度的方法和相关装置,能够降低同频干扰的同时,保证多频超密组网中终端的平均传输速率。
本申请实施例第一方面提供了一种协同调度的方法:
在多频超密组网中,在根据频点划分好容量层和覆盖层的前提下,基站会确定容量层的小区和覆盖层的小区各自对应的频点;
其中,该覆盖层包括由存在同频干扰的至少两个小区经过小区合并得到的小区,能够降低当前网络的同频干扰;该容量层的小区均为未经小区合并的小区,能够保证当前网络的整体容量。
基站还会获取第一终端在至少一个载波集合下的网络信息,该载波集合包括至少一个载波,每个载波集合对应一个小区;
然后根据网络信息优化当前网络。
覆盖层和容量层的划分,能够降低同频干扰的同时,保证当前网络的整体容量,从而多频超密组网中终端的平均传输速率,并根据网络信息优化当前网络,以进一步提高多频超密组网中终端的平均传输速率。
基于第一方面,本申请实施例还提供了第一方面的第一种实施方式,根据网络信息优化当前网络,包括:
基站根据网络信息确定第一终端的目标载波集合;
基站将第一终端调度至目标载波集合,以使第一终端位于目标载波集合对应的目标小区,该目标小区为容量层的小区或覆盖层的小区。
基站通过载波调度的方式优化当前网络,可以将第一终端调度至信号质量和传输速率更好的目标载波集合,并且载波的调度会使第一终端位于目标小区,从而可以平衡小区间的负载。
基于第一方面的第一种实施方式,本申请实施例还提供了第一方面的第二种实施方式,当第一终端位于容量层中两小区的同频干扰交叠区域时,若目标载波集合对应的小区位于覆盖层,则将第一终端调度至目标载波集合,以使第一终端位于目标载波集合对应的目标小区包括:
基站将第一终端从容量层中的同频干扰交叠区域调度至覆盖层的该目标载波集合对应的目标小区,实现第一终端的跨层切换,以平衡覆盖层和容量层间的负载,充分利用容量层和覆盖层的频率资源,从而提高当前网络中终端的平均传输速率。
基于第一方面的第一种实施方式,本申请实施例还提供了第一方面的第三种实施方式,当第一终端位于覆盖层的小区时,若目标载波集合对应的小区位于容量层,则将第一终端调度至目标载波集合,以使第一终端位于目标载波集合对应的目标小区包括:
将第一终端从覆盖层的小区调度至容量层的目标集合所对应的目标小区,也实现了第一终端的跨层切换,以平衡覆盖层和容量层间的负载,充分利用容量层和覆盖层的频率资源,从而提高当前网络中终端的平均传输速率。
基于第一方面的第一种实施方式,本申请实施例还提供了第一方面的第四种实施方式,当第一终端位于容量层中两小区的同频干扰交叠区域时,若目标载波集合对应的小区位于容量层时,则将第一终端调度至目标载波集合,以使第一终端位于目标载波集合对应的目标小区包括:
将第一终端从容量层调度至容量层的目标载波集合对应的目标小区,实现了第一终端在容量层内不同小区间的切换。
基于第一方面的第一种实施方式,本申请实施例还提供了第一方面的第五种实施方式,当第一终端位于覆盖层的小区时,若目标载波集合对应的小区位于覆盖层,则将第一终端调度至目标载波集合,以使第一终端位于目标载波集合对应的目标小区包括:
将第一终端从覆盖层的小区调度至覆盖层的目标集合所对应的目标小区,实现了第一终端在覆盖层内不同小区间的切换。
基于第一方面的第二种实施方式,或第一方面的第三种实施方式,或第一方面的第四种实施方式,或第一方面的第五种实施方式,本申请实施例还提供了第一方面的第六种实施方式,根据网络信息确定第一终端的目标载波集合包括:
基站根据网络信息确定第一终端的传输速率集合,传输速率集合包括第一终端在每个载波集合下的传输速率;
基站根据传输速率集合确定第一终端的目标载波集合。
基站根据传输速率确定目标载波集合,使得调度后的第一终端的传输速率能够得到保证。
基于第一方面的第六种实施方式,本申请实施例还提供了第一方面的第七种实施方式,第一终端为已接入的终端时;
根据传输速率集合确定第一终端的目标载波集合包括:
当传输速率集合中存在至少一个传输速率大于第一终端当前的传输速率时,基站将传输速率集合中最大的传输速率对应的载波集合确定为第一终端的目标载波集合;
当传输速率集合中的传输速率均不大于第一终端当前的传输速率时,基站将当前的传输速率对应的载波集合确定为第一终端的目标载波集合。
基站将传输速率集合中的传输速率与当前的传输速率比较,当载波集合中存在较当前的传输速率大的传输速率时,将第一终端调度到较大传输速率对应的载波集合,当载波集合中不存在较当前的传输速率大的传输速率时,将第一终端维持在当前传输速率对应的载波集合,有利于保证第一终端的传输速率。
基于第一方面的第七种实施方式,本申请实施例还提供了第一方面的第八种实施方式,第一终端为待接入的终端时;
根据传输速率集合确定第一终端的目标载波集合包括:
基站将传输速率集合中最大的传输速率对应的载波集合确定为第一终端的目标载波集合,以保证第一终端接入后,传输速率能够达到最大。
基于第一方面的第二种实施方式,或第一方面的第三种实施方式,或第一方面的第四种实施方式,或第一方面的第五种实施方式,或第一方面的第六种实施方式,或第一方面的第七种实施方式,或第一方面的第八种实施方式,本申请实施例还提供了第一方面的第九种实施方式,当第一终端的数量为至少两个时,将第一终端调度至目标载波集合包括:
基站优先将第二终端调度至目标载波集合,第二终端为传输速率与当前传输速率比最大的第一终端,以获得一次调度的最大收益。
基于第一方面的第二种实施方式,或第一方面的第三种实施方式,或第一方面的第四种实施方式,或第一方面的第五种实施方式,或第一方面的第六种实施方式,或第一方面的第七种实施方式,或第一方面的第八种实施方式,本申请实施例还提供了第一方面的第十种实施方式,当第一终端的数量为至少两个时,将第一终端调度至目标载波集合包括:
基站优先调度在目标载波集合下的传输速率最大的第一终端,以保证更多第一终端拥有较大的传输速率。
本申请实施例第二方面提供了一种协同调度的装置,包括:
确定单元,用于确定为容量层小区和覆盖层小区对应的频点;
获取单元,用于获取第一终端在至少一个载波集合下的网络信息,载波集合包括至少一个载波,每个载波集合对应一个小区;
处理单元,用于根据网络信息优化当前网络;
其中,该覆盖层包括由存在同频干扰的至少两个小区经过小区合并得到的小区,该容 量层的小区均为未经小区合并的小区。
基于第二方面,本申请实施例还提供了第二方面的第一种实施方式,处理单元用于:
根据网络信息确定第一终端的目标载波集合;
将第一终端调度至目标载波集合,以使第一终端位于目标载波集合对应的目标小区,该目标小区为容量层的小区或覆盖层的小区。
基于第二方面的第一种实施方式,本申请实施例还提供了第二方面的第二种实施方式,当第一终端位于容量层中两小区的同频干扰交叠区域时,若目标载波集合对应的小区位于覆盖层,则处理单元用于:
根据网络信息确定第一终端的目标载波集合;
将第一终端从容量层中的同频干扰交叠区域调度至覆盖层的目标载波集合对应的目标小区。
基于第二方面的第一种实施方式,本申请实施例还提供了第二方面的第三种实施方式,当第一终端位于覆盖层的小区时,若目标载波集合对应的小区位于容量层,则处理单元用于:
根据网络信息确定第一终端的目标载波集合;
将第一终端从覆盖层的小区调度至容量层的目标集合所对应的目标小区。
基于第二方面的第一种实施方式,本申请实施例还提供了第二方面的第四种实施方式,当第一终端位于容量层中两小区的同频干扰交叠区域时,若目标载波集合对应的小区位于容量层时,则处理单元用于:
根据网络信息确定第一终端的目标载波集合;
将第一终端从容量层调度至容量层的目标载波集合对应的目标小区,实现了第一终端在容量层内不同小区间的切换。
基于第二方面的第一种实施方式,本申请实施例还提供了第二方面的第五种实施方式,当第一终端位于覆盖层的小区时,若目标载波集合对应的小区位于覆盖层,则处理单元用于:
根据网络信息确定第一终端的目标载波集合;
将第一终端从覆盖层的小区调度至覆盖层的目标集合所对应的目标小区,实现了第一终端在覆盖层内不同小区间的切换。
基于第二方面的第二种实施方式,或第二方面的第三种实施方式,或第二方面的第四种实施方式,或第二方面的第五种实施方式,本申请实施例还提供了第二方面的第六种实施方式,处理单元用于:
根据网络信息确定第一终端的传输速率集合,传输速率集合包括第一终端在每个载波集合下的传输速率;
根据传输速率集合确定第一终端的目标载波集合。
基于第二方面的第六种实施方式,本申请实施例还提供了第二方面的第七种实施方式,第一终端为已接入的终端时;
根据传输速率集合确定第一终端的目标载波集合包括:
当传输速率集合中存在至少一个传输速率大于第一终端当前的传输速率时,基站将传输速率集合中最大的传输速率对应的载波集合确定为第一终端的目标载波集合;
当传输速率集合中的传输速率均不大于第一终端当前的传输速率时,基站将当前的传输速率对应的载波集合确定为第一终端的目标载波集合。
基于第二方面的第六种实施方式,本申请实施例还提供了第二方面的第八种实施方式,第一终端为待接入的终端时;
根据传输速率集合确定第一终端的目标载波集合包括:
基站将传输速率集合中最大的传输速率对应的载波集合确定为第一终端的目标载波集合。
基于第二方面的第二种实施方式,或第二方面的第三种实施方式,或第二方面的第四种实施方式,或第二方面的第五种实施方式,或第二方面的第六种实施方式,或第二方面的第七种实施方式,或第二方面的第八种实施方式,本申请实施例还提供了第二方面的第九种实施方式,当第一终端的数量为至少两个时,将第一终端调度至目标载波集合包括:
基站优先将第二终端调度至目标载波集合,第二终端为传输速率与当前传输速率比最大的第一终端。
基于第二方面的第二种实施方式,或第二方面的第三种实施方式,或第二方面的第四种实施方式,或第二方面的第五种实施方式,或第二方面的第六种实施方式,或第二方面的第七种实施方式,或第二方面的第八种实施方式,本申请实施例还提供了第二方面的第十种实施方式,当第一终端的数量为至少两个时,将第一终端调度至目标载波集合包括:
基站优先调度在目标载波集合下的传输速率最大的第一终端。
本申请实施例第三方面提供了一种通信装置,包括:至少一个处理器和供电电路,所述供电电路用于为所述处理器供电,涉及的程序指令在所述至少一个处理器中执行,以使得所述通信装置实现本申请第一方面中任一项所述方法。
本申请实施例第四方面提供了一种计算机可读存储介质,包括指令,当所述指令在计算机上运行时,使得计算机执行如权本申请第一方面中任一项所述的方法。
本申请实施例第五方面提供了一种计算机程序产品,该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现上述第一方面中任意一项的协同调度的方法中的流程。
从以上技术方案可以看出,本申请实施例具有以下优点:
确定容量层的小区和覆盖层的小区各自对应的频点,然后获取第一终端在至少一个载波集合下的网络信息,最后根据所述网络信息优化当前网络;在覆盖层,会对存在同频干扰的两个小区进行小区合并,使得位于覆盖层的第一终端同频干扰较小,信号质量较高,传输速率不会因同频干扰而过低;在容量层,不存在经小区合并得到的小区,所以当第一终端位于容量层的小区时,不会因频率资源受限导致传输速率下降;因此,覆盖层和容量层配合,能降低当前网络同频干扰的同时,还可以保证当前网络的整体容量,从而可以保证当前网络中终端的平均传输速率,另外,根据网络信息优化当前网络还可以进一步提升当前网络中终端的平均传输速率。
附图说明
图1为多频超密组网的网络架构示意图;
图2为小区合并的示意图;
图3为本申请实施例提供了多频超密组网的另一个网络架构示意图;
图4为本申请实施例提供的协同调度的方法实施例示意图;
图5为本申请实施例中目标载波集合调度的一个实施例示意图;
图6为本申请实施例中目标载波集合调度的另一个实施例示意图;
图7为本申请实施例中目标载波集合调度的又一个实施例示意图;
图8为本申请实施例提供的协同调度的装置实施例示意图;
图9为本申请实施例提供的通信装置的实施例示意图。
具体实施方式
本申请实施例提供了一种协同调度的方法,能够在降低同频干扰的同时,保证多频超密组网中终端的平均传输速率。
本申请实施例可以应用于多种通信系统,包括但不限于全球移动通信系统(global system for mobile communications,GSM),码分多址接入(code division multiple access,CDMA)系统,宽带码分多址(wideband code division multiple access,WCDMA)系统,通用分组无线业务(general packet radio service,GPRS)系统,长期演进(long term evolution,LTE)系统,频分双工长期演进(frequency division duplex LTE,LTE-FDD)系统,时分双工长期演进(time division duplex LTE,LTE-TDD)系统,通用移动通讯系统(universal mobile telecommunications system,UMTS),其他应用正交频分复用(orthogonal frequency division multiplexing,OFDM)技术的无线通信系统,正在发展中的第五代(5th generation,5G)的新无线(new radio,NR)通信系统,以及任何可应用的未来的通信系统。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例可应用于图1所示的多频超密组网的网络架构中,在该网络架构中,包括多个频点,其中,频点是指所使用频段的中心频率的编号。为了实现频率资源的复用,每个频点下都存在多个小区,即存在多个小区同时使用同一频点。
图1示出了多频超密组网中的其中五个小区,这五个小区可以共用一个频点,可以使用两个频点,也可以使用三个频点。这里以两个频点为例,假设五个小区共使用两个频点, 可以其中三个小区使用一个频点,另外两个小区使用另一个频点。
在图1所示的多频超密组网的网络架构中,一个基站对应一个小区,应理解,在多频超密组网中,一个基站下可以有多个小区,并且,一个基站下的所有小区的频点可以相同,也可以不同。
在本申请实施例中,基站可以是宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的一种或者多种技术的网络,或者未来演进网络。基站可以包含一个或多个共站或非共站的传输接收点(Transmission receiving point,TRP)。
从图1可以看出,在该网络架构中,小区分布密集,基站之间的距离较小。所以对于多频超密组网中的每个频点,一般都存在同频干扰的两个小区,同频干扰发生在相邻两个小区的交叠区域,位于交叠区域的终端,会接收到载频相同的无用信号和有用信号,无用信号会对接收同频有用信号的接收机造成的干扰。
本申请实施例中所涉及到的终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端可以是移动站(mobile station,MS)、用户模块(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,简称:PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端等。
应理解,将存在同频干扰的小区进行小区合并可以解决同频干扰。为了更好地理解小区合并,请参阅图2,小区合并的例示意图。从图2中可以看出,原先三个独立的小区,经过小区合并后变成一个小区。
然而,若将每个频点下存在同频干扰的两个小区均进行小区合并,将会大大降低多频超密组网中频率资源的复用,导致频率资源使用受限,从而降低多频超密组网中终端的平均传输速率。
为了解决该问题,本申请实施例对多频超密组网进行了分层,具体将多频超密组网分为覆盖层和容量层。对多频超密组网进行分层的具体方法是,从多频超密组网的所有频点中选择部分频点作为覆盖层,剩余的频点作为容量层。在覆盖层,将同频干扰达到一定程度的两个小区进行小区合并,而在容量层,不对存在同频干扰的小区进行小区合并。
为了更好地理解分层后的多频超密组网,下面将以具体示例进行说明。请参阅图3,本申请实施例提供了一种多频超密组网的另一个网络架构示意图。在该网络架构中,包括F1、F2和F3三个频点,还包括两个基站,每个基站下有三个小区,并且每个基站下三个小区的频点分别为F1、F2和F3。在本申请实施例中,选择F1频点为覆盖层,选择F2和F3频点为容量层。
在覆盖层,两个基站的小区之间存在同频干扰,所以将两个基站的小区进行小区合并,得到如图3所示的一个小区。
在容量层,共存在四个小区,从图3中可以看出,F2频点下的两个基站的小区存在交叠区域,即这两个小区存在同频干扰,但未对这两个小区进行小区合并。
在上述的网络结构中,覆盖层可以满足降低多频超密组网的同频干扰的要求,容量层 保证了多频超密组网的容量,避免因资源受限导致终端传输速率降低,从而可以提高多频超密组网终端的平均传输速率。
基于图3所示的多频超密组网,本申请实施例提供一种协同调度的方法,下面将进行详细说明。
如图4所示,本申请实施例提供的一种协同调度的方法的一个实施例,包括:
操作101,确定容量层的小区和覆盖层的小区各自对应的频点。
需要说明的是,对多频超密组网进行分层处理的过程中,会对多频超密组网中的基站进行配置,基站通过配置文件可以确定量层的小区和覆盖层的小区各自对应的频点;执行操作101的可以是多频超密组网下的一个基站,也可以是两个或两个以上的基站。
其中,覆盖层包括由存在同频干扰的至少两个小区经过小区合并得到的小区,容量层的小区均为未经小区合并的小区。
覆盖层可以是一个频点,也可以是多个频点。为了保证小区的覆盖范围最大,可以选择多频超密组网中的最低频点作为覆盖层。覆盖层的小区为选做覆盖层的频点对应的所有小区。
在覆盖层,若两个小区之间的同频干扰达到一定程度,会将这两个小区进行小区合并。对同频干扰程度的判断有多种方式,例如可以通过小区重叠度判断。
具体地,第一终端接收到两个小区的下行电平差小于阈值,则认为第一终端位于两个小区的交叠区域。然后可以统计位于交叠区域的第一终端的数量,根据第一终端的数量进一步判断两个小区的重叠度,若重叠度达到预设重叠度,则将这两个小区进行小区合并。
容量层可以是一个频点,也可以是多个频点。为了保证多频超密组网的总体容量,可以选择尽可能多的频点作为容量层;例如,选择多频超密组网中的最低频点作为覆盖层的情况下,将其他所有频点均作为容量层。容量层的小区为选做容量层的频点对应的所有小区。
操作102,获取第一终端在至少一个载波集合下的网络信息,载波集合包括至少一个载波,每个载波集合对应一个小区。
第一终端的数量可以为一个,也可以为两个或两个以上。
第一终端可以是待接入的终端,例如,当第一终端移动至当前网络中,基站需要将该第一终端接入特定的载波集合,因此需要获取第一终端在至少一个载波集合下的网络信息,以确定该特定的载波集合。
第一终端也可以是已接入的终端,当第一终端是已接入的终端时,若第一终端的信号质量低于预设信号质量或传输速率低于预设传输速率时,便可以执行获取网络信息的操作;获取网络信息的操作可以是周期性的,本申请实施例对周期的长短不做限定,例如,可以是十分钟,也可以是一小时。
在本申请实施例中,载波集合与第一终端的类型相关。当第一终端为非载波聚合用户时,第一终端通过单载波与基站进行通信,所以载波集合包括一个载波;当第一终端为载波聚合用户时,第一终端通过载波组与基站进行通信,所以载波集合包括两个或两个以上载波。对于特定的第一终端及配置好的多频超密组网,载波集合的总数及所有种类是确定 的。
通常情况下,一个载波对应一个小区,虽然载波组中包含两个或两个以上的载波,但载波组中仅有一个载波是主载波,其他载波均为辅载波,主载波对应的小区即为载波组对应的小区。因此,无论载波集合中包含多少个载波,每个载波集合均对应一个小区。
本申请实施例中,可以采用直接测量的方式获取第一终端在各个载波集合下的网络信息,例如,基站可以发送指令至第一终端,指示第一终端对网络信息进行测量并将测量到的网络信息反馈至基站;也可以采用非测量的方式获取第一终端在各个载波集合下的网络信息,例如,基站通过查询历史数据获取网络信息,基站也可以从其他基站获取相关的网络信息。
网络信息可以包括一种,也可以包括两种或两种以上,例如可以包括参考信号接收功率,载波集合对应的小区的负载,载波集合对应的带宽信息等,本申请实施例对网络信息的数量和种类不做具体限定;为了更好地反映第一终端在每个载波集合下的状态,可以尽可能地获取多种网络信息。
可以理解的是,获取网络信息的方式也取决于网络信息的种类。例如,当网络信息为参考信号接收功率时,基站可以通过第一终端对参考信号接收功率进行测量;而当网络信息为载波集合对应的小区的负载时,基站不能通过第一终端测量获取,只能通过与载波集合对应的小区基站交互,在交互过程中从X2接口信令中获取载波集合对应的小区的负载。
操作103,根据网络信息优化当前网络。
需要说明的是,根据网络信息优化当前网络的方式有多种,例如,当网络信息为载波集合对应的小区的负载时,可以将第一终端调度到负载较小的小区对应的载波集合下,以优化当前网络;当网络信息为参考信号接收功率时,可以将第一终端调度到参考信号接收功率较高的载波集合下,以优化当前网络。
而当网络信息包含多个参数时,可以根据多个参数优化当前网络,以提高当前网络中终端的平均传输速率。总之,优化当前网络的方法有多种,本申请实施例对此不做限定。
下面以一个示例对优化当前网络的方法进行具体说明。
在本申请实施例提供的协调调度的方法的另一个实施例中,根据网络信息优化当前网络,包括:
首先,根据网络信息确定第一终端的目标载波集合。
需要说明的是,网络信息不同,确定目标载波集合的方法也不同。
例如,当网络信息为载波集合对应的小区的负载时,则是根据负载确定目标载波集合,目标载波集合可以是最小负载所对应的载波集合。
当网络信息为参考信号接收功率时,则是根据参考信号接收功率确定目标载波集合,目标载波集合可以是最大参考信号接收功率所对应的载波集合。
而当网络信息包含多种时,确定目标载波集合的方式必然与网络信息为一种时确定目标载波集合的方式不同。
基于上述说明,本申请实施例对确定目标载波集合的具体方式不做限定。
然后,将第一终端调度至目标载波集合,以使第一终端位于目标载波集合对应的目标 小区,目标小区为容量层的小区或覆盖层的小区。
在本申请实施例中,由于目标载波集合对应目标小区,所以当第一终端被调度至目标载波集合,第一终端会位于目标载波集合对应的目标小区,具体过程与第一终端的种类及目标载波集合均相关,下面将进行详细说明。
当第一终端为待接入的用户,将第一终端调度至目标载波集合,无论目标载波集合包括几个载波,第一终端都会被接入到目标载波集合对应的目标小区中。
而当第一终端为已接入的用户,在将第一终端调度至目标载波集合的过程中,可能需要进行小区切换,也可能先不要进行小区切换。
具体地,当第一终端通过单载波与基站进行通信时,若目标载波集合不是第一终端的当前载波集合,在将第一终端调度至目标载波集合的过程中,需要将第一终端从当前小区切换至目标小区。
当第一终端通过载波组与基站进行通信时,包括三种情况。第一,目标载波集合未发生变化,仍为第一终端的当前载波集合,那么不需要进行任何调度操作,只需将第一终端维持在当前小区即可;第二,目标载波集合与当前载波集合不同,但目标载波集合中的主载波与当前载波集合中的主载波相同,意味着目标小区还是当前小区,所以只需要改变目标载波集合中的辅载波,不需要进行小区切换;第三,目标载波集合发生与当前载波集合不同,并且目标载波集合中的主载波与当前载波集合中的主载波也相同,意味着目标小区不是当前小区,所以在将第一终端调度至目标载波集合的过程中,需要将第一终端从当前小区切换至目标小区。
需要说明的是,载波调度和小区切换均为较成熟的技术,本申请实施例对载波调度和小区切换的具体过程不做详述。
可以理解的是,无论第一终端是待接入的终端,还是已接入的终端,目标小区既可以是覆盖层的小区,也可以是容量层小区。
在本申请实施例中,覆盖层和容量层配合,能降低当前网络同频干扰的同时,还可以保证当前网络的整体容量,从而可以保证当前网络中终端的平均传输速率,另外,根据网络信息优化当前网络还可以进一步提升当前网络中终端的平均传输速率。
需要说明的是,当第一终端为已接入当前网络的终端时,第一终端的当前小区可以位于覆盖层,也可以位于容量层,同样地,目标小区可以位于覆盖层,也可以位于容量层。
因此,将第一终端调度至目标载波集合,使得第一终端位于目标载波集合对应的目标小区,存在多种情况,下面将根据第一终端的当前小区和目标小区的不同,对调度过程进行具体介绍。
在本申请实施例提供的协调调度的方法的另一个实施例中,当第一终端位于容量层中两小区的同频干扰交叠区域时,若目标载波集合对应的小区位于覆盖层,则将第一终端调度至目标载波集合,以使第一终端位于目标载波集合对应的目标小区包括:
将第一终端从容量层中的同频干扰交叠区域调度至覆盖层的目标载波集合对应的目标小区。
在本申请实施例中,第一终端的当前小区位于容量层,并且第一终端位于同频干扰的 交叠区域;若容量层负载过大或同频干扰严重,均会导致第一终端的传输速率和信号质量下降。
此时,假设覆盖层的负载较少,频率资源相对充足,目标载波集合对应的目标小区可能位于覆盖层;若目标小区为覆盖层的小区,基站最终会将第一终端从容量层切换到覆盖层的目标小区中。
具体请参阅图5,本申请实施例中目标载波集合调度的一个实施例示意图。
从图5中可以看出,第一终端的当前小区为F2频点下的一个小区,而目标载波集合对应的小区位于F1频点下,采用本申请实施例提供的协同调度方法,会将第一终端调度到目标载波集合下,同时会将第一终端切换至F1频点下的小区。
在本申请实施例中,将第一终端从容量层切换到覆盖层,不仅可以解决第一终端的同频干扰问题,提高第一终端的传输速率和信号质量,还可以平衡容量层和覆盖层之间的负载,使得容量层的覆盖和覆盖层的负载达到相对平衡,充分利用覆盖层和容量层的频率资源,从而提高当前网络中终端的平均传输速率。
在本申请实施例提供的协调调度的方法的另一个实施例中,当第一终端位于容量层中两小区的同频干扰交叠区域时,若目标载波集合对应的小区位于容量层时,则将第一终端调度至目标载波集合,以使第一终端位于目标载波集合对应的目标小区包括:
将第一终端从容量层调度至容量层的目标载波集合对应的目标小区。
在前述实施例中,在将第一终端调度至目标载波集合的过程中,将第一终端从容量层切换覆盖层,而在本申请实施例中,第一终端的当前小区和目标小区均位于容量层,实现了第一终端在容量层内不同小区间的切换。
下面将以一种具体的场景进行介绍。第一终端位于同频干扰的交叠区域,受同频干扰的影响,第一终端的信号质量和传输速率均会降低。
这种情况下,假设容量层的负载不大,所以目标载波集合对应的目标小区可能为容量层中不存在同频干扰的其他小区;若目标小区为容量层的其他小区,则基站会将第一终端从容量层的当前小区切换到容量层的目标小区,可以降低第一终端的同频干扰,提高第一终端的传输速率,并且不占用覆盖层的频率资源,保证覆盖层中终端的传输速率。
在上述两个实施例中,第一终端的当前小区均位于容量层,并且第一终端位于同频干扰的交叠区域,可以理解的是,第一终端的当前小区还可能为容量层中不存在同频干扰的小区中,这种情况下,将第一终端调度到目标载波集合下的过程与上述实施例中的调度过程类似,在此不进行详述。
上面是第一终端的当前小区位于容量层时,对第一终端的调度过程进行的介绍,下面将对第一终端的当前小区位于覆盖层时的调度过程进行具体介绍。
在本申请实施例提供的协调调度的方法的另一个实施例中,当第一终端位于覆盖层的小区时,若目标载波集合对应的小区位于容量层,则将第一终端调度至目标载波集合,以使第一终端位于目标载波集合对应的目标小区包括:
将第一终端从覆盖层的小区调度至容量层的目标集合所对应的目标小区。
可以理解的是,尽管覆盖层的小区同频干扰较低,但由于频率资源使用受限,尤其是 当覆盖层的负载较大时,会影响第一终端的传输速率。
所以,当目标小区位于容量层时,基站会将第一终端从覆盖层切换到容量层,以利用容量层充足的频率资源,提高第一终端的传输速率,降低覆盖层频率资源的使用受限程度,从而可以提高当前网络中终端的平均传输速率。
请参阅图6,本申请实施例中目标载波集合调度的另一个实施例示意图。
从图6中可以看出,第一终端的当前小区位于F1频点下,而目标载波集合位于F2频点下的一个集合,在将第一终端调度至目标载波集合的过程中,需要将第一终端从F1频点下的当前小区切换至F2频点下的目标小区,实现第一终端从覆盖层到容量层的切换。
需要说明的是,图6所示的是目标载波集合对应的目标小区为左侧基站在F2频点下的小区,在实际中,目标小区也可以为右侧基站在F2频点下的小区,还可以为F3频点下的两个小区。
在本申请实施例提供的协调调度的方法的另一个实施例中,当第一终端位于覆盖层的小区时,若目标载波集合对应的小区位于覆盖层,则将第一终端调度至目标载波集合,以使第一终端位于目标载波集合对应的目标小区包括:
将第一终端从覆盖层的小区调度至覆盖层的目标集合所对应的目标小区。
在本申请实施例中,第一终端的当前小区位于覆盖层,然而当前小区的负载可能很大,影响了第一终端的信号质量和传输速率,而此时,假设覆盖层的负载较小,频率资源相对充足,容量层的负载较大,频率资源相对不足,最终确定的目标小区可能为覆盖层的其他小区;当目标小区为覆盖层的其他小区时,基站会将第一终端从覆盖层的当前小区切换到覆盖层的目标小区,通过对第一终端在覆盖层内部的切换,提高第一终端传输速率的同时,平衡了覆盖层和容量层的负载,充分利用了覆盖层的频率资源。
上述四个实施例是当第一终端为已接入的终端时,对将第一终端调度至目标载波集合的过程进行的具体说明。
下面将对第一终端为待接入的终端时,将第一终端调度至目标载波集合的过程进行具体说明。请参阅图7,本申请实施例中目标载波集合调度的又一个实施例示意图。
从图7中可以看出,目标载波集合对应的目标小区为覆盖层F1频点下的小区,所以会将第一移动终端直接接入覆盖层F1频点下的小区。
可以理解的是,当目标载波集合对应的目标小区为容量层中的小区,则会将第一终端直接接入容量层中的小区。
基于上述分析可知,根据网络信息确定目标载波集合的方式有多种,下面将以其中一种进行具体介绍。
在本申请实施例提供的协调调度的方法的另一个实施例中,根据网络信息确定第一终端的目标载波集合包括:
根据网络信息确定第一终端的传输速率集合,传输速率集合包括第一终端在每个载波集合下的传输速率;
根据传输速率集合确定第一终端的目标载波集合。
可以理解的是,本申请实施例根据网络信息对第一终端在每个目标载波集合下的传输 速率进行预估,然后根据预估结果确定第一终端的目标载波集合。
而根据网络信息确定传输速率的方法有多种,并且与网络信息的种类和数量相关,因此本申请实施例对此不做限定。
由于第一终端可以为已接入的终端,也可以为待接入的终端,所以本申请实施例将分别对两种情况对目标载波集合的确定过程进行详细说明。
在本申请实施例提供的协调调度的方法的另一个实施例中,当第一终端为已接入的终端时;
根据传输速率集合确定第一终端的目标载波集合包括:
当传输速率集合中存在至少一个传输速率大于第一终端当前的传输速率时,将传输速率集合中最大的传输速率对应的载波集合确定为第一终端的目标载波集合;
当传输速率集合中的传输速率均不大于第一终端当前的传输速率时,将当前的传输速率对应的载波集合确定为第一终端的目标载波集合。
可以理解的是,当传输速率集合中存在至少一个传输速率大于第一终端当前的传输速率时,说明第一终端目前的传输速率还可以提高;为了将第一终端的传输速率提高至最大,本申请实施例将最大传输速率对应的载波集合作为目标载波集合。
需要说明的是,除了上述确定目标载波集合的方法外,还可以将载波集合中高于当前传输速率的任意一个传输速率对应的载波集合作为目标载波集合。
而当输速率集合中的传输速率均不大于第一终端当前的传输速率时,说明第一终端的当前传输速率已是最大,所以将第一终端当前的载波集合作为目标载波集合。
在本申请实施例提供的协调调度的方法的另一个实施例中,第一终端为新接入的终端时;
根据传输速率集合确定第一终端的目标载波集合包括:
将传输速率集合中最大的传输速率对应的载波集合确定为第一终端的目标载波集合。
可以理解的是,第一终端为新接入的终端时,当前的传输速率为零,所以不需要将预估的传输速率与当前的传输速率比较,最大的传输速率对应的载波集合即为目标载波集合。
需要说明的是,除了上述确定第一终端的目标载波集合的方法外,也可以通过其他方式确定第一终端的目标载波集合,例如,在传输速率集合中,从排名前三的传输速率对应的载波集合中选择任意一个载波集合作为目标载波集合。
在本申请实施例中,获取网路信息并根据网络信息确定目标载波集合的过程可以是周期性地,在一次周期中,可能存在两个或两个以上的第一终端需要调度,所以需要按照一定的优先级对所有第一终端进行调度。
例如,将第一终端调度至目标载波集合可以包括:
优先将第二终端调度至目标载波集合,第二终端为传输速率与当前传输速率比最大的第一终端。
在本申请实施例中,优先调度传输速率收益比例较大的第一终端,例如,假设第一终端的数量为两个,这两个第一终端的当前的传输速率均为10Kbps/s,而其中一个第一终端在目标载波集合下的传输速率为1Mbps/s,而另一个第一终端在目标载波集合下的传输速率 为500Kbps/s,按照本申请实施例的调度方法,很明显,1Mbps/s与10Kbps/s的比值大于500Kbps/s与10Kbps/s的比值,因此本申请实施例将优先调度在目标载波集合下的传输速率为1Mbps/s的第一终端。
除此之外,还可以按照其他优先级对所有第一终端进行调度。
例如,可以优先调度在目标载波集合下的传输速率最大的第一终端;具体地,仍假设第一终端的数量为两个,其中一个第一终端当前的传输速率为100Kbps/s,在目标载波集合下的传输速率为1Mbps/s,而另一个第一终端当前的传输速率为10Kbps/s,在目标载波集合下的传输速率为500Kbps/s,很明显,1Mbps/s与100Kbps/s的比值小于500Kbps/s与10Kbps/s的比值,但按照本申请实施例的调度方法,将优先调整目标载波集合下的传输速率为1Mbps/s的第一终端。
请参阅图8,本申请实施例提供的协同调度的装置实施例示意图。
本申请实施例提供了一种协同调度的装置的一个实施例,包括:
确定单元201,用于确定为容量层小区和覆盖层小区对应的频点;
获取单元202,用于获取第一终端在至少一个载波集合下的网络信息,载波集合包括至少一个载波,每个载波集合对应一个小区;
处理单元203,用于根据网络信息优化当前网络;
其中,覆盖层包括由存在同频干扰的至少两个小区经过小区合并得到的小区,容量层的小区均为未经小区合并的小区。
在本申请实施例提供的一种协同调度的方法的另一个实施例中,处理单元203用于:
根据网络信息确定第一终端的目标载波集合;
将第一终端调度至目标载波集合,以使第一终端位于目标载波集合对应的目标小区,目标小区为容量层的小区或覆盖层的小区。
在本申请实施例提供的一种协同调度的方法的另一个实施例中,当第一终端位于容量层中两小区的同频干扰交叠区域时,若目标载波集合对应的小区位于覆盖层,则处理单元203用于:
根据网络信息确定第一终端的目标载波集合;
将第一终端从容量层中的同频干扰交叠区域调度至覆盖层的目标载波集合对应的目标小区。
在本申请实施例提供的一种协同调度的方法的另一个实施例中,当第一终端位于覆盖层的小区时,若目标载波集合对应的小区位于容量层,则处理单元203用于:
根据网络信息确定第一终端的目标载波集合;
将第一终端从覆盖层的小区调度至容量层的目标集合所对应的目标小区。
在本申请实施例提供的一种协同调度的方法的另一个实施例中,当第一终端位于容量层中两小区的同频干扰交叠区域时,若目标载波集合对应的小区位于容量层时,则处理单元203用于:
根据网络信息确定第一终端的目标载波集合;
将第一终端从容量层调度至容量层的目标载波集合对应的目标小区,实现了第一终端 在容量层内不同小区间的切换。
在本申请实施例提供的一种协同调度的方法的另一个实施例中,当第一终端位于覆盖层的小区时,若目标载波集合对应的小区位于覆盖层,则处理单元203用于:
根据网络信息确定第一终端的目标载波集合;
将第一终端从覆盖层的小区调度至覆盖层的目标集合所对应的目标小区,实现了第一终端在覆盖层内不同小区间的切换。
在本申请实施例提供的一种协同调度的方法的另一个实施例中,处理单元203用于:
根据网络信息确定第一终端的传输速率集合,传输速率集合包括第一终端在每个载波集合下的传输速率;
根据传输速率集合确定第一终端的目标载波集合。
在本申请实施例提供的一种协同调度的方法的另一个实施例中,第一终端为已接入的终端时;根据传输速率集合确定第一终端的目标载波集合包括:
当传输速率集合中存在至少一个传输速率大于第一终端当前的传输速率时,基站将传输速率集合中最大的传输速率对应的载波集合确定为第一终端的目标载波集合;
当传输速率集合中的传输速率均不大于第一终端当前的传输速率时,基站将当前的传输速率对应的载波集合确定为第一终端的目标载波集合。
在本申请实施例提供的一种协同调度的方法的另一个实施例中,第一终端为待接入的终端时;根据传输速率集合确定第一终端的目标载波集合包括:
基站将传输速率集合中最大的传输速率对应的载波集合确定为第一终端的目标载波集合。
在本申请实施例提供的一种协同调度的方法的另一个实施例中,当第一终端的数量为至少两个时,将第一终端调度至目标载波集合包括:
基站优先将第二终端调度至目标载波集合,第二终端为传输速率与当前传输速率比最大的第一终端。
在本申请实施例提供的一种协同调度的方法的另一个实施例中,当第一终端的数量为至少两个时,将第一终端调度至目标载波集合包括:
基站优先调度在目标载波集合下的传输速率最大的第一终端。
请参阅图9,本申请实施例提供的通信装置的实施例示意图。本申请实施例还提供了一种通信装置的一个实施例,包括:至少一个处理器301和供电电路302,所述供电电路302用于为所述处理器301供电,涉及的程序指令在所述至少一个处理器301中执行,以使得所述通信装置实现本申请实施例中任一项所述方法。
本实施例中,处理器301可以执行前述图8所示实施例中协同调度的装置所执行的操作,具体此处不再赘述。
本实施例中,处理器中301的具体功能模块划分可以与前述图8中所描述的确定单元、获取单元、处理单元等单元的功能模块划分方式类似,此处不再赘述。
本申请实施例所述的供电电路302包括但不限于如下至少一个:供电子系统、电管管理芯片、功耗管理处理器或功耗管理控制电路。
本申请实施例提供了一种计算机可读存储介质,包括指令,当所述指令在计算机上运行时,使得计算机执行如权本申请实施例中任一项所述的方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现上述图4中协同调度的方法中的流程。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (18)

  1. 一种协同调度的方法,其特征在于,包括:
    确定容量层的小区和覆盖层的小区各自对应的频点;
    获取第一终端在至少一个载波集合下的网络信息,所述载波集合包括至少一个载波,每个所述载波集合对应一个小区;
    根据所述网络信息优化当前网络;
    其中,所述覆盖层包括由存在同频干扰的至少两个小区经过小区合并得到的小区,所述容量层的小区均为未经小区合并的小区。
  2. 根据权利要求1所述的方法,其特征在于,所述根据网络信息优化当前网络,包括:
    根据所述网络信息确定所述第一终端的目标载波集合;
    将所述第一终端调度至所述目标载波集合,以使所述第一终端位于所述目标载波集合对应的目标小区,所述目标小区为容量层的小区或覆盖层的小区。
  3. 根据权利要求2中所述的方法,其特征在于,当所述第一终端位于所述容量层中两小区的同频干扰交叠区域时,若所述目标载波集合对应的小区位于覆盖层,则所述将所述第一终端调度至所述目标载波集合,以使所述第一终端位于所述目标载波集合对应的目标小区包括:
    将所述第一终端从所述容量层中的同频干扰交叠区域调度至所述覆盖层的所述目标载波集合对应的目标小区。
  4. 根据权利要求2中所述的方法,其特征在于,当所述第一终端位于所述覆盖层的小区时,若所述目标载波集合对应的小区位于容量层,则将所述第一终端调度至所述目标载波集合,以使所述第一终端位于所述目标载波集合对应的目标小区包括:
    将所述第一终端从所述覆盖层的小区调度至所述容量层的所述目标集合所对应的目标小区。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述根据所述网络信息确定所述第一终端的目标载波集合包括:
    根据所述网络信息确定所述第一终端的传输速率集合,所述传输速率集合包括所述第一终端在每个载波集合下的传输速率;
    根据所述传输速率集合确定所述第一终端的目标载波集合。
  6. 根据权利要求5所述的方法,其特征在于,所述第一终端为已接入的终端时;
    所述根据所述传输速率集合确定所述第一终端的目标载波集合包括:
    当所述传输速率集合中存在至少一个传输速率大于所述第一终端当前的传输速率时,将所述传输速率集合中最大的传输速率对应的载波集合确定为所述第一终端的目标载波集合;
    当所述传输速率集合中的传输速率均不大于所述第一终端当前的传输速率时,将所述当前的传输速率对应的载波集合确定为所述第一终端的目标载波集合。
  7. 根据权利要求5所述的方法,其特征在于,所述第一终端为待接入的终端时;
    所述根据所述传输速率集合确定所述第一终端的目标载波集合包括:
    将所述传输速率集合中最大的传输速率对应的载波集合确定为所述第一终端的目标载波集合。
  8. 根据权利要求2至7中任一项所述的方法,其特征在于,当所述第一终端的数量为至少两个时,将所述第一终端调度至所述目标载波集合包括:
    优先将第二终端调度至所述目标载波集合,所述第二终端为传输速率与当前传输速率比最大的第一终端。
  9. 一种协同调度的装置,其特征在于,包括:
    确定单元,用于确定为容量层小区和覆盖层小区对应的频点;
    获取单元,用于获取第一终端在至少一个载波集合下的网络信息,所述载波集合包括至少一个载波,每个所述载波集合对应一个小区;
    处理单元,用于根据所述网络信息优化当前网络;
    其中,所述覆盖层包括由存在同频干扰的至少两个小区经过小区合并得到的小区,所述容量层的小区均为未经小区合并的小区。
  10. 根据权利要求9所述的装置,其特征在于,所述处理单元用于:
    根据所述网络信息确定所述第一终端的目标载波集合;
    将所述第一终端调度至所述目标载波集合,以使所述第一终端位于所述目标载波集合对应的目标小区,所述目标小区为容量层的小区或覆盖层的小区。
  11. 根据权利要求10所述的装置,其特征在于,当所述第一终端位于所述容量层中两小区的同频干扰交叠区域时,若所述目标载波集合对应的小区位于覆盖层,则所述处理单元用于:
    根据所述网络信息确定所述第一终端的目标载波集合;
    将所述第一终端从所述容量层中的同频干扰交叠区域调度至所述覆盖层的所述目标载波集合对应的目标小区。
  12. 根据权利要求10所述的装置,其特征在于,当所述第一终端位于所述覆盖层的小区时,若所述目标载波集合对应的小区位于容量层,则所述处理单元用于:
    根据所述网络信息确定所述第一终端的目标载波集合;
    将所述第一终端从所述覆盖层的小区调度至所述容量层的所述目标集合所对应的目标小区。
  13. 根据权利要求10至12中任一项所述的装置,其特征在于,所述处理单元用于:
    根据所述网络信息确定所述第一终端的传输速率集合,所述传输速率集合包括所述第一终端在每个载波集合下的传输速率;
    根据所述传输速率集合确定所述第一终端的目标载波集合。
  14. 根据权利要求13所述的装置,其特征在于,所述第一终端为已接入的终端时;
    所述根据所述传输速率集合确定所述第一终端的目标载波集合包括:
    当所述传输速率集合中存在至少一个传输速率大于所述第一终端当前的传输速率时,基站将所述传输速率集合中最大的传输速率对应的载波集合确定为所述第一终端的目标载波集合;
    当所述传输速率集合中的传输速率均不大于所述第一终端当前的传输速率时,基站将所述当前的传输速率对应的载波集合确定为所述第一终端的目标载波集合。
  15. 根据权利要求13所述的装置,其特征在于,所述第一终端为待接入的终端时;
    所述根据所述传输速率集合确定所述第一终端的目标载波集合包括:
    基站将所述传输速率集合中最大的传输速率对应的载波集合确定为所述第一终端的目标载波集合。
  16. 根据权利要求10至15中任一项所述的装置,其特征在于,当所述第一终端的数量为至少两个时,将所述第一终端调度至所述目标载波集合包括:
    基站优先将第二终端调度至所述目标载波集合,所述第二终端为传输速率与当前传输速率比最大的第一终端。
  17. 一种通信装置,其特征在于,包括:至少一个处理器和供电电路,所述供电电路用于为所述处理器供电,涉及的程序指令在所述至少一个处理器中执行,以使得所述通信装置实现根据权利要求1至8中任一项所述方法。
  18. 一种计算机可读存储介质,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至8中任一项所述的方法。
PCT/CN2020/085015 2019-07-24 2020-04-16 一种协同调度的方法和相关装置 WO2021012724A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20844239.2A EP3996442A4 (en) 2019-07-24 2020-04-16 COORDINATED PLANNING PROCESS AND ASSOCIATED MECHANISM
US17/580,803 US20220141840A1 (en) 2019-07-24 2022-01-21 Coordinated scheduling method and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910679626.2A CN112291031B (zh) 2019-07-24 2019-07-24 一种协同调度的方法和相关装置
CN201910679626.2 2019-07-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/580,803 Continuation US20220141840A1 (en) 2019-07-24 2022-01-21 Coordinated scheduling method and related apparatus

Publications (1)

Publication Number Publication Date
WO2021012724A1 true WO2021012724A1 (zh) 2021-01-28

Family

ID=74193094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085015 WO2021012724A1 (zh) 2019-07-24 2020-04-16 一种协同调度的方法和相关装置

Country Status (4)

Country Link
US (1) US20220141840A1 (zh)
EP (1) EP3996442A4 (zh)
CN (1) CN112291031B (zh)
WO (1) WO2021012724A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11246042B2 (en) * 2020-01-16 2022-02-08 At&T Intellectual Property I, L.P. Unified self-optimizing network to increase cell edge performance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1541023A (zh) * 2003-04-24 2004-10-27 诺基亚公司 蜂窝无线网络的动态覆盖范围和容量的解决方案
CN102957450A (zh) * 2011-08-26 2013-03-06 华为技术有限公司 一种提高网络质量的方法、装置、无线网络控制器和芯片
WO2015176317A1 (zh) * 2014-05-23 2015-11-26 华为技术有限公司 降低合并小区干扰的设备、方法、基站以及系统
CN105578481A (zh) * 2015-12-17 2016-05-11 京信通信技术(广州)有限公司 一种共小区方法、Smallcell及本地控制器
CN108810907A (zh) * 2017-04-26 2018-11-13 中国联合网络通信集团有限公司 一种虚拟小区的合并方法、装置及网络系统
EP3211952B1 (en) * 2014-10-21 2018-11-21 ZTE Corporation Joint interference rejection method and device, and method and device for realizing uplink comp

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6081713A (en) * 1998-05-18 2000-06-27 Telefonaktiebolaget Lm Ericsson Method of selectively directing a mobile station to retry system access in a radio telecommunication system
ES2367374T3 (es) * 2007-12-14 2011-11-02 Vodafone Group Plc Método para mejorar la capacidad en una red de comunicación.
KR101495502B1 (ko) * 2010-10-04 2015-02-26 노키아 솔루션스 앤드 네트웍스 오와이 감시된 트래픽 상태에 기초한 운영 계층들 사이의 트래픽 전송에 의한 네트워크 제어
JP5769190B2 (ja) * 2011-03-14 2015-08-26 国立研究開発法人情報通信研究機構 ワイヤレスネットワークにおけるセルをマージする際の自己共存機構
CN103828425B (zh) * 2013-11-18 2017-08-18 华为技术有限公司 一种自适应多速率的编码速率调整方法和设备
EP3016446A1 (en) * 2014-11-03 2016-05-04 Vodafone IP Licensing limited Method for improving energy efficiency of a telecommunication network
US20170180090A1 (en) * 2015-12-18 2017-06-22 Electronics And Telecommunications Research Institute Distributed multi-points coordinated dynamic cell control apparatus and control method thereof, and distributed multi-points coordinated dynamic cell configuration method
CN108206726B (zh) * 2016-12-20 2022-07-19 中兴通讯股份有限公司 一种合并小区的数据处理方法、装置及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1541023A (zh) * 2003-04-24 2004-10-27 诺基亚公司 蜂窝无线网络的动态覆盖范围和容量的解决方案
CN102957450A (zh) * 2011-08-26 2013-03-06 华为技术有限公司 一种提高网络质量的方法、装置、无线网络控制器和芯片
WO2015176317A1 (zh) * 2014-05-23 2015-11-26 华为技术有限公司 降低合并小区干扰的设备、方法、基站以及系统
EP3211952B1 (en) * 2014-10-21 2018-11-21 ZTE Corporation Joint interference rejection method and device, and method and device for realizing uplink comp
CN105578481A (zh) * 2015-12-17 2016-05-11 京信通信技术(广州)有限公司 一种共小区方法、Smallcell及本地控制器
CN108810907A (zh) * 2017-04-26 2018-11-13 中国联合网络通信集团有限公司 一种虚拟小区的合并方法、装置及网络系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALCATEL-LUCENT: "E-MBMS inter-resource block combining Document: Discussion", 3GPP TSG RAN WG1 #47BIS R1-070444. E-MBMS INTER-RESOURCE BLOCK COMBINING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 9 January 2007 (2007-01-09), Sorrento, Italy; 20070115-20070119, XP050104475 *
See also references of EP3996442A4

Also Published As

Publication number Publication date
CN112291031B (zh) 2022-03-29
EP3996442A1 (en) 2022-05-11
EP3996442A4 (en) 2022-08-24
CN112291031A (zh) 2021-01-29
US20220141840A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
US11012930B2 (en) Dynamic spectrum resource allocation for full spectrum sharing
KR100566652B1 (ko) 패킷 교환 서비스들을 위한 동적 주파수 할당 시스템 및방법
EP2421295B1 (en) Downlink inter-cell interference coordination method and base station
JP5304884B2 (ja) 移動体通信システムの無線基地局及び干渉平準化方法
JP2015233318A (ja) サブ帯域依存のリソース管理
US20230254924A1 (en) Intelligent carrier aggregation in millimeter wave resources
US10003548B2 (en) Data transmission method using multiple wireless networks
CN106572497B (zh) 一种基于比例公平算法的启发式d2d资源分配方法
CN102227932A (zh) 一种载波汇聚的方法和装置
CN109845312B (zh) 数据传输方法、装置、计算机设备及系统
CN111465066A (zh) 面向电力物联网多连接技术的网络选择和移动性管理方法
CN101790205A (zh) 多业务下的无线资源协同管理方法及系统
Shajaiah et al. Robust resource allocation with joint carrier aggregation in multi-carrier cellular networks
Gonzalez et al. Radio access considerations for data offloading with multipath TCP in cellular/WiFi networks
US20120063404A1 (en) Method and Apparatus
JPWO2011096062A1 (ja) 帯域調整方法、通信装置及び帯域調整装置
WO2021012724A1 (zh) 一种协同调度的方法和相关装置
US9326293B2 (en) Selection of a secondary component carrier based on interference information
CN109327412B (zh) 一种数据传输方法和基站
WO2016077950A1 (zh) 一种控制信息处理的方法、装置和系统
Zhang et al. Congestion-aware user-centric cooperative base station selection in ultra-dense networks
US9699792B2 (en) Base station apparatus, mobile station apparatus and circuit, and channel switching method
CN115038090A (zh) 共享载频负荷控制方法、装置、基站及存储介质
KR100821176B1 (ko) 주파수 대역간 핸드오버 방법 및 장치
CN112996114B (zh) 资源调度方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020844239

Country of ref document: EP

Effective date: 20220204