WO2021006154A1 - Method for operating pulverizing system, and method for manufacturing powder - Google Patents

Method for operating pulverizing system, and method for manufacturing powder Download PDF

Info

Publication number
WO2021006154A1
WO2021006154A1 PCT/JP2020/025852 JP2020025852W WO2021006154A1 WO 2021006154 A1 WO2021006154 A1 WO 2021006154A1 JP 2020025852 W JP2020025852 W JP 2020025852W WO 2021006154 A1 WO2021006154 A1 WO 2021006154A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
air
crusher
air volume
extracted
Prior art date
Application number
PCT/JP2020/025852
Other languages
French (fr)
Japanese (ja)
Inventor
文典 安藤
遠藤 晃
堀田 滋
貴弘 青木
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to EP20837697.0A priority Critical patent/EP3995216A4/en
Priority to CN202080045585.2A priority patent/CN114007751B/en
Publication of WO2021006154A1 publication Critical patent/WO2021006154A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/04Mills with pressed pendularly-mounted rollers, e.g. spring pressed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/10Separating or sorting of material, associated with crushing or disintegrating with separator arranged in discharge path of crushing or disintegrating zone
    • B02C23/12Separating or sorting of material, associated with crushing or disintegrating with separator arranged in discharge path of crushing or disintegrating zone with return of oversize material to crushing or disintegrating zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • B02C23/20Adding fluid, other than for crushing or disintegrating by fluid energy after crushing or disintegrating
    • B02C23/22Adding fluid, other than for crushing or disintegrating by fluid energy after crushing or disintegrating with recirculation of material to crushing or disintegrating zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • B02C23/24Passing gas through crushing or disintegrating zone
    • B02C23/34Passing gas through crushing or disintegrating zone gas being recirculated to crushing or disintegrating zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C2015/002Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs combined with a classifier

Definitions

  • the present invention relates to a method for producing a powder obtained by crushing a crushing raw material with a vertical crusher and a method for operating a crushing system used therein.
  • a vertical crusher is known as a kind of crusher for drying and crushing a crushing raw material.
  • the pulverized raw material include a cement raw material and calcium carbonate.
  • Patent Documents 1 and 2 disclose a crushing system including this type of vertical crusher.
  • Patent Document 1 discloses a closed circuit crushing type crushing system.
  • This crushing system includes a vertical crusher with a built-in classifier.
  • a pulverized product containing coarse powder and fine powder is produced.
  • the coarse powder is once discharged from the crusher and then supplied again to the crusher for re-grinding.
  • the fine powder passes through the classifier along with the rising gas in the crusher, and is classified into refined powder and others by the classifier.
  • the refined powder is discharged from the crusher along with the gas, collected by the dust collector, and then collected as a product.
  • the gas separated from the fine powder by the dust collector is returned to the crusher.
  • the crushing system of Patent Document 2 includes a classifier independent of the vertical crusher.
  • the crushed material of the crusher the fine powder is discharged from the crusher along with the gas extracted from the crusher, and is separated from the gas by the dust collector.
  • the gas separated from the fine powder by the dust collector is returned to the crusher, and the fine powder is sent to the classifier by a conveyor.
  • the coarse powder is sent to the classifier by a conveyor.
  • the crushed material sent to the classifier is classified into fine powder and other parts, and the fine powder is collected as a product by the dust collector in the subsequent stage, and the other parts are returned to the crusher.
  • the crushed product circulation system of the crusher and the gas circulation system of the crusher are independent, the amount of air extracted from the crusher and the amount of classified air of the classifier are independent. Can be adjusted.
  • the present invention is a further development of the invention described in Patent Document 2, and an object of the present invention is to use a closed circuit crushing system including a vertical crusher to arbitrarily adjust the degree of powder (powder).
  • the purpose is to provide the technology for manufacturing the body).
  • the method of operating the crushing system is as follows.
  • a vertical crusher that crushes crushed raw materials
  • a crushed material circulation path for crushed material to move from the discharge port to the supply port of the vertical crusher, and
  • a classifier provided in the crushed product circulation path to separate the crushed product into a refined powder as a product and a coarse powder returned to the vertical crusher.
  • a collector that collects the fine powder and The bleeding path connected to the upper part of the vertical crusher and An bleeding fan that draws air from the vertical crusher to the bleeding path with the set bleeding air volume
  • a method of operating a crushing system including a dust collector that separates fine powder from the bleed air of the vertical crusher and sends it to the crushed material circulation path.
  • the correlation between the amount of air extracted from the vertical crusher and the degree of powderiness of the collected fine powder is obtained, the amount of air extracted from which the desired degree of powder is obtained is estimated based on the correlation, and the amount of air extracted is calculated as described above. It is characterized by setting the bleed air volume.
  • a pulverized raw material is supplied to a vertical crusher to be pulverized, and fine powder is extracted from the vertical pulverizer at a set bleed air volume to obtain fine powder. It is carried out on an air stream, the fine powder is separated from the air flow and transported to a classifier by a transporter, and the rest of the crushed material is transported to the classifier by the transporter and set by the classifier.
  • the pulverized product is classified into refined powder and coarse powder according to the particle size, the refined powder is airborne from the classifier to the collector and collected as a product by the collector, and the coarse powder is collected by the classifier. Includes returning from to the vertical crusher and re-crushing. Then, the correlation between the amount of air extracted from the vertical crusher and the degree of powderiness of the collected fine powder is obtained, and the amount of air extracted from which a desired degree of powder is obtained is estimated based on the correlation. Is the set bleed air volume.
  • the refined powder (powder) having an arbitrary degree of powder can be obtained by changing the set bleed air volume. That is, it is possible to obtain a powder product according to the purpose of use by changing the degree of powderiness of the obtained refined powder. As a result, the quality of the powder product can be improved.
  • FIG. 1 is a diagram showing an overall configuration of a crushing system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of a second experimental device simulating a conventional crushing system.
  • FIG. 3 is a chart showing the correlation between the amount of air extracted from the vertical crusher and the degree of powderiness of the collected refined powder.
  • FIG. 4 is a chart showing a characteristic curve of the electric power intensity of the vertical crusher with respect to the amount of air extracted from the vertical crusher.
  • FIG. 1 is a diagram showing an overall configuration of a crushing system 1 according to an embodiment of the present invention.
  • the closed circuit type crushing system 1 shown in FIG. 1 includes a vertical crusher 2 (hereinafter, simply referred to as “crusher 2”), a crushed material circulation system 3 connected to the crusher 2, and a crusher 2. It includes a connected gas circulation system 4.
  • the crusher 2 includes a housing 21 that forms a crushing chamber 20 in which the crushing raw material is crushed. Inside the housing 21, a rotary table 22 that rotates around a vertical rotation axis and a plurality of crushing rollers 23 that are pressed against the rotary table 22 by a pressurizing means (not shown) and rotate in a driven manner are provided. Below the housing 21, a mill motor 24, which is a rotational drive source for the rotary table 22, and a reduction mechanism 25 for transmitting the rotational power of the mill motor 24 to the rotary table 22 are provided.
  • the crusher 2 does not have a built-in classifier.
  • a supply port 26 is provided on the upper part of the housing 21.
  • the pulverized raw material is introduced into the upper surface of the rotary table 22 through the supply port 26.
  • an air extraction port 27 is provided above the rotary table 22 and above the housing 21. Through the air extraction port 27, the fine powder generated by crushing the crushed raw material is discharged on the airflow that blows up.
  • a discharge port 28 is provided below the rotary table 22. The crushed material that overflows from the outer peripheral edge of the rotary table 22 is discharged to the outside of the crusher 2 through the discharge port 28.
  • a hot air outlet 29 is provided around the outer circumference of the rotary table 22. Hot air blows upward from the hot air outlet 29 into the crushing chamber 20.
  • crushed material circulation system 3 The crushed product circulation system 3 is configured to separate the refined powder as a product from the crushed product discharged from the discharge port 28 of the crusher 2 and return the crushed product from which the refined powder is separated to the crushed product 2. .. The refined powder separated by the pulverized product circulation system 3 is recovered as a product.
  • the crushed material circulation system 3 has a crushed material circulation path 30 in which the crushed material discharged from the crusher 2 moves from the discharge port 28 of the crusher 2 to the supply port 26.
  • a classifier 7 is provided in the crushed material circulation path 30. Further, in the present embodiment, since the crushed material inlet 71 of the classifier 7 is located above the discharge port 28 of the crusher 2, the crushed material 31 transports the crushed material upward from the discharge port 28 to the crushed material inlet 71. Is provided in the crushed material circulation path 30.
  • the conveyor 31 according to the present embodiment is a bucket elevator including a plurality of buckets (not shown).
  • the discharge port 28 of the crusher 2 is connected to the first inlet 31a of the conveyor 31 via the passage 30a.
  • the carrier 31 carries the crushed material charged through the first inlet 31a and the second inlet 31b, which will be described later, upward and discharges it from the outlet 31c.
  • the outlet 31c of the conveyor 31 is connected to the crushed material inlet 71 of the classifier 7 via the passage 30b.
  • a distribution damper (not shown) may be provided in the passage 30b connecting the transporter 31 and the classifier 7. Then, a part of the crushed material may be directly conveyed to the supply port 26 of the crusher 2 by the distribution damper without going through the classifier 7.
  • the classifier 7 classifies the supplied crushed product into refined powder and coarse powder according to the set particle size.
  • the set particle size of the "fine powder” is determined according to the particle size of the recovered product.
  • the “coarse powder” here means a pulverized product supplied to the classifier 7 having a particle size larger than that of the refined powder.
  • the airflow type classifier 7 is adopted as the classifier 7.
  • the classifier 7 is not limited to the airflow type classifier as long as the pulverized product can be classified into refined powder and others according to the particle size.
  • the crushed material classified into coarse powder by the classifier 7 is discharged from the discharge port 72.
  • the discharge port 72 is connected to the supply port 26 of the crusher 2 via the passage 30c.
  • the crushed material classified into fine powder by the classifying machine 7 is discharged from the exhaust port 73 on the air flow.
  • the exhaust port 73 is connected to the inlet of the collector 6 via the passage 64.
  • a classification fan 66 is provided in the exhaust passage 65 of the collector 6. The exhaust air volume of the classification fan 66 is adjusted so as to have a predetermined classification air volume F2.
  • the collector 6 collects the fine powder accompanying the gas discharged from the classifier 7 and separates the fine powder from the gas.
  • a bug filter is adopted as the collector 6.
  • the collector 6 is not limited to the bug filter as long as it can collect the fine powder accompanying the gas.
  • the gas circulation system 4 is configured to separate fine powder from the exhaust gas of the crusher 2 and return the separated gas to the crusher 2 as hot air.
  • the gas circulation system 4 has a gas circulation path 40 through which the gas extracted from the crusher 2 flows from the air extraction port 27 of the crusher 2 to the hot air inlet 29a.
  • the gas circulation path 40 is provided with a dust collector 41 that separates fine powder from the air extracted from the crusher 2, an air extraction fan 42, and a hot air supply source 43 that supplies hot air to the gas circulation path 40.
  • the exhaust air volume of the bleed air fan 42 is adjusted to be the bleed air volume F1.
  • the air extraction port 27 of the crusher 2 is connected to the inlet of the dust collector 41 via the air extraction path 40a.
  • the outlet of the dust collector 41 is connected to the hot air inlet 29a of the crusher 2 via the passage 40b.
  • a hot air supply source 43 is connected to the passage 40b.
  • the dust collector 41 separates fine powder from the bleed air (hereinafter referred to as "mill exhaust") from the crusher 2.
  • a cyclone type dust collector that utilizes the suction action of the bleed air fan 42 is adopted.
  • the dust collector 41 is not limited to the cyclone type dust collector as long as it can separate fine powder from the mill exhaust.
  • the fine powder outlet of the dust collector 41 is connected to the second inlet 31b of the conveyor 31 via the fine powder transport path 88.
  • the fine powder separated from the mill exhaust by the dust collector 41 is sent to the transport machine 31 through the transport path 88.
  • a passage 84 for sending the mill exhaust of the passage 40b to the classifier 7 is connected to the downstream side of the flow of the mill exhaust from the bleeding fan 42.
  • a flow rate adjusting device 85 for adjusting the flow rate of the mill exhaust gas flowing to the classifier 7 is provided in the passage 84. By changing the opening degree of the flow rate adjusting device 85, the flow rate of the mill exhaust gas flowing to the classifier 7 can be adjusted, and as a result, the flow rate of the mill exhaust gas returned to the crusher 2 can be adjusted.
  • the flow rate adjusting device 85 may be, for example, at least one of a damper, a flow rate adjusting valve, and a fan, regardless of the mode, as long as it is a means for adjusting the flow rate of the mill exhaust gas flowing to the classifier 7.
  • the hot air supply source 43 may be, for example, a hot air generator that generates hot air at a desired temperature.
  • the hot air supplied from the hot air supply source 43 to the gas circulation path 40 is sent to the hot air inlet 29a of the crusher 2 through the passage 40b together with the mill exhaust.
  • the hot air supply source 43 is not limited to the hot air generator, and for example, when a source of high temperature gas such as a kiln (cement firing furnace) exists around the crusher 2, the hot air source is used. It may be used as a hot air supply source 43.
  • the coarse powder overflows from the peripheral edge of the rotary table 22 and is discharged to the outside of the machine through the discharge port 28. Further, the fine powder of the pulverized product is discharged from the extraction port 27 on the airflow that blows up.
  • the mill exhaust gas from the air extraction port 27 of the crusher 2 flows into the dust collector 41.
  • the fine powder accompanying the mill exhaust is separated from the mill exhaust.
  • the separated fine powder is sent to the second inlet 31b of the transport machine 31 through the transport path 88 and joins the flow of the crushed material in the crushed material circulation system 3.
  • the opening degree of the flow rate adjusting device 85 is adjusted in order to balance the flow rate of the mill exhaust gas flowing into the passage 40b by the suction action of the bleeding fan 42 and the flow rate of the mill exhaust gas returned to the crusher 2.
  • the hot air supplied from the hot air supply source 43 to the passage 40b flows into the crusher 2 together with the mill exhaust, and is blown into the mill from the hot air outlet 29.
  • the crushed material discharged from the discharge port 28 of the crusher 2 is conveyed upward by the conveyor 31 and flows into the classifier 7.
  • the pulverized product is classified and the fine powder is separated from the pulverized product.
  • the crushed product from which the fine powder has been separated by the classifier 7 is discharged from the classifier 7, sent to the supply port 26 of the crusher 2 through the passage 30c, and crushed again by the crusher 2.
  • the refined powder separated from the crushed material by the classifying machine 7 is discharged from the exhaust port 73 of the classifying machine 7 together with the gas, and is air-flowed to the collector 6 through the passage 64.
  • the collector 6 collects the fine powder. This refined powder is collected as a product and, for example, packed in a bag.
  • the gas separated from the fine powder by the collector 6 flows out to the exhaust passage 65 and is released to the atmosphere.
  • the degree of powderiness (degree of fineness of particles) of the refined powder recovered as a product as described above is one of the important factors indicating the quality of the refined powder.
  • the degree of powderiness of the obtained refined powder can be changed by adjusting the bleed air volume F1.
  • the following verification experiment was conducted in order to verify that the powderiness of the fine powder can be adjusted by adjusting the bleed air volume F1.
  • a first experimental device simulating the crushing system 1 according to the present embodiment and a second experimental device 101 (see FIG. 2) simulating a conventional crushing system were used.
  • the first experimental apparatus simulates the crushing system 1 shown in FIG. 1, and detailed description thereof will be omitted.
  • the experiments of Examples 1 to 4 were carried out using the first experimental apparatus.
  • Table 1 shows the experimental conditions of Examples 1 to 4 and Comparative Example 1.
  • the classified air volume F2 was kept constant at 15 [m 3 / min].
  • the bleed air volume F1 is 0 [m 3 / min]
  • the bleed air volume F1 is 3 [m 3 / min]
  • the bleed air volume F1 is 6 [m 3 / min].
  • the extracted air volume F1 was set to 9 [m 3 / min].
  • the bleed air volume F1 is the exhaust air volume of the bleed air fan 42
  • the classification air volume F2 is the exhaust air volume of the classification fan 66.
  • FIG. 2 is a diagram showing the configuration of the second experimental device 101.
  • the second experimental device 101 includes a vertical crusher 102, a collector 106 connected to the exhaust port 127 of the crusher 102, and a classification fan 166 that sucks the exhaust gas of the crusher 102 into the collector 106.
  • the crusher 102 includes a housing 121 forming a crushing chamber 120, a rotary table 122 that rotates around a vertical rotation axis, and a plurality of crushing rollers 123 that are driven by pressure contact with the rotary table 122 by a pressurizing means (not shown).
  • a mill motor 124 which is a rotation drive source of the rotary table 122, a speed reduction mechanism 125 which transmits the rotational power of the mill motor 124 to the rotary table 122, and a classifier 107 provided above the crushing roller 123 in the housing 121. ..
  • the crushing raw material supplied onto the rotating rotary table 122 is crushed between the rotary table 22 and the crushing roller 23 while being dried by hot air.
  • the fine powder is carried to the classifier 107 by the airflow blowing up from below, and is classified into the refined powder and the others by the classifier 107.
  • the fine powder is discharged from the exhaust port 127 in the air stream and collected by the collector 106.
  • the fine powder classified by the classifying machine 107 other than the refined powder and the coarse powder overflowing from the peripheral edge of the rotary table 122 are temporarily discharged to the outside of the machine and supplied to the crushing machine 102 again together with the new crushing raw material.
  • Comparative Example 1 The experiment of Comparative Example 1 was carried out using the second experimental device 101 having the above configuration.
  • the classified air volume F2 was kept constant at 15 [m 3 / min].
  • the classification air volume F2 is the air volume of the classification fan 166.
  • it is difficult to adjust only the extracted air volume because the extracted air volume (exhaust air volume) from the crusher 102 is directly affected by the classified air volume F2.
  • the pulverized raw material was put into the mill of the experimental apparatus, and the fine powder was recovered.
  • the collected fine powder sample was subjected to a specific surface area test and a net sieving test based on JIS R 5201 (physical test method for cement) in order to specify the degree of powder.
  • JIS R 5201 physical test method for cement
  • the specific surface area test the specific surface area of the sample [cm 2 / g] was measured using a specific surface area tester (brain air permeation measuring device).
  • the sample is sifted using a test sieve having a mesh size of 45 ⁇ m, the residue on the sieve is weighed, and the residue of the sample mesh sieve [%] (hereinafter, the content of particles having a particle size of 45 ⁇ m or more). (Referred to as "45 ⁇ R”) was calculated.
  • FIG. 3 is a chart showing the correlation between the amount of air extracted from the crusher 2 and the degree of powderiness of the recovered fine powder.
  • the vertical axis of this chart represents the specific surface area [cm 2 / g], the horizontal axis represents 45 ⁇ R [%], and the results of the powderness test of the fine powder obtained in Examples 1 to 4 and Comparative Example 1 are plotted. ing.
  • the specific surface area decreases as the value of 45 ⁇ R increases.
  • 45 ⁇ R the specific surface area decreases as the extracted air volume F1 increases.
  • the value of specific surface area is affected by the fine powder in the refined powder. From the result that the specific surface area decreases as the bleed air volume F1 increases when 45 ⁇ R is a constant value, the fine powder content decreases as the bleed air volume F1 increases, and the distribution width becomes narrower. Understand. In other words, it can be seen that the powderiness (specific surface area) of the refined powder can be adjusted by adjusting the bleed air volume F1.
  • the electric power intensity for producing the refined powder was measured.
  • the power intensity of the mill motors 24 and 124 was measured.
  • the electric power intensity of the mill motors 24 and 124 accounts for most of the electric power intensity for producing refined powder.
  • FIG. 4 is a chart showing a characteristic curve of the electric power intensity of the crusher 2 with respect to the extracted air volume F1 from the crusher 2 related to the production of the refined powder in Examples 1 to 4 and Comparative Example 1.
  • the vertical axis of this chart represents the ratio of the power intensity [kWh / t (DB)] of Examples 1 to 4 when the power intensity [kWh / t (DB)] of Comparative Example 1 is 100%.
  • the vertical axis represents the bleed air volume F1 [m 3 / min].
  • the electric power intensity of Examples 1 to 4 is lower than that of Comparative Example 1. Further, when the bleed air volume F1 is less than about 4.5 m 3 / min, the electric power basic unit gradually decreases as the bleed air volume F1 increases, and when the bleed air volume F1 is about 4.5 m 3 / min or more, the bleed air volume F1 increases. Along with this, the power intensity gradually increases. In particular, in the range where the bleed air volume F1 is about 2 to 6 m 3 / min, the electric power intensity is reduced by about 30% as compared with the comparative example, and the electric power reduction effect is remarkable.
  • the powderiness of the refined powder is adjusted by using the verified principle. That is, the operation method of the crushing system 1 according to the present embodiment includes a crusher 2 for crushing the crushed raw material, a crushed material circulation path 30 for moving the crushed material from the discharge port 28 of the crusher 2 to the supply port 26, and crushing.
  • a classifier 7 provided in the material circulation path 30 for separating the crushed material into a refined powder as a product and a coarse powder returned to the crusher 2, a collector 6 for collecting the crushed powder, and an upper part of the crusher 2.
  • It includes a connected bleed air passage 40a, an bleed air fan 42 that bleeds air from the crusher 2 to the bleed air passage 40a with a set bleed air volume, and a dust collector 41 that separates fine powder from the pulverized air of the crusher 2 and sends it to the crushed material circulation path 30.
  • the correlation (see FIG. 3) between the amount of air extracted from the crusher 2 and the degree of powderiness of the recovered fine powder is obtained, and the desired degree of powderiness is obtained based on the correlation.
  • the extracted air volume is estimated, and the extracted air volume F1 is set as the set extracted air volume.
  • the pulverized raw material is pulverized by the pulverizer 2 and extracted from the pulverizer 2 at a set bleed air volume to blow out the fine powder among the pulverized products.
  • the fine powder is separated from the bleed air of the crusher 2 and transported to the classifying machine 7, and the rest of the crushed material is transported from the crushing machine 2 to the classifying machine 7 and crushed by the classifying machine 7 according to the set particle size.
  • the bleed air volume is set as the set bleed air volume.
  • refined powder (powder) having an arbitrary degree of powder can be obtained by changing the set bleed air volume. That is, it is possible to obtain a powder product according to the purpose of use by changing the degree of powderiness of the obtained refined powder. As a result, the quality of the powder product can be improved.
  • a characteristic curve (see FIG. 4) of the electric power intensity of the crusher 2 with respect to the extracted air volume is obtained, and a desired characteristic curve is obtained based on the characteristic curve.
  • the set bleed air volume is defined as the bleed air volume at which the degree of powder is obtained and the electric power intensity is the minimum.
  • the crushed raw material is a cement raw material of a cement type containing a large amount of a mixture such as limestone
  • fine powder is likely to be generated because the limestone is softer than clinker
  • the value of the specific surface area of the refined powder is the value specified as the cement raw material. Tends to be higher than.
  • the value of the specific surface area of the refined powder can be lowered within the specified value while maintaining 45 ⁇ R of the refined powder at a predetermined value. As a result, the quality of the cement raw material can be improved.
  • the crushed raw material is a cement raw material of a cement type (Portland cement, etc.) having a relatively small mixture of limestone or the like
  • the value of the specific surface area of the refined powder tends to be lower than the value specified as the cement raw material. is there.
  • the value of the specific surface area of the refined powder can be increased within the specified value while maintaining 45 ⁇ R of the refined powder at a predetermined value. As a result, the quality of the cement raw material can be improved.
  • the cement raw material can be used. In addition to improving the quality of electricity, it is possible to reduce the power intensity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Disintegrating Or Milling (AREA)
  • Crushing And Grinding (AREA)

Abstract

This method is for operating a pulverizing system that comprises: a vertical pulverizing machine for pulverizing a pulverization starting material; a pulverized material circulation path where pulverized material moves from a discharge port to a supply port of the pulverizing machine; a classifying machine that is provided in the pulverized material circulation path and separates the pulverized material into fine powder to serve as a product and coarse powder to be returned to the pulverizing machine; a collecting machine for recovering the fine powder; an air-extracting path connected to an upper portion of the pulverizing machine; an air-extracting fan for extracting air from the pulverizing machine to the air-extracting path at a set air extraction rate; and a dust collecting machine for separating powder from the extracted air of the pulverizing machine and feeding the powder to the pulverized material circulation path. The method includes finding the correlation between the rate of air extraction from the pulverizing machine and the fineness of the recovered fine powder, estimating an air extraction rate at which a desired fineness can be obtained on the basis of the correlation, and setting this air extraction rate as the set air extraction rate.

Description

粉砕システムの運転方法及び粉体の製造方法How to operate the crushing system and how to manufacture powder
 本発明は、粉砕原料を竪型粉砕機で粉砕してなる粉体の製造方法及びそれに用いる粉砕システムの運転方法に関する。 The present invention relates to a method for producing a powder obtained by crushing a crushing raw material with a vertical crusher and a method for operating a crushing system used therein.
 従来、粉砕原料の乾燥及び粉砕を行う粉砕機の一種として、竪型粉砕機が知られている。粉砕原料として、セメント原料や炭酸カルシウムなどが例示される。特許文献1,2では、この種の竪型粉砕機を含む粉砕システムが開示されている。 Conventionally, a vertical crusher is known as a kind of crusher for drying and crushing a crushing raw material. Examples of the pulverized raw material include a cement raw material and calcium carbonate. Patent Documents 1 and 2 disclose a crushing system including this type of vertical crusher.
 特許文献1には、閉回路粉砕式の粉砕システムが開示されている。この粉砕システムは、分級機を内蔵した竪型粉砕機を備える。粉砕原料が粉砕機で粉砕されると、粗粉及び微粉を含む粉砕物が生じる。粗粉は、粉砕機から一旦排出されたのち、粉砕機へ再び供給されて再粉砕に供される。微粉は、粉砕機内で上昇するガスに同伴して分級機を通過して、分級機で精粉とそれ以外に分級される。精粉はガスに同伴して粉砕機から排出され、集塵機で捕集された後、製品として回収される。集塵機で精粉と分離されたガスは、粉砕機へ戻される。 Patent Document 1 discloses a closed circuit crushing type crushing system. This crushing system includes a vertical crusher with a built-in classifier. When the pulverized raw material is pulverized by a pulverizer, a pulverized product containing coarse powder and fine powder is produced. The coarse powder is once discharged from the crusher and then supplied again to the crusher for re-grinding. The fine powder passes through the classifier along with the rising gas in the crusher, and is classified into refined powder and others by the classifier. The refined powder is discharged from the crusher along with the gas, collected by the dust collector, and then collected as a product. The gas separated from the fine powder by the dust collector is returned to the crusher.
 特許文献2の粉砕システムは、竪型粉砕機から独立した分級機を備える。粉砕機の粉砕物のうち微粉は、粉砕機から抽気されるガスに同伴して粉砕機から排出され、集塵機でガスから分離される。集塵機で微粉と分離されたガスは粉砕機へ戻され、微粉はコンベヤで分級機へ送られる。粉砕機の粉砕物のうち粗粉は、コンベヤで分級機へ送られる。分級機に送られた粉砕物は、精粉とそれ以外に分級され、精粉は後段の集塵機で製品として回収され、それ以外は粉砕機へ戻される。特許文献2の粉砕システムでは、粉砕機の粉砕物の循環系統と、粉砕機のガスの循環系統とが独立しているため、粉砕機からの抽気量と、分級機の分級風量とを独立して調整することができる。 The crushing system of Patent Document 2 includes a classifier independent of the vertical crusher. Of the crushed material of the crusher, the fine powder is discharged from the crusher along with the gas extracted from the crusher, and is separated from the gas by the dust collector. The gas separated from the fine powder by the dust collector is returned to the crusher, and the fine powder is sent to the classifier by a conveyor. Of the crushed material of the crusher, the coarse powder is sent to the classifier by a conveyor. The crushed material sent to the classifier is classified into fine powder and other parts, and the fine powder is collected as a product by the dust collector in the subsequent stage, and the other parts are returned to the crusher. In the crushing system of Patent Document 2, since the crushed product circulation system of the crusher and the gas circulation system of the crusher are independent, the amount of air extracted from the crusher and the amount of classified air of the classifier are independent. Can be adjusted.
特開平9-117685号公報Japanese Unexamined Patent Publication No. 9-117685 特開2018-202347号公報JP-A-2018-202347
 本願発明は、特許文献2に記載の発明を更に発展させたものであり、その目的は、竪型粉砕機を含む閉回路粉砕システムを用いて、任意に調整された粉末度の精粉(粉体)を製造する技術を提供することにある。 The present invention is a further development of the invention described in Patent Document 2, and an object of the present invention is to use a closed circuit crushing system including a vertical crusher to arbitrarily adjust the degree of powder (powder). The purpose is to provide the technology for manufacturing the body).
 本発明の一態様に係る粉砕システムの運転方法は、
粉砕原料を粉砕する竪型粉砕機と、
前記竪型粉砕機の排出口から供給口へ粉砕物が移動する粉砕物循環路と、
前記粉砕物循環路に設けられて、前記粉砕物を製品となる精粉と前記竪型粉砕機へ戻す粗粉とに分ける分級機と、
前記精粉を回収する捕集機と、
前記竪型粉砕機の上部に接続された抽気路と、
前記竪型粉砕機から前記抽気路へ設定抽気風量で抽気する抽気ファンと、
前記竪型粉砕機の抽気から微粉を分離して前記粉砕物循環路へ送る集塵機とを備える粉砕システムの運転方法であって、
前記竪型粉砕機からの抽気風量と回収される前記精粉の粉末度との相関関係を求め、当該相関関係に基づいて所望の粉末度が得られる抽気風量を推定し、当該抽気風量を前記設定抽気風量とすることを特徴とする。
The method of operating the crushing system according to one aspect of the present invention is as follows.
A vertical crusher that crushes crushed raw materials,
A crushed material circulation path for crushed material to move from the discharge port to the supply port of the vertical crusher, and
A classifier provided in the crushed product circulation path to separate the crushed product into a refined powder as a product and a coarse powder returned to the vertical crusher.
A collector that collects the fine powder and
The bleeding path connected to the upper part of the vertical crusher and
An bleeding fan that draws air from the vertical crusher to the bleeding path with the set bleeding air volume, and
A method of operating a crushing system including a dust collector that separates fine powder from the bleed air of the vertical crusher and sends it to the crushed material circulation path.
The correlation between the amount of air extracted from the vertical crusher and the degree of powderiness of the collected fine powder is obtained, the amount of air extracted from which the desired degree of powder is obtained is estimated based on the correlation, and the amount of air extracted is calculated as described above. It is characterized by setting the bleed air volume.
 また、本発明の一態様に係る粉体の製造方法は、粉砕原料を竪型粉砕機に供給して粉砕し、前記竪型粉砕機から設定抽気風量で抽気することにより粉砕物のうち微粉を気流に乗せて搬出し、前記気流から前記微粉を分離して搬送機にて分級機へ搬送し、前記粉砕物の残部を前記搬送機にて前記分級機へ搬送し、前記分級機にて設定粒径に従って前記粉砕物を精粉と粗粉とに分級し、前記精粉を前記分級機から捕集機へ気流搬送して前記捕集機で製品として回収し、前記粗粉を前記分級機から前記竪型粉砕機へ返送して再粉砕することを含む。そして、前記竪型粉砕機からの抽気風量と回収される前記精粉の粉末度との相関関係を求め、当該相関関係に基づいて所望の粉末度が得られる抽気風量を推定し、当該抽気風量を前記設定抽気風量とすることを特徴とする。 Further, in the method for producing a powder according to one aspect of the present invention, a pulverized raw material is supplied to a vertical crusher to be pulverized, and fine powder is extracted from the vertical pulverizer at a set bleed air volume to obtain fine powder. It is carried out on an air stream, the fine powder is separated from the air flow and transported to a classifier by a transporter, and the rest of the crushed material is transported to the classifier by the transporter and set by the classifier. The pulverized product is classified into refined powder and coarse powder according to the particle size, the refined powder is airborne from the classifier to the collector and collected as a product by the collector, and the coarse powder is collected by the classifier. Includes returning from to the vertical crusher and re-crushing. Then, the correlation between the amount of air extracted from the vertical crusher and the degree of powderiness of the collected fine powder is obtained, and the amount of air extracted from which a desired degree of powder is obtained is estimated based on the correlation. Is the set bleed air volume.
 上記粉砕システムの運転方法及び粉体の製造方法によれば、設定抽気風量を変化させることにより、任意の粉末度の精粉(粉体)を得ることができる。つまり、得られる精粉の粉末度を変えて、使用目的に応じた粉体製品を得ることができる。これにより、粉体製品の品質向上を図ることができる。 According to the operation method of the crushing system and the powder production method, the refined powder (powder) having an arbitrary degree of powder can be obtained by changing the set bleed air volume. That is, it is possible to obtain a powder product according to the purpose of use by changing the degree of powderiness of the obtained refined powder. As a result, the quality of the powder product can be improved.
 本発明によれば、竪型粉砕機を含む閉回路粉砕システムを用いて、任意に調整された粉末度の精粉(粉体)を製造する技術を提供することができる。 According to the present invention, it is possible to provide a technique for producing refined powder (powder) having an arbitrarily adjusted degree of powder by using a closed circuit crushing system including a vertical crusher.
図1は、本発明の一実施形態に係る粉砕システムの全体的な構成を示す図である。FIG. 1 is a diagram showing an overall configuration of a crushing system according to an embodiment of the present invention. 図2は、従来の粉砕システムを模擬した第2実験装置の構成を示す図である。FIG. 2 is a diagram showing a configuration of a second experimental device simulating a conventional crushing system. 図3は、竪型粉砕機からの抽気風量と回収される精粉の粉末度との相関関係を示す図表である。FIG. 3 is a chart showing the correlation between the amount of air extracted from the vertical crusher and the degree of powderiness of the collected refined powder. 図4は、竪型粉砕機からの抽気風量に対する竪型粉砕機の電力原単位の特性曲線を示す図表である。FIG. 4 is a chart showing a characteristic curve of the electric power intensity of the vertical crusher with respect to the amount of air extracted from the vertical crusher.
 次に、図面を参照して本発明の実施の形態を説明する。図1は、本発明の一実施形態に係る粉砕システム1の全体的な構成を示す図である。 Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an overall configuration of a crushing system 1 according to an embodiment of the present invention.
 図1に示す閉回路式の粉砕システム1は、竪型粉砕機2(以下、単に「粉砕機2」と称する)と、粉砕機2に接続された粉砕物循環系統3と、粉砕機2に接続されたガス循環系統4とを備える。 The closed circuit type crushing system 1 shown in FIG. 1 includes a vertical crusher 2 (hereinafter, simply referred to as “crusher 2”), a crushed material circulation system 3 connected to the crusher 2, and a crusher 2. It includes a connected gas circulation system 4.
〔竪型粉砕機2〕
 粉砕機2は、粉砕原料の粉砕が行われる粉砕室20を形成するハウジング21を備える。ハウジング21内には、垂直な回転軸線まわりに回転する回転テーブル22と、図示されない加圧手段によって回転テーブル22に圧接されて従動回転する複数の粉砕ローラ23とが設けられている。ハウジング21の下方には、回転テーブル22の回転駆動源であるミルモータ24と、ミルモータ24の回転動力を回転テーブル22に伝達する減速機構25とが設けられている。粉砕機2は、分級機を内蔵しない。
[Vertical crusher 2]
The crusher 2 includes a housing 21 that forms a crushing chamber 20 in which the crushing raw material is crushed. Inside the housing 21, a rotary table 22 that rotates around a vertical rotation axis and a plurality of crushing rollers 23 that are pressed against the rotary table 22 by a pressurizing means (not shown) and rotate in a driven manner are provided. Below the housing 21, a mill motor 24, which is a rotational drive source for the rotary table 22, and a reduction mechanism 25 for transmitting the rotational power of the mill motor 24 to the rotary table 22 are provided. The crusher 2 does not have a built-in classifier.
 ハウジング21の上部には供給口26が設けられている。供給口26を通じて、粉砕原料が回転テーブル22の上面へ導入される。また、回転テーブル22より上方且つハウジング21の上部には、抽気口27が設けられている。抽気口27を通じて、粉砕原料の粉砕で発生した微粉が吹き上がる気流に乗って排出される。回転テーブル22の下方には、排出口28が設けられている。排出口28を通じて、回転テーブル22の外周縁から溢れ落ちた粉砕物が粉砕機2の外部へ排出される。また、回転テーブル22の外周周囲には、熱風吹出口29が設けられている。熱風吹出口29から粉砕室20内へ上向きに熱風が吹き出す。 A supply port 26 is provided on the upper part of the housing 21. The pulverized raw material is introduced into the upper surface of the rotary table 22 through the supply port 26. Further, an air extraction port 27 is provided above the rotary table 22 and above the housing 21. Through the air extraction port 27, the fine powder generated by crushing the crushed raw material is discharged on the airflow that blows up. A discharge port 28 is provided below the rotary table 22. The crushed material that overflows from the outer peripheral edge of the rotary table 22 is discharged to the outside of the crusher 2 through the discharge port 28. A hot air outlet 29 is provided around the outer circumference of the rotary table 22. Hot air blows upward from the hot air outlet 29 into the crushing chamber 20.
〔粉砕物循環系統3〕
 粉砕物循環系統3は、粉砕機2の排出口28から排出された粉砕物から製品となる精粉を分離し、精粉が分離された粉砕物を粉砕機2へ戻すように構成されている。粉砕物循環系統3で分離された精粉は、製品として回収される。
[Crushed material circulation system 3]
The crushed product circulation system 3 is configured to separate the refined powder as a product from the crushed product discharged from the discharge port 28 of the crusher 2 and return the crushed product from which the refined powder is separated to the crushed product 2. .. The refined powder separated by the pulverized product circulation system 3 is recovered as a product.
 粉砕物循環系統3は、粉砕機2の排出口28から供給口26へ、粉砕機2から排出された粉砕物が移動する粉砕物循環路30を有する。粉砕物循環路30には分級機7が設けられている。また、本実施形態では、粉砕機2の排出口28よりも分級機7の粉砕物入口71が上方に位置するため、排出口28から粉砕物入口71へ粉砕物を上向きに搬送する搬送機31が粉砕物循環路30に設けられている。本実施形態に係る搬送機31は、図示されない複数のバケットを備えたバケットエレベータである。 The crushed material circulation system 3 has a crushed material circulation path 30 in which the crushed material discharged from the crusher 2 moves from the discharge port 28 of the crusher 2 to the supply port 26. A classifier 7 is provided in the crushed material circulation path 30. Further, in the present embodiment, since the crushed material inlet 71 of the classifier 7 is located above the discharge port 28 of the crusher 2, the crushed material 31 transports the crushed material upward from the discharge port 28 to the crushed material inlet 71. Is provided in the crushed material circulation path 30. The conveyor 31 according to the present embodiment is a bucket elevator including a plurality of buckets (not shown).
 粉砕機2の排出口28は、通路30aを介して搬送機31の第1入口31aと接続されている。搬送機31は、第1入口31a及び後述する第2入口31bを通じて投入された粉砕物を上方へ搬送して、出口31cから排出する。搬送機31の出口31cは、通路30bを介して分級機7の粉砕物入口71と接続されている。なお、搬送機31と分級機7とを接続している通路30bには、図示されない分配ダンパが設けられていてもよい。そして、この分配ダンパによって、粉砕物の一部が分級機7を介さずに直接に粉砕機2の供給口26へ搬送されてもよい。 The discharge port 28 of the crusher 2 is connected to the first inlet 31a of the conveyor 31 via the passage 30a. The carrier 31 carries the crushed material charged through the first inlet 31a and the second inlet 31b, which will be described later, upward and discharges it from the outlet 31c. The outlet 31c of the conveyor 31 is connected to the crushed material inlet 71 of the classifier 7 via the passage 30b. A distribution damper (not shown) may be provided in the passage 30b connecting the transporter 31 and the classifier 7. Then, a part of the crushed material may be directly conveyed to the supply port 26 of the crusher 2 by the distribution damper without going through the classifier 7.
 分級機7は、供給された粉砕物を、設定粒径に従って精粉と粗粉とに分級する。なお、「精粉」の設定粒径は、回収される製品の粒径に応じて定められる。「粗粉」は、ここでは、分級機7に供給された粉砕物のうち精粉より大きい粒径のものを意味する。本実施形態では、分級機7として気流式分級機が採用されている。但し、分級機7は、粉砕物を粒径に従って精粉とそれ以外とに分級できるものであれば、気流式分級機に限定されない。 The classifier 7 classifies the supplied crushed product into refined powder and coarse powder according to the set particle size. The set particle size of the "fine powder" is determined according to the particle size of the recovered product. The “coarse powder” here means a pulverized product supplied to the classifier 7 having a particle size larger than that of the refined powder. In the present embodiment, the airflow type classifier 7 is adopted as the classifier 7. However, the classifier 7 is not limited to the airflow type classifier as long as the pulverized product can be classified into refined powder and others according to the particle size.
 分級機7で粗粉に分級された粉砕物は、排出口72から排出される。排出口72は、通路30cを介して粉砕機2の供給口26と接続されている。 The crushed material classified into coarse powder by the classifier 7 is discharged from the discharge port 72. The discharge port 72 is connected to the supply port 26 of the crusher 2 via the passage 30c.
 分級機7で精粉に分級された粉砕物は、気流に乗って排気口73から排出される。排気口73は、通路64を介して捕集機6の入口と接続されている。捕集機6の排気路65には、分級ファン66が設けられている。分級ファン66の排風量は、所定の分級風量F2となるように調整される。 The crushed material classified into fine powder by the classifying machine 7 is discharged from the exhaust port 73 on the air flow. The exhaust port 73 is connected to the inlet of the collector 6 via the passage 64. A classification fan 66 is provided in the exhaust passage 65 of the collector 6. The exhaust air volume of the classification fan 66 is adjusted so as to have a predetermined classification air volume F2.
 捕集機6は、分級機7から排出されたガスに同伴している精粉を捕集し、ガスから精粉を分離させる。本実施形態では、捕集機6としてバグフィルタが採用されている。但し、捕集機6は、ガスに同伴している精粉を捕集できるものであれば足り、バグフィルタに限定されない。 The collector 6 collects the fine powder accompanying the gas discharged from the classifier 7 and separates the fine powder from the gas. In this embodiment, a bug filter is adopted as the collector 6. However, the collector 6 is not limited to the bug filter as long as it can collect the fine powder accompanying the gas.
〔ガス循環系統4〕
 ガス循環系統4は、粉砕機2の排出ガスから微粉を分離し、微粉が分離されたガスを熱風として粉砕機2へ戻すように構成されている。
[Gas circulation system 4]
The gas circulation system 4 is configured to separate fine powder from the exhaust gas of the crusher 2 and return the separated gas to the crusher 2 as hot air.
 ガス循環系統4は、粉砕機2の抽気口27から熱風入口29aへ、粉砕機2から抽気したガスが流れるガス循環路40を有する。ガス循環路40には、粉砕機2からの抽気から微粉を分離する集塵機41と、抽気ファン42と、ガス循環路40へ熱風を供給する熱風供給源43とが設けられている。抽気ファン42の排風量は抽気風量F1となるように調整される。 The gas circulation system 4 has a gas circulation path 40 through which the gas extracted from the crusher 2 flows from the air extraction port 27 of the crusher 2 to the hot air inlet 29a. The gas circulation path 40 is provided with a dust collector 41 that separates fine powder from the air extracted from the crusher 2, an air extraction fan 42, and a hot air supply source 43 that supplies hot air to the gas circulation path 40. The exhaust air volume of the bleed air fan 42 is adjusted to be the bleed air volume F1.
 粉砕機2の抽気口27は、抽気路40aを介して集塵機41の入口と接続されている。集塵機41の出口は、通路40bを介して粉砕機2の熱風入口29aと接続されている。通路40bには、熱風供給源43が接続されている。 The air extraction port 27 of the crusher 2 is connected to the inlet of the dust collector 41 via the air extraction path 40a. The outlet of the dust collector 41 is connected to the hot air inlet 29a of the crusher 2 via the passage 40b. A hot air supply source 43 is connected to the passage 40b.
 集塵機41は、粉砕機2からの抽気(以下、「ミル排気」と称する)から微粉を分離させるものである。本実施形態では、集塵機41として、抽気ファン42の吸引作用を利用した、サイクロン式集塵機が採用されている。但し、集塵機41は、ミル排気から微粉を分離できるものであれば、サイクロン式集塵機に限定されない。 The dust collector 41 separates fine powder from the bleed air (hereinafter referred to as "mill exhaust") from the crusher 2. In the present embodiment, as the dust collector 41, a cyclone type dust collector that utilizes the suction action of the bleed air fan 42 is adopted. However, the dust collector 41 is not limited to the cyclone type dust collector as long as it can separate fine powder from the mill exhaust.
 集塵機41の微粉出口は、微粉の搬送路88を介して搬送機31の第2入口31bと接続されている。集塵機41でミル排気から分離された微粉は、搬送路88を通じて搬送機31へ送られる。 The fine powder outlet of the dust collector 41 is connected to the second inlet 31b of the conveyor 31 via the fine powder transport path 88. The fine powder separated from the mill exhaust by the dust collector 41 is sent to the transport machine 31 through the transport path 88.
 集塵機41の出口と接続された通路40bにおいて、抽気ファン42よりもミル排気の流れの下流側には、通路40bのミル排気を分級機7へ送る通路84が接続されている。この通路84には、分級機7へ流れるミル排気の流量を調整する流量調整装置85が設けられている。流量調整装置85の開度を変化させることによって、分級機7へ流れるミル排気の流量を調整することができ、その結果、粉砕機2へ戻すミル排気の流量を調整することができる。流量調整装置85は、分級機7へ流れるミル排気の流量を調整する手段であれば態様を問わず、例えば、ダンパ、流量調整弁、及びファンのうち少なくとも1つであってよい。 In the passage 40b connected to the outlet of the dust collector 41, a passage 84 for sending the mill exhaust of the passage 40b to the classifier 7 is connected to the downstream side of the flow of the mill exhaust from the bleeding fan 42. A flow rate adjusting device 85 for adjusting the flow rate of the mill exhaust gas flowing to the classifier 7 is provided in the passage 84. By changing the opening degree of the flow rate adjusting device 85, the flow rate of the mill exhaust gas flowing to the classifier 7 can be adjusted, and as a result, the flow rate of the mill exhaust gas returned to the crusher 2 can be adjusted. The flow rate adjusting device 85 may be, for example, at least one of a damper, a flow rate adjusting valve, and a fan, regardless of the mode, as long as it is a means for adjusting the flow rate of the mill exhaust gas flowing to the classifier 7.
 熱風供給源43は、例えば、所望の温度の熱風を発生させる熱風発生炉であってよい。熱風供給源43からガス循環路40へ供給された熱風は、ミル排気とともに通路40bを通じて粉砕機2の熱風入口29aへ送られる。但し、熱風供給源43は、熱風発生炉に限定されず、例えば、粉砕機2の周辺にキルン(セメント焼成炉)などの高温ガスの発生源が存在する場合には、その高温ガス発生源を熱風供給源43として利用してもよい。 The hot air supply source 43 may be, for example, a hot air generator that generates hot air at a desired temperature. The hot air supplied from the hot air supply source 43 to the gas circulation path 40 is sent to the hot air inlet 29a of the crusher 2 through the passage 40b together with the mill exhaust. However, the hot air supply source 43 is not limited to the hot air generator, and for example, when a source of high temperature gas such as a kiln (cement firing furnace) exists around the crusher 2, the hot air source is used. It may be used as a hot air supply source 43.
〔粉砕システム1を用いた粉体の製造方法〕
 ここで、上記構成の粉砕システム1の運転方法、及び、粉砕システム1を用いた粉体の製造方法を説明する。粉砕機2では、熱風吹出口29から吹き出す熱風によって、回転テーブル22や粉砕ローラ23を含む粉砕室20内が予熱される。そして、回転テーブル22がミルモータ24によって回転駆動され、回転テーブル22の粉砕面(上面)に周面が押し付けられている複数の粉砕ローラ23が従動回転する。このように回転している回転テーブル22の上に、供給口26を通じて粉砕原料が供給される。粉砕原料は、回転テーブル22と粉砕ローラ23との間で粉砕される。粉砕物のうち粗粉は、回転テーブル22の周縁から溢れ落ち、排出口28を通じて機外へ排出される。また、粉砕物のうち微粉は、吹き上がる気流に乗って抽気口27から排出される。
[Powder production method using crushing system 1]
Here, an operation method of the crushing system 1 having the above configuration and a method of producing powder using the crushing system 1 will be described. In the crusher 2, the inside of the crushing chamber 20 including the rotary table 22 and the crushing roller 23 is preheated by the hot air blown from the hot air outlet 29. Then, the rotary table 22 is rotationally driven by the mill motor 24, and a plurality of crushing rollers 23 whose peripheral surfaces are pressed against the crushing surface (upper surface) of the rotary table 22 are driven to rotate. The pulverized raw material is supplied onto the rotary table 22 rotating in this way through the supply port 26. The crushing raw material is crushed between the rotary table 22 and the crushing roller 23. Of the crushed material, the coarse powder overflows from the peripheral edge of the rotary table 22 and is discharged to the outside of the machine through the discharge port 28. Further, the fine powder of the pulverized product is discharged from the extraction port 27 on the airflow that blows up.
 粉砕機2の抽気口27から出たミル排気は、集塵機41に流入する。集塵機41では、ミル排気に同伴している微粉がミル排気から分離される。分離された微粉は搬送路88を通じて搬送機31の第2入口31bへ送られて、粉砕物循環系統3の粉砕物の流れに合流する。 The mill exhaust gas from the air extraction port 27 of the crusher 2 flows into the dust collector 41. In the dust collector 41, the fine powder accompanying the mill exhaust is separated from the mill exhaust. The separated fine powder is sent to the second inlet 31b of the transport machine 31 through the transport path 88 and joins the flow of the crushed material in the crushed material circulation system 3.
 一方、集塵機41で微粉が分離されたミル排気は、集塵機41から出て、抽気ファン42に吸い込まれ、ガス循環系統4の更に下流側の通路40bへ送られる。ここで、抽気ファン42の吸引作用により通路40bへ流入するミル排気の流量と、粉砕機2へ戻されるミル排気の流量とをバランスするために、流量調整装置85の開度が調整される。熱風供給源43から通路40bへ供給された熱風は、ミル排気と共に粉砕機2へ流入し、熱風吹出口29からミル内に吹き出す。 On the other hand, the mill exhaust from which the fine powder is separated by the dust collector 41 exits from the dust collector 41, is sucked into the bleed air fan 42, and is sent to the passage 40b further downstream of the gas circulation system 4. Here, the opening degree of the flow rate adjusting device 85 is adjusted in order to balance the flow rate of the mill exhaust gas flowing into the passage 40b by the suction action of the bleeding fan 42 and the flow rate of the mill exhaust gas returned to the crusher 2. The hot air supplied from the hot air supply source 43 to the passage 40b flows into the crusher 2 together with the mill exhaust, and is blown into the mill from the hot air outlet 29.
 粉砕機2の排出口28から排出された粉砕物は、搬送機31によって上方へ搬送され、分級機7へ流入する。分級機7では、粉砕物が分級され、粉砕物から精粉が分離される。分級機7で精粉が分離された粉砕物は、分級機7から排出され、通路30cを通じて粉砕機2の供給口26へ送られ、粉砕機2で再び粉砕される。分級機7で粉砕物から分離した精粉は、分級機7の排気口73からガスに伴って排出され、通路64を通じて捕集機6へ気流搬送される。捕集機6では、精粉が捕集される。この精粉は製品として回収され、例えば、袋詰めされる。一方、捕集機6で精粉と分離されたガスは、排気路65へ流出して大気へ放出される。 The crushed material discharged from the discharge port 28 of the crusher 2 is conveyed upward by the conveyor 31 and flows into the classifier 7. In the classifier 7, the pulverized product is classified and the fine powder is separated from the pulverized product. The crushed product from which the fine powder has been separated by the classifier 7 is discharged from the classifier 7, sent to the supply port 26 of the crusher 2 through the passage 30c, and crushed again by the crusher 2. The refined powder separated from the crushed material by the classifying machine 7 is discharged from the exhaust port 73 of the classifying machine 7 together with the gas, and is air-flowed to the collector 6 through the passage 64. The collector 6 collects the fine powder. This refined powder is collected as a product and, for example, packed in a bag. On the other hand, the gas separated from the fine powder by the collector 6 flows out to the exhaust passage 65 and is released to the atmosphere.
〔粉末度調整〕
 上記のように製品として回収された精粉の粉末度(粒子の細かさの程度)は、精粉の品質を表す重要な要素の一つである。上記構成の粉砕システム1では、抽気風量F1を調整することで、得られる精粉の粉末度を変えることができる。抽気風量F1を調整することで、精粉の粉末度の調整が可能であることを検証するために、以下の検証実験を行った。
[Powder degree adjustment]
The degree of powderiness (degree of fineness of particles) of the refined powder recovered as a product as described above is one of the important factors indicating the quality of the refined powder. In the crushing system 1 having the above configuration, the degree of powderiness of the obtained refined powder can be changed by adjusting the bleed air volume F1. The following verification experiment was conducted in order to verify that the powderiness of the fine powder can be adjusted by adjusting the bleed air volume F1.
 検証実験では、本実施形態に係る粉砕システム1を模擬した第1実験装置と、従来の粉砕システムを模擬した第2実験装置101(図2、参照)とを用いた。 In the verification experiment, a first experimental device simulating the crushing system 1 according to the present embodiment and a second experimental device 101 (see FIG. 2) simulating a conventional crushing system were used.
 第1実験装置は、図1に示す粉砕システム1を模擬したものであり、詳細な説明は省略する。第1実験装置を用いて、実施例1~4の実験を行った。実施例1~4及び比較例1の実験条件を表1に示す。実施例1~4において、分級風量F2を15[m/min]で一定に保持した。実施例1では抽気風量F1を0[m/min]、実施例2では抽気風量F1を3[m/min]、実施例3では抽気風量F1を6[m/min]、実施例4では抽気風量F1を9[m/min]とした。なお、抽気風量F1は抽気ファン42の排風量であり、分級風量F2は分級ファン66の排風量である。 The first experimental apparatus simulates the crushing system 1 shown in FIG. 1, and detailed description thereof will be omitted. The experiments of Examples 1 to 4 were carried out using the first experimental apparatus. Table 1 shows the experimental conditions of Examples 1 to 4 and Comparative Example 1. In Examples 1 to 4, the classified air volume F2 was kept constant at 15 [m 3 / min]. In Example 1, the bleed air volume F1 is 0 [m 3 / min], in Example 2, the bleed air volume F1 is 3 [m 3 / min], and in Example 3, the bleed air volume F1 is 6 [m 3 / min]. In No. 4, the extracted air volume F1 was set to 9 [m 3 / min]. The bleed air volume F1 is the exhaust air volume of the bleed air fan 42, and the classification air volume F2 is the exhaust air volume of the classification fan 66.
 図2は、第2実験装置101の構成を示す図である。第2実験装置101は、竪型粉砕機102と、粉砕機102の排気口127に接続された捕集機106と、捕集機106へ粉砕機102の排気を吸引する分級ファン166とを備える。粉砕機102は、粉砕室120を形成するハウジング121と、垂直な回転軸線まわりに回転する回転テーブル122と、図示されない加圧手段によって回転テーブル122に圧接されて従動回転する複数の粉砕ローラ123と、回転テーブル122の回転駆動源であるミルモータ124と、ミルモータ124の回転動力を回転テーブル122に伝達する減速機構125と、ハウジング121内において粉砕ローラ123の上方に設けられた分級機107とを備える。 FIG. 2 is a diagram showing the configuration of the second experimental device 101. The second experimental device 101 includes a vertical crusher 102, a collector 106 connected to the exhaust port 127 of the crusher 102, and a classification fan 166 that sucks the exhaust gas of the crusher 102 into the collector 106. .. The crusher 102 includes a housing 121 forming a crushing chamber 120, a rotary table 122 that rotates around a vertical rotation axis, and a plurality of crushing rollers 123 that are driven by pressure contact with the rotary table 122 by a pressurizing means (not shown). , A mill motor 124 which is a rotation drive source of the rotary table 122, a speed reduction mechanism 125 which transmits the rotational power of the mill motor 124 to the rotary table 122, and a classifier 107 provided above the crushing roller 123 in the housing 121. ..
 粉砕機102において、回転している回転テーブル122の上に供給された粉砕原料は、熱風により乾燥されながら、回転テーブル22と粉砕ローラ23との間で粉砕される。粉砕物のうち微粉は、下方より吹き上がる気流に乗って分級機107へ運ばれ、分級機107で精粉とそれ以外とに分級される。精粉は、気流に乗って排気口127から排出され、捕集機106で回収される。分級機107で精粉以外に分級された微粉、及び、回転テーブル122の周縁から溢れ落ちた粗粉は、機外へ一旦排出されて、新たな粉砕原料と共に再び粉砕機102へ供給される。 In the crusher 102, the crushing raw material supplied onto the rotating rotary table 122 is crushed between the rotary table 22 and the crushing roller 23 while being dried by hot air. Of the pulverized material, the fine powder is carried to the classifier 107 by the airflow blowing up from below, and is classified into the refined powder and the others by the classifier 107. The fine powder is discharged from the exhaust port 127 in the air stream and collected by the collector 106. The fine powder classified by the classifying machine 107 other than the refined powder and the coarse powder overflowing from the peripheral edge of the rotary table 122 are temporarily discharged to the outside of the machine and supplied to the crushing machine 102 again together with the new crushing raw material.
 上記構成の第2実験装置101を用いて比較例1の実験を行った。比較例1では、分級風量F2を15[m/min]で一定に保持した。なお、分級風量F2は、分級ファン166の風量である。第2実験装置101では、粉砕機102からの抽気風量(排気風量)は、分級風量F2に直接的に影響を受けることから抽気風量のみを調節することは困難である。 The experiment of Comparative Example 1 was carried out using the second experimental device 101 having the above configuration. In Comparative Example 1, the classified air volume F2 was kept constant at 15 [m 3 / min]. The classification air volume F2 is the air volume of the classification fan 166. In the second experimental device 101, it is difficult to adjust only the extracted air volume because the extracted air volume (exhaust air volume) from the crusher 102 is directly affected by the classified air volume F2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~4及び比較例1の実験では、実験装置のミルに粉砕原料を投入し、精粉を回収した。回収された精粉試料について、粉末度を特定するために、JIS R 5201(セメントの物理試験方法)に基づいて、比表面積試験及び網ふるい試験を行った。比表面積試験では、比表面積試験器(ブレーン空気透過測定装置)を用いて、試料のブレーン比表面積[cm/g]を測定した。網ふるい試験では、目開き45μmの試験用ふるいを用いて試料をふるいにかけ、ふるい上の残分を量り、試料の網ふるいの残分[%](以下、粒径45μm以上の粒子の含有量「45μR」と称する)を算出した。 In the experiments of Examples 1 to 4 and Comparative Example 1, the pulverized raw material was put into the mill of the experimental apparatus, and the fine powder was recovered. The collected fine powder sample was subjected to a specific surface area test and a net sieving test based on JIS R 5201 (physical test method for cement) in order to specify the degree of powder. In the specific surface area test, the specific surface area of the sample [cm 2 / g] was measured using a specific surface area tester (brain air permeation measuring device). In the net sieving test, the sample is sifted using a test sieve having a mesh size of 45 μm, the residue on the sieve is weighed, and the residue of the sample mesh sieve [%] (hereinafter, the content of particles having a particle size of 45 μm or more). (Referred to as "45 μR") was calculated.
 図3は、粉砕機2からの抽気風量F1と回収される精粉の粉末度との相関関係を示す図表である。この図表の縦軸は比表面積[cm/g]を表し、横軸は45μR[%]を表し、実施例1~4及び比較例1で得た精粉の粉末度試験の結果がプロットされている。実施例1~4及び比較例1に共通して、一定の抽気風量F1においては、45μRの値の増加に従って、比表面積が減少する。また、一定の45μRにおいては、抽気風量F1が大きくなるに従って比表面積が小さくなる。 FIG. 3 is a chart showing the correlation between the amount of air extracted from the crusher 2 and the degree of powderiness of the recovered fine powder. The vertical axis of this chart represents the specific surface area [cm 2 / g], the horizontal axis represents 45 μR [%], and the results of the powderness test of the fine powder obtained in Examples 1 to 4 and Comparative Example 1 are plotted. ing. Common to Examples 1 to 4 and Comparative Example 1, at a constant bleed air volume F1, the specific surface area decreases as the value of 45 μR increases. Further, at a constant 45 μR, the specific surface area decreases as the extracted air volume F1 increases.
 比表面積の値は、精粉中の微粉分の影響を受ける。45μRが一定の値であるときに抽気風量F1が大きくなるに従って比表面積が小さくなるという結果から、抽気風量F1が大きくなるに従って微粉分が少なく、分布幅が狭いシャープな粉末度構成となることがわかる。換言すれば、抽気風量F1を調整することによって、精粉の粉末度(比表面積)の調整が可能であることがわかる。 The value of specific surface area is affected by the fine powder in the refined powder. From the result that the specific surface area decreases as the bleed air volume F1 increases when 45 μR is a constant value, the fine powder content decreases as the bleed air volume F1 increases, and the distribution width becomes narrower. Understand. In other words, it can be seen that the powderiness (specific surface area) of the refined powder can be adjusted by adjusting the bleed air volume F1.
 また、実施例1~4及び比較例1について、精粉の製造にかかる電力原単位を測定した。電力原単位として、ミルモータ24,124の電力原単位を測定した。ミルモータ24,124の電力原単位は、精粉の製造にかかる電力原単位の大半を占める。 Further, with respect to Examples 1 to 4 and Comparative Example 1, the electric power intensity for producing the refined powder was measured. As the power intensity, the power intensity of the mill motors 24 and 124 was measured. The electric power intensity of the mill motors 24 and 124 accounts for most of the electric power intensity for producing refined powder.
 図4は、実施例1~4及び比較例1における精粉の製造に係る粉砕機2からの抽気風量F1に対する粉砕機2の電力原単位の特性曲線を示す図表である。この図表の縦軸は、比較例1の電力原単位[kWh/t(DB)]を100%としたときの実施例1~4の電力原単位[kWh/t(DB)]の割合を表し、縦軸は、抽気風量F1[m/min]を表す。 FIG. 4 is a chart showing a characteristic curve of the electric power intensity of the crusher 2 with respect to the extracted air volume F1 from the crusher 2 related to the production of the refined powder in Examples 1 to 4 and Comparative Example 1. The vertical axis of this chart represents the ratio of the power intensity [kWh / t (DB)] of Examples 1 to 4 when the power intensity [kWh / t (DB)] of Comparative Example 1 is 100%. , The vertical axis represents the bleed air volume F1 [m 3 / min].
 実施例1~4の電力原単位は、いずれも比較例1の電力原単位よりも低い。また、抽気風量F1が約4.5m/min未満では抽気風量F1の増加に伴って電力原単位が漸次減少し、抽気風量F1が約4.5m/min以上では抽気風量F1の増加に伴って電力原単位が漸次増加する。とりわけ、抽気風量F1が約2~6m/minの範囲では、比較例と比較して約30%も電力原単位が低減されており、電力削減効果が顕著である。これは、粉砕機2内から抽気と共に微粉分を引き抜くことにより過粉砕が抑制される結果、電力原単位が低減しているものと推察される。このような電力原単位の低減の観点から、抽気風量F1として好適な範囲が存在することが明らかである。 The electric power intensity of Examples 1 to 4 is lower than that of Comparative Example 1. Further, when the bleed air volume F1 is less than about 4.5 m 3 / min, the electric power basic unit gradually decreases as the bleed air volume F1 increases, and when the bleed air volume F1 is about 4.5 m 3 / min or more, the bleed air volume F1 increases. Along with this, the power intensity gradually increases. In particular, in the range where the bleed air volume F1 is about 2 to 6 m 3 / min, the electric power intensity is reduced by about 30% as compared with the comparative example, and the electric power reduction effect is remarkable. It is presumed that this is because the over-crushing is suppressed by extracting the fine powder from the inside of the crusher 2 together with the extraction air, and as a result, the electric power intensity is reduced. From the viewpoint of such reduction of power intensity, it is clear that there is a suitable range for the extracted air volume F1.
 以上の検証実験の結果から、粉砕機2からの抽気風量F1を調整することで、精粉の粉末度(比表面積)の調整が可能であることが検証された。また、粉砕機2からの抽気風量F1を調整することで、過粉砕の防止によるミルモータ24の電力原単位の減少が可能であることが検証された。 From the results of the above verification experiments, it was verified that the powderiness (specific surface area) of the fine powder can be adjusted by adjusting the amount of air extracted from the crusher 2 F1. Further, it was verified that the electric power intensity of the mill motor 24 can be reduced by preventing over-crushing by adjusting the bleed air volume F1 from the crusher 2.
 本実施形態に係る粉砕システム1の運転方法では、検証された原理を利用して、精粉の粉末度を調整する。即ち、本実施形態に係る粉砕システム1の運転方法は、粉砕原料を粉砕する粉砕機2と、粉砕機2の排出口28から供給口26へ粉砕物が移動する粉砕物循環路30と、粉砕物循環路30に設けられて、粉砕物を製品となる精粉と粉砕機2へ戻す粗粉とに分ける分級機7と、精粉を回収する捕集機6と、粉砕機2の上部に接続された抽気路40aと、粉砕機2から抽気路40aへ設定抽気風量で抽気する抽気ファン42と、粉砕機2の抽気から微粉を分離して粉砕物循環路30へ送る集塵機41とを備える粉砕システムの運転方法であって、粉砕機2からの抽気風量と回収される精粉の粉末度との相関関係(図3、参照)を求め、当該相関関係に基づいて所望の粉末度が得られる抽気風量を推定し、当該抽気風量F1を設定抽気風量とする。 In the operation method of the crushing system 1 according to the present embodiment, the powderiness of the refined powder is adjusted by using the verified principle. That is, the operation method of the crushing system 1 according to the present embodiment includes a crusher 2 for crushing the crushed raw material, a crushed material circulation path 30 for moving the crushed material from the discharge port 28 of the crusher 2 to the supply port 26, and crushing. A classifier 7 provided in the material circulation path 30 for separating the crushed material into a refined powder as a product and a coarse powder returned to the crusher 2, a collector 6 for collecting the crushed powder, and an upper part of the crusher 2. It includes a connected bleed air passage 40a, an bleed air fan 42 that bleeds air from the crusher 2 to the bleed air passage 40a with a set bleed air volume, and a dust collector 41 that separates fine powder from the pulverized air of the crusher 2 and sends it to the crushed material circulation path 30. In the operation method of the crushing system, the correlation (see FIG. 3) between the amount of air extracted from the crusher 2 and the degree of powderiness of the recovered fine powder is obtained, and the desired degree of powderiness is obtained based on the correlation. The extracted air volume is estimated, and the extracted air volume F1 is set as the set extracted air volume.
 また、本実施形態に係る粉砕システム1を用いた粉体の製造方法は、粉砕原料を粉砕機2にて粉砕し、粉砕機2から設定抽気風量で抽気することにより粉砕物のうち微粉を気流に乗せて搬出し、粉砕機2の抽気から微粉を分離して分級機7へ搬送し、粉砕機2から粉砕物の残部を分級機7へ搬送し、分級機7にて設定粒径に従って粉砕物を精粉と粗粉とに分級し、精粉を製品として回収し、粗粉を分級機7から粉砕機2へ返送して再粉砕することを含むものである。そして、粉砕機2からの抽気風量と回収される精粉の粉末度との相関関係(図3、参照)を求め、当該相関関係に基づいて所望の粉末度が得られる抽気風量を推定し、当該抽気風量を設定抽気風量とする。 Further, in the method for producing a powder using the pulverization system 1 according to the present embodiment, the pulverized raw material is pulverized by the pulverizer 2 and extracted from the pulverizer 2 at a set bleed air volume to blow out the fine powder among the pulverized products. The fine powder is separated from the bleed air of the crusher 2 and transported to the classifying machine 7, and the rest of the crushed material is transported from the crushing machine 2 to the classifying machine 7 and crushed by the classifying machine 7 according to the set particle size. This includes classifying a product into fine powder and coarse powder, collecting the fine powder as a product, and returning the coarse powder from the classifying machine 7 to the crushing machine 2 for re-grinding. Then, the correlation between the amount of air extracted from the crusher 2 and the degree of powderiness of the collected fine powder (see FIG. 3) is obtained, and the amount of air extracted from which the desired degree of powder is obtained is estimated based on the correlation. The bleed air volume is set as the set bleed air volume.
 上記の粉体の製造方法によれば、設定抽気風量を変化させることにより、任意の粉末度の精粉(粉体)を得ることができる。つまり、得られる精粉の粉末度を変えて、使用目的に応じた粉体製品を得ることができる。これにより、粉体製品の品質向上を図ることができる。 According to the above powder manufacturing method, refined powder (powder) having an arbitrary degree of powder can be obtained by changing the set bleed air volume. That is, it is possible to obtain a powder product according to the purpose of use by changing the degree of powderiness of the obtained refined powder. As a result, the quality of the powder product can be improved.
 また、本実施形態に係る粉砕システム1の運転方法及び粉体の製造方法では、抽気風量に対する粉砕機2の電力原単位の特性曲線(図4、参照)を求め、特性曲線に基づいて所望の粉末度が得られる抽気風量のうち電力原単位が最小となるものを設定抽気風量とする。 Further, in the operation method of the crushing system 1 and the powder manufacturing method according to the present embodiment, a characteristic curve (see FIG. 4) of the electric power intensity of the crusher 2 with respect to the extracted air volume is obtained, and a desired characteristic curve is obtained based on the characteristic curve. The set bleed air volume is defined as the bleed air volume at which the degree of powder is obtained and the electric power intensity is the minimum.
 これにより、精粉(粉体)の品質向上に加えて、精粉(粉体)の製造にかかる電力原単位の低減を図ることができる。 As a result, in addition to improving the quality of the refined powder (powder), it is possible to reduce the electric power intensity required for producing the refined powder (powder).
 以下、本実施形態に係る粉体の製造方法の適用例を説明する。 Hereinafter, an application example of the powder manufacturing method according to the present embodiment will be described.
 粉砕原料が石灰石等の混合物が多く含まれるセメント品種のセメント原料である場合には、石灰石はクリンカよりも柔らかいために微粉が生じ易く、精粉の比表面積の値がセメント原料として規定された値よりも高くなる傾向がある。このような場合には、抽気風量F1を増加させることにより、精粉の45μRを所定の値に保持しながら、精粉の比表面積の値を規定された値内に下げることができる。これにより、セメント原料の品質向上を図ることができる。 When the crushed raw material is a cement raw material of a cement type containing a large amount of a mixture such as limestone, fine powder is likely to be generated because the limestone is softer than clinker, and the value of the specific surface area of the refined powder is the value specified as the cement raw material. Tends to be higher than. In such a case, by increasing the bleed air volume F1, the value of the specific surface area of the refined powder can be lowered within the specified value while maintaining 45 μR of the refined powder at a predetermined value. As a result, the quality of the cement raw material can be improved.
 また、粉砕原料が石灰石等の混合物が比較的少ないセメント品種(ポルトランドセメント等)のセメント原料である場合には、精粉の比表面積の値がセメント原料として規定された値よりも低くなる傾向がある。このような場合には、抽気風量F1を減少させることにより、精粉の45μRを所定の値に保持しながら、精粉の比表面積の値を規定された値内へ増加させることができる。これにより、セメント原料の品質向上を図ることができる。 Further, when the crushed raw material is a cement raw material of a cement type (Portland cement, etc.) having a relatively small mixture of limestone or the like, the value of the specific surface area of the refined powder tends to be lower than the value specified as the cement raw material. is there. In such a case, by reducing the bleed air volume F1, the value of the specific surface area of the refined powder can be increased within the specified value while maintaining 45 μR of the refined powder at a predetermined value. As a result, the quality of the cement raw material can be improved.
 上記において、精粉の比表面積の値を規定された値の範囲内とする抽気風量F1には幅がある。そこで、抽気風量F1に対する電力原単位の特性曲線(図4、参照)を利用して、所望の粉末度が得られる抽気風量F1のうち電力原単位が最小となるものを採用すれば、セメント原料の品質向上に加えて電力原単位の低減を図ることができる。 In the above, there is a range in the bleed air volume F1 in which the value of the specific surface area of the refined powder is within the specified value range. Therefore, by using the characteristic curve of the electric power intensity with respect to the extracted air volume F1 (see FIG. 4) and adopting the extracted air volume F1 having the smallest electric power intensity to obtain the desired powderiness, the cement raw material can be used. In addition to improving the quality of electricity, it is possible to reduce the power intensity.
1   :粉砕システム
2   :竪型粉砕機
3   :粉砕物循環系統
4   :ガス循環系統
6   :捕集機
7   :分級機
20  :粉砕室
21  :ハウジング
22  :回転テーブル
23  :粉砕ローラ
24  :ミルモータ
25  :減速機構
26  :供給口
27  :排気口
28  :排出口
29  :熱風吹出口
29a :熱風入口
30  :粉砕物循環路
30a,30b,30c :通路
31  :搬送機
31a :第1入口
31b :第2入口
31c :出口
40  :ガス循環路
40a :抽気路
40b :通路
41  :集塵機
42  :排風機
43  :熱風供給源
64  :通路
65  :排気路
66  :排風機
71  :粉砕物入口
72  :排出口
73  :排気口
84  :通路
85  :流量調整装置
88  :搬送路
101 :第2実験装置
102 :竪型粉砕機
106 :捕集機
107 :分級機
120 :粉砕室
121 :ハウジング
122 :回転テーブル
123 :粉砕ローラ
124 :ミルモータ
125 :減速機構
127 :排気口
166 :排風機
1: Crushing system 2: Vertical crusher 3: Crushed material circulation system 4: Gas circulation system 6: Collector 7: Classifier 20: Crushing chamber 21: Housing 22: Rotating table 23: Crushing roller 24: Mill motor 25: Deceleration mechanism 26: Supply port 27: Exhaust port 28: Discharge port 29: Hot air outlet 29a: Hot air inlet 30: Crushed material circulation passages 30a, 30b, 30c: Passage 31: Conveyor 31a: First inlet 31b: Second inlet 31c: Outlet 40: Gas circulation path 40a: Extraction path 40b: Passage 41: Dust collector 42: Blower 43: Hot air supply source 64: Passage 65: Exhaust path 66: Blower 71: Crushed material inlet 72: Discharge port 73: Exhaust Port 84: Passage 85: Flow control device 88: Transport path 101: Second experimental device 102: Vertical crusher 106: Collector 107: Classifier 120: Crushing chamber 121: Housing 122: Rotating table 123: Crushing roller 124 : Mill motor 125: Reduction mechanism 127: Exhaust port 166: Blower

Claims (4)

  1.  粉砕原料を粉砕する竪型粉砕機と、
     前記竪型粉砕機の排出口から供給口へ粉砕物が移動する粉砕物循環路と、
     前記粉砕物循環路に設けられて、前記粉砕物を製品となる精粉と前記竪型粉砕機へ戻す粗粉とに分ける分級機と、
     前記精粉を回収する捕集機と、
     前記竪型粉砕機の上部に接続された抽気路と、
     前記竪型粉砕機から前記抽気路へ設定抽気風量で抽気する抽気ファンと、
     前記竪型粉砕機の抽気から微粉を分離して前記粉砕物循環路へ送る集塵機とを備える粉砕システムの運転方法であって、
     前記竪型粉砕機からの抽気風量と回収される前記精粉の粉末度との相関関係を求め、当該相関関係に基づいて所望の粉末度が得られる抽気風量を推定し、当該抽気風量を前記設定抽気風量とする、
    粉砕システムの運転方法。
    A vertical crusher that crushes crushed raw materials,
    A crushed material circulation path for crushed material to move from the discharge port to the supply port of the vertical crusher, and
    A classifier provided in the crushed product circulation path to separate the crushed product into a refined powder as a product and a coarse powder returned to the vertical crusher.
    A collector that collects the fine powder and
    The bleeding path connected to the upper part of the vertical crusher and
    An bleeding fan that draws air from the vertical crusher to the bleeding path with the set bleeding air volume, and
    A method of operating a crushing system including a dust collector that separates fine powder from the bleed air of the vertical crusher and sends it to the crushed material circulation path.
    The correlation between the amount of air extracted from the vertical crusher and the degree of powderiness of the collected fine powder is obtained, the amount of air extracted from which the desired degree of powder is obtained is estimated based on the correlation, and the amount of air extracted is calculated as described above. Set air volume,
    How to operate the crushing system.
  2.  前記抽気風量に対する前記竪型粉砕機の電力原単位の特性曲線を求め、前記特性曲線に基づいて前記所望の粉末度が得られる抽気風量のうち前記電力原単位が最小となるものを前記設定抽気風量とする、
    請求項1に記載の粉砕システムの運転方法。
    The characteristic curve of the electric power intensity of the vertical crusher with respect to the extracted air volume is obtained, and the extracted air volume at which the desired powderiness can be obtained based on the characteristic curve has the smallest electric power intensity. Air volume,
    The method of operating the crushing system according to claim 1.
  3.  粉砕原料を竪型粉砕機にて粉砕し、前記竪型粉砕機から設定抽気風量で抽気することにより粉砕物のうち微粉を気流に乗せて搬出し、前記竪型粉砕機の抽気から前記微粉を分離して分級機へ搬送し、前記竪型粉砕機から前記粉砕物の残部を前記分級機へ搬送し、前記分級機にて設定粒径に従って前記粉砕物を精粉と粗粉とに分級し、前記精粉を製品として回収し、前記粗粉を前記分級機から前記竪型粉砕機へ返送して再粉砕することを含む粉体の製造方法であって、
     前記竪型粉砕機からの抽気風量と回収される前記精粉の粉末度との相関関係を求め、当該相関関係に基づいて所望の粉末度が得られる抽気風量を推定し、当該抽気風量を前記設定抽気風量とする、
    粉体の製造方法。
    The crushed raw material is crushed by a vertical crusher, and by extracting air from the vertical crusher with a set bleed air volume, fine powder of the crushed material is carried out on an air stream, and the fine powder is extracted from the bleed air of the vertical crusher. Separated and transported to a classifier, the balance of the crushed product is transported from the vertical crusher to the classifier, and the crushed product is classified into refined powder and coarse powder according to the set particle size by the classifier. , A method for producing a powder, which comprises collecting the refined powder as a product, returning the crude powder from the classifier to the vertical crusher, and pulverizing the coarse powder.
    The correlation between the amount of air extracted from the vertical crusher and the degree of powderiness of the collected fine powder is obtained, the amount of air extracted from which the desired degree of powder is obtained is estimated based on the correlation, and the amount of air extracted is calculated as described above. Set air volume,
    Powder manufacturing method.
  4.  前記抽気風量に対する前記竪型粉砕機の電力原単位の特性曲線を求め、前記特性曲線に基づいて前記所望の粉末度が得られる抽気風量のうち前記電力原単位が最小となるものを前記設定抽気風量とする、
    請求項3に記載の粉体の製造方法。
    The characteristic curve of the electric power intensity of the vertical crusher with respect to the extracted air volume is obtained, and the extracted air volume at which the desired powderiness can be obtained based on the characteristic curve has the smallest electric power intensity. Air volume,
    The method for producing a powder according to claim 3.
PCT/JP2020/025852 2019-07-05 2020-07-01 Method for operating pulverizing system, and method for manufacturing powder WO2021006154A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20837697.0A EP3995216A4 (en) 2019-07-05 2020-07-01 METHOD AND DEVICE FOR OPERATING A POWDERIZATION SYSTEM AND METHOD FOR PRODUCING POWDER
CN202080045585.2A CN114007751B (en) 2019-07-05 2020-07-01 Method for operating pulverizing system and method for producing powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-125831 2019-07-05
JP2019125831A JP7330786B2 (en) 2019-07-05 2019-07-05 Method for operating pulverization system and method for producing powder

Publications (1)

Publication Number Publication Date
WO2021006154A1 true WO2021006154A1 (en) 2021-01-14

Family

ID=74114647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025852 WO2021006154A1 (en) 2019-07-05 2020-07-01 Method for operating pulverizing system, and method for manufacturing powder

Country Status (4)

Country Link
EP (1) EP3995216A4 (en)
JP (1) JP7330786B2 (en)
CN (1) CN114007751B (en)
WO (1) WO2021006154A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113731561A (en) * 2021-09-17 2021-12-03 湖南华杰机械设备有限公司 Powder making process method and powder making system for desulfurized limestone

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136534A (en) * 1993-11-13 1995-05-30 Kawasaki Heavy Ind Ltd Vertical mill particle size controller
JPH09111691A (en) * 1995-10-16 1997-04-28 Nippon Paper Ind Co Ltd Production of neutral newsprint paper
JPH09117685A (en) 1995-10-27 1997-05-06 Ube Ind Ltd Cement clinker crushing method and device
JPH10230119A (en) * 1996-11-25 1998-09-02 Abb Kk Bag filter and manufacturing method thereof
JP2018202347A (en) 2017-06-07 2018-12-27 川崎重工業株式会社 Grinding system
JP2019076874A (en) * 2017-10-27 2019-05-23 ホソカワミクロン株式会社 Powder treatment apparatus

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3424277A1 (en) * 1984-07-02 1986-01-09 Claudius Peters Ag, 2000 Hamburg METHOD FOR REGULATING THE OUTPUT PERFORMANCE OF A GRINDING SYSTEM
JP2744019B2 (en) * 1988-07-29 1998-04-28 バブコツク日立株式会社 Vertical mill control device
JPH09117691A (en) * 1995-10-24 1997-05-06 Nippon Cement Co Ltd Crushing material feed control method for crusher
JPH09273713A (en) * 1996-02-06 1997-10-21 Mitsubishi Heavy Ind Ltd Operating method of circulated fluidized-bed reaction equipment
JP2920876B2 (en) * 1996-04-18 1999-07-19 川崎重工業株式会社 Apparatus and method for crushing cement clinker by vertical roller mill
JPH10230179A (en) * 1997-02-18 1998-09-02 Kawasaki Heavy Ind Ltd Method and apparatus for pulverizing cement clinker by vertical roller mill
JP4269257B2 (en) 2003-05-28 2009-05-27 宇部興産機械株式会社 Grinding method
JP2006102691A (en) * 2004-10-07 2006-04-20 Ube Machinery Corporation Ltd Vertical mill and crushing system for crushed sand production
CN201768603U (en) * 2010-06-03 2011-03-23 南京旋立重型机械有限公司 Semi-finished pre-grinding vertical mill and ball mill combined grinding device
CN202921397U (en) * 2012-11-21 2013-05-08 秀山县嘉源矿业有限责任公司 Efficient crushing system for vertical mill
JP5661151B2 (en) * 2013-07-22 2015-01-28 太平洋セメント株式会社 Cement kiln extraction gas processing method and processing system
CN105080698B (en) * 2014-05-14 2018-10-12 天津水泥工业设计研究院有限公司 Use the grinding process of vertical roller grinder system
CN206229449U (en) * 2016-10-31 2017-06-09 江苏大中新材料科技有限公司 A kind of production equipment of powdery paints
CN206404342U (en) * 2017-01-04 2017-08-15 广州西克化工技术有限公司 A kind of drying equipment of anion surfactant
CN207357255U (en) * 2017-09-05 2018-05-15 宣化燕北矿业有限责任公司 A kind of pendulum type ring roll pulverizer tails over control mechanism
JP7039805B2 (en) * 2017-10-03 2022-03-23 三菱重工業株式会社 Solid fuel crusher

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136534A (en) * 1993-11-13 1995-05-30 Kawasaki Heavy Ind Ltd Vertical mill particle size controller
JPH09111691A (en) * 1995-10-16 1997-04-28 Nippon Paper Ind Co Ltd Production of neutral newsprint paper
JPH09117685A (en) 1995-10-27 1997-05-06 Ube Ind Ltd Cement clinker crushing method and device
JPH10230119A (en) * 1996-11-25 1998-09-02 Abb Kk Bag filter and manufacturing method thereof
JP2018202347A (en) 2017-06-07 2018-12-27 川崎重工業株式会社 Grinding system
JP2019076874A (en) * 2017-10-27 2019-05-23 ホソカワミクロン株式会社 Powder treatment apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3995216A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113731561A (en) * 2021-09-17 2021-12-03 湖南华杰机械设备有限公司 Powder making process method and powder making system for desulfurized limestone
CN113731561B (en) * 2021-09-17 2023-01-24 湖南华杰机械设备有限公司 Powder making process method and powder making system for desulfurized limestone

Also Published As

Publication number Publication date
JP7330786B2 (en) 2023-08-22
EP3995216A1 (en) 2022-05-11
EP3995216A4 (en) 2024-03-27
JP2021010870A (en) 2021-02-04
CN114007751B (en) 2023-12-05
CN114007751A (en) 2022-02-01

Similar Documents

Publication Publication Date Title
US7300007B2 (en) Circulating grinding plant comprising a mill and a sifter
CA1084023A (en) Material reducing method and apparatus
JP2920876B2 (en) Apparatus and method for crushing cement clinker by vertical roller mill
CN102764686B (en) Impact crusher capable of adjusting aggregate fineness modulus
US20160288135A1 (en) Closed-circuit grinding plant having a pre-classifier and a ball mill
CN112041082B (en) Crushing system
WO2021006154A1 (en) Method for operating pulverizing system, and method for manufacturing powder
JP2005211777A (en) Plant raw material pulverizing method and its apparatus
JP6993795B2 (en) Crushing system
EP3805411B1 (en) Comminution process for iron ore or iron ore products at natural humidity
US5901912A (en) Efficient production of landplaster by collecting and classifying gypsum fines
MXPA97002608A (en) Efficient production of gypsum calcinated by collection and classification of fine and
JP3570265B2 (en) Crusher
PL167400B1 (en) Double separator for sorting particulate materials
FI74890C (en) FOERFARANDE OCH ANORDNING FOER FRAMSTAELLNING AV EN KLASSIFICERAD FRAKTION AV FINFOERDELAT MATERIAL.
CN202715459U (en) Impact crusher
JP2556414B2 (en) Vertical roller mill
JPH04135654A (en) Cement clinker crushing equipment
JP2001340780A (en) Classification control method for vertical mill
JPH057792A (en) Crushing equipment
CN108348923A (en) The cascade sifter being pneumatically connected and the circular grinding equipment with the cascade sifter being pneumatically connected
CN207479003U (en) For the tortuous screening machine of cullet sorting
JP2006102691A (en) Vertical mill and crushing system for crushed sand production
JPH05337395A (en) Grinding equipment
JP2024170937A (en) Vertical mill grinding system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020837697

Country of ref document: EP

Effective date: 20220207