WO2021010205A1 - Sealing resin sheet - Google Patents

Sealing resin sheet Download PDF

Info

Publication number
WO2021010205A1
WO2021010205A1 PCT/JP2020/026413 JP2020026413W WO2021010205A1 WO 2021010205 A1 WO2021010205 A1 WO 2021010205A1 JP 2020026413 W JP2020026413 W JP 2020026413W WO 2021010205 A1 WO2021010205 A1 WO 2021010205A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
sealing
mass
sealing resin
filler
Prior art date
Application number
PCT/JP2020/026413
Other languages
French (fr)
Japanese (ja)
Inventor
祐作 清水
剛志 土生
大樹 ▲濱▼名
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2021532793A priority Critical patent/JPWO2021010205A1/ja
Priority to KR1020227000272A priority patent/KR20220032048A/en
Priority to CN202080050036.4A priority patent/CN114174421A/en
Priority to TW109123361A priority patent/TW202132474A/en
Publication of WO2021010205A1 publication Critical patent/WO2021010205A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2461/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2461/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2461/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to a sealing resin sheet, specifically, a sealing resin sheet for sealing an element.
  • thermosetting resin is heat-cured to be a sealing sheet. It is known to form a cured product from (for example, see Patent Document 1 below).
  • the semiconductor elements and electronic components provided in them are also required to be miniaturized. Along with this, it is also required to improve the dimensional accuracy at the time of curing for the resin (cured body) that protects the semiconductor element and the electronic component. Specifically, there is a demand for further reducing the amount of the cured product that penetrates between the semiconductor element, the electronic component, and the substrate from the side edge of the semiconductor element or the electronic component.
  • the present invention provides a sealing resin sheet that can sufficiently seal an element and can reduce the intrusion of a cured product between an element represented by a semiconductor element or an electronic component and a substrate.
  • the present invention [1], at a shear rate of 0.01 rad / sec, a viscosity of 85 °C ( ⁇ 0.01) is, and the 8 ⁇ 10 5 Pa ⁇ s or more, at a shear rate of 0.1 rad / sec, 85 ° C. Is a sealing resin sheet having a viscosity ( ⁇ 0.1 ) of less than 8 ⁇ 10 5 Pa ⁇ s.
  • the viscosity at 85 ° C. ( ⁇ 0.01 ) at a shear rate of 0.01 rad / sec and the viscosity at 85 ° C. ( ⁇ 10 ) at a shear rate of 10 rad / sec are expressed by the following equation (1).
  • ⁇ 0.01 / ⁇ 10 ⁇ 70 (1)
  • the sealing according to the above [1] or [2], wherein the viscosity ( ⁇ 10 ) at 85 ° C. at a shear rate of 10 rad / sec is 0.4 ⁇ 10 5 Pa ⁇ s or less. Contains a resin sheet for use.
  • a viscosity of 85 °C ( ⁇ 0.01) is, and the 8 ⁇ 10 5 Pa ⁇ s or more, at a shear rate of 0.1 rad / sec , 85 ° C. viscosity ( ⁇ 0.1 ) is less than 8 ⁇ 10 5 Pa ⁇ s.
  • the element can be sufficiently sealed, and when the sealing resin sheet is heated to form a cured body, the amount of the cured body invading between the element and the substrate can be reduced.
  • FIG. 1A to 1D are cross-sectional views of a process of manufacturing an electronic element package by encapsulating a plurality of electronic elements using the first embodiment of the sealing resin sheet of the present invention.
  • a step of preparing a sealing resin sheet FIG. 1B is a step of preparing an electronic element
  • FIG. 1C is a step of pressing a sealing resin sheet to form a sealing body
  • FIG. 1D is a step of forming a sealing body. This is a step of heating to form a cured product.
  • 2A to 2D are cross-sectional views of a process for manufacturing an electronic element package by encapsulating a plurality of electronic elements using the second embodiment of the sealing resin sheet of the present invention.
  • a step of preparing a multilayer resin sheet for sealing FIG.
  • FIG. 2B is a step of preparing an electronic element
  • FIG. 2C is a step of pressing a multilayer resin sheet for sealing to form a sealed body
  • FIG. 2D is a step of sealing. This is a step of heating the body to form a cured product.
  • 3A to 3D are process cross-sectional views of the method for measuring the cured body penetration length Y in the examples
  • FIG. 3A is a step of preparing a multilayer resin sheet for sealing (step A)
  • FIG. 3B is a process.
  • FIG. 3C is a step of pressing a multilayer resin sheet for sealing to form a sealing body
  • FIG. 3D is a step of heating the sealing body. This is a step (step D) of forming a cured product.
  • the sealing resin sheet of the present invention has a viscosity at 85 ° C. at a predetermined shear rate in a viscoelasticity measurement described later, which is a predetermined value.
  • the sealing resin sheet is a resin sheet for sealing an element, and has a substantially plate shape (film shape) extending in a plane direction orthogonal to the thickness direction.
  • the material of the sealing resin sheet contains, for example, a thermosetting resin and a thermoplastic resin.
  • thermosetting resin examples include epoxy resin, silicone resin, urethane resin, polyimide resin, urea resin, melamine resin, and unsaturated polyester resin.
  • thermosetting resin can be used alone or in combination of two or more.
  • thermosetting resin an epoxy resin is preferable.
  • the epoxy resin is prepared as an epoxy resin composition containing a main agent, a curing agent and a curing accelerator.
  • the main agent examples include bifunctional epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol A type epoxy resin, modified bisphenol F type epoxy resin, and biphenyl type epoxy resin, for example, phenol novolac type epoxy resin. , Cresol novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, tetraphenylol ethane type epoxy resin, dicyclopentadiene type epoxy resin and other trifunctional or higher functional epoxy resins. These main agents can be used alone or in combination of two or more. As the main agent, a bifunctional epoxy resin is preferable, and a bisphenol F type epoxy resin is more preferable.
  • the lower limit of the epoxy equivalent of the main agent is, for example, 10 g / eq. , Preferably 100 g / eq. Is.
  • the upper limit of the epoxy equivalent of the main agent is, for example, 300 g / eq. , Preferably 250 g / eq. Is.
  • the lower limit of the softening point of the main agent is, for example, 50 ° C., preferably 70 ° C., more preferably 72 ° C., and even more preferably 75 ° C.
  • the upper limit of the softening point of the main agent is, for example, 130 ° C., preferably 110 ° C., and more preferably 90 ° C.
  • the sealing resin sheet 1 can flow in the step shown in FIG. 1C. Therefore, the time of the step shown in FIG. 1C can be shortened, and one surface of the sealing resin sheet 1 in the thickness direction in the step shown in FIG. 2C can be flattened.
  • the lower limit of the ratio of the main agent in the material is, for example, 1% by mass, preferably 2% by mass.
  • the upper limit of the proportion of the base material in the material is, for example, 30% by mass, preferably 15% by mass.
  • the lower limit of the proportion of the main agent in the epoxy resin composition is, for example, 30% by mass, preferably 50% by mass.
  • the upper limit of the proportion of the main agent in the epoxy resin composition is, for example, 80% by mass, preferably 70% by mass.
  • the curing agent is a latent curing agent that cures the above-mentioned main agent by heating.
  • the curing agent include phenolic resins such as phenol novolac resin. If the curing agent is a phenol resin, the phenol resin is the main agent and the cured products have high heat resistance and high chemical resistance. Therefore, the cured product has excellent sealing reliability.
  • the ratio of the curing agent is set so as to have the following equivalent ratio.
  • the lower limit of the total number of hydroxyl groups in the phenol resin with respect to 1 equivalent of the epoxy group in the main agent is, for example, 0.7 equivalent, preferably 0.9 equivalent.
  • the upper limit of the total number of hydroxyl groups in the phenol resin with respect to 1 equivalent of the epoxy group in the main agent is, for example, 1.5 equivalents, preferably 1.2 equivalents.
  • the lower limit of the number of parts containing the curing agent with respect to 100 parts by mass of the main agent is, for example, 20 parts by mass, preferably 40 parts by mass.
  • the upper limit of the number of parts containing the curing agent with respect to 100 parts by mass of the main agent is, for example, 80 parts by mass, preferably 60 parts by mass.
  • the curing accelerator is a catalyst (thermosetting catalyst) that accelerates the curing of the main agent by heating.
  • the curing accelerator include organic phosphorus compounds, for example, imidazole compounds such as 2-phenyl-4,5-dihydroxymethylimidazole (2PHZ-PW).
  • an imidazole compound is mentioned.
  • the lower limit of the number of parts containing the curing accelerator with respect to 100 parts by mass of the main agent is, for example, 0.05 parts by mass.
  • the upper limit of the number of parts containing the curing accelerator with respect to 100 parts by mass of the main agent is, for example, 5 parts by mass.
  • the lower limit of the content ratio of the thermosetting resin in the material (sealing resin sheet) is, for example, 5% by mass, preferably 10% by mass, and more preferably 13% by mass.
  • the upper limit of the content ratio of the thermosetting resin in the material (sealing resin sheet) is, for example, 30% by mass, preferably 25% by mass, and more preferably 20% by mass.
  • thermoplastic resin examples include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, and polycarbonate resin.
  • These thermoplastic resins can be used alone or in combination of two or more.
  • thermoplastic resin an acrylic resin is preferably mentioned from the viewpoint of improving the dispersibility with the thermosetting resin.
  • the acrylic resin is, for example, a (meth) acrylic acid ester obtained by polymerizing a monomer component containing a (meth) acrylic acid alkyl ester having a linear or branched alkyl group and another monomer (copolymerizable monomer).
  • copolymers preferably carboxyl group-containing acrylic acid ester copolymers.
  • alkyl group examples include alkyl groups having 1 to 6 carbon atoms such as methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, isobutyl, pentyl, and hexyl.
  • Other monomers include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid, and glycidyl such as glycidyl acrylate and glycidyl methacrylate.
  • Group-containing monomers such as acid anhydride monomers such as maleic anhydride and itaconic anhydride, such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxy (meth) acrylate.
  • Butyl, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate or (4-hydroxymethylcyclohexyl)- Hydroxyl group-containing monomers such as methyl acrylate, such as styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate, (meth).
  • Sulfonic acid group-containing monomers such as acryloyloxynaphthalene sulfonic acid, phosphoric acid group-containing monomers such as 2-hydroxyethyl acryloyl phosphate, for example, styrene monomers, for example, acrylonitrile and the like can be mentioned. These can be used alone or in combination of two or more. Preferred are carboxyl group-containing monomers and hydroxyl group-containing monomers, and more preferably, carboxyl group-containing monomers.
  • thermoplastic resin is more preferably an acrylic resin containing a carboxyl group, and more preferably the thermoplastic resin is composed of an acrylic resin containing a carboxyl group.
  • the lower limit of the acid value of the acrylic resin containing a carboxyl group is, for example, 18, preferably 25.
  • the upper limit of the acid value of the acrylic resin is 50, preferably 40.
  • the fluidity of the sealing resin sheet can be reduced when the sealing resin sheet is heated to form a cured product (the curing step described later).
  • the sealing resin sheet is heated to form a cured product (curing step described later)
  • the fluidity of the sealing resin sheet is appropriately reduced when the sealing resin sheet is heated to form a cured product (curing step described later). It is possible to obtain an element or a substrate in which the amount of the cured product penetrated is within a predetermined range.
  • the above acid value can be measured by using a conventionally known indicator titration method using potassium hydroxide.
  • the lower limit of the glass transition temperature Tg of the thermoplastic resin is, for example, ⁇ 70 ° C., preferably ⁇ 50 ° C., and more preferably ⁇ 30 ° C.
  • the upper limit of the glass transition temperature Tg of the thermoplastic resin is, for example, 0 ° C., preferably 5 ° C., and more preferably ⁇ 5 ° C.
  • the glass transition temperature Tg is, for example, a theoretical value obtained by the Fox equation, and a specific calculation method thereof is described in, for example, Japanese Patent Application Laid-Open No. 2016-175976.
  • the lower limit of the weight average molecular weight of the thermoplastic resin is, for example, 100,000, preferably 300,000, more preferably 1,000,000, and even more preferably 1,100,000.
  • the upper limit of the weight average molecular weight of the thermoplastic resin is, for example, 1,400,000.
  • the weight average molecular weight is measured by gel permeation chromatography (GPC) based on a standard polystyrene conversion value.
  • the lower limit of the proportion of the thermoplastic resin in the material is, for example, 1% by mass, preferably 5% by mass, and more preferably 15% by mass.
  • the upper limit of the proportion of the thermoplastic resin in the material is, for example, 30% by mass.
  • the lower limit of the ratio of the thermoplastic resin to the total amount of the thermoplastic resin and the thermosetting resin is, for example, 10% by mass, preferably 20% by mass.
  • the upper limit of the ratio of the thermoplastic resin to the total amount of the thermoplastic resin and the thermosetting resin is, for example, 40% by mass, preferably 30% by mass.
  • layered silicate compounds inorganic fillers (excluding layered silicate compounds), pigments, silane coupling agents, and other additives can be added to the material.
  • the layered silicate compound is dispersed in the material (sealing resin sheet) with respect to the thermosetting resin and the thermoplastic resin (resin matrix).
  • the layered silicate compound is a flow conditioner for forming a sealed body and a cured product (described later) from a sealing resin sheet. Specifically, it is a flow reducing agent during curing that reduces the fluidity of the cured product when the sealing resin sheet is heated to form a cured product.
  • the layered silicate compound is, for example, a silicate having a structure (three-dimensional structure) in which layers spread in two dimensions (in the plane direction) are stacked in the thickness direction, and is called a phyllosilicate.
  • the layered silicate compound includes smectites such as montmorillonite, biderite, nontronite, saponite, hectorite, saponite, and stephensite, such as kaolinite, such as haloysite, for example, talc, for example. , Mica, etc.
  • smectite is preferably mentioned from the viewpoint of improving the mixing property with the thermosetting resin, and montmorillonite is more preferable.
  • the layered silicate compound may be an unmodified product whose surface is not modified, or a modified product whose surface is modified by an organic component.
  • the surface of the layered silicate compound is modified with an organic component from the viewpoint of obtaining excellent affinity with the thermosetting resin and the thermoplastic resin.
  • examples of the layered silicate compound include organic smectite having a surface modified with an organic component, and more preferably organic bentonite having a surface modified with an organic component.
  • organic components include organic cations (onium ions) such as ammonium, imidazolium, pyridinium, and phosphonium.
  • ammonium examples include dimethyl distearyl ammonium, disstearyl ammonium, octadecyl ammonium, hexyl ammonium, octyl ammonium, 2-hexyl ammonium, dodecyl ammonium, and trioctyl ammonium.
  • the imidazolium examples include methylstearyl imidazolium, distearyl imidazolium, methylhexyl imidazolium, dihexyl imidazolium, methyl octyl imidazolium, dioctyl imidazolium, methyl dodecyl imidazolium, and didodecyl imidazolium.
  • Examples of the pyridinium include stearyl pyridinium, hexyl pyridinium, octyl pyridinium, dodecyl pyridinium and the like.
  • Examples of phosphonium include dimethyl distearyl phosphonium, distearyl phosphonium, octadecyl phosphonium, hexyl phosphonium, octyl phosphonium, 2-hexyl phosphonium, dodecyl phosphonium, and trioctyl. Phosphonium and the like can be mentioned.
  • the organic cations can be used alone or in combination of two or more. Ammonium is preferable, and dimethyl distearyl ammonium is more preferable.
  • organic layered silicate compound examples include organic smectite having a surface modified with ammonium, and more preferably organic bentonite having a surface modified with dimethyl distearyl ammonium.
  • the lower limit of the average particle size of the layered silicate compound is, for example, 1 nm, preferably 5 nm, and more preferably 10 nm.
  • the upper limit of the average particle size of the layered silicate compound is, for example, 100 ⁇ m, preferably 50 ⁇ m, and more preferably 10 ⁇ m.
  • the average particle size of the layered silicate compound is determined as a D50 value (cumulative 50% median diameter) based on, for example, the particle size distribution obtained by the particle size distribution measurement method in the laser scattering method.
  • the layered silicate compound a commercially available product can be used.
  • Esben series manufactured by Hojun
  • organic bentonite a commercially available product of organic bentonite.
  • the lower limit of the content ratio of the layered silicate compound in the material (sealing resin sheet) is, for example, 0.1% by mass, preferably 1% by mass, more preferably 2% by mass, still more preferably 3% by mass. %.
  • the upper limit of the content ratio of the layered silicate compound in the material (resin sheet for encapsulation) is, for example, 25% by mass, preferably 15% by mass, more preferably 10% by mass, still more preferably 7% by mass. is there.
  • examples of the inorganic filler include silicate compounds other than layered silicate compounds such as orthosilicate, solosilicate, and inosilicate, such as quartz (silicic acid), silica (silicic anhydride), and silicon nitride. (Silicon compounds other than layered silicate compounds) and the like. Further, examples of the inorganic filler include alumina, aluminum nitride, boron nitride and the like. These can be used alone or in combination of two or more. A silicon compound other than the layered silicate compound is preferable, and silica is more preferable.
  • the shape of the inorganic filler is not particularly limited, and examples thereof include a substantially spherical shape, a substantially plate shape, a substantially needle shape, and an indefinite shape.
  • a substantially spherical shape is preferable.
  • the upper limit of the average value of the maximum lengths of the inorganic fillers is, for example, 50 ⁇ m, preferably 20 ⁇ m, and more preferably 10 ⁇ m.
  • the lower limit of the average value of the maximum length of the inorganic filler is also, for example, 0.1 ⁇ m, preferably 0.5 ⁇ m.
  • the average particle size of the inorganic filler is determined as a D50 value (cumulative 50% median diameter) based on, for example, the particle size distribution obtained by the particle size distribution measurement method in the laser scattering method.
  • the inorganic filler has a maximum length smaller than the average value of the first filler, the second filler having a maximum length smaller than the average value of the maximum lengths of the first filler, and the maximum length of the second filler. It can include a third filler having an average value of the dimensions.
  • the lower limit of the average value of the maximum length of the first filler is, for example, 1 ⁇ m, preferably 3 ⁇ m.
  • the upper limit of the average value of the maximum length of the first filler is, for example, 50 ⁇ m, preferably 30 ⁇ m.
  • the upper limit of the average value of the maximum length of the second filler is, for example, 0.9 ⁇ m, preferably 0.8 ⁇ m.
  • the lower limit of the average value of the maximum length of the second filler is, for example, 0.02 ⁇ m, preferably 0.1 ⁇ m.
  • the upper limit of the average value of the maximum length of the third filler is, for example, 0.015 ⁇ m.
  • the lower limit of the average value of the maximum length of the second filler is, for example, 0.001 ⁇ m, preferably 0.01 ⁇ m.
  • the lower limit of the ratio of the average value of the maximum lengths of the first filler to the average value of the maximum lengths of the second filler is, for example, 2, preferably 5.
  • the upper limit of the ratio of the average value of the maximum lengths of the first filler to the average value of the maximum lengths of the second filler is, for example, 50, preferably 20.
  • the lower limit of the ratio of the average value of the maximum lengths of the second filler to the average value of the maximum lengths of the third filler is, for example, 10, preferably 20.
  • the upper limit of the ratio of the average value of the maximum lengths of the second filler to the average value of the maximum lengths of the third filler is, for example, 60, preferably 50.
  • the materials of the first filler, the second filler and the third filler may all be the same or different.
  • the surface of the inorganic filler may be partially or wholly surface-treated with a silane coupling agent or the like.
  • the lower limit of the content ratio of the inorganic filler in the material (sealing resin sheet) is, for example, 30% by mass, preferably 40% by mass.
  • the upper limit of the content ratio of the inorganic filler in the material (sealing resin sheet) is, for example, 70% by mass, preferably 60% by mass.
  • the sealing resin sheet 1 in the step shown in FIG. 1C can flow.
  • the lower limit of the content ratio of the first filler in the material (sealing resin sheet) is, for example, 20% by mass. , Preferably 30% by mass.
  • the upper limit of the content ratio of the first filler in the material (resin sheet for sealing) is, for example, 60% by mass, preferably 50% by mass.
  • the lower limit of the content ratio of the second filler in the material (resin sheet for sealing) is, for example, 10% by mass, preferably 15% by mass.
  • the upper limit of the content ratio of the second filler in the material (resin sheet for sealing) is, for example, 30% by mass, preferably 25% by mass.
  • the lower limit of the number of parts containing the second filler with respect to 100 parts by mass of the first filler is, for example, 30 parts by mass, preferably 40 parts by mass, and more preferably 50 parts by mass.
  • the upper limit of the number of parts containing the second filler with respect to 100 parts by mass of the first filler is, for example, 70 parts by mass, preferably 60 parts by mass, and more preferably 55 parts by mass.
  • the lower limit of the content ratio of the first filler in the material (sealing resin sheet) is, for example, 20% by mass, preferably 30. It is mass%.
  • the upper limit of the content ratio of the first filler in the material (resin sheet for sealing) is, for example, 60% by mass, preferably 50% by mass.
  • the lower limit of the content ratio of the second filler in the material (resin sheet for sealing) is, for example, 10% by mass, preferably 15% by mass.
  • the upper limit of the content ratio of the second filler in the material (resin sheet for sealing) is, for example, 30% by mass, preferably 25% by mass.
  • the lower limit of the content ratio of the third filler in the material (resin sheet for sealing) is, for example, 1% by mass, preferably 3% by mass.
  • the upper limit of the content ratio of the third filler in the material (resin sheet for sealing) is, for example, 10% by mass, preferably 5% by mass.
  • the lower limit of the number of parts containing the second filler with respect to 100 parts by mass of the first filler is, for example, 30 parts by mass, preferably 40 parts by mass, and more preferably 50 parts by mass.
  • the upper limit of the number of parts containing the second filler with respect to 100 parts by mass of the first filler is, for example, 70 parts by mass, preferably 60 parts by mass, and more preferably 55 parts by mass.
  • the lower limit of the number of parts containing the third filler with respect to 100 parts by mass of the second filler is, for example, 10 parts by mass, preferably 15 parts by mass.
  • the upper limit of the number of parts containing the third filler with respect to 100 parts by mass of the second filler is, for example, 40 parts by mass, preferably 30 parts by mass.
  • pigments examples include black pigments such as carbon black.
  • the lower limit of the particle size of the pigment is, for example, 0.001 ⁇ m.
  • the upper limit of the particle size of the pigment is, for example, 1 ⁇ m.
  • the particle size of the pigment is an arithmetic mean diameter obtained by observing the pigment with an electron microscope.
  • the lower limit of the ratio of the pigment to the material is, for example, 0.1% by mass.
  • the upper limit of the ratio of the pigment to the material is, for example, 2% by mass.
  • silane coupling agent examples include a silane coupling agent containing an epoxy group.
  • silane coupling agent containing an epoxy group examples include 3-glycidoxydialkyldialkoxysilanes such as 3-glycidoxypropylmethyldimethoxysilane and 3-glycidoxypropylmethyldiethoxysilane, for example, 3-.
  • 3-glycidoxyalkyltrialkoxysilanes such as glycidoxypropyltrimethoxysilane and 3-glycidoxypropyltriethoxysilane.
  • 3-glycidoxyalkyltrialkoxysilane is used.
  • the lower limit of the content ratio of the silane coupling agent in the material is, for example, 0.1% by mass, preferably 0.5% by mass.
  • the upper limit of the content ratio of the silane coupling agent in the material is, for example, 10% by mass, preferably 5% by mass, and more preferably 2% by mass.
  • this sealing resin sheet prepare the material by blending each of the above components in the above ratio.
  • the above-mentioned components are sufficiently stirred to uniformly disperse the layered silicate compound with respect to the thermosetting resin and the thermoplastic resin. Let me.
  • a solvent ketone type such as methyl ethyl ketone
  • the varnish is applied to a release sheet (not shown) and then dried by heating to produce a sealing resin sheet having a sheet shape.
  • a sealing resin sheet from the material by kneading extrusion without preparing a varnish.
  • the sealing resin sheet to be formed is in the B stage (semi-cured state), specifically, in the state before the C stage. That is, it is a state before complete curing.
  • the sealing resin sheet is formed from the material of the A stage into the B stage sheet by the heating in the above-mentioned drying and the heating in the extrusion kneading.
  • the lower limit of the thickness of the sealing resin sheet is, for example, 10 ⁇ m, preferably 25 ⁇ m, and more preferably 50 ⁇ m.
  • the upper limit of the thickness of the sealing resin sheet is, for example, 3000 ⁇ m, preferably 1000 ⁇ m, more preferably 500 ⁇ m, and even more preferably 300 ⁇ m.
  • the sealing resin sheet 1 is prepared (preparation step).
  • the sealing resin sheet 1 has one surface and the other surface in the thickness direction facing each other in the thickness direction.
  • the electronic element 21 is prepared.
  • the electronic element 21 includes electronic components, and for example, a plurality of electronic elements 21 are mounted on the substrate 22.
  • the plurality of electronic elements 21 and the substrate 22 are provided on the element mounting substrate 24 together with the bumps 23. That is, the element mounting substrate 24 includes a plurality of electronic elements 21, a substrate 22, and bumps 23.
  • the substrate 22 has a substantially flat plate shape extending in the plane direction.
  • a terminal (not shown) electrically connected to an electrode (not shown) of the electronic element 21 is provided on one surface 25 in the thickness direction of the substrate 22.
  • Each of the plurality of electronic elements 21 has a substantially flat plate shape (chip shape) extending in the plane direction.
  • the plurality of electronic elements 21 are arranged so as to be spaced apart from each other in the plane direction.
  • the thickness direction other side surface 28 of the plurality of electronic elements 21 is parallel to the thickness direction one side surface 25 of the substrate 22. Electrodes (not shown) are provided on the other surface 28 in the thickness direction of each of the plurality of electronic elements 21.
  • the electrodes of the electronic element 21 are electrically connected to the terminals of the substrate 22 via the bumps 23 described below.
  • the other surface 28 in the thickness direction of the electronic element 21 is separated from the one surface 25 in the thickness direction of the substrate 22 by a gap (space) 26.
  • the lower limit of the interval between adjacent electronic elements 21 is, for example, 50 ⁇ m, preferably 100 ⁇ m, and more preferably 200 ⁇ m.
  • the upper limit of the distance between the adjacent electronic elements 21 is, for example, 10 mm, preferably 5 mm, and more preferably 1 mm. When the distance between the adjacent electronic elements 21 is equal to or less than the above upper limit, more electronic elements 21 can be mounted on the substrate 22, and space can be saved.
  • the bump 23 electrically connects each electrode (not shown) of the plurality of electronic elements 21 and each terminal of the substrate 22.
  • the bump 23 is arranged between the electrode of the electronic element 21 and the terminal of the substrate 22.
  • Examples of the material of the bump 23 include metals such as solder and gold.
  • the thickness of the bump 23 corresponds to the thickness (height) of the gap 26.
  • the thickness of the bump 23 is appropriately set according to the application and purpose of the element mounting substrate 24.
  • the sealing resin sheet 1 is arranged on the plurality of electronic elements 21 (arrangement step). Specifically, the other surface of the sealing resin sheet 1 in the thickness direction is brought into contact with the other surface of the plurality of electronic elements 21 in the thickness direction.
  • the sealing resin sheet 1 and the element mounting substrate 24 are pressed (sealing step).
  • the sealing resin sheet 1 and the element mounting substrate 24 are heat-pressed.
  • a press 27 provided with two flat plates presses the sealing resin sheet 1 and the element mounting substrate 24 while sandwiching them in the thickness direction.
  • the flat plate of the press 27 is provided with, for example, a heat source (not shown).
  • the press conditions are not particularly limited, and conditions are selected in which the sealing resin sheet 1 can penetrate between the plurality of electronic elements 21 while the element mounting substrate 24 is not damaged. .. More specifically, the pressing condition is that the sealing resin sheet 1 flows and penetrates between the adjacent electronic elements 21 to cover the peripheral side surfaces of the plurality of electronic elements 21 while covering the electronic elements 21. It is set so that it can come into contact with one surface 25 in the thickness direction of the substrate 22 which does not overlap in a plan view.
  • the lower limit of the press pressure is, for example, 0.01 MPa, preferably 0.05 MPa.
  • the upper limit of the press pressure is, for example, 10 MPa, preferably 5 MPa.
  • the lower limit of the press time is, for example, 0.3 minutes, preferably 0.5 minutes.
  • the upper limit of the press time is, for example, 10 minutes, preferably 5 minutes.
  • the lower limit of the heating temperature is, for example, 40 ° C, preferably 60 ° C.
  • the upper limit of the heating temperature is, for example, 100 ° C., preferably 95 ° C.
  • the sealing resin sheet 1 By pressing the sealing resin sheet 1, the sealing resin sheet 1 is plastically deformed according to the outer shape of the electronic element 21.
  • the other surface of the sealing resin sheet 1 in the thickness direction is deformed into a shape corresponding to the one surface in the thickness direction and the peripheral side surface of the plurality of electronic elements 21.
  • the sealing resin sheet 1 is plastically deformed while maintaining the B stage.
  • the sealing resin sheet 1 contacts the one side 25 in the thickness direction of the substrate 22 which does not overlap with the electronic element 21 in a plan view while covering the peripheral side surfaces of the plurality of electronic elements 21.
  • the sealing body 31 that seals the electronic element 21 is formed (made) from the sealing resin sheet 1.
  • One surface of the sealing body 31 in the thickness direction becomes a flat surface.
  • the sealing body 31 is allowed to slightly penetrate into the gap (gap between the electronic element 21 and the substrate 22) 26. Specifically, the sealing body 31 is allowed to have a sealing body penetration length X (see FIG. 3C) in which the sealing body 31 penetrates into the gap 26 with reference to the side edge 75 of the electronic element 21. Will be done.
  • the upper limit of the encapsulant penetration length X is, for example, 20 ⁇ m, preferably 10 ⁇ m, more preferably 5 ⁇ m, still more preferably 3 ⁇ m, and particularly preferably 1 ⁇ m.
  • the sealing body 31 is heated to form a cured body 41 from the sealing body 31 (curing step).
  • the encapsulant 31 and the element mounting substrate 24 are taken out from the press 27, and then the encapsulant 31 and the element mounting substrate 24 are heated in a dryer under atmospheric pressure.
  • the lower limit of the heating temperature is, for example, 100 ° C., preferably 120 ° C.
  • the upper limit of the heating temperature is, for example, 200 ° C., preferably 180 ° C.
  • the lower limit of the heating time is, for example, 10 minutes, preferably 30 minutes.
  • the upper limit of the heating time is, for example, 180 minutes, preferably 120 minutes.
  • a C-staged (completely cured) cured body 41 is formed from the sealing body 31.
  • One surface of the cured body 41 in the thickness direction is an exposed surface.
  • the edge of the sealing body 31, which is allowed to slightly penetrate into the gap further slightly penetrates into the gap 26 to become the cured body 41, but the degree is acceptable. It is suppressed to a small extent.
  • the cured body 41 has a sealed body penetration length from the cured body penetration length Y (see FIG. 3D) in which the cured body 41 penetrates into the gap 26 with reference to the side edge 75 of the electronic element 21.
  • the value obtained by subtracting X (YX) (hereinafter, referred to as the encapsulant penetration amount (YX)) can be reduced.
  • the upper limit of the cured product penetration length Y is, for example, 45 ⁇ m, preferably 25 ⁇ m, more preferably 20 ⁇ m, still more preferably 10 ⁇ m, particularly preferably 5 ⁇ m, and most preferably 1 ⁇ m.
  • the lower limit of the cured product penetration length Y is, for example, ⁇ 25 ⁇ m, preferably ⁇ 10 ⁇ m, and more preferably ⁇ 5 ⁇ m.
  • the upper limit of the amount of the sealant penetrating (YX) is, for example, 30 ⁇ m, preferably 15 ⁇ m, more preferably 10 ⁇ m, still more preferably 5 ⁇ m, particularly preferably 3 ⁇ m, and most preferably 1 ⁇ m. ..
  • the sealing resin sheet 1 has a viscosity at 85 ° C. at a predetermined shear rate in the viscoelasticity measurement described in detail in Examples described later.
  • the lower limit of the viscosity ( ⁇ 0.01 ) at 85 ° C. at a shear rate of 0.01 rad / sec is 8 ⁇ 10 5 Pa ⁇ s, preferably 10 ⁇ 10 5 Pa ⁇ s.
  • the upper limit of the viscosity ( ⁇ 0.01 ) at 85 ° C. at a shear rate of 0.01 rad / sec is, for example, 25 ⁇ 10 5 Pa ⁇ s, preferably 18 ⁇ 10 5 Pa ⁇ s.
  • the upper limit of the viscosity ( ⁇ 0.1 ) at 85 ° C. at a shear rate of 0.1 rad / sec is less than 8 ⁇ 10 5 Pa ⁇ s, preferably less than 5 ⁇ 10 5 Pa ⁇ s.
  • the lower limit of the viscosity ( ⁇ 0.1 ) at 85 ° C. at a shear rate of 0.1 rad / sec is, for example, 1 ⁇ 10 5 Pa ⁇ s.
  • the viscosity at 85 ° C. ( ⁇ 0.01 ) at a shear rate of 0.01 rad / sec is equal to or higher than the above lower limit, and the viscosity at 85 ° C. ( ⁇ 0.1 ) at a shear rate of 0.1 rad / sec is If it is less than the above upper limit, the sealing resin sheet 1 is arranged on the electronic element 21, the sealing resin sheet 1 (sealing body 31) is heated, and the cured body 41 is formed as shown in FIG. 1D. When forming, the amount of the cured product 41 invading the gap 26 between the electronic element 21 and the substrate 22 can be reduced.
  • the sealing resin sheet 1 has a high viscosity (specifically, a viscosity at 85 ° C. ( ⁇ 0.01 ) at a shear rate of 0.01 rad / sec) when the shear force (shear rate) is low.
  • a viscosity at 85 ° C. ( ⁇ 0.01 ) at a shear rate of 0.01 rad / sec when the shear force (shear rate) is low.
  • the viscosity at 85 ° C. ( ⁇ 0.1 ) at a shear rate of 0.1 rad / sec is the above upper limit.
  • the viscosity of the sealing resin sheet 1 can be lowered in the sealing step (when the shearing force (shear velocity) is high), so that the sealing resin between the plurality of electronic elements 21 While the sheet 1 can be penetrated, the viscosity of the sealing resin sheet 1 can be increased in the curing step (when the shearing force (shear velocity) is low), so that the gap 26 between the electronic element 21 and the substrate 22 can be filled.
  • the amount of penetration of the cured product 41 can be reduced.
  • the sealing resin sheet 1 can be sufficiently penetrated between the plurality of electronic elements 21. Can not.
  • the upper limit of the viscosity ( ⁇ 10 ) at 85 ° C. at a shear rate of 10 rad / sec is, for example, 0.4 ⁇ 10 5 Pa ⁇ s, preferably 0.2 ⁇ 10 5 Pa ⁇ s.
  • the lower limit of the viscosity ( ⁇ 10 ) at 85 ° C. at a shear rate of 10 rad / sec is, for example, 0.01 ⁇ 10 5 Pa ⁇ s, preferably 0.05 ⁇ 10 5 Pa ⁇ s.
  • the viscosity of the sealing resin sheet 1 can be lowered in the sealing step (when the shearing force (shear rate) is high). , The sealing resin sheet 1 can be inserted between the plurality of electronic elements 21.
  • the viscosity at 85 ° C. ( ⁇ 0.01 ) at a shear rate of 0.01 rad / sec and the viscosity at 85 ° C. ( ⁇ 10 ) at a shear rate of 10 rad / sec are preferably given by the following formula (7). Satisfied, more preferably the following formula (8) is satisfied, more preferably the following formula (9) is satisfied, and particularly preferably the following formula (10) is satisfied. ⁇ 0.01 / ⁇ 10 ⁇ 40 (7) ⁇ 0.01 / ⁇ 10 ⁇ 70 (8) ⁇ 0.01 / ⁇ 10 ⁇ 100 (9) ⁇ 0.01 / ⁇ 10 ⁇ 120 (10) Further, the viscosity at 85 ° C.
  • the sealing resin sheet 1 and the sealing multilayer resin sheet 11 provided with the second sealing resin sheet 12 in order on one side in the thickness direction are used.
  • the electronic element 21 is sealed, and subsequently, the cured body 41 is formed.
  • the sealing multilayer resin sheet 11 includes a sealing resin sheet 1 and a second sealing resin sheet 12 arranged on the entire surface of one surface in the thickness direction thereof.
  • the sealing multilayer resin sheet 11 includes only the sealing resin sheet 1 and the second sealing resin sheet 12.
  • the material of the second sealing resin sheet 12 is the same as the material of the sealing resin sheet 1 (thermosetting resin composition), but does not contain a layered silicate compound.
  • the lower limit of the ratio of the thickness of the second sealing resin sheet 12 to the thickness of the sealing resin sheet 1 is, for example, 0.5, preferably 1, more preferably 2.
  • the upper limit of the ratio of the thickness of the second sealing resin sheet 12 to the thickness of the sealing resin sheet 1 is, for example, 10, preferably 5.
  • FIGS. 2A to 2D for a method of manufacturing the electronic device cured product package 50 by sealing a plurality of electronic devices 21 with the sealing multilayer resin sheet 11 and then forming a cured product 41. Will be explained.
  • the sealing multilayer resin sheet 11 is prepared. Specifically, the sealing resin sheet 1 and the second sealing resin sheet 12 are bonded together.
  • a plurality of electronic elements 21 mounted on the substrate 22 are prepared.
  • the sealing multilayer resin sheet 11 is arranged on the electronic element 21 so that the other surface in the thickness direction of the sealing resin sheet 1 contacts the one surface in the thickness direction of the electronic element 21.
  • the sealing resin sheet 1 and the element mounting substrate 24 are then pressed.
  • the sealing resin sheet 1 has the above-mentioned thixotropic property, so that it flows and penetrates between the adjacent electronic elements 21.
  • the fluidity of the second sealing resin sheet 12 does not change significantly even when pressed, and remains low, so that it is suppressed from entering between adjacent electronic elements 21.
  • the sealing body 31 that seals the plurality of electronic elements 21 is formed from the sealing multilayer resin sheet 11.
  • the press shown in FIG. 2C can be used.
  • the sealing resin sheet 1 and the second sealing resin sheet 12 can flow.
  • the sealing resin sheet 1 is in contact with the electronic element 21, while the second sealing resin sheet 12 is located on the opposite side of the electronic element 21 with respect to the sealing resin sheet 1. That is, the edge of the sealing body 31 facing the gap 26 is formed from the sealing resin sheet 1. On the other hand, one surface of the sealing body 31 in the thickness direction is formed from the second sealing resin sheet 12.
  • the sealing body 31 is heated to form a cured body 41 from the sealing body 31.
  • the sealing multilayer resin sheet 11 includes the sealing resin sheet 1 described above, the amount of the cured product 41 invading the gap 26 can be reduced.
  • the sealing resin sheet 1 and the second sealing resin sheet 12 contain an epoxy resin main agent having a softening point of 50 ° C. or higher and 130 ° C. or lower, for sealing in the step shown in FIG. 2C.
  • the resin sheet 1 and the second sealing resin sheet 12 can flow. Therefore, the time of the step shown in FIG. 2C can be shortened, and one surface of the second sealing resin sheet 12 in the thickness direction in the step shown in FIG. 2C can be flattened.
  • the sealing resin sheet 1 and the second sealing resin sheet 12 contain a phenol resin as a curing agent together with the main agent of the epoxy resin, the cured product 41 has high heat resistance and high chemical resistance. .. Therefore, the cured product 41 is excellent in sealing reliability.
  • the second sealing resin sheet 12 is fluidized by receiving a pressing force, and one surface in the thickness direction becomes flat. Further, in the step shown in FIG. 2C, in the sealing multilayer resin sheet 11, as described above, the sealing resin sheet 1 together with the second sealing resin sheet 12 softens and flows under the pressing force. It deforms according to the outer shape of the electronic element 21. In the step shown in FIG. 2C, the sealing resin sheet 1 is allowed to slightly enter the gap 26.
  • the electronic element 21 is sealed with a one-layer sealing resin sheet 1.
  • the electronic element 21 can be sealed with a plurality of sealing resin sheets 1 (laminated sheets).
  • the second sealing resin sheet 12 in the sealing multilayer resin sheet 11 may have multiple layers.
  • an electronic element 21 arranged with a gap 26 separated from one surface 25 in the thickness direction of the substrate 22 is mentioned, and this is sealed with a sealing resin sheet 1, but for example, although not shown, An electronic element 21 that contacts one surface 25 in the thickness direction of the substrate 22 can be mentioned, and this can be sealed with the sealing resin sheet 1.
  • the electronic element 21 is mentioned as an example of the element, a semiconductor element can also be mentioned.
  • the present invention will be described in more detail with reference to Preparation Examples, Comparative Preparation Examples, Examples and Comparative Examples.
  • the present invention is not limited to any preparation examples, comparative preparation examples, examples and comparative examples.
  • specific numerical values such as the compounding ratio (content ratio), physical property values, and parameters used in the following description are described in the above-mentioned "Form for carrying out the invention", and the compounding ratios corresponding to them ( Substitute for the upper limit (numerical value defined as "less than or equal to” or “less than”) or lower limit (numerical value defined as "greater than or equal to” or “exceeded”) such as content ratio), physical property value, parameter, etc. it can.
  • Layered silicate compound Esben NX manufactured by Hojun (organized bentonite whose surface is modified with dimethyl distearyl ammonium)
  • Main agent YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd.
  • Bisphenol F type epoxy resin high molecular weight epoxy resin, epoxy equivalent 200 g / eq., Solid, softening point 80 ° C.
  • Hardener LVR-8210DL manufactured by Gunei Chemical Co., Ltd.
  • Acrylic resin 1 HME-2006M manufactured by Negami Kogyo Co., Ltd., carboxyl group-containing acrylic acid ester copolymer (acrylic resin), acid value: 32, number of functional groups: 736, weight average molecular weight: 1290000, glass transition temperature (Tg):- Methyl ethyl ketone solution at 13.9 ° C.
  • Acrylic resin 2 HME-2000M manufactured by Negami Kogyo Co., Ltd., carboxyl group-containing acrylic acid ester copolymer (acrylic resin), acid value: 20, number of functional groups: 367, Weight average molecular weight: 1030000, glass transition temperature (Tg): 3.7 ° C, methyl ethyl ketone solution with solid content concentration of 20% by mass
  • Acrylic resin 3 HME-2004M manufactured by Negami Kogyo Co., Ltd., acrylic acid ester copolymer (acrylic resin), acid Value: 0, number of functional groups: 0, weight average molecular weight: 118000, glass transition temperature (Tg): -3 ° C, methyl ethyl ketone solution with solid content concentration of 20% by mass Silane coupling agent: KBM-403 (3) manufactured by Shin-Etsu Chemical Co., Ltd.
  • First filler FB-8SM (spherical molten silica powder (inorganic filler), average particle diameter 7.0 ⁇ m)
  • Second filler SC220G-SMJ (average particle size 0.5 ⁇ m) manufactured by Admatex is surface-treated with 3-methacryloxypropyltrimethoxysilane (product name: KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.).
  • Preparation Example 4 The material varnish was prepared according to the formulation shown in Table 2. After applying the varnish to the surface of the release sheet, it was dried at 120 ° C. for 2 minutes to prepare a second sealing resin sheet 12 having a thickness of 195 ⁇ m. The second sealing resin sheet 12 was a B stage.
  • Step A As shown in FIG. 3A, a sample sheet 61 having a length of 10 mm, a width of 10 mm, and a thickness of 260 ⁇ m is prepared from the sealing multilayer resin sheet 11 of each Example and each Comparative Example.
  • Step B As shown in FIG. 3B, a dummy element 71 having a length of 3 mm, a width of 3 mm, and a thickness of 200 ⁇ m prepares a dummy element mounting substrate 74 mounted on a glass substrate 72 via a bump 23 having a thickness of 20 ⁇ m.
  • Step C As shown in FIG. 3C, the dummy element 71 on the dummy element mounting substrate 74 is pressed by the vacuum plate press with the sample sheet 61 at a temperature of 65 ° C., a pressure of 0.1 MPa, a vacuum degree of 1.6 kPa, and a pressing time of 1 minute.
  • the sealed body 31 is formed from the sample sheet 61 by sealing with.
  • Step D As shown in FIG. 3D, the sealed body 31 is thermoset by heating at 150 ° C. under atmospheric pressure for 1 hour to form a cured body 41 from the sealed body 31.
  • Step E As shown in the enlarged view of FIG. 3D, the cured body 41 penetrates into the gap 26 between the dummy element 71 and the glass substrate 72 from the side edge 75 with reference to the side edge 75 of the dummy element 71.
  • the intrusion length Y is measured.
  • the cured product penetration length Y was evaluated according to the following criteria. The results are shown in Table 3.
  • The cured product penetration length Y was 0 ⁇ m or more and 25 ⁇ m or less.
  • The cured product penetration length Y was more than 25 ⁇ m, 45 ⁇ m or less, or less than 0 ⁇ m, -25 ⁇ m or more.
  • X The cured product penetration length Y was more than 45 ⁇ m or less than -25 ⁇ m.
  • minus means that a space (see the thick broken line in FIG. 2D) protruding outward from the side edge 75 of the dummy element 71 is formed.
  • the absolute value of "minus” corresponds to the protruding length of the space.
  • Step F With reference to the side edge 75 of the dummy element 71, the encapsulant penetration length X in which the encapsulant 31 penetrates into the gap 26 between the dummy element 22 and the glass substrate 72 from the side edge 75 was measured. The results are shown in Table 3. ⁇ : The encapsulant penetration length X was 0 ⁇ m or more and 10 ⁇ m or less. ⁇ : The sealing depth X was more than 10 ⁇ m and 20 ⁇ m or less. X: The encapsulant penetration length X was below 20 ⁇ m.
  • ⁇ Invasion amount of sealant> The encapsulant invasion amount (YX) was calculated by subtracting the encapsulant invasion length X obtained by the above method from the cured body invasion length Y obtained by the above method. The results are shown in Table 3. ⁇ : The amount of the sealant penetrating (YX) was 0 ⁇ m or more and 15 ⁇ m or less. ⁇ : The amount of the sealant invading (YX) was more than 15 ⁇ m and 30 ⁇ m or less. X: The amount of the sealant invading (YX) exceeded 30 ⁇ m.
  • Comparative Example 3 in which the viscosity ( ⁇ 0.1 ) at 85 ° C. at a shear rate of 0.1 rad / sec is 8 ⁇ 10 5 Pa ⁇ s or more, a sealing resin sheet is provided between a plurality of dummy elements. It could not be sufficiently invaded.
  • the sealing resin sheet is used to seal the element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

In this sealing resin sheet, the 85°C viscosity (v0.01) at a shear rate of 0.01 rad/s is at least 8×105 Pa⋅s, and the 85°C viscosity (ν0.1) at a shear rate of 0.1 rad/s is less than 8×105 Pa⋅s.

Description

封止用樹脂シートResin sheet for sealing
 本発明は、封止用樹脂シート、詳しくは、素子を封止するための封止用樹脂シートに関する。 The present invention relates to a sealing resin sheet, specifically, a sealing resin sheet for sealing an element.
 従来、熱硬化性樹脂を含む封止用シートを用いて、基板に実装された半導体素子や電子部品を、プレスにより封止し、その後、熱硬化性樹脂を熱硬化させて、封止用シートから硬化体を形成することが知られている(例えば、下記特許文献1参照。)。 Conventionally, a semiconductor element or an electronic component mounted on a substrate is sealed by a press using a sealing sheet containing a thermosetting resin, and then the thermosetting resin is heat-cured to be a sealing sheet. It is known to form a cured product from (for example, see Patent Document 1 below).
特開2016-162909号公報Japanese Unexamined Patent Publication No. 2016-16209
 近年、電子機器の高機能化に伴い、それに備えられる半導体素子や電子部品にも小型化が要求されている。それに伴い、半導体素子や電子部品を保護する樹脂(硬化体)に対しても、硬化時の寸法精度の向上が要求されている。具体的には、半導体素子や電子部品の側端縁から、半導体素子や電子部品、および、基板間に侵入する硬化体の侵入量をより低減したい要求がある。 In recent years, with the increasing functionality of electronic devices, the semiconductor elements and electronic components provided in them are also required to be miniaturized. Along with this, it is also required to improve the dimensional accuracy at the time of curing for the resin (cured body) that protects the semiconductor element and the electronic component. Specifically, there is a demand for further reducing the amount of the cured product that penetrates between the semiconductor element, the electronic component, and the substrate from the side edge of the semiconductor element or the electronic component.
 本発明は、素子を十分に封止することができ、かつ、半導体素子や電子部品に代表される素子および基板間への硬化体の侵入を低減できる封止用樹脂シートを提供する。 The present invention provides a sealing resin sheet that can sufficiently seal an element and can reduce the intrusion of a cured product between an element represented by a semiconductor element or an electronic component and a substrate.
 本発明[1]は、せん断速度0.01rad/秒における、85℃の粘度(ν0.01)が、8×10Pa・s以上であり、せん断速度0.1rad/秒における、85℃の粘度(ν0.1)が、8×10Pa・s未満である、封止用樹脂シートである。 The present invention [1], at a shear rate of 0.01 rad / sec, a viscosity of 85 ℃ (ν 0.01) is, and the 8 × 10 5 Pa · s or more, at a shear rate of 0.1 rad / sec, 85 ° C. Is a sealing resin sheet having a viscosity (ν 0.1 ) of less than 8 × 10 5 Pa · s.
 本発明[2]は、せん断速度0.01rad/秒における、85℃の粘度(ν0.01)と、せん断速度10rad/秒における、85℃の粘度(ν10)とが、下記式(1)を満足する、上記[1]に記載の封止用樹脂シートを含んでいる。
ν0.01/ν10≧70   (1)
 本発明[3]は、せん断速度10rad/秒における、85℃の粘度(ν10)が、0.4×10Pa・s以下である、上記[1]または[2]に記載の封止用樹脂シートを含んでいる。
In the present invention [2], the viscosity at 85 ° C. (ν 0.01 ) at a shear rate of 0.01 rad / sec and the viscosity at 85 ° C. (ν 10 ) at a shear rate of 10 rad / sec are expressed by the following equation (1). ) Satisfying the above-mentioned [1].
ν 0.01 / ν 10 ≧ 70 (1)
The sealing according to the above [1] or [2], wherein the viscosity (ν 10 ) at 85 ° C. at a shear rate of 10 rad / sec is 0.4 × 10 5 Pa · s or less. Contains a resin sheet for use.
 本発明の封止用樹脂シートにおいて、せん断速度0.01rad/秒における、85℃の粘度(ν0.01)が、8×10Pa・s以上であり、せん断速度0.1rad/秒における、85℃の粘度(ν0.1)が、8×10Pa・s未満である。 In encapsulating resin sheet of the present invention, at a shear rate of 0.01 rad / sec, a viscosity of 85 ℃ (ν 0.01) is, and the 8 × 10 5 Pa · s or more, at a shear rate of 0.1 rad / sec , 85 ° C. viscosity (ν 0.1 ) is less than 8 × 10 5 Pa · s.
 そのため、素子を十分に封止することができ、かつ、この封止用樹脂シートを加熱して硬化体を形成するときに、素子および基板間への硬化体の侵入量を低減できる。 Therefore, the element can be sufficiently sealed, and when the sealing resin sheet is heated to form a cured body, the amount of the cured body invading between the element and the substrate can be reduced.
図1A~図1Dは、本発明の封止用樹脂シートの第1実施形態を用いて、複数の電子素子を封止して、電子素子パッケージを製造する工程断面図であり、図1Aが、封止用樹脂シートを準備する工程、図1Bが、電子素子を準備する工程、図1Cが、封止用樹脂シートをプレスして封止体を形成する工程、図1Dが、封止体を加熱して硬化体を形成する工程である。1A to 1D are cross-sectional views of a process of manufacturing an electronic element package by encapsulating a plurality of electronic elements using the first embodiment of the sealing resin sheet of the present invention. A step of preparing a sealing resin sheet, FIG. 1B is a step of preparing an electronic element, FIG. 1C is a step of pressing a sealing resin sheet to form a sealing body, and FIG. 1D is a step of forming a sealing body. This is a step of heating to form a cured product. 図2A~図2Dは、本発明の封止用樹脂シートの第2実施形態を用いて、複数の電子素子を封止して、電子素子パッケージを製造する工程断面図であり、図2Aが、封止用多層樹脂シートを準備する工程、図2Bが、電子素子を準備する工程、図2Cが、封止用多層樹脂シートをプレスして封止体を形成する工程、図2Dが、封止体を加熱して、硬化体を形成する工程である。2A to 2D are cross-sectional views of a process for manufacturing an electronic element package by encapsulating a plurality of electronic elements using the second embodiment of the sealing resin sheet of the present invention. A step of preparing a multilayer resin sheet for sealing, FIG. 2B is a step of preparing an electronic element, FIG. 2C is a step of pressing a multilayer resin sheet for sealing to form a sealed body, and FIG. 2D is a step of sealing. This is a step of heating the body to form a cured product. 図3A~図3Dは、実施例における硬化体侵入長さYを測定する方法の工程断面図であり、図3Aが、封止用多層樹脂シートを準備する工程(ステップA)、図3Bが、電子素子(ダミー素子)を準備する工程(ステップB)、図3Cが、封止用多層樹脂シートをプレスして封止体を形成する工程(ステップC)、図3Dが、封止体を加熱して、硬化体を形成する工程(ステップD)である。3A to 3D are process cross-sectional views of the method for measuring the cured body penetration length Y in the examples, FIG. 3A is a step of preparing a multilayer resin sheet for sealing (step A), and FIG. 3B is a process. A step of preparing an electronic element (dummy element) (step B), FIG. 3C is a step of pressing a multilayer resin sheet for sealing to form a sealing body (step C), and FIG. 3D is a step of heating the sealing body. This is a step (step D) of forming a cured product.
 本発明の封止用樹脂シートは、後述する粘弾性測定において、所定のせん断速度における、85℃の粘度が、所定の値である。 The sealing resin sheet of the present invention has a viscosity at 85 ° C. at a predetermined shear rate in a viscoelasticity measurement described later, which is a predetermined value.
 以下、このような封止用樹脂シートの第1実施形態(1層の封止用樹脂シート)を説明する。 Hereinafter, the first embodiment (one-layer sealing resin sheet) of such a sealing resin sheet will be described.
 封止用樹脂シートは、素子を封止するための樹脂シートであって、厚み方向に直交する面方向に延びる略板形状(フィルム形状)を有する。 The sealing resin sheet is a resin sheet for sealing an element, and has a substantially plate shape (film shape) extending in a plane direction orthogonal to the thickness direction.
 封止用樹脂シートの材料は、例えば、熱硬化性樹脂および熱可塑性樹脂を含有する。 The material of the sealing resin sheet contains, for example, a thermosetting resin and a thermoplastic resin.
 熱硬化性樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂、ポリイミド樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂などが挙げられる。 Examples of the thermosetting resin include epoxy resin, silicone resin, urethane resin, polyimide resin, urea resin, melamine resin, and unsaturated polyester resin.
 熱硬化性樹脂は、単独または2種以上併用することができる。 The thermosetting resin can be used alone or in combination of two or more.
 熱硬化性樹脂として、好ましくは、エポキシ樹脂が挙げられる。なお、エポキシ樹脂は、主剤、硬化剤および硬化促進剤を含有するエポキシ樹脂組成物として調製される。 As the thermosetting resin, an epoxy resin is preferable. The epoxy resin is prepared as an epoxy resin composition containing a main agent, a curing agent and a curing accelerator.
 主剤としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、変性ビスフェノールA型エポキシ樹脂、変性ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂などの2官能エポキシ樹脂、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂などの3官能以上の多官能エポキシ樹脂などが挙げられる。これら主剤は、単独で使用または2種以上を併用することができる。主剤として、好ましくは、2官能エポキシ樹脂、より好ましくは、ビスフェノールF型エポキシ樹脂が挙げられる。 Examples of the main agent include bifunctional epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol A type epoxy resin, modified bisphenol F type epoxy resin, and biphenyl type epoxy resin, for example, phenol novolac type epoxy resin. , Cresol novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, tetraphenylol ethane type epoxy resin, dicyclopentadiene type epoxy resin and other trifunctional or higher functional epoxy resins. These main agents can be used alone or in combination of two or more. As the main agent, a bifunctional epoxy resin is preferable, and a bisphenol F type epoxy resin is more preferable.
 主剤のエポキシ当量の下限は、例えば、10g/eq.、好ましくは、100g/eq.である。主剤のエポキシ当量の上限は、例えば、300g/eq.、好ましくは、250g/eq.である。 The lower limit of the epoxy equivalent of the main agent is, for example, 10 g / eq. , Preferably 100 g / eq. Is. The upper limit of the epoxy equivalent of the main agent is, for example, 300 g / eq. , Preferably 250 g / eq. Is.
 主剤の軟化点の下限は、例えば、50℃、好ましくは、70℃、より好ましくは、72℃、さらに好ましくは、75℃である。主剤の軟化点の上限は、例えば、130℃、好ましくは、110℃、より好ましくは、90℃である。 The lower limit of the softening point of the main agent is, for example, 50 ° C., preferably 70 ° C., more preferably 72 ° C., and even more preferably 75 ° C. The upper limit of the softening point of the main agent is, for example, 130 ° C., preferably 110 ° C., and more preferably 90 ° C.
 主剤の軟化点が上記した下限以上であれば、図1Cに示す工程において、封止用樹脂シート1が流動できる。従って、図1Cに示す工程の時間短縮、および、図2Cに示す工程における封止用樹脂シート1の厚み方向一方面を平坦にできる。 If the softening point of the main agent is equal to or higher than the above lower limit, the sealing resin sheet 1 can flow in the step shown in FIG. 1C. Therefore, the time of the step shown in FIG. 1C can be shortened, and one surface of the sealing resin sheet 1 in the thickness direction in the step shown in FIG. 2C can be flattened.
 材料における主剤の割合の下限は、例えば、1質量%、好ましくは、2質量%である。材料における主剤の割合の上限は、例えば、30質量%、好ましくは、15質量%である。エポキシ樹脂組成物における主剤の割合の下限は、例えば、30質量%、好ましくは、50質量%である。エポキシ樹脂組成物における主剤の割合の上限は、例えば、80質量%、好ましくは、70質量%である。 The lower limit of the ratio of the main agent in the material is, for example, 1% by mass, preferably 2% by mass. The upper limit of the proportion of the base material in the material is, for example, 30% by mass, preferably 15% by mass. The lower limit of the proportion of the main agent in the epoxy resin composition is, for example, 30% by mass, preferably 50% by mass. The upper limit of the proportion of the main agent in the epoxy resin composition is, for example, 80% by mass, preferably 70% by mass.
 硬化剤は、加熱によって、上記した主剤を硬化させる潜在性硬化剤である。硬化剤としては、例えば、フェノールノボラック樹脂などのフェノール樹脂が挙げられる。硬化剤がフェノール樹脂であれば、フェノール樹脂が主剤とともに、それらの硬化体が、高い耐熱性と高い耐薬品性とを有する。従って、硬化体は、封止信頼性に優れる。 The curing agent is a latent curing agent that cures the above-mentioned main agent by heating. Examples of the curing agent include phenolic resins such as phenol novolac resin. If the curing agent is a phenol resin, the phenol resin is the main agent and the cured products have high heat resistance and high chemical resistance. Therefore, the cured product has excellent sealing reliability.
 硬化剤の割合は、下記の当量比となるように設定される。具体的には、主剤中のエポキシ基1当量に対する、フェノール樹脂中の水酸基の合計の下限が、例えば、0.7当量、好ましくは、0.9当量である。主剤中のエポキシ基1当量に対する、フェノール樹脂中の水酸基の合計の上限が、例えば、1.5当量、好ましくは、1.2当量である。具体的には、主剤100質量部に対する硬化剤の含有部数の下限は、例えば、20質量部、好ましくは、40質量部である。主剤100質量部に対する硬化剤の含有部数の上限は、例えば、80質量部、好ましくは、60質量部である。 The ratio of the curing agent is set so as to have the following equivalent ratio. Specifically, the lower limit of the total number of hydroxyl groups in the phenol resin with respect to 1 equivalent of the epoxy group in the main agent is, for example, 0.7 equivalent, preferably 0.9 equivalent. The upper limit of the total number of hydroxyl groups in the phenol resin with respect to 1 equivalent of the epoxy group in the main agent is, for example, 1.5 equivalents, preferably 1.2 equivalents. Specifically, the lower limit of the number of parts containing the curing agent with respect to 100 parts by mass of the main agent is, for example, 20 parts by mass, preferably 40 parts by mass. The upper limit of the number of parts containing the curing agent with respect to 100 parts by mass of the main agent is, for example, 80 parts by mass, preferably 60 parts by mass.
 硬化促進剤は、加熱によって、主剤の硬化を促進する触媒(熱硬化触媒)である。硬化促進剤としては、例えば、有機リン系化合物、例えば、2-フェニル-4,5-ジヒドロキシメチルイミダゾール(2PHZ-PW)などのイミダゾール化合物などが挙げられる。好ましくは、イミダゾール化合物が挙げられる。主剤100質量部に対する硬化促進剤の含有部数の下限は、例えば、0.05質量部である。主剤100質量部に対する硬化促進剤の含有部数の上限は、例えば、5質量部である。 The curing accelerator is a catalyst (thermosetting catalyst) that accelerates the curing of the main agent by heating. Examples of the curing accelerator include organic phosphorus compounds, for example, imidazole compounds such as 2-phenyl-4,5-dihydroxymethylimidazole (2PHZ-PW). Preferably, an imidazole compound is mentioned. The lower limit of the number of parts containing the curing accelerator with respect to 100 parts by mass of the main agent is, for example, 0.05 parts by mass. The upper limit of the number of parts containing the curing accelerator with respect to 100 parts by mass of the main agent is, for example, 5 parts by mass.
 材料(封止用樹脂シート)における熱硬化性樹脂の含有割合の下限は、例えば、5質量%、好ましくは、10質量%、より好ましくは、13質量%である。材料(封止用樹脂シート)における熱硬化性樹脂の含有割合の上限は、例えば、30質量%、好ましくは、25質量%、より好ましくは、20質量%である。 The lower limit of the content ratio of the thermosetting resin in the material (sealing resin sheet) is, for example, 5% by mass, preferably 10% by mass, and more preferably 13% by mass. The upper limit of the content ratio of the thermosetting resin in the material (sealing resin sheet) is, for example, 30% by mass, preferably 25% by mass, and more preferably 20% by mass.
 熱可塑性樹脂としては、例えば、天然ゴム、ブチルゴム、イソプレンゴム、クロロプレンゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、ポリブタジエン樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂、ポリアミド樹脂(6-ナイロンや6,6-ナイロンなど)、フェノキシ樹脂、アクリル樹脂、飽和ポリエステル樹脂(PETなど)、ポリアミドイミド樹脂、フッ素樹脂、スチレン-イソブチレン-スチレンブロック共重合体などが挙げられる。これら熱可塑性樹脂は、単独使用または2種以上併用することができる。 Examples of the thermoplastic resin include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, and polycarbonate resin. Thermoplastic polyimide resin, polyamide resin (6-nylon, 6,6-nylon, etc.), phenoxy resin, acrylic resin, saturated polyester resin (PET, etc.), polyamideimide resin, fluororesin, styrene-isobutylene-styrene block copolymer And so on. These thermoplastic resins can be used alone or in combination of two or more.
 熱可塑性樹脂として、好ましくは、熱硬化性樹脂との分散性を向上させる観点から、アクリル樹脂が挙げられる。 As the thermoplastic resin, an acrylic resin is preferably mentioned from the viewpoint of improving the dispersibility with the thermosetting resin.
 アクリル樹脂としては、例えば、直鎖または分岐のアルキル基を有する(メタ)アクリル酸アルキルエステルと、その他のモノマー(共重合性モノマー)とを含むモノマー成分を重合してなる(メタ)アクリル酸エステルコポリマー(好ましくは、カルボキシル基含有アクリル酸エステルコポリマー)などが挙げられる。 The acrylic resin is, for example, a (meth) acrylic acid ester obtained by polymerizing a monomer component containing a (meth) acrylic acid alkyl ester having a linear or branched alkyl group and another monomer (copolymerizable monomer). Examples thereof include copolymers (preferably carboxyl group-containing acrylic acid ester copolymers).
 アルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、t-ブチル、イソブチル、ペンチル、ヘキシルなどの炭素数1~6のアルキル基などが挙げられる。 Examples of the alkyl group include alkyl groups having 1 to 6 carbon atoms such as methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, isobutyl, pentyl, and hexyl.
 その他のモノマーとしては、例えば、アクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマール酸、クロトン酸などのカルボキシル基含有モノマー、例えば、グリシジルアクリレート、グリシジルメタクリレートなどのグリシジル基含有モノマー、例えば、無水マレイン酸、無水イタコン酸などの酸無水物モノマー、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリルまたは(4-ヒドロキシメチルシクロヘキシル)-メチルアクリレートなどのヒドロキシル基含有モノマー、例えば、スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸などのスルホン酸基含有モノマー、2-ヒドロキシエチルアクリロイルホスフェートなど燐酸基含有モノマー、例えば、スチレンモノマー、例えば、アクリロニトリルなどが挙げられる。これらは単独使用または2種以上を併用することができる。
好ましくは、カルボキシル基含有モノマー、ヒドロキシル基含有モノマーが挙げられ、より好ましくは、カルボキシル基含有モノマーが挙げられる。
Other monomers include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid, and glycidyl such as glycidyl acrylate and glycidyl methacrylate. Group-containing monomers, such as acid anhydride monomers such as maleic anhydride and itaconic anhydride, such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxy (meth) acrylate. Butyl, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate or (4-hydroxymethylcyclohexyl)- Hydroxyl group-containing monomers such as methyl acrylate, such as styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate, (meth). ) Sulfonic acid group-containing monomers such as acryloyloxynaphthalene sulfonic acid, phosphoric acid group-containing monomers such as 2-hydroxyethyl acryloyl phosphate, for example, styrene monomers, for example, acrylonitrile and the like can be mentioned. These can be used alone or in combination of two or more.
Preferred are carboxyl group-containing monomers and hydroxyl group-containing monomers, and more preferably, carboxyl group-containing monomers.
 その他のモノマーは単独使用または2種以上を併用することができる。 Other monomers can be used alone or in combination of two or more.
 熱可塑性樹脂として、より好ましくは、カルボキシル基を含有するアクリル樹脂が挙げられ、さらに好ましくは、熱可塑性樹脂は、カルボキシル基を含有するアクリル樹脂からなる。 The thermoplastic resin is more preferably an acrylic resin containing a carboxyl group, and more preferably the thermoplastic resin is composed of an acrylic resin containing a carboxyl group.
 カルボキシル基を含有するアクリル樹脂の酸価の下限は、例えば、18、好ましくは、25である。アクリル樹脂の酸価の上限は、50、好ましくは、40である。 The lower limit of the acid value of the acrylic resin containing a carboxyl group is, for example, 18, preferably 25. The upper limit of the acid value of the acrylic resin is 50, preferably 40.
 上記の酸価が、上記下限以上であれば、封止用樹脂シートを加熱して硬化体を形成するとき(後述する硬化工程)に、封止用樹脂シートの流動性を低減することができ、封止用樹脂シートを加熱して硬化体を形成するとき(後述する硬化工程)に、硬化体の侵入量が所定の範囲となる素子や基板を得ることができる。 When the above acid value is equal to or higher than the above lower limit, the fluidity of the sealing resin sheet can be reduced when the sealing resin sheet is heated to form a cured product (the curing step described later). When the sealing resin sheet is heated to form a cured product (curing step described later), it is possible to obtain an element or a substrate in which the amount of the cured product penetrated is within a predetermined range.
 また、上記の酸価が、上記上限以下であれば、封止用樹脂シートを加熱して硬化体を形成するとき(後述する硬化工程)に、封止用樹脂シートの流動性を適度に低減することができ、硬化体の侵入量が所定の範囲となる素子や基板を得ることができる。 Further, when the above acid value is equal to or less than the above upper limit, the fluidity of the sealing resin sheet is appropriately reduced when the sealing resin sheet is heated to form a cured product (curing step described later). It is possible to obtain an element or a substrate in which the amount of the cured product penetrated is within a predetermined range.
 なお、上記の酸価は、従来公知の水酸化カリウムを用いた指示薬滴定法を用いて測定することができる。 The above acid value can be measured by using a conventionally known indicator titration method using potassium hydroxide.
 熱可塑性樹脂のガラス転移温度Tgの下限は、例えば、-70℃、好ましくは、-50℃、より好ましくは、-30℃である。熱可塑性樹脂のガラス転移温度Tgの上限は、例えば、0℃、好ましくは、5℃、より好ましくは、-5℃である。ガラス転移温度Tgは、例えば、Fox式により求められる理論値であって、その具体的な算出手法は、例えば、特開2016-175976号公報などに記載される。 The lower limit of the glass transition temperature Tg of the thermoplastic resin is, for example, −70 ° C., preferably −50 ° C., and more preferably −30 ° C. The upper limit of the glass transition temperature Tg of the thermoplastic resin is, for example, 0 ° C., preferably 5 ° C., and more preferably −5 ° C. The glass transition temperature Tg is, for example, a theoretical value obtained by the Fox equation, and a specific calculation method thereof is described in, for example, Japanese Patent Application Laid-Open No. 2016-175976.
 熱可塑性樹脂の重量平均分子量の下限は、例えば、100,000、好ましくは、300,000、より好ましくは、1,000,000、さらに好ましくは、1,100,000である。熱可塑性樹脂の重量平均分子量の上限は、例えば、1,400,000である。なお、重量平均分子量は、ゲル浸透クロマトフラフィー(GPC)により、標準ポリスチレン換算値に基づいて測定される。 The lower limit of the weight average molecular weight of the thermoplastic resin is, for example, 100,000, preferably 300,000, more preferably 1,000,000, and even more preferably 1,100,000. The upper limit of the weight average molecular weight of the thermoplastic resin is, for example, 1,400,000. The weight average molecular weight is measured by gel permeation chromatography (GPC) based on a standard polystyrene conversion value.
 材料(封止用樹脂シート)における熱可塑性樹脂の割合の下限は、例えば、1質量%、好ましくは、5質量%、より好ましくは、15質量%である。材料における熱可塑性樹脂の割合の上限は、例えば、30質量%である。 The lower limit of the proportion of the thermoplastic resin in the material (sealing resin sheet) is, for example, 1% by mass, preferably 5% by mass, and more preferably 15% by mass. The upper limit of the proportion of the thermoplastic resin in the material is, for example, 30% by mass.
 また、熱可塑性樹脂および熱硬化性樹脂の総量に対する、熱可塑性樹脂の割合の下限は、例えば、10質量%、好ましくは、20質量%である。熱可塑性樹脂および熱硬化性樹脂の総量に対する、熱可塑性樹脂の割合の上限は、例えば、40質量%、好ましくは、30質量%である。 Further, the lower limit of the ratio of the thermoplastic resin to the total amount of the thermoplastic resin and the thermosetting resin is, for example, 10% by mass, preferably 20% by mass. The upper limit of the ratio of the thermoplastic resin to the total amount of the thermoplastic resin and the thermosetting resin is, for example, 40% by mass, preferably 30% by mass.
 材料には、さらに、層状ケイ酸塩化合物、無機フィラー(層状ケイ酸塩化合物を除く)、顔料、シランカップリング剤、その他の添加剤を添加することができる。 Further, layered silicate compounds, inorganic fillers (excluding layered silicate compounds), pigments, silane coupling agents, and other additives can be added to the material.
 層状ケイ酸塩化合物は、材料(封止用樹脂シート)において、熱硬化性樹脂および熱可塑性樹脂(樹脂マトリクス)に対して分散される。また、層状ケイ酸塩化合物は、封止用樹脂シートから封止体および硬化体(後述)を形成するときの流動調整剤である。具体的には、封止用樹脂シートを加熱して硬化体を形成するときに、硬化体の流動性を低減する、硬化時流動低減剤である。 The layered silicate compound is dispersed in the material (sealing resin sheet) with respect to the thermosetting resin and the thermoplastic resin (resin matrix). The layered silicate compound is a flow conditioner for forming a sealed body and a cured product (described later) from a sealing resin sheet. Specifically, it is a flow reducing agent during curing that reduces the fluidity of the cured product when the sealing resin sheet is heated to form a cured product.
 層状ケイ酸塩化合物は、例えば、二次元(面方向に)に広がった層が、厚み方向に積み重なった構造(三次元構造)を有するケイ酸塩であって、フィロケイ酸塩と呼称される。 The layered silicate compound is, for example, a silicate having a structure (three-dimensional structure) in which layers spread in two dimensions (in the plane direction) are stacked in the thickness direction, and is called a phyllosilicate.
 具体的には、層状ケイ酸塩化合物としては、例えば、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スチーブンサイトなどのスメクタイト、例えば、カオリナイト、例えば、ハロイサイト、例えば、タルク、例えば、マイカなどが挙げられる。層状ケイ酸塩化合物として、好ましくは、熱硬化性樹脂との混合性を向上させる観点からスメクタイトが挙げられ、より好ましくは、モンモリロナイトが挙げられる。 Specifically, the layered silicate compound includes smectites such as montmorillonite, biderite, nontronite, saponite, hectorite, saponite, and stephensite, such as kaolinite, such as haloysite, for example, talc, for example. , Mica, etc. As the layered silicate compound, smectite is preferably mentioned from the viewpoint of improving the mixing property with the thermosetting resin, and montmorillonite is more preferable.
 層状ケイ酸塩化合物は、表面が変性されていない未変性物であってもよく、また、表面が有機成分により変性された変性物でもよい。好ましくは、熱硬化性樹脂および熱可塑性樹脂との優れた親和性を得る観点から、層状ケイ酸塩化合物は、表面が有機成分により変性されている。具体的には、層状ケイ酸塩化合物として、表面が有機成分で変性された有機化スメクタイト、さらに好ましくは、表面が有機成分で変性された有機化ベントナイトが挙げられる。 The layered silicate compound may be an unmodified product whose surface is not modified, or a modified product whose surface is modified by an organic component. Preferably, the surface of the layered silicate compound is modified with an organic component from the viewpoint of obtaining excellent affinity with the thermosetting resin and the thermoplastic resin. Specifically, examples of the layered silicate compound include organic smectite having a surface modified with an organic component, and more preferably organic bentonite having a surface modified with an organic component.
 有機成分として、アンモニウム、イミダゾリウム、ピリジニウム、フォスフォニウムなどの有機カチオン(オニウムイオン)が挙げられる。 Examples of organic components include organic cations (onium ions) such as ammonium, imidazolium, pyridinium, and phosphonium.
 アンモニウムとしては、例えば、ジメチルジステアリルアンモニウム、ジステアリルアンモニウム、オクタデシルアンモニウム、ヘキシルアンモニウム、オクチルアンモニウム、2-ヘキシルアンモニウム、ドデシルアンモニウム、トリオクチルアンモニウムなどが挙げられる。イミダゾリウムとしては、例えば、メチルステアリルイミダゾリウム、ジステアリルイミダゾリウム、メチルヘキシルイミダゾリウム、ジヘキシルイミダゾリウム、メチルオクチルイミダゾリウム、ジオクチルイミダゾリウム、メチルドデシルイミダゾリウム、ジドデシルイミダゾリウムなどが挙げられる。ピリジニウムとしては、例えば、ステアリルピリジニウム、ヘキシルピリジニウム、オクチルピリジニウム、ドデシルピリジニウムなどが挙げられる。フォスフォニウムとしては、例えば、ジメチルジステアリルフォスフォニウム、ジステアリルフォスフォニウム、オクタデシルフォスフォニウム、ヘキシルフォスフォニウム、オクチルフォスフォニウム、2-ヘキシルフォスフォニウム、ドデシルフォスフォニウム、トリオクチルフォスフォニウムなどが挙げられる。有機カチオンは、単独使用または2種以上併用することができる。好ましくは、アンモニウム、より好ましくは、ジメチルジステアリルアンモニウムが挙げられる。 Examples of ammonium include dimethyl distearyl ammonium, disstearyl ammonium, octadecyl ammonium, hexyl ammonium, octyl ammonium, 2-hexyl ammonium, dodecyl ammonium, and trioctyl ammonium. Examples of the imidazolium include methylstearyl imidazolium, distearyl imidazolium, methylhexyl imidazolium, dihexyl imidazolium, methyl octyl imidazolium, dioctyl imidazolium, methyl dodecyl imidazolium, and didodecyl imidazolium. Examples of the pyridinium include stearyl pyridinium, hexyl pyridinium, octyl pyridinium, dodecyl pyridinium and the like. Examples of phosphonium include dimethyl distearyl phosphonium, distearyl phosphonium, octadecyl phosphonium, hexyl phosphonium, octyl phosphonium, 2-hexyl phosphonium, dodecyl phosphonium, and trioctyl. Phosphonium and the like can be mentioned. The organic cations can be used alone or in combination of two or more. Ammonium is preferable, and dimethyl distearyl ammonium is more preferable.
 有機化層状ケイ酸塩化合物として、好ましくは、表面がアンモニウムで変性された有機化スメクタイト、より好ましくは、表面がジメチルジステアリルアンモニウムで変性された有機化ベントナイトが挙げられる。 Examples of the organic layered silicate compound include organic smectite having a surface modified with ammonium, and more preferably organic bentonite having a surface modified with dimethyl distearyl ammonium.
 層状ケイ酸塩化合物の平均粒子径の下限は、例えば、1nm、好ましくは、5nm、より好ましくは、10nmである。層状ケイ酸塩化合物の平均粒子径の上限は、例えば、100μm、好ましくは、50μm、より好ましくは、10μmである。なお、層状ケイ酸塩化合物の平均粒子径は、例えば、レーザー散乱法における粒度分布測定法によって求められた粒度分布に基づいて、D50値(累積50%メジアン径)として求められる。 The lower limit of the average particle size of the layered silicate compound is, for example, 1 nm, preferably 5 nm, and more preferably 10 nm. The upper limit of the average particle size of the layered silicate compound is, for example, 100 μm, preferably 50 μm, and more preferably 10 μm. The average particle size of the layered silicate compound is determined as a D50 value (cumulative 50% median diameter) based on, for example, the particle size distribution obtained by the particle size distribution measurement method in the laser scattering method.
 層状ケイ酸塩化合物としては、市販品を用いることができる。例えば、有機化ベントナイトの市販品として、エスベンシリーズ(ホージュン社製)などが用いられる。 As the layered silicate compound, a commercially available product can be used. For example, the Esben series (manufactured by Hojun) or the like is used as a commercially available product of organic bentonite.
 材料(封止用樹脂シート)における層状ケイ酸塩化合物の含有割合の下限は、例えば、0.1質量%、好ましくは、1質量%、より好ましくは、2質量%、さらに好ましくは、3質量%である。材料(封止用樹脂シート)における層状ケイ酸塩化合物の含有割合の上限は、例えば、25質量%、好ましくは、15質量%、より好ましくは、10質量%、さらに好ましくは、7質量%である。 The lower limit of the content ratio of the layered silicate compound in the material (sealing resin sheet) is, for example, 0.1% by mass, preferably 1% by mass, more preferably 2% by mass, still more preferably 3% by mass. %. The upper limit of the content ratio of the layered silicate compound in the material (resin sheet for encapsulation) is, for example, 25% by mass, preferably 15% by mass, more preferably 10% by mass, still more preferably 7% by mass. is there.
 無機フィラーとしては、例えば、オルトケイ酸塩、ソロケイ酸塩、イノケイ酸塩などの層状ケイ酸塩化合物以外のケイ酸塩化合物、例えば、石英(ケイ酸)、シリカ(無水ケイ酸)、窒化ケイ素などのケイ素化合物(層状ケイ酸塩化合物以外のケイ素化合物)などが挙げられる。また、無機フィラーとして、例えば、アルミナ、窒化アルミニウム、窒化ホウ素なども挙げられる。これらは、単独使用または2種以上併用することができる。好ましくは、層状ケイ酸塩化合物以外のケイ素化合物、より好ましくは、シリカが挙げられる。 Examples of the inorganic filler include silicate compounds other than layered silicate compounds such as orthosilicate, solosilicate, and inosilicate, such as quartz (silicic acid), silica (silicic anhydride), and silicon nitride. (Silicon compounds other than layered silicate compounds) and the like. Further, examples of the inorganic filler include alumina, aluminum nitride, boron nitride and the like. These can be used alone or in combination of two or more. A silicon compound other than the layered silicate compound is preferable, and silica is more preferable.
 無機フィラーの形状は、特に限定されず、例えば、略球形状、略板形状、略針形状、不定形状などが挙げられる。好ましくは、略球形状が挙げられる。 The shape of the inorganic filler is not particularly limited, and examples thereof include a substantially spherical shape, a substantially plate shape, a substantially needle shape, and an indefinite shape. A substantially spherical shape is preferable.
 無機フィラーの最大長さの平均値(略球形状であれば、平均粒子径と同義。)の上限は、例えば、50μm、好ましくは、20μm、より好ましくは、10μmである。無機フィラーの最大長さの平均値の下限は、また、例えば、0.1μm、好ましくは、0.5μmである。なお、無機フィラーの平均粒子径は、例えば、レーザー散乱法における粒度分布測定法によって求められた粒度分布に基づいて、D50値(累積50%メジアン径)として求められる。 The upper limit of the average value of the maximum lengths of the inorganic fillers (in the case of a substantially spherical shape, synonymous with the average particle size) is, for example, 50 μm, preferably 20 μm, and more preferably 10 μm. The lower limit of the average value of the maximum length of the inorganic filler is also, for example, 0.1 μm, preferably 0.5 μm. The average particle size of the inorganic filler is determined as a D50 value (cumulative 50% median diameter) based on, for example, the particle size distribution obtained by the particle size distribution measurement method in the laser scattering method.
 また、無機フィラーは、第1フィラーと、第1フィラーの最大長さの平均値より小さい最大長さの平均値を有する第2フィラーと、第2フィラーの最大長さの平均値より小さい最大長さの平均値を有する第3フィラーとを含むことができる。 Further, the inorganic filler has a maximum length smaller than the average value of the first filler, the second filler having a maximum length smaller than the average value of the maximum lengths of the first filler, and the maximum length of the second filler. It can include a third filler having an average value of the dimensions.
 第1フィラーの最大長さの平均値の下限は、例えば、1μm、好ましくは、3μmである。第1フィラーの最大長さの平均値の上限は、例えば、50μm、好ましくは、30μmである。 The lower limit of the average value of the maximum length of the first filler is, for example, 1 μm, preferably 3 μm. The upper limit of the average value of the maximum length of the first filler is, for example, 50 μm, preferably 30 μm.
 第2フィラーの最大長さの平均値の上限は、例えば、0.9μm、好ましくは、0.8μmである。第2フィラーの最大長さの平均値の下限は、例えば、0.02μm、好ましくは、0.1μmである。 The upper limit of the average value of the maximum length of the second filler is, for example, 0.9 μm, preferably 0.8 μm. The lower limit of the average value of the maximum length of the second filler is, for example, 0.02 μm, preferably 0.1 μm.
 第3フィラーの最大長さの平均値の上限は、例えば、0.015μmである。第2フィラーの最大長さの平均値の下限は、例えば、0.001μm、好ましくは、0.01μmである。 The upper limit of the average value of the maximum length of the third filler is, for example, 0.015 μm. The lower limit of the average value of the maximum length of the second filler is, for example, 0.001 μm, preferably 0.01 μm.
 第1フィラーの最大長さの平均値の、第2フィラーの最大長さの平均値に対する比の下限は、例えば、2、好ましくは、5である。第1フィラーの最大長さの平均値の、第2フィラーの最大長さの平均値に対する比の上限は、例えば、50、好ましくは、20である。 The lower limit of the ratio of the average value of the maximum lengths of the first filler to the average value of the maximum lengths of the second filler is, for example, 2, preferably 5. The upper limit of the ratio of the average value of the maximum lengths of the first filler to the average value of the maximum lengths of the second filler is, for example, 50, preferably 20.
 第2フィラーの最大長さの平均値の、第3フィラーの最大長さの平均値に対する比の下限は、例えば、10、好ましくは、20である。第2フィラーの最大長さの平均値の、第3フィラーの最大長さの平均値に対する比の上限は、例えば、60、好ましくは、50である。 The lower limit of the ratio of the average value of the maximum lengths of the second filler to the average value of the maximum lengths of the third filler is, for example, 10, preferably 20. The upper limit of the ratio of the average value of the maximum lengths of the second filler to the average value of the maximum lengths of the third filler is, for example, 60, preferably 50.
 第1フィラー、第2フィラーおよび第3フィラーの材料は、ともに同一あるいは相異っていてもよい。 The materials of the first filler, the second filler and the third filler may all be the same or different.
 さらに、無機フィラーは、その表面が、部分的あるいは全体的に、シランカップリング剤などで表面処理されていてもよい。 Further, the surface of the inorganic filler may be partially or wholly surface-treated with a silane coupling agent or the like.
 材料(封止用樹脂シート)における無機フィラーの含有割合の下限は、例えば、30質量%、好ましくは、40質量%である。材料(封止用樹脂シート)における無機フィラーの含有割合の上限は、例えば、70質量%、好ましくは、60質量%である。 The lower limit of the content ratio of the inorganic filler in the material (sealing resin sheet) is, for example, 30% by mass, preferably 40% by mass. The upper limit of the content ratio of the inorganic filler in the material (sealing resin sheet) is, for example, 70% by mass, preferably 60% by mass.
 無機フィラーの含有割合および/または含有部数が上記した下限以上であれば、図1Cに示す工程における封止用樹脂シート1が流動できる。 If the content ratio and / or the number of parts contained in the inorganic filler is equal to or higher than the above lower limit, the sealing resin sheet 1 in the step shown in FIG. 1C can flow.
 無機フィラーが第1フィラーと第2フィラーとを含む場合(第3フィラーを含まない場合)には、材料(封止用樹脂シート)における第1フィラーの含有割合の下限は、例えば、20質量%、好ましくは、30質量%である。材料(封止用樹脂シート)における第1フィラーの含有割合の上限は、例えば、60質量%、好ましくは、50質量%である。材料(封止用樹脂シート)における第2フィラーの含有割合の下限は、例えば、10質量%、好ましくは、15質量%である。材料(封止用樹脂シート)における第2フィラーの含有割合の上限は、例えば、30質量%、好ましくは、25質量%である。第1フィラー100質量部に対する第2フィラーの含有部数の下限は、例えば、30質量部、好ましくは、40質量部、より好ましくは、50質量部である。第1フィラー100質量部に対する第2フィラーの含有部数の上限は、例えば、70質量部、好ましくは、60質量部、より好ましくは、55質量部である。 When the inorganic filler contains the first filler and the second filler (when the third filler is not contained), the lower limit of the content ratio of the first filler in the material (sealing resin sheet) is, for example, 20% by mass. , Preferably 30% by mass. The upper limit of the content ratio of the first filler in the material (resin sheet for sealing) is, for example, 60% by mass, preferably 50% by mass. The lower limit of the content ratio of the second filler in the material (resin sheet for sealing) is, for example, 10% by mass, preferably 15% by mass. The upper limit of the content ratio of the second filler in the material (resin sheet for sealing) is, for example, 30% by mass, preferably 25% by mass. The lower limit of the number of parts containing the second filler with respect to 100 parts by mass of the first filler is, for example, 30 parts by mass, preferably 40 parts by mass, and more preferably 50 parts by mass. The upper limit of the number of parts containing the second filler with respect to 100 parts by mass of the first filler is, for example, 70 parts by mass, preferably 60 parts by mass, and more preferably 55 parts by mass.
 無機フィラーが第1フィラーと第2フィラーと第3フィラーとを含む場合には、材料(封止用樹脂シート)における第1フィラーの含有割合の下限は、例えば、20質量%、好ましくは、30質量%である。材料(封止用樹脂シート)における第1フィラーの含有割合の上限は、例えば、60質量%、好ましくは、50質量%である。材料(封止用樹脂シート)における第2フィラーの含有割合の下限は、例えば、10質量%、好ましくは、15質量%である。材料(封止用樹脂シート)における第2フィラーの含有割合の上限は、例えば、30質量%、好ましくは、25質量%である。材料(封止用樹脂シート)における第3フィラーの含有割合の下限は、例えば、1質量%、好ましくは、3質量%である。材料(封止用樹脂シート)における第3フィラーの含有割合の上限は、例えば、10質量%、好ましくは、5質量%である。第1フィラー100質量部に対する第2フィラーの含有部数の下限は、例えば、30質量部、好ましくは、40質量部、より好ましくは、50質量部である。第1フィラー100質量部に対する第2フィラーの含有部数の上限は、例えば、70質量部、好ましくは、60質量部、より好ましくは、55質量部である。第2フィラー100質量部に対する第3フィラーの含有部数の下限は、例えば、10質量部、好ましくは、15質量部である。第2フィラー100質量部に対する第3フィラーの含有部数の上限は、例えば、40質量部、好ましくは、30質量部である。 When the inorganic filler contains the first filler, the second filler, and the third filler, the lower limit of the content ratio of the first filler in the material (sealing resin sheet) is, for example, 20% by mass, preferably 30. It is mass%. The upper limit of the content ratio of the first filler in the material (resin sheet for sealing) is, for example, 60% by mass, preferably 50% by mass. The lower limit of the content ratio of the second filler in the material (resin sheet for sealing) is, for example, 10% by mass, preferably 15% by mass. The upper limit of the content ratio of the second filler in the material (resin sheet for sealing) is, for example, 30% by mass, preferably 25% by mass. The lower limit of the content ratio of the third filler in the material (resin sheet for sealing) is, for example, 1% by mass, preferably 3% by mass. The upper limit of the content ratio of the third filler in the material (resin sheet for sealing) is, for example, 10% by mass, preferably 5% by mass. The lower limit of the number of parts containing the second filler with respect to 100 parts by mass of the first filler is, for example, 30 parts by mass, preferably 40 parts by mass, and more preferably 50 parts by mass. The upper limit of the number of parts containing the second filler with respect to 100 parts by mass of the first filler is, for example, 70 parts by mass, preferably 60 parts by mass, and more preferably 55 parts by mass. The lower limit of the number of parts containing the third filler with respect to 100 parts by mass of the second filler is, for example, 10 parts by mass, preferably 15 parts by mass. The upper limit of the number of parts containing the third filler with respect to 100 parts by mass of the second filler is, for example, 40 parts by mass, preferably 30 parts by mass.
 顔料としては、例えば、カーボンブラックなどの黒色顔料が挙げられる。顔料の粒子径の下限は、例えば、0.001μmである。顔料の粒子径の上限は、例えば、1μmである。顔料の粒子径は、顔料を電子顕微鏡で観察して求めた算術平均径である。材料に対する顔料の割合の下限は、例えば、0.1質量%である。材料に対する顔料の割合の上限は、例えば、2質量%である。 Examples of pigments include black pigments such as carbon black. The lower limit of the particle size of the pigment is, for example, 0.001 μm. The upper limit of the particle size of the pigment is, for example, 1 μm. The particle size of the pigment is an arithmetic mean diameter obtained by observing the pigment with an electron microscope. The lower limit of the ratio of the pigment to the material is, for example, 0.1% by mass. The upper limit of the ratio of the pigment to the material is, for example, 2% by mass.
 シランカップリング剤としては、例えば、エポキシ基を含有するシランカップリング剤が挙げられる。エポキシ基を含有するシランカップリング剤としては、例えば、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシランなどの3-グリシドキシジアルキルジアルコキシシラン、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシランなどの3-グリシドキシアルキルトリアルコキシシランが挙げられる。好ましくは、3-グリシドキシアルキルトリアルコキシシランが挙げられる。材料におけるシランカップリング剤の含有割合の下限は、例えば、0.1質量%、好ましくは、0.5質量%である。材料におけるシランカップリング剤の含有割合の上限は、例えば、10質量%、好ましくは、5質量%、より好ましくは、2質量%である。 Examples of the silane coupling agent include a silane coupling agent containing an epoxy group. Examples of the silane coupling agent containing an epoxy group include 3-glycidoxydialkyldialkoxysilanes such as 3-glycidoxypropylmethyldimethoxysilane and 3-glycidoxypropylmethyldiethoxysilane, for example, 3-. Examples thereof include 3-glycidoxyalkyltrialkoxysilanes such as glycidoxypropyltrimethoxysilane and 3-glycidoxypropyltriethoxysilane. Preferably, 3-glycidoxyalkyltrialkoxysilane is used. The lower limit of the content ratio of the silane coupling agent in the material is, for example, 0.1% by mass, preferably 0.5% by mass. The upper limit of the content ratio of the silane coupling agent in the material is, for example, 10% by mass, preferably 5% by mass, and more preferably 2% by mass.
 この封止用樹脂シートを得るには、上記した各成分を上記した割合で配合して、材料を調製する。また、材料に、層状ケイ酸塩化合物を配合する場合には、好ましくは、上記した成分を十分に攪拌して、層状ケイ酸塩化合物を熱硬化性樹脂および熱可塑性樹脂に対して均一に分散させる。 To obtain this sealing resin sheet, prepare the material by blending each of the above components in the above ratio. When the layered silicate compound is blended with the material, preferably, the above-mentioned components are sufficiently stirred to uniformly disperse the layered silicate compound with respect to the thermosetting resin and the thermoplastic resin. Let me.
 また、必要により、溶媒(メチルエチルケトンなどのケトン系など)をさらに配合して、ワニスを調製する。その後、ワニスを、図示しない剥離シートに塗布し、その後、加熱により乾燥させて、シート形状を有する封止用樹脂シートを製造する。一方、ワニスを調製せず、混練押出によって、材料から封止用樹脂シートを形成することもできる。 Also, if necessary, a solvent (ketone type such as methyl ethyl ketone) is further added to prepare a varnish. Then, the varnish is applied to a release sheet (not shown) and then dried by heating to produce a sealing resin sheet having a sheet shape. On the other hand, it is also possible to form a sealing resin sheet from the material by kneading extrusion without preparing a varnish.
 なお、形成される封止用樹脂シートは、Bステージ(半硬化状態)であって、具体的には、Cステージ前の状態である。つまり、完全硬化前の状態である。封止用樹脂シートは、上記した乾燥における加熱や、押出混練における加熱によって、Aステージの材料から、Bステージシートに形成される。 The sealing resin sheet to be formed is in the B stage (semi-cured state), specifically, in the state before the C stage. That is, it is a state before complete curing. The sealing resin sheet is formed from the material of the A stage into the B stage sheet by the heating in the above-mentioned drying and the heating in the extrusion kneading.
 封止用樹脂シートの厚みの下限は、例えば、10μm、好ましくは、25μm、より好ましくは、50μmである。封止用樹脂シートの厚みの上限は、例えば、3000μm、好ましくは、1000μm、より好ましくは、500μm、さらに好ましくは、300μmである。 The lower limit of the thickness of the sealing resin sheet is, for example, 10 μm, preferably 25 μm, and more preferably 50 μm. The upper limit of the thickness of the sealing resin sheet is, for example, 3000 μm, preferably 1000 μm, more preferably 500 μm, and even more preferably 300 μm.
 次いで、封止用樹脂シートによって、素子の一例としての電子素子を封止して、電子素子パッケージ51を製造する方法を、図1A~図1Dを参照して説明する。 Next, a method of manufacturing the electronic device package 51 by sealing the electronic device as an example of the device with a sealing resin sheet will be described with reference to FIGS. 1A to 1D.
 この方法では、図1Aに示すように、まず、封止用樹脂シート1を準備する(準備工程)。封止用樹脂シート1は、厚み方向に互いに対向する厚み方向一方面および他方面を有する。 In this method, as shown in FIG. 1A, first, the sealing resin sheet 1 is prepared (preparation step). The sealing resin sheet 1 has one surface and the other surface in the thickness direction facing each other in the thickness direction.
 別途、図1Bに示すように、電子素子21を準備する。 Separately, as shown in FIG. 1B, the electronic element 21 is prepared.
 電子素子21は、電子部品を含んでおり、例えば、基板22に複数実装されている。複数の電子素子21と、基板22とは、素子実装基板24に、バンプ23とともに、備えられる。つまり、この素子実装基板24は、複数の電子素子21と、基板22と、バンプ23とを備える。 The electronic element 21 includes electronic components, and for example, a plurality of electronic elements 21 are mounted on the substrate 22. The plurality of electronic elements 21 and the substrate 22 are provided on the element mounting substrate 24 together with the bumps 23. That is, the element mounting substrate 24 includes a plurality of electronic elements 21, a substrate 22, and bumps 23.
 基板22は、面方向に延びる略平板形状を有する。基板22の厚み方向一方面25には、電子素子21の電極(図示せず)と電気的に接続される端子(図示せず)が設けられている。 The substrate 22 has a substantially flat plate shape extending in the plane direction. A terminal (not shown) electrically connected to an electrode (not shown) of the electronic element 21 is provided on one surface 25 in the thickness direction of the substrate 22.
 複数の電子素子21のそれぞれは、面方向に延びる略平板形状(チップ形状)を有する。複数の電子素子21は、互いに面方向に間隔を隔てて配置されている。複数の電子素子21の厚み方向他方面28は、基板22の厚み方向一方面25に平行する。複数の電子素子21のそれぞれの厚み方向他方面28には、電極(図示せず)が設けられている。電子素子21の電極は、次に説明するバンプ23を介して、基板22の端子と電気的に接続されている。なお、電子素子21の厚み方向他方面28は、基板22の厚み方向一方面25との間の隙間(空間)26が隔てられる。 Each of the plurality of electronic elements 21 has a substantially flat plate shape (chip shape) extending in the plane direction. The plurality of electronic elements 21 are arranged so as to be spaced apart from each other in the plane direction. The thickness direction other side surface 28 of the plurality of electronic elements 21 is parallel to the thickness direction one side surface 25 of the substrate 22. Electrodes (not shown) are provided on the other surface 28 in the thickness direction of each of the plurality of electronic elements 21. The electrodes of the electronic element 21 are electrically connected to the terminals of the substrate 22 via the bumps 23 described below. The other surface 28 in the thickness direction of the electronic element 21 is separated from the one surface 25 in the thickness direction of the substrate 22 by a gap (space) 26.
 隣接する電子素子21の間隔の下限は、例えば、50μm、好ましくは、100μm、より好ましくは、200μmである。隣接する電子素子21の間隔の上限は、例えば、10mm、好ましくは、5mm、より好ましくは、1mmである。隣接する電子素子21の間隔が上記上限以下であれば、基板22により多くの電子素子21を実装でき、省スペース化できる。 The lower limit of the interval between adjacent electronic elements 21 is, for example, 50 μm, preferably 100 μm, and more preferably 200 μm. The upper limit of the distance between the adjacent electronic elements 21 is, for example, 10 mm, preferably 5 mm, and more preferably 1 mm. When the distance between the adjacent electronic elements 21 is equal to or less than the above upper limit, more electronic elements 21 can be mounted on the substrate 22, and space can be saved.
 バンプ23は、複数の電子素子21のそれぞれの電極(図示せず)と、基板22のそれぞれの端子とを電気的に接続する。バンプ23は、電子素子21の電極と、基板22の端子の間に配置される。バンプ23の材料としては、例えば、半田、金などの金属などが挙げられる。バンプ23の厚みは、隙間26の厚み(高さ)に相当する。バンプ23の厚みは、素子実装基板24の用途および目的に応じて適宜設定される。 The bump 23 electrically connects each electrode (not shown) of the plurality of electronic elements 21 and each terminal of the substrate 22. The bump 23 is arranged between the electrode of the electronic element 21 and the terminal of the substrate 22. Examples of the material of the bump 23 include metals such as solder and gold. The thickness of the bump 23 corresponds to the thickness (height) of the gap 26. The thickness of the bump 23 is appropriately set according to the application and purpose of the element mounting substrate 24.
 次いで、図1Bに示すように、封止用樹脂シート1を、複数の電子素子21に配置する(配置工程)。具体的には、封止用樹脂シート1の厚み方向他方面を、複数の電子素子21の厚み方向一方面に接触させる。 Next, as shown in FIG. 1B, the sealing resin sheet 1 is arranged on the plurality of electronic elements 21 (arrangement step). Specifically, the other surface of the sealing resin sheet 1 in the thickness direction is brought into contact with the other surface of the plurality of electronic elements 21 in the thickness direction.
 次いで、図1Cに示すように、封止用樹脂シート1および素子実装基板24を、プレスする(封止工程)。好ましくは、封止用樹脂シート1および素子実装基板24を、熱プレスする。 Next, as shown in FIG. 1C, the sealing resin sheet 1 and the element mounting substrate 24 are pressed (sealing step). Preferably, the sealing resin sheet 1 and the element mounting substrate 24 are heat-pressed.
 例えば、2つの平板を備えるプレス27により、封止用樹脂シート1および素子実装基板24を厚み方向に挟みながら、それらをプレスする。なお、プレス27の平板には、例えば、図示しない熱源が備えられる。 For example, a press 27 provided with two flat plates presses the sealing resin sheet 1 and the element mounting substrate 24 while sandwiching them in the thickness direction. The flat plate of the press 27 is provided with, for example, a heat source (not shown).
 プレス条件(圧力、時間、さらには、温度など)は、特に限定されず、複数の電子素子21間に封止用樹脂シート1が侵入できる一方、素子実装基板24が損傷しない条件が選択される。より具体的には、プレス条件は、封止用樹脂シート1が流動して、隣接する電子素子21間に侵入し、複数の電子素子21のそれぞれの周側面を被覆しつつ、電子素子21と平面視で重複しない基板22の厚み方向一方面25に接触できるように、設定される。 The press conditions (pressure, time, temperature, etc.) are not particularly limited, and conditions are selected in which the sealing resin sheet 1 can penetrate between the plurality of electronic elements 21 while the element mounting substrate 24 is not damaged. .. More specifically, the pressing condition is that the sealing resin sheet 1 flows and penetrates between the adjacent electronic elements 21 to cover the peripheral side surfaces of the plurality of electronic elements 21 while covering the electronic elements 21. It is set so that it can come into contact with one surface 25 in the thickness direction of the substrate 22 which does not overlap in a plan view.
 具体的には、プレス圧の下限は、例えば、0.01MPa、好ましくは、0.05MPaである。プレス圧の上限は、例えば、10MPa、好ましくは、5MPaである。プレス時間の下限は、例えば、0.3分、好ましくは、0.5分である。プレス時間の上限は、例えば、10分、好ましくは、5分である。 Specifically, the lower limit of the press pressure is, for example, 0.01 MPa, preferably 0.05 MPa. The upper limit of the press pressure is, for example, 10 MPa, preferably 5 MPa. The lower limit of the press time is, for example, 0.3 minutes, preferably 0.5 minutes. The upper limit of the press time is, for example, 10 minutes, preferably 5 minutes.
 具体的には、加熱温度の下限は、例えば、40℃、好ましくは、60℃である。加熱温度の上限は、例えば、100℃、好ましくは、95℃である。 Specifically, the lower limit of the heating temperature is, for example, 40 ° C, preferably 60 ° C. The upper limit of the heating temperature is, for example, 100 ° C., preferably 95 ° C.
 封止用樹脂シート1のプレスよって、封止用樹脂シート1は、電子素子21の外形に対応して塑性変形する。封止用樹脂シート1の厚み方向他方面は、複数の電子素子21の厚み方向一方面および周側面に対応する形状に変形する。 By pressing the sealing resin sheet 1, the sealing resin sheet 1 is plastically deformed according to the outer shape of the electronic element 21. The other surface of the sealing resin sheet 1 in the thickness direction is deformed into a shape corresponding to the one surface in the thickness direction and the peripheral side surface of the plurality of electronic elements 21.
 なお、封止用樹脂シート1は、Bステージを維持しながら、塑性変形する。 The sealing resin sheet 1 is plastically deformed while maintaining the B stage.
 これによって、封止用樹脂シート1は、複数の電子素子21のそれぞれの周側面を被覆しつつ、平面視において、電子素子21と重複しない基板22の厚み方向一方面25に接触する。 As a result, the sealing resin sheet 1 contacts the one side 25 in the thickness direction of the substrate 22 which does not overlap with the electronic element 21 in a plan view while covering the peripheral side surfaces of the plurality of electronic elements 21.
 これによって、電子素子21を封止する封止体31が、封止用樹脂シート1から形成(作製)される。封止体31の厚み方向一方面は、平坦面になる。 As a result, the sealing body 31 that seals the electronic element 21 is formed (made) from the sealing resin sheet 1. One surface of the sealing body 31 in the thickness direction becomes a flat surface.
 このとき、封止体31は、隙間(電子素子21および基板22間の隙間)26にわずかに侵入することが許容される。具体的には、封止体31は、電子素子21の側端縁75を基準として、封止体31が隙間26に侵入する封止体侵入長さX(図3C参照)を有することが許容される。 At this time, the sealing body 31 is allowed to slightly penetrate into the gap (gap between the electronic element 21 and the substrate 22) 26. Specifically, the sealing body 31 is allowed to have a sealing body penetration length X (see FIG. 3C) in which the sealing body 31 penetrates into the gap 26 with reference to the side edge 75 of the electronic element 21. Will be done.
 具体的には、封止体侵入長さXの上限は、例えば、20μm、好ましくは、10μm、より好ましくは、5μm、さらに好ましくは、3μm、とりわけ好ましくは、1μmである。 Specifically, the upper limit of the encapsulant penetration length X is, for example, 20 μm, preferably 10 μm, more preferably 5 μm, still more preferably 3 μm, and particularly preferably 1 μm.
 その後、図1Dに示すように、封止体31を加熱して、封止体31から硬化体41を形成する(硬化工程)。 After that, as shown in FIG. 1D, the sealing body 31 is heated to form a cured body 41 from the sealing body 31 (curing step).
 具体的には、封止体31および素子実装基板24をプレス27から取り出し、続いて、封止体31および素子実装基板24を乾燥機で、大気圧下で、加熱する。 Specifically, the encapsulant 31 and the element mounting substrate 24 are taken out from the press 27, and then the encapsulant 31 and the element mounting substrate 24 are heated in a dryer under atmospheric pressure.
 加熱温度(キュア温度)の下限は、例えば、100℃、好ましくは、120℃である。加熱温度(キュア温度)の上限は、例えば、200℃、好ましくは、180℃である。加熱時間の下限は、例えば、10分、好ましくは、30分である。加熱時間の上限は、例えば、180分、好ましくは、120分である。 The lower limit of the heating temperature (cure temperature) is, for example, 100 ° C., preferably 120 ° C. The upper limit of the heating temperature (cure temperature) is, for example, 200 ° C., preferably 180 ° C. The lower limit of the heating time is, for example, 10 minutes, preferably 30 minutes. The upper limit of the heating time is, for example, 180 minutes, preferably 120 minutes.
 上記した封止体31の加熱によって、封止体31から、Cステージ化(完全硬化)した硬化体41が形成される。硬化体41の厚み方向一方面は、露出面である。 By heating the sealing body 31 described above, a C-staged (completely cured) cured body 41 is formed from the sealing body 31. One surface of the cured body 41 in the thickness direction is an exposed surface.
 なお、隙間へのわずかな侵入が許容された封止体31の端縁が、隙間26の内部にさらにわずかに侵入して、硬化体41となることが許容されるが、その程度は、可及的に小さく抑制される。具体的には、硬化体41は、電子素子21の側端縁75を基準として、硬化体41が隙間26に侵入する硬化体侵入長さY(図3D参照)から、封止体侵入長さXを差し引いた値(Y-X)(以下、封止体侵入量(Y-X)とする。)を小さくすることができる。 It is permissible that the edge of the sealing body 31, which is allowed to slightly penetrate into the gap, further slightly penetrates into the gap 26 to become the cured body 41, but the degree is acceptable. It is suppressed to a small extent. Specifically, the cured body 41 has a sealed body penetration length from the cured body penetration length Y (see FIG. 3D) in which the cured body 41 penetrates into the gap 26 with reference to the side edge 75 of the electronic element 21. The value obtained by subtracting X (YX) (hereinafter, referred to as the encapsulant penetration amount (YX)) can be reduced.
 具体的には、硬化体侵入長さYの上限は、例えば、45μm、好ましくは、25μm、より好ましくは、20μm、さらに好ましくは、10μm、とりわけ好ましくは、5μm、最も好ましくは、1μmである。硬化体侵入長さYの下限は、例えば、-25μm、好ましくは、-10μm、より好ましくは、-5μmである。 Specifically, the upper limit of the cured product penetration length Y is, for example, 45 μm, preferably 25 μm, more preferably 20 μm, still more preferably 10 μm, particularly preferably 5 μm, and most preferably 1 μm. The lower limit of the cured product penetration length Y is, for example, −25 μm, preferably −10 μm, and more preferably −5 μm.
 また、封止体侵入量(Y-X)の上限は、例えば、30μm、好ましくは、15μm、より好ましくは、10μm、さらに好ましくは、5μm、とりわけ好ましくは、3μm、最も好ましくは、1μmである。 The upper limit of the amount of the sealant penetrating (YX) is, for example, 30 μm, preferably 15 μm, more preferably 10 μm, still more preferably 5 μm, particularly preferably 3 μm, and most preferably 1 μm. ..
 そして、この封止用樹脂シート1は、後述する実施例で詳述する粘弾性測定において、所定のせん断速度における、85℃の粘度が、所定の値である。 The sealing resin sheet 1 has a viscosity at 85 ° C. at a predetermined shear rate in the viscoelasticity measurement described in detail in Examples described later.
 具体的には、せん断速度0.01rad/秒における、85℃の粘度(ν0.01)の下限は、8×10Pa・s、好ましくは、10×10Pa・sである。せん断速度0.01rad/秒における、85℃の粘度(ν0.01)の上限は、例えば、25×10Pa・s、好ましくは、18×10Pa・sである。 Specifically, the lower limit of the viscosity (ν 0.01 ) at 85 ° C. at a shear rate of 0.01 rad / sec is 8 × 10 5 Pa · s, preferably 10 × 10 5 Pa · s. The upper limit of the viscosity (ν 0.01 ) at 85 ° C. at a shear rate of 0.01 rad / sec is, for example, 25 × 10 5 Pa · s, preferably 18 × 10 5 Pa · s.
 また、せん断速度0.1rad/秒における、85℃の粘度(ν0.1)の上限は、8×10Pa・s未満、好ましくは、5×10Pa・s未満である。せん断速度0.1rad/秒における、85℃の粘度(ν0.1)の下限は、例えば、1×10Pa・sである。 The upper limit of the viscosity (ν 0.1 ) at 85 ° C. at a shear rate of 0.1 rad / sec is less than 8 × 10 5 Pa · s, preferably less than 5 × 10 5 Pa · s. The lower limit of the viscosity (ν 0.1 ) at 85 ° C. at a shear rate of 0.1 rad / sec is, for example, 1 × 10 5 Pa · s.
 せん断速度0.01rad/秒における、85℃の粘度(ν0.01)が、上記下限以上であり、かつ、せん断速度0.1rad/秒における、85℃の粘度(ν0.1)が、上記上限未満であれば、この封止用樹脂シート1を電子素子21に配置し、封止用樹脂シート1(封止体31)を加熱して、図1Dに示すように、硬化体41を形成するときに、電子素子21および基板22間である隙間26への硬化体41の侵入量を低減することができる。 The viscosity at 85 ° C. (ν 0.01 ) at a shear rate of 0.01 rad / sec is equal to or higher than the above lower limit, and the viscosity at 85 ° C. (ν 0.1 ) at a shear rate of 0.1 rad / sec is If it is less than the above upper limit, the sealing resin sheet 1 is arranged on the electronic element 21, the sealing resin sheet 1 (sealing body 31) is heated, and the cured body 41 is formed as shown in FIG. 1D. When forming, the amount of the cured product 41 invading the gap 26 between the electronic element 21 and the substrate 22 can be reduced.
 詳しくは、封止用樹脂シート1は、せん断力(せん断速度)が低い場合には高粘度(具体的には、せん断速度0.01rad/秒における、85℃の粘度(ν0.01)が、上記下限以上)を示し、せん断力(せん断速度)が高い場合には低粘度(具体的には、せん断速度0.1rad/秒における、85℃の粘度(ν0.1)が、上記上限未満)を示すチキソトロピック性を有する。 Specifically, the sealing resin sheet 1 has a high viscosity (specifically, a viscosity at 85 ° C. (ν 0.01 ) at a shear rate of 0.01 rad / sec) when the shear force (shear rate) is low. , Above the above lower limit), and when the shear force (shear rate) is high, the viscosity at 85 ° C. (ν 0.1 ) at a shear rate of 0.1 rad / sec is the above upper limit. Has a thixotropic property indicating (less than).
 このようなチキソトロピック性によれば、封止工程(せん断力(せん断速度)が高い場合)では、封止用樹脂シート1の粘度を低くできるため、複数の電子素子21間に封止用樹脂シート1を侵入させることができる一方、硬化工程(せん断力(せん断速度)が低い場合)では、封止用樹脂シート1の粘度を高くできるため、電子素子21および基板22間である隙間26への硬化体41の侵入量を低減できる。 According to such thixotropic properties, the viscosity of the sealing resin sheet 1 can be lowered in the sealing step (when the shearing force (shear velocity) is high), so that the sealing resin between the plurality of electronic elements 21 While the sheet 1 can be penetrated, the viscosity of the sealing resin sheet 1 can be increased in the curing step (when the shearing force (shear velocity) is low), so that the gap 26 between the electronic element 21 and the substrate 22 can be filled. The amount of penetration of the cured product 41 can be reduced.
 一方、せん断速度0.01rad/秒における、85℃の粘度(ν0.01)が、上記下限未満であれば、封止用樹脂シートを加熱して硬化体を形成するとき(硬化工程)に、封止用樹脂シート1の流動性を低減することができない。その結果、封止用樹脂シートを加熱して硬化体を形成するとき(硬化工程)に、素子および基板間への硬化体の侵入量を低減することができない。 On the other hand, if the viscosity (ν 0.01 ) at 85 ° C. at a shear rate of 0.01 rad / sec is less than the above lower limit, when the sealing resin sheet is heated to form a cured product (curing step). , The fluidity of the sealing resin sheet 1 cannot be reduced. As a result, when the sealing resin sheet is heated to form a cured product (curing step), the amount of the cured product penetrated between the element and the substrate cannot be reduced.
 また、せん断速度0.1rad/秒における、85℃の粘度(ν0.1)が、上記上限以上であれば、複数の電子素子21間に封止用樹脂シート1を十分に侵入させることができない。 Further, if the viscosity (ν 0.1 ) at 85 ° C. at a shear rate of 0.1 rad / sec is equal to or higher than the above upper limit, the sealing resin sheet 1 can be sufficiently penetrated between the plurality of electronic elements 21. Can not.
 せん断速度0.01rad/秒における、85℃の粘度(ν0.01)と、せん断速度0.1rad/秒における、85℃の粘度(ν0.1)とが、好ましくは、下記式(2)を満足し、より好ましくは、下記式(3)を満足し、さらに好ましくは、下記式(4)を満足する。
ν0.01/ν0.1≧2   (2)
ν0.01/ν0.1≧3   (3)
ν0.01/ν0.1≧4   (4)
 また、せん断速度0.01rad/秒における、85℃の粘度(ν0.01)と、せん断速度0.1rad/秒における、85℃の粘度(ν0.1)とが、好ましくは、下記式(5)を満足し、より好ましくは、下記式(6)を満足する。
ν0.01/ν0.1≦6   (5)
ν0.01/ν0.1≦5   (6)
 せん断速度0.01rad/秒における、85℃の粘度(ν0.01)と、せん断速度0.1rad/秒における、85℃の粘度(ν0.1)とが、上記式(2)または上記式(3)または上記式(4)を満足すれば、上記した効果を奏するのに十分なチキソトロピック性を発現することができる。
At a shear rate of 0.01 rad / sec, and the viscosity of 85 ° C. ([nu 0.01), at a shear rate of 0.1 rad / sec, although the viscosity of 85 ° C. ([nu 0.1), preferably the following formula (2 ) Satisfies, more preferably the following formula (3) is satisfied, and more preferably the following formula (4) is satisfied.
ν 0.01 / ν 0.1 ≧ 2 (2)
ν 0.01 / ν 0.1 ≧ 3 (3)
ν 0.01 / ν 0.1 ≧ 4 (4)
Further, at a shear rate of 0.01 rad / sec, and the viscosity of 85 ℃ (ν 0.01), at a shear rate of 0.1 rad / sec, although the viscosity of 85 ℃ (ν 0.1), preferably, the following formula (5) is satisfied, and more preferably, the following formula (6) is satisfied.
ν 0.01 / ν 0.1 ≤ 6 (5)
ν 0.01 / ν 0.1 ≤ 5 (6)
At a shear rate of 0.01 rad / sec, and the viscosity of 85 ° C. ([nu 0.01), at a shear rate of 0.1 rad / sec, although the viscosity of 85 ° C. ([nu 0.1), the formula (2) or the If the formula (3) or the above formula (4) is satisfied, sufficient thixotropic properties can be exhibited to exert the above-mentioned effects.
 また、せん断速度10rad/秒における、85℃の粘度(ν10)の上限は、例えば、0.4×10Pa・s、好ましくは、0.2×10Pa・sである。せん断速度10rad/秒における、85℃の粘度(ν10)の下限は、例えば、0.01×10Pa・s、好ましくは、0.05×10Pa・sである。 The upper limit of the viscosity (ν 10 ) at 85 ° C. at a shear rate of 10 rad / sec is, for example, 0.4 × 10 5 Pa · s, preferably 0.2 × 10 5 Pa · s. The lower limit of the viscosity (ν 10 ) at 85 ° C. at a shear rate of 10 rad / sec is, for example, 0.01 × 10 5 Pa · s, preferably 0.05 × 10 5 Pa · s.
 せん断速度10rad/秒における、85℃の粘度(ν10)の上限以下であれば、封止工程(せん断力(せん断速度)が高い場合)において、封止用樹脂シート1の粘度を低くできるため、複数の電子素子21間に封止用樹脂シート1を侵入させることができる。 If it is equal to or less than the upper limit of the viscosity (ν 10 ) at 85 ° C. at a shear rate of 10 rad / sec, the viscosity of the sealing resin sheet 1 can be lowered in the sealing step (when the shearing force (shear rate) is high). , The sealing resin sheet 1 can be inserted between the plurality of electronic elements 21.
 また、せん断速度0.01rad/秒における、85℃の粘度(ν0.01)と、せん断速度10rad/秒における、85℃の粘度(ν10)とが、好ましくは、下記式(7)を満足し、より好ましくは、下記式(8)を満足し、さらに好ましくは、下記式(9)を満足し、とりわけ好ましくは、下記式(10)を満足する。
ν0.01/ν10≧40   (7)
ν0.01/ν10≧70   (8)
ν0.01/ν10≧100   (9)
ν0.01/ν10≧120   (10)
 また、せん断速度0.01rad/秒における、85℃の粘度(ν0.01)と、せん断速度10rad/秒における、85℃の粘度(ν10)とが、好ましくは、下記式(11)を満足し、より好ましくは、下記式(12)を満足する。
ν0.01/ν10≦200   (11)
ν0.01/ν10≦150   (12)
 せん断速度0.01rad/秒における、85℃の粘度(ν0.01)と、せん断速度10rad/秒における、85℃の粘度(ν10)とが、上記式(7)または上記式(8)または上記式(9)または上記式(10)を満足すれば(好ましくは、上記式(8)を満足すれば)、上記した効果を奏するのに十分なチキソトロピック性を発現することができる。
Further, the viscosity at 85 ° C. (ν 0.01 ) at a shear rate of 0.01 rad / sec and the viscosity at 85 ° C. (ν 10 ) at a shear rate of 10 rad / sec are preferably given by the following formula (7). Satisfied, more preferably the following formula (8) is satisfied, more preferably the following formula (9) is satisfied, and particularly preferably the following formula (10) is satisfied.
ν 0.01 / ν 10 ≧ 40 (7)
ν 0.01 / ν 10 ≧ 70 (8)
ν 0.01 / ν 10 ≧ 100 (9)
ν 0.01 / ν 10 ≧ 120 (10)
Further, the viscosity at 85 ° C. (ν 0.01 ) at a shear rate of 0.01 rad / sec and the viscosity at 85 ° C. (ν 10 ) at a shear rate of 10 rad / sec are preferably given by the following formula (11). Satisfied, more preferably, the following formula (12) is satisfied.
ν 0.01 / ν 10 ≤ 200 (11)
ν 0.01 / ν 10 ≤ 150 (12)
The viscosity at 85 ° C. (ν 0.01 ) at a shear rate of 0.01 rad / sec and the viscosity at 85 ° C. (ν 10 ) at a shear rate of 10 rad / sec are the above formula (7) or the above formula (8). Alternatively, if the above formula (9) or the above formula (10) is satisfied (preferably, if the above formula (8) is satisfied), sufficient thixotropic property can be exhibited to exert the above effect.
 続いて、本発明の封止用樹脂シートの第2実施形態(多層の封止用樹脂シート)を説明する。 Subsequently, a second embodiment (multilayer sealing resin sheet) of the sealing resin sheet of the present invention will be described.
 第2実施形態では、図2A~図2Dに示すように、封止用樹脂シート1と、第2封止用樹脂シート12とを厚み方向一方側に順に備える封止用多層樹脂シート11とによって、電子素子21を封止し、続いて、硬化体41を形成する。 In the second embodiment, as shown in FIGS. 2A to 2D, the sealing resin sheet 1 and the sealing multilayer resin sheet 11 provided with the second sealing resin sheet 12 in order on one side in the thickness direction are used. , The electronic element 21 is sealed, and subsequently, the cured body 41 is formed.
 封止用多層樹脂シート11は、封止用樹脂シート1と、その厚み方向一方面全面に配置される第2封止用樹脂シート12とを備える。好ましくは、封止用多層樹脂シート11は、封止用樹脂シート1と、第2封止用樹脂シート12とのみを備える。 The sealing multilayer resin sheet 11 includes a sealing resin sheet 1 and a second sealing resin sheet 12 arranged on the entire surface of one surface in the thickness direction thereof. Preferably, the sealing multilayer resin sheet 11 includes only the sealing resin sheet 1 and the second sealing resin sheet 12.
 第2封止用樹脂シート12の材料は、封止用樹脂シート1の材料(熱硬化性樹脂組成物)と同様であるが、層状ケイ酸塩化合物を含有しない。封止用樹脂シート1の厚みに対する第2封止用樹脂シート12の厚みの割合の下限は、例えば、0.5、好ましくは、1、より好ましくは、2である。封止用樹脂シート1の厚みに対する第2封止用樹脂シート12の厚みの割合の上限は、例えば、10、好ましくは、5である。 The material of the second sealing resin sheet 12 is the same as the material of the sealing resin sheet 1 (thermosetting resin composition), but does not contain a layered silicate compound. The lower limit of the ratio of the thickness of the second sealing resin sheet 12 to the thickness of the sealing resin sheet 1 is, for example, 0.5, preferably 1, more preferably 2. The upper limit of the ratio of the thickness of the second sealing resin sheet 12 to the thickness of the sealing resin sheet 1 is, for example, 10, preferably 5.
 封止用多層樹脂シート11によって、複数の電子素子21を封止し、続いて、硬化体41を形成して、電子素子硬化体パッケージ50を製造する方法を、図2A~図2Dを参照して説明する。 Refer to FIGS. 2A to 2D for a method of manufacturing the electronic device cured product package 50 by sealing a plurality of electronic devices 21 with the sealing multilayer resin sheet 11 and then forming a cured product 41. Will be explained.
 図2Aに示すように、封止用多層樹脂シート11を準備する。具体的には、封止用樹脂シート1と第2封止用樹脂シート12とを貼り合わせる。 As shown in FIG. 2A, the sealing multilayer resin sheet 11 is prepared. Specifically, the sealing resin sheet 1 and the second sealing resin sheet 12 are bonded together.
 図2Bに示すように、基板22に実装される複数の電子素子21を準備する。 As shown in FIG. 2B, a plurality of electronic elements 21 mounted on the substrate 22 are prepared.
 続いて、封止用樹脂シート1の厚み方向他方面が電子素子21の厚み方向一方面に接触するように、封止用多層樹脂シート11を電子素子21に配置する。 Subsequently, the sealing multilayer resin sheet 11 is arranged on the electronic element 21 so that the other surface in the thickness direction of the sealing resin sheet 1 contacts the one surface in the thickness direction of the electronic element 21.
 図2Cに示すように、その後、封止用樹脂シート1および素子実装基板24を、プレスする。 As shown in FIG. 2C, the sealing resin sheet 1 and the element mounting substrate 24 are then pressed.
 プレスによって、封止用樹脂シート1は、上記したチキソトロピック性を有するため、流動し、隣接する電子素子21間に侵入する。一方、第2封止用樹脂シート12は、プレスされても、流動性が大きく変化せず、低いままであって、隣接する電子素子21間に侵入することが抑制される。 By pressing, the sealing resin sheet 1 has the above-mentioned thixotropic property, so that it flows and penetrates between the adjacent electronic elements 21. On the other hand, the fluidity of the second sealing resin sheet 12 does not change significantly even when pressed, and remains low, so that it is suppressed from entering between adjacent electronic elements 21.
 これにより、封止用多層樹脂シート11から、複数の電子素子21を封止する封止体31が形成される。 As a result, the sealing body 31 that seals the plurality of electronic elements 21 is formed from the sealing multilayer resin sheet 11.
 なお、封止用樹脂シート1が上記した下限以上の割合でフィラーを含有し、第2封止用樹脂シート12が上記した下限以上の割合でフィラーを含有すれば、図2Cに示すプレスによって、封止用樹脂シート1と第2封止用樹脂シート12とが、流動できる。 If the sealing resin sheet 1 contains the filler at a ratio equal to or higher than the above-mentioned lower limit and the second sealing resin sheet 12 contains the filler at a ratio equal to or higher than the above-mentioned lower limit, the press shown in FIG. 2C can be used. The sealing resin sheet 1 and the second sealing resin sheet 12 can flow.
 このとき、封止用樹脂シート1は、電子素子21に接触する一方、第2封止用樹脂シート12は、封止用樹脂シート1に対して電子素子21の反対側に位置する。つまり、封止体31において隙間26に面する端縁は、封止用樹脂シート1から形成される。一方、封止体31の厚み方向一方面は、第2封止用樹脂シート12から形成される。 At this time, the sealing resin sheet 1 is in contact with the electronic element 21, while the second sealing resin sheet 12 is located on the opposite side of the electronic element 21 with respect to the sealing resin sheet 1. That is, the edge of the sealing body 31 facing the gap 26 is formed from the sealing resin sheet 1. On the other hand, one surface of the sealing body 31 in the thickness direction is formed from the second sealing resin sheet 12.
 その後、図2Dに示すように、封止体31を加熱して、封止体31から硬化体41を形成する。 After that, as shown in FIG. 2D, the sealing body 31 is heated to form a cured body 41 from the sealing body 31.
 そして、封止用多層樹脂シート11は、上記した封止用樹脂シート1を備えるので、隙間26への硬化体41の侵入量を低減することができる。 Since the sealing multilayer resin sheet 11 includes the sealing resin sheet 1 described above, the amount of the cured product 41 invading the gap 26 can be reduced.
 とりわけ、封止用樹脂シート1および第2封止用樹脂シート12が、50℃以上、130℃以下の軟化点を有するエポキシ樹脂の主剤を含有すれば、図2Cに示す工程において、封止用樹脂シート1および第2封止用樹脂シート12が流動できる。従って、図2Cに示す工程の時間短縮、および、図2Cに示す工程における第2封止用樹脂シート12の厚み方向一方面を平坦にできる。 In particular, if the sealing resin sheet 1 and the second sealing resin sheet 12 contain an epoxy resin main agent having a softening point of 50 ° C. or higher and 130 ° C. or lower, for sealing in the step shown in FIG. 2C. The resin sheet 1 and the second sealing resin sheet 12 can flow. Therefore, the time of the step shown in FIG. 2C can be shortened, and one surface of the second sealing resin sheet 12 in the thickness direction in the step shown in FIG. 2C can be flattened.
 さらに、封止用樹脂シート1および第2封止用樹脂シート12が、エポキシ樹脂の主剤とともにフェノール樹脂を硬化剤として含有すれば、硬化体41が、高い耐熱性と高い耐薬品性とを有する。従って、硬化体41は、封止信頼性に優れる。 Further, if the sealing resin sheet 1 and the second sealing resin sheet 12 contain a phenol resin as a curing agent together with the main agent of the epoxy resin, the cured product 41 has high heat resistance and high chemical resistance. .. Therefore, the cured product 41 is excellent in sealing reliability.
 なお、図2Cに示す工程において、第2封止用樹脂シート12は、押圧力を受けて流動化し、厚み方向一方面が平坦になる。また、図2Cに示す工程において、封止用多層樹脂シート11では、上述のように、第2封止用樹脂シート12とともに封止用樹脂シート1が、押圧力を受けて軟化流動して、電子素子21の外形に追従して変形する。図2Cに示す工程では、封止用樹脂シート1が、隙間26にわずかに進入することが許容される。 In the process shown in FIG. 2C, the second sealing resin sheet 12 is fluidized by receiving a pressing force, and one surface in the thickness direction becomes flat. Further, in the step shown in FIG. 2C, in the sealing multilayer resin sheet 11, as described above, the sealing resin sheet 1 together with the second sealing resin sheet 12 softens and flows under the pressing force. It deforms according to the outer shape of the electronic element 21. In the step shown in FIG. 2C, the sealing resin sheet 1 is allowed to slightly enter the gap 26.
  変形例
 以下の各変形例において、上記した第1実施形態および第2実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、各変形例は、特記する以外、第1実施形態および第2実施形態と同様の作用効果を奏することができる。さらに、第1実施形態および第2実施形態、その変形例を適宜組み合わせることができる。
Modifications In each of the following modifications, the same reference numerals will be given to the same members and processes as those in the first and second embodiments described above, and detailed description thereof will be omitted. In addition, each modification can exhibit the same effects as those of the first embodiment and the second embodiment, unless otherwise specified. Further, the first embodiment, the second embodiment, and modifications thereof can be appropriately combined.
 第1実施形態では、1層の封止用樹脂シート1で、電子素子21を封止している。しかし、図示しないが、複数の封止用樹脂シート1(の積層体シート)で、電子素子21を封止することもできる。 In the first embodiment, the electronic element 21 is sealed with a one-layer sealing resin sheet 1. However, although not shown, the electronic element 21 can be sealed with a plurality of sealing resin sheets 1 (laminated sheets).
 また、封止用多層樹脂シート11における第2封止用樹脂シート12は、多層であってもよい。 Further, the second sealing resin sheet 12 in the sealing multilayer resin sheet 11 may have multiple layers.
 素子の一例として、基板22の厚み方向一方面25に対して隙間26を隔てて配置される電子素子21を挙げ、これを封止用樹脂シート1で封止したが、例えば、図示しないが、基板22の厚み方向一方面25に接触する電子素子21を挙げることができ、これを封止用樹脂シート1で封止することができる。 As an example of the element, an electronic element 21 arranged with a gap 26 separated from one surface 25 in the thickness direction of the substrate 22 is mentioned, and this is sealed with a sealing resin sheet 1, but for example, although not shown, An electronic element 21 that contacts one surface 25 in the thickness direction of the substrate 22 can be mentioned, and this can be sealed with the sealing resin sheet 1.
 また、素子の一例として、電子素子21を挙げたが、半導体素子を挙げることもできる。 Further, although the electronic element 21 is mentioned as an example of the element, a semiconductor element can also be mentioned.
 以下に調製例、比較調製例、実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら調製例、比較調製例、実施例および比較例に限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限(「以下」、「未満」として定義されている数値)または下限(「以上」、「超過」として定義されている数値)に代替することができる。 The present invention will be described in more detail with reference to Preparation Examples, Comparative Preparation Examples, Examples and Comparative Examples. The present invention is not limited to any preparation examples, comparative preparation examples, examples and comparative examples. In addition, specific numerical values such as the compounding ratio (content ratio), physical property values, and parameters used in the following description are described in the above-mentioned "Form for carrying out the invention", and the compounding ratios corresponding to them ( Substitute for the upper limit (numerical value defined as "less than or equal to" or "less than") or lower limit (numerical value defined as "greater than or equal to" or "exceeded") such as content ratio), physical property value, parameter, etc. it can.
 調製例および比較調製例で使用した各成分を以下に示す。 Each component used in the preparation example and the comparative preparation example is shown below.
  層状ケイ酸塩化合物:ホージュン社製のエスベンNX(表面がジメチルジステアリルアンモニウムで変性された有機化ベントナイト)
  主剤:新日鐵化学社製のYSLV-80XY(ビスフェノールF型エポキシ樹脂、高分子量エポキシ樹脂、エポキシ当量200g/eq.、固体、軟化点80℃)
  硬化剤:群栄化学社製のLVR-8210DL(ノボラック型フェノール樹脂、潜在性硬化剤、水酸基当量:104g/eq.、固体、軟化点:60℃)
  アクリル樹脂1:根上工業社製のHME-2006M、カルボキシル基含有のアクリル酸エステルコポリマー(アクリル樹脂)、酸価:32、官能基数:736、重量平均分子量:1290000、ガラス転移温度(Tg):-13.9℃、固形分濃度20質量%のメチルエチルケトン溶液
  アクリル樹脂2:根上工業社製のHME-2000M、カルボキシル基含有のアクリル酸エステルコポリマー(アクリル樹脂)、酸価:20、官能基数:367、重量平均分子量:1030000、ガラス転移温度(Tg):3.7℃、固形分濃度20質量%のメチルエチルケトン溶液
  アクリル樹脂3:根上工業社製のHME-2004M、アクリル酸エステルコポリマー(アクリル樹脂)、酸価:0、官能基数:0、重量平均分子量:1180000、ガラス転移温度(Tg):-3℃、固形分濃度20質量%のメチルエチルケトン溶液
  シランカップリング剤:信越化学社製のKBM-403(3-グリシドキシプロピルトリメトキシシラン)
  第1フィラー:FB-8SM(球状溶融シリカ粉末(無機フィラー)、平均粒子径7.0μm)
  第2フィラー:アドマテックス社製のSC220G-SMJ(平均粒径0.5μm)を3-メタクリロキシプロピルトリメトキシシラン(信越化学社製の製品名:KBM-503)で表面処理した無機フィラー(非晶質シリカおよび表面処理された非晶質シリカ)、無機フィラーの100質量部に対して1質量部のシランカップリング剤で表面処理した無機粒子
  第3フィラー:日本アエロジル社製のAEROSIL200(平均粒径12nm)、親水性シリカ微粒子
  硬化促進剤:四国化成工業社製の2PHZ-PW(2-フェニル-4,5-ジヒドロキシメチルイミダゾール)
  溶媒:メチルエチルケトン(MEK)
  カーボンブラック:三菱化学社製の#20、粒子径50nm
  調製例1~調製例3および比較調製例1~比較調製例3
 表1に記載の配合処方に従って、材料のワニスを調製した。ワニスを剥離シートの表面に塗布した後、120℃で、2分間乾燥させて、厚み65μmの封止用樹脂シート1を作製した。封止用樹脂シート1は、Bステージであった。
Layered silicate compound: Esben NX manufactured by Hojun (organized bentonite whose surface is modified with dimethyl distearyl ammonium)
Main agent: YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, high molecular weight epoxy resin, epoxy equivalent 200 g / eq., Solid, softening point 80 ° C.)
Hardener: LVR-8210DL manufactured by Gunei Chemical Co., Ltd. (Novolak type phenol resin, latent hardener, hydroxyl group equivalent: 104 g / eq., Solid, softening point: 60 ° C.)
Acrylic resin 1: HME-2006M manufactured by Negami Kogyo Co., Ltd., carboxyl group-containing acrylic acid ester copolymer (acrylic resin), acid value: 32, number of functional groups: 736, weight average molecular weight: 1290000, glass transition temperature (Tg):- Methyl ethyl ketone solution at 13.9 ° C. and 20% by mass solid content Acrylic resin 2: HME-2000M manufactured by Negami Kogyo Co., Ltd., carboxyl group-containing acrylic acid ester copolymer (acrylic resin), acid value: 20, number of functional groups: 367, Weight average molecular weight: 1030000, glass transition temperature (Tg): 3.7 ° C, methyl ethyl ketone solution with solid content concentration of 20% by mass Acrylic resin 3: HME-2004M manufactured by Negami Kogyo Co., Ltd., acrylic acid ester copolymer (acrylic resin), acid Value: 0, number of functional groups: 0, weight average molecular weight: 118000, glass transition temperature (Tg): -3 ° C, methyl ethyl ketone solution with solid content concentration of 20% by mass Silane coupling agent: KBM-403 (3) manufactured by Shin-Etsu Chemical Co., Ltd. -Glysidoxypropyltrimethoxysilane)
First filler: FB-8SM (spherical molten silica powder (inorganic filler), average particle diameter 7.0 μm)
Second filler: SC220G-SMJ (average particle size 0.5 μm) manufactured by Admatex is surface-treated with 3-methacryloxypropyltrimethoxysilane (product name: KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.). Crystalline silica and surface-treated amorphous silica), inorganic particles surface-treated with 1 part by mass of silane coupling agent with respect to 100 parts by mass of inorganic filler Third filler: AEROSIL200 (average grain) manufactured by Nippon Aerosil Co., Ltd. Diameter 12 nm), hydrophilic silica fine particles Curing accelerator: 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole) manufactured by Shikoku Kasei Kogyo Co., Ltd.
Solvent: Methyl ethyl ketone (MEK)
Carbon black: # 20, manufactured by Mitsubishi Chemical Corporation, particle size 50 nm
Preparation Example 1 to Preparation Example 3 and Comparative Preparation Example 1 to Comparative Preparation Example 3
The material varnish was prepared according to the formulation shown in Table 1. After applying the varnish to the surface of the release sheet, it was dried at 120 ° C. for 2 minutes to prepare a sealing resin sheet 1 having a thickness of 65 μm. The sealing resin sheet 1 was a B stage.
  調製例4
 表2に記載の配合処方に従って、材料のワニスを調製した。ワニスを剥離シートの表面に塗布した後、120℃で、2分間乾燥させて、厚み195μmの第2封止用樹脂シート12を作製した。第2封止用樹脂シート12は、Bステージであった。
Preparation Example 4
The material varnish was prepared according to the formulation shown in Table 2. After applying the varnish to the surface of the release sheet, it was dried at 120 ° C. for 2 minutes to prepare a second sealing resin sheet 12 having a thickness of 195 μm. The second sealing resin sheet 12 was a B stage.
  実施例1~3および比較例1~比較例3
 表3に示すような調製例の組合せで、封止用樹脂シートと第2封止用樹脂シートとを張り合わせて、厚み260μmの封止用多層樹脂シートを作製した。
Examples 1 to 3 and Comparative Examples 1 to 3
By combining the preparation examples as shown in Table 3, the sealing resin sheet and the second sealing resin sheet were laminated to prepare a sealing multilayer resin sheet having a thickness of 260 μm.
  評価
 <硬化体侵入長さの測定>
  下記のステップA~ステップEを実施して、硬化体侵入長さYを測定した。
Evaluation <Measurement of cured product penetration length>
The following steps A to E were carried out to measure the cured body penetration length Y.
 ステップA:図3Aに示すように、各実施例および各比較例の封止用多層樹脂シート11から、縦10mm、横10mm、厚み260μmのサンプルシート61を準備する。 Step A: As shown in FIG. 3A, a sample sheet 61 having a length of 10 mm, a width of 10 mm, and a thickness of 260 μm is prepared from the sealing multilayer resin sheet 11 of each Example and each Comparative Example.
 ステップB:図3Bに示すように、縦3mm、横3mm、厚み200μmのダミー素子71が、厚み20μmのバンプ23を介してガラス基板72に実装されたダミー素子実装基板74を準備する。 Step B: As shown in FIG. 3B, a dummy element 71 having a length of 3 mm, a width of 3 mm, and a thickness of 200 μm prepares a dummy element mounting substrate 74 mounted on a glass substrate 72 via a bump 23 having a thickness of 20 μm.
 ステップC:図3Cに示すように、サンプルシート61によって、ダミー素子実装基板74におけるダミー素子71を、真空平板プレスにより、温度65℃、圧力0.1MPa、真空度1.6kPa、プレス時間1分で封止して、サンプルシート61から封止体31を形成する。 Step C: As shown in FIG. 3C, the dummy element 71 on the dummy element mounting substrate 74 is pressed by the vacuum plate press with the sample sheet 61 at a temperature of 65 ° C., a pressure of 0.1 MPa, a vacuum degree of 1.6 kPa, and a pressing time of 1 minute. The sealed body 31 is formed from the sample sheet 61 by sealing with.
 ステップD:図3Dに示すように、封止体31を、150℃、大気圧下、1時間加熱により熱硬化させて、封止体31から硬化体41を形成する。 Step D: As shown in FIG. 3D, the sealed body 31 is thermoset by heating at 150 ° C. under atmospheric pressure for 1 hour to form a cured body 41 from the sealed body 31.
 ステップE:図3Dの拡大図に示すように、ダミー素子71の側端縁75を基準として、側端縁75からダミー素子71とガラス基板72との隙間26に硬化体41が侵入する硬化体侵入長さYを測定する。 Step E: As shown in the enlarged view of FIG. 3D, the cured body 41 penetrates into the gap 26 between the dummy element 71 and the glass substrate 72 from the side edge 75 with reference to the side edge 75 of the dummy element 71. The intrusion length Y is measured.
 そして、下記の基準に従って、硬化体侵入長さYを評価した。その結果を表3に示す。
◎:硬化体侵入長さYが、0μm以上、25μm以下であった。
〇:硬化体侵入長さYが、25μm超過、45μm以下、または、0μm未満、-25μm以上であった。
×:硬化体侵入長さYが、45μm超過、または、-25μm未満であった。
Then, the cured product penetration length Y was evaluated according to the following criteria. The results are shown in Table 3.
⊚: The cured product penetration length Y was 0 μm or more and 25 μm or less.
◯: The cured product penetration length Y was more than 25 μm, 45 μm or less, or less than 0 μm, -25 μm or more.
X: The cured product penetration length Y was more than 45 μm or less than -25 μm.
 なお、評価中、「マイナス」は、ダミー素子71の側端縁75より外側に突出する空間(図2Dの太い破線参照)が形成されることを意味する。「マイナス」の絶対値が、その空間の突出長さに相当する。 During the evaluation, "minus" means that a space (see the thick broken line in FIG. 2D) protruding outward from the side edge 75 of the dummy element 71 is formed. The absolute value of "minus" corresponds to the protruding length of the space.
 <封止体侵入長さの測定>
 各実施例および各比較例の封止用多層樹脂シート11に関し、上記したステップCとステップDとの間に下記のステップFをさらに実施して、封止体侵入長さXを測定した。結果を表3に示す。
<Measurement of encapsulant penetration length>
With respect to the sealing multilayer resin sheet 11 of each Example and each Comparative Example, the following step F was further carried out between step C and step D described above, and the encapsulant penetration length X was measured. The results are shown in Table 3.
  ステップF:ダミー素子71の側端縁75を基準として、側端縁75からダミー素子22とガラス基板72との隙間26に封止体31が侵入する封止体侵入長さXを測定した。その結果を表3に示す。
◎:封止体侵入長さXが、0μm以上、10μm以下であった。
〇:封止体侵入長さXが、10μm超過20μm以下であった。
×:封止体侵入長さXが、20μm超過下であった。
Step F: With reference to the side edge 75 of the dummy element 71, the encapsulant penetration length X in which the encapsulant 31 penetrates into the gap 26 between the dummy element 22 and the glass substrate 72 from the side edge 75 was measured. The results are shown in Table 3.
⊚: The encapsulant penetration length X was 0 μm or more and 10 μm or less.
◯: The sealing depth X was more than 10 μm and 20 μm or less.
X: The encapsulant penetration length X was below 20 μm.
 <封止体侵入量>
 上記した方法により得られた硬化体侵入長さYから、上記した方法により得られた封止体侵入長さXを差し引くことにより、封止体侵入量(Y-X)を算出した。その結果を表3に示す。
◎:封止体侵入量(Y-X)が、0μm以上、15μm以下であった。
〇:封止体侵入量(Y-X)が、15μm超過30μm以下であった。
×:封止体侵入量(Y-X)が、30μm超過であった。
<Invasion amount of sealant>
The encapsulant invasion amount (YX) was calculated by subtracting the encapsulant invasion length X obtained by the above method from the cured body invasion length Y obtained by the above method. The results are shown in Table 3.
⊚: The amount of the sealant penetrating (YX) was 0 μm or more and 15 μm or less.
◯: The amount of the sealant invading (YX) was more than 15 μm and 30 μm or less.
X: The amount of the sealant invading (YX) exceeded 30 μm.
 <粘弾性測定>
 実施例1~実施例3、比較例1~比較例3の封止用樹脂シート1(Bステージ)について、粘弾性を測定した。
<Viscoelasticity measurement>
The viscoelasticity of the sealing resin sheet 1 (B stage) of Examples 1 to 3 and Comparative Examples 1 to 3 was measured.
 具体的には、粘弾性測定は、レオメーター(マーズIII)(測定条件:8mmφプレートを用いて温度85℃、ひずみ量0.005%)を用いて実施した。その結果を表3に示す。 Specifically, the viscoelasticity measurement was carried out using a rheometer (Mars III) (measurement conditions: temperature 85 ° C., strain amount 0.005% using an 8 mmφ plate). The results are shown in Table 3.
  考察
 せん断速度0.01rad/秒における、85℃の粘度(ν0.01)が、8×10Pa・s以上であり、かつ、せん断速度0.1rad/秒における、85℃の粘度(ν0.1)が、8×10Pa・s未満である実施例1~実施例3は、せん断速度0.01rad/秒における、85℃の粘度(ν0.01)が、8×10Pa・s未満である比較例1および比較例2に比べて、封止体侵入長さおよび封止体侵入量が小さいことがわかる。また、せん断速度0.1rad/秒における、85℃の粘度(ν0.1)が、8×10Pa・s以上である比較例3は、複数のダミー素子間に封止用樹脂シートを十分に侵入させることができなかった。
In Study shear rate 0.01 rad / sec, the viscosity of 85 ℃ (ν 0.01), and the 8 × 10 5 Pa · s or more, at a shear rate of 0.1 rad / sec, a viscosity of 85 ° C. ([nu In Examples 1 to 3 in which 0.1 ) is less than 8 × 10 5 Pa · s, the viscosity (ν 0.01 ) at 85 ° C. at a shear rate of 0.01 rad / sec is 8 × 10 5 It can be seen that the encapsulant penetration length and the encapsulant invasion amount are smaller than those of Comparative Example 1 and Comparative Example 2 having less than Pa · s. Further, in Comparative Example 3 in which the viscosity (ν 0.1 ) at 85 ° C. at a shear rate of 0.1 rad / sec is 8 × 10 5 Pa · s or more, a sealing resin sheet is provided between a plurality of dummy elements. It could not be sufficiently invaded.
 このことから、せん断速度0.01rad/秒における、85℃の粘度(ν0.01)が、8×10Pa・s以上であり、かつ、せん断速度0.1rad/秒における、85℃の粘度(ν0.1)が、8×10Pa・s未満とすれば、素子を十分に封止することができ、かつ、素子および基板間への硬化体の侵入量を低減することができるとわかる。 Therefore, at a shear rate of 0.01 rad / sec, the viscosity of 85 ℃ (ν 0.01), and the 8 × 10 5 Pa · s or more, at a shear rate of 0.1 rad / sec, of 85 ° C. If the viscosity (ν 0.1 ) is less than 8 × 10 5 Pa · s, the element can be sufficiently sealed and the amount of the cured product invading between the element and the substrate can be reduced. I know I can do it.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれるものである。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be construed in a limited manner. Modifications of the present invention that will be apparent to those skilled in the art are included in the claims below.
 封止用樹脂シートは、素子の封止に用いられる。 The sealing resin sheet is used to seal the element.
1 封止用樹脂シート 1 Resin sheet for sealing

Claims (3)

  1.  せん断速度0.01rad/秒における、85℃の粘度(ν0.01)が、8×10Pa・s以上であり、
     せん断速度0.1rad/秒における、85℃の粘度(ν0.1)が、8×10Pa・s未満あることを特徴とする、封止用樹脂シート。
    At a shear rate of 0.01 rad / sec, a viscosity of 85 ℃ (ν 0.01) is, and the 8 × 10 5 Pa · s or more,
    At a shear rate of 0.1 rad / sec, the viscosity of 85 ℃ (ν 0.1), characterized in that less than 8 × 10 5 Pa · s, encapsulating resin sheet.
  2.  せん断速度0.01rad/秒における、85℃の粘度(ν0.01)と、せん断速度10rad/秒における、85℃の粘度(ν10)とが、下記式(1)を満足することを特徴とする、請求項1に記載の封止用樹脂シート。
    ν0.01/ν10≧70   (1)
    The viscosity at 85 ° C. (ν 0.01 ) at a shear rate of 0.01 rad / sec and the viscosity at 85 ° C. (ν 10 ) at a shear rate of 10 rad / sec satisfy the following equation (1). The sealing resin sheet according to claim 1.
    ν 0.01 / ν 10 ≧ 70 (1)
  3.  せん断速度10rad/秒における、85℃の粘度(ν10)が、0.4×10Pa・s以下であることを特徴とする、請求項1に記載の封止用樹脂シート。 The sealing resin sheet according to claim 1, wherein the viscosity (ν 10 ) at 85 ° C. at a shear rate of 10 rad / sec is 0.4 × 10 5 Pa · s or less.
PCT/JP2020/026413 2019-07-12 2020-07-06 Sealing resin sheet WO2021010205A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021532793A JPWO2021010205A1 (en) 2019-07-12 2020-07-06
KR1020227000272A KR20220032048A (en) 2019-07-12 2020-07-06 resin sheet for sealing
CN202080050036.4A CN114174421A (en) 2019-07-12 2020-07-06 Sealing resin sheet
TW109123361A TW202132474A (en) 2019-12-18 2020-07-10 Sealing resin sheet

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2019-130202 2019-07-12
JP2019-130201 2019-07-12
JP2019130202 2019-07-12
JP2019130145 2019-07-12
JP2019-130145 2019-07-12
JP2019-130159 2019-07-12
JP2019130159 2019-07-12
JP2019130201 2019-07-12
JP2019-228200 2019-12-18
JP2019228200 2019-12-18

Publications (1)

Publication Number Publication Date
WO2021010205A1 true WO2021010205A1 (en) 2021-01-21

Family

ID=74210627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026413 WO2021010205A1 (en) 2019-07-12 2020-07-06 Sealing resin sheet

Country Status (4)

Country Link
JP (1) JPWO2021010205A1 (en)
KR (1) KR20220032048A (en)
CN (1) CN114174421A (en)
WO (1) WO2021010205A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7471940B2 (en) 2019-12-18 2024-04-22 日東電工株式会社 Sealing resin sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133055A (en) * 2003-02-03 2005-05-26 Sekisui Chem Co Ltd Resin composition, material for substrate and substrate film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209570A (en) * 1998-01-21 1999-08-03 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP5768023B2 (en) * 2012-08-29 2015-08-26 日東電工株式会社 Thermosetting resin sheet for encapsulating electronic parts, resin-encapsulated semiconductor device, and method for producing resin-encapsulated semiconductor device
JP2015106573A (en) * 2013-11-28 2015-06-08 日東電工株式会社 Resin sheet for hollow sealing, and manufacturing method of hollow package
JP6422370B2 (en) 2015-03-03 2018-11-14 日東電工株式会社 Hollow type electronic device sealing sheet and method for manufacturing hollow type electronic device package

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133055A (en) * 2003-02-03 2005-05-26 Sekisui Chem Co Ltd Resin composition, material for substrate and substrate film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7471940B2 (en) 2019-12-18 2024-04-22 日東電工株式会社 Sealing resin sheet

Also Published As

Publication number Publication date
KR20220032048A (en) 2022-03-15
JPWO2021010205A1 (en) 2021-01-21
CN114174421A (en) 2022-03-11

Similar Documents

Publication Publication Date Title
JP6431340B2 (en) Manufacturing method of sealing thermosetting resin sheet and hollow package
WO2021010205A1 (en) Sealing resin sheet
JP7461229B2 (en) Sealing resin sheet
WO2021010206A1 (en) Resin sheet for sealing
WO2021010208A1 (en) Multilayer resin sheet for sealing
WO2021010207A1 (en) Resin sheet for sealing
WO2021010204A1 (en) Resin sheet for sealing
JP7471940B2 (en) Sealing resin sheet
JP2021015973A (en) Sealing resin sheet and sealing multilayer resin sheet
TW202132474A (en) Sealing resin sheet
JP2021197496A (en) Sealing-resin sheet
JP2021015975A (en) Sealing resin sheet and sealing multilayer resin sheet
JP7456860B2 (en) Sealing resin sheet
WO2021010209A1 (en) Sealing resin sheet
JP2021015974A (en) Sealing resin sheet and sealing multilayer resin sheet
TW202124164A (en) Multilayer resin sheet for sealing
JP2023023704A (en) Sealing resin sheet and electronic component device
JP7473408B2 (en) Sealing resin sheet
JP2022179054A (en) Resin sheet for sealing
JP2022103721A (en) Sealing resin sheet
JP6997654B2 (en) Sealing sheet
JP2024058583A (en) Encapsulating sheet and electronic device
CN117894755A (en) Sealing sheet and electronic device
CN115485820A (en) Method for producing cured resin sheet with electrode, and thermosetting resin sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532793

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20841136

Country of ref document: EP

Kind code of ref document: A1