WO2021008282A1 - 基于实测地震动的地震滑坡速报分析方法及装置 - Google Patents
基于实测地震动的地震滑坡速报分析方法及装置 Download PDFInfo
- Publication number
- WO2021008282A1 WO2021008282A1 PCT/CN2020/095650 CN2020095650W WO2021008282A1 WO 2021008282 A1 WO2021008282 A1 WO 2021008282A1 CN 2020095650 W CN2020095650 W CN 2020095650W WO 2021008282 A1 WO2021008282 A1 WO 2021008282A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- landslide
- seismic
- slope
- mechanical properties
- earthquake
- Prior art date
Links
- 230000033001 locomotion Effects 0.000 title claims abstract description 103
- 238000004458 analytical method Methods 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 claims abstract description 58
- 239000011435 rock Substances 0.000 claims abstract description 16
- 239000002689 soil Substances 0.000 claims description 21
- 230000001133 acceleration Effects 0.000 claims description 10
- 238000006073 displacement reaction Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 238000001228 spectrum Methods 0.000 claims description 7
- 230000003068 static effect Effects 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 241000132092 Aster Species 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010223 real-time analysis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/01—Measuring or predicting earthquakes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/22—Transmitting seismic signals to recording or processing apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/30—Analysis
Definitions
- the invention relates to the technical field of civil engineering, in particular to an earthquake landslide quick report analysis method and device based on actual ground motions.
- the main analysis methods of earthquake landslides are: a physically-driven method and a data-driven method.
- the physical drive method uses the Newmark rigid slider analysis method based on the ground motion intensity index.
- this method uses single or multiple ground motion indicators as input, and it is difficult to consider all the characteristics of ground motion;
- the data-driven method uses different machine learning algorithms to predict the probability of landslides based on historical earthquake landslide data.
- This method relies on Historical earthquake landslide data. Therefore, these two methods are difficult to meet the needs of seismic landslide analysis at this stage, and urgently need to be improved.
- the present invention aims to solve one of the technical problems in the related art at least to a certain extent.
- an object of the present invention is to propose a method for analyzing earthquake landslide quick report based on measured ground motions, which can accurately reflect the influence of ground motion characteristics on seismic landslides, which is closer to actual earthquake damage, and has high computational efficiency and modeling
- the method is simple and provides an important means for the prediction of earthquake landslides in the disaster area after the earthquake.
- Another object of the present invention is to provide a seismic landslide quick report analysis device based on actual ground motion.
- one embodiment of the present invention proposes a seismic landslide quick report analysis method based on measured ground motions, which includes the following steps: acquiring ground motion records measured in the earthquake region; acquiring a digital elevation model of the target area, and Process the digital elevation model to obtain the slope distribution of the target area; obtain the lithology data of the target area, and determine the mechanical properties of the rock and soil mass in the target area according to the lithology data; The ground motion record, the slope distribution, and the mechanical properties are analyzed through the seismic landslide analysis model and the Newmark rigid slider method is used to analyze the critical slope of the landslide at each station; according to the landslide at each station The critical slope analysis obtains the earthquake landslide risk around different stations.
- the seismic landslide quick report analysis method based on measured ground motions in the embodiment of the present invention uses the seismic landslide analysis model according to ground motion records, slope distribution and mechanical properties, and uses the Newmark rigid slider method to analyze the criticality of landslides at each station. Gradient, so as to obtain the seismic landslide risk around different stations, accurately reflect the impact of ground motion characteristics on seismic landslides, closer to the actual earthquake damage, accurately reflect the characteristics of ground motion, high calculation efficiency and simple modeling method, it is the post-earthquake disaster area Earthquake landslide prediction provides an important means.
- the seismic landslide quick report analysis method based on actual measured ground motions may also have the following additional technical features:
- the obtaining the ground motion records measured in the earthquake-generating area includes: obtaining the ground motion records measured in the earthquake-generating area through a strong motion network, wherein the ground motion records include The amplitude, frequency spectrum and duration characteristics of ground motions.
- the determining the mechanical properties of the rock and soil mass in the target area according to the lithological data includes: pre-storing a relationship table between mechanical properties and lithological data; The relationship table of mechanical properties-lithological data determines the mechanical properties of the soil.
- the critical slope is obtained by the following formula:
- a c is the critical acceleration of the landslide body
- D is the permanent displacement produced by the landslide body
- F s is the static safety factor
- ⁇ ′ is the effective friction angle
- c′ is the effective cohesion
- ⁇ is the slope angle
- ⁇ is Material weight
- ⁇ w is the weight of water
- t is the thickness from the landslide surface to the failure surface
- m is the saturation ratio of the sliding body.
- it further includes: displaying the critical slope of the landslide at each station and the seismic landslide risk around the different stations on a preset platform.
- a seismic landslide quick report analysis device based on actually measured ground motions, including: a first acquisition module for acquiring ground motion records measured in the earthquake region; second acquisition The module is used to obtain the digital elevation model of the target area, and process the digital elevation model to obtain the slope distribution of the target area; the third acquisition module is used to obtain the lithology data of the target area, and according to The lithology data determines the mechanical properties of the rock and soil in the target area; the first analysis module is used to run the Newmark rigid body through the seismic landslide analysis model according to the ground motion record, the slope distribution and the mechanical properties Slider analysis obtains the critical slope of landslide at each station; the second analysis module is used to analyze the critical slope of landslide at each station to obtain seismic landslide risks around different stations.
- the seismic landslide quick report analysis device uses the seismic landslide analysis model according to ground motion records, slope distribution and mechanical properties, and runs the Newmark rigid slider analysis to obtain the critical slope of the landslide at each station.
- the seismic landslide risk around different stations accurately reflect the impact of ground motion characteristics on seismic landslides, closer to the actual earthquake damage, accurately reflect the characteristics of ground motion, high calculation efficiency and simple modeling method, it is a post-earthquake earthquake
- the prediction of landslides provides an important means.
- the seismic landslide quick report analysis device based on actual measured ground motions may also have the following additional technical features:
- the first acquisition module is further configured to obtain the ground motion record measured in the earthquake-generating area through a strong motion network, wherein the ground motion record includes the magnitude of the ground motion , Spectrum and duration characteristics.
- the third acquisition module includes: a storage unit for pre-storing a relationship table of mechanical properties-lithology data; and a query unit for storing a relationship table based on the mechanical properties-lithology
- the relationship table of the data determines the mechanical properties of the soil.
- the critical slope is obtained by the following formula:
- a c is the critical acceleration of the landslide body
- D is the permanent displacement produced by the landslide body
- F s is the static safety factor
- ⁇ ′ is the effective friction angle
- c′ is the effective cohesion
- ⁇ is the slope angle
- ⁇ is Material weight
- ⁇ w is the weight of water
- t is the thickness from the landslide surface to the failure surface
- m is the saturation ratio of the sliding body.
- it further includes: a display module for displaying the critical slope of the landslide at each station and the seismic landslide risk around the different stations on a preset platform.
- Fig. 1 is a flow chart of an earthquake landslide quick report analysis method based on measured ground motions according to an embodiment of the present invention
- FIG. 2 is a schematic diagram of a digital elevation model (unit: m) of a target area according to an embodiment of the present invention
- Fig. 3 is a schematic diagram of a target slope distribution according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram of GLiM lithology distribution in a target area according to an embodiment of the present invention.
- Figure 5 is a schematic diagram of the Newmark rigid slider method according to an embodiment of the present invention.
- Fig. 6 is a schematic diagram showing the effect of the earthquake landslide result display (taking the 20180906 Hokkaido earthquake in Japan as an example) according to an embodiment of the present invention
- FIG. 7 is a schematic diagram of a typical station ground motion record (KMM006) according to an embodiment of the present invention.
- Figure 8 is a schematic diagram of the calculation results of the Kumamoto earthquake landslide according to an embodiment of the present invention.
- Fig. 9 is a schematic diagram showing the comparison between the predicted result of this method and the actual landslide distribution according to an embodiment of the present invention.
- FIG. 10 is a flowchart of a method for analyzing an earthquake landslide quick report based on measured ground motions according to a specific embodiment of the present invention
- Fig. 11 is a schematic block diagram of an earthquake landslide quick report analysis device based on measured ground motions according to an embodiment of the present invention.
- Fig. 1 is a flow chart of a method for analyzing a quick earthquake landslide report based on measured ground motions according to an embodiment of the present invention.
- the method for analyzing earthquake landslide quick report based on actual ground motions includes the following steps:
- step S101 the ground motion record measured in the earthquake-generating area is acquired.
- obtaining the ground motion record measured in the earthquake-generating area includes: obtaining the ground motion record measured in the earthquake-generating area through a strong motion network, where the ground motion record includes the amplitude, Spectrum and duration characteristics.
- the embodiment of the present invention can obtain the ground motion records around the epicenter in time through a strong earthquake network (such as China Seismograph Network, Japan K-NET/KiK-net, etc.), together with the longitude and latitude coordinates of the station.
- Information such as recording time and instrument parameters are recorded in the data file, and the acquired ground motion records are processed, so as to provide input ground motion for subsequent seismic landslide analysis.
- step S102 a digital elevation model of the target area is acquired, and the digital elevation model is processed to obtain the slope distribution of the target area.
- the embodiment of the present invention can obtain the terrain data of the target area through the currently widely used ASTER GDEMV2 digital elevation model database, which provides elevation data with a spatial resolution of 30 meters on a global scale, as shown in Figure 2. Show (take Japan as an example). Perform slope calculation on the GIS platform to obtain the slope distribution of the target area, as shown in Figure 3.
- step S103 the lithology data of the target area is acquired, and the mechanical properties of the rock and soil mass in the target area are determined according to the lithology data.
- determining the mechanical properties of the rock and soil mass in the target area according to the lithological data includes: pre-storing a relationship table between mechanical properties and lithological data; according to the relationship between mechanical properties and lithological data The table determines the mechanical properties of the soil.
- the lithology data of the target area can be obtained through the GLiM lithology database.
- the GLiM lithology database is an open global vector lithology database, as shown in Figure 4 (take Japan as an example).
- step S104 according to the ground motion record, slope distribution and mechanical properties, the seismic landslide analysis model is used to run the Newmark rigid slider analysis to obtain the critical slope of the landslide at each station.
- the critical slope is obtained by the following formula:
- a c is the critical acceleration of the landslide body
- D is the permanent displacement produced by the landslide body
- F s is the static safety factor
- ⁇ ′ is the effective friction angle
- c′ is the effective cohesion
- ⁇ is the slope angle
- ⁇ is Material weight
- ⁇ w is the weight of water
- t is the thickness from the landslide surface to the failure surface
- m is the saturation ratio of the sliding body.
- the Newmark rigid slider method is used to analyze seismic landslides, which is widely used in seismic landslide analysis and risk prediction.
- the landslide body is a rigid body
- the deformation inside the landslide body is not considered.
- Figure 5(a) when the local vibration acceleration exceeds the critical acceleration a c of the landslide body, the landslide body will undergo permanent displacement ( Figure 5(b) )), as shown in formula 1.
- the critical acceleration of the landslide body is determined by equations (2) and (3).
- a c is the critical acceleration of the landslide body
- D is the permanent displacement generated by the landslide body
- F s is the static factor of safety
- ⁇ ′ is the effective friction angle
- c′ is the effective friction angle.
- Effective cohesion ⁇ is the slope angle of the slope
- ⁇ is the weight of the material
- ⁇ w is the weight of water
- t is the thickness from the landslide surface to the failure surface
- ⁇ ', c', and ⁇ can be calculated from the lithology database.
- the present invention takes the critical permanent displacement of the landslide as 30cm, and thus the location of each station can be obtained.
- step S105 the risk of earthquake landslides around different stations is obtained by analyzing the critical slope of the landslide occurring at each station.
- the method of the embodiment of the present invention further includes: displaying the critical slope of the landslide at each station and the seismic landslide risk around different stations on a preset platform.
- the embodiment of the present invention can uniformly display the critical slope of different stations and the slope of the target area on the GIS platform, as shown in FIG. 6.
- the base map is the local slope distribution map.
- Each circle represents the calculation result of each station.
- the number in the circle represents the critical slope for landslide.
- the probability of occurrence of landslide near the station is higher than this value.
- the embodiment of the present invention obtained the measured ground motion records of 77 stations through the Japanese strong motion network K-NET/KiK-net, and the ground motion records of typical stations As shown in Figure 7.
- the mechanical properties of the rock and soil mass at the station can be obtained from the established lithology database, and the measured ground motion records can be input to obtain the critical slope of the landslide at each station, combined with the already processed
- the distribution of local slopes can give high-risk areas where landslides occur around each station, as shown in Figure 8.
- the seismic landslide quick report analysis method based on measured ground motions proposed in the embodiment of the present invention can obtain the critical slope of seismic landslide occurrence at each station, and the embodiment of the present invention uses the measured ground motion record Performing Newmark rigid slider analysis can fully consider the characteristics of ground motion, and has extremely high computational efficiency and simple modeling methods. It can be used for near-real-time analysis of earthquake landslides and provide support for post-earthquake rescue work and related decision-making.
- the ground motion records of the earthquake-generating area are obtained through the strong earthquake network, and the terrain data and lithology data of the target area are obtained.
- the Newmark rigid slider method is applied to the rock and soil, and the time history analysis method is used to obtain the occurrence of each station.
- the critical slope of a landslide can be used to predict the probability of an earthquake landslide in the earthquake-generating area based on the distribution of the critical slope and the actual surrounding slope. It has high calculation efficiency and simple modeling method, and can be used for rapid prediction and damage analysis of earthquake landslides.
- the method of the embodiment of the present invention may include the following steps:
- Step S1001 Obtain the measured ground motion records of the earthquake occurrence area through the strong earthquake network.
- the measured ground motion records of the earthquake-generating area are acquired through the strong earthquake network, and the acquired records include the amplitude, frequency spectrum, and duration characteristics of the ground motion.
- Step S1002 Obtain a digital elevation model of the target area, and process the digital elevation model to obtain the local slope distribution.
- Step S1003 Obtain lithology data of the target area, and determine the mechanical properties of different lithology groups according to the classification of the lithology database.
- the mechanical properties of the rock and soil mass in the target area are obtained.
- Step S1004 Input the measured ground motions into the seismic landslide analysis model of the target area, and use the Newmark rigid slider method for analysis.
- Step S1005 Analyze the risk of earthquake landslides around different stations according to the critical slope of the slider calculated for each station.
- the seismic landslide analysis model is used to analyze the occurrence of landslides at each station using the Newmark rigid slider method.
- Critical slope thereby obtaining the seismic landslide risk around different stations, accurately reflecting the impact of ground motion characteristics on seismic landslides, closer to the actual earthquake damage, accurately reflecting the characteristics of ground motion, high calculation efficiency and simple modeling method, it is post-earthquake
- the earthquake landslide prediction in the disaster area provides an important means.
- Fig. 11 is a schematic block diagram of an earthquake landslide quick report analysis device based on measured ground motions according to an embodiment of the present invention.
- the seismic landslide quick report analysis device 10 based on actual ground motions includes:
- the first acquisition module 100 is used to acquire the ground motion records measured in the earthquake region.
- the second acquisition module 200 is used to acquire the digital elevation model of the target area, and process the digital elevation model to obtain the slope distribution of the target area.
- the third acquisition module 300 is used to acquire lithology data of the target area, and determine the mechanical properties of the rock and soil mass in the target area according to the lithology data.
- the first analysis module 400 is used to obtain the critical slope of the landslide at each station through the seismic landslide analysis model according to the ground motion record, the slope distribution and the mechanical properties, and the Newmark rigid slider method.
- the second analysis module 500 is used to analyze the critical slope of the landslide at each station to obtain seismic landslide risks around different stations.
- the first acquisition module 100 is further used to obtain the ground motion record measured in the earthquake-generating area through the strong motion network, where the ground motion record includes the amplitude, frequency spectrum, and duration of the ground motion. feature.
- the third acquisition module 300 includes: a storage unit for pre-storing a relationship table between mechanical properties and lithology data; and a query unit for according to the relationship between mechanical properties and lithology data The table determines the mechanical properties of the soil.
- the critical slope is obtained by the following formula:
- a c is the critical acceleration of the landslide body
- D is the permanent displacement produced by the landslide body
- F s is the static safety factor
- ⁇ ′ is the effective friction angle
- c′ is the effective cohesion
- ⁇ is the slope angle
- ⁇ is Material weight
- ⁇ w is the weight of water
- t is the thickness from the landslide surface to the failure surface
- m is the saturation ratio of the sliding body.
- the device 10 of the embodiment of the present invention further includes: a display module.
- the display module is used to display the critical slope of landslide at each station and the seismic landslide risk around different stations on the preset platform.
- the seismic landslide analysis model is used according to the ground motion records, slope distribution and mechanical properties, and the Newmark rigid slider method is used to analyze the occurrence of landslides at each station.
- Critical slope thereby obtaining the seismic landslide risk around different stations, accurately reflecting the impact of ground motion characteristics on seismic landslides, closer to the actual earthquake damage, accurately reflecting the characteristics of ground motion, high calculation efficiency and simple modeling method, it is post-earthquake
- the earthquake landslide prediction in the disaster area provides an important means.
- first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, "N number” means at least two, such as two, three, etc., unless specifically defined otherwise.
- a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transmit a program for use by an instruction execution system, device, or device or in combination with these instruction execution systems, devices, or devices.
- computer readable media include the following: electrical connections (electronic devices) with one or N wires, portable computer disk cases (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
- the computer-readable medium may even be paper or other suitable media on which the program can be printed, because it can be used, for example, by optically scanning the paper or other media, and then editing, interpreting, or other suitable media if necessary. The program is processed in a manner to obtain the program electronically and then stored in the computer memory.
- each part of the present invention can be implemented by hardware, software, firmware or a combination thereof.
- the N steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
- it can be implemented by any one or a combination of the following technologies known in the art: Discrete logic gate circuits for implementing logic functions on data signals Logic circuit, application specific integrated circuit with suitable combinational logic gate, programmable gate array (PGA), field programmable gate array (FPGA), etc.
- the functional units in the various embodiments of the present invention may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
- the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
- the aforementioned storage medium may be a read-only memory, a magnetic disk or an optical disk, etc.
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
- Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
Abstract
一种基于实测地震动的地震滑坡速报分析方法及装置,其中,方法包括:获取发震地区实测的地面运动记录(S101);获取目标区域的数字高程模型,并对数字高程模型进行处理,得到目标区域的坡度分布(S102);获取目标区域的岩性数据,并根据岩性数据确定目标区域的岩土体的力学性质(S103);根据地面运动记录、坡度分布和力学性质通过地震滑坡分析模型,运用Newmark刚体滑块法分析得到每个台站处发生滑坡的临界坡度(S104);根据每个台站处发生滑坡的临界坡度分析得到不同台站周边的地震滑坡风险(S105)。根据该方法,可以准确反映地震动特性对地震滑坡的影响,更接近实际震害,计算效率高且建模方法简单,为震后灾区地震滑坡的预测提供了重要手段。
Description
相关申请的交叉引用
本申请要求清华大学于2019年07月12日提交的、发明名称为“基于实测地震动的地震滑坡速报分析方法及装置”的、中国专利申请号“201910631822.2”的优先权。
本发明涉及土木工程技术领域,特别涉及一种基于实测地震动的地震滑坡速报分析方法及装置。
我国是地震多发国家,地震往往会导致滑坡发生。滑坡会对山区的房屋、河道、道路以及管线等产生影响,往往会造成巨大的经济损失和人员伤亡。例如,汶川地震触发了15000多处滑坡、崩塌、泥石流,估计直接造成2万人死亡,地质灾害隐患点达10000余多处。为了降低地震滑坡带来的经济损失与人员伤亡,地震滑坡的合理快速地预测显得尤为重要。
相关技术中,地震滑坡的主要分析方法为:物理驱动的方法和数据驱动的方法。其中,物理驱动的方法采用基于地震动强度指标的Newmark刚体滑块分析方法。然而,该方法采用单一或者多个地震动指标作为输入,难以考虑地震动的全部特性;数据驱动的方法基于历史地震滑坡的数据运用不同的机器学习算法进行滑坡发生概率的预测,该方法依赖于历史地震滑坡数据。因此,这两种方法都较难以满足现阶段地震滑坡分析的需要,亟待改进。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种基于实测地震动的地震滑坡速报分析方法,该方法可以准确反映地震动特性对地震滑坡的影响,更接近实际震害,计算效率高且建模方法简单,为震后灾区地震滑坡的预测提供了重要手段。
本发明的另一个目的在于提出一种基于实测地震动的地震滑坡速报分析装置。
为达到上述目的,本发明一方面实施例提出了一种基于实测地震动的地震滑坡速报分析方法,包括以下步骤:获取发震地区实测的地面运动记录;获取目标区域的数字高程模型,并对所述数字高程模型进行处理,得到所述目标区域的坡度分布;获取所述目标区域的岩性数据,并根据所述岩性数据确定所述目标区域的岩土体的力学性质;根据所述地面 运动记录、所述坡度分布和所述力学性质通过地震滑坡分析模型,运用Newmark刚体滑块法分析得到每个台站处发生滑坡的临界坡度;根据所述每个台站处发生滑坡的临界坡度分析得到不同台站周边的地震滑坡风险。
本发明实施例的基于实测地震动的地震滑坡速报分析方法,根据地面运动记录、坡度分布和力学性质通过地震滑坡分析模型,运用Newmark刚体滑块法分析得到每个台站处发生滑坡的临界坡度,从而得到不同台站周边的地震滑坡风险,准确反映地震动特性对地震滑坡的影响,更接近实际震害,准确反映地震动的特征,计算效率高且建模方法简单,为震后灾区地震滑坡的预测提供了重要手段。
另外,根据本发明上述实施例的基于实测地震动的地震滑坡速报分析方法还可以具有以下附加的技术特征:
其中,在本发明的一个实施例中,所述获取发震地区实测的地面运动记录,包括:通过强震台网得到所述发震地区实测的地面运动记录,其中,所述地面运动记录包括地震动的幅值、频谱和持时特征。
进一步地,在本发明的一个实施例中,所述根据所述岩性数据确定所述目标区域的岩土体的力学性质,包括:预先存储力学性质-岩性数据的关系表;根据所述力学性质-岩性数据的关系表确定所述土体的力学性质。
可选地,在本发明的一个实施例中,所述临界坡度由以下公式得到:
D=∫∫(a(t)-a
c)dtdt,
a
c=(F
s-1)g sinα,
其中,a
c为滑坡体临界加速度,D为滑坡体产生的永久位移,F
s为静力安全系数,φ′为有效摩擦角,c′为有效粘聚力,α为斜坡坡角,γ为材料重度,γ
w为水的重度,t为滑坡表面到破坏面的厚度,m为滑动体饱和比例。
另外,在本发明的一个实施例中,还包括:在预设平台展示所述每个台站处发生滑坡的临界坡度和所述不同台站周边的地震滑坡风险。
为达到上述目的,本发明另一方面实施例提出了一种基于实测地震动的地震滑坡速报分析装置,包括:第一获取模块,用于获取发震地区实测的地面运动记录;第二获取模块,用于获取目标区域的数字高程模型,并对所述数字高程模型进行处理,得到所述目标区域的坡度分布;第三获取模块,用于获取所述目标区域的岩性数据,并根据所述岩性数据确定所述目标区域的岩土体的力学性质;第一分析模块,用于根据所述地面运动记录、所述 坡度分布和所述力学性质通过地震滑坡分析模型,运行Newmark刚体滑块分析得到每个台站处发生滑坡的临界坡度;第二分析模块,用于根据所述每个台站处发生滑坡的临界坡度分析得到不同台站周边的地震滑坡风险。
本发明实施例的基于实测地震动的地震滑坡速报分析装置,根据地面运动记录、坡度分布和力学性质通过地震滑坡分析模型,运行Newmark刚体滑块分析得到每个台站处发生滑坡的临界坡度,从而得到不同台站周边的地震滑坡风险,准确反映地震动特性对地震滑坡的影响,更接近实际震害,准确反映地震动的特征,计算效率高且建模方法简单,为震后灾区地震滑坡的预测提供了重要手段。
另外,根据本发明上述实施例的基于实测地震动的地震滑坡速报分析装置还可以具有以下附加的技术特征:
其中,在本发明的一个实施例中,所述第一获取模块进一步用于通过强震台网得到所述发震地区实测的地面运动记录,其中,所述地面运动记录包括地震动的幅值、频谱和持时特征。
进一步地,在本发明的一个实施例中,所述第三获取模块包括:存储单元,用于预先存储力学性质-岩性数据的关系表;查询单元,用于根据所述力学性质-岩性数据的关系表确定所述土体的力学性质。
可选地,在本发明的一个实施例中,所述临界坡度由以下公式得到:
D=∫∫(a(t)-a
c)dtdt,
a
c=(F
s-1)g sinα,
其中,a
c为滑坡体临界加速度,D为滑坡体产生的永久位移,F
s为静力安全系数,φ′为有效摩擦角,c′为有效粘聚力,α为斜坡坡角,γ为材料重度,γ
w为水的重度,t为滑坡表面到破坏面的厚度,m为滑动体饱和比例。
另外,在本发明的一个实施例中,还包括:展示模块,用于在预设平台展示所述每个台站处发生滑坡的临界坡度和所述不同台站周边的地震滑坡风险。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和 容易理解,其中:
图1为根据本发明实施例的基于实测地震动的地震滑坡速报分析方法的流程图;
图2为根据本发明一个实施例的目标区域的数字高程模型(单位:m)示意图;
图3为根据本发明一个实施例的目标坡度分布示意图;
图4为根据本发明一个实施例的目标区域GLiM岩性分布示意图;
图5为根据本发明一个实施例的Newmark刚体滑块法示意图;
图6为根据本发明一个实施例的地震滑坡结果展示(以20180906日本北海道地震为例)效果示意图;
图7为根据本发明一个实施例的典型台站地震动记录(KMM006)示意图;
图8为根据本发明一个实施例的熊本地震滑坡计算结果示意图;
图9为根据本发明一个实施例的本方法预测结果与实际滑坡分布对比示意图;
图10为根据本发明一个具体实施例的基于实测地震动的地震滑坡速报分析方法的流程图;
图11为根据本发明实施例的基于实测地震动的地震滑坡速报分析装置的方框示意图。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图描述根据本发明实施例提出的基于实测地震动的地震滑坡速报分析方法及装置,首先将参照附图描述根据本发明实施例提出的基于实测地震动的地震滑坡速报分析方法。
图1为根据本发明实施例的基于实测地震动的地震滑坡速报分析方法的流程图。
如图1所示,该基于实测地震动的地震滑坡速报分析方法包括以下步骤:
在步骤S101中,获取发震地区实测的地面运动记录。
其中,在本发明的一个实施例中,获取发震地区实测的地面运动记录,包括:通过强震台网得到发震地区实测的地面运动记录,其中,地面运动记录包括地震动的幅值、频谱和持时特征。
举例而言,地震发生后,本发明实施例可以通过强震台网(如中国地震台网、日本K-NET/KiK-net等)能够及时获取震中周边的地面运动记录,连同台站经纬坐标、记录时间和仪器参数等信息记录在数据文件中,对所获取的实测地面运动记录进行处理,从而可以为后续地震滑坡的分析提供输入地震动。
在步骤S102中,获取目标区域的数字高程模型,并对数字高程模型进行处理,得到目标区域的坡度分布。
可以而理解的是,本发明实施例可以通过目前广泛使用的ASTER GDEMV2数字高程模型数据库获取目标区域的地形数据,该数据库提供了全球范围内空间分辨率为30米的高程数据,如图2所示(以日本为例)。在GIS平台进行坡度计算,可以得到目标区域的坡度分布,如图3所示。
在步骤S103中,获取目标区域的岩性数据,并根据岩性数据确定目标区域的岩土体的力学性质。
进一步地,在本发明的一个实施例中,根据岩性数据确定目标区域的岩土体的力学性质,包括:预先存储力学性质-岩性数据的关系表;根据力学性质-岩性数据的关系表确定土体的力学性质。
例如,通过GLiM岩性数据库获取目标区域的岩性数据。GLiM岩性数据库为公开的全球范围的矢量岩性数据库,如图4所示(以日本为例)。
通过岩性数据库确定岩土体的力学性质(粘聚力C和内摩擦角
)是进行地震滑坡预测的关键,如文献(Jiamei L,Mengtan G,Shuren W,et al.A Hazard Assessment Method for Potential Earthquake‐Induced Landslides–A Case Study in Huaxian County,Shaanxi Province[J].Acta Geologica Sinica‐English Edition,2016,90(2):590-603)和《工程岩土体分级标准》(GB50218-1994)将岩性分为四类,并给出每类的力学性质:(1)Solid,(2)Hard,(3)Soft,(4)Loess。本发明实施例建立了GLiM数据中岩性分类与该分类的对应关系,如表1所示,通过所建立的对应关系即可以确定目标区域的岩土体的力学性质。
表1
在步骤S104中,根据地面运动记录、坡度分布和力学性质通过地震滑坡分析模型,运行Newmark刚体滑块分析得到每个台站处发生滑坡的临界坡度。
可选地,在本发明的一个实施例中,临界坡度由以下公式得到:
D=∫∫(a(t)-a
c)dtdt,
a
c=(F
s-1)g sinα,
其中,a
c为滑坡体临界加速度,D为滑坡体产生的永久位移,F
s为静力安全系数,φ′为有效摩擦角,c′为有效粘聚力,α为斜坡坡角,γ为材料重度,γ
w为水的重度,t为滑坡表面到破坏面的厚度,m为滑动体饱和比例。
具体而言,采用Newmark刚体滑块法进行地震滑坡的分析,其广泛应用于地震滑坡分析和风险预测中。其中,假设滑坡体为刚体,不考虑滑坡体内部产生的变形,如图5(a)所示,当地震动加速度超过滑坡体临界加速度a
c时,滑坡体就会发生永久位移(图5(b)所示),如式1所示。滑坡体临界加速度由式(2)、(3)确定。
D=∫∫(a(t)-a
c)dtdt, (1)
a
c=(F
s-1)g sinα, (2)
其中,a
c为滑坡体临界加速度,D为滑坡体产生的永久位移,F
s为静力安全系数(static factor of safety),φ′为有效摩擦角(effective friction angle),c′为有效粘聚力(effective cohesion),α为斜坡坡角,γ为材料重度,γ
w为水的重度,t为滑坡表面到破坏面的厚度,m为滑动体饱和比例。需要说明的是,t可以取t=2.7米,m为滑动体饱和比例,一般取m=0。其中,φ′、c′、γ可以通过岩性数据库推算得到。
将地震动输入到上述分析模型,进行Newmark刚体滑块法即可得到不同坡度下该滑坡体产生的永久位移,本发明取发生滑坡的临界永久位移为30cm,由此可以得到每个台站处发生滑坡的临界坡度。
在步骤S105中,根据每个台站处发生滑坡的临界坡度分析得到不同台站周边的地震滑坡风险。
另外,在本发明的一个实施例中,本发明实施例的方法还包括:在预设平台展示每个台站处发生滑坡的临界坡度和不同台站周边的地震滑坡风险。
也就是说,本发明实施例可以将不同台站的临界坡度与目标区域的坡度分布在GIS平台进行统一展示,如图6所示。其中,底图为当地坡度分布图,每个圆圈代表每个台站的计算结果,圆圈中的数字代表发生滑坡的临界坡度,台站附近坡度大于该数值的地方滑坡发生概率高。
以2016年4月16日的日本熊本地震为例,本发明实施例通过日本强震台网K-NET/KiK-net获取了77个台站的实测地面运动记录,典型台站的地震动记录如图7所示。根据台站的位置可以从已经建立好的岩性数据库中获取台站处的岩土体的力学性质,输入实测地面运动记录,可以得到每个台站发生滑坡的临界坡度,结合已经处理好的当地的坡度的分布,可以给出各个台站周边滑坡发生的高风险区,如图8所示。
同时,将计算结果与实地调查的滑坡分布进行了对比,如图9所示。从对比结果中可以看到本方法的预测结果与实际地震滑坡分布较为一致,说明了本方法对地震滑坡预测的合理性。并显著高于美国地质调查局USGS Pager系统的精度。值得注意的是,在未采取并行手段的情况下,完成上述案例只需要12分钟(Intel Xeon E5 2630@2.40GHz and 64GB RAM),计算效率满足地震滑坡速报的需求,为震后的应急救援提供重要参考。
因此,通过以上案例,可以总结出本发明实施例提出的基于实测地震动的地震滑坡速报分析方法可获得每个台站处地震滑坡发生的临界坡度,并且本发明实施例采用实测地面运动记录进行Newmark刚体滑块分析,可以充分考虑地震动的特性,而且具有极高的计算效率和简单的建模方法,可以用于地震滑坡的近实时分析,为震后救援工作及相关决策提供支持。
综上,通过强震台网获取发震地区实测地面运动记录,并获取目标区域地形数据和岩性数据,对岩土体进行Newmark刚体滑块法,运用时程分析方法得到每个台站发生滑坡的临界坡度,根据临界坡度和周边实际坡度的分布可以预测发震区地震滑坡发生的概率,不但计算效率高且建模方法简单,以及可以用于地震滑坡的快速预测和震害分析。
具体而言,在本发明的一个具体实施例中,本发明实施例的方法可以包括以下步骤:
步骤S1001:通过强震台网获取发震地区实测地面运动记录。
其中,通过强震台网获取发震地区的实测地面运动记录,所获取的记录包括地震动的幅值、频谱和持时特征。
步骤S1002:获取目标区域的数字高程模型,并对数字高程模型进行处理得到当地的坡度分布。
步骤S1003:获取目标区域的岩性数据,根据岩性数据库的分类确定不同岩性分组的 力学性质。
例如,利用公开可获取的GLiM全球岩性分布数据,根据所提出的岩性力学性质的确定方法,得到目标区域岩土体的力学性质。
步骤S1004:将实测地震动输入到目标区域的地震滑坡分析模型中,运用Newmark刚体滑块法进行分析。
即言,运用刚体滑块分析方法,输入每个台站的实测地面运动记录,得到每个台站发生滑坡的临界坡度。
步骤S1005:根据每个台站点计算得到的滑块发生的临界坡度分析不同台站周边的地震滑坡风险。
可以理解的是,根据每个台站点计算得到的滑坡发生的临界坡度,结合周边的坡度分布,分析不同台站周边的地震滑坡风险。
根据本发明实施例的基于实测地震动的地震滑坡速报分析方法,根据地面运动记录、坡度分布和力学性质通过地震滑坡分析模型,运用Newmark刚体滑块法分析得到每个台站处发生滑坡的临界坡度,从而得到不同台站周边的地震滑坡风险,准确反映地震动特性对地震滑坡的影响,更接近实际震害,准确反映地震动的特征,计算效率高且建模方法简单,为震后灾区地震滑坡的预测提供了重要手段。
其次参照附图描述根据本发明实施例提出的基于实测地震动的地震滑坡速报分析装置。
图11为根据本发明实施例的基于实测地震动的地震滑坡速报分析装置的方框示意图。
如图11所示,该基于实测地震动的地震滑坡速报分析装置10包括:
其中,第一获取模块100用于获取发震地区实测的地面运动记录。
第二获取模块200用于获取目标区域的数字高程模型,并对数字高程模型进行处理,得到目标区域的坡度分布。
第三获取模块300用于获取目标区域的岩性数据,并根据岩性数据确定目标区域的岩土体的力学性质。
第一分析模块400用于根据地面运动记录、坡度分布和力学性质通过地震滑坡分析模型,运用Newmark刚体滑块法分析得到每个台站处发生滑坡的临界坡度。
第二分析模块500用于根据每个台站处发生滑坡的临界坡度分析得到不同台站周边的地震滑坡风险。
其中,在本发明的一个实施例中,第一获取模块100进一步用于通过强震台网得到发震地区实测的地面运动记录,其中,地面运动记录包括地震动的幅值、频谱和持时特征。
进一步地,在本发明的一个实施例中,第三获取模块300包括:存储单元,用于预先 存储力学性质-岩性数据的关系表;查询单元,用于根据力学性质-岩性数据的关系表确定土体的力学性质。
可选地,在本发明的一个实施例中,临界坡度由以下公式得到:
D=∫∫(a(t)-a
c)dtdt,
a
c=(F
s-1)g sinα,
其中,a
c为滑坡体临界加速度,D为滑坡体产生的永久位移,F
s为静力安全系数,φ′为有效摩擦角,c′为有效粘聚力,α为斜坡坡角,γ为材料重度,γ
w为水的重度,t为滑坡表面到破坏面的厚度,m为滑动体饱和比例。
另外,在本发明的一个实施例中,本发明实施例的装置10还包括:展示模块。
其中,展示模块用于在预设平台展示每个台站处发生滑坡的临界坡度和不同台站周边的地震滑坡风险。
需要说明的是,前述对基于实测地震动的地震滑坡速报分析方法实施例的解释说明也适用于该实施例的基于实测地震动的地震滑坡速报分析装置,此处不再赘述。
根据本发明实施例的基于实测地震动的地震滑坡速报分析装置,根据地面运动记录、坡度分布和力学性质通过地震滑坡分析模型,运用Newmark刚体滑块法分析得到每个台站处发生滑坡的临界坡度,从而得到不同台站周边的地震滑坡风险,准确反映地震动特性对地震滑坡的影响,更接近实际震害,准确反映地震动的特征,计算效率高且建模方法简单,为震后灾区地震滑坡的预测提供了重要手段。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或N个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“N个”的含义是至少两个,例如两个,三 个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更N个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或N个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,N个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读 取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (10)
- 一种基于实测地震动的地震滑坡速报分析方法,其特征在于,包括以下步骤:获取发震地区实测的地面运动记录;获取目标区域的数字高程模型,并对所述数字高程模型进行处理,得到所述目标区域的坡度分布;获取所述目标区域的岩性数据,并根据所述岩性数据确定所述目标区域的岩土体的力学性质;根据所述地面运动记录、所述坡度分布和所述力学性质通过地震滑坡分析模型,运用Newmark刚体滑块法分析得到每个台站处发生滑坡的临界坡度;根据所述每个台站处发生滑坡的临界坡度分析得到不同台站周边的地震滑坡风险。
- 根据权利要求1所述的方法,其特征在于,所述获取发震地区实测的地面运动记录,包括:通过强震台网得到所述发震地区实测的地面运动记录,其中,所述地面运动记录包括地震动的幅值、频谱和持时特征。
- 根据权利要求1所述的方法,其特征在于,所述根据所述岩性数据确定所述目标区域的岩土体的力学性质,包括:预先存储力学性质-岩性数据的关系表;根据所述力学性质-岩性数据的关系表确定所述土体的力学性质。
- 根据权利要求1所述的方法,其特征在于,还包括:在预设平台展示所述每个台站处发生滑坡的临界坡度和所述不同台站周边的地震滑坡风险。
- 一种基于实测地震动的地震滑坡速报分析装置,其特征在于,包括:第一获取模块,用于获取发震地区实测的地面运动记录;第二获取模块,用于获取目标区域的数字高程模型,并对所述数字高程模型进行处理,得到所述目标区域的坡度分布;第三获取模块,用于获取所述目标区域的岩性数据,并根据所述岩性数据确定所述目标区域的岩土体的力学性质;第一分析模块,用于根据所述地面运动记录、所述坡度分布和所述力学性质通过地震滑坡分析模型,运用Newmark刚体滑块法分析得到每个台站处发生滑坡的临界坡度;第二分析模块,用于根据所述每个台站处发生滑坡的临界坡度分析得到不同台站周边的地震滑坡风险。
- 根据权利要求6所述的装置,其特征在于,所述第一获取模块进一步用于通过强震台网得到所述发震地区实测的地面运动记录,其中,所述地面运动记录包括地震动的幅值、频谱和持时特征。
- 根据权利要求6所述的装置,其特征在于,所述第三获取模块包括:存储单元,用于预先存储力学性质-岩性数据的关系表;查询单元,用于根据所述力学性质-岩性数据的关系表确定所述土体的力学性质。
- 根据权利要求6所述的装置,其特征在于,还包括:展示模块,用于在预设平台展示所述每个台站处发生滑坡的临界坡度和所述不同台站周边的地震滑坡风险。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910631822.2A CN110376639A (zh) | 2019-07-12 | 2019-07-12 | 基于实测地震动的地震滑坡速报分析方法及装置 |
CN201910631822.2 | 2019-07-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021008282A1 true WO2021008282A1 (zh) | 2021-01-21 |
Family
ID=68252985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/095650 WO2021008282A1 (zh) | 2019-07-12 | 2020-06-11 | 基于实测地震动的地震滑坡速报分析方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110376639A (zh) |
WO (1) | WO2021008282A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113536659A (zh) * | 2021-06-09 | 2021-10-22 | 上海交通大学 | 一种震后道路受灾区域快速预测方法、系统及存储介质 |
CN114662950A (zh) * | 2022-03-31 | 2022-06-24 | 中南大学 | 一种适用于区域地震滑坡危险性评估的斜坡单元细化方法 |
CN115238441A (zh) * | 2022-05-06 | 2022-10-25 | 中国地质科学院地质力学研究所 | 一种LS-D-Newmark地震滑坡危险性评价方法、装置以及处理设备 |
CN115597656A (zh) * | 2022-07-27 | 2023-01-13 | 中国地质大学(武汉)(Cn) | 滑坡深部孔外岩土体物理力学多参数监测装置及方法 |
CN116203619A (zh) * | 2022-12-08 | 2023-06-02 | 西南交通大学 | 基于空间互相关多地震动参数的区域地震滑坡模拟方法 |
CN116243269A (zh) * | 2023-05-06 | 2023-06-09 | 南京航天宏图信息技术有限公司 | 一种基于Insar数据的震后滑坡灾害监测方法和装置 |
CN116894347A (zh) * | 2023-07-27 | 2023-10-17 | 武汉大学 | 考虑岩体结构面震动劣化效应的滑坡失稳过程分析方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110376639A (zh) * | 2019-07-12 | 2019-10-25 | 清华大学 | 基于实测地震动的地震滑坡速报分析方法及装置 |
CN111337997B (zh) * | 2020-03-17 | 2022-09-13 | 成都理工大学 | 潜在崩塌灾害体快速识别方法 |
CN112686522A (zh) * | 2020-12-25 | 2021-04-20 | 中南大学 | 一种Newmark修正模型地震滑坡危险性评估方法 |
CN115374625A (zh) * | 2022-08-17 | 2022-11-22 | 中国地质科学院探矿工艺研究所 | 地震滑坡危险性检测方法、装置及介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002019052A2 (en) * | 2000-08-28 | 2002-03-07 | Toshiba Engineering Corporation | Method and apparatus for generating measurement data |
CN103364830A (zh) * | 2013-07-24 | 2013-10-23 | 北京师范大学 | 一种基于多因子的地震后发生崩滑灾害位置的预测方法 |
CN103399344A (zh) * | 2013-07-24 | 2013-11-20 | 北京师范大学 | 一种地震后发生崩滑灾害位置的预测方法 |
CN106709182A (zh) * | 2016-12-26 | 2017-05-24 | 华中科技大学 | 一种地震作用下顺层岩质边坡稳定可靠性安全评价方法 |
CN106710148A (zh) * | 2016-12-28 | 2017-05-24 | 中国科学院深圳先进技术研究院 | 地质灾害预测方法及系统 |
CN110376639A (zh) * | 2019-07-12 | 2019-10-25 | 清华大学 | 基于实测地震动的地震滑坡速报分析方法及装置 |
-
2019
- 2019-07-12 CN CN201910631822.2A patent/CN110376639A/zh active Pending
-
2020
- 2020-06-11 WO PCT/CN2020/095650 patent/WO2021008282A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002019052A2 (en) * | 2000-08-28 | 2002-03-07 | Toshiba Engineering Corporation | Method and apparatus for generating measurement data |
CN103364830A (zh) * | 2013-07-24 | 2013-10-23 | 北京师范大学 | 一种基于多因子的地震后发生崩滑灾害位置的预测方法 |
CN103399344A (zh) * | 2013-07-24 | 2013-11-20 | 北京师范大学 | 一种地震后发生崩滑灾害位置的预测方法 |
CN106709182A (zh) * | 2016-12-26 | 2017-05-24 | 华中科技大学 | 一种地震作用下顺层岩质边坡稳定可靠性安全评价方法 |
CN106710148A (zh) * | 2016-12-28 | 2017-05-24 | 中国科学院深圳先进技术研究院 | 地质灾害预测方法及系统 |
CN110376639A (zh) * | 2019-07-12 | 2019-10-25 | 清华大学 | 基于实测地震动的地震滑坡速报分析方法及装置 |
Non-Patent Citations (1)
Title |
---|
WANG, TAO ET AL.: "CASE STUDY ON RAPID ASSESSMENT OF REGIONAL SEISMIC LANDSLIDE HAZARD BASED ON SIMPLIFIED NEWMARK DISPLACEMENT MODEL: WENCHUAN M_S 8.0 EARTHQUAKE", JOURNAL OF ENGINEERING GEOLOGY, 28 February 2013 (2013-02-28), DOI: 20200724110612 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113536659A (zh) * | 2021-06-09 | 2021-10-22 | 上海交通大学 | 一种震后道路受灾区域快速预测方法、系统及存储介质 |
CN114662950A (zh) * | 2022-03-31 | 2022-06-24 | 中南大学 | 一种适用于区域地震滑坡危险性评估的斜坡单元细化方法 |
CN115238441A (zh) * | 2022-05-06 | 2022-10-25 | 中国地质科学院地质力学研究所 | 一种LS-D-Newmark地震滑坡危险性评价方法、装置以及处理设备 |
CN115597656A (zh) * | 2022-07-27 | 2023-01-13 | 中国地质大学(武汉)(Cn) | 滑坡深部孔外岩土体物理力学多参数监测装置及方法 |
CN116203619A (zh) * | 2022-12-08 | 2023-06-02 | 西南交通大学 | 基于空间互相关多地震动参数的区域地震滑坡模拟方法 |
CN116203619B (zh) * | 2022-12-08 | 2024-03-15 | 西南交通大学 | 基于空间互相关多地震动参数的区域地震滑坡模拟方法 |
CN116243269A (zh) * | 2023-05-06 | 2023-06-09 | 南京航天宏图信息技术有限公司 | 一种基于Insar数据的震后滑坡灾害监测方法和装置 |
CN116894347A (zh) * | 2023-07-27 | 2023-10-17 | 武汉大学 | 考虑岩体结构面震动劣化效应的滑坡失稳过程分析方法 |
CN116894347B (zh) * | 2023-07-27 | 2024-01-12 | 武汉大学 | 考虑岩体结构面震动劣化效应的滑坡失稳过程分析方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110376639A (zh) | 2019-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021008282A1 (zh) | 基于实测地震动的地震滑坡速报分析方法及装置 | |
Fang et al. | Aftershock observation and analysis of the 2013 M S 7.0 Lushan earthquake | |
Marc et al. | Prediction of the area affected by earthquake-induced landsliding based on seismological parameters | |
Crowell et al. | G‐FAST earthquake early warning potential for great earthquakes in Chile | |
Yamashita et al. | Two end-member earthquake preparations illuminated by foreshock activity on a meter-scale laboratory fault | |
Das et al. | A new non-linear framework for localization of acoustic sources | |
US20190033476A1 (en) | Method and system for forecasting earthquakes and generating earthquake alerts | |
JP5126143B2 (ja) | 地震動の予測システム | |
Chen et al. | An empirical evolutionary magnitude estimation for early warning of earthquakes | |
Zhu et al. | Support vector machine‐based rapid magnitude estimation using transfer learning for the Sichuan–Yunnan region, China | |
CN109799503A (zh) | 建筑物损毁评估制图方法及系统 | |
Dogru et al. | Seismic hazard assessment of the central North Anatolian Fault (Turkey) from GPS-derived strain rates and b-values | |
Gallipoli et al. | Structural health monitoring of the Ferrara University before and after the 2012 Emilia (Italy) earthquake, and after the damage repairs | |
McKenna et al. | Remote structural infrasound: Case studies of real-time infrastructure system monitoring | |
Calcina et al. | Vibration analysis of historic bell towers by means of contact and remote sensing measurements | |
RU2464594C2 (ru) | Способ оценки основных характеристик ожидаемого сильного цунамигенного землетрясения и система для его осуществления | |
Lashgari et al. | Displacement and damage analysis of earth dams during the 2023 Turkiye earthquake sequence | |
van Thienen-Visser et al. | Categorizing seismic risk for the onshore gas fields in the Netherlands | |
Liu et al. | Arias intensity attenuation relationship in Sichuan–Yunnan region, China | |
Pilz et al. | Statistical properties of the seismic noise field: influence of soil heterogeneities | |
Hu et al. | Identifying the optimal intensity measure and key factors of earthquake liquefaction-induced uplift of underground structures | |
Hsu et al. | Improving location of offshore earthquakes in earthquake early warning system | |
Nguyen et al. | Characteristics of earthquake source and ground motions in Northern Vietnam investigated through the 2020 Moc Chau M5. 0 earthquake sequence | |
Volvach et al. | Comparison of the Properties of a Statistical Functional from Measurements of the Magnetic Field in the Middle of the Russian Continental Platform and in a Seismically Active Region | |
Gögen et al. | Probabilistic seismic hazard analysis for Bagan (Myanmar) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20839847 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20839847 Country of ref document: EP Kind code of ref document: A1 |