WO2021007817A1 - 颅内深部电极 - Google Patents

颅内深部电极 Download PDF

Info

Publication number
WO2021007817A1
WO2021007817A1 PCT/CN2019/096391 CN2019096391W WO2021007817A1 WO 2021007817 A1 WO2021007817 A1 WO 2021007817A1 CN 2019096391 W CN2019096391 W CN 2019096391W WO 2021007817 A1 WO2021007817 A1 WO 2021007817A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
flexible wire
intracranial
deep
sleeve
Prior art date
Application number
PCT/CN2019/096391
Other languages
English (en)
French (fr)
Inventor
管西军
莫晓龙
Original Assignee
诺尔医疗(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺尔医疗(深圳)有限公司 filed Critical 诺尔医疗(深圳)有限公司
Priority to CN201980001064.4A priority Critical patent/CN110691549B/zh
Priority to PCT/CN2019/096391 priority patent/WO2021007817A1/zh
Priority to US16/549,624 priority patent/US11497448B2/en
Publication of WO2021007817A1 publication Critical patent/WO2021007817A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6868Brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4094Diagnosing or monitoring seizure diseases, e.g. epilepsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors

Definitions

  • This application relates to the technical field of medical devices, in particular to an intracranial deep electrode.
  • Intracranial deep electrodes generally include electrode contacts and plugs.
  • the electrode contacts are electrically connected to the plugs.
  • the end of the deep intracranial electrodes with electrode contacts can be surgically implanted into the patient's skull, and the plugs can be connected to the electroencephalograph , So that the electrophysiological signals collected by the electrode contacts can be transmitted to the EEG.
  • the purpose of this application is to provide a deep intracranial electrode, which aims to solve the problem that the deep intracranial electrode may be accidentally pulled out and the detection is interrupted during the process of EEG detection.
  • a deep intracranial electrode including a flexible wire, an electrode contact, a plug, and an inelastic sleeve.
  • One end of the flexible wire is connected to the electrode contact, and the other end is connected to the plug.
  • the non-elastic sleeve can be sleeved on the flexible wire, and one end of the non-elastic sleeve can be connected with the plug, and the other end can be connected with a fixing nut fixed to the head.
  • the length of the portion of the flexible wire located in the inelastic sleeve is greater than the length of the inelastic sleeve.
  • the material of the non-elastic sleeve is a transparent material.
  • one end of the non-elastic sleeve is sleeved on the plug, and the other end is sleeved on the fixing nut.
  • the material of the non-elastic sleeve is a non-magnetic material.
  • the deep intracranial electrode further includes a connecting part, one end of the connecting part is connected to the electrode contact, the other end is connected to the plug, and the connecting part is located between the electrode contact and the electrode contact.
  • the length between the plugs is less than the length of the flexible wire between the electrode contact and the plug.
  • the material of the connecting portion is a tensile material.
  • the intracranial deep electrode further includes a shield sleeve that can be sheathed on the flexible wire, the length of the shield sleeve is less than the length of the flexible wire, and the flexible wire can be folded over the flexible wire. Inside the shielded casing.
  • the intracranial deep electrode further includes a shield sleeve that can be sheathed on the flexible wire, and the shield sleeve can move relative to the flexible wire along the axial direction of the flexible wire to change the The length of the part where the shield sleeve is sheathed with the flexible wire.
  • the plug includes a shell and pins located in the shell, and the shell is connected to the connecting section, and the flexible wire, the pins, and the electrode contacts are provided with multiple, each A said flexible wire connects each said pin and each said electrode contact.
  • the flexible wire and the electrode contact are made of non-magnetic materials.
  • the intracranial deep electrode further includes a flexible insulating tube sheathed on the flexible wire, one end of the flexible insulating tube is connected to the electrode contact, the other end is connected to the plug, and the cranial
  • the inner deep electrode also includes a rigid support rod, the rigid support rod penetrates the flexible insulating tube, and the rigid support rod is located at the end of the flexible insulating tube connected to the electrode contact.
  • the material of the rigid support rod is a shape memory material.
  • the intracranial deep electrode further includes an end electrode, and the end electrode is connected to an end of the rigid support rod away from the connecting section, and is electrically connected to the plug through the wire.
  • the electrode contact has a ring structure.
  • the above-mentioned intracranial deep electrode can be sleeved on a flexible wire by providing a non-elastic sleeve, and one end of the non-elastic sleeve is connected with a plug, and the other end is connected with a fixing nut fixed to the skull.
  • the fixing nut can hinder the movement of the inelastic sleeve, thereby preventing the deep intracranial electrode from being pulled out.
  • FIG. 1 is a schematic diagram of a partial structure of an intracranial deep electrode according to an embodiment of the application
  • FIG. 2 is a schematic diagram of the initial state of the flexible wire when the deep intracranial electrode in FIG. 1 is implanted into the patient's head;
  • Fig. 3 is a diagram showing the relationship between the degree of heating of the flexible wire of the deep intracranial electrode in Fig. 2 and the length of the flexible wire;
  • FIG. 4 is a schematic diagram of the deep intracranial electrodes in FIG. 2 after adjusting the length of the flexible wire;
  • FIG. 5 is a diagram showing the relationship between the degree of heating of the flexible wire of the deep intracranial electrode in FIG. 4 and the length of the flexible wire;
  • FIG. 6 is a schematic diagram of the initial state of the flexible wire when another length of intracranial deep electrode is implanted into the patient's skull;
  • FIG. 7 is a diagram showing the relationship between the degree of heating of the flexible wire of the deep intracranial electrode in FIG. 6 and the length of the flexible wire;
  • Fig. 8 is another schematic diagram of the intracranial deep electrode in Fig. 6 after adjusting the length of the flexible wire;
  • FIG. 9 is a diagram showing the relationship between the degree of heating of the flexible wire of the deep intracranial electrode in FIG. 8 and the length of the flexible wire;
  • Fig. 10 is a schematic diagram of the intracranial deep electrodes in Fig. 1 being implanted into the head of a patient;
  • Fig. 11 is a schematic diagram of a partial structure of the intracranial deep electrode in Fig. 1.
  • an embodiment of the present application provides an intracranial deep electrode 100 for detecting electrophysiological activities of the deep brain tissue of a patient.
  • the intracranial deep electrode 100 includes a flexible wire 10, an electrode contact 20 and a plug 30. One end of the flexible wire 10 is connected to the electrode contact 20 and the other end is connected to the plug 30.
  • the plug 30 includes a shell and pins located in the shell. There are multiple flexible wires 10, pins and electrode contacts 20, and each flexible wire 10 is connected to each pin and each electrode contact 20.
  • the pins in the plug 30 are independent of each other and have a high degree of integration, which is convenient for connection with an electroencephalograph.
  • one end of the intracranial deep electrode 100 provided with an electrode contact 20 can be implanted into the patient's head, so that the electrode contact 20 can collect electrophysiological signals of the patient's deep brain tissue.
  • the flexible wire 10 Since the flexible wire 10 has a slender structure, the flexible wire 10 absorbs the radio frequency magnetic field energy generated by the magnetic resonance device, and generates energy deposition at the end of the flexible wire 10, thereby causing the electrode contacts 20 connected to the flexible wire 10 to heat up.
  • the degree of heat generation of the flexible wire 10 of the intracranial deep electrode 100 varies with the length of the flexible wire 10, and has a peak value.
  • the length of the flexible wire 10 corresponding to the peak value is the resonance length of the flexible wire 10 .
  • the resonance length of the flexible wire 10 is named L. It can be seen from FIG. 3 that the farther the length of the flexible wire 10 deviates from the resonance length L, the lower the degree of heat generation of the flexible wire 10.
  • the deep intracranial electrode 100 of this embodiment further includes a shielding sleeve 40.
  • the shielding sleeve 40 can be sleeved on the flexible wire 10, and the length of the shielding sleeve 40 Less than the length of the flexible wire 10, part of the structure of the flexible wire 10 is folded in the shielding sleeve 40.
  • the shielding sleeve 40 can shield the radio frequency electromagnetic waves generated by the magnetic resonance device, so that the length of the flexible wire 10 in the radio frequency magnetic field of the magnetic resonance device is equivalent to the length of the shield sleeve 40 and that of the shield sleeve 40.
  • the sum of the lengths of the outer flexible wires 10 is named L1, and the equivalent length of the flexible wire 10 is named L2.
  • the equivalent length L2 of the flexible wire 10 is smaller than the actual length L1 of the flexible wire 10, and L2 deviates from the resonance length L of the flexible wire 10 relative to L1. In this way, the degree of heat generation at the end of the flexible lead 10 is reduced, and the safety performance of the intracranial deep electrode 100 can be improved.
  • the shielding sleeve 40 can also be fastened to the flexible wire 10 by a cable tie or a clamp.
  • the inner diameter of the shield sleeve 40 can also be controlled to prevent the shield sleeve 40 from being able to move at will.
  • the actual length of the flexible wire 10 is greater than the resonance length L of the flexible wire 10.
  • the shielding sleeve 40 is sleeved on the flexible wire 10 so that the equivalent length of the flexible wire 10 is greater than the actual length L of the flexible wire 10.
  • the actual length of the flexible wire 10 is named L3
  • the equivalent length of the flexible wire 10 is named L4.
  • the shielding sleeve 40 can move relative to the flexible wire 10 along the axial direction of the flexible wire 10 to change the length of the portion of the shielding sleeve 40 where the flexible wire 10 is sheathed.
  • the equivalent length L4 of the flexible wire 10 is greater than the actual length L3 of the flexible wire 10, and L4 deviates from the resonance length L of the flexible wire 10 relative to L3. In this way, the degree of heat generation at the end of the flexible lead 10 is reduced, and the safety performance of the intracranial deep electrode 100 can be improved.
  • the resonance length L of the flexible wire 10 is related to the parameters of the magnetic resonance device.
  • the resonance length L of the same flexible wire 10 in different magnetic resonance devices is different.
  • the user can change the flexible wire 10 in the shielding sleeve according to actual needs.
  • the length of the portion within 40 makes the equivalent length of the flexible wire 10 deviate from the actual length of the flexible wire 10 from the resonance length L of the flexible wire 10 to reduce the risk of heat generation at the end of the flexible wire 10.
  • the user can also select shielding sleeves 40 of different lengths according to actual needs, so as to change the sum of the length of the shielding sleeve 40 and the length of the flexible wire 10 outside the shielding sleeve 40.
  • the flexible wire 10, the electrode contact 20 and the pins are all non-magnetic materials, such as non-magnetic metal materials, conductive polymer materials, carbon nanotubes or graphene materials.
  • non-magnetic materials can prevent the flexible wire 10, the electrode contacts 20 and the pins from interfering with the magnetic field environment of the magnetic resonance device, thereby avoiding artifacts of the magnetic resonance device.
  • the intracranial deep electrode 100 further includes an inelastic sleeve 70.
  • the inelastic sleeve 70 can be sleeved on the flexible wire 10, and one end of the inelastic sleeve 70 can be connected to The plug 30 is connected, and the other end can be connected with a fixing nut 200 fixed to the head.
  • the fixing nut 200 can hinder the movement of the inelastic sleeve 70, thereby preventing the intracranial deep electrode 100 from being pulled out.
  • the length of the flexible wire 10 in the inelastic sleeve 70 is greater than the length of the inelastic sleeve 70.
  • the material of the inelastic sleeve 70 is a transparent material, which facilitates the user to observe the state of the flexible wire 10 in the inelastic sleeve 70.
  • the non-elastic sleeve 70 can also be made of non-magnetic materials to avoid the electrophysiological signal from being interfered by radio frequency electromagnetic waves during the transmission process.
  • one end of the non-elastic sleeve 70 is sleeved on the plug 30, and the other end is sleeved on the fixing nut 200, and the inelastic sleeve 70 can be fastened on the plug 30 and the fixing nut 200 by a clamp.
  • the non-elastic sleeve 70 is connected with the plug 30 and the fixing nut 200 only when necessary, and the inelastic sleeve 70 can be replaced when it is damaged.
  • the intracranial deep electrode 100 of this embodiment further includes a connecting portion (not shown in the figure). One end of the connecting portion is connected to the electrode contact 20, the other end is connected to the plug 30, and the connecting portion is located at the electrode. The length between the contact 20 and the plug 30 is less than the length of the flexible wire 10 between the electrode contact 20 and the plug 30.
  • the connection Tolerance of the intracranial deep electrode 100 can enhance the tensile strength of the intracranial deep electrode 100 and prevent the intracranial deep electrode 100 from being accidentally broken during the detection process.
  • the material of the connection part is a tensile material, such as glass fiber, which is convenient to obtain and does not affect the radio frequency magnetic field of the magnetic resonance device.
  • the connecting portion can also be made of other materials with higher tensile strength.
  • the intracranial deep electrode 100 further includes a flexible insulating tube 80 sheathed on the flexible wire 10, one end of the flexible insulating tube 80 is connected to the electrode contact 20, and the other end is connected to the housing.
  • the flexible insulating tube 80 integrates a plurality of flexible wires 10 into a bundle, thereby making the arrangement of the flexible wires 10 more regular. It can also prevent the flexible wire 10 from being exposed, improve the safety performance and service life of the intracranial deep electrode 100, and make the data transmission stable.
  • the electrode contact 20 of this embodiment has a ring structure, and the electrode contact 20 is sleeved on the flexible insulating tube 80, which can increase the contact area between the electrode contact 20 and the patient's deep brain tissue.
  • the intracranial deep electrode 100 further includes a rigid support rod 50 with a certain rigidity.
  • the rigid support rod 50 is inserted through the flexible insulating tube 80 so that the flexible insulating tube 80 is linear, which is convenient for the intracranial deep electrode 100
  • the end connected to the electrode contact 20 is inserted into the patient's head.
  • the material of the rigid support rod 50 in this embodiment is a shape memory material, such as a shape memory alloy material or a shape memory ceramic material. In this way, the rigid support rod 50 can be restored to its original shape after being bent by an external force, which prevents the intracranial deep electrode 100 from being scrapped due to the bending of the rigid support rod 50.
  • the intracranial deep electrode 100 also includes an end electrode 60, which is connected to the rigid support rod 50, and is electrically connected to the pins of the plug 30 through the flexible wire 10, and the end electrode 60 can collect the patient's deep brain tissue Of electrophysiological signals.
  • an electromagnetic induction element for identifying the position of the end electrode 60 may be provided in the end electrode 60 to feed back the position information of the end electrode 60 to an external device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Neurology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Physiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种颅内深部电极(100),包括柔性导线(10)、电极触点(20)、插头(30)及非弹性套管(70),该柔性导线(10)的一端与该电极触点(20)连接,另一端与该插头(30)连接,该非弹性套管(70)能够套设于柔性导线(10),且该非弹性套管(70)的一端能够与插头(30)连接,另一端能够与固定于头颅的固定螺母(200)连接。当颅内深部电极(100)受到拉拽力时,固定螺母(200)能够阻碍非弹性套管(70)移动,从而能够防止颅内深部电极(100)被拔出。

Description

颅内深部电极 技术领域
本申请涉及医疗器械技术领域,特别是涉及一种颅内深部电极。
背景技术
顽固性癫痫患者进行手术之前,需要通过颅内深部电极进行颅内脑电图监测,以确定致痫灶的位置。颅内深部电极一般包括电极触点及插头,电极触点与插头电连接,颅内深部电极设有电极触点的一端能够通过手术植入患者的颅内,插头则能够与脑电图仪连接,以使得电极触点采集到的电生理信号能够传输至脑电图仪内。
技术问题
检测之前,需要先在患者的头颅上钻孔,然后在患者的颅骨上拧入导向螺丝,且导向螺丝上还螺纹连接有固定螺母,固定螺母能够限制导向螺丝相对患者的头颅移动。颅内深部电极设有电极触点的一端穿设于导向螺丝,以深入至患者的头颅内部。然而,患者在进行脑电检测过程中,颅内深部电极可能因为意外被拔出,从而中断检测过程。
技术解决方案
本申请的目的在于提供一种颅内深部电极,旨在解决患者在进行脑电检测的过程中,颅内深部电极可能意外拔出而中断检测的问题。
为解决上述问题,本申请提供一种颅内深部电极,包括柔性导线、电极触点、插头及非弹性套管,所述柔性导线的一端与所述电极触点连接,另一端与所述插头连接,所述非弹性套管能够套设于所述柔性导线,且所述非弹性套管的一端能够与所述插头连接,另一端能够与固定于头颅的固定螺母连接。
可选地,所述柔性导线位于所述非弹性套管内的部分的长度大于所述非弹性套管的长度。
可选地,所述非弹性套管的材料为透明材料。
可选地,所述非弹性套管的一端套设于所述插头,另一端套设于所述固定螺母。
可选地,所述非弹性套管的材料为非磁性材料。
可选地,所述颅内深部电极还包括连接部,所述连接部的一端与所述电极触点连接,另一端与所述插头连接,且所述连接部位于所述电极触点与所述插头之间的长度小于所述柔性导线位于所述电极触点与所述插头之间的长度。
可选地,所述连接部的材料为抗拉材料。
可选地,所述颅内深部电极还包括能够套设于所述柔性导线的屏蔽套管,所述屏蔽套管的长度小于所述柔性导线的长度,且所述柔性导线能够折叠于所述屏蔽套管内。
可选地,所述颅内深部电极还包括能够套设于所述柔性导线的屏蔽套管,所述屏蔽套管能够相对所述柔性导线沿所述柔性导线的轴向移动,以改变所述屏蔽套管套设有所述柔性导线的部分的长度。
可选地,所述插头包括外壳及位于所述外壳内的针脚,且所述外壳与所述连接段连接,所述柔性导线、所述针脚及所述电极触点均设有多个,每一所述柔性导线连接每一所述针脚及每一所述电极触点。
可选地,所述柔性导线及所述电极触点的材料均为非磁性材料。
可选地,所述颅内深部电极还包括套设于所述柔性导线的柔性绝缘管,所述柔性绝缘管的一端与所述电极触点连接,另一端与所述插头连接,所述颅内深部电极还包括刚性支撑杆,所述刚性支撑杆穿设于所述柔性绝缘管,且所述刚性支撑杆位于所述柔性绝缘管连接有所述电极触点的一端。
可选地,所述刚性支撑杆的材料为形状记忆材料。
可选地,所述颅内深部电极还包括端部电极,所述端部电极与所述刚性支撑杆远离所述连接段的一端连接,并通过所述导线与所述插头电连接。
可选地,所述电极触点为环状结构。
有益效果
实施本申请实施例,将具有如下有益效果:
上述颅内深部电极,通过设置非弹性套管,非弹性套管能够套设于柔性导线,且非弹性套管的一端与插头连接,另一端与固定于头颅的固定螺母连接。当颅内深部电极受到拉拽力时,固定螺母能够阻碍非弹性套管移动,从而能够防止颅内深部电极被拔出。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1为本申请一实施例的颅内深部电极的部分结构的示意图;
图2为图1中颅内深部电极植入患者头颅内时柔性导线的初始状态的示意图;
图3为图2中颅内深部电极的柔性导线的发热程度与柔性导线长度的关系图;
图4为图2中颅内深部电极调整柔性导线长度后的示意图;
图5为图4中颅内深部电极的柔性导线的发热程度与柔性导线长度的关系图;
图6为另一长度的颅内深部电极植入患者头颅内时柔性导线的初始状态的示意图;
图7为图6中颅内深部电极的柔性导线的发热程度与柔性导线长度的关系图;
图8为图6中颅内深部电极调整柔性导线长度后的另一示意图;
图9为图8中颅内深部电极的柔性导线的发热程度与柔性导线长度的关系图;
图10为图1中颅内深部电极植入患者头颅内的示意图;
图11为图1中颅内深部电极的部分结构的示意图。
说明书中附图标记如下:
100、颅内深部电极;
10、柔性导线;
20、电极触点;
30、插头;
40、屏蔽套管;
50、刚性支撑杆;
60、端部电极;
70、非弹性套管;
80、柔性绝缘管;
200、固定螺母。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请一实施例提供一种颅内深部电极100,用于检测患者的深部脑组织的电生理活动。如图1所示,颅内深部电极100包括柔性导线10、电极触点20及插头30。柔性导线10的一端与电极触点20连接,另一端与插头30连接。
在本实施例中,插头30包括外壳及位于外壳内的针脚,柔性导线10、针脚及电极触点20均设有多个,每一柔性导线10连接每一针脚及每一电极触点20。插头30内各针脚之间相互独立,集成度高,便于与脑电图仪连接。
如图2所示,颅内深部电极100设有电极触点20的一端能够植入患者的头颅内,以使得电极触点20能够采集患者的深部脑组织的电生理信号。由于柔性导线10为细长结构,柔性导线10会吸收磁共振设备产生的射频磁场能量,并在柔性导线10的端部产生能量沉积,从而导致与柔性导线10连接的电极触点20发热。如图3所示,颅内深部电极100的柔性导线10的发热程度随柔性导线10的长度变化而变化,并有一峰值,与该峰值对应的柔性导线10的长度即为柔性导线10的共振长度。为便于说明,将柔性导线10的共振长度命名为L。由图3可知,柔性导线10的长度偏离共振长度L越远,柔性导线10的发热程度越低。
如图4所示,为了降低柔性导线10的发热程度,本实施例的颅内深部电极100还包括屏蔽套管40,屏蔽套管40能够套设于柔性导线10,且屏蔽套管40的长度小于柔性导线10的长度,柔性导线10的部分结构折叠于屏蔽套管40内。通过设置屏蔽套管40,屏蔽套管40能够屏蔽磁共振设备产生的射频电磁波,使得柔性导线10位于磁共振设备的射频磁场内的长度等效为屏蔽套管40的长度与位于屏蔽套管40外的柔性导线10的长度之和。为便于描述,将柔性导线10的实际长度命名为L1,柔性导线10的等效长度命名为L2。此时,如图5所示,柔性导线10的等效长度L2小于柔性导线10的实际长度L1,且L2相对L1偏离柔性导线10的共振长度L。这样,柔性导线10的端部的发热程度降低,能够提高颅内深部电极100的安全性能。为了防止屏蔽套管40套设于柔性导线10时相对柔性导线10移动,屏蔽套管40还可以通过扎带或卡箍等扎紧在柔性导线10上。当然,也可以通过控制屏蔽套管40的内径防止屏蔽套管40能够随意移动。
如图6及图7所示,在另一实施例中,柔性导线10的实际长度大于柔性导线10的共振长度L。此时,为了减小柔性导线10的发热程度,屏蔽套管40套设于柔性导线10,以使得柔性导线10的等效长度大于柔性导线10的实际长度L。为便于描述,将柔性导线10的实际长度命名为L3,柔性导线10的等效长度命名为L4。如图8所示,屏蔽套管40能够相对柔性导线10沿柔性导线10的轴向移动,以改变屏蔽套管40套设有柔性导线10的部分的长度。此时,如图9所示,柔性导线10的等效长度L4大于柔性导线10的实际长度L3,且L4相对L3偏离柔性导线10的共振长度L。这样,柔性导线10的端部的发热程度降低,能够提高颅内深部电极100的安全性能。
可以理解地,柔性导线10的共振长度L与磁共振设备的参数有关,相同的柔性导线10在不同的磁共振设备内的共振长度L不同,用户可以根据实际需要改变柔性导线10位于屏蔽套管40内的部分的长度,从而使得柔性导线10的等效长度相对柔性导线10的实际长度偏离柔性导线10的共振长度L,以降低柔性导线10端部发热的风险。而且,用户还可以根据实际需要选用不同长度的屏蔽套管40,以改变屏蔽套管40的长度与位于屏蔽套管40外的柔性导线10的长度之和。
值得一提的是,在本实施例中,柔性导线10、电极触点20及针脚的材料均为非磁性材料,例如非磁性金属材料、导电高分子材料、碳纳米管或石墨烯材料等。采用非磁性材料能够避免柔性导线10、电极触点20及针脚干扰磁共振设备的磁场环境,从而避免磁共振设备产生伪影。
此外,在本实施例中,如图10所示,颅内深部电极100还包括非弹性套管70,非弹性套管70能够套设于柔性导线10,且非弹性套管70的一端能够与插头30连接,另一端能够与固定于头颅的固定螺母200连接。这样,当颅内深部电极100受到拉拽力时,固定螺母200能够阻碍非弹性套管70移动,从而能够防止颅内深部电极100被拔出。
进一步地,非弹性套管70内的柔性导线10的长度大于非弹性套管70的长度,颅内深部电极100受到拉拽力时,拉拽力由非弹性套管70承受,非弹性套管70内的柔性导线10始终保持松弛状态,不会承受拉拽力而损坏。
进一步地,非弹性套管70的材料为透明材料,方便用户观察非弹性套管70内的柔性导线10的状态。而且,非弹性套管70还可以采用非磁性材料,以避免电生理信号在传输过程中受到射频电磁波的干扰。
进一步地,非弹性套管70的一端套设于插头30,另一端套设于固定螺母200,而且,非弹性套管70可以通过卡箍箍紧在插头30及固定螺母200上。这样,非弹性套管70只有在有需要时才与插头30及固定螺母200连接,且非弹性套管70损坏时可以更换。
值得一提的是,本实施例的颅内深部电极100还包括连接部(图中未示出),连接部的一端与电极触点20连接,另一端与插头30连接,且连接部位于电极触点20与插头30之间的长度小于柔性导线10位于电极触点20与插头30之间的长度。当颅内深部电极100受到拉拽力时,由于连接部位于电极触点20与插头30之间的长度小于柔性导线10位于电极触点20与插头30之间的长度,该拉拽力由连接部承受,可以增强颅内深部电极100的抗拉强度,避免颅内深部电极100在检测过程中被意外拉断。在本实施例中,连接部的材料为抗拉材料,如玻璃纤维等,取材方便,而且不会影响磁共振设备的射频磁场。当然,在其他实施例中,连接部也可以采用其他抗拉强度较大的材料。
此外,颅内深部电极100还包括套设于柔性导线10的柔性绝缘管80,柔性绝缘管80的一端与电极触点20连接,另一端与外壳连接。可以理解地,柔性绝缘管80使得多根柔性导线10集成为束状,从而使得柔性导线10布置更加规整。还可以避免柔性导线10外露,提高颅内深部电极100的安全性能及使用寿命,并使得数据传输稳定性较好。而且,本实施例的电极触点20为环状结构,电极触点20套设于柔性绝缘管80,可以增大电极触点20与患者的深部脑组织的接触面积。
如图11所示,颅内深部电极100还包括具有一定刚度的刚性支撑杆50,刚性支撑杆50穿设于柔性绝缘管80,以使柔性绝缘管80呈直线型,便于颅内深部电极100连接有电极触点20的一端插入至患者的头颅内。而且,本实施例的刚性支撑杆50的材料为形状记忆材料,如形状记忆合金材料或形状记忆陶瓷材料等。这样,刚性支撑杆50受到外力弯折后可以恢复原有的形状,避免颅内深部电极100由于刚性支撑杆50弯折后导致颅内深部电极100整体报废。
进一步地,颅内深部电极100还包括端部电极60,端部电极60与刚性支撑杆50连接,并通过柔性导线10与插头30的针脚电连接,端部电极60能够采集患者的深部脑组织的电生理信号。而且,端部电极60内还可以设置用于标识端部电极60的位置的电磁感应元件,以将端部电极60的位置信息反馈至外部设备。
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。

Claims (15)

  1. 一种颅内深部电极,其特征在于,包括柔性导线、电极触点、插头及非弹性套管,所述柔性导线的一端与所述电极触点连接,另一端与所述插头连接,所述非弹性套管能够套设于所述柔性导线,且所述非弹性套管的一端能够与所述插头连接,另一端能够与固定于头颅的固定螺母连接。
  2. 如权利要求1所示的颅内深部电极,其特征在于,所述柔性导线位于所述非弹性套管内的部分的长度大于所述非弹性套管的长度。
  3. 如权利要求1所示的颅内深部电极,其特征在于,所述非弹性套管的材料为透明材料。
  4. 如权利要求1所示的颅内深部电极,其特征在于,所述非弹性套管的一端套设于所述插头,另一端套设于所述固定螺母。
  5. 如权利要求1所示的颅内深部电极,其特征在于,所述非弹性套管的材料为非磁性材料。
  6. 如权利要求1所示的颅内深部电极,其特征在于,所述颅内深部电极还包括连接部,所述连接部的一端与所述电极触点连接,另一端与所述插头连接,且所述连接部位于所述电极触点与所述插头之间的长度小于所述柔性导线位于所述电极触点与所述插头之间的长度。
  7. 权利要求6所示的颅内深部电极,其特征在于,所述连接部的材料为抗拉材料。
  8. 权利要求1所示的颅内深部电极,其特征在于,所述颅内深部电极还包括能够套设于所述柔性导线的屏蔽套管,所述屏蔽套管的长度小于所述柔性导线的长度,且所述柔性导线能够折叠于所述屏蔽套管内。
  9. 如权利要求1所示的颅内深部电极,其特征在于,所述颅内深部电极还包括能够套设于所述柔性导线的屏蔽套管,所述屏蔽套管能够相对所述柔性导线沿所述柔性导线的轴向移动,以改变所述屏蔽套管套设有所述柔性导线的部分的长度。
  10. 如权利要求1所示的颅内深部电极,其特征在于,所述插头包括外壳及位于所述外壳内的针脚,且所述外壳与所述连接段连接,所述柔性导线、所述针脚及所述电极触点均设有多个,每一所述柔性导线连接每一所述针脚及每一所述电极触点。
  11. 如权利要求1所示的颅内深部电极,其特征在于,所述柔性导线及所述电极触点的材料均为非磁性材料。
  12. 如权利要求1所示的颅内深部电极,其特征在于,所述颅内深部电极还包括套设于所述柔性导线的柔性绝缘管,所述柔性绝缘管的一端与所述电极触点连接,另一端与所述插头连接,所述颅内深部电极还包括刚性支撑杆,所述刚性支撑杆穿设于所述柔性绝缘管,且所述刚性支撑杆位于所述柔性绝缘管连接有所述电极触点的一端。
  13. 如权利要求12所示的颅内深部电极,其特征在于,所述刚性支撑杆的材料为形状记忆材料。
  14. 如权利要求12所示的颅内深部电极,其特征在于,所述颅内深部电极还包括端部电极,所述端部电极与所述刚性支撑杆远离所述连接段的一端连接,并通过所述导线与所述插头电连接。
  15. 如权利要求1所示的颅内深部电极,其特征在于,所述电极触点为环状结构。
     
PCT/CN2019/096391 2019-07-17 2019-07-17 颅内深部电极 WO2021007817A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980001064.4A CN110691549B (zh) 2019-07-17 2019-07-17 颅内深部电极
PCT/CN2019/096391 WO2021007817A1 (zh) 2019-07-17 2019-07-17 颅内深部电极
US16/549,624 US11497448B2 (en) 2019-07-17 2019-08-23 Deep intracranial electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/096391 WO2021007817A1 (zh) 2019-07-17 2019-07-17 颅内深部电极

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/549,624 Continuation US11497448B2 (en) 2019-07-17 2019-08-23 Deep intracranial electrode

Publications (1)

Publication Number Publication Date
WO2021007817A1 true WO2021007817A1 (zh) 2021-01-21

Family

ID=69117748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096391 WO2021007817A1 (zh) 2019-07-17 2019-07-17 颅内深部电极

Country Status (3)

Country Link
US (1) US11497448B2 (zh)
CN (1) CN110691549B (zh)
WO (1) WO2021007817A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114027843B (zh) * 2022-01-07 2022-04-22 诺尔医疗(深圳)有限公司 植入装置
CN114027844B (zh) * 2022-01-07 2022-04-22 诺尔医疗(深圳)有限公司 植入装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102824689A (zh) * 2012-09-07 2012-12-19 清华大学 植入式电极及其制备方法以及包括所述电极的医疗组件
CN104083823A (zh) * 2014-06-27 2014-10-08 清华大学 一种mri兼容的植入式电极
US8968331B1 (en) * 2010-04-24 2015-03-03 Jerzy Roman Sochor Implantable lead and surgical accessories
CN105727440A (zh) * 2016-04-07 2016-07-06 苏州景昱医疗器械有限公司 脑深部刺激电极、其制作方法及刺激系统
CN206325121U (zh) * 2016-08-11 2017-07-14 杨春晖 一种用于脑深部电刺激的多功能神经刺激电极
CN109199377A (zh) * 2017-07-03 2019-01-15 诺尔医疗(深圳)有限公司 颅内深部电极和医疗器械
CN208404572U (zh) * 2017-07-18 2019-01-22 中国人民解放军总医院第一附属医院 一种用于记录脑深部信号的复合型电极
CN109887392A (zh) * 2019-04-10 2019-06-14 山东大学 一种实验室用脑部穿刺精度检测装置及其使用方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4632120A (en) * 1985-04-25 1986-12-30 Westinghouse Electric Corp. Subkeratinous electroencephalographic probe
US5375321A (en) * 1993-03-30 1994-12-27 United States Department Of Energy Method for fabricating fan-fold shielded electrical leads
EP1952764B1 (en) * 2003-11-25 2010-05-05 University-Industry Cooperation Group of Kyung Hee University System and method for visualizing conductivity and current density distribution in object
JP2009076655A (ja) * 2007-09-20 2009-04-09 Fujimori Kogyo Co Ltd ディスプレイ用電磁波シールド材の製造方法、及びディスプレイ用電磁波シールド材を用いたディスプレイ用光学フィルター
EP2249920B1 (en) * 2008-02-06 2015-07-01 Cardiac Pacemakers, Inc. Lead with mri compatible design features
US8704729B2 (en) * 2008-06-26 2014-04-22 Kevin B Tucek Extended varying angle antenna for electromagnetic radiation dissipation device
JP5362270B2 (ja) * 2008-07-03 2013-12-11 矢崎総業株式会社 シールド電線、及び該シールド電線の編組端末処理方法、並びに、編組端末処理装置
US8441154B2 (en) * 2008-09-27 2013-05-14 Witricity Corporation Multi-resonator wireless energy transfer for exterior lighting
US20120235566A1 (en) * 2008-09-27 2012-09-20 Aristeidis Karalis Tunable wireless energy transfer for lighting applications
US8442644B2 (en) * 2008-11-18 2013-05-14 Greatbatch Ltd. Satellite therapy delivery system for brain neuromodulation
WO2010085465A1 (en) * 2009-01-20 2010-07-29 Molex Incorporated Plug connector with external emi shielding capability
US8996126B2 (en) * 2009-02-04 2015-03-31 Greatbatch Ltd. Composite RF current attenuator for a medical lead
US20100317921A1 (en) * 2009-06-11 2010-12-16 Prescient Medical, Inc. Balloon expandable intravascular basket catheter
JP5722562B2 (ja) * 2010-07-21 2015-05-20 矢崎総業株式会社 シールド部材、ワイヤハーネス、及びワイヤハーネス製造方法
CN202058503U (zh) * 2011-02-24 2011-11-30 深圳立讯精密工业股份有限公司 一种网状绝缘管的高速传输连接线结构
CN102243905B (zh) * 2011-07-11 2013-08-21 江苏亨通线缆科技有限公司 抗电磁干扰的高速数据电缆
RU2014118621A (ru) * 2011-10-13 2015-11-20 Лумоптик Ллк Система наведения иглы
WO2014137021A2 (ko) * 2013-03-08 2014-09-12 (주)비젼테크 누설 에너지 방지 및 전자파 차폐 전극구조
CN104605847A (zh) * 2014-01-27 2015-05-13 北京华科恒生医疗科技有限公司 一种颅内深部电极
DE102014004392A1 (de) * 2014-03-26 2015-10-15 Epsilon Bootes - Pi Entwicklung Von Trainingswissenschaftlichen Sportgeräten E.K. Mobile Spiroergometrie, EEG, 4D-EIT mit 4D-Ultraschall, Startzeit Zwischenzeitregistration Eindzeit, Schwimm Laufwiederstand Zug gerät, Venen Arterien Wahrnehmende 4D-Kamera als Einheit oder Individuell im Verarbeitsprozessor Bio-Physiologische als Megani
CN203914915U (zh) * 2014-04-23 2014-11-05 北京华科恒生医疗科技有限公司 一种颅内皮层电极
CN204067727U (zh) * 2014-09-18 2014-12-31 北京品驰医疗设备有限公司 一种带自锁功能的电缆连接结构
CN204289940U (zh) * 2014-11-27 2015-04-22 深圳市明通辉电子有限公司 抗摇摆性能强的带屏蔽数据线
CN104473637B (zh) * 2014-12-17 2017-04-26 中国科学院电子学研究所 用于脑电信号探测的电极探针及应用其的干电极单元
CN104606780B (zh) * 2015-01-19 2016-09-21 清华大学 一种mri相容的植入式医疗器械及其连接方法和连接机构
CN104606781B (zh) * 2015-01-19 2017-01-04 清华大学 一种mri相容的分体植入式医疗器械
WO2016176403A1 (en) * 2015-04-28 2016-11-03 Nosler Michael Stylet and needle combinations used to collect tissue samples during endoscopic procedures
CN205831787U (zh) * 2016-05-31 2016-12-28 常州瑞神安医疗器械有限公司 一种颅内电极
CN206491800U (zh) * 2016-08-18 2017-09-15 常州瑞神安医疗器械有限公司 颅内电极
CN208864321U (zh) * 2017-08-25 2019-05-17 苏州乐普斯电子有限公司 一种金盘电极
CN208552855U (zh) * 2017-09-29 2019-03-01 陈嘉志 一种颅孔电极导线固定装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968331B1 (en) * 2010-04-24 2015-03-03 Jerzy Roman Sochor Implantable lead and surgical accessories
CN102824689A (zh) * 2012-09-07 2012-12-19 清华大学 植入式电极及其制备方法以及包括所述电极的医疗组件
CN104083823A (zh) * 2014-06-27 2014-10-08 清华大学 一种mri兼容的植入式电极
CN105727440A (zh) * 2016-04-07 2016-07-06 苏州景昱医疗器械有限公司 脑深部刺激电极、其制作方法及刺激系统
CN206325121U (zh) * 2016-08-11 2017-07-14 杨春晖 一种用于脑深部电刺激的多功能神经刺激电极
CN109199377A (zh) * 2017-07-03 2019-01-15 诺尔医疗(深圳)有限公司 颅内深部电极和医疗器械
CN208404572U (zh) * 2017-07-18 2019-01-22 中国人民解放军总医院第一附属医院 一种用于记录脑深部信号的复合型电极
CN109887392A (zh) * 2019-04-10 2019-06-14 山东大学 一种实验室用脑部穿刺精度检测装置及其使用方法

Also Published As

Publication number Publication date
US20210015429A1 (en) 2021-01-21
US11497448B2 (en) 2022-11-15
CN110691549A (zh) 2020-01-14
CN110691549B (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
US10293156B2 (en) Paired medical lead bodies with braided conductive shields having different physical parameter values
JP5436383B2 (ja) Ekgワイヤリングシステム
WO2021007817A1 (zh) 颅内深部电极
JPS61249438A (ja) 低雑音脳波プロ−ブ配線装置
US20120277840A1 (en) Electrode catheter for interventional use
US7272427B2 (en) Conductor
JP6571654B2 (ja) 生体電位測定用平面磁気共鳴セーフケーブル
JP6630832B2 (ja) センサー対応医療デバイスのためのコネクタシールド
WO2021007818A1 (zh) 颅内深部电极
CN111312440A (zh) 线缆单元和穿戴式生理参数监测系统
JP4805345B2 (ja) コンパクトに終端された電気部品を有するカテーテル
JP2011101689A (ja) 電子内視鏡の信号ケーブル
CN105431073A (zh) 内窥镜用引导管及内窥镜
CN210043995U (zh) 线缆单元和穿戴式生理参数监测系统
US10603488B2 (en) Implantable medical devices having diamagnetic conductors and contacts
CN209525950U (zh) 线缆单元和穿戴式生理参数监测系统
JP3374711B2 (ja) 電子内視鏡のコード連結構造
US20210015392A1 (en) Deep intracranial electrode, electroencephalograph and manufacturing method thereof
US10357174B1 (en) Adjustable leadwire device for patient physiological monitoring and methods for making the same
WO2021087460A1 (en) Electrode conversion system and apparatus
Netherton et al. IOM Instrumentation Layout and Electrical Interference
JP2003024271A (ja) 内視鏡
JP2008084546A (ja) 電線及びカテーテル

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938092

Country of ref document: EP

Kind code of ref document: A1