WO2021010182A1 - 固体撮像素子 - Google Patents

固体撮像素子 Download PDF

Info

Publication number
WO2021010182A1
WO2021010182A1 PCT/JP2020/026057 JP2020026057W WO2021010182A1 WO 2021010182 A1 WO2021010182 A1 WO 2021010182A1 JP 2020026057 W JP2020026057 W JP 2020026057W WO 2021010182 A1 WO2021010182 A1 WO 2021010182A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
region
solid
shielding
pixel
Prior art date
Application number
PCT/JP2020/026057
Other languages
English (en)
French (fr)
Inventor
槙子 齋藤
秀樹 池戸
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN202080051923.3A priority Critical patent/CN114127941A/zh
Publication of WO2021010182A1 publication Critical patent/WO2021010182A1/ja
Priority to US17/576,509 priority patent/US20220139987A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers

Definitions

  • the present invention relates to the structure of a solid-state image sensor used in an image pickup device.
  • CCD and CMOS image sensors are widely used as solid-state image sensors in image pickup devices such as digital cameras.
  • image sensors a plurality of pixels are arranged in a pixel region of a substrate, and incident light is converted into electric charges and stored by a photoelectric conversion means such as a photodiode provided in each pixel.
  • each pixel is provided with a circuit element such as a pixel transistor.
  • Metal wiring such as these circuit elements, control signal lines for controlling circuit elements, and readout signal lines for extracting pixel signals limits the aperture area of the photodiode, resulting in a decrease in pixel sensitivity. There is a problem.
  • CMOS image sensor that receives light incident from a surface opposite to the front surface on which circuit elements and metal wiring are arranged by a photodiode.
  • the decrease in sensitivity can be suppressed without limiting the aperture of the photodiode by the circuit element or the metal wiring.
  • Patent Document 1 a light-shielding portion made of a light-shielding material such as resin or metal is provided on the side of the photodiode to block light between pixels and reduce crosstalk to adjacent pixels.
  • the image pickup device made to be used is disclosed.
  • the amount of false signal generated by optical crosstalk changes according to the amount of incident light.
  • an amount of crosstalk proportional to the amount of incident light on the pixel of interest affects nearby pixels with an amount of incident light close to that pixel of interest. Therefore, the light-shielding portion disclosed in Patent Document 1 is used for incident. It is effective to reduce the ratio of the amount of crosstalk to the amount of light.
  • a light-shielding region consisting of pixels that shield the light incident surface side is provided in the vicinity of the aperture region provided with pixels for image signal acquisition, and the image signal is corrected based on the dark signal (black level) acquired from the light-shielding region.
  • An image pickup device that performs an OB (Optical Black) clamp is known.
  • Patent Document 2 a buffer region for absorbing crosstalk due to high-luminance light is provided between the aperture region and the light-shielding region for acquiring a dark signal by utilizing the absorption characteristics of the semiconductor substrate.
  • the provided imaging device is disclosed.
  • the OB clamp is performed based on the erroneous dark signal, and the entire image signal to be corrected cannot be corrected to the correct level.
  • the amount of false signal generated by optical crosstalk changes according to the amount of incident light. Therefore, even if the opening region near the light-shielding region is irradiated with high-intensity light, the light-shielding region has a light-shielding performance required between pixels in the light-shielding region so that the false signal generated in the light-shielding region is less than a predetermined allowable value. Further high shading performance is required.
  • the present invention has been made in view of the above-mentioned problems, and reduces light and charge leakage between different regions in a solid-state image sensor while suppressing an increase in chip area.
  • the solid-state image pickup device is the first, which has a photoelectric conversion element and has a plurality of pixels that receive light from a subject, and a pixel separating means that blocks light between each of the plurality of pixels.
  • the light-shielding means is provided with a light-shielding means for preventing light from entering the other region from one of the regions, and the light-shielding means is provided in the semiconductor substrate provided with the photoelectric conversion element to the depth of the semiconductor substrate. It is characterized in that it is extended in the longitudinal direction and is formed in a configuration different from that of the pixel separating means.
  • the present invention it is possible to reduce light and charge leakage between different regions in a solid-state image sensor while suppressing an increase in chip area.
  • FIG. 3 is a cross-sectional view of a solid-state image sensor according to the first embodiment.
  • FIG. 5 is a cross-sectional view of a solid-state image sensor in a modified example of the first embodiment.
  • FIG. 3 is a cross-sectional view of the solid-state image sensor according to the second embodiment.
  • FIG. 3 is a cross-sectional view of the solid-state image sensor according to the third embodiment.
  • FIG. 6 is a cross-sectional view of a solid-state image sensor according to a fourth embodiment.
  • FIG. 1 is a block diagram showing a configuration of an image pickup device 100 using a solid-state image pickup device according to the first embodiment of the present invention.
  • the image pickup device 100 includes a solid-state image pickup element 1, a correction unit 2, a control unit 3, an instruction unit 4, a display unit 5, a recording unit 6, and a lens drive unit 7. Further, the image pickup apparatus 100 is provided with a photographing lens (imaging optical system, lens unit) 8. The photographing lens 8 may be detachable from the main body of the image pickup apparatus or may not be detachable. The photographing lens 8 forms an optical image of the subject on the imaging surface of the solid-state imaging device 1.
  • the solid-state image sensor 1 converts the optical image of the subject formed by the photographing lens 8 into an image pickup signal according to the amount of incident light and outputs it.
  • the correction unit 2 performs predetermined signal processing such as arithmetic processing and correction processing on the image pickup signal output from the solid-state image pickup device 1 to generate an image signal.
  • the control unit 3 generates and outputs a control signal for driving each functional block of the image pickup apparatus 100 based on the instruction of the instruction unit 4. Further, the control unit 3 performs predetermined signal processing such as development and compression on the image signal.
  • the display unit 5 displays an image signal that has been signal-processed by the control unit 3, various setting information of the image pickup apparatus 100, and the like.
  • the recording unit 6 is provided with a recording medium (not shown).
  • the recording medium may be removable from the recording unit 6 or may not be removable.
  • the recording unit 6 records an image signal or the like that has been signal-processed by the control unit 3 on a recording medium. Examples of such a recording medium include a semiconductor memory such as a flash memory.
  • the lens driving unit 7 is a block that drives the photographing lens 8, and performs zoom control, focus control, aperture control, and the like according to a control signal from the control unit 3.
  • FIG. 2 is a plan view showing the configuration of the solid-state image sensor 1 of the first embodiment.
  • the solid-state image sensor 1 includes a pixel region 1a in which a plurality of pixels are provided in a matrix.
  • the pixel area 1a includes an opening area 10 and a light-shielding area 11.
  • a plurality of pixels provided with photoelectric conversion elements are provided in the aperture region 10 as the first region, and a signal corresponding to the amount of subject light incident on the photographing lens 8 can be output from each pixel.
  • a plurality of pixels provided with photoelectric conversion elements are also provided in the light-shielding region 11 as the second region.
  • the light incident surface side of each pixel is shielded by the light-shielding film 111 (see FIG. 3) that prevents the incident light passing through the photographing lens 8 from directly incident on each pixel, and is independent of the subject light in the dark.
  • the signal can be output from each pixel.
  • An inter-regional light-shielding wall 122a is provided as an inter-regional light-shielding means that prevents the pixels in the vicinity of the opening region 10 of the light-shielding region 11 from being incident.
  • the signal processing unit 13 processes and outputs the signals of each pixel of the opening region 10 and the shading region 11.
  • the signal processing unit 13 is, for example, an amplifier circuit as an amplification means for amplifying a voltage signal read from a pixel, or an AD conversion circuit as a conversion means for converting a voltage signal read from a pixel into a digital signal value. Etc., and any signal processing means is provided.
  • the power supply unit 14 includes a power supply circuit that generates and supplies a voltage required for driving each block of the solid-state image sensor 1 from an external input voltage.
  • the drive signal generation unit 15 generates and supplies a drive signal for driving the circuit element to each block of the opening region 10, the light-shielding region 11, and the signal processing unit 13.
  • FIG. 3 is an X1-X2 cross-sectional view of the solid-state image sensor 1 of the first embodiment, which is shown in FIG. 2 and includes an inter-regional light-shielding wall 122a, an opening region 10 in the vicinity thereof, and a light-shielding region 11. ..
  • the solid-state image sensor 1 includes a plurality of pixels (effective pixels) 1b, a microlens ML corresponding to each pixel 1b, and a color filter CF.
  • a light-shielding layer 110 is provided under the microlens ML and the color filter CF.
  • the light-shielding layer 110 includes a light-shielding film 111 as a light-shielding means for preventing incident light through the photographing lens 8 from directly incident on a part of the area in the top view of the solid-state image sensor 1.
  • the light-shielding film 111 is provided at least in the light-shielding region 11.
  • the step in the thickness direction of the solid-state image sensor 1 caused by the light-shielding film 111 is flattened by the flattening film 112. Since the subject light is blocked by the light-shielding film 111, the pixel (light-shielding pixel) provided with the light-shielding film 111 does not need to be provided with the above-mentioned microlens ML or color filter CF.
  • a semiconductor substrate 120 is provided under the light-shielding layer 110 via a pinning film 113 made of hafnium oxide, silicon dioxide, tantalum pentoxide, zirconium dioxide, or the like.
  • a photodiode PD as a photoelectric conversion element corresponding to each of the plurality of pixels 1b is provided in the opening region 10 and the light shielding region 11.
  • a pixel separation unit 121 as a pixel separation means is provided between different pixels in order to reduce crosstalk between adjacent pixels.
  • the pixel separation unit 121 is configured by filling a groove portion provided in the semiconductor substrate 120 with a light-shielding member, and optically separates adjacent pixels.
  • a groove provided from the light incident surface side is filled with a light absorbing material such as silicon dioxide or silicon nitride, and light incident on one pixel but not absorbed by the pixel. To reduce the transmittance of light to adjacent pixels.
  • a pinning film 114 is arranged on the surface of the pixel separation portion to suppress leakage of photoelectrically converted charges to different pixels.
  • the pinning film 114 may be integrally formed with the pinning film 113.
  • the pixel separation unit 121 and the pinning film 114 are made of the same substance, the pixel separation unit 121 and the pinning film 114 are integrally formed.
  • an inter-region light-shielding wall 122a is provided in the light-shielding region 11 as an inter-regional light-shielding means.
  • the inter-region light-shielding wall 122a has a configuration in which a light-shielding member is filled in a groove provided in the semiconductor substrate 120 via a pinning film 114, but the pixel separation portion 121 is filled with light-shielding light-shielding.
  • Different members are used and materials with lower transmittance are used.
  • the inside of the pinning film 114 is filled with a metal material such as aluminum, copper, or tungsten, and the transmittance of light from the opening region 10 to the light-shielding region 11 is further reduced than the transmittance between adjacent pixels.
  • a light-shielding wall with a width of several tens of nm to one hundred and several tens of nm allows the light to be tens of ⁇ m to one hundred and several tens of ⁇ m as in the prior art. It is possible to achieve light-shielding performance equivalent to providing a buffer region of width on a silicon substrate.
  • the pinning film 114 of the inter-region light-shielding wall 122a may be formed thicker than the pixel separation portion 121 to more strongly suppress charge leakage between the opening region 10 and the light-shielding region 11 in the silicon substrate. ..
  • a groove portion wider than the pixel separation portion 121 is required. If the groove portion is widened in the plane direction of the semiconductor substrate, the aperture of the pixel is limited, so that the sensitivity of the pixel is lowered. Therefore, in the light-shielding region 11 that requires high light-shielding performance, a wide groove portion is formed in a part near the opening region 10 to form an inter-regional light-shielding wall 122a. On the other hand, for the separation between the pixels, a narrow groove portion is formed to form the pixel separation portion 121 with an emphasis on not excessively lowering the sensitivity.
  • the wiring layer 130 includes a wiring 132 made of a metal material such as aluminum, copper, or tungsten in the insulating layer 131.
  • the drive signal is supplied from the drive signal generation unit 15 to each pixel and the read signal is transmitted from each pixel to the signal processing unit 13 via the wiring 132.
  • a support substrate 140 is provided on the lower layer of the wiring layer 130.
  • the subject light is incident on the solid-state image sensor 1 from a surface (upper side in the figure) opposite to the surface (lower side in the figure) on which the wiring layer 130 is arranged.
  • the above is the configuration of the solid-state image sensor 1 in this embodiment.
  • the dark signal read from each pixel in the light-shielding region 11 is used to correct the signal read from each pixel in the aperture region 10.
  • the dark signal obtained from the pixels in the light-shielding region 11 is used as a reference signal, and the level of the signal obtained from the pixels in the aperture region 10 is corrected.
  • FIG. 3 shows an example in which the inter-region light-shielding wall 122a is provided between the pixels at the end of the opening region 10 and the pixels at the end of the light-shielding region 11.
  • the sensitivity of the pixel adjacent to the inter-regional shading wall 122a on the opening region 10 side changes.
  • an inter-regional light-shielding wall 122a is provided at a position inside the light-shielding region 11 for one to several pixels from the edge of the light-shielding film 111, and one to several light-shielding pixels are provided on the opening region 10 side of the inter-regional light-shielding wall 122a. Pixels may be present. In this case, the light-shielding pixels on the opening region 10 side of the inter-regional light-shielding wall 122a may not be used for correcting the image signal.
  • the effective pixels or light-shielding pixels in the vicinity of the inter-regional light-shielding wall 122a are not used in this way, for example, in the case of a solid-state image sensor having a pixel pitch of several ⁇ m, it is several tens of ⁇ m to several hundreds as in the prior art. Compared with providing a buffer region with a width of 10 ⁇ m on the silicon substrate, the width of the unused region can be significantly reduced. It is possible to improve the frame rate by shortening the time required for reading the signal of the entire solid-state image sensor 1 by not reading the signal for the unused pixels.
  • the solid-state image sensor in the present embodiment has inter-regional light-shielding means in which the transmittance is lower than that of the pixel-separating means by using a light-shielding member different from the pixel-separating means in the light-shielding region outside the aperture region. It was configured to be provided. According to the present embodiment, the required light-shielding performance is achieved in a narrow area as compared with the conventional buffer area that absorbs optical crosstalk from the aperture region to the light-shielding region by utilizing the absorption characteristics of the semiconductor substrate. Is possible.
  • the solid-state image sensor it is possible to reduce the leakage of light and charge between different regions in the solid-state image sensor while suppressing the increase in the chip area.
  • the solid-state image sensor 1 shown in FIG. 2 includes circuit elements such as a signal processing unit 13, a power supply unit 14, a drive signal generation unit 15, and a MOS transistor.
  • circuit elements such as a signal processing unit 13, a power supply unit 14, a drive signal generation unit 15, and a MOS transistor.
  • the emitted light propagates inside the substrate and enters the photodiode in the pixel region 1a including the light-shielding region 11 and the aperture region 10, causing noise.
  • an inter-region light-shielding wall 122b is provided between the pixel region 1a and the circuit blocks 13 to 15 other than the pixel region. ..
  • FIG. 4 is a plan view showing the configuration of the solid-state image sensor 201 in this modified example.
  • the solid-state image sensor 201 has a signal processing unit in a first region provided with an opening 10 and a third region different from the second region provided with a light-shielding region 11.
  • a circuit block such as 13, a power supply unit 14, and a drive signal generation unit 15 is provided.
  • the signal processing unit 13, the power supply unit 14, and the drive signal generation unit 15 each include circuit elements such as MOS transistors that do not form a unit pixel.
  • Light generated in the third region is incident on the pixels of the light-shielding region 11 and the light-shielding region 10 between either the aperture region 10 or the light-shielding region 11 and the circuit block arranged in the third region described above.
  • An inter-regional light-shielding wall 122b is provided as an inter-regional light-shielding means to prevent this.
  • Other configurations are the same as in the first embodiment.
  • FIG. 5 shows the drive signal generation unit 15 arranged in the inter-regional light-shielding wall 122b shown in FIG. 4, the light-shielding region 11 which is a pixel region in the vicinity thereof, and the third region of the solid-state image sensor 201 in the present modification. It is a cross-sectional view of X3-X4 of the including region 17.
  • an inter-region light-shielding wall 122b is provided as an inter-region light-shielding means between the pixel region 1a and the circuit block provided in the third region.
  • an inter-regional light-shielding wall 122b is provided between the light-shielding region 11 and the drive signal generation unit 15.
  • the inter-regional light-shielding wall 122b is configured by filling a groove portion provided in the semiconductor substrate 120 with a light-shielding member having a lower transmittance than the pixel separation portion 121.
  • the inter-regional light-shielding wall 122b is filled with a metal material such as aluminum, copper, or tungsten to further reduce the transmittance of light from the third region than the transmittance between adjacent pixels.
  • the light-shielding region 11 has the same configuration as that of the first embodiment.
  • the solid-state image sensor in the present modification uses a light-shielding member different from the pixel separation means between the pixel region and the circuit block other than the pixel region to provide higher transmittance than the pixel separation means.
  • the structure is such that a reduced inter-regional shading means is provided. According to this modification, it is possible to reduce the intrusion of light and electric charge from the circuit block outside the pixel region into the pixel region by the inter-region shading means.
  • the configuration of the solid-state image sensor according to the second embodiment of the present invention will be described.
  • the present embodiment is different from the configuration of the solid-state image sensor 1 of the first embodiment in that an inter-regional light-shielding wall 122c is provided instead of the inter-regional light-shielding wall 122a.
  • the points different from those of the first embodiment will be mainly described, and the description of the configuration common to the first embodiment will be omitted as appropriate.
  • FIG. 6 shows an inter-regional shading wall 122c provided in place of the inter-regional shading wall 122a shown in FIG. 2, an opening region 10 in the vicinity thereof, and a light-shielding region 11 in the solid-state image sensor 301 according to the second embodiment. It is a cross-sectional view of X1-X2 of the including region 16.
  • an inter-region light-shielding wall 122c is provided in the light-shielding region 11 as an inter-regional light-shielding means. Similar to the pixel separation portion 121, the inter-region light-shielding wall 122c is configured by filling a groove portion provided in the semiconductor substrate 120 with a light-shielding member via a pinning film 114, but has a shape different from that of the pixel separation portion 121. Make it different and lower the transmittance.
  • the filling width of the light-shielding member is widened, and the filling depth is deepened, the light-shielding region from the opening region 10 to the light-shielding region
  • the transmittance of light to 11 is further reduced than the transmittance between adjacent pixels. It should be noted that, as the depth of the inter-regional light-shielding wall 122c is increased, the surface area of the pinning film 114 is increased, so that the effect of suppressing charge leakage is also improved.
  • the solid-state image sensor in the present embodiment has an inter-regional light-shielding means in which the transmittance is lower than that of the pixel-separating means by making the shape different from that of the pixel-separating means in the light-shielding region outside the aperture region.
  • the transmittance is lower than that of the pixel-separating means by making the shape different from that of the pixel-separating means in the light-shielding region outside the aperture region.
  • This embodiment is different from the configuration of the solid-state image sensor 1 of the first embodiment in that a plurality of inter-regional shading walls 122d are provided instead of the inter-regional shading walls 122a.
  • a plurality of inter-regional shading walls 122d are provided instead of the inter-regional shading walls 122a.
  • FIG. 7 shows an inter-regional light-shielding wall 122d provided in place of the inter-regional light-shielding wall 122a shown in FIG. 2, an opening region 10 in the vicinity thereof, and a light-shielding region 11 in the solid-state image sensor 401 of the third embodiment. It is a cross-sectional view of X1-X2 of the including region 16.
  • an inter-region light-shielding wall 122d is provided in the light-shielding region 11 as an inter-regional light-shielding means. Similar to the pixel separation portion 121, the inter-region light-shielding wall 122d is configured by filling a groove portion provided in the semiconductor substrate 120 with a light-shielding member via a pinning film 114. By continuously providing a plurality of such inter-region light-shielding walls 122d, the transmittance of light from the opening region 10 to the light-shielding region 11 is further reduced as compared with the transmittance between adjacent pixels. Since a plurality of pinning films 114 are also provided along with the provision of the plurality of inter-regional light-shielding walls 122d, the effect of suppressing charge leakage is also improved.
  • a photodiode is provided in, for example, one to several pixels in the light-shielding region 11 as shown in FIG.
  • the area may not be provided, and a light-shielding wall 122d between areas may be provided instead.
  • the inter-regional light-shielding wall 122d By aligning the shape of the inter-regional light-shielding wall 122d and the filling material with the pixel separation unit 121, the inter-regional light-shielding wall 122d can be formed in the same manufacturing process as the formation of the pixel separation unit 121 when the solid-state image sensor 401 is manufactured. Therefore, the manufacturing step can be simplified. Alternatively, the transmittance of the plurality of inter-regional light-shielding walls 122d can be further reduced by making the filling material of the inter-regional light-shielding wall 122d different from the pixel separation portion 121.
  • the solid-state image sensor in the present embodiment is configured to provide a plurality of inter-regional light-shielding walls in the light-shielding area outside the aperture region to lower the transmittance as compared with the pixel separation means. According to this embodiment, it is possible to achieve the required light-shielding performance in a narrow area as compared with the buffer region according to the prior art.
  • the present embodiment has a configuration in which each block is divided into a plurality of substrates and the plurality of substrates are laminated with respect to the configuration of the solid-state image sensor 1 of the first embodiment.
  • the points different from those of the first embodiment will be mainly described, and the description of the configuration common to the first embodiment will be omitted as appropriate.
  • FIG. 8 is a perspective view showing the configuration of the solid-state image sensor 501 according to the fourth embodiment.
  • the solid-state image sensor 501 has a configuration in which a first substrate 71 and a second substrate 72 are laminated.
  • the first substrate 71 is provided with a block including a pixel region 1a.
  • the pixel region 1a includes the opening region 10 and the shading region 11, and an inter-region shading wall 122a as an inter-region shading means is provided between the opening region 10 and the shading region 11 as in the first embodiment. Be done.
  • At least a part of the circuit blocks other than the pixel area is provided on the second substrate 72.
  • the signal processing unit 13, the power supply unit 14, and the drive signal generation unit 15 are provided.
  • an inter-board shading means for preventing light generated by a circuit element provided on the second substrate 72 from entering the pixels of the first substrate 71.
  • the inter-board light-shielding portion 151 is provided.
  • the inter-board light-shielding portion 151 is extended so as to include at least a region in which the pixel region and the circuit block other than the pixel region overlap when the first substrate 71 and the second substrate 72 are laminated.
  • FIG. 9 shows an X5-X6 cross section of a region 516 including an inter-regional light-shielding wall 122a provided on the first substrate 71, an opening region 10 in the vicinity thereof, and a light-shielding region 11 among the solid-state imaging devices 501 shown in FIG.
  • the cross section of the signal processing unit 13 of the second substrate 72 laminated under the region 516 is shown.
  • the first substrate 71 includes a semiconductor substrate 120a including a photodiode PD corresponding to each pixel, and a wiring layer 130a. Inside the semiconductor substrate 120a, an inter-region light-shielding wall 122a is provided in the light-shielding region 11 as an inter-regional light-shielding means.
  • the second substrate 72 includes a semiconductor substrate 120b including a circuit element 123 constituting a circuit block other than the pixel region 1a, and a wiring layer 130b.
  • the first substrate 71 and the second substrate 72 are laminated via the inter-board connection layer 150.
  • the wirings of the wiring layer 130a of the first substrate 71 and the wiring layer 130b of the second substrate 72 are electrically connected to each other by the inter-board connection portion 152 provided in the inter-board connection layer 150.
  • the inter-board connection layer 150 includes a region in which a pixel region of the first substrate 71 and a circuit block (here, a signal processing circuit 13) provided on the second substrate 72 are laminated, and shields light between the substrates.
  • the unit 151 is provided.
  • the inter-board light-shielding portion 151 is formed of, for example, a metal material such as aluminum, copper, or tungsten, or a light absorbing material such as silicon dioxide or silicon nitride.
  • the inter-board light-shielding portion 151 may be provided in the wiring layer 130a of the first substrate 71. Further, when the second substrate 72 is laminated with the first substrate 71 by reversing the front and back sides, the inter-board light-shielding portion 151 may be provided in the wiring layer 130b of the second substrate 72.
  • the solid-state image sensor in the present embodiment is configured to provide inter-regional light-shielding means having a lower transmittance than the pixel separation means in the light-shielding area outside the aperture region. Further, when laminating a substrate including a pixel region and a substrate including a circuit block other than the pixel region, a light-shielding means between the substrates is provided including the region in which the pixel region and the circuit block other than the pixel region are laminated. I made it. According to this embodiment, it is possible to reduce the intrusion of light from the circuit block outside the pixel region into the pixel region.
  • a light-shielding means having a configuration different from that of the pixel separation means is provided between the aperture region or the light-shielding region of the solid-state image sensor and the other region. This makes it possible to provide a solid-state image sensor in which the light-shielding performance between regions is improved compared to the light-shielding performance between pixels.
  • the present invention also supplies a program that realizes one or more functions of the above-described embodiment to a system or device via a network or storage medium, and one or more processors in the computer of the system or device reads the program. It can also be realized by the processing to be executed. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
  • a program that realizes one or more functions of the above-described embodiment to a system or device via a network or storage medium, and one or more processors in the computer of the system or device reads the program. It can also be realized by the processing to be executed. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
  • ASIC application specific integrated circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本発明は、チップ面積の増大を抑制しながら、固体撮像素子内の異なる領域間の光および電荷の漏れを低減させる。固体撮像素子は、光電変換素子を有し被写体からの光を受光する複数の画素と、複数の画素のうちのそれぞれの画素の間を遮光する画素分離部とを有する第1の領域と、第1の領域外に設けられた第2の領域と、第1の領域と第2の領域の間の少なくとも一部に設けられ、第1の領域と前記第2の領域のうちの一方の領域から他方の領域に光が入射することを防止する遮光部と、を備え、遮光部は、光電変換素子が設けられる半導体基板中に、半導体基板の深さ方向に延伸して設けられるとともに、画素分離部とは異なる構成に形成されている。

Description

固体撮像素子
 本発明は、撮像装置に用いられる固体撮像素子の構造に関するものである。
 デジタルカメラ等の撮像装置には、固体撮像素子として、CCDやCMOSイメージセンサが広く用いられている。これらのイメージセンサは、基板の画素領域に複数の画素が配列され、各画素に設けられた、たとえばフォトダイオードなどの光電変換手段によって、入射した光を電荷に変換し蓄積する。
 CMOSイメージセンサは、フォトダイオードで蓄積した信号電荷を電圧信号に変換して出力するため、画素トランジスタなどの回路素子を各画素に備える。これらの回路素子、回路素子を制御するための制御信号線、画素信号を取り出すための読出し信号線等の金属配線などによって、フォトダイオードの開口面積が制限されることにより、画素の感度が低下するという問題がある。
 この問題に対し、回路素子や金属配線の配された表面側とは逆側の面から入射した光をフォトダイオードで受光する、裏面照射型のCMOSイメージセンサが知られている。裏面照射型では、回路素子や金属配線によってフォトダイオードの開口が制限されることなく、感度の低下を抑制することができる。
 一方で、1つの画素に大きく傾斜して入射した光線が、その画素のフォトダイオードに入射せずに、隣接する別の画素のフォトダイオードに入射する、光学的なクロストークにより、偽信号が発生し、撮影画像の画像品質が低下する問題がある。
 これに対し、特許文献1には、フォトダイオードの側部に、樹脂または金属等の遮光性のある材料からなる遮光部を設けることにより、画素間を遮光し、隣接画素へのクロストークを低減させた撮像装置が開示されている。光学的クロストークによる偽信号の発生量は、入射光量に応じて変化する。開口領域内では、着目画素への入射光量に比例した量のクロストークが、その着目画素に近い入射光量の近接画素に影響を与えるので、特許文献1に開示された遮光部を用いて、入射光量に対するクロストーク量の割合を低減することが有効である。
 ところで、CCDやCMOSイメージセンサでは、信号電荷の蓄積中に発生する暗電流ノイズによって、画素信号の黒レベルが変動する。そこで、画像信号取得用の画素を設けた開口領域の近傍に、光入射面側を遮光した画素からなる遮光領域を設け、そこから取得した暗信号(黒レベル)を基準に画像信号を補正する、OB(Optical Black)クランプを行う撮像装置が知られている。このような撮像装置において、遮光領域近傍の開口領域に高輝度光が入射した場合、開口領域から遮光領域への光学的クロストークによって暗信号のレベルが変動し、黒レベルを正しく取得できない問題がある。
 これに対し、特許文献2には、開口領域と、暗信号を取得するための遮光領域との間に、半導体基板の吸収特性を利用して、高輝度光によるクロストークを吸収する緩衝領域を設けた撮像装置が開示されている。
特開2010-258157号公報 特開2000-196055号公報
 遮光領域に開口領域からのクロストークによる偽信号が生じると、誤った暗信号を基準にOBクランプが行われ、補正の対象となる画像信号全体を正しいレベルに補正することができない。前述したとおり、光学的クロストークによる偽信号の発生量は入射光量に応じて変化する。したがって、遮光領域近傍の開口領域に高輝度光が照射されても、遮光領域に生じる偽信号が所定の許容値以下となるよう、遮光領域には、開口領域における画素間に要する遮光性能よりもさらに高い遮光性能を要する。
 一方、半導体基板に入射した光に対し、半導体基板中の光路長を長く取るほど、より多くの漏れ光を吸収しクロストークの影響を低減できる。そこで、特許文献2に開示された従来技術のように、緩衝領域の幅を広くし、開口領域と遮光領域との距離を長くすることが、クロストークの低減に有効である。しかし、クロストークによる漏れ光を十分吸収可能な幅の緩衝領域を設けた場合、固体撮像素子のチップ面積が増大し、コストが増加してしまう。
 本発明は上述した課題に鑑みてなされたものであり、チップ面積の増大を抑制しながら、固体撮像素子内の異なる領域間の光および電荷の漏れを低減させる。
 本発明に係わる固体撮像素子は、光電変換素子を有し被写体からの光を受光する複数の画素と、該複数の画素のうちのそれぞれの画素の間を遮光する画素分離手段とを有する第1の領域と、前記第1の領域外に設けられた第2の領域と、前記第1の領域と前記第2の領域の間の少なくとも一部に設けられ、前記第1の領域と前記第2の領域のうちの一方の領域から他方の領域に光が入射することを防止する遮光手段と、を備え、前記遮光手段は、前記光電変換素子が設けられる半導体基板中に、該半導体基板の深さ方向に延伸して設けられるとともに、前記画素分離手段とは異なる構成に形成されていることを特徴とする。
 本発明によれば、チップ面積の増大を抑制しながら、固体撮像素子内の異なる領域間の光および電荷の漏れを低減させることが可能となる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明の第1の実施形態に係わる撮像装置の構成を示す平面図。 第1の実施形態における固体撮像素子の構成を示す平面図。 第1の実施形態における固体撮像素子の断面図。 第1の実施形態の変形例における固体撮像素子の構成を示す平面図。 第1の実施形態の変形例における固体撮像素子の断面図。 第2の実施形態における固体撮像素子の断面図。 第3の実施形態における固体撮像素子の断面図。 第4の実施形態における固体撮像素子の構成を示す斜視図。 第4の実施形態における固体撮像素子の断面図。
 以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係わる固体撮像素子を用いた撮像装置100の構成を示すブロック図である。
 撮像装置100は、固体撮像素子1と、補正部2と、制御部3と、指示部4と、表示部5と、記録部6と、レンズ駆動部7と、を備えて構成されている。また、撮像装置100には、撮影レンズ(撮像光学系、レンズユニット)8が備えられる。撮影レンズ8は、撮像装置の本体から着脱可能であってもよいし着脱不能であってもよい。撮影レンズ8は、被写体の光学像を固体撮像素子1の撮像面に結像させる。
 固体撮像素子1は、撮影レンズ8によって形成される被写体の光学像を、入射光量に応じた撮像信号に変換して出力する。なお、固体撮像素子1の詳細構成は、後述する。補正部2は、固体撮像素子1から出力される撮像信号に対し、演算処理や補正処理等の所定の信号処理を行い、画像信号を生成する。制御部3は、指示部4の指示に基づき、撮像装置100の各機能ブロックを駆動するための制御信号を生成し出力する。さらに、制御部3は画像信号に対し、現像や圧縮等の所定の信号処理を施す。
 指示部4からは、撮影の実行指示や、撮像装置100の駆動モードの設定などに関する、ユーザーからの指示等の外部からの指示が入力される。表示部5は、制御部3によって信号処理が施された画像信号や、撮像装置100の各種設定情報等を表示する。
 記録部6には、不図示の記録媒体が備えられている。記録媒体は記録部6から着脱可能であってもよいし着脱不能であってもよい。記録部6は、制御部3によって信号処理が施された画像信号等を記録媒体に記録する。かかる記録媒体としては、例えばフラッシュメモリ等の半導体メモリ等が挙げられる。レンズ駆動部7は、撮影レンズ8を駆動するブロックであり、制御部3からの制御信号に従って、ズーム制御、フォーカス制御、絞り制御等を行う。
 図2は、第1の実施形態の固体撮像素子1の構成を示す平面図である。
 固体撮像素子1は、複数の画素が行列状に設けられた画素領域1aを備える。本実施形態においては、画素領域1aは、開口領域10と、遮光領域11とを含む。
 第1の領域としての開口領域10には、光電変換素子を備えた画素が複数設けられ、撮影レンズ8を介して入射した被写体光の光量に応じた信号を各画素から出力可能である。
 第2の領域としての遮光領域11にも、光電変換素子を備えた画素が複数設けられる。しかし、撮影レンズ8を介した入射光が各画素に直接入射することを防止する遮光膜111(図3参照)によって、各画素の光入射面側が遮光され、被写体光に依存しない、暗時の信号を各画素から出力可能である。
 固体撮像素子1の異なる領域同士の間、ここでは開口領域10と遮光領域11との間(一方の領域と他方の領域の間)には、固体撮像素子1に傾斜して入射した光線が、遮光領域11の開口領域10近傍の画素へ入射することを防ぐ、領域間遮光手段としての領域間遮光壁122aが設けられる。
 信号処理部13は、開口領域10および遮光領域11の各画素の信号を処理して出力する。信号処理部13は、たとえば、画素から読み出された電圧信号を増幅する増幅手段としての増幅回路、あるいは、画素から読み出された電圧信号をデジタル信号値に変換する変換手段としてのAD変換回路等の、いずれかの信号処理手段を備える。
 電源部14は、外部からの入力電圧から、固体撮像素子1の各ブロックの駆動に必要な電圧を生成して供給する、電源回路を備える。駆動信号生成部15は、開口領域10、遮光領域11、信号処理部13の各ブロックに対し、回路素子を駆動するための駆動信号を生成し、供給する。
 図3は、第1の実施形態の固体撮像素子1のうち、図2に示す、領域間遮光壁122aおよびその付近の開口領域10、遮光領域11を含む領域16のX1-X2断面図である。
 固体撮像素子1は複数の画素(有効画素)1bと、それぞれの画素1bに対応したマイクロレンズMLと、カラーフィルタCFとを備える。マイクロレンズMLおよびカラーフィルタCFの下層には、遮光層110が設けられる。遮光層110は、固体撮像素子1の上面視における一部の領域に、撮影レンズ8を介した入射光が直接入射することを防止する遮光手段としての遮光膜111を備える。遮光膜111は、少なくとも遮光領域11に設けられる。遮光膜111によって生じる固体撮像素子1の厚み方向の段差は、平坦化膜112により平坦化される。なお、遮光膜111が設けられた画素(遮光画素)は、被写体光が遮光膜111によって遮光されるため、前述のマイクロレンズMLやカラーフィルタCFを設けなくてもよい。
 遮光層110の下層には、酸化ハフニウム、二酸化ケイ素、五酸化タンタル、二酸化ジルコニウム等から成るピニング膜113を介して、半導体基板120が設けられる。
 半導体基板120の内部には、開口領域10および遮光領域11に、複数の画素1bそれぞれに対応する光電変換素子としてのフォトダイオードPDが設けられる。異なる画素同士の間には、隣接画素間のクロストークを低減するため、画素分離手段としての画素分離部121が設けられる。画素分離部121は、半導体基板120に設けられた溝部に遮光部材が充填されて構成されており、隣接する画素間を光学的に分離する。ここでは、半導体基板120に対し、たとえば光入射面側から設けられた溝部に、二酸化ケイ素や窒化ケイ素などの光吸収材料が充填され、1つの画素に入射したものの当該画素で吸収されなかった光を吸収して、隣接画素への光の透過率を低減する。画素分離部の表面にはピニング膜114を配し、光電変換された電荷の、異なる画素への漏れ出しを抑制する。ピニング膜114はピニング膜113と一体に構成されてもよい。また、画素分離部121とピニング膜114とが同じ物質で構成される場合には、画素分離部121とピニング膜114とが一体に構成される。
 また、半導体基板120の内部(半導体基板中)には、遮光領域11中に、領域間遮光手段として、領域間遮光壁122aが設けられる。
 領域間遮光壁122aは、画素分離部121と同様に、半導体基板120に設けられた溝部にピニング膜114を介して遮光部材を充填した構成であるが、画素分離部121とは充填される遮光部材を異ならせ、より透過率の低い材料を用いる。たとえば、ピニング膜114の内側にアルミや銅、タングステンなどの金属材料を充填し、開口領域10から遮光領域11への光の透過率を、隣接画素間の透過率よりもさらに低減する。例えば、シリコン基板中を伝播しやすい赤色から近赤外の光に対し、数十nmから百数十nmの幅の領域間遮光壁によって、従来技術のように数十μmから百数十μmの幅の緩衝領域をシリコン基板に設けるのと同等の遮光性能を達成可能である。なお、領域間遮光壁122aのピニング膜114を、画素分離部121よりも厚く形成し、シリコン基板内における開口領域10と遮光領域11との間の電荷漏れをより強く抑制するようにしてもよい。
 領域間遮光壁122aのように金属材料を充填するためには、画素分離部121より幅の広い溝部を要することとなる。溝部を半導体基板の平面方向に広くすると画素の開口が制限されてしまうため、画素の感度が低下する。したがって、高い遮光性能を要する遮光領域11には、開口領域10付近の一部に幅の広い溝部を形成して領域間遮光壁122aを形成する。一方、各画素間の分離には、感度を過剰に低下させないことを重視して、幅の狭い溝部を形成し画素分離部121を形成する。
 配線層130は、絶縁層131中にアルミや銅、タングステンなどの金属材料からなる配線132を備えて構成される。配線132を介して、駆動信号生成部15から各画素への駆動信号の供給や、各画素から信号処理部13への読み出し信号の伝達が行われる。配線層130のさらに下層には、支持基板140が設けられる。なお、固体撮像素子1には、配線層130が配置された面(図中下側)とは反対側の面(図中上側)から、被写体光が入射する。以上が、本実施形態における固体撮像素子1の構成である。
 遮光領域11の各画素から読み出された暗信号は、開口領域10の各画素から読み出された信号の補正に用いられる。たとえば、補正部2におけるOBクランプ補正において、遮光領域11の画素から得た暗信号を基準信号として用い、開口領域10の画素から得た信号のレベルが補正される。
 領域間遮光壁122aの配置を、遮光領域11内で、開口領域10側の端部に近づけることにより、開口領域10からの光の侵入で正しい暗出力を得られない領域を少なくすることができる。たとえば、図3では、領域間遮光壁122aを、開口領域10の端部の画素と、遮光領域11の端部の画素との間に設ける例を示している。しかし、領域間遮光壁122aの反射率によっては、開口領域10側の領域間遮光壁122aに隣接する画素の感度が変化してしまう。
 従って、領域間遮光壁122aに隣接する開口領域10側の有効画素の信号は画像信号の生成に使用しないようにしてもよい。あるいは、遮光膜111の縁よりも1~数画素分遮光領域11の内側に入った位置に領域間遮光壁122aを設け、領域間遮光壁122aよりも開口領域10側に遮光画素が1~数画素分存在するようにしてもよい。この場合は、領域間遮光壁122aよりも開口領域10側の遮光画素を、画像信号の補正に使用しないようにすればよい。このように領域間遮光壁122aの近傍の有効画素あるいは遮光画素を使用しないようにしたとしても、例えば画素ピッチが数μmの固体撮像素子であれば、従来技術のように数十μmから百数十μmの幅の緩衝領域をシリコン基板に設けるのと比べ、不使用領域の幅を大幅に削減可能である。なお、使用しない画素については信号の読み出しを行わないようにして、固体撮像素子1全体の信号読出しにかかる時間を短縮して、フレームレートを向上させてもよい。
 以上説明したように、本実施形態における固体撮像素子は、開口領域外の遮光領域中に、画素分離手段と異なる遮光部材を用いて画素分離手段よりも透過率を低下させた領域間遮光手段を設ける構成とした。本実施形態によれば、半導体基板の吸収特性を利用して開口領域から遮光領域への光学的クロストークを吸収する従来の緩衝領域と比較して、狭い面積で必要な遮光性能を達成することが可能となる。
 従って、固体撮像素子において、チップ面積の増大を抑制しながら、固体撮像素子内の異なる領域間の光および電荷の漏れを低減させることが可能となる。
 (第1の実施形態の変形例)
 図2に示した固体撮像素子1は、信号処理部13、電源部14、駆動信号生成部15、MOSトランジスタなどの回路素子を備える。これらの回路素子の動作によりリークが発生した場合、その発光光が基板内部を伝播して、遮光領域11及び開口領域10を含む画素領域1aのフォトダイオードに入射すると、ノイズを発生させる。このような、画素領域外の回路素子の発光によるノイズを低減するため、本実施形態では、画素領域1aと、画素領域以外の回路ブロック13~15との間に、領域間遮光壁122bを設ける。
 以下、本変形例における固体撮像素子201の構成について説明する。図4は、本変形例における固体撮像素子201の構成を示す平面図である。図4に示すように、固体撮像素子201は、開口部10の設けられた第1の領域、および、遮光領域11の設けられた第2の領域とは異なる第3の領域に、信号処理部13、電源部14、駆動信号生成部15などの回路ブロックを備える。信号処理部13、電源部14、駆動信号生成部15は、それぞれ、単位画素を構成しないMOSトランジスタなどの回路素子を備える。
 開口領域10あるいは遮光領域11のいずれかと、前述の第3の領域に配置された回路ブロックとの間には、第3の領域で発生した光が、遮光領域11および開口領域10の画素へ入射することを防ぐ、領域間遮光手段としての領域間遮光壁122bが設けられる。その他の構成については、第1の実施形態と同様である。
 図5は、本変形例における固体撮像素子201のうち、図4に示す領域間遮光壁122bおよびその付近の画素領域である遮光領域11、第3の領域に配置された駆動信号生成部15を含む領域17のX3-X4断面図である。
 半導体基板120の内部には、駆動信号生成部15が設けられた第3の領域において、複数のMOSトランジスタ123が設けられており、且つ第3の領域は遮光膜111により遮光される。また、半導体基板120の内部には、画素領域1aと、第3の領域に設けられた回路ブロックとの間に、領域間遮光手段として、領域間遮光壁122bが設けられる。ここでは、遮光領域11と駆動信号生成部15との間に領域間遮光壁122bが設けられた様子を示している。
 領域間遮光壁122bは、領域間遮光壁122aと同様に、半導体基板120に設けられた溝部に、画素分離部121よりも透過率の低い遮光部材を充填して構成されている。領域間遮光壁122bには、たとえば、アルミや銅、タングステンなどの金属材料を充填し、第3の領域からの光の透過率を、隣接画素間の透過率よりもさらに低減する。なお、遮光領域11については、第1の実施形態と同様の構成である。
 以上説明したように、本変形例における固体撮像素子は、画素領域と、画素領域以外の回路ブロックとの間の間に、画素分離手段と異なる遮光部材を用いて画素分離手段よりも透過率を低下させた領域間遮光手段を設ける構成とした。本変形例によれば、画素領域外の回路ブロックから画素領域への光および電荷の侵入を、領域間遮光手段によって低減することが可能となる。
 (第2の実施形態)
 以下、本発明の第2の実施形態の固体撮像素子の構成について説明する。本実施形態は、第1の実施形態の固体撮像素子1の構成に対し、領域間遮光壁122aの代わりに領域間遮光壁122cを設けた点が異なる。以下、第1の実施形態と異なる点を中心に説明し、第1の実施形態と共通の構成については適宜説明を省略する。
 図6は、第2の実施形態における固体撮像素子301のうち、図2に示す領域間遮光壁122aに代わって設けられた領域間遮光壁122cと、その付近の開口領域10、遮光領域11を含む領域16のX1-X2断面図である。
 半導体基板120の内部には、遮光領域11中に、領域間遮光手段として、領域間遮光壁122cが設けられる。領域間遮光壁122cは、画素分離部121と同様に、半導体基板120に設けられた溝部にピニング膜114を介して遮光部材を充填して構成されているが、画素分離部121とは形状を異ならせ、より透過率を低くする。たとえば、画素分離部121と比較して幅が広く、深さの深い(深く延伸する)溝部を設け、遮光部材の充填幅を広く、充填深さを深くすることにより、開口領域10から遮光領域11への光の透過率を、隣接画素間の透過率よりもさらに低減する。なお、ここで領域間遮光壁122cの深さを増したことに伴い、ピニング膜114の表面積が拡大されるため、電荷漏れの抑制効果も向上される。
 以上説明したように、本実施形態における固体撮像素子は、開口領域外の遮光領域中に、画素分離手段とは形状を異ならせることで画素分離手段よりも透過率を低下させた領域間遮光手段を設ける構成とした。本実施形態によれば、従来技術による緩衝領域と比較して、狭い面積で必要な遮光性能を達成することが可能となる。
 従って、チップ面積の増大を抑制しながら、固体撮像素子内の異なる領域間の光および電荷の漏れを低減させることが可能となる。
 (第3の実施形態)
 以下、本発明の第3の実施形態の固体撮像素子の構成について説明する。
 本実施形態は、第1の実施形態の固体撮像素子1の構成に対し、領域間遮光壁122aの代わりに領域間遮光壁122dを複数設けた点が異なる。以下、第1の実施形態と異なる点を中心に説明し、第1の実施形態と共通の構成については適宜説明を省略する。
 図7は、第3の実施形態の固体撮像素子401のうち、図2に示す領域間遮光壁122aに代わって設けられた領域間遮光壁122dと、その付近の開口領域10、遮光領域11を含む領域16のX1-X2断面図である。
 半導体基板120の内部には、遮光領域11中に、領域間遮光手段として、領域間遮光壁122dが設けられる。領域間遮光壁122dは、画素分離部121と同様に、半導体基板120に設けられた溝部にピニング膜114を介して遮光部材を充填して構成されている。このような領域間遮光壁122dを複数連続して設けることにより、開口領域10から遮光領域11への光の透過率を、隣接画素間の透過率よりもさらに低減する。なお、ここで領域間遮光壁122dを複数設けたことに伴い、ピニング膜114も複数設けられるため、電荷漏れの抑制効果も向上される。
 領域間遮光壁122dを複数設けるには、画素分離部121より広い面積を必要とするため、図7のように、遮光領域11中の、たとえば1~数画素分の領域を、フォトダイオードを設けない領域とし、変わりに領域間遮光壁122dを設けるようにしてもよい。
 領域間遮光壁122dの形状、および充填材料を、画素分離部121と揃えることにより、固体撮像素子401の製造時に、画素分離部121の形成と同じ製造工程で領域間遮光壁122dを形成できる。そのため、製造ステップを簡素化することができる。あるいは、領域間遮光壁122dの充填材料を画素分離部121と異ならせることにより、複数の領域間遮光壁122dの透過率をさらに低くすることも可能である。
 以上説明したように、本実施形態における固体撮像素子は、開口領域外の遮光領域中に、複数の領域間遮光壁を設けて、画素分離手段よりも透過率を低下させる構成とした。本実施形態によれば、従来技術による緩衝領域と比較して、狭い面積で必要な遮光性能を達成することが可能となる。
 従って、チップ面積の増大を抑制しながら、固体撮像素子内の異なる領域間の光および電荷の漏れを低減させることが可能となる。
 (第4の実施形態)
 以下、本発明の第4の実施形態の固体撮像素子の構成について説明する。
 本実施形態は、第1の実施形態の固体撮像素子1の構成に対し、各ブロックを複数の基板に分けて配置し、複数の基板同士を積層した構成としている。以下、第1の実施形態と異なる点を中心に説明し、第1の実施形態と共通の構成については適宜説明を省略する。
 図8は、第4の実施形態における固体撮像素子501の構成を示す斜視図である。
 固体撮像素子501は、第1の基板71と第2の基板72が積層された構成である。第1の基板71には、画素領域1aを含むブロックが設けられる。画素領域1aは、開口領域10、遮光領域11を含み、開口領域10と遮光領域11との間には、第1の実施形態と同様に、領域間遮光手段としての領域間遮光壁122aが設けられる。
 第2の基板72には、画素領域以外の回路ブロックのうち少なくとも一部が設けられる。ここでは、信号処理部13、電源部14、駆動信号生成部15が設けられた構成としている。
 第1の基板71と第2の基板72の間には、第2の基板72に設けられた回路素子で生じた光が第1の基板71の画素に入射することを防ぐ、基板間遮光手段としての基板間遮光部151が設けられる。基板間遮光部151は、少なくとも、第1の基板71と第2の基板72とを積層した際、画素領域と、画素領域以外の回路ブロックとが重なる領域を含むように延設される。
 図9は、図8に示す固体撮像素子501のうち、第1の基板71に設けられた領域間遮光壁122aと、その付近の開口領域10、遮光領域11を含む領域516のX5-X6断面と、領域516の下部に積層された第2の基板72の信号処理部13の断面を示す。
 第1の基板71は、各画素に対応するフォトダイオードPDを含む半導体基板120aと、配線層130aとを備える。半導体基板120aの内部には、遮光領域11中に、領域間遮光手段として、領域間遮光壁122aが設けられる。第2の基板72は、画素領域1a以外の回路ブロックを構成する回路素子123を含む半導体基板120bと、配線層130bを備える。
 第1の基板71と第2の基板72とは、基板間接続層150を介して積層される。基板間接続層150に設けられた基板間接続部152によって、第1の基板71の配線層130aと、第2の基板72の配線層130bの配線同士が電気的に接続される。
 基板間接続層150には、第1の基板71の画素領域と、第2の基板72に設けられた回路ブロック(ここでは信号処理回路13)とが積層される領域を含んで、基板間遮光部151が設けられる。基板間遮光部151は、たとえばアルミや銅、タングステンなどの金属材料か、二酸化ケイ素や窒化ケイ素などの光吸収材料で形成される。
 なお、ここでは、基板間接続層150中に基板間遮光部151を設けた例を示したが、第1の基板71の配線層130a中に設けてもよい。また、第2の基板72の表裏を逆にして第1の基板71と積層する場合には、基板間遮光部151を第2の基板72の配線層130b中に設けるようにしてもよい。
 以上説明したように、本実施形態における固体撮像素子は、開口領域外の遮光領域中に、画素分離手段よりも透過率を低下させた領域間遮光手段を設ける構成とした。また、画素領域を含む基板と、画素領域以外の回路ブロックを含む基板とを積層する際、画素領域と、画素領域以外の回路ブロックとが積層される領域を含んで基板間遮光手段を設けるようにした。本実施形態によれば、画素領域外の回路ブロックから画素領域への光の侵入を低減することが可能となる。
 従って、チップ面積の増大を抑制しながら、固体撮像素子内の異なる領域間の光および電荷の漏れを低減させることが可能となる。
 以上説明したように、第1乃至第4の実施形態では、固体撮像素子の開口領域、あるいは遮光領域と、他の領域との間に、画素分離手段とは構成の異なる遮光手段を設けた。これにより、領域間の遮光性能を画素間の遮光性能よりも向上させた固体撮像素子を提供することが可能となる。
 (他の実施形態)
 また本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現できる。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現できる。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために請求項を添付する。
 本願は、2019年7月18日提出の日本国特許出願特願2019-133126を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。

Claims (15)

  1.  光電変換素子を有し被写体からの光を受光する複数の画素と、該複数の画素のうちのそれぞれの画素の間を遮光する画素分離手段とを有する第1の領域と、
     前記第1の領域外に設けられた第2の領域と、
     前記第1の領域と前記第2の領域の間の少なくとも一部に設けられ、前記第1の領域と前記第2の領域のうちの一方の領域から他方の領域に光が入射することを防止する遮光手段と、を備え、
     前記遮光手段は、前記光電変換素子が設けられる半導体基板中に、該半導体基板の深さ方向に延伸して設けられるとともに、前記画素分離手段とは異なる構成に形成されていることを特徴とする固体撮像素子。
  2.  前記第2の領域は、被写体からの光が入射しないように遮光された遮光画素を含むことを特徴とする請求項1に記載の固体撮像素子。
  3.  前記第1の領域は、被写体からの光が入射しないように遮光された遮光画素をさらに有し、前記第2の領域は、前記画素を構成しない回路素子を有することを特徴とする請求項1に記載の固体撮像素子。
  4.  前記遮光手段は、前記回路素子で発生する光が、前記第1の領域に入射することを防止することを特徴とする請求項3に記載の固体撮像素子。
  5.  前記第2の領域は、前記回路素子として、前記画素の信号を処理する信号処理手段と、前記画素または前記信号処理手段に制御信号を供給する制御手段と、前記画素または前記信号処理手段または前記制御手段に電源を供給する電源手段の少なくとも1つを含むことを特徴とする請求項3または4に記載の固体撮像素子。
  6.  前記遮光手段は、前記半導体基板の深さ方向に延伸する深さが、前記画素分離手段が前記半導体基板の深さ方向に延伸する深さと異なることを特徴とする請求項1乃至5のいずれか1項に記載の固体撮像素子。
  7.  前記遮光手段は、前記半導体基板の深さ方向に延伸する深さが、前記画素分離手段が前記半導体基板の深さ方向に延伸する深さより深いことを特徴とする請求項6に記載の固体撮像素子。
  8.  前記遮光手段は、該遮光手段を構成する材料が、前記画素分離手段を構成する材料と異なることを特徴とする請求項1乃至5のいずれか1項に記載の固体撮像素子。
  9.  前記遮光手段は、該遮光手段を構成する材料の透過率が、前記画素分離手段を構成する材料の透過率よりも低いことを特徴とする請求項8に記載の固体撮像素子。
  10.  前記遮光手段は、前記半導体基板の平面方向の幅が、前記画素分離手段の前記半導体基板の平面方向の幅と異なることを特徴とする請求項1乃至5のいずれか1項に記載の固体撮像素子。
  11.  前記遮光手段は、前記半導体基板の平面方向の幅が、前記画素分離手段の前記半導体基板の平面方向の幅より広いことを特徴とする請求項10に記載の固体撮像素子。
  12.  前記遮光手段は、その数が、前記画素分離手段の数と異なることを特徴とする請求項1乃至5のいずれか1項に記載の固体撮像素子。
  13.  前記遮光手段は、その数が、前記画素分離手段の数よりも多いことを特徴とする請求項12に記載の固体撮像素子。
  14.  前記遮光手段に隣接する画素が、前記光電変換素子を備えないことを特徴とする請求項1乃至13のいずれか1項に記載の固体撮像素子。
  15.  前記半導体基板は、前記画素の信号を伝達する配線が配置される配線層を有し、前記画素には、前記配線層を有する面とは反対側の面から被写体の光が入射することを特徴とする請求項1乃至14のいずれか1項に記載の固体撮像素子。
PCT/JP2020/026057 2019-07-18 2020-07-02 固体撮像素子 WO2021010182A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080051923.3A CN114127941A (zh) 2019-07-18 2020-07-02 固态图像传感器
US17/576,509 US20220139987A1 (en) 2019-07-18 2022-01-14 Solid-state image sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-133126 2019-07-18
JP2019133126A JP2021019059A (ja) 2019-07-18 2019-07-18 固体撮像素子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/576,509 Continuation US20220139987A1 (en) 2019-07-18 2022-01-14 Solid-state image sensor

Publications (1)

Publication Number Publication Date
WO2021010182A1 true WO2021010182A1 (ja) 2021-01-21

Family

ID=74210488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026057 WO2021010182A1 (ja) 2019-07-18 2020-07-02 固体撮像素子

Country Status (4)

Country Link
US (1) US20220139987A1 (ja)
JP (1) JP2021019059A (ja)
CN (1) CN114127941A (ja)
WO (1) WO2021010182A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145441A1 (ja) * 2022-01-26 2023-08-03 ソニーセミコンダクタソリューションズ株式会社 光検出装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050184291A1 (en) * 2004-02-20 2005-08-25 Cole Bryan G. Isolation structures for preventing photons and carriers from reaching active areas and methods of formation
JP2010245499A (ja) * 2009-03-16 2010-10-28 Sony Corp 固体撮像装置及び電子機器
JP2011205141A (ja) * 2011-07-11 2011-10-13 Sony Corp 固体撮像装置の製造方法
US20130099341A1 (en) * 2011-10-21 2013-04-25 Samsung Electronics Co., Ltd. Image sensor for stabilizing a black level
WO2015068589A1 (ja) * 2013-11-06 2015-05-14 ソニー株式会社 半導体装置、固体撮像素子、および電子機器
US20160056188A1 (en) * 2014-08-22 2016-02-25 Samsung Electronics Co., Ltd. Image sensor having shielding structure
EP3511983A2 (en) * 2018-01-12 2019-07-17 Samsung Electronics Co., Ltd. Image sensors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050184291A1 (en) * 2004-02-20 2005-08-25 Cole Bryan G. Isolation structures for preventing photons and carriers from reaching active areas and methods of formation
JP2010245499A (ja) * 2009-03-16 2010-10-28 Sony Corp 固体撮像装置及び電子機器
JP2011205141A (ja) * 2011-07-11 2011-10-13 Sony Corp 固体撮像装置の製造方法
US20130099341A1 (en) * 2011-10-21 2013-04-25 Samsung Electronics Co., Ltd. Image sensor for stabilizing a black level
WO2015068589A1 (ja) * 2013-11-06 2015-05-14 ソニー株式会社 半導体装置、固体撮像素子、および電子機器
US20160056188A1 (en) * 2014-08-22 2016-02-25 Samsung Electronics Co., Ltd. Image sensor having shielding structure
EP3511983A2 (en) * 2018-01-12 2019-07-17 Samsung Electronics Co., Ltd. Image sensors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145441A1 (ja) * 2022-01-26 2023-08-03 ソニーセミコンダクタソリューションズ株式会社 光検出装置

Also Published As

Publication number Publication date
CN114127941A (zh) 2022-03-01
US20220139987A1 (en) 2022-05-05
JP2021019059A (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
US9818783B2 (en) Solid-state image pickup apparatus and electronic apparatus
KR20230119616A (ko) 이면 조사형 촬상 소자, 그 제조 방법 및 촬상 장치
JP4892886B2 (ja) 固体撮像素子及び撮像装置
JP5421207B2 (ja) 固体撮像装置
US20110298074A1 (en) Solid-state imaging element and electronic information device
CN114447010A (zh) 固态成像装置和电子设备
US20080036903A1 (en) Image pickup apparatus
US8619176B2 (en) Solid state imaging device having lens and material with refractive index greater than 1 between the lens and imaging chip
KR20120106560A (ko) 고체 촬상 장치 및 카메라 모듈
US10181488B2 (en) Imaging device
JP5909051B2 (ja) 固体撮像素子及び撮像装置
WO2012066846A1 (ja) 固体撮像素子及び撮像装置
JP2023067935A (ja) 撮像素子
WO2021010182A1 (ja) 固体撮像素子
WO2015019931A1 (ja) 固体撮像装置および撮像装置
JP2001210812A (ja) 固体撮像装置及びそれを備えた固体撮像システム
US9277151B2 (en) Solid-state image sensor with an effective pixel area, and image pickup apparatus
JP2009188461A (ja) 撮像装置
JP2010186942A (ja) 撮像素子
JP2012124213A (ja) 固体撮像素子
JP4951312B2 (ja) 撮像装置
JP2008103472A (ja) 固体撮像素子及び撮像装置
JP2008112831A (ja) 固体撮像素子及びこれを備えた撮像装置
US20220247950A1 (en) Image capture element and image capture apparatus
JP7383876B2 (ja) 撮像素子、及び、撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840125

Country of ref document: EP

Kind code of ref document: A1