WO2021005887A1 - Machining management method and machining management system - Google Patents

Machining management method and machining management system Download PDF

Info

Publication number
WO2021005887A1
WO2021005887A1 PCT/JP2020/019588 JP2020019588W WO2021005887A1 WO 2021005887 A1 WO2021005887 A1 WO 2021005887A1 JP 2020019588 W JP2020019588 W JP 2020019588W WO 2021005887 A1 WO2021005887 A1 WO 2021005887A1
Authority
WO
WIPO (PCT)
Prior art keywords
machine tool
machining
computer
tool
maker
Prior art date
Application number
PCT/JP2020/019588
Other languages
French (fr)
Japanese (ja)
Inventor
靖 佐野
幸治 内海
一平 河野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2021005887A1 publication Critical patent/WO2021005887A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a technique for managing a machine tool that executes a machining program.
  • the workpiece (hereinafter sometimes referred to as a workpiece) may be machined.
  • Patent Document 1 discloses a technique for reducing the maintenance cost of a machine tool by managing and maintaining each software and hardware on the host computer (cloud) side. Further, Patent Document 1 uses NC programs managed on a host computer (cloud), various correction data such as NC parameters and tool offset data, shared data such as ladders and PMC parameters, and machine-specific data. However, it is disclosed that pulse information, machine input control signal, screen input display information, and the like are generated as machine control information and transmitted to the machine tool side.
  • the machine tool cannot automatically measure, and the information for confirming the state of the machine tool cannot be easily collected in the cloud server. From another point of view, it has been difficult for the technique of Patent Document 1 to eliminate the decrease in processing accuracy due to the time course of the machine tool.
  • the present invention has been made in view of the above circumstances, and one of the purposes thereof is to promote easy collection of information for confirming the state of a machine tool, which cannot be automatically measured by the machine tool, in a cloud server. To do. Further, another object of the present invention is to support the elimination of a decrease in machining accuracy due to a change over time of a machine tool. Other objects of the present invention will become apparent thereafter.
  • the machining management method is a machining management method by a management computer for managing a plurality of machine tools that execute a machining program and perform machining processing
  • the management computer is (1) a machine tool. It receives the measurement information of the components, (2) receives the basic machining data that is the basis for generating the machining program to be executed by the machine tool, and (3) receives the machining basic data of the predetermined machine tool in one or more machine tools.
  • a machining program is generated based on the measurement information and basic machining data, (4) the generated machining program is transmitted, and (5) the measurement information of the components of the machine tool is sent to the machine tool manufacturer's computer. Send to the machine tool maker computer.
  • a management computer that manages a machine tool includes a storage module for storing a program and an arithmetic module.
  • the machine tool is a machine that has a stage that can move at least in the direction of the first axis and the direction of the second axis, and performs machining processing according to a machining program.
  • the first axis and the second axis are axes designated when describing the tool path by the machining program.
  • the management calculator receives (1) the first value regarding the rigidity value along the first axis with respect to the spindle of the machine tool, and (2) regarding the spindle of the machine tool with respect to the rigidity value along the second axis. The second value is received, and (3) the first value and the second value are displayed on the calculator connected to the management calculator.
  • information for confirming the state of the machine tool can be easily collected in the cloud server. Further, according to the present invention, it is possible to support the elimination of the decrease in machining accuracy due to the time course of the machine tool.
  • FIG. 1 is an overall configuration diagram of a machining management system according to an embodiment.
  • FIG. 2 is a block diagram of an example of a machine tool according to an embodiment.
  • FIG. 3 is a diagram illustrating a process involving a processor and a designer according to an embodiment.
  • FIG. 4 is a diagram illustrating a process involving a processor and a machine tool maker according to an embodiment.
  • FIG. 5 is a diagram illustrating a process involving a processor and a tool maker according to an embodiment.
  • FIG. 6 is a diagram showing an example of a measurement data input screen displayed on the processor computer according to the embodiment.
  • FIG. 7 is a diagram showing an example of a processing request screen displayed on the designer computer according to the embodiment.
  • FIG. 1 is an overall configuration diagram of a machining management system according to an embodiment.
  • FIG. 2 is a block diagram of an example of a machine tool according to an embodiment.
  • FIG. 3 is a diagram illustrating a process involving a processor and a
  • FIG. 8 is a diagram showing an example of a rigidity value / browsing management screen displayed on the machine tool maker computer according to the embodiment.
  • FIG. 9 is a flowchart showing an example of processing for generating a machining NC program according to an embodiment.
  • FIG. 10 is a flowchart showing another example of the process of generating the machining NC program according to the embodiment.
  • FIG. 11 is a diagram showing an example of a simulation model according to an embodiment.
  • the machine tool 20 is described for a cutting machine, but it may be another machine tool in which a machining error may occur due to a change over time of the component.
  • FIG. 1 is an overall configuration diagram of a machining management system according to an embodiment.
  • the machining management system 1 includes a cloud server 10 as an example of a management computer, a plurality of machine tools 20, one or more machine tools 28, one or more measurement modules 29, and one or more designer computers 31. It includes one or more machine tool maker calculators 41 and one or more tool maker calculators 51.
  • the cloud server 10, the machine tool 20, the processor computer 28, the measurement module 29, the designer computer 31, the machine tool maker computer 41, and the tool maker computer 51 are connected via a network.
  • the network may be a wired network or a wireless network.
  • the machine tool 20, the processor computer 28, and the measurement module 29 are managed and used by the processed product manufacturer 2 (also simply referred to as a processor) that processes the material to be processed (also referred to as a workpiece). It is a device to be used, and is installed in the factory of the processor 2.
  • the number of processors 2 may be 1 or more.
  • the designer computer 31 is a computer managed and used by a processed product designer 3 (also simply referred to as a designer) who designs a processed product.
  • the number of designers 3 may be 1 or more.
  • the machine tool maker computer 41 is a computer used by the machine tool maker 4 that manufactures the machine tool 20 arranged in the machine tool 2.
  • the machine tool maker 4 may be 1 or more.
  • the tool maker computer 51 is a computer used by the tool maker 5 that manufactures a tool (for example, a cutting tool) to be mounted on the machine tool 20 arranged in the machine tool 2.
  • the tool maker 5 may be 1 or more.
  • the processor 2 and the designer 3 may be the same subject, or the machine tool maker 4 and the tool maker 5 may be the same subject.
  • the designer 3 may be a person who designs the shape and specifications of the processing design, or may be a person who designs the processing process.
  • the cloud server 10 executes a process of integrating and managing the machine tool 20, the machine tool 28, the measuring module 29, the designer computer 31, the machine tool maker computer 41, and the cutting tool maker computer 51.
  • the cloud server 10 is composed of, for example, a PC (Personal Computer) equipped with a processor, storage resources, and the like, and a general-purpose computer.
  • the cloud server 10 includes a transmission module 11, a storage module 12, and an arithmetic module 13.
  • the cloud server 10 may be owned by any of a machine tool maker, a tool maker, a processor, and a designer, but may be owned by a third party other than these. When the machine tool maker has the cloud server 10, it becomes easy to cooperate with the existing cloud server of the maker.
  • the cloud server 10 When the cloud server 10 is owned by a third party, it is an independent service to a specific manufacturer, so that the merit of this embodiment can be provided even when the processor has machine tools of a plurality of manufacturers. If the cloud server 10 is owned by a third party, it will be an independent service for a specific manufacturer, reducing the risk for tool makers and machine tool makers to see the measured values of machine tool components by a specific manufacturer. can do.
  • the transmission module 11 is a communication I / F or the like that communicates with various devices connected via a network.
  • the storage module 12 includes storage resources such as a semiconductor memory, a flash memory, an HDD (Hard Disk Drive), an SSD (Solid State Drive), a volatile type memory, and a non-volatile type memory, and includes various information and calculations. Stores the program executed by module 13.
  • the arithmetic module 13 includes a processor and executes various processes by executing the program of the storage module 12. For example, the arithmetic module 13 calculates the rigidity value of the spindle of the machine tool 20 based on the measurement data of the machine tool 20 received via the transmission module 11.
  • the measurement information may include the measurement data and information (for example, a rigidity value) calculated based on the measurement data.
  • the arithmetic module 13 is processed by a specific machine tool 20 actually used for machining based on the basic machining data that is the basis for machining the product to be manufactured by executing the generation program described later. NC program (machining NC program: an example of machining program) is generated.
  • the calculation module 13 executes a process of managing access from each computer to the measurement data of the machine tool 20 and the calculated rigidity value of the spindle by executing the management program described later.
  • the machine tool 20 is a machine that executes machining processing on the work. Details of the machine tool 20 will be described later.
  • the measurement module 29 is provided outside the machine tool 20, for example, and measures the components of the machine tool 20.
  • the measuring module 29 exerts a force in a predetermined direction on a component of the machine tool 20 (for example, a spindle or a chuck.
  • a tool or a holder may also be regarded as a component of the machine tool 20).
  • a value that can specify the rigidity of the component is measured.
  • the measurement module 29 measures the displacement of the spindle of the machine tool 20 by applying predetermined forces in the X-axis direction and the Y-axis direction of the stage 24 (see FIG. 2) described later. To do.
  • the rigidity values of the spindle of the machine tool 20 in the X-axis direction and the Y-axis direction can be calculated.
  • the rigidity of the accessory can be specified by applying a force in a predetermined direction to the accessory (for example, a tool) of the machine tool 20 as well as the component of the machine tool 20 with the measurement module 29. Value (for example, displacement) may be measured.
  • the measurement module 29 transmits the measured value (measurement data) obtained by the measurement to the cloud server 10 via the network. In this way, since the measurement module 29 measures and transmits the measured value to the cloud server 10, it is possible to reduce human labor for measurement.
  • the object to be measured by the measuring module 29 may include at least one such as the temperature of the spindle of the machine tool 20, the temperature of the lubricating oil of the spindle, dirt, the remaining amount, and the rattling of the stage 24.
  • the method of measuring the value that can specify the rigidity of the tool by the measuring module 29 is as follows. * Fix the cutting edge or root of the tool and push the part that is not fixed with the specified force in the same way as a leaf spring. Then, the displacement at that time is measured.
  • the rigidity of the tool may be calculated based on the shape and material of the tool. Further, the value provided by the tool maker may be used for the time course of the rigidity of the tool.
  • the method of measuring the value that can specify the rigidity of the spindle by the measuring module 29 is as follows, for example. * Fix a tool or rod whose rigidity is known to the spindle. Then, the position opposite to the fixed end of the tool or rod is pushed with a predetermined force, and the displacement at that time is measured. Then, the influence of the tool or rod is canceled from the measurement result, and finally the rigidity of the spindle is calculated. Instead of pushing with a predetermined predetermined force, a strain gauge may be attached to the tool or rod and the force when the tool or rod is pushed may be measured. * Fix a tool or rod whose rigidity is known to the spindle.
  • the tool or rod is brought into contact with the stage (or a jig or work on the stage), and the force applied to the tool or rod is measured with a strain gauge. Then, after moving the stage by a predetermined amount, the force applied to the tool or rod is measured with a strain gauge. Then, the influence of the tool or rod is canceled from the measurement result, and finally the rigidity of the spindle is calculated.
  • the rigidity value it is assumed that the higher the constant, the smaller the displacement when a predetermined force is applied, such as the spring constant [N / m].
  • other values may be used as the rigidity value.
  • a constant may be used as the rigidity value so that the higher the constant, the larger the displacement when a predetermined force is applied.
  • the measurement module 29 may be provided inside the machine tool 20. Further, the measurement module 29 may not be able to directly transmit the measured value to the cloud server 10. For example, the measurement module 29 may display the measured value on a display unit (not shown). When displaying the measured value on the display unit in this way, the administrator of the computer 28 inputs the measured value displayed on the display unit to the measurement data input screen 60 (see FIG. 6) described later. In that case, the processor computer 28 may transmit the data to the cloud server 10. It is also conceivable that the measurement module 29 is provided outside the machine tool 20 and is manually installed on the machine tool 20 by a processor or the like to perform measurement.
  • the basic processing data for example, the shape data of the product to be manufactured (for example, CAD data) or the CAD data
  • the processing basic data for example, the shape data of the product to be manufactured
  • An NC program that realizes high-precision machining is generated and provided to a processor based on an NC program that is not corrected for a specific machine tool 20 used in actual machining. This can provide an incentive to improve the measurement frequency by the measurement module 29 by the processor.
  • the processor computer 28 is composed of, for example, a PC (Personal Computer) equipped with a processor, storage resources, etc., and a general-purpose computer.
  • the processor 28 receives input of various information from the administrator of the processor 28 and transmits the input contents to the cloud server 10.
  • the processor computer 28 displays the measurement data input screen 60, accepts the input of the measured value, and transmits the measured value to the cloud server 10.
  • the processor computer 28 displays the processing NC program for which the manufacturing request has been sent from the cloud server 10, receives the execution instruction of the processing NC program from the administrator, and transmits the processing NC program to the cloud server 10.
  • the designer computer 31 is composed of, for example, a PC (Personal Computer) equipped with a processor, storage resources, etc., and a general-purpose computer.
  • the designer computer 31 displays a screen (processing request screen 70 (see FIG. 7), etc.) based on the data transmitted from the cloud server 10, receives various inputs from the administrator of the designer computer 31, and responds to the inputs. , Various information is transmitted to the cloud server 10. The details of the processing request screen 70 will be described later.
  • the machine tool maker computer 41 is composed of, for example, a PC (Personal Computer) equipped with a processor, storage resources, etc., and a general-purpose computer.
  • the machine tool maker computer 41 displays a screen (rigidity value / viewing management screen 80 (see FIG. 8), etc.) based on the data transmitted from the cloud server 10, accepts various inputs from the administrator, and various types according to the inputs. Information is transmitted to the cloud server 10. The details of the rigidity value / viewing management screen 80 will be described later.
  • the tool maker computer 51 is composed of, for example, a PC (Personal Computer) equipped with a processor, storage resources, etc., and a general-purpose computer.
  • the tool maker computer 51 displays a screen based on the data transmitted from the cloud server 10, receives various inputs from the administrator of the tool maker computer 51, and transmits various information to the cloud server 10 in response to the inputs.
  • PC Personal Computer
  • the information transmitted from the cloud server 10 to the tool maker computer 51 includes, for example, the rigidity value of the spindle of the machine tool 20 in which the tool is used, the machining NC program, the material and shape of the work, and the model number of the tool. Information such as cutting time may be included.
  • various information is transmitted to the tool maker computer 51 only when there is permission from an entity having the authority to manage various information.
  • the rigidity value of the machine tool 20 is transmitted to the tool maker calculator 51 and permitted only when the machine tool maker 4 of the machine tool 20 permits the tool maker 5 to transmit the rigidity value. If not, the transmission is rejected. As a result, it is possible to appropriately prevent various information from being passed on to the tool maker 5 and competing makers 4 and 5 without permission.
  • the permission may be given by the tool maker 5 or the processor 2 in addition to the machine tool maker.
  • the storage module 12 includes a machine tool account table, a machine tool management table, a tool management table, a work information table, a machine tool maker management table, a tool maker management table, a machining NC program management table, and information provision rules. Stores a table, a generator, and a management program. The storage module 12 may store information other than this. The following paragraphs explain the details of each table and program. In addition, each information or some items of each information may be omitted.
  • the processor account table is a table for managing each processor, and includes each information shown below.
  • Password of the processor. This password is used to authenticate the processor on the cloud server 10.
  • the machine tool management table is a table for managing each machine tool 20, and includes the following information.
  • * ID that identifies the machine tool (machine tool ID).
  • Machine tool administrator ID (administrator ID).
  • the manager of the machine tool may be the owner of the machine tool or the person who has the right to use the machine tool. In the present embodiment, the machine tool 2 corresponds to this.
  • the administrator ID becomes the processor ID.
  • Installation location of machine tools * Measured value for machine tools. For example, a plurality of pairs of the measured value and the measured date and time may be included.
  • Static value for machine tools The static value includes, for example, the model number of the machine tool.
  • Machine tool manufacturer name the machine tool maker name may not be required.
  • the tool management table is a table for managing the tools mounted on the machine tool 20, and includes the following information.
  • Tool ID tool ID
  • ID of the machine tool to which the tool is mounted.
  • Tool model number * A value measured for a tool on a machine tool. For example, a plurality of pairs of the measured value and the measured date and time may be included.
  • Tool maker name is a value measured for a tool on a machine tool. For example, a plurality of pairs of the measured value and the measured date and time may be included.
  • Tool maker name However, for example, if the tool maker 5 can be specified by the model number or the tool ID, the machine maker name may not be required.
  • Tool shape for managing the tools mounted on the machine tool 20.
  • the work management table is a table for managing each work, and includes the following information.
  • Work ID (work ID).
  • Work material * Work shape (shape before cutting).
  • Work cutting resistance * Work cutting resistance.
  • the machine tool maker management table is a table for managing each machine tool maker 4, and includes the following information.
  • Machine tool maker ID machine tool maker ID
  • Machine tool manufacturer password This password is used by the cloud server 10 to authenticate the machine tool maker.
  • Threshold information about machine tool measurements.
  • the threshold value if the machine tool 20 of the machine tool maker 4 is the same, one threshold information may be used. For example, if the threshold information is different for each machine tool 20, the model number of the machine tool 20 may be used. It may be the corresponding threshold information.
  • the tool maker management table is a table for managing each tool maker 5, and includes the following information.
  • Tool maker ID tool maker ID
  • Tool maker password This password is used by the cloud server 10 to authenticate the tool maker 5.
  • the machining NC program management table is a table for managing the generated machining NC program, and includes the information shown below.
  • ID indicating the generation of machining NC program (machining NC program generation ID).
  • Date and time information when the machining NC program was generated * Basic machining data used to generate the machining NC program. * Generated machining NC program.
  • the information provision rule table is a table that manages permission for providing information, and includes the following information. In the present embodiment, it is shown that the provision of information of the contents registered in the information provision rule table is permitted.
  • Information manager ID The information manager is one or more of a processor, a machine tool maker, and a designer. Information managers differ depending on the type of information. * ID of the information provider. * Types of information that can be provided. For example, the rigidity value of the spindle of the machine tool 20 and the like.
  • FIG. 2 is a configuration diagram of an example of a machine tool according to an embodiment.
  • the machine tool 20 is, for example, a machining center, and includes a main body 22 that executes machining processing, a controller 21 that controls the machining processing of the main body 22, and a tool TL of one or more tool sets used in the main body 22. It includes a tool magazine 25 that can be accommodated.
  • the machine tool 20 may be a lathe or a milling machine. Further, in the following description, the machining center will be described by taking a vertical shape as an example, but it may be applied to a horizontal machining center.
  • Each tool magazine 25 has a plurality of slots (SL: 25a, 25b, 25c) capable of accommodating one tool TL.
  • the controller 21 controls the machining process of the main body 22 and the tool replacement process according to the NC program stored inside.
  • the main body portion 22 includes a processing head portion 23, a stage 24, and a tool changing portion 26.
  • the processing head portion 23 includes a spindle on which a tool TL can be mounted and which can be rotated.
  • the processing head unit 23 may be the spindle itself.
  • the stage 24 is movable on which the work W to be processed is placed. In the present embodiment, the stage 24 can move in two orthogonal directions (X-axis direction and Y-axis direction in FIG. 2), and the relative positional relationship between the work and the main axis can be changed.
  • the tool changing unit 26 removes the tool TL from the processing head unit 23 and accommodates it in an empty slot of the tool magazine 25.
  • the tool changing unit 26 takes out the tool TL from the slot of the tool magazine 25 and attaches it to the processing head unit 23.
  • An example of the tool changing unit 26 is a change arm (also called an ATC arm) of an automatic tool changing device (ATC).
  • the NC program can internally describe a series of instructions (called a code or a word in which parameters are added to the code in the NC program terminology) meaning a tool change instruction, and the tool change instruction is described in the tool magazine 25. Contains a slot number that indicates the location of the slot (meaning later).
  • the tool changing unit 26 takes out the tool TL from the slot specified by the slot number included in the parameter of the tool changing instruction according to the instruction of the NC controller 21 that has read the tool changing instruction, and attaches the tool TL to the processing head unit 23.
  • the tool path in which the numerical values related to the X-axis direction and the Y-axis direction are specified is described.
  • numerical values related to the Z axis and the rotation axis may be specified in addition to the X axis and the Y axis.
  • the number of tool TLs that can be stored in the tool magazine 25 is limited, but one or more tool sets 27 are prepared in advance and stored in the tool magazine 25 according to the machining process to be executed. By exchanging the tool set to be used, various machining processes can be supported.
  • the tool TL includes a blade portion TLa such as an end mill, a drill, and a cutting tool for cutting the work W, and a holder TLb for mounting the blade portion TLa on the processing head portion 23.
  • a blade portion TLa such as an end mill, a drill, and a cutting tool for cutting the work W
  • a holder TLb for mounting the blade portion TLa on the processing head portion 23.
  • the holder TLb may not be included, and at least the cutting tool portion TLa may be included.
  • the generation program (strictly speaking, the processor that executes the generation program) contains the basic machining data and the latest rigidity (for example, X-axis) of the spindle of the machine tool 20 (selected machine tool) selected as the machine tool to be actually machined. It receives at least one of the rigidity in the direction and the rigidity in the Y-axis direction), and based on this information, generates a machining NC program on the selected machine tool.
  • the rigidity in the X-axis direction and the rigidity in the Y-axis direction may be different, and if a machining NC program is generated based on the stiffness in both directions, the machining accuracy is further improved.
  • the rigidity of the spindle of the machine tool In addition to the rigidity of the spindle of the machine tool, at least one of the shape of the tool, the rigidity of the tool, the shape of the work before cutting, the shape after cutting, the cutting resistance of the material of the work, etc. are taken into consideration.
  • An NC program may be generated. By doing so, it is expected that the processing accuracy will be further improved.
  • the rigidity of the spindle may be measured in two orthogonal axes other than the X-axis and the Y-axis described above, but it is more preferable to measure the rigidity along the X-axis and the Y-axis.
  • the tool paths described by the NC program may have a relatively large number of tool paths along the X-axis and Y-axis directions. Therefore, if the rigidity of the spindle along the X-axis and the Y-axis is measured, the amount of correction can be easily calculated. Further, when the processor or the designer confirms the corrected processing program, it
  • the generation program sets the data obtained by changing or adding the instruction of the uncorrected NC program as the machining NC program.
  • the commands to be added or changed include tool diameter compensation, tool length compensation, tool wear compensation, feed speed, tool rotation speed, or cutting speed, which greatly increases the number of times the work W is machined by the tool TL. It may be avoided that the processing work is changed. However, an instruction (for example, an instruction corresponding to trial cutting) that increases the number of times the work W is processed may be added.
  • the description format of the uncorrected NC program when the description format of the uncorrected NC program is at least partially different from the description format for the controller 21 of the selected machine tool, the description format of the uncorrected NC program is different. , Converted to the description format for the controller 21 of the selected machine tool. As a result, the processing process can be performed without any trouble in the controller 21 of the selected machine tool.
  • the generation program includes the machine tool ID of the selected machine tool, the model number (or identifier) of each tool TL of the tool set specified to be used in the selected machine tool, and the arrangement of each tool TL as comments.
  • the position information may be described.
  • MC2 is a machine tool ID
  • SL1 is a slot number
  • ML7x is a model number of a mill.
  • each tool TL designated to be used and the arrangement position information of each tool TL may be described as comments. By adding such a comment, the amount of data of the machining NC program increases, but since it can always be managed integrally with the machining NC program, it is possible to reduce the mistaken use of the machine tool 20 and the tool TL that are not expected.
  • the generation program acquires the shape data (CAD data) of the product to be manufactured as the basic processing data, for example, in order to process the unprocessed workpiece into the product based on the three-dimensional shape data.
  • the generation program registers the generated machining NC program in the machining NC program management table.
  • the generation program includes a machining program generation ID indicating the generation of the machining NC program, date and time information for generating the machining NC program, basic machining data used for generating the machining NC program, and the generated machining NC. Register the program in the machining NC program management table.
  • the generation program sends the machining NC program to the designer computer 31 after the generation process. Further, when the generation program receives a manufacturing request from the designer computer 31, the generation program transmits the corresponding processing NC program to the processor computer 28. Further, when the generation program receives the manufacturing instruction from the processor computer 28, the generation program transmits the corresponding machining NC program to the machine tool 20 targeted by the machining NC program. As a result, the machine tool 20 executes the machining process by executing the transmitted machining NC program.
  • the machining NC program is an NC program generated in consideration of the latest rigidity of the machine tool 20, the product manufactured by machining can be made to have appropriate machining accuracy.
  • the management program (strictly speaking, the processor that executes the management program) transmits the measurement data and the rigidity value of the machine tool 20 to the processor calculator 28 of the machine tool 20, but other It is controlled not to transmit to the processor computer 28 of the processor, that is, it is controlled to reject the transmission. As a result, it is possible to appropriately prevent the measurement data and the rigidity value information of the machine tool 20 from being passed on to other processors.
  • the management program exceptionally transmits the information when it corresponds to the provision of the information registered in the information provision rule table.
  • the management program transmits the measurement data and the rigidity value of the machine tool 20 to the machine tool maker computer 41 of the machine tool maker that manufactured the machine tool 20, but the machine tool maker computer of another machine tool maker. It is controlled not to transmit to 41, that is, to reject transmission. As a result, it is possible to appropriately prevent the measurement data and the rigidity value information of the machine tool 20 from being passed on to other machine tool makers.
  • the management program exceptionally transmits the information when it corresponds to the provision of the information registered in the information provision rule table.
  • the management program acquires threshold information for evaluating the rigidity value of the machine tool 20 from the machine tool maker computer 41.
  • This threshold information can be acquired, for example, based on the input to the rigidity value / browsing management screen 80 (see FIG. 8).
  • the management program stores the acquired threshold information in the machine tool maker management table. Further, the management program determines whether or not the latest rigidity value of the spindle of the machine tool 20 is lower than the threshold information of the machine tool maker management table, and the latest rigidity value of the spindle of the machine tool 20 is the machine tool maker.
  • the rigidity of the machine tool 20 is lower than the threshold information and the machine tool 20 is determined with respect to the machine tool maker computer 41 of the machine tool manufacturer that manufactured the machine tool 20.
  • the contact information may be transmitted as it is, or may be transmitted as display information (for example, a display image) for displaying the contact information.
  • display information for example, a display image
  • FIG. 3 is a diagram for explaining the processing involving the processor and the designer according to the embodiment.
  • the measurement module 29 of the processor 2 performs measurement processing on the machine tool 20 at predetermined time intervals to acquire measurement data (FIG. 3 (1)), and obtains the acquired measurement data in the cloud. It is transmitted to the server 10 (FIG. 3 (2)).
  • the transmission module 11 of the cloud server 10 receives the measurement data and stores the machine tool management table of the storage module 12, and the calculation module 13 specifies the rigidity value of the machine tool 20 based on the measurement data and determines the rigidity value. It is stored in the machine tool management table of the storage module 12 (FIG. 3 (3)). By the above processing, the latest measurement data of the machine tool 20 and the rigidity value are stored in the storage module 12. If the processor has a plurality of machine tools 20, the same processing as described above is executed for each machine tool 20. Further, when there is another machine tool, the same processing as described above is executed for each machine tool 20 of the other machine tool.
  • the designer computer 31 receives the designation of the processing basic data from the administrator, the received processing basic data is transmitted to the cloud server 10 (FIG. 3 (4)).
  • the cloud server 10 generates a machining NC program based on the received basic machining data and the latest rigidity value of the machine tool 20 (selected machine tool) selected as the machine tool 20 that actually performs machining (). FIG. 3 (5).
  • the machine tool 20 that actually performs machining may be, for example, the machine tool 20 designated by the designer computer 31 or the machine tool 20 selected by the cloud server 10.
  • the cloud server 10 When the cloud server 10 receives the reception request of the processing NC program from the designer computer 31, it transmits (proposes) the generated processing NC program (FIG. 3 (6)). As a result, the designer computer 31 displays the machining NC program on the machining request screen 70 (see FIG. 7).
  • the designer computer 31 When the designer computer 31 receives the instruction of the manufacturing request by the processing NC program received from the administrator, the designer computer 31 transmits the manufacturing request to the cloud server 10 (FIG. 3 (7)).
  • the cloud server 10 receives the manufacturing request, the cloud server 10 transmits the manufacturing request and the machining NC program corresponding to the manufacturing request to the processor computer 28 of the processor who manages the selected machine tool corresponding to the manufacturing request (FIG. FIG. 3 (8)).
  • the processor computer 28 When the processor computer 28 receives the manufacturing instruction for the manufacturing request from the administrator, the processor computer 28 transmits the manufacturing instruction to the cloud server 10 based on the instruction by the administrator (FIG. 3 (9)). When the cloud server 10 receives the manufacturing instruction, the cloud server 10 transmits the machining NC program corresponding to the manufacturing instruction and the manufacturing instruction to the selected machine tool (FIG. 3 (10)). As a result, the selected machine tool that has received the manufacturing instruction executes the machining NC program to manufacture the product, that is, to machine the workpiece.
  • a machining NC program is generated based on the latest rigidity value of the selected machine tool, the machining NC program is executed by the selective machine tool, and the product is manufactured. Therefore, the machining accuracy of the product is performed. Can be maintained properly.
  • FIG. 4 is a diagram illustrating a process involving a processor and a machine tool maker according to an embodiment.
  • the measurement module 29 of the processor 2 performs measurement processing on the machine tool 20 at predetermined time intervals to acquire measurement data (FIG. 4 (1)), and obtains the acquired measurement data in the cloud. It is transmitted to the server 10 (FIG. 4 (2)).
  • the transmission module 11 of the cloud server 10 receives the measurement data and stores it in the machine tool management table of the storage module 12, and the calculation module 13 specifies the rigidity value of the machine tool 20 based on the measurement data and the rigidity value. Is stored in the machine tool management table of the storage module 12 (FIG. 4 (3)). By the above processing, the latest measurement data of the machine tool 20 and the rigidity value are stored in the storage module 12. If the processor has a plurality of machine tools 20, the same processing as described above is executed for each machine tool 20. Further, when there is another machine tool, the same processing as described above is executed for each machine tool 20 of the other machine tool.
  • the cloud server 10 measures the plurality of machine tools 20 manufactured by the machine tool maker that manages the machine tool maker computer 41, for example, when a request for machine tool information is received from the machine tool maker computer 41.
  • the data and the rigidity value are transmitted to the machine tool maker computer 41 (FIG. 4 (4)).
  • the measurement data and the rigidity value may be transmitted as data indicating the measurement data and the rigidity value, or may be transmitted as display information (for example, a bitmap for display) for displaying the measurement data and the rigidity value.
  • the machine tool maker computer 41 displays, for example, the rigidity value / browsing management screen 80 (see FIG. 8), and the state of each machine tool 20 manufactured can be confirmed.
  • the machine tool maker 4 can perform a parts replacement determination process for determining whether or not the parts of the machine tool 20 need to be replaced (FIG. 4 (5)).
  • the parts replacement determination process may be performed by the administrator of the machine tool maker 4, or may be determined by the machine tool maker computer 41 according to a predetermined algorithm.
  • a parts replacement notification is transmitted to the cloud server 10 (FIG. 4 (6)).
  • the cloud server 10 transfers the parts replacement notification to the processor computer 28 of the processor who manages the machine tool 20 corresponding to the parts replacement notification (FIG. 4 (7)).
  • the parts replacement notification may include a message indicating the necessity of maintenance such as parts replacement or adjustment, but other information may be included as long as it can indicate the necessity of maintenance other than the message. .. From this point of view, the parts replacement notification is sometimes called a maintenance necessity notification.
  • FIG. 5 is a diagram illustrating a process involving a processor and a tool maker according to an embodiment.
  • the measurement module 29 of the processor 2 performs measurement processing on the machine tool 20 at predetermined time intervals to acquire measurement data (FIG. 5 (1)), and obtains the acquired measurement data in the cloud. It is transmitted to the server 10 (FIG. 5 (2)).
  • the transmission module 11 of the cloud server 10 receives the measurement data and stores the machine tool management table of the storage module 12, and the calculation module 13 specifies the rigidity value of the machine tool 20 based on the measurement data and determines the rigidity value. It is stored in the machine tool management table of the storage module 12 (FIG. 5 (3)). By the above processing, the latest measurement data of the machine tool 20 and the rigidity value are stored in the storage module 12. If the processor has a plurality of machine tools 20, the same processing as described above is executed for each machine tool 20. Further, when there is another machine tool, the same processing as described above is executed for each machine tool 20 of the other machine tool.
  • the cloud server 10 measures measurement data and rigidity of the machine tool 20 to which the tool manufactured by the tool maker 5 of the tool maker computer 51 is mounted.
  • the value is transmitted to the tool maker computer 51 (FIG. 5 (4)).
  • the measurement data and the rigidity value are transmitted to the tool maker computer 51 in this way because the machine tool maker 4 is permitted to transmit the measurement data and the rigidity data to the tool maker 5 in advance. Only in the case (specifically, when the transmission of these information is registered in the information provision rule table), and if not permitted, the measurement data and the rigidity value are not transmitted.
  • the tool maker computer 51 When the tool maker computer 51 receives the measurement data and the rigidity value, the tool maker computer 51 displays the measurement data and the rigidity value on a browsing management screen (not shown). As a result, the manager of the tool maker can identify an appropriate tool for good machining with the current machine tool 20 from the time change of the rigidity value of the machine tool 20.
  • the tool maker computer 51 receives an input of a proposal of an appropriate tool for good machining with the current machine tool 20 from the administrator, the tool maker computer 51 transmits the accepted tool proposal to the cloud server 10 (FIG. 5 (5). )).
  • the cloud server 10 When the cloud server 10 receives the tool proposal, it transfers the tool proposal to the machine tool computer 28 of the machine tool that manages the machine tool 20 to be proposed (FIG. 5 (6)). As a result, the manager of the computer 28 can consider replacing the tool of the machine tool 20 by proposing the tool.
  • FIG. 6 is a diagram showing an example of a measurement data input screen displayed on the processor computer according to the embodiment.
  • the measurement data input screen 60 is a screen for allowing the measurement data to be registered in the cloud server 10 when the measurement data cannot be transmitted to the cloud server 10 by the measurement module 29.
  • the measurement module 29 needs to have a display unit for displaying measurement data.
  • the measurement data input screen 60 has a machine tool ID input area 61, a measurement value input area 62, a previous input data display area 63, a password input area 64, and a measurement data input button 64.
  • the machine tool ID input area 61 is an area for inputting the machine tool ID of the machine tool 20 in which the measurement data has been measured.
  • the measurement value input area 62 is an area for inputting the measurement value measured by the measurement module 29.
  • the measured value input area 62 includes a region for inputting the displacement of the measured spindle of the machine tool 20 in the X-axis direction and a region for inputting the displacement in the Y-axis direction.
  • the previously input data is displayed in the previously input data display area 63.
  • the password input area 64 is an area for inputting the password of the administrator of the processor computer 28.
  • the measurement data input button 65 is a button that receives an instruction from the administrator to register the measured value input in the measured value input area 62 in the cloud server 10.
  • the processor computer 28 transmits the measured value input in the measured value input area 62 to the cloud server 10 and causes the cloud server 10 to register the measured value.
  • FIG. 7 is a diagram showing an example of a processing request screen displayed on the designer computer according to the embodiment.
  • the machining request screen 70 includes a password input area 71, a design data designation area 72, a design data transmission button 73, a machining program reception button 74, a machining program display area 75, a program approval / manufacturing request transmission button 76, and the like. It has a program disapproval transmission button 77.
  • the password input area 71 is an area for inputting the password of the administrator of the designer computer 31.
  • authentication is performed by the cloud server 10, and when it is confirmed that the administrator is a legitimate administrator, various information related to processing is transmitted to and from the cloud server 10. You can send and receive.
  • the design data designation area 72 is an area for designating the design data of the product to be manufactured.
  • the design data transmission button 73 is a button designated in the design data designation area 72 and receives an instruction from the administrator to transmit the processing data to the cloud server 10 to generate a processing program.
  • the designer computer 31 transmits a generation request including the design data designated in the measurement data designation area 72 to the cloud server 10.
  • the machining program reception button 74 is a button that receives an instruction to receive the machining NC program generated by the cloud server 10 based on the design data transmitted to the cloud server 10.
  • the designer computer 31 requests the cloud server 10 to transmit the machining NC program, and receives the machining NC program from the cloud server 10.
  • the machining program display area 75 is an area for displaying the machining NC program received from the cloud server 10.
  • the machining program display area 75 may accept editing of the machining NC program.
  • the program approval / manufacturing request transmission button 76 is a button that approves the processing NC program received from the cloud server 10 and receives an instruction to transmit a processing (manufacturing) request by this processing NC program.
  • the program approval / manufacturing request transmission button 76 is pressed, the designer computer 31 transmits a manufacturing request to the cloud server 10 using the machining NC program displayed in the machining program display area 75.
  • the program disapproval transmission button 77 is a button for accepting the disapproval of the processing NC program received from the cloud server 10.
  • the program disapproval transmission button 77 is pressed, the designer computer 31 notifies the cloud server 10 of the disapproval of the processing NC program.
  • the cloud server 10 may create another candidate processing NC program and send it to the designer computer 31.
  • the machining request screen 70 shows an example in which only design data is transmitted as machining basic data, but when an uncorrected NC program is transmitted as machining basic data, an area for designating an uncorrected NC program. Is included so that when the design data transmission button 73 is pressed, the uncorrected NC program is transmitted together with the design data.
  • the program approval / manufacturing request transmission button 76 is an example of a method of transmitting an NC program to a machine tool, and may be substituted by another route or another GUI object.
  • the program disapproval transmission button 77 may be replaced by another GUI object as long as it can transmit the NC program regeneration instruction by the generation program.
  • FIG. 8 is a diagram showing an example of a rigidity value / browsing management screen displayed on the machine tool maker computer according to the embodiment.
  • the rigidity value / browsing management screen 80 includes a password input area 81 and one or more machine tool display areas 82.
  • the password input area 81 is an area for inputting the password of the administrator of the machine tool maker computer 41.
  • authentication is performed by the cloud server 10, and when it is confirmed that the administrator is a legitimate administrator, the machine tool maker 4 with the cloud server 10 It is possible to send and receive various information about each machine tool 20 manufactured by. That is, the display area 82 for each machine tool corresponding to each machine tool 20 manufactured by the machine tool maker 4 can be displayed.
  • the machine tool display area 82 is an area for displaying information about one machine tool. On the rigidity value / browsing management screen 80, the display area 82 for each machine tool to which the tab in the display areas 82 for each machine tool is designated is displayed in the foreground.
  • the machine tool display area 82 includes a machine tool ID display area 83, a current state display area 84, a rigidity value history display area 85, an alert information display area 86, and a parts replacement notification button 87.
  • the machine tool ID display area 83 is an area in which the machine tool ID (machine tool ID) is displayed.
  • the contact information of the machine tool can be specified by the machine tool ID.
  • the cloud server 10 uses the machine tool ID as a key to refer to the machine tool management table and obtains the machine tool ID of the processor who manages the machine tool 20. It can be specified, and the contact information of the machine tool can be specified by referring to the machine tool account table using the machine tool ID as a key. Therefore, the machine tool ID can also be referred to as contact information.
  • the current state display area 84 is an area in which the state of the current rigidity value of the machine tool 20 corresponding to the machine tool display area 82 is displayed.
  • the rigidity value history display area 85 is an area in which the history of the rigidity value of the machine tool 20 corresponding to the display area 82 for each machine tool is displayed.
  • a mark 88 indicating the rigidity value at a plurality of time points is displayed by a graph (rigidity value history graph) in which time (day) is taken on the horizontal axis and the rigidity value is taken on the vertical axis. Will be done.
  • a threshold value adjusting unit 89 for adjusting threshold value information as a reference for alerting to the rigidity value is displayed.
  • the machine tool maker computer 41 notifies the cloud server 10 of the adjusted threshold information.
  • the alert information display area 86 is an area where various alerts are displayed.
  • the administrator of the machine tool maker computer 41 can grasp the alert for the machine tool 20 from the information displayed in the alert information display area 86.
  • the parts replacement notification button 87 is a button that receives an instruction of a notification instructing the replacement of parts in the machine tool 20 from the administrator of the machine tool maker computer 41. When the parts replacement notification button 87 is pressed, the machine tool maker computer 41 displays an information input screen (not shown) for inputting the contents to be transmitted from the administrator in the parts replacement notification.
  • the content to be transmitted in the parts replacement notification may include, for example, information indicating the tool to be replaced and information indicating the replacement time.
  • the machine tool maker computer 41 transmits a parts replacement notification including the contents input on the information input screen to the cloud server 10.
  • the cloud server 10 receives the parts replacement notification, the cloud server 10 transmits the parts replacement notification to the processor computer 28 of the processor who manages the target machine tool 20.
  • the rigidity value / browsing management screen 80 is managed by the cloud server 10 in the machine tool display area 82 as the contact information of the machine tool manager corresponding to the machine tool display area 82.
  • the processor ID For example, the processor ID, the processor's email address, the telephone number, and the like may be displayed.
  • At least a part of the information of the tool management table may be input by the tool maker side via the tool maker computer 51. Further, at least a part of the information of the work management table may be input by the work maker side via a work maker computer (not shown) of the material maker (work maker). By doing so, the administrator of the cloud server 10 does not have to input these.
  • the administrator of the designer computer 31 is made to select a tool to be used from the tools registered in the tool management table, and is registered in the work management table.
  • the material to be used may be selected from the materials.
  • the cloud server 10 uses the selected tool to generate an NC machining program for machining the selected material and sends it to the designer computer 31.
  • the processor can respond to the manufacturing request from the designer by preparing the tools and materials registered in advance, and the registered tools and the registered tools can be registered. The use of the materials used is promoted.
  • Step A1 At least a part of the information about the rigidity and shape of the component of the selected machine tool, the shape of the work before machining, the product shape, the uncorrected NC program, and the cutting resistance of the work was used. Simulate physical phenomena during machining. As a result, the shape of the workpiece during machining is predicted in consideration of the deformation of the constituent of the selective machine tool during machining.
  • the simulation may be performed by, for example, a deformation analysis program using the finite element method, but may be performed by another program.
  • FIG. 11 shows a simulation model.
  • the force for canceling the cutting resistance F_r is the restoring force (related to the rigidity of the tool) F_b when the tool is regarded as a leaf spring.
  • the rigidity value of the spindle is related) F_s when the spindle is regarded as a torsion spring is shown.
  • the displacement ⁇ of the cutting edge can be obtained, and the shape of the workpiece during machining can be predicted.
  • the error is calculated based on the comparison between the predicted shape of the work and the target shape of the work.
  • the target shape of the work is the shape of the work being machined when there is no deformation of the components of the selected machine tool during machining. If the displacement ⁇ of the cutting edge in step A1 is regarded as an error, this step may be omitted.
  • Step A3 Add or change the description to eliminate the error (tool diameter correction, tool length correction, tool wear compensation, feed rate, cutting speed, etc.) to the uncorrected NC program and store it as a machining NC program. ..
  • Step B1 Educate the machine learning program with educational data.
  • the educational data may have errors from, for example, the rigidity of the machine tool component, the cutting resistance of the workpiece, the NC program when machining in the past, the shape of the workpiece before machining, the product shape, and the product shape after machining.
  • Other values may be added or used as a substitute.
  • Step B2 Select At least a part of the rigidity and shape of the structure of the machine tool, the shape of the work before machining, the product shape, the uncorrected NC program, and the cutting resistance of the work into the machine learning program. Enter and get the error.
  • Step B2 Add or change the description to eliminate the error (tool diameter correction, tool length correction, tool wear compensation, feed rate, cutting speed, etc.) to the uncorrected NC program and store it as a machining NC program. ..
  • the program source may be a program distribution server or a non-volatile storage medium (eg, a portable storage medium).
  • the machining center has been mainly described as an example of a machine tool, but other machines may be used as long as NC control is possible.
  • the machine tool has shown an example in which the spindle and the work can be relatively moved in two directions intersecting each other, but the machine tool has the spindle and the work in three or more directions (for example,). It may be relatively movable in the X-axis direction, the Y-axis direction, and the Z-axis direction perpendicular to the XY plane).
  • the measuring module measures the rigidity information for each of the three or more directions with respect to the spindle of the machine tool
  • the cloud server 10 receives the rigidity information for each of the three or more directions. Based on these, the rigidity values in the three or more directions of the spindle may be calculated, and the machining NC program may be generated based on these rigidity values. As a result, the processing accuracy of the product can be further improved.
  • the measurement module 29 is provided inside or outside the machine tool 20 to automatically measure the measured value.
  • a person in charge of measurement of a processor operates the measurement module.
  • the measured value may be measured.
  • the cloud server 10 may accept the input of the rigidity value.
  • the measurement module 29 outputs a force that causes a predetermined displacement instead of the displacement
  • the cloud server 10 may accept an input of a force that causes a predetermined displacement instead of the displacement.
  • the data retention format for the input and output to the cloud server 10 and the internal rigidity value is a constant that indicates the relationship between the force applied to the structure of the machine tool and the displacement (including rotation). Good.
  • the spring constant [N / m] described so far is only one expression form, and may be managed by displacement or restoring force.
  • the displacement can be handled corresponding to the spring constant if the cloud server 10 and the measurement module share the "reference force" that is the premise of causing the displacement.
  • the restoring force can be treated as equivalent to the spring constant if the cloud server 10 and the measurement module share the "reference displacement" that is the premise of generating the restoring force.
  • 1 Machining management system 10 cloud server, 20 machine tool, 28 machine tool calculator, 29 measurement module, 31 designer calculator, 41 machine tool maker calculator, 51 tool maker calculator

Abstract

The present invention makes it possible to easily and appropriately maintain the machining accuracy of a machining tool. This machining management method is used by a cloud server 10 to manage a plurality of machining tools 20 that execute a machining program to perform a machining process, wherein the cloud server 10: (1) receives measurement information of components of the machining tools 20; (2) receives machining basic data which serves as a basis for generating the machining program to be executed by the machining tools 20; (3) generates the machining program on the basis of the machining basic data and the measurement information of a prescribed machining tool 20 among one or more machining tools 20; (4) transmits the generated machining program; and (5) transmits the component measurement information of the machining tools 20 to a machining tool manufacturer computer 41, which is a computer of a machining tool manufacturer.

Description

機械加工管理方法及び機械加工管理システムMachining management method and machining management system
 本発明は、加工プログラムを実行する工作機械を管理するための技術に関する。 The present invention relates to a technique for managing a machine tool that executes a machining program.
 近年、加工プログラムを工作機械に入力することによって、被加工物(以後、ワークと呼ぶことがある)の加工を行うことがある。 In recent years, by inputting a machining program to a machine tool, the workpiece (hereinafter sometimes referred to as a workpiece) may be machined.
 更に、工作機械をネットワークに接続し、ネットワークを介して接続されているホストコンピュータ(サーバ)を利用する技術が知られている。 Further, a technique of connecting a machine tool to a network and using a host computer (server) connected via the network is known.
 例えば、特許文献1には、ホストコンピュータ(クラウド)側で、各ソフトウェア、ハードウェアの管理と保守を行うことで、工作機械のメインテナンスコストを削減する技術が開示されている。また、特許文献1には、ホストコンピュータ(クラウド)上で管理されるNCプログラム、NCパラメータ、工具オフセットデータなどの各種補正用データ、ラダー、PMCパラメータなどの共有データ、および機械固有のデータを使用し、機械の制御情報として、パルス情報、機械入力制御信号、および画面入力表示情報などを生成し、工作機械側に送信する、ことが開示されている。 For example, Patent Document 1 discloses a technique for reducing the maintenance cost of a machine tool by managing and maintaining each software and hardware on the host computer (cloud) side. Further, Patent Document 1 uses NC programs managed on a host computer (cloud), various correction data such as NC parameters and tool offset data, shared data such as ladders and PMC parameters, and machine-specific data. However, it is disclosed that pulse information, machine input control signal, screen input display information, and the like are generated as machine control information and transmitted to the machine tool side.
特開2016-71407号公報Japanese Unexamined Patent Publication No. 2016-71407
 特許文献1の技術では、工作機械が自動で測定できない、工作機械の状態を確認するための情報は容易にクラウドサーバに収集できない。
 また、別の視点では、特許文献1の技術では、工作機械の経時変化に伴う加工精度の低下を解消することが困難であった。
 本発明は、上記事情に鑑みなされたものであり、その目的の一つは、工作機械が自動で測定できない、工作機械の状態を確認するための情報は容易にクラウドサーバに収集することを促進することにある。また、本発明の目的の別な一つは、工作機械の経時変化に伴う加工精度の低下の解消を支援することにある。本発明の他の目的は以後明らかになるであろう。
With the technique of Patent Document 1, the machine tool cannot automatically measure, and the information for confirming the state of the machine tool cannot be easily collected in the cloud server.
From another point of view, it has been difficult for the technique of Patent Document 1 to eliminate the decrease in processing accuracy due to the time course of the machine tool.
The present invention has been made in view of the above circumstances, and one of the purposes thereof is to promote easy collection of information for confirming the state of a machine tool, which cannot be automatically measured by the machine tool, in a cloud server. To do. Further, another object of the present invention is to support the elimination of a decrease in machining accuracy due to a change over time of a machine tool. Other objects of the present invention will become apparent thereafter.
 一観点に係る機械加工管理方法は、加工プログラムを実行して加工処理を行う複数の工作機械を管理するための管理計算機による機械加工管理方法であって、管理計算機は、(1)工作機械の構成物の測定情報を受信し、(2)工作機械に実行させる加工プログラムを生成するための基となる加工基礎データを受信し、(3)1以上の工作機械の中の所定の工作機械の測定情報と加工基礎データとに基づいて、加工プログラムを生成し、(4)生成した加工プログラムを送信し、(5)工作機械の構成物の測定情報を、工作機械のメーカの計算機である工作機械メーカ計算機に送信する。
 一観点に係る、工作機械を管理する管理計算機は、プログラムを格納する保管モジュールと、演算モジュールと、を有する。ここで、工作機械は、少なくとも第1軸の方向と、第2軸の方向と、に移動可能なステージを有し、加工プログラムにしたがって加工処理を行う機械である。ここで、第1軸及び前記第2軸は、加工プログラムによって工具パスを記述するときに指定する軸である。そして管理計算機は、(1)工作機械の主軸に関し、第1軸に沿った剛性値に関する第1の値を、受信し、(2)工作機械の主軸に関し、第2軸に沿った剛性値に関する第2の値を、受信し、(3)第1の値と第2の値と、を管理計算機に接続する計算機に表示させる。
The machining management method according to one viewpoint is a machining management method by a management computer for managing a plurality of machine tools that execute a machining program and perform machining processing, and the management computer is (1) a machine tool. It receives the measurement information of the components, (2) receives the basic machining data that is the basis for generating the machining program to be executed by the machine tool, and (3) receives the machining basic data of the predetermined machine tool in one or more machine tools. A machining program is generated based on the measurement information and basic machining data, (4) the generated machining program is transmitted, and (5) the measurement information of the components of the machine tool is sent to the machine tool manufacturer's computer. Send to the machine tool maker computer.
A management computer that manages a machine tool according to one aspect includes a storage module for storing a program and an arithmetic module. Here, the machine tool is a machine that has a stage that can move at least in the direction of the first axis and the direction of the second axis, and performs machining processing according to a machining program. Here, the first axis and the second axis are axes designated when describing the tool path by the machining program. Then, the management calculator receives (1) the first value regarding the rigidity value along the first axis with respect to the spindle of the machine tool, and (2) regarding the spindle of the machine tool with respect to the rigidity value along the second axis. The second value is received, and (3) the first value and the second value are displayed on the calculator connected to the management calculator.
 本発明によると、工作機械の状態を確認するための情報は容易にクラウドサーバに収集できる。また、本発明によると、工作機械の経時変化に伴う加工精度の低下の解消を支援することができる。 According to the present invention, information for confirming the state of the machine tool can be easily collected in the cloud server. Further, according to the present invention, it is possible to support the elimination of the decrease in machining accuracy due to the time course of the machine tool.
図1は、一実施形態に係る機械加工管理システムの全体構成図である。FIG. 1 is an overall configuration diagram of a machining management system according to an embodiment. 図2は、一実施形態に係る工作機械の一例の構成図である。FIG. 2 is a block diagram of an example of a machine tool according to an embodiment. 図3は、一実施形態に係る加工者及び設計者が関わる処理を説明する図である。FIG. 3 is a diagram illustrating a process involving a processor and a designer according to an embodiment. 図4は、一実施形態に係る加工者及び工作機械メーカが関わる処理を説明する図である。FIG. 4 is a diagram illustrating a process involving a processor and a machine tool maker according to an embodiment. 図5は、一実施形態に係る加工者及び工具メーカが関わる処理を説明する図である。FIG. 5 is a diagram illustrating a process involving a processor and a tool maker according to an embodiment. 図6は、一実施形態に係る加工者計算機に表示される測定データ入力画面の一例を示す図である。FIG. 6 is a diagram showing an example of a measurement data input screen displayed on the processor computer according to the embodiment. 図7は、一実施形態に係る設計者計算機に表示される加工依頼画面の一例を示す図である。FIG. 7 is a diagram showing an example of a processing request screen displayed on the designer computer according to the embodiment. 図8は、一実施形態に係る工作機械メーカ計算機に表示される剛性値・閲覧管理画面の一例を示す図である。FIG. 8 is a diagram showing an example of a rigidity value / browsing management screen displayed on the machine tool maker computer according to the embodiment. 図9は、一実施形態に係る加工NCプログラムを生成する処理の一例を示すフローチャートである。FIG. 9 is a flowchart showing an example of processing for generating a machining NC program according to an embodiment. 図10は、一実施形態に係る加工NCプログラムを生成する処理の他の例を示すフローチャートである。FIG. 10 is a flowchart showing another example of the process of generating the machining NC program according to the embodiment. 図11は、一実施形態に係るシミュレーションモデルの一例を示す図である。FIG. 11 is a diagram showing an example of a simulation model according to an embodiment.
 実施形態について、図面を参照して説明する。なお、以下に説明する実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明されている諸要素及びその組み合わせの全てが発明の解決手段に必須であるとは限らない。なお、以後の実施例では、工作機械20は切削機械を対象として説明しているが、構成物の経時変化により加工誤差が生じ得るほかの工作機械であってもよい。 The embodiment will be described with reference to the drawings. It should be noted that the embodiments described below do not limit the invention according to the claims, and all of the elements and combinations thereof described in the embodiments are indispensable for the means for solving the invention. Is not always. In the following examples, the machine tool 20 is described for a cutting machine, but it may be another machine tool in which a machining error may occur due to a change over time of the component.
<システム構成>
 図1は、一実施形態に係る機械加工管理システムの全体構成図である。
<System configuration>
FIG. 1 is an overall configuration diagram of a machining management system according to an embodiment.
 機械加工管理システム1は、管理計算機の一例としてのクラウドサーバ10と、複数の工作機械20と、1以上の加工者計算機28と、1以上の測定モジュール29と、1以上の設計者計算機31と、1以上の工作機械メーカ計算機41と、1以上の工具メーカ計算機51と、を備える。クラウドサーバ10と、工作機械20、加工者計算機28、測定モジュール29、設計者計算機31、工作機械メーカ計算機41、及び工具メーカ計算機51とは、ネットワークを介して接続されている。ネットワークは、有線ネットワークでも無線ネットワークでもよい。 The machining management system 1 includes a cloud server 10 as an example of a management computer, a plurality of machine tools 20, one or more machine tools 28, one or more measurement modules 29, and one or more designer computers 31. It includes one or more machine tool maker calculators 41 and one or more tool maker calculators 51. The cloud server 10, the machine tool 20, the processor computer 28, the measurement module 29, the designer computer 31, the machine tool maker computer 41, and the tool maker computer 51 are connected via a network. The network may be a wired network or a wireless network.
 本実施形態では、工作機械20と、加工者計算機28と、測定モジュール29とは、加工対象材料(ワークともいう)を加工する加工製品製造者2(単に加工者ともいう)に管理されて使用される装置であり、加工者2の工場等に配置されている。加工者2は、1以上であってよい。また、設計者計算機31は、加工製品の設計を行う加工製品設計者3(単に設計者ともいう)に管理されて使用される計算機である。設計者3は1以上であってよい。また、工作機械メーカ計算機41は、加工者2に配置されている工作機械20を製造した工作機械メーカ4で使用される計算機である。工作機械メーカ4は1以上であってよい。また工具メーカ計算機51は、加工者2に配置されている工作機械20に装着される工具(例えば切削工具)を製造した工具メーカ5で使用される計算機である。工具メーカ5は、1以上であってよい。なお、加工者2と、設計者3とが、同一の主体であってもよく、工作機械メーカ4と工具メーカ5とが同一の主体であってもよい。なお、設計者3は、加工設計の形状や仕様を設計する者でもよく、加工工程を設計する者でもよい。 In the present embodiment, the machine tool 20, the processor computer 28, and the measurement module 29 are managed and used by the processed product manufacturer 2 (also simply referred to as a processor) that processes the material to be processed (also referred to as a workpiece). It is a device to be used, and is installed in the factory of the processor 2. The number of processors 2 may be 1 or more. Further, the designer computer 31 is a computer managed and used by a processed product designer 3 (also simply referred to as a designer) who designs a processed product. The number of designers 3 may be 1 or more. Further, the machine tool maker computer 41 is a computer used by the machine tool maker 4 that manufactures the machine tool 20 arranged in the machine tool 2. The machine tool maker 4 may be 1 or more. Further, the tool maker computer 51 is a computer used by the tool maker 5 that manufactures a tool (for example, a cutting tool) to be mounted on the machine tool 20 arranged in the machine tool 2. The tool maker 5 may be 1 or more. The processor 2 and the designer 3 may be the same subject, or the machine tool maker 4 and the tool maker 5 may be the same subject. The designer 3 may be a person who designs the shape and specifications of the processing design, or may be a person who designs the processing process.
 クラウドサーバ10は、工作機械20、加工者計算機28、測定モジュール29、設計者計算機31、工作機械メーカ計算機41、及び切削工具メーカ計算機51を統合して管理する処理を実行する。クラウドサーバ10は、例えば、プロセッサ、記憶資源等を備えるPC(Personal Computer)や、汎用計算機によって構成される。クラウドサーバ10は、伝送モジュール11と、保管モジュール12と、演算モジュール13とを含む。なお、クラウドサーバ10は、工作機械メーカ、工具メーカ、加工者、設計者いずれかが有してもよいが、これら以外の第三者が有してもよい。クラウドサーバ10を工作機械メーカが有する場合、当該メーカの既存のクラウドサーバとの連携が容易となる。クラウドサーバ10を第三者が有する場合、特定のメーカに独立なサービスとなるため、加工者が複数のメーカの工作機械を有する場合にも本実施例のメリットを提供できる。クラウドサーバ10を第三者が有する場合、特定のメーカに独立なサービスとなるため、工具メーカや工作機械メーカにとっては特定のメーカに工作機械の構成物の測定値を見られてしまうリスクを軽減することができる。 The cloud server 10 executes a process of integrating and managing the machine tool 20, the machine tool 28, the measuring module 29, the designer computer 31, the machine tool maker computer 41, and the cutting tool maker computer 51. The cloud server 10 is composed of, for example, a PC (Personal Computer) equipped with a processor, storage resources, and the like, and a general-purpose computer. The cloud server 10 includes a transmission module 11, a storage module 12, and an arithmetic module 13. The cloud server 10 may be owned by any of a machine tool maker, a tool maker, a processor, and a designer, but may be owned by a third party other than these. When the machine tool maker has the cloud server 10, it becomes easy to cooperate with the existing cloud server of the maker. When the cloud server 10 is owned by a third party, it is an independent service to a specific manufacturer, so that the merit of this embodiment can be provided even when the processor has machine tools of a plurality of manufacturers. If the cloud server 10 is owned by a third party, it will be an independent service for a specific manufacturer, reducing the risk for tool makers and machine tool makers to see the measured values of machine tool components by a specific manufacturer. can do.
 伝送モジュール11は、ネットワークを介して接続された各種装置との間で通信を行う通信I/F等である。 The transmission module 11 is a communication I / F or the like that communicates with various devices connected via a network.
 保管モジュール12は、例えば、半導体メモリ、フラッシュメモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)等や、揮発タイプのメモリや、不揮発タイプのメモリ等の記憶資源を含み、各種情報や演算モジュール13で実行されるプログラムを格納する。 The storage module 12 includes storage resources such as a semiconductor memory, a flash memory, an HDD (Hard Disk Drive), an SSD (Solid State Drive), a volatile type memory, and a non-volatile type memory, and includes various information and calculations. Stores the program executed by module 13.
 演算モジュール13は、プロセッサを含み、保管モジュール12のプログラムを実行することにより各種処理を実行する。例えば、演算モジュール13は、伝送モジュール11を介して受信した工作機械20の測定データに基づいて、工作機械20の主軸の剛性値を算出する。ここで、測定情報には、測定データと、測定データに基づいて算出される情報(例えば、剛性値)とが含まれてもよい。また、演算モジュール13は、後述する生成プログラムを実行することにより、製造する製品を加工するための基となる加工基礎データに基づいて、実際に加工で使用する特定の工作機械20で加工するためのNCプログラム(加工NCプログラム:加工プログラムの一例)を生成する処理を行う。ここで、加工基礎データとしては、製造する製品の形状データ(例えば、CADデータ)又は、実際の加工で使用する特定の工作機械20用に補正されていないNCプログラム(未補正NCプログラム)の少なくとも一方を含んでいる。また、演算モジュール13は、後述する管理プログラムを実行することにより、工作機械20の測定データや、算出した主軸の剛性値についての各計算機からのアクセスを管理する処理を実行する。 The arithmetic module 13 includes a processor and executes various processes by executing the program of the storage module 12. For example, the arithmetic module 13 calculates the rigidity value of the spindle of the machine tool 20 based on the measurement data of the machine tool 20 received via the transmission module 11. Here, the measurement information may include the measurement data and information (for example, a rigidity value) calculated based on the measurement data. Further, the arithmetic module 13 is processed by a specific machine tool 20 actually used for machining based on the basic machining data that is the basis for machining the product to be manufactured by executing the generation program described later. NC program (machining NC program: an example of machining program) is generated. Here, as the basic machining data, at least the shape data of the product to be manufactured (for example, CAD data) or the uncorrected NC program (uncorrected NC program) for the specific machine tool 20 used in the actual machining. Includes one. Further, the calculation module 13 executes a process of managing access from each computer to the measurement data of the machine tool 20 and the calculated rigidity value of the spindle by executing the management program described later.
 工作機械20は、ワークに対して加工処理を実行する機械である。工作機械20の詳細については、後述する。 The machine tool 20 is a machine that executes machining processing on the work. Details of the machine tool 20 will be described later.
 測定モジュール29は、例えば、工作機械20の外部に設けられ、工作機械20の構成物についての測定を行う。本実施形態では、測定モジュール29は、工作機械20の構成物(例えば、主軸やチャック。工具やホルダも工作機械20の構成物とみなしてもよい。)に対して、所定の方向の力を加えることで、構成物の剛性を特定可能な値(剛性情報の一例、例えば、変位)を測定する。具体的には、測定モジュール29は、工作機械20の主軸に対して、後述するステージ24(図2参照)のX軸方向と、Y軸方向とのそれぞれに所定の力を加えて変位を測定する。これら変位からは、工作機械20の主軸についてのX軸方向、Y軸方向の剛性値を算出することができる。なお、測定モジュール29を、工作機械20の構成物に限らず、工作機械20の付属物(例えば、工具)に対しても、所定の方向の力を加えることで、付属物の剛性を特定可能な値(例えば、変位)を測定するようにしてもよい。また、測定モジュール29は、測定により得られた測定値(測定データ)をクラウドサーバ10にネットワークを介して送信する。このように、測定モジュール29が測定して、測定値をクラウドサーバ10に送信するので、測定に関して人の手間を低減することができる。なお、測定モジュール29により測定する対象は、工作機械20の主軸の温度、主軸の潤滑オイルの温度、汚れ、残量、ステージ24のがたつきなどの少なくとも一つを含んでもよい。 The measurement module 29 is provided outside the machine tool 20, for example, and measures the components of the machine tool 20. In the present embodiment, the measuring module 29 exerts a force in a predetermined direction on a component of the machine tool 20 (for example, a spindle or a chuck. A tool or a holder may also be regarded as a component of the machine tool 20). By adding, a value that can specify the rigidity of the component (an example of rigidity information, for example, displacement) is measured. Specifically, the measurement module 29 measures the displacement of the spindle of the machine tool 20 by applying predetermined forces in the X-axis direction and the Y-axis direction of the stage 24 (see FIG. 2) described later. To do. From these displacements, the rigidity values of the spindle of the machine tool 20 in the X-axis direction and the Y-axis direction can be calculated. The rigidity of the accessory can be specified by applying a force in a predetermined direction to the accessory (for example, a tool) of the machine tool 20 as well as the component of the machine tool 20 with the measurement module 29. Value (for example, displacement) may be measured. Further, the measurement module 29 transmits the measured value (measurement data) obtained by the measurement to the cloud server 10 via the network. In this way, since the measurement module 29 measures and transmits the measured value to the cloud server 10, it is possible to reduce human labor for measurement. The object to be measured by the measuring module 29 may include at least one such as the temperature of the spindle of the machine tool 20, the temperature of the lubricating oil of the spindle, dirt, the remaining amount, and the rattling of the stage 24.
 測定モジュール29による工具の剛性を特定可能な値の測定方法はたとえば下記である。
*工具の刃先又は根元を固定し、板バネの要領で所定の力で固定されていない部分を押す。そしてその時の変位を測定する。
なお、工具の剛性は上記方法以外にも工具の形状と材料に基づいて計算してもよい。また、工具の剛性の経時変化は工具メーカが提供した値を用いてもよい。
For example, the method of measuring the value that can specify the rigidity of the tool by the measuring module 29 is as follows.
* Fix the cutting edge or root of the tool and push the part that is not fixed with the specified force in the same way as a leaf spring. Then, the displacement at that time is measured.
In addition to the above method, the rigidity of the tool may be calculated based on the shape and material of the tool. Further, the value provided by the tool maker may be used for the time course of the rigidity of the tool.
 なお、測定モジュール29による主軸の剛性を特定可能な値の測定方法は例えば下記である。
*主軸に剛性が明らかになっている工具又は棒を固定する。そして当該工具又は棒の固定端とは反対側の位置を所定の力で押し、その時の変位を測定する。そして、工具や棒の影響を測定結果からキャンセルして、最後に主軸の剛性を計算する。なお、決められた所定の力で押す代わりとして、工具又は棒に対してひずみゲージを貼り付け、工具又は棒を押したときの力を測定してもよい。
*主軸に剛性が明らかになっている工具又は棒を固定する。そして当該工具又は棒をステージ(又はステージ上の治具やワークでもよい)と接触させ、工具又は棒に加わる力をひずみゲージで測定する。その後ステージを所定量移動させた後に、工具又は棒に加わる力をひずみゲージで測定する。そして、工具や棒の影響を測定結果からキャンセルし、最後に主軸の剛性を計算する。
The method of measuring the value that can specify the rigidity of the spindle by the measuring module 29 is as follows, for example.
* Fix a tool or rod whose rigidity is known to the spindle. Then, the position opposite to the fixed end of the tool or rod is pushed with a predetermined force, and the displacement at that time is measured. Then, the influence of the tool or rod is canceled from the measurement result, and finally the rigidity of the spindle is calculated. Instead of pushing with a predetermined predetermined force, a strain gauge may be attached to the tool or rod and the force when the tool or rod is pushed may be measured.
* Fix a tool or rod whose rigidity is known to the spindle. Then, the tool or rod is brought into contact with the stage (or a jig or work on the stage), and the force applied to the tool or rod is measured with a strain gauge. Then, after moving the stage by a predetermined amount, the force applied to the tool or rod is measured with a strain gauge. Then, the influence of the tool or rod is canceled from the measurement result, and finally the rigidity of the spindle is calculated.
 以後の説明では剛性値として、ばね定数[N/m]のような、定数が高いほど、所定の力を加えたときの上記変位が小さくなる値を想定して説明する。しかし、剛性値としてはほかの値を用いてもよい。また、定数が高いほど、所定の力を加えたときの上記変位が大きくなるような定数を剛性値として用いてもよい。工作物の構成物の剛性、特に主軸の剛性は、これまでの工作時の負荷や、メーカの特性等により、経時変化し、それが工作精度に影響を及ぼすことを発明者は見出した。このような主軸の剛性を工作機械メーカ計算機に送信することによって、工作機械メーカは経時変化による工作精度の変化を踏まえた保守の提案を工作機械20の加工者(又は保有者)に対して行うことができる。 In the following description, as the rigidity value, it is assumed that the higher the constant, the smaller the displacement when a predetermined force is applied, such as the spring constant [N / m]. However, other values may be used as the rigidity value. Further, a constant may be used as the rigidity value so that the higher the constant, the larger the displacement when a predetermined force is applied. The inventor has found that the rigidity of the structure of the workpiece, especially the rigidity of the spindle, changes with time depending on the load during the machining and the characteristics of the manufacturer, which affects the machining accuracy. By transmitting the rigidity of the spindle to the machine tool maker computer, the machine tool maker makes a maintenance proposal to the machine tool 20 processor (or owner) based on the change in machine tool accuracy due to aging. be able to.
 なお、測定モジュール29は、工作機械20の内部に備えられるようにしてもよい。また、測定モジュール29は、測定値をクラウドサーバ10に直接送信できなくてもよく、例えば、測定モジュール29は、図示しない表示部に、測定値を表示させるようにしてもよい。なお、このように表示部に測定値を表示させる場合においては、加工者計算機28の管理者によって、表示部に表示された測定値が後述する測定データ入力画面60(図6参照)に入力された場合に、加工者計算機28がクラウドサーバ10に送信するようにすればよい。なお、測定モジュール29が、工作機械20の外部に備えられ、加工者等、人手によって工作機械20に設置し、測定を行うことも考えられる。後者の場合、このような設置及び測定作業は煩雑であるため、測定頻度が低下したり、あるいは工作機械20の保守員が工作機械20まで出張して測定するといった、状況が発生する。そうした状況を改善するため、本実施の形態では、後ほど説明する、測定モジュール29に測定データを利用する生成プログラムによって、加工基礎データ(例えば、製造する製品の形状データ(例えば、CADデータ)又は、実際の加工で使用する特定の工作機械20用に補正されていないNCプログラム)をもとに高精度な加工を実現するNCプログラムを生成、加工者に提供する。これにより、加工者による測定モジュール29による測定頻度を向上させるインセンティブを与えることができる。 The measurement module 29 may be provided inside the machine tool 20. Further, the measurement module 29 may not be able to directly transmit the measured value to the cloud server 10. For example, the measurement module 29 may display the measured value on a display unit (not shown). When displaying the measured value on the display unit in this way, the administrator of the computer 28 inputs the measured value displayed on the display unit to the measurement data input screen 60 (see FIG. 6) described later. In that case, the processor computer 28 may transmit the data to the cloud server 10. It is also conceivable that the measurement module 29 is provided outside the machine tool 20 and is manually installed on the machine tool 20 by a processor or the like to perform measurement. In the latter case, such installation and measurement work is complicated, so that the measurement frequency is reduced, or the maintenance staff of the machine tool 20 travels to the machine tool 20 for measurement. In order to improve such a situation, in the present embodiment, the basic processing data (for example, the shape data of the product to be manufactured (for example, CAD data) or the CAD data) or the processing basic data (for example, the shape data of the product to be manufactured) or An NC program that realizes high-precision machining is generated and provided to a processor based on an NC program that is not corrected for a specific machine tool 20 used in actual machining. This can provide an incentive to improve the measurement frequency by the measurement module 29 by the processor.
 加工者計算機28は、例えば、プロセッサ、記憶資源等を備えるPC(Personal Computer)や、汎用計算機によって構成される。加工者計算機28は、加工者計算機28の管理者から、各種情報の入力を受け付け、入力内容をクラウドサーバ10に送信する。例えば、加工者計算機28は、測定データ入力画面60を表示させて、測定値の入力を受け付け、測定値をクラウドサーバ10に送信する。また、加工者計算機28は、クラウドサーバ10から送信された、製造依頼があった加工NCプログラムを表示させ、管理者から加工NCプログラムの実行指示を受け付けて、クラウドサーバ10に送信する。 The processor computer 28 is composed of, for example, a PC (Personal Computer) equipped with a processor, storage resources, etc., and a general-purpose computer. The processor 28 receives input of various information from the administrator of the processor 28 and transmits the input contents to the cloud server 10. For example, the processor computer 28 displays the measurement data input screen 60, accepts the input of the measured value, and transmits the measured value to the cloud server 10. Further, the processor computer 28 displays the processing NC program for which the manufacturing request has been sent from the cloud server 10, receives the execution instruction of the processing NC program from the administrator, and transmits the processing NC program to the cloud server 10.
 設計者計算機31は、例えば、プロセッサ、記憶資源等を備えるPC(Personal Computer)や、汎用計算機によって構成される。設計者計算機31は、クラウドサーバ10から送信されたデータに基づく画面(加工依頼画面70(図7参照)等)を表示させ、設計者計算機31の管理者から各種入力を受け付け、入力に応じて、各種情報をクラウドサーバ10に送信する。加工依頼画面70の詳細については後述する。 The designer computer 31 is composed of, for example, a PC (Personal Computer) equipped with a processor, storage resources, etc., and a general-purpose computer. The designer computer 31 displays a screen (processing request screen 70 (see FIG. 7), etc.) based on the data transmitted from the cloud server 10, receives various inputs from the administrator of the designer computer 31, and responds to the inputs. , Various information is transmitted to the cloud server 10. The details of the processing request screen 70 will be described later.
 工作機械メーカ計算機41は、例えば、プロセッサ、記憶資源等を備えるPC(Personal Computer)や、汎用計算機によって構成される。工作機械メーカ計算機41は、クラウドサーバ10から送信されたデータに基づく画面(剛性値・閲覧管理画面80(図8参照)等)を表示させ、管理者から各種入力を受け付け、入力に応じて各種情報をクラウドサーバ10に送信する。剛性値・閲覧管理画面80の詳細については後述する。 The machine tool maker computer 41 is composed of, for example, a PC (Personal Computer) equipped with a processor, storage resources, etc., and a general-purpose computer. The machine tool maker computer 41 displays a screen (rigidity value / viewing management screen 80 (see FIG. 8), etc.) based on the data transmitted from the cloud server 10, accepts various inputs from the administrator, and various types according to the inputs. Information is transmitted to the cloud server 10. The details of the rigidity value / viewing management screen 80 will be described later.
 工具メーカ計算機51は、例えば、プロセッサ、記憶資源等を備えるPC(Personal Computer)や、汎用計算機によって構成される。工具メーカ計算機51は、クラウドサーバ10から送信されたデータに基づく画面を表示させ、工具メーカ計算機51の管理者から各種入力を受け付け、入力に応じて、各種情報をクラウドサーバ10に送信する。 The tool maker computer 51 is composed of, for example, a PC (Personal Computer) equipped with a processor, storage resources, etc., and a general-purpose computer. The tool maker computer 51 displays a screen based on the data transmitted from the cloud server 10, receives various inputs from the administrator of the tool maker computer 51, and transmits various information to the cloud server 10 in response to the inputs.
 クラウドサーバ10から工具メーカ計算機51に送信される情報としては、例えば、自身の工具が使用されている工作機械20の主軸の剛性値や、加工NCプログラム、ワークの材質や形状、工具の型番と切削時間等の情報を含んでもよい。なお、本実施形態においては、各種情報については、各種情報を管理する権限を有している主体による許可がある場合のみに、工具メーカ計算機51に送信するようにしている。例えば、工作機械20の剛性値は、この工作機械20の工作機械メーカ4が工具メーカ5に対して剛性値の送信を許可している場合にのみ、工具メーカ計算機51に送信され、許可していない場合には、送信が拒否される。これにより、各種情報が許可なく工具メーカ5や競合のメーカ4や5に渡ることを適切に防止することができる。なお、当該許可は、工作機械メーカ以外にも、工具メーカ5や、加工者2が与えてもよい。 The information transmitted from the cloud server 10 to the tool maker computer 51 includes, for example, the rigidity value of the spindle of the machine tool 20 in which the tool is used, the machining NC program, the material and shape of the work, and the model number of the tool. Information such as cutting time may be included. In the present embodiment, various information is transmitted to the tool maker computer 51 only when there is permission from an entity having the authority to manage various information. For example, the rigidity value of the machine tool 20 is transmitted to the tool maker calculator 51 and permitted only when the machine tool maker 4 of the machine tool 20 permits the tool maker 5 to transmit the rigidity value. If not, the transmission is rejected. As a result, it is possible to appropriately prevent various information from being passed on to the tool maker 5 and competing makers 4 and 5 without permission. The permission may be given by the tool maker 5 or the processor 2 in addition to the machine tool maker.
 次に、クラウドサーバ10の保管モジュール12が記憶するデータ等について説明する。 Next, the data and the like stored in the storage module 12 of the cloud server 10 will be described.
 <<データ等>>
 保管モジュール12は、加工者アカウントテーブルと、工作機械管理テーブルと、工具管理テーブルと、ワーク情報テーブルと、工作機械メーカ管理テーブルと、工具メーカ管理テーブルと、加工NCプログラム管理テーブルと、情報提供ルールテーブルと、生成プログラムと、管理プログラムとを格納する。なお、保管モジュール12は、これ以外の情報を格納してもよい。次の段落から各テーブルやプログラムの詳細について説明する。なお、各情報、又は各情報の一部の項目は省略してもよい。
<< Data, etc. >>
The storage module 12 includes a machine tool account table, a machine tool management table, a tool management table, a work information table, a machine tool maker management table, a tool maker management table, a machining NC program management table, and information provision rules. Stores a table, a generator, and a management program. The storage module 12 may store information other than this. The following paragraphs explain the details of each table and program. In addition, each information or some items of each information may be omitted.
 加工者アカウントテーブルは、各加工者を管理するためのテーブルであり、以下に示す各情報を含む。
 *加工者を識別するID(加工者ID)。
 *加工者のパスワード。このパスワードは、クラウドサーバ10で加工者を認証するために使用される。
 *加工者名。
 *加工者の連絡先情報。連絡先情報は、加工者の電話番号や、電子メールアドレスを含んでもよい。
 *加工者の住所。
The processor account table is a table for managing each processor, and includes each information shown below.
* ID that identifies the processor (processor ID).
* Password of the processor. This password is used to authenticate the processor on the cloud server 10.
* Processor name.
* Processor contact information. The contact information may include the telephone number of the processor or an email address.
* Address of the processor.
 工作機械管理テーブルは、各工作機械20を管理するためのテーブルであり、以下に示す情報を含む。
 *工作機械を識別するID(工作機械ID)。
 *工作機械の管理者のID(管理者ID)。工作機械の管理者とは、工作機械の所有者であってもよく、工作機械の使用する権利を有している者であってもよく、本実施形態では、加工者2がこれに対応し、管理者IDは、加工者IDとなる。
 *工作機械の設置場所。
 *工作機械に関して測定された値。例えば、測定値と、測定された日時との組を複数含んでいてもよい。
 *工作機械についての静的な値。静的な値としては、例えば、工作機械の型番等がある。
 *工作機械メーカ名。ただし、例えば、型番や工作機械IDで工作機械メーカ4を特定できる場合は、工作機械メーカ名はなくてもよい。
The machine tool management table is a table for managing each machine tool 20, and includes the following information.
* ID that identifies the machine tool (machine tool ID).
* Machine tool administrator ID (administrator ID). The manager of the machine tool may be the owner of the machine tool or the person who has the right to use the machine tool. In the present embodiment, the machine tool 2 corresponds to this. , The administrator ID becomes the processor ID.
* Installation location of machine tools.
* Measured value for machine tools. For example, a plurality of pairs of the measured value and the measured date and time may be included.
* Static value for machine tools. The static value includes, for example, the model number of the machine tool.
* Machine tool manufacturer name. However, for example, if the machine tool maker 4 can be specified by the model number or the machine tool ID, the machine tool maker name may not be required.
 工具管理テーブルは、工作機械20に装着された工具を管理するためのテーブルであり、以下に示す情報を含む。
 *工具のID(工具ID)。
 *工具の装着先の工作機械のID。
 *工具の型番。
 *工作機械で工具について測定された値。例えば、測定値と、測定された日時との組を複数含んでいてもよい。
 *工具メーカ名。ただし、例えば、型番や工具IDで工具メーカ5を特定できる場合は、工作メーカ名はなくてもよい。
 *工具の形状。
The tool management table is a table for managing the tools mounted on the machine tool 20, and includes the following information.
* Tool ID (tool ID).
* ID of the machine tool to which the tool is mounted.
* Tool model number.
* A value measured for a tool on a machine tool. For example, a plurality of pairs of the measured value and the measured date and time may be included.
* Tool maker name. However, for example, if the tool maker 5 can be specified by the model number or the tool ID, the machine maker name may not be required.
* Tool shape.
 ワーク管理テーブルは、各ワークを管理するためのテーブルであり、以下に示す情報を含む。
 *ワークのID(ワークID)。
 *ワークの材質。
 *ワークの形状(切削前の形状)。
 *ワークの切削抵抗。
The work management table is a table for managing each work, and includes the following information.
* Work ID (work ID).
* Work material.
* Work shape (shape before cutting).
* Work cutting resistance.
 工作機械メーカ管理テーブルは、各工作機械メーカ4を管理するためのテーブルであり、以下に示す情報を含む。
 *工作機械メーカのID(工作機械メーカID)。
 *工作機械メーカのパスワード。このパスワードは、クラウドサーバ10が工作機械メーカを認証するために使用される。
 *工作機械の測定値に関する閾値情報。ここで、閾値情報としては、工作機械メーカ4の工作機械20で同じ場合には、1つの閾値情報でよく、例えば、工作機械20ごとに閾値情報が異なる場合には、工作機械20の型番に対応させた閾値情報とすればよい。
The machine tool maker management table is a table for managing each machine tool maker 4, and includes the following information.
* Machine tool maker ID (machine tool maker ID).
* Machine tool manufacturer password. This password is used by the cloud server 10 to authenticate the machine tool maker.
* Threshold information about machine tool measurements. Here, as the threshold value, if the machine tool 20 of the machine tool maker 4 is the same, one threshold information may be used. For example, if the threshold information is different for each machine tool 20, the model number of the machine tool 20 may be used. It may be the corresponding threshold information.
 工具メーカ管理テーブルは、各工具メーカ5を管理するためのテーブルであり、以下に示す情報を含む。
 *工具メーカのID(工具メーカID)。
 *工具メーカのパスワード。このパスワードは、クラウドサーバ10が工具メーカ5を認証するために使用される。
The tool maker management table is a table for managing each tool maker 5, and includes the following information.
* Tool maker ID (tool maker ID).
* Tool maker password. This password is used by the cloud server 10 to authenticate the tool maker 5.
 加工NCプログラム管理テーブルは、生成された加工NCプログラムを管理するためのテーブルであり、以下に示す情報を含む。
 *加工NCプログラムの生成を示すID(加工NCプログラム生成ID)。
 *加工NCプログラムを生成した日時情報
 *加工NCプログラムの生成に用いた加工基礎データ。
 *生成された加工NCプログラム。
The machining NC program management table is a table for managing the generated machining NC program, and includes the information shown below.
* ID indicating the generation of machining NC program (machining NC program generation ID).
* Date and time information when the machining NC program was generated * Basic machining data used to generate the machining NC program.
* Generated machining NC program.
 情報提供ルールテーブルは、情報の提供についての許可を管理するテーブルであり、以下に示す情報を含む。本実施形態では、情報提供ルールテーブルに登録されている内容の情報提供が許可されていることを示している。
 *情報管理者のID。情報管理者は、加工者、工作機械メーカ、設計者のいずれか1以上である。情報の種別によって情報管理者は異なっている。
 *情報提供先のID。
 *情報提供可能な情報の種別。例えば、工作機械20の主軸の剛性値等。
The information provision rule table is a table that manages permission for providing information, and includes the following information. In the present embodiment, it is shown that the provision of information of the contents registered in the information provision rule table is permitted.
* Information manager ID. The information manager is one or more of a processor, a machine tool maker, and a designer. Information managers differ depending on the type of information.
* ID of the information provider.
* Types of information that can be provided. For example, the rigidity value of the spindle of the machine tool 20 and the like.
 次に、工作機械20について詳細に説明する。 Next, the machine tool 20 will be described in detail.
 図2は、一実施形態に係る工作機械の一例の構成図である。 FIG. 2 is a configuration diagram of an example of a machine tool according to an embodiment.
<工作機械>
 次に、工作機械20について詳細に説明する。
<Machine tool>
Next, the machine tool 20 will be described in detail.
 工作機械20は、例えば、マシニングセンタであり、加工処理を実行する本体部22と、本体部22の加工処理を制御するコントローラ21と、本体部22で使用される1以上の工具セットの工具TLを収容可能なツールマガジン25とを備える。なお、工作機械20は、旋盤やフライス盤であってもよい。また、以下の説明ではマシニングセンタは立形を例として説明するが、横形マシニングセンタに適用してもよい。 The machine tool 20 is, for example, a machining center, and includes a main body 22 that executes machining processing, a controller 21 that controls the machining processing of the main body 22, and a tool TL of one or more tool sets used in the main body 22. It includes a tool magazine 25 that can be accommodated. The machine tool 20 may be a lathe or a milling machine. Further, in the following description, the machining center will be described by taking a vertical shape as an example, but it may be applied to a horizontal machining center.
 ツールマガジン25は、それぞれ1つの工具TLを収容可能な複数のスロット(SL:25a,25b,25c)を有する。 Each tool magazine 25 has a plurality of slots (SL: 25a, 25b, 25c) capable of accommodating one tool TL.
 コントローラ21は、内部に記憶されているNCプログラムに従って、本体部22の加工処理や工具の交換処理を制御する。 The controller 21 controls the machining process of the main body 22 and the tool replacement process according to the NC program stored inside.
 本体部22は、処理ヘッド部23と、ステージ24と、工具交換部26とを含む。処理ヘッド部23は、工具TLを装着可能であり、且つ回動可能な主軸を備える。なお、処理ヘッド部23は、主軸それ自体であってもよい。ステージ24は、加工処理の対象となるワークWを載置して移動可能である。本実施形態では、ステージ24は、2つの直交する方向(図2中のX軸方向及びY軸方向)に移動可能であり、ワークと主軸との相対的な位置関係を変えることができる。工具交換部26は、処理ヘッド部23から工具TLを外して、ツールマガジン25の空きスロットに収容する。また、工具交換部26は、工具TLをツールマガジン25のスロットから取り出し、処理ヘッド部23に装着する。工具交換部26の一例は、工具自動交換装置(ATC)のチェンジアーム(ATCアームとも呼ばれる)である。NCプログラムは内部に工具交換命令を意味する一連の命令(NCプログラムの用語ではコードや、コードにパラメータを追加したワードと呼ばれる)を記述可能であり、当該工具交換命令には、ツールマガジン25内のスロット(意味は後術する)の位置を示すスロット番号が含まれている。工具交換部26は工具交換命令を読み込んだNCコントローラ21の指示により工具交換命令のパラメータに含まれるスロット番号で指定されたスロットから工具TLを取り出し、処理ヘッド部23に取り付ける。なお、NCプログラムでは、前述のX軸方向やY軸方向に関する数値を指定した工具パスを記述している。なお、工具パスを記述する場合には、これらX軸、Y軸以外にもZ軸や回転軸に関する数値を指定してもよい。 The main body portion 22 includes a processing head portion 23, a stage 24, and a tool changing portion 26. The processing head portion 23 includes a spindle on which a tool TL can be mounted and which can be rotated. The processing head unit 23 may be the spindle itself. The stage 24 is movable on which the work W to be processed is placed. In the present embodiment, the stage 24 can move in two orthogonal directions (X-axis direction and Y-axis direction in FIG. 2), and the relative positional relationship between the work and the main axis can be changed. The tool changing unit 26 removes the tool TL from the processing head unit 23 and accommodates it in an empty slot of the tool magazine 25. Further, the tool changing unit 26 takes out the tool TL from the slot of the tool magazine 25 and attaches it to the processing head unit 23. An example of the tool changing unit 26 is a change arm (also called an ATC arm) of an automatic tool changing device (ATC). The NC program can internally describe a series of instructions (called a code or a word in which parameters are added to the code in the NC program terminology) meaning a tool change instruction, and the tool change instruction is described in the tool magazine 25. Contains a slot number that indicates the location of the slot (meaning later). The tool changing unit 26 takes out the tool TL from the slot specified by the slot number included in the parameter of the tool changing instruction according to the instruction of the NC controller 21 that has read the tool changing instruction, and attaches the tool TL to the processing head unit 23. In the NC program, the tool path in which the numerical values related to the X-axis direction and the Y-axis direction are specified is described. When describing the tool path, numerical values related to the Z axis and the rotation axis may be specified in addition to the X axis and the Y axis.
 工作機械20においては、ツールマガジン25に収容可能な工具TLの数には制限があるが、予め1以上の工具セット27を用意しておき、実行する加工処理に応じて、ツールマガジン25に収容する工具セットを入れ替えることにより、種々の加工処理に対応することができる。 In the machine tool 20, the number of tool TLs that can be stored in the tool magazine 25 is limited, but one or more tool sets 27 are prepared in advance and stored in the tool magazine 25 according to the machining process to be executed. By exchanging the tool set to be used, various machining processes can be supported.
 本実施形態では、工具TLは、ワークWを切削するためのエンドミル、ドリル、バイト等の刃物部TLaと、刃物部TLaを処理ヘッド部23に装着するためのホルダTLbとを含んだものとしているが、例えば、処理ヘッド部23に刃物部TLaをそのまま装着できる場合には、ホルダTLbを含んでいなくてもよく、少なくとも刃物部TLaを含んでいればよい。 In the present embodiment, the tool TL includes a blade portion TLa such as an end mill, a drill, and a cutting tool for cutting the work W, and a holder TLb for mounting the blade portion TLa on the processing head portion 23. However, for example, when the cutting tool portion TLa can be mounted on the processing head portion 23 as it is, the holder TLb may not be included, and at least the cutting tool portion TLa may be included.
 次に、演算モジュール13で実行される生成プログラムについて説明する。 Next, the generation program executed by the calculation module 13 will be described.
<<生成プログラム>> << Generation program >>
 生成プログラム(厳密には、生成プログラムを実行するプロセッサ)は、加工基礎データと、実際に加工する工作機械として選択された工作機械20(選択工作機械)の主軸の最新の剛性(例えば、X軸方向、Y軸方向の剛性の少なくとも一方)を受信し、これら情報に基づいて、選択工作機械での加工NCプログラムを生成する。ここで、工作機械20の主軸においては、X軸方向、Y軸方向の剛性が異なる場合があり、これらの両方向の剛性に基づいて、加工NCプログラムを生成すると、より加工精度が向上する。なお、工作機械の主軸の剛性に加えて、工具の形状、工具の剛性、ワークの切削前の形状、切削加工後の形状、ワークの材料の切削抵抗等の少なくとも一つを考慮して、加工NCプログラムを生成してもよい。このようにすると、より加工精度の向上が見込める。なお、主軸の剛性を測定する方向としては、前述のX軸とY軸以外の直交する2軸で測定してもよいが、X軸とY軸に沿って測定することがより好ましい。NCプログラムにより記述される工具パスは、製品形状がシンプルな場合、X軸及びY軸方向にそった工具パスが比較的多く存在することがある。よって、X軸とY軸に沿った主軸の剛性を測定すると補正量の計算が容易となる。また補正後の加工プログラムを加工者や設計者が確認する時、補正傾向の把握が容易になる。 The generation program (strictly speaking, the processor that executes the generation program) contains the basic machining data and the latest rigidity (for example, X-axis) of the spindle of the machine tool 20 (selected machine tool) selected as the machine tool to be actually machined. It receives at least one of the rigidity in the direction and the rigidity in the Y-axis direction), and based on this information, generates a machining NC program on the selected machine tool. Here, in the spindle of the machine tool 20, the rigidity in the X-axis direction and the rigidity in the Y-axis direction may be different, and if a machining NC program is generated based on the stiffness in both directions, the machining accuracy is further improved. In addition to the rigidity of the spindle of the machine tool, at least one of the shape of the tool, the rigidity of the tool, the shape of the work before cutting, the shape after cutting, the cutting resistance of the material of the work, etc. are taken into consideration. An NC program may be generated. By doing so, it is expected that the processing accuracy will be further improved. The rigidity of the spindle may be measured in two orthogonal axes other than the X-axis and the Y-axis described above, but it is more preferable to measure the rigidity along the X-axis and the Y-axis. When the product shape is simple, the tool paths described by the NC program may have a relatively large number of tool paths along the X-axis and Y-axis directions. Therefore, if the rigidity of the spindle along the X-axis and the Y-axis is measured, the amount of correction can be easily calculated. Further, when the processor or the designer confirms the corrected processing program, it becomes easy to grasp the correction tendency.
 例えば、加工基礎データとして、未補正NCプログラムを取得している場合には、生成プログラムは、未補正NCプログラムの命令を変更或いは追加したデータを、加工NCプログラムとする。なお、追加又は変更する命令としては、工具径補正、工具長補正、工具摩耗補正、送り速度、工具回転速度、又は切削速度とすることで、工具TLによるワークWの加工回数が増える等の大幅な加工作業が変わることを回避してもよい。しかし、ワークWの加工回数が増えるような命令(例えばためし削りに相当する命令)を追加してもよい。 For example, when an uncorrected NC program is acquired as machining basic data, the generation program sets the data obtained by changing or adding the instruction of the uncorrected NC program as the machining NC program. Note that the commands to be added or changed include tool diameter compensation, tool length compensation, tool wear compensation, feed speed, tool rotation speed, or cutting speed, which greatly increases the number of times the work W is machined by the tool TL. It may be avoided that the processing work is changed. However, an instruction (for example, an instruction corresponding to trial cutting) that increases the number of times the work W is processed may be added.
 また、生成プログラムは、未補正NCプログラムの記述形式が、選択工作機械のコントローラ21に対する記述形式と少なくとも一部が異なっている場合には、未補正NCプログラムの記述における、記述形式が異なる部分について、選択工作機械のコントローラ21用の記述形式に変換する。これにより、選択工作機械のコントローラ21において支障なく加工処理を行うことができる。 Further, in the generation program, when the description format of the uncorrected NC program is at least partially different from the description format for the controller 21 of the selected machine tool, the description format of the uncorrected NC program is different. , Converted to the description format for the controller 21 of the selected machine tool. As a result, the processing process can be performed without any trouble in the controller 21 of the selected machine tool.
 生成プログラムは、加工NCプログラム内に、コメントとして、選択工作機械の工作機械IDと、選択工作機械で使用すると指定された工具セットの各工具TLの型番(或いは識別子)と、各工具TLの配置位置情報(スロット番号)とを記載するようにしてもよい。例えば、コメントとして、「MC2:SL1:ML7x、・・・」と記載してもよい。ここで、MC2は、工作機械IDであり、SL1は、スロット番号であり、ML7xは、ミルの型番である。このコメントを参照することにより、加工NCプログラムが、どの工作機械20を対象とし、どのような工具をどのスロットに格納すればよいのかを把握することができる。また、加工NCプログラム内に、コメントとして、使用すると指定された各工具TLの用途と、各工具TLの配置位置情報とを記載するようにしてもよい。このようなコメントを追加することで加工NCプログラムのデータ量が増加するが、必ず加工NCプログラムと一体で管理できるため、想定していない工作機械20や工具TLを間違って使うことを軽減できる。 In the machining NC program, the generation program includes the machine tool ID of the selected machine tool, the model number (or identifier) of each tool TL of the tool set specified to be used in the selected machine tool, and the arrangement of each tool TL as comments. The position information (slot number) may be described. For example, as a comment, "MC2: SL1: ML7x, ..." may be described. Here, MC2 is a machine tool ID, SL1 is a slot number, and ML7x is a model number of a mill. By referring to this comment, it is possible for the machining NC program to grasp which machine tool 20 is targeted and what kind of tool should be stored in which slot. Further, in the machining NC program, the use of each tool TL designated to be used and the arrangement position information of each tool TL may be described as comments. By adding such a comment, the amount of data of the machining NC program increases, but since it can always be managed integrally with the machining NC program, it is possible to reduce the mistaken use of the machine tool 20 and the tool TL that are not expected.
 また、生成プログラムは、加工基礎データとして、製造する製品の形状データ(CADデータ)を取得している場合には、例えば、3次元形状データに基づいて、未加工のワークを製品に加工するための加工NCプログラムを生成する。3次元データ(CADデータ)に基づいて、加工NCプログラムを生成する方法としては、任意の方法でよいが、例えば、3次元データに基づいて、剛性を考慮していない未補正NCプログラムを生成し、その後、上記同様に、選択工作機械の最新の剛性に基づいて、未補正NCプログラムの命令を変更或いは追加して選択工作機械での加工NCプログラムを生成してもよい。 Further, when the generation program acquires the shape data (CAD data) of the product to be manufactured as the basic processing data, for example, in order to process the unprocessed workpiece into the product based on the three-dimensional shape data. Generate a machining NC program for. Any method may be used to generate a machining NC program based on 3D data (CAD data). For example, an uncorrected NC program that does not consider rigidity is generated based on 3D data. Then, similarly to the above, based on the latest rigidity of the selected machine tool, the instruction of the uncorrected NC program may be changed or added to generate the machining NC program on the selected machine tool.
 また、生成プログラムは、生成した加工NCプログラムを、加工NCプログラム管理テーブルに登録する。具体的には、生成プログラムは、加工NCプログラムの生成を示す加工プログラム生成IDと、加工NCプログラムを生成した日時情報と、加工NCプログラムの生成に用いた加工基礎データと、生成された加工NCプログラムを加工NCプログラム管理テーブルに登録する。 In addition, the generation program registers the generated machining NC program in the machining NC program management table. Specifically, the generation program includes a machining program generation ID indicating the generation of the machining NC program, date and time information for generating the machining NC program, basic machining data used for generating the machining NC program, and the generated machining NC. Register the program in the machining NC program management table.
 生成プログラムは、生成処理後に、設計者計算機31に加工NCプログラムを送信する。また、生成プログラムは、設計者計算機31から製造依頼を受けた場合には、対応する加工NCプログラムを加工者計算機28に送信する。また、生成プログラムは、加工者計算機28から製造指示を受け付けた場合には、対応する加工NCプログラムを、この加工NCプログラムが対象としている工作機械20に対して、送信する。これにより、工作機械20は、送信された加工NCプログラムを実行することにより、加工処理を実行する。ここで、加工NCプログラムは、工作機械20の最新の剛性を考慮して生成されているNCプログラムであるので、加工により製造される製品を適切な加工精度とすることができる。なお、前述のインセンティブの付与の視点では、本生成プログラムでは工作機械の主軸の剛性以外に、工具の剛性等、他の要素を考慮することが好ましい。加工者に経年変化が少ない時点から工作機械の主軸の剛性に関する測定頻度を向上させようとする場合、主軸の剛性だけを考慮したNCプログラム生成では、加工精度の向上は小さいからである。 The generation program sends the machining NC program to the designer computer 31 after the generation process. Further, when the generation program receives a manufacturing request from the designer computer 31, the generation program transmits the corresponding processing NC program to the processor computer 28. Further, when the generation program receives the manufacturing instruction from the processor computer 28, the generation program transmits the corresponding machining NC program to the machine tool 20 targeted by the machining NC program. As a result, the machine tool 20 executes the machining process by executing the transmitted machining NC program. Here, since the machining NC program is an NC program generated in consideration of the latest rigidity of the machine tool 20, the product manufactured by machining can be made to have appropriate machining accuracy. From the viewpoint of giving the above-mentioned incentive, it is preferable to consider other factors such as the rigidity of the tool in addition to the rigidity of the spindle of the machine tool in this generation program. This is because when the processor wants to improve the measurement frequency regarding the rigidity of the spindle of the machine tool from a time when the change over time is small, the improvement in machining accuracy is small in the NC program generation considering only the rigidity of the spindle.
 次に、演算モジュール13で実行される管理プログラムについて説明する。 Next, the management program executed by the arithmetic module 13 will be described.
<<管理プログラム>>
 管理プログラム(厳密には、管理プログラムを実行するプロセッサ)は、工作機械20の測定データや剛性値については、この工作機械20を管理する加工者の加工者計算機28には送信するが、他の加工者の加工者計算機28に対しては送信しないように制御する、すなわち、送信を拒否するように制御する。これにより、他の加工者に、工作機械20の測定データや剛性値の情報が渡ってしまうことを適切に防止できる。なお、本実施形態では、管理プログラムは、情報提供ルールテーブルに登録されている情報の提供に該当する場合には、例外的に情報を送信する。
<< Management Program >>
The management program (strictly speaking, the processor that executes the management program) transmits the measurement data and the rigidity value of the machine tool 20 to the processor calculator 28 of the machine tool 20, but other It is controlled not to transmit to the processor computer 28 of the processor, that is, it is controlled to reject the transmission. As a result, it is possible to appropriately prevent the measurement data and the rigidity value information of the machine tool 20 from being passed on to other processors. In the present embodiment, the management program exceptionally transmits the information when it corresponds to the provision of the information registered in the information provision rule table.
 また、管理プログラムは、工作機械20の測定データや剛性値については、この工作機械20を製造した工作機械メーカの工作機械メーカ計算機41には送信するが、他の工作機械メーカの工作機械メーカ計算機41には送信しないように、すなわち、送信を拒否するように制御する。これにより、工作機械20の測定データや剛性値の情報が、他の工作機械メーカに渡ってしまうことを適切に防止できる。なお、本実施形態では、管理プログラムは、情報提供ルールテーブルに登録されている情報の提供に該当する場合には、例外的に情報を送信する。 Further, the management program transmits the measurement data and the rigidity value of the machine tool 20 to the machine tool maker computer 41 of the machine tool maker that manufactured the machine tool 20, but the machine tool maker computer of another machine tool maker. It is controlled not to transmit to 41, that is, to reject transmission. As a result, it is possible to appropriately prevent the measurement data and the rigidity value information of the machine tool 20 from being passed on to other machine tool makers. In the present embodiment, the management program exceptionally transmits the information when it corresponds to the provision of the information registered in the information provision rule table.
 また、管理プログラムは、工作機械メーカ計算機41から工作機械20の剛性値を評価するための閾値情報を取得する。この閾値情報は、例えば、剛性値・閲覧管理画面80(図8参照)に対する入力に基づいて取得することができる。また、管理プログラムは、取得した閾値情報を、工作機械メーカ管理テーブルに格納する。また、管理プログラムは、工作機械20の主軸の最新の剛性値が、工作機械メーカ管理テーブルの閾値情報を下回るか否かを判定し、工作機械20の主軸の最新の剛性値が、工作機械メーカ管理テーブルの閾値情報を下回ると判定した場合に、この工作機械20を製造した工作機械メーカの工作機械メーカ計算機41に対して、工作機械20の剛性が閾値情報を下回ったこと及び工作機械20を管理している加工者の連絡先の情報を送信する。ここで、連絡先情報の送信においては、連絡先情報をそのまま送信してもよく、連絡先情報を表示させるための表示用情報(例えば、表示用画像)として送信してもよい。これにより、工作機械20の主軸の最新の剛性値が閾値情報を下回ったことを、その工作機械20を製造した工作機械メーカ4に対して適切に通知することができ、工作機械メーカ4は、これに対処することができる。 Further, the management program acquires threshold information for evaluating the rigidity value of the machine tool 20 from the machine tool maker computer 41. This threshold information can be acquired, for example, based on the input to the rigidity value / browsing management screen 80 (see FIG. 8). In addition, the management program stores the acquired threshold information in the machine tool maker management table. Further, the management program determines whether or not the latest rigidity value of the spindle of the machine tool 20 is lower than the threshold information of the machine tool maker management table, and the latest rigidity value of the spindle of the machine tool 20 is the machine tool maker. When it is determined that the value is lower than the threshold information of the management table, the rigidity of the machine tool 20 is lower than the threshold information and the machine tool 20 is determined with respect to the machine tool maker computer 41 of the machine tool manufacturer that manufactured the machine tool 20. Send the contact information of the managed processor. Here, when transmitting the contact information, the contact information may be transmitted as it is, or may be transmitted as display information (for example, a display image) for displaying the contact information. As a result, it is possible to appropriately notify the machine tool maker 4 that manufactured the machine tool 20 that the latest rigidity value of the spindle of the machine tool 20 has fallen below the threshold information, and the machine tool maker 4 can notify the machine tool maker 4. This can be dealt with.
 次に、機械加工管理システム1による処理動作について説明する。 Next, the processing operation by the machining management system 1 will be described.
 まず、加工者及び設計者が関わる処理について説明する。 First, the processing involving the processor and the designer will be explained.
 図3は、一実施形態に係る加工者及び設計者が関わる処理を説明する図である。 FIG. 3 is a diagram for explaining the processing involving the processor and the designer according to the embodiment.
 まず、加工者2の測定モジュール29が、例えば、所定の時間間隔で、工作機械20に対して測定処理を行って測定データを取得し(図3(1))、取得した測定データを、クラウドサーバ10に送信する(図3(2))。 First, the measurement module 29 of the processor 2 performs measurement processing on the machine tool 20 at predetermined time intervals to acquire measurement data (FIG. 3 (1)), and obtains the acquired measurement data in the cloud. It is transmitted to the server 10 (FIG. 3 (2)).
 クラウドサーバ10の伝送モジュール11は、測定データを受信し、保管モジュール12の工作機械管理テーブル格納し、演算モジュール13は、測定データに基づいて、工作機械20の剛性値を特定し、剛性値を保管モジュール12の工作機械管理テーブルに格納する(図3(3))。以上の処理により、工作機械20の最新の測定データと、剛性値とが保管モジュール12に格納されることとなる。なお、加工者に複数の工作機械20がある場合には、各工作機械20に対して上記同様な処理が実行される。また、他の加工者がある場合には、他の加工者の各工作機械20についても上記同様な処理が実行される。 The transmission module 11 of the cloud server 10 receives the measurement data and stores the machine tool management table of the storage module 12, and the calculation module 13 specifies the rigidity value of the machine tool 20 based on the measurement data and determines the rigidity value. It is stored in the machine tool management table of the storage module 12 (FIG. 3 (3)). By the above processing, the latest measurement data of the machine tool 20 and the rigidity value are stored in the storage module 12. If the processor has a plurality of machine tools 20, the same processing as described above is executed for each machine tool 20. Further, when there is another machine tool, the same processing as described above is executed for each machine tool 20 of the other machine tool.
 その後、設計者計算機31が、管理者から加工基礎データの指定を受け付けると、受け付けた加工基礎データをクラウドサーバ10に送信する(図3(4))。クラウドサーバ10は、受け付けた加工基礎データと、加工を実際に行う工作機械20として選択されている工作機械20(選択工作機械)の最新の剛性値とに基づいて、加工NCプログラムを生成する(図3(5))。ここで、加工を実際に行う工作機械20は、例えば、設計者計算機31から指定された工作機械20でもよいし、クラウドサーバ10が選択した工作機械20であってもよい。 After that, when the designer computer 31 receives the designation of the processing basic data from the administrator, the received processing basic data is transmitted to the cloud server 10 (FIG. 3 (4)). The cloud server 10 generates a machining NC program based on the received basic machining data and the latest rigidity value of the machine tool 20 (selected machine tool) selected as the machine tool 20 that actually performs machining (). FIG. 3 (5). Here, the machine tool 20 that actually performs machining may be, for example, the machine tool 20 designated by the designer computer 31 or the machine tool 20 selected by the cloud server 10.
 クラウドサーバ10は、設計者計算機31から加工NCプログラムの受信要求を受け取ると、生成した加工NCプログラムを送信(提案)する(図3(6))。この結果、設計者計算機31は、加工依頼画面70(図7参照)に加工NCプログラムを表示させる。 When the cloud server 10 receives the reception request of the processing NC program from the designer computer 31, it transmits (proposes) the generated processing NC program (FIG. 3 (6)). As a result, the designer computer 31 displays the machining NC program on the machining request screen 70 (see FIG. 7).
 設計者計算機31は、管理者から受信した加工NCプログラムによる製造依頼の指示を受け取ると、製造依頼をクラウドサーバ10に送信する(図3(7))。クラウドサーバ10は、製造依頼を受信すると、製造依頼に対応する選択工作機械を管理する加工者の加工者計算機28に、製造依頼と、この製造依頼に対応する加工NCプログラムとを送信する(図3(8))。 When the designer computer 31 receives the instruction of the manufacturing request by the processing NC program received from the administrator, the designer computer 31 transmits the manufacturing request to the cloud server 10 (FIG. 3 (7)). When the cloud server 10 receives the manufacturing request, the cloud server 10 transmits the manufacturing request and the machining NC program corresponding to the manufacturing request to the processor computer 28 of the processor who manages the selected machine tool corresponding to the manufacturing request (FIG. FIG. 3 (8)).
 加工者計算機28は、管理者から製造依頼に対する製造指示を受け付けると、管理者による指示に基づいて製造指示をクラウドサーバ10に送信する(図3(9))。クラウドサーバ10は、製造指示を受信すると、製造指示に対応する加工NCプログラムと、製造指示を、選択工作機械に対して送信する(図3(10))。これにより、製造指示を受け取った選択工作機械では、加工NCプログラムを実行して、製品の製造、すなわち、ワークの加工を行うこととなる。 When the processor computer 28 receives the manufacturing instruction for the manufacturing request from the administrator, the processor computer 28 transmits the manufacturing instruction to the cloud server 10 based on the instruction by the administrator (FIG. 3 (9)). When the cloud server 10 receives the manufacturing instruction, the cloud server 10 transmits the machining NC program corresponding to the manufacturing instruction and the manufacturing instruction to the selected machine tool (FIG. 3 (10)). As a result, the selected machine tool that has received the manufacturing instruction executes the machining NC program to manufacture the product, that is, to machine the workpiece.
 上記した処理によると、選択工作機械の最新の剛性値に基づいて、加工NCプログラムが生成されて、加工NCプログラムが選択工作機械により実行されて、製品の製造が行われるので、製品の加工精度を適切に維持することができる。 According to the above processing, a machining NC program is generated based on the latest rigidity value of the selected machine tool, the machining NC program is executed by the selective machine tool, and the product is manufactured. Therefore, the machining accuracy of the product is performed. Can be maintained properly.
 次に、加工者及び工作機械メーカが関わる処理について説明する。 Next, the processing involving the processor and the machine tool maker will be described.
 図4は、一実施形態に係る加工者及び工作機械メーカが関わる処理を説明する図である。 FIG. 4 is a diagram illustrating a process involving a processor and a machine tool maker according to an embodiment.
 まず、加工者2の測定モジュール29が、例えば、所定の時間間隔で、工作機械20に対して測定処理を行って測定データを取得し(図4(1))、取得した測定データを、クラウドサーバ10に送信する(図4(2))。 First, the measurement module 29 of the processor 2 performs measurement processing on the machine tool 20 at predetermined time intervals to acquire measurement data (FIG. 4 (1)), and obtains the acquired measurement data in the cloud. It is transmitted to the server 10 (FIG. 4 (2)).
 クラウドサーバ10の伝送モジュール11は、測定データを受信し、保管モジュール12の工作機械管理テーブルに格納し、演算モジュール13は、測定データに基づいて、工作機械20の剛性値を特定し、剛性値を保管モジュール12の工作機械管理テーブルに格納する(図4(3))。以上の処理により、工作機械20の最新の測定データと、剛性値とが保管モジュール12に格納されることとなる。なお、加工者に複数の工作機械20がある場合には、各工作機械20に対して上記同様な処理が実行される。また、他の加工者がある場合には、他の加工者の各工作機械20についても上記同様な処理が実行される。 The transmission module 11 of the cloud server 10 receives the measurement data and stores it in the machine tool management table of the storage module 12, and the calculation module 13 specifies the rigidity value of the machine tool 20 based on the measurement data and the rigidity value. Is stored in the machine tool management table of the storage module 12 (FIG. 4 (3)). By the above processing, the latest measurement data of the machine tool 20 and the rigidity value are stored in the storage module 12. If the processor has a plurality of machine tools 20, the same processing as described above is executed for each machine tool 20. Further, when there is another machine tool, the same processing as described above is executed for each machine tool 20 of the other machine tool.
 その後、クラウドサーバ10は、例えば、工作機械メーカ計算機41から工作機械の情報の要求を受け取った場合等において、工作機械メーカ計算機41を管理する工作機械メーカが製造した複数の工作機械20についての測定データ及び剛性値を工作機械メーカ計算機41に送信する(図4(4))。ここで、測定データ及び剛性値については、それを示すデータとして送信してもよいし、測定データ及び剛性値を表示させるための表示用情報(例えば、表示用のビットマップ)として送信してもよい。この結果、工作機械メーカ計算機41では、例えば、剛性値・閲覧管理画面80(図8参照)が表示されて、製造した各工作機械20の状態を確認することができる。これにより、工作機械メーカ4では、工作機械20の部品交換が必要であるか否かを判定する部品交換判定処理をおこなうことができるようになる(図4(5))。部品交換判定処理は、工作機械メーカ4の管理者が行ってもよいし、工作機械メーカ計算機41が所定のアルゴリズムに従って判定してもよい。 After that, the cloud server 10 measures the plurality of machine tools 20 manufactured by the machine tool maker that manages the machine tool maker computer 41, for example, when a request for machine tool information is received from the machine tool maker computer 41. The data and the rigidity value are transmitted to the machine tool maker computer 41 (FIG. 4 (4)). Here, the measurement data and the rigidity value may be transmitted as data indicating the measurement data and the rigidity value, or may be transmitted as display information (for example, a bitmap for display) for displaying the measurement data and the rigidity value. Good. As a result, the machine tool maker computer 41 displays, for example, the rigidity value / browsing management screen 80 (see FIG. 8), and the state of each machine tool 20 manufactured can be confirmed. As a result, the machine tool maker 4 can perform a parts replacement determination process for determining whether or not the parts of the machine tool 20 need to be replaced (FIG. 4 (5)). The parts replacement determination process may be performed by the administrator of the machine tool maker 4, or may be determined by the machine tool maker computer 41 according to a predetermined algorithm.
 工作機械メーカ計算機41は、部品交換の通知を行う指示を行う必要がある場合(例えば、管理者が部品交換判定処理を行った場合には、その管理者からの部品交換通知の指示があった場合)には、部品交換通知をクラウドサーバ10に送信する(図4(6))。 When the machine tool maker computer 41 needs to give an instruction to notify the parts replacement (for example, when the administrator performs the parts replacement determination process, the administrator has instructed the parts replacement notification. In the case), a parts replacement notification is transmitted to the cloud server 10 (FIG. 4 (6)).
 クラウドサーバ10は、部品交換通知に対応する工作機械20を管理する加工者の加工者計算機28に対して、部品交換通知を転送する(図4(7))。これにより、加工者計算機28においては、部品交換通知により、工作機械20の部品の交換が必要であることを適切に把握することができる。なお、部品交換通知は、部品交換や調整等の保守の必要性を示すメッセージを含むことが考えられるが、メッセージ以外でも保守の必要性を示すことができるのであればほかの情報を含んでもよい。こうした視点で、部品交換通知は、保守必要性通知と、呼ぶことがある。 The cloud server 10 transfers the parts replacement notification to the processor computer 28 of the processor who manages the machine tool 20 corresponding to the parts replacement notification (FIG. 4 (7)). As a result, in the processor computer 28, it is possible to appropriately grasp that the parts of the machine tool 20 need to be replaced by the parts replacement notification. The parts replacement notification may include a message indicating the necessity of maintenance such as parts replacement or adjustment, but other information may be included as long as it can indicate the necessity of maintenance other than the message. .. From this point of view, the parts replacement notification is sometimes called a maintenance necessity notification.
 次に、加工者及び工具メーカが関わる処理について説明する。 Next, the processing involving the processor and the tool maker will be described.
 図5は、一実施形態に係る加工者及び工具メーカが関わる処理を説明する図である。 FIG. 5 is a diagram illustrating a process involving a processor and a tool maker according to an embodiment.
 まず、加工者2の測定モジュール29が、例えば、所定の時間間隔で、工作機械20に対して測定処理を行って測定データを取得し(図5(1))、取得した測定データを、クラウドサーバ10に送信する(図5(2))。 First, the measurement module 29 of the processor 2 performs measurement processing on the machine tool 20 at predetermined time intervals to acquire measurement data (FIG. 5 (1)), and obtains the acquired measurement data in the cloud. It is transmitted to the server 10 (FIG. 5 (2)).
 クラウドサーバ10の伝送モジュール11は、測定データを受信し、保管モジュール12の工作機械管理テーブル格納し、演算モジュール13は、測定データに基づいて、工作機械20の剛性値を特定し、剛性値を保管モジュール12の工作機械管理テーブルに格納する(図5(3))。以上の処理により、工作機械20の最新の測定データと、剛性値とが保管モジュール12に格納されることとなる。なお、加工者に複数の工作機械20がある場合には、各工作機械20に対して上記同様な処理が実行される。また、他の加工者がある場合には、他の加工者の各工作機械20についても上記同様な処理が実行される。 The transmission module 11 of the cloud server 10 receives the measurement data and stores the machine tool management table of the storage module 12, and the calculation module 13 specifies the rigidity value of the machine tool 20 based on the measurement data and determines the rigidity value. It is stored in the machine tool management table of the storage module 12 (FIG. 5 (3)). By the above processing, the latest measurement data of the machine tool 20 and the rigidity value are stored in the storage module 12. If the processor has a plurality of machine tools 20, the same processing as described above is executed for each machine tool 20. Further, when there is another machine tool, the same processing as described above is executed for each machine tool 20 of the other machine tool.
 その後、クラウドサーバ10は、工具メーカ計算機51から工作機械の情報の要求を受け取った場合において、工具メーカ計算機51の工具メーカ5が製造した工具が装着されている工作機械20についての測定データ及び剛性値を工具メーカ計算機51に送信する(図5(4))。なお、このように工具メーカ計算機51に対して、測定データ及び剛性値が送信されるのは、予め工具メーカ5に対して工作機械製造メーカ4から測定データ及び剛性データの送信が許可されている場合(具体的には、これら情報の送信について、情報提供ルールテーブルに登録されている場合)に限られ、許可されていない場合には、測定データ及び剛性値は送信されない。 After that, when the cloud server 10 receives a request for machine tool information from the tool maker computer 51, the cloud server 10 measures measurement data and rigidity of the machine tool 20 to which the tool manufactured by the tool maker 5 of the tool maker computer 51 is mounted. The value is transmitted to the tool maker computer 51 (FIG. 5 (4)). The measurement data and the rigidity value are transmitted to the tool maker computer 51 in this way because the machine tool maker 4 is permitted to transmit the measurement data and the rigidity data to the tool maker 5 in advance. Only in the case (specifically, when the transmission of these information is registered in the information provision rule table), and if not permitted, the measurement data and the rigidity value are not transmitted.
 工具メーカ計算機51は、測定データ及び剛性値を受信すると、図示しない閲覧管理画面に、測定データ及び剛性値を表示する。これにより、工具メーカの管理者は、工作機械20の剛性値の時間変化から、現状の工作機械20で良好に加工するために適切な工具を特定することができる。工具メーカ計算機51は、管理者から、現状の工作機械20で良好に加工するために適切な工具の提案の入力を受け付けると、受け付けた工具の提案をクラウドサーバ10に送信する(図5(5))。 When the tool maker computer 51 receives the measurement data and the rigidity value, the tool maker computer 51 displays the measurement data and the rigidity value on a browsing management screen (not shown). As a result, the manager of the tool maker can identify an appropriate tool for good machining with the current machine tool 20 from the time change of the rigidity value of the machine tool 20. When the tool maker computer 51 receives an input of a proposal of an appropriate tool for good machining with the current machine tool 20 from the administrator, the tool maker computer 51 transmits the accepted tool proposal to the cloud server 10 (FIG. 5 (5). )).
 クラウドサーバ10は、工具の提案を受信すると、提案対象の工作機械20を管理する加工者の加工者計算機28に対して、工具の提案を転送する(図5(6))。これにより、加工者計算機28の管理者は、工具の提案により、工作機械20の工具の交換等を検討することができる。 When the cloud server 10 receives the tool proposal, it transfers the tool proposal to the machine tool computer 28 of the machine tool that manages the machine tool 20 to be proposed (FIG. 5 (6)). As a result, the manager of the computer 28 can consider replacing the tool of the machine tool 20 by proposing the tool.
 次に、クラウドサーバ10の処理に基づいて、加工者計算機28に表示される測定データ入力画面60について詳細に説明する。 Next, the measurement data input screen 60 displayed on the processor computer 28 based on the processing of the cloud server 10 will be described in detail.
<測定データ入力画面>
 図6は、一実施形態に係る加工者計算機に表示される測定データ入力画面の一例を示す図である。測定データ入力画面60は、測定モジュール29によりクラウドサーバ10に対して測定データを送信することができない場合に、測定データをクラウドサーバ10に登録できるようにするための画面である。なお、この画面を使用する場合には、測定モジュール29が、測定データを表示する表示部を有している必要がある。
<Measurement data input screen>
FIG. 6 is a diagram showing an example of a measurement data input screen displayed on the processor computer according to the embodiment. The measurement data input screen 60 is a screen for allowing the measurement data to be registered in the cloud server 10 when the measurement data cannot be transmitted to the cloud server 10 by the measurement module 29. When using this screen, the measurement module 29 needs to have a display unit for displaying measurement data.
 測定データ入力画面60は、工作機械ID入力領域61と、測定値入力領域62と、前回入力データ表示領域63と、パスワード入力領域64と、測定データ入力ボタン64とを有する。 The measurement data input screen 60 has a machine tool ID input area 61, a measurement value input area 62, a previous input data display area 63, a password input area 64, and a measurement data input button 64.
 工作機械ID入力領域61は、測定データが測定された工作機械20の工作機械IDを入力するための領域である。測定値入力領域62は、測定モジュール29により測定された測定値を入力するための領域である。図6の例では、測定値入力領域62には、測定された工作機械20の主軸のX軸方向の変位を入力する領域と、Y軸方向の変位を入力する領域とが含まれている。前回入力データ表示領域63には、前回入力されたデータが表示される。パスワード入力領域64は、加工者計算機28の管理者のパスワードを入力する領域である。このパスワード入力領域64に対してパスワードが入力されると、クラウドサーバ10により認証が行われ、正当な管理者であることが確認されると、前回入力データ63にデータが表示され、新しい測定値を登録することができるようになる。測定データ入力ボタン65は、測定値入力領域62に入力された測定値をクラウドサーバ10に登録させる指示を管理者から受け付けるボタンである。測定データ入力ボタン65が押下されると、加工者計算機28は、測定値入力領域62に入力された測定値をクラウドサーバ10に送信して、クラウドサーバ10に登録させる。 The machine tool ID input area 61 is an area for inputting the machine tool ID of the machine tool 20 in which the measurement data has been measured. The measurement value input area 62 is an area for inputting the measurement value measured by the measurement module 29. In the example of FIG. 6, the measured value input area 62 includes a region for inputting the displacement of the measured spindle of the machine tool 20 in the X-axis direction and a region for inputting the displacement in the Y-axis direction. The previously input data is displayed in the previously input data display area 63. The password input area 64 is an area for inputting the password of the administrator of the processor computer 28. When a password is entered in the password input area 64, the cloud server 10 authenticates the user, and when it is confirmed that the administrator is a legitimate administrator, the data is displayed in the previously input data 63 and a new measured value is obtained. Will be able to register. The measurement data input button 65 is a button that receives an instruction from the administrator to register the measured value input in the measured value input area 62 in the cloud server 10. When the measurement data input button 65 is pressed, the processor computer 28 transmits the measured value input in the measured value input area 62 to the cloud server 10 and causes the cloud server 10 to register the measured value.
 次に、クラウドサーバ10の処理に基づいて、設計者計算機31に表示される加工依頼画面70について詳細に説明する。 Next, the processing request screen 70 displayed on the designer computer 31 based on the processing of the cloud server 10 will be described in detail.
<加工依頼画面>
 図7は、一実施形態に係る設計者計算機に表示される加工依頼画面の一例を示す図である。
<Processing request screen>
FIG. 7 is a diagram showing an example of a processing request screen displayed on the designer computer according to the embodiment.
 加工依頼画面70は、パスワード入力領域71と、設計データ指定領域72と、設計データ送信ボタン73と、加工プログラム受信ボタン74と、加工プログラム表示領域75と、プログラム認可/製造依頼発信ボタン76と、プログラム不許可発信ボタン77とを有する。 The machining request screen 70 includes a password input area 71, a design data designation area 72, a design data transmission button 73, a machining program reception button 74, a machining program display area 75, a program approval / manufacturing request transmission button 76, and the like. It has a program disapproval transmission button 77.
 パスワード入力領域71は、設計者計算機31の管理者のパスワードを入力する領域である。このパスワード入力領域71に対してパスワードが入力されると、クラウドサーバ10により認証が行われ、正当な管理者であることが確認されると、クラウドサーバ10との間で、加工に関する各種情報の送受信が可能となる。 The password input area 71 is an area for inputting the password of the administrator of the designer computer 31. When a password is input to the password input area 71, authentication is performed by the cloud server 10, and when it is confirmed that the administrator is a legitimate administrator, various information related to processing is transmitted to and from the cloud server 10. You can send and receive.
 設計データ指定領域72は、製造する製品の設計データを指定する領域である。設定データ指定領域72に設計データのファイル名が指定されると、その設計データに対応する製品の形状のプレビューが表示される。設計データ送信ボタン73は、設計データ指定領域72に指定された、加工データをクラウドサーバ10に送信させて加工プログラムを生成させる指示を管理者から受け付けるボタンである。設計データ送信ボタン73が押下されると、設計者計算機31は、測定データ指定領域72に指定された設計データを含む生成リクエストをクラウドサーバ10に送信する。 The design data designation area 72 is an area for designating the design data of the product to be manufactured. When the file name of the design data is specified in the setting data designation area 72, a preview of the shape of the product corresponding to the design data is displayed. The design data transmission button 73 is a button designated in the design data designation area 72 and receives an instruction from the administrator to transmit the processing data to the cloud server 10 to generate a processing program. When the design data transmission button 73 is pressed, the designer computer 31 transmits a generation request including the design data designated in the measurement data designation area 72 to the cloud server 10.
 加工プログラム受信ボタン74は、クラウドサーバ10に送信した設計データに基づいて、クラウドサーバ10で生成された加工NCプログラムを受信する指示を受け付けるボタンである。加工プログラム受信ボタン74が押下されると、設計者計算機31は、クラウドサーバ10に加工NCプログラムの送信を依頼し、クラウドサーバ10から加工NCプログラムを受信する。 The machining program reception button 74 is a button that receives an instruction to receive the machining NC program generated by the cloud server 10 based on the design data transmitted to the cloud server 10. When the machining program reception button 74 is pressed, the designer computer 31 requests the cloud server 10 to transmit the machining NC program, and receives the machining NC program from the cloud server 10.
 加工プログラム表示領域75は、クラウドサーバ10から受信した加工NCプログラムを表示する領域である。なお、加工プログラム表示領域75において、加工NCプログラムの編集等を受け付けるようにしてもよい。 The machining program display area 75 is an area for displaying the machining NC program received from the cloud server 10. The machining program display area 75 may accept editing of the machining NC program.
 プログラム認可/製造依頼発信ボタン76は、クラウドサーバ10から受信した加工NCプログラムを認可し、この加工NCプログラムによる加工(製品の製造)の依頼を送信する指示を受け付けるボタンである。プログラム認可/製造依頼発信ボタン76が押下されると、設計者計算機31は、クラウドサーバ10に加工プログラム表示領域75に表示されている加工NCプログラムを利用しての製造依頼を送信する。 The program approval / manufacturing request transmission button 76 is a button that approves the processing NC program received from the cloud server 10 and receives an instruction to transmit a processing (manufacturing) request by this processing NC program. When the program approval / manufacturing request transmission button 76 is pressed, the designer computer 31 transmits a manufacturing request to the cloud server 10 using the machining NC program displayed in the machining program display area 75.
 プログラム不許可発信ボタン77は、クラウドサーバ10から受信した加工NCプログラムの不許可を受け付けるボタンである。プログラム不許可発信ボタン77が押下されると、設計者計算機31は、クラウドサーバ10に加工NCプログラムの不許可を通知する。この加工NCプログラムの不許可が通知された場合には、クラウドサーバ10は、他の候補となる加工NCプログラムを作成して、設計者計算機31に送信するようにしてもよい。 The program disapproval transmission button 77 is a button for accepting the disapproval of the processing NC program received from the cloud server 10. When the program disapproval transmission button 77 is pressed, the designer computer 31 notifies the cloud server 10 of the disapproval of the processing NC program. When the disapproval of the processing NC program is notified, the cloud server 10 may create another candidate processing NC program and send it to the designer computer 31.
 なお、加工依頼画面70は、加工基礎データとして、設計データのみを送信する例を示しているが、加工基礎データとして、未補正NCプログラムを送信する場合には、未補正NCプログラムを指定する領域を含めるようにし、設計データ送信ボタン73が押下された際に、設計データとともに未補正NCプログラムが送信されるようにすればよい。また、プログラム認可/製造依頼発信ボタン76は、NCプログラムの工作機械への送信方法の一例であり、他の経路や他のGUIオブジェクトで代用してもよい。同様に、プログラム不許可発信ボタン77は、生成プログラムによるNCプログラムの再生成指示を送信できるのであれば、他のGUIオブジェクトで代用してもよい。 The machining request screen 70 shows an example in which only design data is transmitted as machining basic data, but when an uncorrected NC program is transmitted as machining basic data, an area for designating an uncorrected NC program. Is included so that when the design data transmission button 73 is pressed, the uncorrected NC program is transmitted together with the design data. Further, the program approval / manufacturing request transmission button 76 is an example of a method of transmitting an NC program to a machine tool, and may be substituted by another route or another GUI object. Similarly, the program disapproval transmission button 77 may be replaced by another GUI object as long as it can transmit the NC program regeneration instruction by the generation program.
 次に、クラウドサーバ10の処理に基づいて、工作機械メーカ計算機41に表示される剛性値・閲覧管理画面80について詳細に説明する。 Next, the rigidity value / browsing management screen 80 displayed on the machine tool maker computer 41 based on the processing of the cloud server 10 will be described in detail.
<剛性値・閲覧管理画面>
 図8は、一実施形態に係る工作機械メーカ計算機に表示される剛性値・閲覧管理画面の一例を示す図である。
<Rigidity value / browsing management screen>
FIG. 8 is a diagram showing an example of a rigidity value / browsing management screen displayed on the machine tool maker computer according to the embodiment.
 剛性値・閲覧管理画面80は、パスワード入力領域81と、1以上の工作機械毎表示領域82とを含む。 The rigidity value / browsing management screen 80 includes a password input area 81 and one or more machine tool display areas 82.
 パスワード入力領域81は、工作機械メーカ計算機41の管理者のパスワードを入力する領域である。このパスワード入力領域81に対してパスワードが入力されると、クラウドサーバ10により認証が行われ、正当な管理者であることが確認されると、クラウドサーバ10との間で、この工作機械メーカ4が製造した各工作機械20に関する各種情報の送受信が可能となる。すなわち、この工作機械メーカ4が製造した各工作機械20に対応する工作機械毎表示領域82を表示可能となる。 The password input area 81 is an area for inputting the password of the administrator of the machine tool maker computer 41. When a password is input to the password input area 81, authentication is performed by the cloud server 10, and when it is confirmed that the administrator is a legitimate administrator, the machine tool maker 4 with the cloud server 10 It is possible to send and receive various information about each machine tool 20 manufactured by. That is, the display area 82 for each machine tool corresponding to each machine tool 20 manufactured by the machine tool maker 4 can be displayed.
 工作機械毎表示領域82は、一の工作機械に関する情報を表示する領域である。剛性値・閲覧管理画面80においては、複数の工作機械毎表示領域82の中のタブが指定された工作機械毎表示領域82が最前面で表示される。 The machine tool display area 82 is an area for displaying information about one machine tool. On the rigidity value / browsing management screen 80, the display area 82 for each machine tool to which the tab in the display areas 82 for each machine tool is designated is displayed in the foreground.
 工作機械毎表示領域82は、工作機械ID表示領域83と、現在状態表示領域84と、剛性値履歴表示領域85と、アラート情報表示領域86と、部品交換通知ボタン87とを含む。 The machine tool display area 82 includes a machine tool ID display area 83, a current state display area 84, a rigidity value history display area 85, an alert information display area 86, and a parts replacement notification button 87.
 工作機械ID表示領域83は、工作機械のID(工作機械ID)が表示される領域である。なお、工作機械メーカ計算機41において、工作機械IDに対する加工者の連絡先を管理しておくことにより、この工作機械IDにより加工者の連絡先を特定することができる。また、この工作機械IDをクラウドサーバ10に通知することにより、クラウドサーバ10側では、工作機械IDをキーとして工作機械管理テーブルを参照して、工作機械20を管理する加工者の加工者IDを特定でき、加工者IDをキーとして加工者アカウントテーブルを参照して加工者の連絡先を特定することができる。したがって、工作機械IDを連絡先情報ということもできる。現在状態表示領域84は、工作機械毎表示領域82に対応する工作機械20の現在の剛性値の状態が表示される領域である。剛性値履歴表示領域85は、工作機械毎表示領域82に対応する工作機械20の剛性値の履歴が表示される領域である。剛性値履歴表示領域85には、例えば、横軸に時間(日)を取り、縦軸に剛性値を取ったグラフ(剛性値履歴グラフ)により、複数の時点の剛性値を示すマーク88が表示される。剛性値履歴グラフには、剛性値に対するアラートの基準となる閾値情報を調整するための閾値調整部89が表示される。閾値調整部89により閾値情報が調整されると工作機械メーカ計算機41は、クラウドサーバ10に調整された閾値情報を通知する。 The machine tool ID display area 83 is an area in which the machine tool ID (machine tool ID) is displayed. By managing the contact information of the machine tool with respect to the machine tool ID in the machine tool maker computer 41, the contact information of the machine tool can be specified by the machine tool ID. Further, by notifying the machine tool ID to the cloud server 10, the cloud server 10 uses the machine tool ID as a key to refer to the machine tool management table and obtains the machine tool ID of the processor who manages the machine tool 20. It can be specified, and the contact information of the machine tool can be specified by referring to the machine tool account table using the machine tool ID as a key. Therefore, the machine tool ID can also be referred to as contact information. The current state display area 84 is an area in which the state of the current rigidity value of the machine tool 20 corresponding to the machine tool display area 82 is displayed. The rigidity value history display area 85 is an area in which the history of the rigidity value of the machine tool 20 corresponding to the display area 82 for each machine tool is displayed. In the rigidity value history display area 85, for example, a mark 88 indicating the rigidity value at a plurality of time points is displayed by a graph (rigidity value history graph) in which time (day) is taken on the horizontal axis and the rigidity value is taken on the vertical axis. Will be done. In the rigidity value history graph, a threshold value adjusting unit 89 for adjusting threshold value information as a reference for alerting to the rigidity value is displayed. When the threshold information is adjusted by the threshold adjustment unit 89, the machine tool maker computer 41 notifies the cloud server 10 of the adjusted threshold information.
 アラート情報表示領域86は、各種アラートが表示される領域である。本実施形態では、クラウドサーバ10において、設定された閾値情報を、工作機械20の剛性値が下回っていることが検出されると、アラート情報表示領域86に、その旨を示す情報が表示される。工作機械メーカ計算機41の管理者は、アラート情報表示領域86に表示された情報により、工作機械20に対するアラートを把握することができる。部品交換通知ボタン87は、工作機械メーカ計算機41の管理者から、工作機械20における部品の交換を指示する通知の指示を受け付けるボタンである。部品交換通知ボタン87が押下されると、工作機械メーカ計算機41は、管理者から部品交換通知で送信する内容を入力するための図示しない情報入力画面を表示させる。ここで、部品交換通知で送信する内容としては、例えば、交換する工具を示す情報や、その交換時期を示す情報を含んでもよい。工作機械メーカ計算機41は、情報入力画面で入力された内容を含む部品交換通知をクラウドサーバ10に送信する。クラウドサーバ10では、部品交換通知を受け取ると、その対象となる工作機械20を管理する加工者の加工者計算機28に部品交換通知を送信する。 The alert information display area 86 is an area where various alerts are displayed. In the present embodiment, when it is detected in the cloud server 10 that the rigidity value of the machine tool 20 is lower than the set threshold information, information indicating that fact is displayed in the alert information display area 86. .. The administrator of the machine tool maker computer 41 can grasp the alert for the machine tool 20 from the information displayed in the alert information display area 86. The parts replacement notification button 87 is a button that receives an instruction of a notification instructing the replacement of parts in the machine tool 20 from the administrator of the machine tool maker computer 41. When the parts replacement notification button 87 is pressed, the machine tool maker computer 41 displays an information input screen (not shown) for inputting the contents to be transmitted from the administrator in the parts replacement notification. Here, the content to be transmitted in the parts replacement notification may include, for example, information indicating the tool to be replaced and information indicating the replacement time. The machine tool maker computer 41 transmits a parts replacement notification including the contents input on the information input screen to the cloud server 10. When the cloud server 10 receives the parts replacement notification, the cloud server 10 transmits the parts replacement notification to the processor computer 28 of the processor who manages the target machine tool 20.
 なお、剛性値・閲覧管理画面80の工作機械毎表示領域82に、この工作機械毎表示領域82に対応する工作機械を管理する加工者の連絡先情報として、クラウドサーバ10に管理している、例えば、加工者ID、加工者のメールアドレス、電話番号等を表示するようにしてもよい。 The rigidity value / browsing management screen 80 is managed by the cloud server 10 in the machine tool display area 82 as the contact information of the machine tool manager corresponding to the machine tool display area 82. For example, the processor ID, the processor's email address, the telephone number, and the like may be displayed.
<バリエーション>
 なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。また、下記で説明した処理は組み合わせて用いてもよい。
<Variation>
The present invention is not limited to the above-described embodiment, and can be appropriately modified and implemented without departing from the spirit of the present invention. Further, the processes described below may be used in combination.
 <<工具管理テーブル、ワーク管理テーブルの入力>>
 上記実施形態において、工具管理テーブルの少なくとも一部の情報については、工具メーカ計算機51を介して工具メーカ側が入力するようにしてもよい。また、ワーク管理テーブルの少なくとも一部の情報については、材料メーカ(ワークメーカ)の図示しないワークメーカ計算機を介して、ワークメーカ側が入力するようにしてもよい。このようにすると、クラウドサーバ10の管理者がこれらを入力しないで済む。
<< Input of tool management table and work management table >>
In the above embodiment, at least a part of the information of the tool management table may be input by the tool maker side via the tool maker computer 51. Further, at least a part of the information of the work management table may be input by the work maker side via a work maker computer (not shown) of the material maker (work maker). By doing so, the administrator of the cloud server 10 does not have to input these.
 また、設計者計算機31において、設計者計算機31の管理者に対して、工具管理テーブルに登録されている工具の中から使用する工具を選択させるようにし、また、ワーク管理テーブルに登録されている材料の中から使用する材料を選択させるようにしてもよい。この場合には、クラウドサーバ10は、選択された工具を利用して、選択された材料に対して加工を行うNC加工プログラムを生成して設計者計算機31に送信することとなる。このようにすると、加工者においては、予め登録されている工具や、材料を用意しておくことにより、設計者からの製造要求に対応することができることとなり、登録されている工具や、登録されている材料の利用が促進される。 Further, in the designer computer 31, the administrator of the designer computer 31 is made to select a tool to be used from the tools registered in the tool management table, and is registered in the work management table. The material to be used may be selected from the materials. In this case, the cloud server 10 uses the selected tool to generate an NC machining program for machining the selected material and sends it to the designer computer 31. In this way, the processor can respond to the manufacturing request from the designer by preparing the tools and materials registered in advance, and the registered tools and the registered tools can be registered. The use of the materials used is promoted.
 <<生成プログラムによる他の生成処理1>>
 未補正NCプログラムを用いて加工NCプログラムを生成する処理として、生成プログラムは、図9及び下記に示す処理を行ってもよい。
*(ステップA1)選択工作機械の構成物の剛性や形状と、ワークの加工前の形状と、製品形状と、未補正NCプログラムと、ワークの切削抵抗と、の少なくとも一部情報を用いた、加工中の物理現象のシミュレーションを行う。これにより、選択工作機械の構成物の加工中の変形を考慮してワークの加工中の形状を予測する。なお、当該シミュレーションはたとえば有限要素法を用いた変形解析プログラムにより行うことが考えられるが、他のプログラムで行ってもよい。図11にシミュレーションモデルを示す。図11では、切削抵抗F_rが生じたことで工具の刃先がδ変位した場合、切削抵抗F_rを打ち消す力は、工具を板バネとみなしたときの復元力(工具の剛性が関係)F_bと、主軸をねじりバネとみなしたときの復元力(モーメントともみなせる。主軸の剛性値が関係)F_sと、に基づいて生じるモデルを示している。このようなモデルに基づけば、刃先の変位δが得られ、ワークの加工中の形状が予測できる。
*(ステップA2)ワークの予測形状とワークの目標形状との比較に基づいて誤差を算出する。なお、ワークの目標形状とは、加工中に選択工作機械の構成物の変形がない場合の、加工中のワーク形状である。なお、ステップA1の刃先の変位δを誤差とみなす場合は、本ステップは省略してもよい。
*(ステップA3)当該誤差を解消する記述(前述の工具径補正、工具長補正、工具摩耗補正、送り速度、切削速度等)を未補正NCプログラムに追加または変更し、加工NCプログラムとして格納する。
<< Other generation processing by the generation program 1 >>
As a process of generating a processed NC program using an uncorrected NC program, the generation program may perform the processes shown in FIG. 9 and the following.
* (Step A1) At least a part of the information about the rigidity and shape of the component of the selected machine tool, the shape of the work before machining, the product shape, the uncorrected NC program, and the cutting resistance of the work was used. Simulate physical phenomena during machining. As a result, the shape of the workpiece during machining is predicted in consideration of the deformation of the constituent of the selective machine tool during machining. The simulation may be performed by, for example, a deformation analysis program using the finite element method, but may be performed by another program. FIG. 11 shows a simulation model. In FIG. 11, when the cutting edge of the tool is displaced by δ due to the cutting resistance F_r, the force for canceling the cutting resistance F_r is the restoring force (related to the rigidity of the tool) F_b when the tool is regarded as a leaf spring. A model generated based on the restoring force (which can also be regarded as a moment. The rigidity value of the spindle is related) F_s when the spindle is regarded as a torsion spring is shown. Based on such a model, the displacement δ of the cutting edge can be obtained, and the shape of the workpiece during machining can be predicted.
* (Step A2) The error is calculated based on the comparison between the predicted shape of the work and the target shape of the work. The target shape of the work is the shape of the work being machined when there is no deformation of the components of the selected machine tool during machining. If the displacement δ of the cutting edge in step A1 is regarded as an error, this step may be omitted.
* (Step A3) Add or change the description to eliminate the error (tool diameter correction, tool length correction, tool wear compensation, feed rate, cutting speed, etc.) to the uncorrected NC program and store it as a machining NC program. ..
<<生成プログラムによる他の生成処理2>>
 未補正NCプログラムを用いて加工NCプログラムを生成する処理として、生成プログラムは、図10及び下記に示す処理を行ってもよい。なお、下記ステップは上記ステップA1乃至A3と組み合わせてもよい。
*(ステップB1)機械学習プログラムに、教育データで教育する。教育データは、例えば、工作機械の構成物の剛性、ワークの切削抵抗、過去に加工したときのNCプログラム、ワークの加工前の形状、製品形状、加工後の製品形状との誤差が考えられるが、他の値を追加したり、代用として用いたりしてもよい。
*(ステップB2)選択工作機械の構成物の剛性や形状と、ワークの加工前の形状と、製品形状と、未補正NCプログラムと、ワークの切削抵抗と、の少なくとも一部を機械学習プログラムに入力し、誤差を取得する。
*(ステップB2)当該誤差を解消する記述(前述の工具径補正、工具長補正、工具摩耗補正、送り速度、切削速度等)を未補正NCプログラムに追加または変更し、加工NCプログラムとして格納する。
<< Other generation processing by the generation program 2 >>
As a process of generating a processed NC program using an uncorrected NC program, the generation program may perform the processes shown in FIG. 10 and the following. The following steps may be combined with the above steps A1 to A3.
* (Step B1) Educate the machine learning program with educational data. The educational data may have errors from, for example, the rigidity of the machine tool component, the cutting resistance of the workpiece, the NC program when machining in the past, the shape of the workpiece before machining, the product shape, and the product shape after machining. , Other values may be added or used as a substitute.
* (Step B2) Select At least a part of the rigidity and shape of the structure of the machine tool, the shape of the work before machining, the product shape, the uncorrected NC program, and the cutting resistance of the work into the machine learning program. Enter and get the error.
* (Step B2) Add or change the description to eliminate the error (tool diameter correction, tool length correction, tool wear compensation, feed rate, cutting speed, etc.) to the uncorrected NC program and store it as a machining NC program. ..
<<<その他>>>
 上記説明において、プロセッサが行っていた処理の一部又は全部を、ハードウェア回路で行うようにしてもよい。また、上記実施形態における各種プログラムは、プログラムソースからインストールされてよい。プログラムソースは、プログラム配布サーバ又は不揮発性の記憶メディア(例えば可搬型の記憶メディア)であってもよい。
<<< Other >>
In the above description, a part or all of the processing performed by the processor may be performed by the hardware circuit. In addition, the various programs in the above embodiment may be installed from the program source. The program source may be a program distribution server or a non-volatile storage medium (eg, a portable storage medium).
 また、上記説明では、主に工作機械としてマシニングセンタを例として説明したが、NC制御可能であれば他の機械であってもよい。 Further, in the above description, the machining center has been mainly described as an example of a machine tool, but other machines may be used as long as NC control is possible.
 また、上記説明では、工作機械は、主軸とワークとを互いに交わる2方向に相対的に移動可能な例を示していたが、工作機械は、主軸とワークとを、3以上の方向(例えば、X軸方向と、Y軸方向と、X-Y平面に垂直なZ軸方向)にも相対的に移動可能であってもよく。その場合には、例えば、測定モジュールが工作機械の前記主軸についての3方向以上の方向の各々に対する剛性情報を測定し、クラウドサーバ10は、3方向以上の方向の各々に対する剛性情報を受信し、これらに基づいて、主軸の3方向以上の方向に対する剛性値を算出し、これらの剛性値に基づいて、加工NCプログラムを生成するようにしてもよい。これにより、製品の加工精度をより向上することができる。 Further, in the above description, the machine tool has shown an example in which the spindle and the work can be relatively moved in two directions intersecting each other, but the machine tool has the spindle and the work in three or more directions (for example,). It may be relatively movable in the X-axis direction, the Y-axis direction, and the Z-axis direction perpendicular to the XY plane). In that case, for example, the measuring module measures the rigidity information for each of the three or more directions with respect to the spindle of the machine tool, and the cloud server 10 receives the rigidity information for each of the three or more directions. Based on these, the rigidity values in the three or more directions of the spindle may be calculated, and the machining NC program may be generated based on these rigidity values. As a result, the processing accuracy of the product can be further improved.
 また、上記説明では、測定モジュール29は、工作機械20の内部又は外部に設けられ、自動的に測定値を測定するようにしていたが、例えば、加工者の測定担当者が測定モジュールを操作して、測定値を測定するようにしてもよい。 Further, in the above description, the measurement module 29 is provided inside or outside the machine tool 20 to automatically measure the measured value. For example, a person in charge of measurement of a processor operates the measurement module. The measured value may be measured.
 また、測定モジュール29は、変位の代わりに剛性値を出力できるのであれば、クラウドサーバ10は剛性値の入力を受け付けてもよい。同様に、測定モジュール29が変位の代わりとして、所定の変位を生じさせる力を出力するのであればクラウドサーバ10は変位の代わりとして、所定の変位を生じさせる力の入力を受け付けてもよい。
 見方を変えると、クラウドサーバ10への入力や出力、及び内部での剛性値のデータ保持形式としては、工作機械の構成物に加わる力と変位(回転も含む)の関係を示す定数であればよい。これまで説明してきたばね定数[N/m]は一表現形式にすぎず、変位や復元力で管理してもよい。たとえば、変位については、クラウドサーバ10や測定モジュールで当該変位を生じる前提である「基準の力」を共有すれば、ばね定数に相当する扱いが可能である。同様に、復元力については、クラウドサーバ10や測定モジュールで当該復元力を生じる前提である「基準の変位」を共有すれば、ばね定数に相当する扱いが可能である。
Further, if the measurement module 29 can output the rigidity value instead of the displacement, the cloud server 10 may accept the input of the rigidity value. Similarly, if the measurement module 29 outputs a force that causes a predetermined displacement instead of the displacement, the cloud server 10 may accept an input of a force that causes a predetermined displacement instead of the displacement.
From a different point of view, the data retention format for the input and output to the cloud server 10 and the internal rigidity value is a constant that indicates the relationship between the force applied to the structure of the machine tool and the displacement (including rotation). Good. The spring constant [N / m] described so far is only one expression form, and may be managed by displacement or restoring force. For example, the displacement can be handled corresponding to the spring constant if the cloud server 10 and the measurement module share the "reference force" that is the premise of causing the displacement. Similarly, the restoring force can be treated as equivalent to the spring constant if the cloud server 10 and the measurement module share the "reference displacement" that is the premise of generating the restoring force.
 1 機械加工管理システム、10 クラウドサーバ、20 工作機械、28 加工者計算機、29 測定モジュール、31 設計者計算機、41 工作機械メーカ計算機、51 工具メーカ計算機

 
1 Machining management system, 10 cloud server, 20 machine tool, 28 machine tool calculator, 29 measurement module, 31 designer calculator, 41 machine tool maker calculator, 51 tool maker calculator

Claims (14)

  1.  加工プログラムを実行して加工処理を行う複数の工作機械を管理するための管理計算機による機械加工管理方法であって、
     前記管理計算機は、
    (1)前記工作機械の構成物の測定情報を受信し、
    (2)前記工作機械に実行させる加工プログラムを生成するための基となる加工基礎データを受信し、
    (3)1以上の前記工作機械の中の所定の工作機械の前記測定情報と前記加工基礎データとに基づいて、前記加工プログラムを生成し、
    (4)生成した前記加工プログラムを送信し、
    (5)前記工作機械の構成物の測定情報を、前記工作機械のメーカの計算機である工作機械メーカ計算機に送信する
    機械加工管理方法。
    It is a machining management method using a management computer to manage multiple machine tools that execute machining programs and perform machining processing.
    The management computer
    (1) Upon receiving the measurement information of the components of the machine tool,
    (2) Receive the basic machining data that is the basis for generating the machining program to be executed by the machine tool.
    (3) The machining program is generated based on the measurement information of the predetermined machine tool in one or more machine tools and the machining basic data.
    (4) Send the generated machining program and send it.
    (5) A machining management method for transmitting measurement information of a component of the machine tool to a computer of the machine tool maker, which is a computer of the machine tool maker.
  2.  請求項1に記載の機械加工管理方法において、
     複数の前記工作機械は、複数の加工者のいずれかに使用されており、
     複数の前記工作機械は、複数の工作機械のメーカのいずれかにより製造されており、
     前記測定情報には、前記工作機械の主軸の剛性情報を含み、
     前記管理計算機は、
     (6)一の加工者の加工者計算機に表示させた画面に対する前記一の加工者が使用する前記工作機械の構成物の測定情報の入力に基づいて、前記一の加工者の使用する前記工作機械の構成物の測定情報を受信して、前記工作機械と関連付けて格納し、
     (7)前記加工基礎データを含む加工プログラムの生成リクエストを受信した場合に、
      (7-1)複数の工作機械から加工を行う工作機械を特定し、
      (7-2)特定された前記工作機械の前記測定情報の前記主軸の剛性情報に基づいて、前記工作機械で加工を行うための加工プログラムを生成し、
      (7-3)生成した前記加工プログラムを送信し、
     前記管理計算機は、更に、
     (8)一の工作機械を使用する加工者以外の加工者の加工者計算機に対して、前記一の工作機械の前記測定情報の送信を拒否し、
     (9)前記一の工作機械のメーカの工作機械メーカ計算機に対しての、前記一の工作機械の前記測定情報の送信を許可し、前記一の工作機械のメーカ以外のメーカの工作機械メーカ計算機に対しての、前記一の工作機械の前記測定情報の送信を拒否する
    機械加工管理方法。
    In the machining management method according to claim 1,
    The plurality of machine tools are used by one of a plurality of processors.
    The plurality of machine tools are manufactured by any of the plurality of machine tool manufacturers.
    The measurement information includes rigidity information of the spindle of the machine tool.
    The management computer
    (6) The work used by the one machine tool based on the input of the measurement information of the components of the machine tool used by the one machine tool on the screen displayed on the machine computer of the one machine tool. Receives measurement information of machine components, stores them in association with the machine tool, and
    (7) When a generation request for a machining program including the basic machining data is received,
    (7-1) Identify machine tools that perform machining from multiple machine tools,
    (7-2) Based on the rigidity information of the spindle of the measurement information of the specified machine tool, a machining program for machining with the machine tool is generated.
    (7-3) Send the generated machining program and send it.
    The management computer further
    (8) Refusing to transmit the measurement information of the one machine tool to the computer of the processor other than the one using the one machine tool.
    (9) Allowing the machine tool maker computer of the machine tool maker to transmit the measurement information of the machine tool, and the machine tool maker computer of a manufacturer other than the machine tool maker. A machining management method for refusing to transmit the measurement information of the one machine tool.
  3.  請求項2に記載の機械加工管理方法において、
     前記管理計算機は、
      複数の前記工作機械メーカ計算機から、それぞれの工作機械のメーカの前記工作機械の主軸の剛性を評価するための閾値情報を受信し、
      前記複数の前記工作機械の中のいずれかの工作機械の前記主軸の剛性情報に基づく剛性が閾値情報を下回った場合に、前記工作機械のメーカの前記工作機械メーカ計算機に対して、前記工作機械の前記主軸の剛性が閾値情報を下回ったこと、及び前記工作機械を使用している加工者への連絡先を特定可能な連絡先情報を送信する、
    機械加工管理方法。
    In the machining management method according to claim 2,
    The management computer
    Threshold information for evaluating the rigidity of the spindle of the machine tool of each machine tool maker is received from a plurality of the machine tool maker computers.
    When the rigidity of any of the machine tools among the plurality of machine tools based on the rigidity information of the spindle falls below the threshold information, the machine tool is referred to the machine tool maker computer of the machine tool maker. The rigidity of the spindle is less than the threshold information, and the contact information that can identify the contact to the machine tool user is transmitted.
    Machining management method.
  4. 請求項2に記載の機械加工管理方法において、
     前記管理計算機は、
     前記工作機械に使用する工具の形状及び工具の剛性について、前記工作機械に付属する工具のメーカの計算機である前記工具メーカ計算機から受信し、前記工作機械により加工するワークの材料を提供するメーカの計算機であるワークメーカ計算機から前記ワークの材料の切削抵抗を受信し、
     前記加工プログラムを、前記工具の形状及び工具の剛性、及びワークの材料の切削抵抗に基づいて生成する、
    機械加工管理方法。
    In the machining management method according to claim 2,
    The management computer
    The shape of the tool used in the machine tool and the rigidity of the tool are received from the tool maker computer, which is a calculator of the tool maker attached to the machine tool, and the material of the work machine to be machined by the machine tool is provided. Receives the cutting resistance of the material of the work from the work maker computer, which is a computer,
    The machining program is generated based on the shape of the tool, the rigidity of the tool, and the cutting resistance of the material of the workpiece.
    Machining management method.
  5.  請求項1に記載の機械加工管理方法において、
     前記工作機械は、主軸とワークとを少なくとも互いに交わる2方向に相対的に移動可能であり、
     前記管理計算機は、
     前記測定情報として、前記工作機械の前記主軸についての前記2方向の各々に対する剛性情報を受信する、
    機械加工管理方法。
    In the machining management method according to claim 1,
    The machine tool is relatively movable in at least two directions in which the spindle and the work intersect each other.
    The management computer
    As the measurement information, the rigidity information for each of the two directions with respect to the spindle of the machine tool is received.
    Machining management method.
  6.  請求項1に記載の機械加工管理方法において、
     前記管理計算機は、
     前記(1)において、前記工作機械の構成物の測定情報を、前記工作機械の内部又は外部に設けられ、前記工作機械の構成物の測定情報を取得する測定モジュールから受信し、
     前記(4)において、生成した前記加工プログラムを、前記所定の工作機械に送信する、
    機械加工管理方法。
    In the machining management method according to claim 1,
    The management computer
    In (1), the measurement information of the component of the machine tool is received from a measurement module provided inside or outside the machine tool and acquiring the measurement information of the component of the machine tool.
    The generated machining program in (4) is transmitted to the predetermined machine tool.
    Machining management method.
  7.  加工プログラムを実行して加工処理を行う1以上の工作機械と、前記工作機械により加工を行う加工者の計算機である加工者計算機と、前記工作機械を管理する管理計算機と、前記工作機械のメーカの計算機である工作機械メーカ計算機とを備える機械加工管理システムであって、
     前記管理計算機は、
    (1)前記工作機械の構成物の測定情報を取得し、
    (2)前記工作機械に実行させる加工プログラムを生成するための基となる加工基礎データを受信し、
    (3)1以上の前記工作機械の中の所定の工作機械の前記測定情報と前記加工基礎データとに基づいて、前記加工プログラムを生成し、
    (4)生成した前記加工プログラムを送信し、
    (5)前記工作機械の構成物の測定情報を、前記工作機械のメーカの前記工作機械メーカ計算機に送信する
    機械加工管理システム。
    One or more machine tools that execute a machining program to perform machining processing, a processor computer that is a calculator of a machine tool that performs machining by the machine tool, a management computer that manages the machine tool, and a manufacturer of the machine tool. It is a machining management system equipped with a machine tool maker computer, which is a computer of
    The management computer
    (1) Acquire the measurement information of the components of the machine tool and
    (2) Receive the basic machining data that is the basis for generating the machining program to be executed by the machine tool.
    (3) The machining program is generated based on the measurement information of the predetermined machine tool in one or more machine tools and the machining basic data.
    (4) Send the generated machining program and send it.
    (5) A machining management system that transmits measurement information of the components of the machine tool to the machine tool maker computer of the machine tool maker.
  8. 請求項7に記載の機械加工管理システムにおいて、
     複数の加工者の前記加工者計算機と、
     複数の工作機械のメーカの前記工作機械メーカ計算機と、を含み、
     前記測定情報には、前記工作機械の主軸の剛性情報を含み、
     前記管理計算機は、
     (6)一の加工者の前記加工者計算機に表示させた画面に対する前記一の加工者の使用する前記工作機械の構成物の測定情報の入力に基づいて、前記一の加工者の使用する前記工作機械の構成物の測定情報を受信して、前記工作機械と関連付けて格納し、
     (7)前記加工基礎データを含む加工プログラムの生成リクエストを受信した場合に、
      (7-1)複数の工作機械から加工を行う工作機械を特定し、
      (7-2)特定した前記工作機械の前記測定情報の前記主軸の剛性情報に基づいて、前記工作機械で加工を行うための加工プログラムを生成し、
      (7-3)生成した前記加工プログラムを送信し、
     前記管理計算機は、更に、
     (8)一の工作機械を使用する加工者以外の加工者の加工者計算機に対して、前記一の工作機械の前記測定情報の送信を拒否し、
     (9)前記一の工作機械のメーカの工作機械メーカ計算機に対しての、前記一の工作機械の前記測定情報の送信を許可し、前記一の工作機械のメーカ以外のメーカの工作機械メーカ計算機に対しての、前記一の工作機械の前記測定情報の送信を拒否する
    機械加工管理システム。
    In the machining management system according to claim 7.
    With the processor computer of multiple processors,
    Including the machine tool maker computer of a plurality of machine tool makers,
    The measurement information includes rigidity information of the spindle of the machine tool.
    The management computer
    (6) The said machine tool used by the machine tool based on the input of measurement information of the structure of the machine tool used by the machine tool to the screen displayed on the machine tool computer of the machine tool. The measurement information of the machine tool component is received, stored in association with the machine tool, and stored.
    (7) When a generation request for a machining program including the basic machining data is received,
    (7-1) Identify machine tools that perform machining from multiple machine tools,
    (7-2) Based on the rigidity information of the spindle of the measurement information of the specified machine tool, a machining program for machining with the machine tool is generated.
    (7-3) Send the generated machining program and send it.
    The management computer further
    (8) Refusing to transmit the measurement information of the one machine tool to the computer of the processor other than the one using the one machine tool.
    (9) Allowing the machine tool maker computer of the machine tool maker to transmit the measurement information of the machine tool, and the machine tool maker computer of a manufacturer other than the machine tool maker. A machining management system that refuses to transmit the measurement information of the one machine tool.
  9. 請求項8に記載の機械加工管理システムにおいて、
     前記管理計算機は、
      複数の前記工作機械メーカ計算機から、それぞれの工作機械のメーカの前記工作機械の主軸の剛性を評価するための閾値情報を受信し、
      前記複数の前記工作機械の中のいずれかの工作機械の前記主軸の剛性情報に基づく剛性が閾値情報を下回った場合に、前記主軸の剛性が閾値情報を下回った前記工作機械のメーカの前記工作機械メーカ計算機に対して、前記工作機械の前記主軸の剛性が閾値情報を下回ったこと、及び前記工作機械を使用している加工者への連絡先を特定可能な連絡先情報を送信する、
    機械加工管理システム。
    In the machining management system according to claim 8.
    The management computer
    Threshold information for evaluating the rigidity of the spindle of the machine tool of each machine tool maker is received from a plurality of the machine tool maker computers.
    When the rigidity of any of the machine tools among the plurality of machine tools based on the rigidity information of the spindle is less than the threshold information, the work of the machine tool manufacturer whose rigidity of the spindle is less than the threshold information. To the machine maker computer, the rigidity of the spindle of the machine tool is less than the threshold information, and the contact information that can identify the contact information to the processor using the machine tool is transmitted.
    Machining management system.
  10. 請求項8に記載の機械加工管理システムにおいて、
     前記工作機械に付属する工具のメーカの計算機である工具メーカ計算機と、前記工作機械により加工するワークの材料を提供するメーカの計算機であるワークメーカ計算機とを含み、
     前記管理計算機は、
     前記工作機械に使用する工具の形状及び工具の剛性について、前記工具メーカ計算機から受信し、前記ワークの材料の切削抵抗について、前記ワークメーカ計算機から受信し、
     前記加工プログラムを、前記工具の形状及び工具の剛性、及びワークの材料の切削抵抗に基づいて生成する、
    機械加工管理システム。
    In the machining management system according to claim 8.
    A tool maker computer that is a computer of a tool maker attached to the machine tool and a work maker computer that is a computer of a maker that provides materials for a workpiece to be machined by the machine tool are included.
    The management computer
    The shape of the tool used in the machine tool and the rigidity of the tool are received from the tool maker computer, and the cutting resistance of the material of the work is received from the work maker computer.
    The machining program is generated based on the shape of the tool, the rigidity of the tool, and the cutting resistance of the material of the workpiece.
    Machining management system.
  11.  請求項7に記載の機械加工管理システムにおいて、
     前記工作機械は、主軸とワークとを少なくとも互いに交わる2方向に相対的に移動可能であり、
     前記管理計算機は、
     前記測定情報として、前記工作機械の前記主軸についての前記2方向の各々に対する剛性の情報を受信する、
    機械加工管理システム。
    In the machining management system according to claim 7.
    The machine tool is relatively movable in at least two directions in which the spindle and the work intersect each other.
    The management computer
    As the measurement information, information on the rigidity of the spindle of the machine tool in each of the two directions is received.
    Machining management system.
  12.  請求項7に記載の機械加工管理システムにおいて、
     前記管理計算機は、
     前記(1)において、前記工作機械の構成物の測定情報を、前記工作機械の内部又は外部に設けられ、前記工作機械の構成物の測定情報を取得する測定モジュールから受信し、
     前記(4)において、生成した前記加工プログラムを、前記所定の工作機械に送信する、
    機械加工管理システム。
    In the machining management system according to claim 7.
    The management computer
    In (1), the measurement information of the component of the machine tool is received from a measurement module provided inside or outside the machine tool and acquiring the measurement information of the component of the machine tool.
    The generated machining program in (4) is transmitted to the predetermined machine tool.
    Machining management system.
  13.  所定のワークを加工する、1以上の工作機械と、前記工作機械とネットワークを介して接続されている管理計算機と、を有する機械加工管理システムであって、
     前記機械加工管理システムは、前記工作機械の内部、又は、外部に、前記工作機械の構成物の測定情報を取得するための測定モジュールを備え、
     前記管理計算機は、
     (1)前記測定モジュールにより取得された前記工作機械の構成物の測定情報を受信し、
     (2)前記工作機械の構成物の測定情報又は前記工作機械の構成物の測定情報を表示させるための表示用情報を、前記工作機械のメーカの計算機に送信する
    機械加工管理システム。
    A machining management system having one or more machine tools for machining a predetermined work and a management computer connected to the machine tools via a network.
    The machining management system includes a measurement module inside or outside the machine tool for acquiring measurement information of the components of the machine tool.
    The management computer
    (1) Upon receiving the measurement information of the structure of the machine tool acquired by the measurement module,
    (2) A machining management system that transmits measurement information of a component of the machine tool or display information for displaying the measurement information of the component of the machine tool to a computer of the manufacturer of the machine tool.
  14. 工作機械を管理する管理計算機であって、
     前記管理計算機は、プログラムを格納する保管モジュールと、演算モジュールと、を有し、
     前記工作機械は、少なくとも第1軸の方向と、第2軸の方向と、に移動可能なステージを有し、加工プログラムにしたがって加工処理を行う機械であり、前記第1軸及び前記第2軸は、前記加工プログラムによって工具パスを記述するときに指定する軸であり、
     前記演算モジュールは、前記プログラムによって:
     (1)前記工作機械の主軸に関し、前記第1軸に沿った剛性値を特定可能な第1の値を、受信し、
     (2)前記主軸に関し、前記第2軸に沿った剛性値を特定可能な第2の値を、受信し、
     (3)前記第1の値及び前記第2の値と、を前記管理計算機に接続する計算機に表示させる、
    管理計算機。
    A management computer that manages machine tools
    The management computer has a storage module for storing a program and an arithmetic module.
    The machine tool has a stage movable in at least the direction of the first axis and the direction of the second axis, and performs machining processing according to a machining program. The first axis and the second axis Is the axis specified when describing the tool path by the machining program.
    The arithmetic module is by the program:
    (1) With respect to the spindle of the machine tool, a first value capable of specifying a rigidity value along the first axis is received.
    (2) With respect to the spindle, a second value capable of specifying a rigidity value along the second axis is received.
    (3) The first value and the second value are displayed on a computer connected to the management computer.
    Management calculator.
PCT/JP2020/019588 2019-07-05 2020-05-18 Machining management method and machining management system WO2021005887A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-126380 2019-07-05
JP2019126380A JP6875461B2 (en) 2019-07-05 2019-07-05 Machining management method and machining management system

Publications (1)

Publication Number Publication Date
WO2021005887A1 true WO2021005887A1 (en) 2021-01-14

Family

ID=74114245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019588 WO2021005887A1 (en) 2019-07-05 2020-05-18 Machining management method and machining management system

Country Status (2)

Country Link
JP (1) JP6875461B2 (en)
WO (1) WO2021005887A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7042938B1 (en) 2021-02-17 2022-03-28 Dmg森精機株式会社 Machine tools, display methods, and display programs
JP7154514B1 (en) 2021-08-11 2022-10-18 キタムラ機械株式会社 Automatic operation system for machining centers
JP7296672B2 (en) 2021-08-11 2023-06-23 キタムラ機械株式会社 Automatic operation system for machining center

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237920A (en) * 1998-02-19 1999-08-31 Toshiba Mach Co Ltd Controller and positioning control method for nc machine tool
JPH11277371A (en) * 1998-03-24 1999-10-12 Yamazaki Mazak Corp Processing program producing support device
JP2009175905A (en) * 2008-01-23 2009-08-06 Murata Mach Ltd Parameter setting device for machine tool and parameter use numerical control machine tool equipment
US20170308058A1 (en) * 2014-10-31 2017-10-26 Cloudbased Industry 4.0 Technologies Ag Method for optimizing the productivity of a machining process of a cnc machine
JP2018005832A (en) * 2016-07-08 2018-01-11 ファナック株式会社 Diagnosis service system utilizing network and diagnostic method
JP2018097494A (en) * 2016-12-09 2018-06-21 Dmg森精機株式会社 Information processing method, information processing system and information processing apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001001235A (en) * 1999-06-21 2001-01-09 Agency Of Ind Science & Technol Working know-how consulting system
JP2001350510A (en) * 2000-06-06 2001-12-21 Mori Seiki Co Ltd Machine tool maintenance management system
JP2004303126A (en) * 2003-04-01 2004-10-28 Mori Seiki Co Ltd Data communication enabling controller and data transmission system
JP6873759B2 (en) * 2017-03-14 2021-05-19 オークマ株式会社 Diagnostic model update system for machine tool diagnostic equipment
JP6717795B2 (en) * 2017-10-30 2020-07-08 ファナック株式会社 Integrated processing system, integrated processing method and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237920A (en) * 1998-02-19 1999-08-31 Toshiba Mach Co Ltd Controller and positioning control method for nc machine tool
JPH11277371A (en) * 1998-03-24 1999-10-12 Yamazaki Mazak Corp Processing program producing support device
JP2009175905A (en) * 2008-01-23 2009-08-06 Murata Mach Ltd Parameter setting device for machine tool and parameter use numerical control machine tool equipment
US20170308058A1 (en) * 2014-10-31 2017-10-26 Cloudbased Industry 4.0 Technologies Ag Method for optimizing the productivity of a machining process of a cnc machine
JP2018005832A (en) * 2016-07-08 2018-01-11 ファナック株式会社 Diagnosis service system utilizing network and diagnostic method
JP2018097494A (en) * 2016-12-09 2018-06-21 Dmg森精機株式会社 Information processing method, information processing system and information processing apparatus

Also Published As

Publication number Publication date
JP6875461B2 (en) 2021-05-26
JP2021012542A (en) 2021-02-04

Similar Documents

Publication Publication Date Title
WO2021005887A1 (en) Machining management method and machining management system
US20200293021A1 (en) Method of optimizing machining simulation condition, machining simulation device, machining simulation system and program
JP5959525B2 (en) Computer network server
US7751991B2 (en) System for determining the wear state of a machine tool
US20070093930A1 (en) Machine system in which measuring-machine instructions are translated into machine-tool instructions
CN110610012A (en) Processing based on policies selected from a database
US11340581B2 (en) NC program conversion process method and processing treatment system
JP6920972B2 (en) Method for optimizing simulation conditions, manufacturing process simulation equipment, manufacturing process simulation system and program
CN109725601A (en) Comprehensive process system, method for comprehensive processing and computer-readable medium
Horst et al. On-machine measurement use cases and information for machining operations
WO2018154605A1 (en) Method and apparatus for performing an automatic health checkup for a cnc turning center
JP7253995B2 (en) Manufacturing process design method and manufacturing process design system
WO2020084814A1 (en) Nc program conversion processing method and computer for conversion
JP2017220213A (en) Machining load analysis device, machining load analysis program, and machining load analysis system
US20210405611A1 (en) Virtual computerized numerical control machine system and method
WO2022118709A1 (en) Computer, parameter estimation processing method, and parameter estimation processing program
JP2019185167A (en) Information processing unit, information processing method and information processing program
WO2022075089A1 (en) Information processing system and processing management method
WO2023223571A1 (en) Tool route correction device, machine tool system, tool route correction method, and program
KR20200129290A (en) Control method and control system for machine tool
US20220405866A1 (en) Information processing method, information processing apparatus, and recording medium
JP6868081B2 (en) Conversion computer
WO2023153446A1 (en) Proposal device, proposal system, proposal method, and program
JP2022130952A (en) Tool route generation system, tool route generation method, and tool route generation program
Demko et al. Digital platform development for CNC machining data acquisition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836960

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20836960

Country of ref document: EP

Kind code of ref document: A1