WO2021009803A1 - ガス絶縁電気装置 - Google Patents

ガス絶縁電気装置 Download PDF

Info

Publication number
WO2021009803A1
WO2021009803A1 PCT/JP2019/027705 JP2019027705W WO2021009803A1 WO 2021009803 A1 WO2021009803 A1 WO 2021009803A1 JP 2019027705 W JP2019027705 W JP 2019027705W WO 2021009803 A1 WO2021009803 A1 WO 2021009803A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
insulating
insulation performance
electrical device
performance
Prior art date
Application number
PCT/JP2019/027705
Other languages
English (en)
French (fr)
Inventor
涼子 川野
吉村 学
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP19937689.8A priority Critical patent/EP3998685A4/en
Priority to US17/610,717 priority patent/US20220224086A1/en
Priority to JP2019564183A priority patent/JP6656496B1/ja
Priority to PCT/JP2019/027705 priority patent/WO2021009803A1/ja
Publication of WO2021009803A1 publication Critical patent/WO2021009803A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/055Features relating to the gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/56Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • H01H2033/566Avoiding the use of SF6

Definitions

  • the present invention relates to a gas-insulated electrical device.
  • gas-insulated electric devices such as gas-insulated switchgear
  • insulation performance is ensured by storing a conductor to which a high voltage is applied in a metal grounding tank and enclosing insulating gas in the space inside the grounding tank. There is.
  • SF 6 has been known as an insulating gas used in such a gas-insulated electric device.
  • SF 6 has high insulation performance, it has a large global warming potential (GWP). Therefore, from the viewpoint of reducing the environmental load, an insulating gas that replaces SF 6 is being studied.
  • GWP global warming potential
  • Patent Document 1 Japanese Patent Laid-Open No. 2014-506376 discloses a mixed gas of fluoroketone gas and air as an insulating gas for ensuring the insulation performance of a gas-insulated electric device, and this mixed gas.
  • GWP is 1 or less.
  • the insulating performance of the mixed gas is larger than the arithmetic mean of the insulating performances of the fluoroketone and air. That is, by mixing a plurality of types of gases, the insulation performance is synergistically increased as compared with the gas alone before mixing. In the present specification, having such a property is expressed as "having a synergistic effect of insulation performance".
  • the GWP can be lowered without lowering the insulating performance by mixing the fluoroketone gas, which is responsible for the main insulating performance, with air having a small GWP.
  • Non-Patent Document 1 as an insulating gas to replace SF 6, the mixed gas is disclosed with C 3 F 8, CF 4 or the like and the GWP is small N 2, CO 2, and the like.
  • Non-Patent Document 1 is a mixed gas having no synergistic effect of the insulation performance, global warming potential, such as C 3 F 8, CF 4 ( GWP) is 6500 to 7000 Therefore, it is desirable to use an insulating gas that is smaller than the GWP of SF 6 but has a smaller GWP and a smaller environmental load.
  • GWP global warming potential
  • the present invention has been made to solve such a problem, and even if the insulating gas leaks from the grounding tank due to aged use or the like, the deterioration of the insulating performance can be suppressed and the environmental load is small. It is an object of the present invention to provide a gas-insulated electrical device.
  • the gas-insulated electric device of the present invention Grounding tank and With the conductor placed in the ground tank, It is provided with an insulating gas filled in the grounding tank.
  • the first gas which is responsible for the main insulation performance and has a global warming potential of less than 6500, It is a mixed gas containing a second gas having a smaller molecular weight, lower insulation performance, and a lower global warming potential than the first gas.
  • the insulation performance of the insulating gas is lower than the insulation performance of the first gas having the same pressure.
  • a mixed gas containing a first gas having a main insulating performance and a second gas having a molecular weight smaller than that of the first gas is used.
  • the second gas having a molecular weight smaller than that of the first gas leaks before the first gas, and the first gas responsible for the main insulating performance becomes Hard to leak. Therefore, the absolute amount of the first gas is unlikely to decrease even after aged use.
  • the second gas has lower insulation performance than the first gas, and there is no synergistic effect of the insulation performance. Therefore, even if the second gas leaks, if the absolute amount of the first gas does not decrease much, even after aged use. Deterioration of the insulating performance of the insulating gas is suppressed.
  • the GWP of both the first gas and the second gas is relatively small, the GWP of the insulating gas is smaller than that of the conventional insulating gas.
  • the present invention it is possible to provide a gas-insulated electrical device that can suppress deterioration of insulating performance and have a small environmental load even when the insulating gas leaks from the grounding tank due to long-term use or the like.
  • FIG. 1 It is a figure which shows the schematic structure of the gas insulation electric apparatus which concerns on Embodiment 1 of this invention. It is a schematic graph for demonstrating the synergistic effect of the insulation performance of a mixed gas with respect to Embodiment 1 of this invention. It is another schematic graph for demonstrating the synergistic effect of the insulation performance of a mixed gas with respect to Embodiment 1 of this invention. It is another schematic graph for demonstrating the synergistic effect of the insulation performance of a mixed gas with respect to Embodiment 1 of this invention. It is another schematic graph for demonstrating the synergistic effect of the insulation performance of a mixed gas with respect to Embodiment 1 of this invention. It is a schematic graph for demonstrating Embodiment 4 of this invention. It is a schematic graph for demonstrating Embodiment 5 of this invention.
  • FIG. 1 is a diagram showing a schematic configuration of a gas-insulated electric device according to a first embodiment of the present invention. Note that FIG. 1 shows a gas-insulated switchgear as an example of a gas-insulated electrical device.
  • the gas-insulated electrical device shown in FIG. 1 includes a grounding tank 1, a conductor 2 arranged in the grounding tank 1, and an insulating gas (not shown) filled in the grounding tank 1.
  • the conductor 2 is supported in a state of being insulated from the grounding tank 1 by an insulating support member 3. A high voltage is applied to the conductor 2.
  • the grounding tank 1 is a confidential container, space, or the like.
  • gas-insulated electrical device may be provided with electrical or electromechanical equipment electrically in series or in parallel along the electric circuit (electric circuit) including the conductor 2.
  • electrical or electromechanical equipment include switches, circuit breakers, circuit breakers, etc. for cutting electric circuits, and transformers, resistors, reactors, capacitors, etc. for changing the voltage of electric circuits. Be done.
  • Insulating materials inside or outside the equipment such as switches, circuit breakers, disconnectors, transformers, resistors, reactors, capacitors (insulating materials other than the inside of the grounding tank 1) are filled in the grounding tank 1. It may be a mixed gas similar to the insulating gas, or may be another insulating gas. Examples of other insulating gases include dry air, CO 2 , N 2 , O 2 , H 2 , helium, SF 6, or a mixed gas thereof.
  • the insulating material other than the inside of the grounding tank 1 may be a solid insulator, an insulating oil, a gel-like insulator, or the like.
  • the inside or outside of the above equipment may be insulated by a vacuum state.
  • Examples of the solid insulator include an insulating resin material and a rubber material.
  • Examples of the insulating resin material include a thermoplastic resin and a thermosetting resin.
  • Examples of the thermoplastic resin include vinyl chloride-based, polyester-based, and nylon-based resins.
  • Examples of the thermosetting resin include epoxy-based, urethane-based, and acrylic-based resins.
  • Examples of the insulating oil include mineral oil, vegetable oil, animal oil, fluorinert and the like.
  • the insulating gas is a mixed gas containing the first gas and the second gas.
  • the insulating gas, the first gas, or the second gas may contain a small amount of another kind of gas such as a gas mixed in each preparation process within the range in which the effect of the present invention is exhibited.
  • the first gas is responsible for the main insulating performance and has a global warming potential (sometimes abbreviated as "GWP") of less than 6500.
  • GWP global warming potential
  • “Responsible for the main insulating performance” means that the insulating performance of the first gas contributes most to the insulating performance of the insulating gas.
  • the GWP of the first gas is less than 6500, but preferably 1000 or less, more preferably 500 or less, further preferably 150 or less, and most preferably 10 or less.
  • Non-Patent Document 1 a mixed gas having no synergy insulation performance (insulation gas), the gas mixture are listed in the C 3 F 8, CF 4 or the like and N 2, CO 2, etc. ..
  • C 3 F 8 and CF 4 have a relatively high global warming potential (GWP) of 6500 to 7000.
  • GWP global warming potential
  • the GWP of the first gas and the second gas used in the present embodiment is less than 6500, it is possible to provide an insulating gas having a smaller environmental load than the conventional one.
  • the second gas has a smaller molecular weight and lower insulating performance than the first gas.
  • the molecular weight of the second gas is preferably 300 or less, more preferably 200 or less, and even more preferably 100 or less.
  • the GWP of the second gas is smaller than the GWP of the first gas, preferably 1000 or less, more preferably 500 or less, still more preferably 150 or less, and most preferably 10 or less.
  • the GWP of the insulating gas can be reduced and the environmental load can be reduced.
  • the insulating performance of the insulating gas is lower than the insulating performance of the first gas having the same pressure.
  • Insulation performance can be measured, for example, by evaluation of withstand voltage performance that causes dielectric breakdown in gas, and can be quantified as dielectric breakdown voltage. It can be evaluated that the larger the value of the dielectric breakdown voltage, the higher the insulation performance.
  • the withstand voltage performance evaluation is an evaluation using a test system having a coaxial cylindrical shape, for example, simulating an actual device, and the voltage waveform used is a waveform that may be applied to the actual device (for example, DC voltage, AC). It is a simulation of voltage, pulse voltage, etc.).
  • the mixed gas of 50 mol% of the first gas and 50 mol% of the second gas has the insulation performance of the first gas alone (the gas composed of 100% of the first gas) having the same pressure. taller than. In this case, the mixed gas has a synergistic effect of insulation performance.
  • the insulation performance of the mixed gas is linearly correlated with the ratio of the first gas in the mixed gas.
  • the insulation performance of the mixed gas of the first gas and the second gas is smaller than the insulation performance of the first gas alone. In the present specification, this is expressed as "having no synergistic effect of the insulation performance of the first gas and the second gas".
  • the insulating performance of the mixed gas is not necessarily linearly correlated with the mixing ratio of the first gas and the second gas. There is no need.
  • the insulation performance of the insulating gas may be lower than the insulation performance of the first gas having the same pressure, regardless of the mixing ratio of the mixed gas.
  • the mixed gas of the first gas and the second gas in the present invention does not have a synergistic effect of insulation performance, and therefore has the characteristics as shown in FIG. 3 as an example.
  • the insulation performance of a mixed gas that does not have a synergistic effect of insulation performance is determined only by the insulation performance of the mixture of the first gas and the insulation performance of the mixture of the second gas, but they are added together.
  • the insulation performance of the mixed gas may be larger or smaller than the simple addition (additive average) of the insulation performance of each of the first gas and the second gas. In some cases.
  • the insulation performance of the mixed gas may not change linearly according to the change in the ratio of the first gas in the mixed gas. Therefore, for example, even if the gas shows the results shown in FIGS. 4 and 5, the synergistic effect of the insulation performance is satisfied because the condition of the mixed gas considered to have no synergistic effect of the insulation performance is satisfied. (The insulation performance of the insulating gas is lower than the insulation performance of the first gas having the same pressure).
  • a gas leak occurs in the gas-insulated electric device of the present invention due to long-term use or the like, a gas having a small molecular weight generally leaks more easily, so that the amount of the second gas in the insulating gas is larger than that of the first gas. Will decrease first.
  • the insulating gas is a mixed gas having a synergistic effect of the insulating performance
  • the insulating performance corresponding to the synergistic effect is added to the arithmetic mean of the insulating performance of the first gas and the insulating performance of the second gas. .. Therefore, when the amount of the second gas is reduced, both the insulation performance of the second gas alone and the insulation performance of the synergistic effect are reduced, and the insulation performance of the insulating gas is significantly lowered.
  • the insulating gas is a mixed gas having no synergistic effect of the insulating performance, so even if the second gas is reduced, the insulating performance of the second gas alone is lowered, and the insulating gas Insulation performance is unlikely to deteriorate. Therefore, even if the gas pressure is lowered due to a leak or the like, it is possible to suppress the deterioration of the insulating performance of the insulating gas, and it can be expected that the gas-insulated electric device does not cause a rapid insulation deterioration.
  • the partial pressure of the first gas in the grounding tank 1 is preferably equal to or lower than the saturated vapor pressure of the first gas at the minimum operating temperature of the gas-insulated electrical device.
  • the partial pressure of the second gas in the grounding tank 1 is preferably equal to or lower than the saturated vapor pressure of the second gas at the minimum operating temperature of the gas-insulated electrical device.
  • 1233 zd (E) which will be described later as an example of the first gas, is a gas represented by the composition formula CF 3 C 2 H 2 Cl.
  • the saturated vapor pressure of 1233zd (E) at 0 ° C. is 0.048 MPa, so that the first gas (1233zd (E)) in the grounding tank 1 ) Is preferably 0.048 MPa or less.
  • the filling amount of the first gas in the grounding tank may be adjusted so that the partial pressure of the first gas (1233zd (E)) is further lowered. .. Embodiment 2.
  • the first gas comprises a molecule having a GWP of 10 or less, containing at least one element selected from the group consisting of hydrogen, carbon, fluorine, oxygen, chlorine, nitrogen and phosphorus, and ,
  • the saturated vapor pressure at the minimum operating temperature of the gas-insulated electrical device is higher than 0 MPa. Since the other points are the same as those in the first embodiment, the duplicate description will be omitted.
  • the environmental load can be significantly reduced.
  • the first gas consists of molecules containing at least one element selected from the group consisting of hydrogen, carbon, fluorine, oxygen, chlorine, nitrogen and phosphorus.
  • the molecules constituting the first gas preferably contain hydrogen, carbon and fluorine, and more preferably contain hydrogen, carbon, fluorine and chlorine.
  • the saturated vapor pressure of the first gas at the minimum operating temperature of the gas-insulated electric device is higher than 0 MPa.
  • Examples of such a first gas include hydrofluoroolefin gas.
  • Examples of the hydrofluoroolefin gas include 1234yf, 1234ze (E), and 1233ze (Z).
  • the GWP of 1234yf, 1234ze (E) and 1233ze (Z) is 10 or less.
  • the GWP of 1234yf is 1 or less
  • the GWP of 1234ze (E) is 10 or less
  • the GWP of 1233ze (Z) is 1 or less.
  • the first gas preferably comprises at least one selected from the group consisting of 1234yf, 1234ze and 1233zd (E). Since these gases generally do not have a synergistic effect of insulation performance on the second gas such as N 2 , CO 2, dry air, O 2 and H 2 , the second gas leaks due to aged use or the like. However, if the amount of decrease in the first gas is small, the insulation performance of the first gas is maintained, and the decrease in the insulation performance of the insulating gas is more reliably suppressed.
  • Embodiment 3 In the third embodiment, the boiling point of the second gas at atmospheric pressure is lower than the minimum operating temperature of the gas-insulated electrical device. Since other points are the same as those of the first and second embodiments, duplicate description will be omitted.
  • the insulation performance by the insulating gas can be further improved.
  • the partial pressure of the first gas which is responsible for the main insulating performance, is preferably equal to or lower than the saturated vapor pressure of the first gas at the minimum operating temperature of the gas-insulated electric device, but in order to improve the insulating performance of the insulating gas.
  • the partial pressure of the second gas is preferably as high as possible within a range in which the second gas does not liquefy during use of the gas-insulated electric device.
  • the partial pressure of the second gas is as high as possible in order to preferentially leak the second gas when the insulating gas leaks due to the aged use of the gas-insulated electric device.
  • the insulating gas can be filled to a higher pressure (pressure higher than the atmospheric pressure).
  • a gas having a low boiling point as the second gas
  • the insulation performance of the gas-insulated electric device can be further improved.
  • the second gas leaks preferentially, so that the deterioration of the insulating performance of the insulating gas can be more reliably suppressed. Therefore, the insulation performance of the gas-insulated electrical device can be further improved.
  • Examples of such a second gas include dry air (boiling point at atmospheric pressure: -190 ° C), CO 2 (boiling point at atmospheric pressure: -78.5 ° C), and N 2 (boiling point at atmospheric pressure: -US). -195.8 ° C), O 2 (boiling point at atmospheric pressure: -183 ° C), H 2 (boiling point at atmospheric pressure: -252.8 ° C), helium (boiling point at atmospheric pressure: 268.9 ° C) ), Or a mixed gas thereof and the like.
  • the second gas preferably contains at least one selected from the group consisting of N 2 , CO 2, dry air, O 2 and H 2 .
  • these gases do not have a synergistic effect of insulation performance with respect to a first gas such as a hydrofluoroolefin gas, and the insulation performance is sufficiently lower than that of the first gas. Therefore, even if the second gas leaks due to aged use or the like, if the amount of decrease in the first gas is small, the insulation performance of the first gas is maintained, and the deterioration of the insulation performance of the insulating gas is more reliably suppressed. .. Embodiment 4.
  • the mixing ratio of the first gas and the second gas is adjusted to a ratio range in which it is clear that there is no synergistic effect of the insulating performance. Since other points are the same as those of the first to third embodiments, the overlapping description will be omitted.
  • the range of the mixing ratio of the first gas and the second gas in the insulating gas is such that the insulating performance of the insulating gas is higher in the insulating gas than the first gas and the second gas. It is preferable that the range is higher than the insulation performance of the gas and it is clear that there is no synergistic effect of the insulation performance.
  • FIG. 3 is a schematic diagram in which the ratio of the first gas (gas A) in the insulating gas is the horizontal axis and the insulation performance of the insulating gas is the vertical axis when the total pressure of the insulating gas (mixed gas) is constant. It is a graph. In FIG. 3, it is shown that the insulation performance of the insulating gas is lower than the insulation performance of the first gas at the same pressure (performance of A100%) at any mixing ratio. Insulating gas having such characteristics does not have a synergistic effect of insulating performance. When the insulation performance of the insulating gas is proportional to the ratio of the first gas (changes linearly) as shown in FIG. 3, it is a typical example that does not have a synergistic effect of the insulation performance. ..
  • the relationship between the ratio of the hydrofluoroolefin gas and the insulation performance of the mixed gas is a schematic graph of FIG. Shown in.
  • FIG. 6 it can be read that the insulating performance of the insulating gas changes linearly in the mixing range where the ratio of the first gas is 10 to 80%. In such a range, it is clear that the insulating gas does not have a synergistic effect of insulating performance.
  • the partial pressure ratio, etc. is preferably 10 to 80%, more preferably 10 to 70%, still more preferably 10 to 60%.
  • the ratio of the first gas in the insulating gas in the insulating gas filled in the grounding tank is preferably 10 to 80%, more preferably 10 to 70. %, More preferably 10 to 60%.
  • insulation performance means, for example, an index value of insulation performance of an insulating gas when the ratio of the first gas in the insulating gas is larger than that of the second gas.
  • the above-mentioned insulation breakdown voltage is preferably 105% or more with respect to the index value of the first gas having the same pressure.
  • Embodiment 5 in the fifth embodiment, in the insulating gas filled in the grounding tank 1, the rate of change in the insulating performance of the insulating gas when the partial pressure of the second gas changes by 10% is within 5%. Since other points are the same as those of the first to fourth embodiments, duplicate description will be omitted.
  • FIG. 7 shows a change in the insulation performance of the insulating gas when the partial pressure of the second gas is changed by increasing the amount of the second gas to be mixed with respect to a certain amount of the first gas. ..
  • the unit on the vertical axis (p.u.) means the dielectric breakdown voltage
  • the unit on the horizontal axis (p.u.) means the gas pressure at the time of measuring the dielectric breakdown voltage.
  • the rate of change in the insulating performance is within 5%. That is, even when a leak of the insulating gas occurs due to aged use of the gas-insulated electric device and the second gas mainly leaks, it is possible to suppress deterioration of the insulating performance of the gas-insulated electric device.
  • the insulation performance is unlikely to deteriorate, so that the deterioration of the insulation performance can be suppressed more reliably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Organic Insulating Materials (AREA)

Abstract

本発明のガス絶縁電機装置は、接地タンクと、接地タンク内に配置された導体と、接地タンク内に充填された絶縁ガスと、を備える。絶縁ガスは、主な絶縁性能を担い、地球温暖化係数が6500未満である第1ガスと、第1ガスよりも、分子量が小さく、絶縁性能が低く、かつ地球温暖化係数が小さい第2ガスと、を含む混合ガスである。絶縁ガスの絶縁性能は、同じ圧力を有する第1ガスの絶縁性能よりも低い。

Description

ガス絶縁電気装置
 本発明は、ガス絶縁電気装置に関する。
 ガス絶縁開閉装置などのガス絶縁電機装置は、高電圧が印加される導体を金属製の接地タンク内に収納し、接地タンク内の空間に絶縁ガスを封入することで、絶縁性能が確保されている。
 従来、このようなガス絶縁電気装置に使用される絶縁ガスとして、例えばSFが知られていた。しかし、SFは、絶縁性能が高いが、地球温暖化係数(GWP)が大きい。このため、環境負荷低減の観点から、SFを代替する絶縁ガスが検討されている。
 例えば、特許文献1(特表2014-506376号公報)では、ガス絶縁電機装置の絶縁性能を担保するための絶縁ガスとしてフルオロケトンガスと空気等との混合ガスが開示されており、この混合ガスのGWPは1以下である。ここで、当該混合ガスの絶縁性能は、フルオロケトンおよび空気の各々の絶縁性能の相加平均より大きい。すなわち、複数種の気体を混合することにより、混合前のガス単体に比べて絶縁性能が相乗的に増大する。本明細書では、このような性質を有することを「絶縁性能の相乗効果を有する」と表現する。なお、反対に、複数種の気体の混合ガスの絶縁性能が、混合前のガス単体の各々の絶縁性能の相加平均以下であることを、「絶縁性能の相乗効果を有さない」と表現する。
 特許文献1に開示される絶縁ガスでは、主な絶縁性能を担うフルオロケトンガスにGWPが小さい空気等を混合させることにより、絶縁性能を低下させずに、GWPを低下させることができる。
 また、例えば、非特許文献1には、SFを代替する絶縁ガスとして、C、CF等とGWPが小さいN、CO等との混合ガスが開示されている。
特表2014-506376号公報
電気学会論文誌B,122巻9号,2002年,PP1028-1034
 特許文献1に開示されるガス絶縁電気装置では、経年使用等によって絶縁ガスが接地タンク内からリークする場合には、分子量が小さい空気の方がフルオロケトンよりも先にリークする。このとき、特許文献1に開示される絶縁ガス(混合ガス)は絶縁性能の相乗効果(synergism effect)を有するため、空気が先にリークするだけでも絶縁性能が大きく低下してしまう。
 一方、非特許文献1に開示される絶縁ガスは、絶縁性能の相乗効果を有さない混合ガスであるが、C、CF等の地球温暖化係数(GWP)は6500~7000であり、SFのGWPより小さいものの更にGWPが小さく環境負荷が少ない絶縁ガスの使用が望まれる。
 本発明は、このような課題を解決するためになされたものであり、経年使用等によって絶縁ガスが接地タンク内からリークした場合でも絶縁性能の低下を抑制することができ、かつ環境負荷が少ないガス絶縁電気装置を提供することを目的とする。
 本発明のガス絶縁電機装置は、
接地タンクと、
接地タンク内に配置された導体と、
接地タンク内に充填された絶縁ガスと、を備える。
 絶縁ガスは、
主な絶縁性能を担い、地球温暖化係数が6500未満である第1ガスと、
第1ガスよりも、分子量が小さく、絶縁性能が低く、かつ地球温暖化係数が小さい第2ガスと、を含む混合ガスである。
 絶縁ガスの絶縁性能は、同じ圧力を有する第1ガスの絶縁性能よりも低い。
 本発明においては、ガス絶縁電気装置の接地タンク内に充填される絶縁ガスとして、主な絶縁性能を担う第1ガスと、第1ガスよりも分子量が小さい第2ガスと、を含む混合ガスが用いられる。これにより、経年使用等によって絶縁ガスが接地タンク内からリークする場合、第1ガスよりも分子量が小さい第2ガスが第1ガスよりも先にリークし、主な絶縁性能を担う第1ガスはリークし難い。このため、第1ガスの絶対量は経年使用後も低下し難い。そして、第2ガスは第1ガスよりも絶縁性能が低く、絶縁性能の相乗効果もないため、第2ガスがリークしても、第1ガスの絶対量の低下が少なければ、経年使用後も絶縁ガスの絶縁性能の低下が抑制される。
 また、第1ガスおよび第2ガスはいずれもGWPが比較的小さいため、絶縁ガスのGWPは従来の絶縁ガスよりも小さい。
 したがって、本発明によれば、経年使用等によって絶縁ガスが接地タンク内からリークした場合でも絶縁性能の低下を抑制することができ、かつ環境負荷が少ないガス絶縁電気装置を提供することができる。
本発明の実施の形態1に係るガス絶縁電気装置の概略構成を示す図である。 本発明の実施の形態1について、混合ガスの絶縁性能の相乗効果を説明するための模式的なグラフである。 本発明の実施の形態1について、混合ガスの絶縁性能の相乗効果を説明するための別の模式的なグラフである。 本発明の実施の形態1について、混合ガスの絶縁性能の相乗効果を説明するための別の模式的なグラフである。 本発明の実施の形態1について、混合ガスの絶縁性能の相乗効果を説明するための別の模式的なグラフである。 本発明の実施の形態4を説明するための模式的なグラフである。 本発明の実施の形態5を説明するための模式的なグラフである。
 以下、本発明の実施の形態について図面を参照して説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表す。また、長さ、幅、厚さ、深さなどの寸法は図面の明瞭化と簡略化のために適宜変更されており、実際の寸法とは異なる。なお、図中では、第1ガスは「ガスA」または単に「A」と表記され、第2ガスは「ガスB」または単に「B」と表記される。
実施の形態1.
 本発明の実施の形態1に係るガス絶縁電気装置について説明する。
 〔ガス絶縁電気装置〕
 図1は、本発明の実施の形態1に係るガス絶縁電気装置の概略構成を示す図である。なお、図1では、ガス絶縁電気装置の一例としてガス絶縁開閉装置が図示されている。
 図1に示されるガス絶縁電気装置は、接地タンク1と、接地タンク1内に配置された導体2と、接地タンク1内に充填された絶縁ガス(図示せず)と、を備える。
 図1では、導体2は、絶縁性の支持部材3によって接地タンク1と絶縁された状態で支持されている。なお、導体2には、高電圧が印加される。接地タンク1は、機密性の容器、空間等である。
 なお、ガス絶縁電気装置は、導体2を含む電路(電気回路)に沿って、電気的に直列または並列に、電気的または電気機械的な設備を備えていてもよい。電気的または電気機械的な設備としては、例えば、電路を切断するための開閉器、遮断器、断路器等、および、電路の電圧を変化させるための変圧器、抵抗、リアクトル、コンデンサ等が挙げられる。
 このような開閉器、遮断器、断路器、変圧器、抵抗、リアクトル、コンデンサ等の設備の内部または外部の絶縁材料(接地タンク1の内部以外の絶縁材料)は、接地タンク1内に充填される絶縁ガスと同様の混合ガスであってもよく、他の絶縁ガスであってもよい。他の絶縁ガスとしては、例えば、乾燥空気、CO、N、O、H、ヘリウム、SF6、または、これらの混合ガス等が挙げられる。
 また、接地タンク1の内部以外の絶縁材料は、固体絶縁物、絶縁油、ゲル状の絶縁物などであってもよい。上記設備の内部または外部は、真空状態によって絶縁されていてもよい。
 固体絶縁物としては、例えば、絶縁性の樹脂材、ゴム材などが挙げられる。絶縁性の樹脂材としては、例えば、熱可塑性樹脂、熱硬化性樹脂などが挙げられる。熱可塑性樹脂としては、例えば、塩化ビニル系、ポリエステル系、ナイロン系等の樹脂が挙げられる。熱硬化性樹脂としては、例えば、エポキシ系、ウレタン系、アクリル系等の樹脂が挙げられる。絶縁油としては、鉱物油、植物性油、動物性油、フロリナートなどが挙げられる。
 〔絶縁ガス〕
 次に、接地タンク1内に充填される絶縁ガスについて詳細に説明する。
 本実施の形態において、絶縁ガスは、第1ガスと第2ガスとを含む混合ガスである。なお、絶縁ガスまたは第1ガスもしくは第2ガスには、本発明の効果が奏される範囲で、それぞれの調製過程で混入するガス等の少量の別種のガスが含まれていてもよい。
 (第1ガス)
 第1ガスは、主な絶縁性能を担い、地球温暖化係数(「GWP」と略す場合がある)が6500未満である。「主な絶縁性能を担う」とは、絶縁ガスの絶縁性能において第1ガスの絶縁性能が最も多く寄与することを意味する。
 第1ガスのGWPは、6500未満であるが、好ましくは1000以下であり、より好ましくは500以下であり、さらに好ましくは150以下であり、最も好ましくは10以下である。
 例えば、非特許文献1には、絶縁性能の相乗効果を有さない混合ガス(絶縁ガス)として、C、CF等とN、CO等との混合ガスが挙げられている。しかし、C、CF等は、地球温暖化係数(GWP)が6500~7000であり比較的高い。これに対して、本実施の形態で用いられる第1ガスおよび第2ガスのGWPはいずれも6500未満であるため、従来よりも環境負荷が少ない絶縁ガスを提供することができる。
 (第2ガス)
 第2ガスは、第1ガスよりも、分子量が小さく、絶縁性能が低い。第2ガスの分子量は、好ましくは300以下であり、より好ましくは200以下であり、さらに好ましくは100以下である。
 また、第2ガスのGWPは、第1ガスのGWPより小さく、好ましくは1000以下であり、より好ましくは500以下であり、さらに好ましくは150以下であり、最も好ましくは10以下である。これにより、第1ガスに第2ガスを混合することで、絶縁ガスのGWPを低減し、環境負荷を低減することができる。
 (絶縁性能)
 絶縁ガスの絶縁性能は、同じ圧力を有する第1ガスの絶縁性能よりも低い。
 絶縁性能は、例えば、ガス中で絶縁破壊を発生させる耐電圧性能評価によって測定することができ、絶縁破壊電圧として数値化することができる。この絶縁破壊電圧の値が大きいほど絶縁性能が高いと評価できる。耐電圧性能評価とは、例えば実器を模擬したような同軸円筒形状の試験系を用いた評価であり、用いられる電圧波形は実器に印加される可能性のある波形(例えば直流電圧、交流電圧、パルス電圧など)を模擬したものである。
 以下、図2~図5を参照して、第1ガス(A)と第2ガス(B)の絶縁性能の相乗効果を有する絶縁ガス(混合ガス)と、絶縁性能の相乗効果を有さない絶縁ガスとの違いについて説明する。
 例えば、図2の場合、50モル%の第1ガスと50モル%の第2ガスとの混合ガスは、同じ圧力を有する第1ガス単体(100%の第1ガスからなるガス)の絶縁性能より高い。この場合、混合ガスは絶縁性能の相乗効果を有する。
 なお、ここでは、50%の第1ガスと50%の第2ガスとの混合ガスについて説明したが、第1ガスと第2ガスの絶縁性能の相乗効果の有無は、第1ガスと第2ガスとの混合比率によらない。
 これに対して、例えば、図3の場合、混合ガス中の第1ガスの比率に対し、直線状に混合ガスの絶縁性能が相関している。この場合、同じ圧力で比較すると、第1ガス単体の絶縁性能に比べて、第1ガスと第2ガスの混合ガスの絶縁性能が小さいと考えられる。本明細書では、このことを「第1ガスと第2ガスの絶縁性能の相乗効果を有さない」と表現する。
 本実施の形態では、絶縁性能の相乗効果を有さない絶縁ガス(混合ガス)において、第1ガスと第2ガスの混合比率に対し、混合ガスの絶縁性能が必ずしも直線的に相関している必要はない。上記した通り、混合ガスの混合比率とは関係なく、絶縁ガスの絶縁性能が同じ圧力を有する第1ガスの絶縁性能よりも低ければよい。
 本発明における第1ガスと第2ガスの混合ガスは、絶縁性能の相乗効果を有さないため、例として図3のような特徴を持っている。理想的には、絶縁性能の相乗効果を有さない混合ガスの絶縁性能は、第1ガスの混合分の絶縁性能と、第2ガスの混合分の絶縁性能によってのみ決定されるが、足し合わせるガスの温度、容量、圧力、純度、その他化学的条件によっては、混合ガスの絶縁性能が、第1ガスと第2ガスそれぞれの絶縁性能の単純加算(相加平均)より、大きかったり小さかったりする場合がある。
 また、圧力によっては、混合ガス中の第1ガスの比率の変化に応じて、混合ガスの絶縁性能が直線的に変化しない場合もある。そのため、例えば、図4および図5のような結果を示すガスであっても、上記した「絶縁性能の相乗効果を有さない」とみなされる混合ガスの条件を満たすため、絶縁性能の相乗効果を有さない(絶縁ガスの絶縁性能が、同じ圧力を有する第1ガスの絶縁性能よりも低い)絶縁ガスに該当する。
 次に、第1ガスと第2ガスとを含む混合ガスのリークによって発生する、絶縁性能の低下について説明する。一般的に、温度が上がると気体として存在できる(液体にならない)最高圧力(飽和蒸気圧)は上昇する。
 ここで、本発明のガス絶縁電気装置に、経年使用等によりガスリークが発生した場合、一般的に分子量が小さいガスの方がリークしやすいため、絶縁ガスにおいて第2ガスの量が第1ガスよりも先に減少する。
 この場合、もし絶縁ガスが絶縁性能の相乗効果を有する混合ガスであれば、第1ガスの絶縁性能と第2ガスの絶縁性能との相加平均に、相乗効果分の絶縁性能が上乗せされる。このため、第2ガスの量が減少した場合、第2ガス単体分の絶縁性能と相乗効果分の絶縁性能の両方が減少し、絶縁ガスの絶縁性能は著しく低下する。
 これに対して、本発明において絶縁ガスは絶縁性能の相乗効果のない混合ガスであるため、第2ガスが減少しても、第2ガス単体分の絶縁性能が低下するだけであり、絶縁ガスの絶縁性能は低下しにくい。このため、リークなどによってガス圧の低下が生じたとしても、絶縁ガスの絶縁性能の低下を抑制することができ、ガス絶縁電気装置では、急激な絶縁劣化が生じないという効果が期待できる。
 接地タンク1内での第1ガスの分圧は、ガス絶縁電気装置の最低使用温度における第1ガスの飽和蒸気圧以下であることが好ましい。なお、同様に、接地タンク1内での第2ガスの分圧も、ガス絶縁電気装置の最低使用温度における第2ガスの飽和蒸気圧以下であることが好ましい。このように、接地タンク内に充填された絶縁ガス中の第1ガスおよび第2ガスの分圧(絶対量)が調整される場合、ガス絶縁電気装置の使用中に絶縁ガスが液化することなく気体状態で維持され、絶縁ガスの絶縁性能および圧力が一定に維持される。これにより、使用中にガス絶縁電気装置の絶縁性能を維持することが容易である。
 例えば、第1ガスの一例として後述する1233zd(E)は、組成式CFClで表されるガスである。ガス絶縁電気装置の最低使用温度を例えば0℃とした場合、0℃での1233zd(E)の飽和蒸気圧は0.048MPaであるため、接地タンク1内での第1ガス(1233zd(E))の分圧は0.048MPa以下であることが好ましい。尚、さらに低い温度でガス絶縁電気装置が運転される場合は、第1ガス(1233zd(E))の分圧がさらに低くなるように第1ガスの接地タンクへの充填量を調整すればよい。
実施の形態2.
 実施の形態2において、第1ガスは、GWPが10以下であり、水素、炭素、フッ素、酸素、塩素、窒素およびリンからなる群から選択される少なくとも1種の元素を含む分子からなり、かつ、ガス絶縁電気装置の最低使用温度における飽和蒸気圧が0MPaより高い。それ以外の点は、実施の形態1と同様であるため、重複する説明は省略する。
 本実施の形態では、第1ガスのGWPおよび第2ガスのGWPがいずれも10以下であるため、環境負荷を大幅に低減することができる。
 (第1ガス)
 本実施の形態において、第1ガスは、水素、炭素、フッ素、酸素、塩素、窒素およびリンからなる群から選択される少なくとも1種の元素を含む分子からなる。第1ガスを構成する分子は、好ましくは水素、炭素およびフッ素を含み、より好ましくは水素、炭素、フッ素および塩素を含む。
 また、第1ガスは、ガス絶縁電気装置の最低使用温度における飽和蒸気圧が0MPaより高い。これにより、第1ガスは、ガス絶縁電気装置の使用中に液化せず、ガス態が維持されるため、絶縁ガスの絶縁性能が維持される。
 このような第1ガスとしては、例えば、ハイドロフルオロオレフィンガスが挙げられる。ハイドロフルオロオレフィンガスとしては、例えば、1234yf、1234ze(E)、1233ze(Z)などが挙げられる。なお、1234yf、1234ze(E)および1233ze(Z)のGWPはいずれも10以下である。例えば、1234yfのGWPは1以下であり、1234ze(E)のGWPは10以下であり、1233ze(Z)のGWPは1以下である。
 第1ガスは、1234yf、1234zeおよび1233zd(E)からなる群から選択される少なくとも1種を含むことが好ましい。これらのガスは、一般にN、CO2、乾燥空気、OおよびH等の第2ガスに対して絶縁性能の相乗効果を有さないため、経年使用等によって第2ガスがリークしても、第1ガスの減少量が少なければ、第1ガスの絶縁性能が維持され、絶縁ガスの絶縁性能の低下がより確実に抑制される。
実施の形態3.
 実施の形態3では、第2ガスの大気圧での沸点が、ガス絶縁電気装置の最低使用温度より低い。それ以外の点は実施の形態1および2と同様であるため、重複する説明は省略する。
 一般的に、接地タンク内に充填する絶縁ガスの量を多くし、接地タンク内の絶縁ガスの圧力を高くすることにより、絶縁ガスによる絶縁性能をさらに高めることができる。上述のとおり、主な絶縁性能を担う第1ガスの分圧は、ガス絶縁電気装置の最低使用温度における第1ガスの飽和蒸気圧以下であることが好ましいが、絶縁ガスの絶縁性能を高めるためには、第2ガスの分圧は、ガス絶縁電気装置の使用中に第2ガスが液化することのない範囲で、可能な限り高い方が好ましい。
 また、ガス絶縁電気装置の経年使用等により絶縁ガスのリークが生じる際に、第2ガスを優先的にリークさせるためにも、第2ガスの分圧は可能な限り高い方が好ましい。
 本実施の形態では、沸点が低いガスを第2ガスとして用いることで、絶縁ガスをより高い圧力(大気圧より高い圧力)まで充填することができる。これにより、ガス絶縁電気装置の絶縁性能をより向上させることができる。また、ガス絶縁電気装置の経年使用等により絶縁ガスのリークが生じる際に、第2ガスが優先的にリークするため、絶縁ガスの絶縁性能の低下をより確実に抑制することができる。したがって、ガス絶縁電気装置の絶縁性能をより向上させることができる。
 このような第2ガスとしては、例えば、乾燥空気(大気圧での沸点:-190℃)、CO(大気圧での沸点:-78.5℃)、N(大気圧での沸点:-195.8℃)、O(大気圧での沸点:-183℃)、H(大気圧での沸点:-252.8℃)、ヘリウム(大気圧での沸点:-268.9℃)、または、これらの混合ガスなどが挙げられる。
 第2ガスは、N、CO2、乾燥空気、OおよびHからなる群から選択される少なくとも1種を含むことが好ましい。これらのガスは、一般にハイドロフルオロオレフィンガス等の第1ガスに対して絶縁性能の相乗効果を有さず、第1ガスに比べて絶縁性能が十分に低い。このため、経年使用等によって第2ガスがリークしても、第1ガスの減少量が少なければ、第1ガスの絶縁性能が維持され、絶縁ガスの絶縁性能の低下がより確実に抑制される。
実施の形態4.
 実施の形態4では、絶縁ガス(混合ガス)において、第1ガスと第2ガスとの混合比率が絶縁性能の相乗効果を有さないことが明らかであるような比率範囲に調整される。それ以外の点は実施の形態1~3と同様であるため、重複する説明は省略する。
 本実施の形態において、絶縁ガスにおける第1ガスと第2ガスとの混合比率の範囲は、絶縁ガスの絶縁性能が、第1ガスおよび第2ガスのうち、絶縁ガス中の比率が多い方のガスの絶縁性能よりも高く、絶縁性能の相乗効果を有さないことが明確であるような範囲であることが好ましい。
 図3は、絶縁ガス(混合ガス)の全圧が一定の場合に、絶縁ガス中の第1ガス(ガスA)の比率を横軸とし、絶縁ガスの絶縁性能を縦軸とした模式的なグラフである。図3では、どのような混合比の場合でも、絶縁ガスの絶縁性能は、同じ圧力の第1ガスの絶縁性能(A100%の性能)よりも低いことが示される。このような特性を有する絶縁ガスは、絶縁性能の相乗効果を有さない。なお、図3に示されるように絶縁ガスの絶縁性能が第1ガスの比率と比例している(直線的に変化する)場合は、絶縁性能の相乗効果を有さない典型的な例である。
 一方で、例えば、第1ガスがハイドロフルオロオレフィンガスであり、第2ガスがCOである場合において、ハイドロフルオロオレフィンガスの比率と混合ガスの絶縁性能との関係が図6の模式的なグラフに示される。図6では、絶縁ガスの絶縁性能が直線的に変化するのは第1ガスの比率が10~80%の混合範囲であると読み取れる。このような範囲では、絶縁ガスが絶縁性能の相乗効果を有さないことが明確である。
 具体的には、例えば、絶縁ガスにおいて、第1ガスおよび第2ガスのうち、絶縁ガス中の比率が多い方のガスに対して、絶縁ガス中の比率の少ない方のガスの割合(モル比率、分圧比率など)は、好ましくは10~80%であり、より好ましくは10~70%であり、さらに好ましくは10~60%である。
 また、接地タンク内に充填された絶縁ガスにおいて、接地タンク内に充填された絶縁ガスにおいて、絶縁ガス中の第1ガスの比率は、好ましくは10~80%であり、より好ましくは10~70%であり、さらに好ましくは10~60%である。
 一方、図6において、第1ガスの比率が0~10%または80~100%である場合、比率が多い方のガスの絶縁性能が支配的になり、比率が多い方のガスの絶縁性能と、混合ガス(絶縁ガス)の絶縁性能との差が相対的に小さくなる。したがって、この混合比率の範囲では、絶縁性能の相乗効果の有無が判定できない。
 なお、「絶縁性能の相乗効果を有さないことが明らかである」とは、例えば、絶縁ガス中の第1ガスの比率が第2ガスよりも多い場合に、絶縁ガスの絶縁性能の指標値(上述の絶縁破壊電圧)が、同じ圧力の第1ガスの当該指標値に対して105%以上であることが好ましい。
実施の形態5.
 本実施の形態5では、接地タンク1内に充填された絶縁ガスにおいて、第2ガスの分圧が10%変化したときの絶縁ガスの絶縁性能の変化率が5%以内である。それ以外の点は実施の形態1~4と同様であるため、重複する説明は省略する。
 図7では、一定量の第1ガスに対し、混合される第2ガスの量を増やすことにより、第2ガスの分圧を変化させたときの絶縁ガスの絶縁性能の変化が示されている。なお、図7において、縦軸の単位(p.u.)は絶縁破壊電圧を意味し、横軸の単位(p.u.)は絶縁破壊電圧測定時のガス圧力を意味する。図7に示されるように、第2ガスの圧力が例えば10%変化したときでも、絶縁性能の変化率は5%以内となっている。すなわち、ガス絶縁電気装置の経年使用等によって絶縁ガスのリークが発生し、主に第2ガスがリークした場合でも、ガス絶縁電機装置の絶縁性能の低下を抑制することができる。
 このように、本実施の形態のガス絶縁電気装置では、第2ガスがリークにより減少した場合でも絶縁性能が下がりにくいため、絶縁性能の低下をより確実に抑制することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 接地タンク、2 導体、3 絶縁性の支持部材。

Claims (8)

  1.  接地タンクと、
    前記接地タンク内に配置された導体と、
    前記接地タンク内に充填された絶縁ガスと、を備えるガス絶縁電気装置であって、
     前記絶縁ガスは、
    主な絶縁性能を担い、地球温暖化係数が6500未満である第1ガスと、
    前記第1ガスよりも、分子量が小さく、絶縁性能が低く、かつ地球温暖化係数が小さい第2ガスと、を含む混合ガスであり、
     前記絶縁ガスの絶縁性能は、同じ圧力を有する前記第1ガスの絶縁性能よりも低い、ガス絶縁電気装置。
  2.  前記第1ガスは、地球温暖化係数が10以下であり、水素、炭素、フッ素、酸素、塩素、窒素およびリンからなる群から選択される少なくとも1種の元素を含む分子からなり、かつ、前記ガス絶縁電気装置の最低使用温度における飽和蒸気圧が0MPaより高い、請求項1に記載のガス絶縁電気装置。
  3.  前記第1ガスは、ハイドロフルオロオレフィンガスである、請求項2に記載のガス絶縁電気装置。
  4.  前記ハイドロフルオロオレフィンガスは、1234yf、1234zeおよび1233zd(E)からなる群から選択される少なくとも1種を含む、請求項3に記載のガス絶縁電気装置。
  5.  前記第2ガスの大気圧での沸点が、前記ガス絶縁電気装置の最低使用温度より低い、請求項1~4のいずれか1項に記載のガス絶縁電気装置。
  6.  前記第2ガスは、N、CO2、乾燥空気、OおよびHからなる群から選択される少なくとも1種を含む、請求項5に記載のガス絶縁電気装置。
  7.  前記接地タンク内に充填された前記絶縁ガスにおいて、前記絶縁ガス中の前記第1ガスの比率が10~80%である、請求項1~6のいずれか1項に記載のガス絶縁電気装置。
  8.  前記接地タンク内に充填された前記絶縁ガスにおいて、前記第2ガスの分圧が10%変化したときの前記絶縁ガスの絶縁性能の変化率が5%以内である、請求項1~7のいずれか1項に記載のガス絶縁電気装置。
PCT/JP2019/027705 2019-07-12 2019-07-12 ガス絶縁電気装置 WO2021009803A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19937689.8A EP3998685A4 (en) 2019-07-12 2019-07-12 Gas insulated electric device
US17/610,717 US20220224086A1 (en) 2019-07-12 2019-07-12 Gas-insulated electrical apparatus
JP2019564183A JP6656496B1 (ja) 2019-07-12 2019-07-12 ガス絶縁電気装置
PCT/JP2019/027705 WO2021009803A1 (ja) 2019-07-12 2019-07-12 ガス絶縁電気装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027705 WO2021009803A1 (ja) 2019-07-12 2019-07-12 ガス絶縁電気装置

Publications (1)

Publication Number Publication Date
WO2021009803A1 true WO2021009803A1 (ja) 2021-01-21

Family

ID=69997893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027705 WO2021009803A1 (ja) 2019-07-12 2019-07-12 ガス絶縁電気装置

Country Status (4)

Country Link
US (1) US20220224086A1 (ja)
EP (1) EP3998685A4 (ja)
JP (1) JP6656496B1 (ja)
WO (1) WO2021009803A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433428B (zh) * 2021-05-10 2023-09-01 广西电网有限责任公司玉林供电局 一种多元混合绝缘气体的协同效应分析方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164040A (ja) * 1998-11-26 2000-06-16 Hitachi Ltd ガス絶縁電気機器
JP2014506376A (ja) 2010-12-14 2014-03-13 アーベーベー・テヒノロギー・アーゲー 誘電性絶縁媒体
JP2018527872A (ja) * 2015-08-19 2018-09-20 アーベーベー・シュバイツ・アーゲー 電気エネルギーの生成、伝送、配給および/または使用を行うための電気装置の絶縁媒体から少なくとも1つの物質を再生するための方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2977708B1 (fr) * 2011-07-05 2014-05-23 Alstom Grid Sas Utilisation d'une hydrofluoroolefine comme milieu d'isolation et/ou d'extinction d'arc en haute tension et appareil electrique haute tension a isolation gazeuse le comprenant
FR2977707B1 (fr) * 2011-07-05 2014-05-23 Schneider Electric Ind Sas Utilisation d'une hydrofluoroolefine comme milieu d'isolation et/ou d'extinction d'arc en moyenne tension et appareil electrique moyenne tension a isolation gazeuse le comprenant
FR2980628B1 (fr) * 2011-09-22 2014-07-25 Schneider Electric Ind Sas Melange d'hydrofluoroolefine et de fluorocetone pour l'utilisation comme milieu d'isolation et/ou d'extinction d'arc et appareil electrique moyenne tension a isolation gazeuse le comprenant
DE102017220570A1 (de) * 2017-11-17 2019-05-23 Siemens Aktiengesellschaft Isolationsmedium für eine Elektroenergieübertragungseinrichtung
ES2781127A1 (es) * 2019-02-27 2020-08-28 Ormazabal Corporate Tech A I E Sistema de aislamiento eléctrico de bajo impacto ambiental para aparamenta eléctrica de media y alta tensión

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164040A (ja) * 1998-11-26 2000-06-16 Hitachi Ltd ガス絶縁電気機器
JP2014506376A (ja) 2010-12-14 2014-03-13 アーベーベー・テヒノロギー・アーゲー 誘電性絶縁媒体
JP2018527872A (ja) * 2015-08-19 2018-09-20 アーベーベー・シュバイツ・アーゲー 電気エネルギーの生成、伝送、配給および/または使用を行うための電気装置の絶縁媒体から少なくとも1つの物質を再生するための方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEEJ TRANSACTIONS ON POWER AND ENERGY, vol. 122, no. 9, 2002, pages 1028 - 1034
See also references of EP3998685A4

Also Published As

Publication number Publication date
EP3998685A4 (en) 2022-06-29
JP6656496B1 (ja) 2020-03-04
US20220224086A1 (en) 2022-07-14
JPWO2021009803A1 (ja) 2021-09-13
EP3998685A1 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
US8709303B2 (en) Dielectric insulation medium
KR102649609B1 (ko) 헵타플루오로이소부티로니트릴 및 테트라플루오로메탄을 포함하는 가스 절연 중간전압 또는 고전압 전기 장치
Kieffel et al. SF 6 alternative development for high voltage switchgears
US9837801B2 (en) Gas-insulated medium or high-voltage electrical apparatus including carbon dioxide, oxygen, and heptafluoro-isobutyronitrile
AU2013234188B2 (en) Mixture of a hydrofluoroolefin and hydrofluorocarbon for improving internal arc resistance in medium- and high-voltage electrical apparatuses
US9491877B2 (en) Use of a mixture comprising a hydrofluoroolefin as a medium-voltage arc-extinguishing and/or insulating gas and medium-voltage electrical device comprising same
EP2936504B1 (en) A method for dielectrically insulating active electric parts
WO2009049144A2 (en) Compositions containing sulfer hexafluoride and uses thereof
Ullah et al. Dielectric properties of tetrafluoroethane (R134) gas and its mixtures with N2 and air as a sustainable alternative to SF6 in high voltage applications
JP2017503633A (ja) 電気エネルギーの生成、伝送、配給および/または使用を行うためのco2絶縁電気装置用の水および汚染物吸着材
US10490372B2 (en) Use of hexafluorobutenes for isolating or extinguishing electric arcs
WO2021009803A1 (ja) ガス絶縁電気装置
US11450448B2 (en) Use of a linear octafluorobutene as a dielectric compound in an environmentally safe dielectric-insulation or arc-extinction fluid
CN114072881B (zh) 介电绝缘或消弧流体
Saleem et al. Chlorodifluoromethane (R 22) Gas and Its Mixtures with CO 2/N 2/Air as an Alternative to SF 6
KR20180012047A (ko) Sf6 가스를 대체한 절연 가스 및 이를 이용한 전기 장치
WO2013110600A1 (fr) Milieu gazeux comprenant au moins un oxirane polyfluore et une hydrofluoroolefine pour l'isolation electrique et/ou l'extinction des arcs electriques en haute tension
CN103782350B (zh) 包括氢氟烯烃、作为中压灭弧和/或绝缘气体的混合物的应用以及包括混合物的中压电气设备
EP3079157A1 (en) Methods for dielectrically insulating electrical active parts
US20180350483A1 (en) Methods for dielectrically insulating electrical active parts
CN115798787A (zh) 一种气体绝缘介质及其应用
JP2022118455A (ja) 絶縁ガス組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019564183

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019937689

Country of ref document: EP

Effective date: 20220214