WO2021007746A1 - 水刺非织造材料及其加工方法 - Google Patents

水刺非织造材料及其加工方法 Download PDF

Info

Publication number
WO2021007746A1
WO2021007746A1 PCT/CN2019/095987 CN2019095987W WO2021007746A1 WO 2021007746 A1 WO2021007746 A1 WO 2021007746A1 CN 2019095987 W CN2019095987 W CN 2019095987W WO 2021007746 A1 WO2021007746 A1 WO 2021007746A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
spunlace
sheath
drying
core composite
Prior art date
Application number
PCT/CN2019/095987
Other languages
English (en)
French (fr)
Inventor
史成玉
朱湧
刘双营
夏伦全
王远富
商延航
史成国
Original Assignee
山东省永信非织造材料有限公司
Mbp投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东省永信非织造材料有限公司, Mbp投资有限公司 filed Critical 山东省永信非织造材料有限公司
Priority to PCT/CN2019/095987 priority Critical patent/WO2021007746A1/zh
Publication of WO2021007746A1 publication Critical patent/WO2021007746A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/49Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation entanglement by fluid jet in combination with another consolidation means
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres

Definitions

  • the invention belongs to the field of textiles. Specifically, the invention relates to a spunlace nonwoven material and a processing method thereof.
  • Non-woven materials are sheets, webs or batts made of fibers that are arranged in a specific direction or randomly arranged through friction, entanglement or bonding or a combination of these methods.
  • Spunlace nonwovens are made by spraying high-pressure fine water onto one or more layers of fiber webs to entangle the fibers, so that the webs can be reinforced and have a certain strength.
  • the resulting fabric is It is a spunlace nonwoven material.
  • Its fiber raw materials have a wide range of sources, including polyester, nylon, polypropylene, viscose fiber, chitin fiber, superfine fiber, tencel, silk, bamboo fiber, wood pulp fiber, seaweed fiber, etc.
  • curtain materials have become one of the important uses of non-woven fabrics. Since the processing method of non-woven materials is simpler and higher in production efficiency than knitted fabrics and woven fabrics, it has largely replaced traditional textile materials. It has been widely used in the fields of light industry, textiles, pharmaceuticals, electronics, and food. Spunlace nonwovens are made of flexible entanglement, no damage to fibers, uniform air permeability, soft moisture absorption, high-strength lint-free and other characteristics. It is the fabric with the appearance closest to traditional textiles, and it has high output and a wide range of applications.
  • This project adopts three kinds of fibers such as skin-core composite fiber and polyester fiber, uses spunlace nonwoven production technology, adopts hydraulic entanglement + thermal bonding double consolidation method, effectively avoids the polluting sizing process, and is calendered. , Produce a certain degree of stiffness, smoothness, smooth and uniform spunlace non-woven materials, can achieve the effect of bright white, uniform printing and dyeing, foldable, shading and breathable, and has high-yield, no slurry, low cost and other environmentally friendly and efficient Advantage. To achieve the standard requirements for curtain production and processing.
  • non-woven curtain materials in the prior art also have room for further improvement in terms of stiffness, strength, and aesthetics of the fabric surface, especially ease of processing.
  • the existing non-woven curtain materials in the subsequent processing process It is not easy to be discounted or easy to stick when sanding, resulting in difficulties in subsequent processing.
  • the purpose of the present invention is to provide a spunlace nonwoven material suitable as a honeycomb shade material and a processing method thereof.
  • a hybrid fiber in the first aspect of the present invention, includes a sheath-core composite fiber, a whitened polyester fiber and a high-strength polyester fiber.
  • the content of the sheath-core composite fiber in the mixed fiber is lower than the content of the high-strength polyester fiber by weight.
  • the weight ratio of the sheath-core composite fiber, the whitened polyester fiber, and the high-strength polyester fiber in the mixed fiber is 1.5-2.5:4.5-6.5:2-3; preferably, the sheath-core composite fiber
  • the weight ratio of fiber, whitening polyester fiber and high-strength polyester fiber is 2:5.5:2.5.
  • the mixed fiber includes:
  • High-strength polyester fiber 20-30 parts by weight.
  • the mixed fiber includes:
  • the mixed fiber includes:
  • High-strength polyester fiber 25 parts by weight.
  • the sheath-core composite fiber skin has a melting point of 120°C to 180°C; preferably, the sheath-core composite fiber skin has a melting point of 140°C to 170°C; more preferably, the sheath-core composite fiber The melting point of the type composite fiber skin is about 160°C.
  • a non-woven material is provided, and the non-woven material is processed from the mixed fiber described in the first aspect of the present invention.
  • the non-woven material is a spunlace non-woven material.
  • the non-woven material is prepared from the hybrid fiber described in the first aspect of the present invention after being hydro-entangled and then thermally bonded and consolidated.
  • the third aspect of the present invention provides a curtain or curtain material, and the honeycomb sun-shading curtain material is processed from the non-woven material described in the second aspect of the present invention.
  • the fourth aspect of the present invention provides a method for manufacturing a spunlace nonwoven material, the method comprising the steps:
  • the fiber web prepared in step (1) is subjected to spunlace processing by a spunlace machine
  • the fiber web after drying in step (3) is calendered and finished.
  • the multi-layer fiber webs are superposed and mixed and uniformly transported to the hydroentanglement machine for hydroentangling processing, preferably 3-5 layers of fiber webs.
  • the drying temperature is 190°C-200°C.
  • the spunlace processed fiber web is transported to a dryer for drying and curing, wherein the drying and curing includes the first drying and curing and the second drying and curing. Drying and curing, the first drying and curing temperature is 190 ⁇ 5°C, and the second drying and curing temperature is 205 ⁇ 5°C. Preferably, the speed is 30-35m/min.
  • the temperature during the calendering finishing process is 100°C-140°C; preferably about 120°C.
  • Figure 1 is an electron micrograph of the skin-core structure of the skin-core composite fiber and the adhesion of the skin layer after melting.
  • Figure 2 is an electron micrograph of whitened polyester fiber.
  • Figure 3 shows the adhesion phenomenon of existing nonwoven materials during the subsequent processing and folding process
  • the non-woven material is made of skin-core composite fiber, whitened polyester fiber and high-strength polyester fiber through spunlace processing.
  • the obtained non-woven material has higher strength, uniform stiffness, significantly improved wear resistance, and is easier to process. It can meet the requirements of shading materials and can be used in the field of shading, especially the field of honeycomb curtains.
  • the invention also relates to an optimized and adjusted processing method of the spunlace nonwoven material.
  • the low melting point of the composite fiber outer layer is used to increase the stiffness and strength of the cloth surface, replacing chemical adhesives, while avoiding the adhesion of post-processing; using the whitening fiber to increase the whiteness of the cloth surface and enhance the printing effect to achieve Clean and beautiful purpose; choose high-strength fiber to improve the fabric surface evenness, vertical and horizontal strength, and shading.
  • the sheath-core composite fiber is a fiber formed by two different polymers distributed in the same fiber with a sheath-core structure (see Figure 1).
  • the sheath polymer has the characteristics of low melting point and good flexibility.
  • the core polymer has the characteristics of high melting point and high strength.
  • low melting point modified polyester and conventional polyester melt can be spun by composite spinning.
  • the core layer of the skin-core composite fiber finally formed is polyester, and the skin layer is low-melting modified polyester.
  • the sheath-core composite fiber can be purchased through commercial channels, and the sheath-core composite fiber with specific sheath and core melting points can be customized according to actual needs.
  • the melting point of the skin layer of the sheath-core composite fiber is 100°C to 160°C; the melting point of the core layer is 150°C to 280°C.
  • the melting point of the skin layer of the conventional copet composite fiber in the art is about 110°C, and the melting point of the core layer is about 256°C (such as the 8040 copet composite fiber produced by Shanghai Yuggling Industrial Co., Ltd.).
  • the core-sheath composite fiber can also be called a low-melting composite fiber.
  • the skin layer polymer with low melting point melts and plays a role in adhesion and adhesion in the fiber web, while the core layer polymer with high melting point and high strength plays a role in supporting the fiber web in adhesion.
  • the sheath-core composite fiber can be divided into polyethylene/polypropylene (PE/PP), polyethylene/polyester (PE/PET), modified copolyester/polyester, etc.
  • PE/PP polyethylene/polypropylene
  • PET polyethylene/polyester
  • modified copolyester/polyester etc.
  • a sheath-core composite fiber modified copolyester/polyester having a sheath melting point of 120°C to 180°C is preferred; and preferably, the core layer melting point is 230°C to 280°C.
  • the sheath-core composite fiber skin has a melting point of 140°C to 170°C; most preferably, the sheath-core composite fiber skin has a melting point of about 160°C.
  • the sheath-core composite fiber suitable for the present invention can be purchased through conventional commercial channels.
  • the whitening polyester fiber is added with optical brightener components in the PET spinning process to improve the whiteness of the fiber and the vividness of dyeing. At the same time, it has strong ultraviolet absorption capacity and good shielding performance.
  • the main principle is whitening
  • the agent can convert ultraviolet rays in sunlight into visible light.
  • the whitened polyester fiber can be purchased through conventional commercial channels.
  • the whitening polyester fiber content when the whitening polyester fiber content is less than 50%, the whitening effect will not be obvious; optimally, the whitening polyester fiber content is 55%.
  • Figure 2 is an electron micrograph of whitened polyester fiber.
  • a single fiber with a strength of 5.6-8.0CN/dtex is called a high-strength fiber.
  • High-strength fibers used as textile materials have better properties than natural fibers. They not only retain the characteristics of conventional chemical fibers, but also have softness, flexibility, and smoothness; the bending radius is small, resulting in special luster and color; the aspect ratio is large, Easy to entangle; blending with other fibers can increase the number of fibers per unit area, improve the uniformity of the fiber web, and reduce the unevenness of strength.
  • the high-strength polyester fiber in the present invention refers to a polyester fiber with a single fiber denier strength of 5.6 CN/dtex or more; preferably, a polyester fiber with a denier strength in the range of 5.6 to 8.0 CN/dtex.
  • the high-strength polyester fiber suitable for the present invention can be purchased through conventional commercial channels.
  • the "hybrid fiber” is formed by mixing various fibers, and at least includes sheath-core composite fiber, whitening polyester fiber and high-strength polyester fiber.
  • the "hybrid fiber” is formed by mixing sheath-core composite fibers, whitening polyester fibers and high-strength polyester fibers in a specific ratio.
  • the weight ratio of the sheath-core composite fiber, the whitened polyester fiber and the high-strength polyester fiber is 1.5-2.5:4.5-6.5:2-3; preferably, the sheath-core composite fiber, the whitened polyester fiber
  • the weight ratio of fiber to high-strength polyester fiber is 2:5.5:2.5.
  • the nonwoven material prepared by using the mixed fiber of the present invention has unexpectedly excellent technical effects, has high vertical and horizontal strength, uniform stiffness, significantly improved abrasion resistance, bright dyeing vividness, and is easier to process. It can meet the requirements of honeycomb shading materials.
  • the present invention provides a method for manufacturing a spunlace nonwoven material.
  • the method includes the steps:
  • the fiber web prepared in step (1) is subjected to spunlace processing by a spunlace machine
  • the fiber web after drying in step (3) is calendered and finished.
  • the method includes the steps:
  • the three fiber materials of sheath-core composite fiber, whitening polyester and high-strength polyester are compounded according to a specific weight ratio. After the raw materials are fully opened and mixed through the blowing and mixing equipment, they are transported to the air pressure cotton box through the fan.
  • the double-carding and direct laying process is used to card the mixed fibers into a single fiber state.
  • the speed ratio of the doffer and the messy roller of the carding machine is 2.6 times to ensure that the fiber web after the carding machine has no cloud spots and no holes.
  • the net surface is uniform, the multi-layer fiber net combed by the two carding machines is laid and transported to the spunlace machine for reinforcement.
  • the spunlace machine performs spunlace reinforcement on the fiber web.
  • the two rollers of the spunlace machine used all use rebound drum sleeves instead of stainless steel wire mesh.
  • the air permeability of the drum sleeves is 8%, which enhances the spunlace processing.
  • the rebound effect of the water jet improves the fiber entanglement coefficient and reduces the edge breakage and web sticking caused by the stainless steel wire mesh.
  • the effective width of the cloth surface can reach 2.55 meters.
  • the double-row needle board is used instead of the single-row needle board.
  • the flow rate of the water needle is increased and the pressure of the water needle is reduced to reduce accidental transfer of water to the fiber, reduce cloud spots, and improve the fabric style.
  • the dehydration adopts vacuum suction and negative pressure. Reached 30000pa.
  • the pressure of the rolling car is 0.4MPa, and the cloth surface is thinned to 0.4mm to facilitate the subsequent drying and calendering processes.
  • the fibers are transported to the dryer for drying and curing.
  • the temperature of the first oven is 190 ⁇ 5°C
  • the temperature of the second oven is 205 ⁇ 5°C
  • the speed is 30-35m/min.
  • the core composite fiber melts, and the cloth mask has the required stiffness.
  • the spunlace cloth is processed by a calendering finishing process.
  • the calendering temperature is 120 ⁇ 2°C
  • the pressure is 20bar
  • the speed is 30m/min.
  • the honeycomb type sunshade spunlace nonwoven material of the present invention uses three raw materials of skin-core composite fiber, whitening polyester and high-strength polyester, and the three raw materials are compounded in a certain proportion, of which the skin-core composite fiber accounts for 20%, The whitening polyester fiber accounts for 55%, and the high-strength polyester fiber accounts for 25%. It is grabbed by a cotton grab or weighing machine, mixed and opened by a blower, and then fully opened and mixed, and then conveyed to the air pressure cotton box by a fan.
  • the carding machine is carded into a fiber web in a single fiber state, and the fiber webs carded by the two carding machines are stacked up and down, and then the fiber web is entangled up and down through the spunlace reinforcement process, and then dehydrated and dried by a dryer. It is cured, calendered, and finally cut and packaged.
  • the sheath-core composite fiber has a specification of 3.0-5.0dtex and a length of 38-51mm; the whitened polyester fiber has a specification of 1-2dtex and a length of 38-51mm The specification of the high-strength polyester fiber is 0.5-1dtex, and the length is 38-51mm.
  • the carding machine adopts a double-carding direct-laying method, and the mess ratio is 2.6.
  • the net surface after the carding machine has no cloud spots, and the multi-layer fiber nets are superposed and mixed and transported to the spunlace machine evenly.
  • the spunlace machine adopts a double-roller web forming process and utilizes a rebound entangled drum sleeve structure, in which the effective width of the jet plate reaches 2.55m.
  • the first and second rollers of the spunlace reinforcement spunlace machine all adopt the rebound entangled drum cover, the air permeability of the drum cover is 8%, and the effective width of the cloth surface is 2.55 meters.
  • the double-row needle board is used to replace the single-row needle board, and the water needle flow is increased, the water needle pressure is reduced, the accidental transfer of water to the fiber is reduced, the cloud spot is reduced, and the cloth style is improved.
  • the dehydration is vacuum suction, and the negative pressure is 30,000 Pa.
  • the rolling mill is used for dehydration, and the rolling pressure is 0.4 MPa, which reduces the thickness of the cloth surface.
  • the calendering finishing adopts vacuum suction, and the pressure used for the dewatering of the rolling car is 0.4 MPa, which reduces the thickness of the cloth surface.
  • the temperature of the first oven of the dryer is 190 ⁇ 5°C
  • the temperature of the second oven is 205 ⁇ 5°C
  • the speed is 30-35m/min, so that the skin-core composite fiber is melted, and the cloth mask is quite wide as needed degree.
  • the temperature of the calendering process is 120 ⁇ 5°C, the pressure is 20 bar, and the speed is 40 m/min.
  • the skin-core composite fiber, the whitening polyester fiber, and the high-strength polyester fiber are mixed in the mass ratio of 2:5.5:2.5 with the 160°C melting point of the skin layer, and the hydro-entanglement combined with the thermal bonding fiber consolidation technology is used to make the production material reach
  • the strength and stiffness of the sizing (chemical adhesive) can replace the existing honeycomb sun-shading sizing material, reduce water pollution and save energy;
  • the spunlace nonwoven material prepared by the present invention has good stiffness and smoothness, and is smooth and uniform, and can meet the bright white, uniform printing and dyeing, foldable, light-shielding and breathable effects of curtains.
  • the following method is adopted to prepare the spunlace nonwoven material for honeycomb shade curtains, and the method includes the following steps:
  • the three fiber raw materials of sheath-core composite fiber, whitening polyester fiber and high-strength polyester fiber are compounded according to the set weight ratio. After the raw materials are fully opened and mixed through the blowing and mixing equipment, they are transported to the air pressure cotton box through the fan.
  • the double-carding and direct laying process is used to card the mixed fibers into a single fiber state.
  • the speed ratio of the doffer and the messy roller of the carding machine is 2.6 times to ensure that the fiber web after the carding machine has no cloud spots and no holes.
  • the net surface is uniform, the multi-layer fiber net combed by the two carding machines is laid and transported to the spunlace machine for reinforcement.
  • the spunlace machine performs spunlace reinforcement on the fiber web.
  • the two rollers of the spunlace machine used all use rebound drum sleeves instead of stainless steel wire mesh.
  • the air permeability of the drum sleeves is 8%, which enhances the spunlace processing.
  • the rebound effect of the water jet improves the fiber entanglement coefficient and reduces the edge breakage and web sticking caused by the stainless steel wire mesh.
  • the effective width of the cloth surface can reach 2.55 meters.
  • the double-row needle board is used instead of the single-row needle board.
  • the flow rate of the water needle is increased and the pressure of the water needle is reduced to reduce accidental transfer of water to the fiber, reduce cloud spots, and improve the fabric style.
  • the dehydration adopts vacuum suction and negative pressure. Reached 30000pa.
  • the pressure of the rolling car is 0.4MPa, and the cloth surface is thinned to 0.4mm to facilitate the subsequent drying and calendering processes.
  • the fibers are transported to the dryer for drying and curing.
  • the temperature of the first oven is 190 ⁇ 5°C
  • the temperature of the second oven is 205 ⁇ 5°C
  • the speed is 30-35m/min.
  • the core composite fiber melts, and the cloth mask has the required width.
  • the spunlace cloth is processed by a calendering finishing process.
  • the calendering temperature is 120 ⁇ 2°C
  • the pressure is 20bar
  • the speed is 30m/min.
  • the conventional sheath-core composite fiber has a sheath melting point of about 110°C, and the conventional sheath-core composite fiber is used to produce spunlace nonwoven materials using the above method.
  • obvious adhesion appears on the edges after folding and polishing (see Figure 3).
  • the use of core-sheath composite fibers with a higher skin melting point ( ⁇ 120°C) can reduce adhesion, and finally Experiments have found that the core-sheath composite fiber with the skin layer melting point at about 160°C can meet the needs of post-processing and eliminate the edge adhesion after folding and polishing.
  • the temperature of the dryer needs to be controlled at 185-205°C.
  • the crystallinity of polyester will change greatly, and the molecular chain will break, which will cause the cloth surface.
  • the wear resistance becomes worse, the vertical and horizontal strength becomes lower, the heat shrinkage is obvious, the cloth surface becomes hard, and the cloth surface finish decreases.
  • the fibers In order to obtain good entanglement and self-adhesive effects, achieve ideal whiteness and strength, and ensure a certain stiffness of the cloth surface, the fibers must be reasonably configured according to the quality characteristics of the fibers during the fiber opening process.
  • the physical index test data of the sheath-core composite fiber, whitened polyester fiber, and high-strength polyester fiber selected in this embodiment are as follows:
  • the invention adopts three kinds of fibers such as composite fiber and polyester fiber, uses spunlace nonwoven production technology, adopts post-finishing process, avoids polluting sizing process, and produces spunlace nonwoven with a certain stiffness, smoothness, and uniformity.
  • the woven material can achieve the effects of bright white for curtains, uniform printing and dyeing, foldability, shading and ventilation, and has the advantages of high yield, no slurry, and low cost.
  • the overall performance of the product obtained by using the fiber ratio of experimental group 1 is the best.
  • the quality inspection results of the spunlace nonwoven product are as follows:
  • the present invention adopts a skin-core composite fiber with a specific skin layer melting point and carries out a reasonable fiber ratio.
  • the uniformity of the cloth surface of the product of the invention is improved, and the aspects such as vertical and horizontal strength, stiffness, abrasion resistance and the like are significantly improved.
  • the invention solves various key technologies in the production of raw materials such as skin-core composite fibers in the spunlace process technology, and the product performance indicators all meet the requirements of materials for downstream honeycomb shade curtains, and can completely replace sizing products.
  • the product of the present invention has improved uniformity of cloth surface, clear lines, enhanced vertical and horizontal strength, softer hand feeling than sizing products, better air permeability, and significantly improved wear resistance.
  • control groups 1-3 list some typical fiber ratios tested during the development of the present invention.
  • Control group 3 30% 50% 20%

Abstract

一种水刺非织造材料及其加工方法,非织造材料由皮芯型复合纤维、增白涤纶纤维和高强涤纶纤维经水刺加工而成。

Description

水刺非织造材料及其加工方法 技术领域
本发明属于纺织领域,具体地说,本发明涉及水刺非织造材料及其加工方法。
背景技术
非织造材料是指定向或随机排列的纤维通过摩擦、抱合或粘结或这些方法的组合而相互结合制成的片状物、纤网或絮垫。水刺非织造材料(水刺非织造布)是将高压微细水流喷射到一层或多层纤维网上,使纤维相互缠结在一起,从而使纤网得以加固而具备一定强力,得到的织物即为水刺非织造材料。其纤维原料来源广泛,可以是涤纶、锦纶、丙纶、粘胶纤维、甲壳素纤维、超细纤维、天丝、蚕丝、竹纤维、木浆纤维、海藻纤维等。
随着非织造布工业的发展,窗帘材料已成为非织造布重要用途之一,由于非织造材料的加工方法比针织物和机织物简便、生产效率高,目前已大量取代传统的纺织材料,并在轻工、纺织、制药、电子、食品领域有了广泛应用。水刺非织造布采用柔性缠结、不损伤纤维,具有均匀透气、柔软吸湿、高强不起毛等特性,是外观最接近传统纺织品的布料,且产量高,应用领域广泛。
现有技术中的蜂窝式遮阳窗帘等材料的生产需要先生产无纺布。为了提高非织造布的硬挺度、平整光洁,增强材料的可折叠、有弹性,目前国内非织造布普遍采用上浆整理技术,但是上浆废水对水质环境存在一定程度的污染,并在产品后续的使用中易出现微生物污染、发霉变色;同时,增加上浆工序消耗热量较大,生产成本较高。为解决上述问题,本项目对非织造布的选材、工艺、设备进行了专题研究。本项目采用皮芯复合纤维与涤纶纤维等三种纤维,利用水刺非织造生产技术,采用水力缠结+热粘合双固结方式,有效避开了有污染的上浆工序,经过轧光整理,生产出具有一定硬挺度、光洁度、平滑均匀的水刺非织造材料,能够达到窗帘用亮白、均匀印染、可折叠、遮光透气等效果,且具有高产、无浆料、低成本等环保高效优势。实现窗帘 生产加工所需要达到的标准要求。
另外,现有技术中的非织造布窗帘材料在硬挺度、强力、布面美观度特别是易加工性方面也有进一步改进的空间,比如,现有的非织造布窗帘材料在后续加工过程中,不易于打折或者打磨时易粘连导致后续加工困难。
因此,本领域技术人员致力于开发品质更高的非织造布窗帘材料。
发明内容
本发明的目的在于提供一种适宜作为蜂巢式遮阳材料的水刺非织造材料及其加工方法。
在本发明的第一方面,提供了一种混合纤维,所述混合纤维包括皮芯型复合纤维、增白涤纶纤维和高强涤纶纤维。
在另一优选例中,所述混合纤维中,以重量计,所述皮芯型复合纤维的含量低于所述高强涤纶纤维的含量。
在另一优选例中,所述混合纤维中,皮芯型复合纤维、增白涤纶纤维和高强涤纶纤维的重量比为1.5~2.5:4.5~6.5:2~3;优选地,皮芯型复合纤维、增白涤纶纤维和高强涤纶纤维的重量比为2:5.5:2.5。
在另一优选例中,所述混合纤维包括:
皮芯型复合纤维  15-25重量份;
增白涤纶        45-65重量份;和
高强涤纶纤维    20-30重量份。
在另一优选例中,所述混合纤维包括:
皮芯型复合纤维  18-25重量份;
增白涤纶        53-57重量份;和
高强涤纶纤维    23-27重量份。
在另一优选例中,所述混合纤维包括:
皮芯型复合纤维  20重量份;
增白涤纶        55重量份;和
高强涤纶纤维    25重量份。
在另一优选例中,所述皮芯型复合纤维皮层熔点为120℃~180℃;优选地,所述皮芯型复合纤维皮层熔点为140℃~170℃;更优选地,所述皮芯型复合纤维皮层熔点为约160℃。
本发明的第二方面,提供了一种非织造材料,所述非织造材料由本发明第一方面所述的混合纤维加工制成。
在另一优选例中,所述非织造材料为水刺非织造材料。
在另一优选例中,所述非织造材料由本发明第一方面所述的混合纤维经水力缠结后热粘合固结制备而成。
本发明的第三方面,提供了一种窗帘或窗帘材料,所述蜂巢式遮阳窗帘材料由本发明第二方面所述的非织造材料加工制成。
本发明的第四方面,提供了一种水刺非织造材料的制造方法,所述方法包括步骤:
(1)制备纤维网
提供本发明第一方面所述的混合纤维,并将所述混合纤维制备成纤维网;
(2)水刺加工
将步骤(1)制备的纤维网经水刺机进行水刺加工;
(3)烘干固化
对步骤(2)中经水刺加工后的纤维网进行烘干处理,使得所述皮芯型复合纤维融化;
(4)轧光整理
对步骤(3)中经烘干处理后的纤维网进行轧光整理。
在另一优选例中,所述步骤(2)中,将多层纤维网叠加混合均匀输送至水刺机进行水刺加工,优选为3-5层纤维网。
在另一优选例中,所述步骤(3)中,烘干温度为190℃-200℃。
在另一优选例中,所述步骤(3)中,将水刺加工后的纤维网输送至烘干机进行烘干固化,其中所述烘干固化包括第一次烘干固化和第二次烘干固化,所述第一次烘干固化的温度为190±5℃,第二次烘干固化的温度为205±5℃。优选地,速度为30-35m/min。
在另一优选例中,所述步骤(4)中,轧光整理过程中,温度为100℃-140℃;优选为约120℃。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1为皮芯型复合纤维皮芯结构及皮层融化后粘合电镜图。
图2为增白涤纶纤维电镜图。
图3显示了现有的非织造材料在后续加工折叠过程中的粘连现象
具体实施方式
本发明人通过广泛而深入的研究,对种类繁多的不同纤维进行了筛选、组合,在大量实验研究的基础上,终于获得了适宜作为蜂巢式遮阳用的非织造材料,并根据该非织造材料的组分对非织造材料的加工制造方法进行了优化调整。该非织造材料由皮芯型复合纤维、增白涤纶纤维和高强涤纶纤维经水刺加工而成,获得的非织造材料强力较高、硬挺度均匀、耐磨性显著提高,更容易加工,能够满足遮阳用材料的要求,可应用于遮阳领域,尤其是蜂巢式窗帘领域。本发明还涉及经过优化调整的该水刺非织造材料的加工方法。
通过研究多种皮芯型复合纤维性能,针对产品性能指标,进行大量研究实验、合理设计,设计了皮芯型复合纤维、增白涤纶纤维、高强涤纶纤维三种各具特性的原材料配方技术。其中利用复合纤维外层低熔点的热融合性,增加布面的硬挺度、强力,替代化学粘合剂,同时避免后加工的粘连性;利用增白纤维增加布面白度,增强印刷效果,达到清洁美观目的;选择高强纤维提升布面匀整性、纵横强力、遮光性。
在描述本发明之前,应当理解本发明不限于所述的具体方法和条件,因为这类方法和条件可以变动。除非另外定义,否则本文中所用的全部技术与科学术语均具有如本发明所属领域的普通技术人员通常理解的相同含义。如本文所用,在提到具体列举的数值中使用时,术语“约”意指该值可以从列举的值变动不多于1%。例如,如本文所用,表述“约100”包括99和101和之间的全部值(例如,99.1、99.2、99.3、99.4等)。
虽然在本发明的实施或测试中可以使用与本发明中所述相似或等价的任 何方法和材料,本文在此处例举优选的方法和材料。
术语
皮芯型复合纤维
皮芯型复合纤维(sheath-core composite fiber)是两种不同的聚合物以皮芯结构分布于同一根纤维之中形成的纤维(见图1),皮层聚合物具有熔点低、柔软性好特点;芯层聚合物具有熔点高、强度大特点。例如,可以采用低熔点改性聚酯与常规聚酯熔体通过复合纺丝纺制而成。最终形成的皮芯型复合纤维芯层为聚酯、皮层为低熔点改性聚酯。本领域中,皮芯型复合纤维可以通过商业化渠道购买获得,并且可以根据实际需要定制具有特定皮、芯熔点的皮芯型复合纤维。通常,皮芯型复合纤维的皮层熔点在100℃~160℃;芯层熔点在150℃~280℃。例如,本领域中常规的copet复合纤维皮层熔点为约110℃,芯层熔点为约256℃(如上海远纺工业有限公司生产的8040型号的copet复合纤维)。本领域中皮芯型复合纤维也可以被称作低熔点复合纤维。
在一定温度下,熔点低的皮层聚合物熔化,在纤维网中起到粘合粘连作用,而熔点高强度大的芯层聚合物在粘连中起到支撑纤维网的作用。
按聚合物组合形式,皮芯型复合纤维可分为聚乙烯/聚丙烯(PE/PP)、聚乙烯/聚酯(PE/PET)、改性共聚酯/聚酯等。
本发明中优选皮层熔点在120℃~180℃的皮芯型复合纤维(改性共聚酯/聚酯);并且较佳地,其芯层熔点在230℃~280℃.
更佳地,所述皮芯型复合纤维皮层熔点为140℃~170℃;最佳地,所述皮芯型复合纤维皮层熔点为约160℃。适用于本发明的皮芯型复合纤维可通过常规的商业途径购买获得。
增白涤纶纤维
增白涤纶纤维是在PET纺制过程中,加入光学增白剂成分,以提高纤维的白度和染色鲜艳度,同时具有很强的紫外线吸收能力,遮蔽性能较好,其主要原理是增白剂可以将阳光中的紫外线转化为肉眼可见的光。增白涤纶纤维可通过常规商业渠道购买获得。
本发明中,增白涤纶纤维含量低于50%时,增白效果将不明显;最佳地,所述增白涤纶纤维含量为55%。
图2为增白涤纶纤维的电镜图。
高强涤纶纤维
单根纤维纤度强力达到5.6-8.0CN/dtex的称为高强纤维。高强纤维用作纺织材料具有比天然纤维更优良性能,不仅保留了常规化学纤维的特点,还具有柔软性、可挠性、滑爽性;弯曲半径小,产生特殊光泽与颜色;纵横比大,易缠结;与其他纤维混纺,可以增加单位面积内的纤维根数,提高纤网均匀度,减少强力不匀率。
本发明中高强涤纶纤维是指单根纤维纤度强力达到5.6CN/dtex以上的涤纶纤维;优选为纤度强力在5.6至8.0CN/dtex范围内的涤纶纤维。适用于本发明的高强涤纶纤维可通过常规商业渠道购买获得。
混合纤维
本发明中“混合纤维”是由多种纤维混合而成的,并且至少包括皮芯型复合纤维、增白涤纶纤维和高强涤纶纤维。
在本发明的优选地实施方式中,“混合纤维”是由皮芯型复合纤维、增白涤纶纤维和高强涤纶纤维按照特定比例混合而成。例如,所述混合纤维中,皮芯型复合纤维、增白涤纶纤维和高强涤纶纤维的重量比为1.5~2.5:4.5~6.5:2~3;优选地,皮芯型复合纤维、增白涤纶纤维和高强涤纶纤维的重量比为2:5.5:2.5。
使用本发明的混合纤维制备的非织造材料具有出乎意料的优异技术效果,具有较高的纵横强力、均匀的硬挺度、显著提高的耐磨性、亮丽的染色鲜艳度,并且更容易加工,能够满足蜂巢式遮阳用材料的要求。
制作方法
本发明提供了一种水刺非织造材料的制造方法,所述方法包括步骤:
(1)制备纤维网
提供本发明第一方面所述的混合纤维,并将所述混合纤维制备成纤维网;
(2)水刺加工
将步骤(1)制备的纤维网经水刺机进行水刺加工;
(3)烘干固化
对步骤(2)中经水刺加工后的纤维网进行烘干处理,使得所述皮芯型复合纤维融化;
(4)轧光整理
对步骤(3)中经烘干处理后的纤维网进行轧光整理。
在本发明的一个优选地实施方式中,该方法包括步骤:
(1)将皮芯型复合纤维、增白涤纶和高强涤纶三种纤维原料按照特定重量比例进行复配。将原料通过开清混合设备进行充分的开松和混合后,经过风机输送至气压棉箱。
(2)采用双梳理直铺的工艺将混合后的纤维梳理成单纤维状态,梳理机的道夫和杂乱辊的速比为2.6倍,确保经过梳理机的纤维网面无云斑、无破洞、网面均匀,将两道梳理机梳理的多层纤维网进行铺叠,输送至水刺机进行加固。
(3)水刺机对纤维网进行水刺加固,所用的水刺机的两个辊筒全部采用反弹缠鼓套替代不锈钢丝网,鼓套的透气率为8%,增强了水刺加工时水射流的反弹效果,提高了纤维缠结系数,同时减少了不锈钢丝网造成的破边、粘网情况,布面的有效幅宽可达到2.55米,在纤网进入水刺起网工序时,采用双排针板替代单排针板,采用增大水针流量,降低水针压力,以减少水针对纤维的意外转移,减少云斑,改善布面风格,脱水采用真空抽吸方式,负压达到30000pa。
(4)然后采用轧车,轧车的压力为0.4MPa,将布面压薄至0.4mm,以便于后道烘干、轧光工序。
(5)水刺加固后纤维输送至烘干机进行烘干固化,其中第一烘箱的温度为190±5℃,第二烘箱温度为205±5℃,速度为30-35m/min,使皮芯型复合纤维融化,布面具有所需要的硬挺度。
(6)经过烘干固化后的水刺布再经过轧光整理工序处理,轧光整理的温度为120±2℃,压力为20bar,速度为30m/min。
(7)然后进入分切、包装工序。
本发明的蜂巢式遮阳用水刺非织造材料,采用皮芯型复合纤维、增白涤纶和高强涤纶三种原料,将三种原料按照一定比例进行复配,其中皮芯型复合纤维占20%、增白涤纶纤维占55%、高强涤纶纤维占25%,经抓棉机或称量机抓取,通过开清设备混合开松经过充分的开松混合,经风机输送至气压棉箱,在经过 梳理机梳理成呈单纤维状态的纤维网,将两道梳理机梳理的纤维网进行上下铺叠,再经过水刺加固工艺将纤维网进行上下缠结,接着经过脱水处理和烘干机烘干固化、轧光整理,最后经过分切和包装得到。
在本发明的一个优选地实施方式中,所述皮芯型复合纤维的规格为3.0-5.0dtex,长度为38-51mm;所述增白涤纶纤维的规格为1-2dtex,长度为38-51mm;所述高强涤纶纤维的规格为0.5-1dtex,长度为38-51mm。
所述梳理机采用双梳理直铺方式,杂乱比为2.6,经过梳理机过后的网面无云斑,多层纤网叠加混合均匀输送至水刺机。
所述的水刺机采用双辊筒成网工艺,利用反弹缠结鼓套结构,其中水针板有效幅宽达到2.55m。
所述水刺加固用水刺机的一二辊筒全部采用反弹缠结鼓套,所述鼓套透气率为8%,布面有效幅宽为2.55米,在纤网进入水刺起网工序时,采用双排针板替代单排针板,采用增大水针流量,降低水针压力,减少水针对纤维的意外转移,减少云斑,改善布面风格。
所述脱水为真空抽吸,负压为30000pa,同时采用轧车脱水,轧车压力为0.4MPa,降低布面厚度。
所述轧光整理采用真空抽吸,轧车脱水采用的压力时0.4MPa,降低布面厚度。
所述烘干机的第一烘箱温度为190±5℃,第二烘箱温度为205±5℃,速度为30-35m/min,使皮芯型复合纤维融化,布面具有所需要的挺阔度。
所述轧光工艺的温度为120±5℃,压力为20bar,速度为40m/min。
本发明的主要优点在于:
(1)首次采用皮层160℃熔点皮芯型复合纤维、增白涤纶纤维、高强涤纶纤维按2:5.5:2.5质量比例混合,采用水力缠结结合热粘合纤维固结技术,使生产材料达到上浆(化学粘合剂)所具有的强力、硬挺度,可以替代现有的蜂巢式遮阳上浆材料,减少了水质污染,节约耗能;
(2)本发明制备的水刺非织造材料硬挺度和光洁度良好、并且平滑均匀,能够满足窗帘用亮白、均匀印染、可折叠、遮光透气的效果。
下面结合具体实施例,进一步详陈本发明。应理解,这些实施例仅用于说 明本发明而不用于限制本发明的范围。除非另外说明,否则百分比和份数按重量计算。以下实施例中所用的材料如无特别说明均可从市售渠道获得。
实施例1
本实施例中采用如下方法制备蜂巢式遮阳窗帘用水刺非织造材料,该方法包括以下步骤:
(1)将皮芯型复合纤维、增白涤纶纤维和高强涤纶纤维三种纤维原料按照设定的重量比例进行复配。将原料通过开清混合设备进行充分的开松和混合后,经过风机输送至气压棉箱。
(2)采用双梳理直铺的工艺将混合后的纤维梳理成单纤维状态,梳理机的道夫和杂乱辊的速比为2.6倍,确保经过梳理机的纤维网面无云斑、无破洞、网面均匀,将两道梳理机梳理的多层纤维网进行铺叠,输送至水刺机进行加固。
(3)水刺机对纤维网进行水刺加固,所用的水刺机的两个辊筒全部采用反弹缠鼓套替代不锈钢丝网,鼓套的透气率为8%,增强了水刺加工时水射流的反弹效果,提高了纤维缠结系数,同时减少了不锈钢丝网造成的破边、粘网情况,布面的有效幅宽可达到2.55米,在纤网进入水刺起网工序时,采用双排针板替代单排针板,采用增大水针流量,降低水针压力,以减少水针对纤维的意外转移,减少云斑,改善布面风格,脱水采用真空抽吸方式,负压达到30000pa。
(4)然后采用轧车,轧车的压力为0.4MPa,将布面压薄至0.4mm,以便于后道烘干、轧光工序。
(5)水刺加固后纤维输送至烘干机进行烘干固化,其中第一烘箱的温度为190±5℃,第二烘箱温度为205±5℃,速度为30-35m/min,使皮芯型复合纤维融化,布面具有所需要的挺阔度。
(6)经过烘干固化后的水刺布再经过轧光整理工序处理,轧光整理的温度为120±2℃,压力为20bar,速度为30m/min。
(7)然后进入分切、包装工序。
(1)皮芯型复合纤维的测试
常规的皮芯型复合纤维其皮层熔点在约110℃,采用上述方法使用常规的皮芯型复合纤维生产水刺非织造材料。后续加工过程中,在折叠后打磨后边沿 出现明显粘连现象(见图3),经多次试验后发现,使用皮层熔点较高(≥120℃)的皮芯型复合纤维,能够减轻粘连,最终试验发现皮层熔点在约160℃的皮芯型复合纤维,能够满足后加工需要,消除了折叠后打磨后边沿出现的粘连。
然而,使用皮层熔点较高(如,约160℃)的皮芯型复合纤维,烘干机温度需要控制在185-205℃,涤纶结晶度会发生较大变化,分子链断裂,会导致布面耐磨性变差、纵横强力变低、热收缩明显,布面变硬、布面光洁度下降等。
(2)原料混合比例的确定
为了获得良好的缠结和自粘效果,达到理想的白度、强力,并保证布面一定的硬挺度,在纤维开松过程中必须根据纤维的品质特性合理配置纤维。
经过大量测试发现,不同的纤维配比,对水刺非织造材料的性能影响显著。本实施例中选用的皮芯型复合纤维、增白涤纶纤维、高强涤纶纤维的理指标测试数据如下:
表1原料纤维物理指标测试
Figure PCTCN2019095987-appb-000001
以下实验组1-5列出了本发明研发过程中试验的部分典型纤维配比。
表3实验组纤维配比
Figure PCTCN2019095987-appb-000002
Figure PCTCN2019095987-appb-000003
表2本实施例产品质量指标
Figure PCTCN2019095987-appb-000004
本发明采用复合纤维与涤纶纤维等三种纤维,利用水刺非织造生产技术,采用后整理工艺处理,避开有污染的上浆工序,生产出具有一定硬挺度、光洁度、平滑均匀的水刺非织造材料,能够达到窗帘用亮白、均匀印染、可折叠、遮光透气等效果,且具有高产、无浆料、低成本等环保高效优势。
采用实验组1的纤维配比制备的水刺非织造材料的性能检测结果如下:
表3性能检测结果
Figure PCTCN2019095987-appb-000005
Figure PCTCN2019095987-appb-000006
采用实验组1的纤维配比获得的产品综合效能最优,该水刺非织造材料产品的质量检测结果如下:
表4质量检测结果
Figure PCTCN2019095987-appb-000007
Figure PCTCN2019095987-appb-000008
本发明为了提高无纺布的强力、耐磨性、硬挺度、确保白度,采用特定皮层熔点的皮芯型复合纤维并进行了合理的纤维配比。本发明产品布面均匀性提高,纵横向强力、硬挺度、耐磨性等方面均有显著提升。
本发明解决了皮芯型复合纤维等原料在水刺工艺技术生产中的各项关键技术,产品性能指标均满足下游蜂巢式遮阳窗帘用材料的要求,完全可以替代上浆产品。
比较可以看出,本发明产品布面均匀性、纹路清晰提升,纵横向强力提升,手感较上浆产品柔软,透气性较好,耐磨性提高显著。
对比例1
本对比例采用常规copet复合纤维(皮层熔点110℃)、增白涤纶纤维、细旦涤纶纤维混合制作水刺非织造材料,制造方法同实施例1。纤维配比如下表。
表5原料纤维物理指标测试
原料名称 copet复合纤维 增白涤纶纤维 细旦涤纶纤维
纤维规格 4.4dtex*48mm 1.33dtex*38mm 0.62dtex*38mm
白度(%) 86.5 99.7 85.6
断裂强力(CN/dtex) 4.6 5.78 5.5
以下对照组1-3列出了本发明研发过程中试验的部分典型纤维配比。
表6各对照组中纤维配比
组别 copet复合纤维含量 增白涤纶纤维含量 细旦涤纶纤维含量
对照组1 20% 55% 25%
对照组2 18% 55% 27%
对照组3 30% 50% 20%
表7对比例产品质量指标
Figure PCTCN2019095987-appb-000009
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (15)

  1. 一种混合纤维,其特征在于,所述混合纤维包括皮芯型复合纤维、增白涤纶纤维和高强涤纶纤维。
  2. 如权利要求1所述的混合纤维,其特征在于,所述混合纤维中,以重量计,所述皮芯型复合纤维的含量低于所述高强涤纶纤维的含量。
  3. 如权利要求1所述的混合纤维,其特征在于,所述混合纤维中,皮芯型复合纤维、增白涤纶纤维和高强涤纶纤维的重量比为1.5~2.5:4.5~6.5:2~3。
  4. 如权利要求1所述的混合纤维,其特征在于,所述混合纤维包括:
    皮芯型复合纤维  15-25重量份;
    增白涤纶        45-65重量份;和
    高强涤纶纤维    20-30重量份。
  5. 如权利要求1所述的混合纤维,其特征在于,所述混合纤维包括:
    皮芯型复合纤维  18-25重量份;
    增白涤纶        53-57重量份;和
    高强涤纶纤维    23-27重量份。
  6. 如权利要求1所述的混合纤维,其特征在于,所述皮芯型复合纤维皮层熔点为120℃~180℃。
  7. 一种非织造材料,其特征在于,所述非织造材料由权利要求1所述的混合纤维加工制成。
  8. 如权利要求7所述的非织造材料,其特征在于,所述非织造材料为水刺非织造材料。
  9. 如权利要求7所述的非织造材料,其特征在于,所述非织造材料由权利要求1所述的混合纤维经水力缠结后热粘合固结制备而成。
  10. 一种窗帘或窗帘材料,其特征在于,所述窗帘或窗帘材料由权利要求7所述的非织造材料加工制成。
  11. 一种水刺非织造材料的制造方法,其特征在于,所述方法包括步骤:
    (1)制备纤维网
    提供本发明第一方面所述的混合纤维,并将所述混合纤维制备成纤维网;
    (2)水刺加工
    将步骤(1)制备的纤维网经水刺机进行水刺加工;
    (3)烘干固化
    对步骤(2)中经水刺加工后的纤维网进行烘干处理,使得所述皮芯型复合纤维融化;
    (4)轧光整理
    对步骤(3)中经烘干处理后的纤维网进行轧光整理。
  12. 如权利要求11所述的水刺非织造材料的制造方法,其特征在于,所述步骤(2)中,将多层纤维网叠加混合均匀输送至水刺机进行水刺加工,优选为3-5层纤维网。
  13. 如权利要求11所述的水刺非织造材料的制造方法,其特征在于,所述步骤(3)中,烘干温度为185℃-210℃。
  14. 如权利要求11所述的水刺非织造材料的制造方法,其特征在于,所述步骤(3)中,将水刺加工后的纤维网输送至烘干机进行烘干固化,其中所述烘干固化包括第一次烘干固化和第二次烘干固化,所述第一次烘干固化的温度为190±5℃,第二次烘干固化的温度为205±5℃。
  15. 如权利要求11所述的水刺非织造材料的制造方法,其特征在于,所述步骤(4)中,轧光整理过程中,温度为100℃-140℃。
PCT/CN2019/095987 2019-07-15 2019-07-15 水刺非织造材料及其加工方法 WO2021007746A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/095987 WO2021007746A1 (zh) 2019-07-15 2019-07-15 水刺非织造材料及其加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/095987 WO2021007746A1 (zh) 2019-07-15 2019-07-15 水刺非织造材料及其加工方法

Publications (1)

Publication Number Publication Date
WO2021007746A1 true WO2021007746A1 (zh) 2021-01-21

Family

ID=74210137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095987 WO2021007746A1 (zh) 2019-07-15 2019-07-15 水刺非织造材料及其加工方法

Country Status (1)

Country Link
WO (1) WO2021007746A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113981612A (zh) * 2021-10-19 2022-01-28 金华市东方线业股份有限公司 一种复合水刺非织造材料成型与加固方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053587A1 (en) * 2000-01-20 2001-07-26 Polymer Group, Inc. Durable imaged nonwoven fabric
CN101219308A (zh) * 2007-09-29 2008-07-16 丹东天皓净化材料有限公司 De型空气净化过滤材料及加工方法
CN104790123A (zh) * 2015-04-28 2015-07-22 山东省永信非织造材料有限公司 复合纤维窗帘过滤用水刺非织造材料及加工方法
CN105089481A (zh) * 2015-06-25 2015-11-25 杭州金百合非织造布有限公司 一种用于门窗空气过滤的平面式骨架材料
CN108611756A (zh) * 2018-05-02 2018-10-02 浙江互生非织造布有限公司 一种超细纤维水刺擦拭材料及其生产工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053587A1 (en) * 2000-01-20 2001-07-26 Polymer Group, Inc. Durable imaged nonwoven fabric
CN101219308A (zh) * 2007-09-29 2008-07-16 丹东天皓净化材料有限公司 De型空气净化过滤材料及加工方法
CN104790123A (zh) * 2015-04-28 2015-07-22 山东省永信非织造材料有限公司 复合纤维窗帘过滤用水刺非织造材料及加工方法
CN105089481A (zh) * 2015-06-25 2015-11-25 杭州金百合非织造布有限公司 一种用于门窗空气过滤的平面式骨架材料
CN108611756A (zh) * 2018-05-02 2018-10-02 浙江互生非织造布有限公司 一种超细纤维水刺擦拭材料及其生产工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113981612A (zh) * 2021-10-19 2022-01-28 金华市东方线业股份有限公司 一种复合水刺非织造材料成型与加固方法
CN113981612B (zh) * 2021-10-19 2023-05-12 金华市东方线业股份有限公司 一种复合水刺非织造材料成型与加固方法

Similar Documents

Publication Publication Date Title
CN104389109B (zh) 一种复合水刺非织造布及其制备方法
Albrecht et al. Nonwoven fabrics: raw materials, manufacture, applications, characteristics, testing processes
CN102619095B (zh) 一种束状海岛环保阻燃汽车麂皮革的制造方法
CN101509175B (zh) 绿色可完全降解型保暖材料及其生产方法
CN106222887B (zh) 一种四层复合水刺非织造布的制造方法
CN104963101B (zh) 一种轻薄透高性能复合非织造布及其制备方法
CN110983627B (zh) 一种水刺非织造布生产工艺及其应用
CN104790123B (zh) 复合纤维窗帘过滤用水刺非织造材料及加工方法
CN108049031A (zh) 湿法多功能高速水刺复合生产线及生产所得水刺无纺布
CN101705576A (zh) 一种非织造擦拭布的基布的制备方法
CN101385921A (zh) 一种羽毛纤维的非织造过滤复合材料及其制备方法
CN109576902B (zh) 棉麻柔巾混纺水刺非织造材料及其制备方法
CN1470698A (zh) 一种四层结构复合无纺布及其生产方法
CN108543349A (zh) 一种梯度过滤多层水刺针刺复合材料及其生产工艺
CN101550634A (zh) 水刺复合高性能聚苯硫醚纤维过滤材料的生产工艺
Russell et al. Technical fabric structures–3. Nonwoven fabrics
CN108611756A (zh) 一种超细纤维水刺擦拭材料及其生产工艺
CN101956296A (zh) 一种芳纶水刺非织造布过滤材料及其制造方法
CN110468502B (zh) 水溶性维纶纤维水刺非织造布的制备方法
CN109722753A (zh) 一种竹麻棉混纺紧密纺纱线及其生产方法
WO2021007746A1 (zh) 水刺非织造材料及其加工方法
CN113026201A (zh) 一种复合纳米纤维水刺无纺布
KR101050831B1 (ko) 세척용 부직포 및 그 제조방법
CN108978036A (zh) 一种在线连续复合亲水非织造布的生产工艺
CN110373812A (zh) 一种气刺生产功能非织造布的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937870

Country of ref document: EP

Kind code of ref document: A1