WO2023223571A1 - Tool route correction device, machine tool system, tool route correction method, and program - Google Patents

Tool route correction device, machine tool system, tool route correction method, and program Download PDF

Info

Publication number
WO2023223571A1
WO2023223571A1 PCT/JP2022/035318 JP2022035318W WO2023223571A1 WO 2023223571 A1 WO2023223571 A1 WO 2023223571A1 JP 2022035318 W JP2022035318 W JP 2022035318W WO 2023223571 A1 WO2023223571 A1 WO 2023223571A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
path
tool path
workpiece
shape
Prior art date
Application number
PCT/JP2022/035318
Other languages
French (fr)
Japanese (ja)
Inventor
義浩 細川
泰久 市川
翔 高阪
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2023223571A1 publication Critical patent/WO2023223571A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/28Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece with compensation for tool wear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme

Definitions

  • the present disclosure relates to a tool path correction device, a machine tool system, a tool path correction method, and a program.
  • Some machine tools correct the machining path, which is the path of the tool, in order to process the workpiece with high precision.
  • Patent Document 1 discloses a machine tool that detects or inspects various parameters including the dimensions of a workpiece during machining, and corrects the tool path of a milling tool, that is, a milling machine tool.
  • Patent Document 1 detects or inspects various parameters during machining, that is, monitors during machining, which places a heavy burden on the user.
  • the present disclosure has been made to solve the above problems, and includes a tool path correction device that can correct the tool path to a path that allows the workpiece to be machined with high accuracy without monitoring during machining;
  • the purpose of this invention is to provide a machine tool system, a tool path correction method, and a program.
  • a tool path correction device includes an estimation section, a calculation section, and a transmission section.
  • the estimation unit estimates the shape and size of the workpiece when the workpiece is machined by the tool, based on a tool path that is a path of the tool and conditions for machining by the tool.
  • the calculation unit corrects the tool path based on the positional deviation of the workpiece having the shape and size estimated by the estimation unit with respect to the tool path, thereby creating a tool correction path that brings the workpiece closer to the theoretical shape and size. seek.
  • the transmitter transmits the correction path data to a numerical control device that controls a machine tool that holds the tool.
  • the estimation unit calculates the shape and size of the workpiece when the workpiece is machined by the tool, based on the tool path, which is the path of the tool, and the machining conditions using the tool.
  • the calculation unit corrects the tool path based on the positional deviation of the workpiece having the estimated shape and size with respect to the tool path, thereby making the workpiece closer to the theoretical shape and size. Find a route. Therefore, the tool path can be corrected without monitoring during machining, and a more accurate path can be obtained.
  • the tool path can be corrected to a path that allows the workpiece to be machined with high accuracy.
  • a perspective view of a machining center operating on a tool path corrected by a tool path correction device A diagram showing an example of the theoretical shape of the workpiece and the shape of the actual workpiece obtained by machining when the machining center moves the tool along a circular tool path to machine the workpiece.
  • Graph showing the relationship between the total machining distance of the tool and the maximum error value Diagram showing an example of the shape of the actual machined part when the total machining distance of the tool is 0 mm
  • a diagram showing an example of the shape of the actual workpiece when the total machining distance of the tool is 90,000 mm.
  • a diagram showing an example of the shape of the actual workpiece when the tool feed rate is 640 mm/min.
  • Diagram showing an example of the shape of the actual workpiece when the depth of cut of the tool is 0.07mm
  • Diagram showing an example of the shape of the actual workpiece when the depth of cut of the tool is 0 mm
  • Hardware configuration diagram of a tool path correction device according to an embodiment of the present disclosure Block diagram of a tool path correction device according to an embodiment of the present disclosure A diagram showing an example of a learning database used for learning by a learning section included in a tool path correction device according to an embodiment of the present disclosure.
  • the tool path correction device is a device that corrects the tool path of a machine tool according to processing conditions using the tool.
  • the configuration of the tool path correction device will be described below, taking as an example the case where the tool path corrected by the tool path correction device is a tool path of a machining center, which is a type of machine tool.
  • the tool path corrected by the tool path correction device is a tool path of a machining center, which is a type of machine tool.
  • FIG. 1 is a perspective view of a machining center 10 operating on a tool path corrected by a tool path correction device according to an embodiment. Note that in FIG. 1, the tool magazine, pallet, etc. are omitted for simplicity in order to facilitate understanding.
  • the machining center 10 includes a column 110, a table 120 that is movable relative to the column 110, a saddle 130, and a spindle head 140.
  • the column 110 extends upward from a base 150 fixed to the installation location in a columnar shape.
  • the table 120 is provided at the bottom of the column 110.
  • the table 120 is movable along a guide rail 121 extending in the front-rear direction, that is, in the Y-axis direction.
  • a workpiece 21 of the machining center 10 can be attached to the table 120 via a pallet (not shown).
  • the saddle 130 is provided at the top of the column 110.
  • the saddle 130 is movable along a guide rail 131 extending in the left-right direction, that is, in the X-axis direction.
  • the spindle head 140 is provided on the saddle 130.
  • the spindle head 140 is movable along a guide rail 141 extending in the vertical direction, that is, in the Z-axis direction.
  • the spindle head 140 includes a spindle rotated by a servo motor (not shown).
  • a tool 20 held by a holder 142 is attached to the lower end of the spindle head 140.
  • the machining center 10 can move the tool 20 attached to the spindle head 140 relative to the workpiece 21 attached to the table 120 in the XYZ directions. As a result, the machining center 10 can move the tool 20 relative to the workpiece 21 along a desired tool path to machine the workpiece 21 into a desired shape.
  • the part of the workpiece 21 machined by the tool 20 may change depending on the machining conditions of the tool 20.
  • the shape and size that is, the shape and size of the processed part may differ.
  • the shape and size of the machined portion may differ depending on the state of wear of the tool 20, the shape and size of the machined portion may differ.
  • FIG. 2 shows the theoretical shape of the workpiece 22 and the actual workpiece 23 obtained by machining when the machining center 10 moves the tool 20 along a circular tool path to machine the workpiece 21. It is a figure showing an example of the shape.
  • the theoretical shape of the processed portion 22 is circular
  • the actual shape of the processed portion 23 is a shape obtained by deforming an ellipse into a shape with a constriction.
  • the shape of the actual processed portion 23 is larger than the theoretical processed portion 22 at the major axis of the ellipse, and smaller than the theoretical processed portion 22 at the short axis of the ellipse.
  • the shape and size of the processed portion 23 obtained by actual processing may differ from the theoretical shape and size of the processed portion 22. This phenomenon is correlated with the total machining distance, feed rate, and depth of cut of the tool 20. Experimental results using the machining center 10 are shown in FIGS. 3-5, 6A-6D, 7A, and 7B.
  • FIG. 3 is a graph showing the relationship between the total machining distance of the tool 20 and the maximum error value.
  • the total machining distance of the tool 20 is the total distance that the tool 20 has moved relative to the workpiece 21 while machining the workpiece 21 from the start of use until the time of error measurement. It is about.
  • the total machining distance of the tool 20 is also called a cutting length, a usage length, or a machining length, and means the length of the tool 20 used for cutting.
  • the error refers to the magnitude of the deviation of each part of the actual part to be processed 23 from each part of the theoretical part to be processed 22.
  • FIG. 4 is a diagram showing an example of the actual shape of the machined portion 23 when the total machining distance of the tool 20 is 0 mm.
  • FIG. 5 is a diagram showing an example of the actual shape of the machined portion 23 when the total machining distance of the tool 20 is 90,000 mm. Note that in FIGS. 4 and 5, the theoretical shape of the processed portion 22 is also shown for ease of understanding. Furthermore, in FIGS. 4 and 5, the angle is shown assuming that the direction to the right from the theoretical center of the circle of the processed portion 22 is 0°, and the angle increases counterclockwise from 0°.
  • the shape and size of the actual machined part 23 relative to the theoretical machined part 22 change depending on the total machining distance of the tool 20.
  • the change has a correlation with the total machining distance of the tool 20.
  • FIGS. 6A to 6D are diagrams showing an example of the actual shape of the workpiece portion 23 when the feed speed of the tool 20 is 640 mm/min, 1270 mm/min, 2400 mm/min, and 3590 mm/min, respectively.
  • . 7A and 7B are diagrams showing an example of the actual shape of the processed portion 23 when the depth of cut of the tool 20 is 0.07 mm and 0 mm, respectively. Note that the depth of cut of the tool 20 in each of FIGS. 6A to 6D is the same as the depth of cut of the tool 20 in FIG. 7B. Further, the feed speed of the tool 20 in each of FIGS. 7A and 7B is the same as in FIG. 6C.
  • the tool path correction device corrects the tool path according to the machining conditions of the tool 20, for example, the total machining distance. Next, the configuration of the tool path correction device will be described with reference to FIGS. 8 to 11.
  • FIG. 8 is a hardware configuration diagram of the tool path correction device 1 according to the embodiment.
  • FIG. 9 is a block diagram of the tool path correction device 1.
  • FIG. 10 is a diagram showing an example of the learning database 35 used for learning by the learning section 11 included in the tool path correction device 1.
  • FIG. 11 is a diagram showing an example of tool path and machining condition data 36 used for learning by the learning section 11.
  • FIGS. 8 and 9 show the overall configuration of a machining center system 100 that includes the tool path correction device 1 and the machining center 10.
  • the tool path correction device 1 includes a processor 31, a memory 32, and a network interface 33.
  • the processor 31, memory 32, and network interface 33 are connected by a bus 34.
  • the network interface 33 connects the processor 31 and the memory 32 to an external device via the network 200, for example, the Internet, and enables communication with the external device. Specifically, network interface 33 connects processor 31 and memory 32 to numerical control device 50 provided in machining center 10 .
  • the numerical control device 50 includes a memory 51 and microprocessors 52 and 53.
  • the memory 51 includes a numerical data storage section 54 shown in FIG.
  • the microprocessors 52 and 53 implement the calculation section 55 and the control section 56 shown in FIG. 9 configured as software by respectively executing programs stored in the memory 51.
  • the calculation unit 55 calculates the tool path of the tool 20 from the numerical data stored in the numerical data storage unit 54.
  • the control unit 56 drives a servo motor (not shown) that drives the column 110, table 120, saddle 130, spindle head 140, etc. of the machining center 10, based on the tool path calculated by the calculation unit 55.
  • the network interface 33 is connected to the numerical control device 50 having such a configuration, so that data can be transmitted and received between the numerical control device 50, the processor 31, and the memory 32 via the network 200. Make it.
  • the processor 31 and memory 32 constitute a computer.
  • the tool path correction device 1 performs various processes for transmitting and receiving data with the numerical control device 50 by having the processor 31 read and execute various programs stored in the memory 32.
  • the tool path correction device 1 reads out and executes a learning program stored in the memory 32, so that from the tool path, the workpiece 21 is actually machined by the machining center 10. A learning process is performed to generate an estimation model for estimating the shape and size of 23. Further, the tool path correction device 1 performs tool path correction processing for correcting the tool path based on the above-mentioned estimated model by reading out and executing the tool path correction program stored in the memory 32.
  • the tool path correction device 1 includes functional blocks configured as software shown in FIG. 9 in order to perform these learning processes and tool path correction processes. Specifically, the tool path correction device 1 includes a learning section 11, an estimating section 12, a calculating section 13, and a transmitting section 14.
  • An input device 15 composed of a keyboard, touch panel, etc. is connected to the tool path correction device 1.
  • the learning unit 11 is a part that performs the above-described learning process when a learning command is input from the input device 15.
  • the learning unit 11 performs learning based on the learning database 35 stored in the learning DB (Data Base) storage unit 16, and generates the above-described estimated model.
  • the learning database 35 stores in advance a learning database 35 in which data on tool paths, machining conditions, and additional machining conditions are associated with data on machining results. There is.
  • the tool path refers to the path of the tool 20 with respect to the workpiece 21 when the machining center 10 processes the workpiece 21. That is, the tool path is a relative path between the tool 20 and the workpiece 21.
  • the tool path is preferably a path obtained from an NC program, for example, a path expressed in an XYZ coordinate system.
  • the tool path may be represented by coordinates of a starting point, an ending point, and a way point from the starting point to the ending point.
  • the machining conditions are the conditions under which the machining center 10 performs machining with the tool 20, and the machining conditions include, for example, the material of the workpiece 21, the feed rate of the tool 20, the cutting speed, and the device number of the machining center 10. , the model number of the tool 20 is included.
  • the machining conditions preferably include at least one of the feed rate and cutting speed of the tool 20. Further, the machining conditions may include the depth of cut of the tool 20. In addition, the machining conditions may include the cutting speed or the spindle rotation speed of the spindle head 140. Furthermore, the machining conditions may include the material of the tool 20, the hardness of the material of the tool 20, or the hardness of the material of the workpiece 21.
  • the additional machining conditions are conditions that are found through detection and inspection from the start of machining to the end of machining by the tool 20, and are conditions that are added after machining.
  • the additional machining conditions include the total machining distance of the tool 20 and the tool temperature during machining.
  • the total machining distance of the tool 20 is one index indicating wear of the tool 20, and therefore may be replaced with wear information of the tool 20.
  • the wear information on the tool 20 may include whether or not the tool 20 has been polished, the number of times the tool 20 has been polished, and the elapsed time since manufacture if the tool 20 deteriorates over time.
  • machining result data refers to data on the shape and size of the actual machined portion 23, which is formed on the workpiece 21 as a result of the tool 20 moving along the tool path described above.
  • the learning DB storage unit 16 shown in FIG. 9 stores tool path and machining condition data 36 shown in FIG. 11.
  • the learning database 35 having such contents is generated by operating the machining center 10 based on the tool path and machining condition data 36.
  • the learning database 35 is created by the following procedure.
  • the learning unit 11 reads the tool path and machining condition data 36, transmits the read tool path and machining condition data 36 to the numerical control device 50 of the machining center 10, and causes the machining center 10 to process the workpiece 21.
  • the learning unit 11 acquires the above additional machining conditions from the machining center 10 at that time.
  • the user measures the processed portion 23 of the processed workpiece 21 using a contact type three-dimensional measuring machine, a scanning laser probe type, or an optical type non-contact type three-dimensional measuring machine. By doing so, data on the shape and size of the part to be machined 23 is acquired, and the acquired data on the shape and size of the part to be machined 23 is used as machining result data.
  • the tool path and machining condition data 36 used in step (1) and the additional machining conditions acquired in step (2) are associated with the machining result data acquired in step (3). By repeating these steps (1) to (4), the learning database 35 is created.
  • the learning unit 11 reads the learning database 35 from the learning DB storage unit 16, and causes the neural network unit 18 of the learning unit 11 itself to learn each data of the read learning database 35. .
  • the neural network unit 18 has a plurality of nodes called neurons. These nodes are combined to form an input layer, a hidden layer, and an output layer.
  • the neural network section 18 inputs the data of each No. corresponding to them from the output layer.
  • the weights of connections between nodes are adjusted so that parameters related to the processed result data are output.
  • the neural network unit 18 generates a learned model. In other words, the neural network unit 18 performs learning to generate the above-mentioned estimation model.
  • the learning unit 11 stores the weights of the connections between the nodes in the learned data storage unit 17. Thereby, the learning unit 11 stores the weight parameters for constructing the estimation model.
  • the estimating unit 12 performs the above-mentioned tool path correction process to determine whether the workpiece 21 is machined by the tool 20. This is a part for estimating the shape and size of the part to be processed 23. Note that the estimating section 12 is also called a processed part estimating section.
  • the above-mentioned correction command includes each data of the tool path, machining conditions, and additional machining conditions described in the learning database 35.
  • the estimating unit 12 extracts these data from the correction command, and uses the above-mentioned estimation model to estimate the shape and size of the machined portion 23 from the extracted data of the tool path, machining conditions, and additional machining conditions.
  • the estimation unit 12 transmits data on the estimated shape and size of the processed portion 23 to the calculation unit 13.
  • the calculation unit 13 is a part of the tool path correction process described above that corrects the tool path. Although detailed contents will be described later, the calculation unit 13 corrects the tool path based on the positional deviation of the workpiece portion 23 having the shape and size estimated by the estimation unit 12 with respect to the tool path. Thereby, the calculation unit 13 determines a correction path for the tool 20 that brings the processed portion 23 closer to the theoretical shape and size. Note that since the calculation unit 13 generates a correction path, it is also referred to as a correction path generation unit.
  • the transmitter 14 transmits the correction path data to the numerical control device 50 of the machining center 10.
  • the calculation unit 13 processes the workpiece 21 using the previous tool path, thereby suppressing a decrease in the machining accuracy of the workpiece portion 23.
  • the above-mentioned learning database 35 is created and stored in the learning DB storage section 16, and the learning section 11 uses the learning database 35 to perform the neural network in advance. It is assumed that the section 18 is made to learn. That is, it is assumed that the tool path correction device 1 executes the learning process in advance. As a result, it is assumed that the learned data storage section 17 stores the weights of the connections of the nodes of the neural network section 18 .
  • FIG. 12 is a flowchart of the tool path correction process performed by the tool path correction device 1.
  • the user inputs a correction command to correct the tool path from the input device 15.
  • the processor 31 reads and executes the tool path correction program stored in the memory 32, and as a result, the flow of tool path correction processing is started.
  • the estimation unit 12 acquires the tool path, machining conditions, and additional machining conditions (step S1).
  • the above-mentioned correction command includes data of the tool path to be corrected, machining conditions, and additional machining conditions input by the user into the input device 15.
  • the estimation unit 12 obtains the tool path, machining conditions, and additional machining conditions by extracting the tool path, machining conditions, and additional machining conditions from the correction command.
  • the estimation unit 12 may obtain the tool path and machining conditions from the numerical control device 50 included in the machining center system 100 via the network 200.
  • the additional processing conditions may be input by the user to the numerical control device 50 from the input device 15.
  • the estimation unit 12 may acquire the input additional processing conditions from the input device 15.
  • the estimating unit 12 estimates the shape and size of the machined portion 23 when the workpiece 21 is machined by the tool 20 (step S2).
  • the estimating unit 12 first reads the weights of the connections of the nodes of the neural network unit 18 from the learned data storage unit 17.
  • the estimation unit 12 includes a neural network unit 19 shown in FIG. 9, which has the same layer structure as the neural network unit 18. Then, the estimating unit 12 applies the read node connection weights to the neural network unit 19 that it owns to construct a learned model, that is, the above-described estimated model.
  • the constructed estimation model is formed by the neural network unit 19.
  • the estimation unit 12 inputs data on the tool path, machining conditions, and additional machining conditions to the input layer included in the neural network unit 19, and calculates the estimated shape of the workpiece portion 23 from the output layer included in the neural network unit 19. and obtain parameters regarding size data.
  • the estimation unit 12 estimates the shape and size of the processed portion 23 using the parameters.
  • step S3 the calculation unit 13 generates a correction path. Generation of the correction path will be described in detail with reference to FIGS. 13A to 13E.
  • FIG. 13A is a conceptual diagram of the shape of the workpiece portion 23 estimated by the estimation unit 12 included in the tool path correction device 1 and the tool path 40 to be corrected.
  • FIG. 13B is a conceptual diagram showing the relationship between the correction path 44 generated by the calculation unit 13 included in the tool path correction device 1 and the shape of the workpiece portion 23 estimated by the estimation unit 12.
  • FIG. 13C is a developed view of the workpiece portion 23 estimated by the estimation unit 12 developed in the circumferential direction of the tool path 40.
  • FIG. 13D is a developed view of the correction path 44 generated by the calculation unit 13 expanded in the circumferential direction of the tool path 40.
  • FIG. 13E is a conceptual diagram of the correction path 44 generated by the calculation unit 13 and the processed portion 23 processed by the correction path 44.
  • the tool path 40 is circular, whereas the estimated shape of the processed portion 23 is an ellipse.
  • the tool path 40 is a path drawn circularly clockwise from a starting point 41.
  • the calculation unit 13 calculates the positional deviation of each part of the estimated workpiece part 23 with respect to each part of the tool path 40, that is, the error 42. Then, the calculation unit 13 calculates the error 42 for the entire estimated processed portion 23.
  • the calculation unit 13 calculates a correction path 44 in which the error 43 of each part of the tool path 40 shown in FIG. 13B becomes - ⁇ E. demand. Thereby, the calculation unit 13 generates a correction path 44 that develops as shown in FIG. 13D for the tool path 40 that develops as shown in FIG. 13C. As a result, when the calculation unit 13 corrects the tool path 40, it obtains a correction path 44 shown in FIG. 13D that can form the processed portion 23 having the same shape as the tool path 40.
  • the calculation unit 13 determines the error of each part of the estimated workpiece part 23 with respect to each part of the tool path 40, and corrects the tool path 40 based on the determined error, thereby adjusting the workpiece part 23.
  • a correction path 44 for the tool 20 that approaches the theoretical shape and size is generated.
  • the transmitting unit 14 transmits the generated correction path 44 data (step S4). Specifically, the transmitter 14 transmits the correction path 44 data to the numerical control device 50.
  • the numerical control device 50 moves the tool 20 based on the correction path 44 data, the size of the workpiece part 23 machined by the machining center 10 changes or the shape of the workpiece part 23 changes. It prevents you from storing things away. This prevents the processing accuracy of the processed portion 23 from decreasing.
  • the transmitter 14 ends the flow of the tool path correction process.
  • the machining center 10 described in the above embodiment is an example of a machine tool as referred to in the present disclosure.
  • the machining conditions and additional machining conditions of the machining center 10 are examples of conditions for machining using a tool as referred to in the present disclosure.
  • the machining center system 100 is an example of a machine tool system in the present disclosure.
  • the estimated model is an example of a trained model as referred to in this disclosure.
  • the tool path correction program is an example of a program referred to in the present disclosure.
  • the estimating unit 12 estimates the workpiece to be machined when the workpiece 21 is machined by the tool 20, based on the tool path 40, the machining conditions by the tool 20, and the additional machining conditions. Estimate the shape and size of portion 23. Further, the calculation unit 13 corrects the tool path 40 based on the positional deviation of the workpiece portion 23 having the estimated shape and size with respect to the tool path 40. Specifically, the calculation unit 13 generates a correction path 44 by correcting the tool path 40 based on the estimated deviation of each part of the workpiece portion 23 with respect to each part of the tool path 40.
  • the tool path correction device 1 can correct the tool path 40 and obtain the corrected path 44, which is a more accurate path, without monitoring during machining. Thereby, the tool path correction device 1 can correct the tool path 40 to a correction path 44 that can process the workpiece 21 with high precision.
  • wear information more specifically, the total machining distance of the tool 20, is used as an additional machining condition when the estimation unit 12 estimates the shape and size of the workpiece portion 23. Therefore, even when the tool 20 is worn out, the tool path correction device 1 can correct the tool path 40 to the correction path 44 to suppress a decrease in machining accuracy.
  • the wear information is information on changes in the tool 20 over time. The tool path correction device 1 can suppress a decrease in machining accuracy when the tool 20 changes over time.
  • the feed rate and cutting speed of the tool 20 are used as machining conditions when the estimation unit 12 estimates the shape and size of the workpiece portion 23. For this reason, the tool path correction device 1 can be used even when the shape and size of the workpiece portion 23 change due to the feed rate and cutting speed of the tool 20 reaching a specific level and cutting resistance increasing. By correcting the path 40 to the corrected path 44, it is possible to suppress a decrease in processing accuracy.
  • the learning unit 11 generates an estimation model using the learning database 35 obtained by actually machining the workpiece 21 with the machining center 10. Therefore, the tool path correction device 1 can correct the tool path 40 to a correction path 44 suitable for the actual machining center 10. Furthermore, the tool path correction device 1 obtains the correction path 44 using the estimation model generated by the learning section 11, so the configuration is simple. For example, the tool path correction device 1 can determine the correction path 44 without using a numerical simulation that models error elements of the operation of the machining center 10, which will be described later. Since numerical simulation is not used, it is naturally unnecessary to adjust the numerical simulation parameters.
  • the tool path correction device 1 is particularly effective for a machining center 10 with high repeatability positioning accuracy, which indicates how much error occurs when positioning is repeatedly performed at the same position from the same direction, that is, a machining center 10 with high reproducibility. .
  • the numerical control device 50 is not provided with an input device, but the numerical control device 50 may be provided with an input device. In that case, the input device of the numerical control device 50 may be used instead of the input device 15 described above.
  • the operation of the tool path correction device 1 is described using an example in which the machining center 10 moves the tool 20 along a circular tool path 40 to process the workpiece 21.
  • the tool path correction device 1 is not limited to this.
  • the tool path correction device 1 corrects the tool path 40, which is the path of the tool 20, to obtain a correction path 44 of the tool 20 that brings the machined portion 23 of the workpiece 21 closer to the theoretical shape and size.
  • the data of the determined correction path 44 may be transmitted to the numerical control device 50. Therefore, the tool path correction device 1 may correct a tool path 40 other than a circular shape.
  • FIGS. 14A to 14D are conceptual diagrams of first to fourth modifications of the tool path 40 corrected by the tool path correction device 1. Note that in FIGS. 14A to 14D, the tool 20 is placed at the starting point of the tool path 40 for easy understanding. Furthermore, the moving direction of the tool 20 is shown by an arrow.
  • the tool path correction device 1 may correct a first modification of the rectangular tool path 40 shown in FIG. 14A or a second modification of the diamond-shaped tool path 40 shown in FIG. 14B. Further, the tool path correction device 1 may correct a third modification example of the curved tool path 40 shown in FIG. 14C or a fourth modification example of the linear tool path 40 shown in FIG. 14D. Further, the tool path correction device 1 may target the tool path 40 formed by the combination of the first to fourth modifications.
  • the reason why the tool path correction device 1 should correct such a tool path 40 is that if the tool path 40 is like this, the acceleration or deceleration of the tool 20 is likely to be large, and the tool path correction device 1 can easily correct the workpiece. This is because the effect of being able to process the object 21 with high precision is remarkable. Furthermore, when the machining center 10 moves the tool 20 along such a tool path 40, due to variations in static stiffness, dynamic stiffness, dynamic characteristics, etc. unique to each machining center 10, or due to variations in the machining center 10, Due to the assembly accuracy or operation accuracy of parts such as ball screws, motors, gears, etc., a difference occurs between the theoretical shape of the machined part 22 and the shape of the actual machined part 23 obtained by machining. This is because such a tool path 40 is easy to use, and the effect of the tool path correction device 1 is significant.
  • tool path correction device 1 machine tool system, tool path correction method, and program according to the embodiment of the present disclosure have been described above, but the tool path correction device 1, machine tool system, tool path correction method, and program are , but not limited to.
  • the tool path correction device 1 uses the total machining distance of the tool 20 as the additional machining condition, but the tool path correction device 1 is not limited to this.
  • the estimation unit 12 may estimate the shape and size of the workpiece portion 23 based on the tool path 40 and the machining conditions of the tool 20.
  • the additional machining conditions of the machining center 10 described in the embodiment may be the machining conditions of the tool 20.
  • the machining conditions of the machining center 10 described in the embodiment may also be conditions for machining the tool 20. Therefore, the machining conditions and additional machining conditions of the machining center 10 are arbitrary as long as they are conditions for machining the tool 20.
  • the machining conditions and additional machining conditions of the machining center 10 include the feed rate, cutting speed, and total machining distance of the tool 20; It is sufficient to include at least one of feed rate, cutting speed, and total machining distance.
  • the machining conditions and additional machining conditions of the machining center 10 may include only the feed rate, cutting speed, or total machining distance of the tool 20, or may include a combination thereof. Since these machining conditions and additional machining conditions also include parameters that are correlated with changes in shape and size of the actual workpiece 23 relative to the theoretical workpiece 22, the estimation unit 12 This is because the shape and size of the machined portion 23 when the workpiece 21 is machined by the tool 20 can be estimated based on the machining conditions and the additional machining conditions.
  • the machining conditions and additional machining conditions of the machining center 10 may further include the depth of cut of the tool 20 described using FIGS. 7A and 7B.
  • the machining conditions and additional machining conditions of the machining center 10 may include at least one of the feed rate of the tool 20, the cutting speed, the total machining distance, and the depth of cut.
  • These machining conditions and additional machining conditions also include parameters that are correlated with changes in shape and size of the actual machined part 23 with respect to the theoretical machined part 22, as in the case described above. This is because the section 12 can estimate the shape and size of the processed portion 23.
  • the tool path correction device 1 uses the total machining distance of the tool 20 as wear information, but the tool path correction device 1 is not limited to this.
  • the estimation unit 12 may estimate the shape and size of the workpiece portion 23 based on the tool path 40 and the machining conditions of the tool 20. It is preferable that the wear information of the tool 20 is used as the machining condition of the tool 20. The wear information in that case is arbitrary as long as it satisfies the above requirements.
  • the wear parameter ⁇ of the tool 20 may be used as the wear information.
  • the estimating unit 12 may use information on changes over time of the tool 20 as conditions for machining the tool 20. Further, the estimating unit 12 may use information on changes over time of members provided in the machining center 10 as conditions for machining the tool 20. In this case, the member may be calibrated periodically, for example, once or several times a year.
  • the estimation unit 12 constructs the estimation model using a neural network unit (not shown), but the estimation unit 12 is not limited to this.
  • the estimating unit 12 only needs to estimate the shape and size of the workpiece portion 23 based on the tool path 40 and the machining conditions of the tool 20, and as long as this is the case, the specific implementation means may be arbitrary. It is.
  • the estimation unit 12 may be constructed using a learned model learned by machine learning other than a neural network.
  • the learning database 35 described in the embodiment is preferably used for learning.
  • the calculation unit 13 generates a correction path 44 by correcting the tool path 40 based on the estimated deviation of each part of the workpiece portion 23 with respect to each part of the tool path 40.
  • the calculation unit 13 is not limited to this.
  • the calculation unit 13 corrects the tool path 40 based on the positional deviation of the workpiece 23 having the shape and size estimated by the estimation unit 12 with respect to the tool path 40, so that the workpiece 23 has the theoretical shape and size. Any method that generates a correction path 44 for the tool 20 that brings the tool 20 closer to .
  • the calculation unit 13 extracts a characteristic part of the workpiece part 23 having the shape and size estimated by the estimation unit 12, and calculates the tool path 40 based on the positional deviation of the extracted characteristic part with respect to the corresponding part of the tool path 40. It may be corrected.
  • the characteristic portions include, for example, the center of gravity, bent portions, and corner portions.
  • the estimation unit 12 acquires the tool path input by the user from the input device 15.
  • the estimation unit 12 is not limited to this.
  • the estimation unit 12 may receive data on the tool path of the tool 20 from the numerical control device 50 and use the data on the tool path.
  • the estimation unit 12 acquires the machining conditions and additional machining conditions input by the user from the input device 15.
  • the estimation unit 12 is not limited to this.
  • the estimation unit 12 may obtain operation information of the machining center 10 from the numerical control device 50, for example, obtain a history of past tool paths, and calculate wear information. In other words, the estimation unit 12 may obtain operation information of the machining center 10 and calculate the total machining distance of the tool 20.
  • the tool path correction device 1 corrects the tool path of the machining center 10.
  • the tool path correction device 1 may be any device that can send correction path data to a numerical control device that controls a machine tool. Therefore, the tool path correction device 1 may be any machine tool that is controlled by the numerical control device 50.
  • the tool path correction device 1 may correct the tool path of a milling machine.
  • the tool path correction device 1 may correct the tool path of a lathe or an electrical discharge machine.
  • the tool path correction device 1 can be applied to machine tools such as milling machines, lathes, and electric discharge machines, for example.
  • the tool path correction device 1 includes a learning section 11, a learning DB storage section 16, and a learned data storage section 17.
  • the tool path correction device 1 is not limited to this.
  • the tool path correction device 1 only needs to include at least an estimation section 12, a calculation section 13, and a transmission section 14. Therefore, the learning section 11, the learning DB storage section 16, and the learned data storage section 17 have arbitrary configurations.
  • the learning section 11, the learning DB storage section 16, and the learned data storage section 17 may be provided in a learning device connected to the tool path correction device 1 via the network 200.
  • the learning device may be configured by a server including a microprocessor and memory. Then, the learning program described in the embodiment is stored in the memory of the server, and the server's microprocessor executes the learning program, so that the server may perform the learning process.
  • the tool path correction program and the learning program are stored in the memory 32, but the tool path correction program and the learning program can be stored on a flexible disk, CD-ROM (Compact Disc Read-Only Memory), or DVD (Digital).
  • the information may be stored and distributed in a computer-readable non-transitory recording medium such as a Versatile Disc or a Magneto-Optical Disc (MO).
  • the tool path correction device 1 that executes the tool path correction process and the learning process may be configured by installing the tool path correction program and learning program stored in the recording medium into a computer.
  • the tool path correction program or learning program is stored in a disk device included in a server device on a communication network such as the Internet, and the tool path correction program or learning program is, for example, superimposed on a carrier wave and downloaded. Good too.
  • the tool path correction process and learning process described above may also be achieved by starting and executing the tool path correction program or the learning program while being transferred via the communication network.
  • the tool path correction described above can also be performed by executing all or part of the tool path correction program or learning program on a server device, and executing the program while the computer transmits and receives information regarding these processes via a communication network. A processing or learning process may be accomplished.
  • tool path correction processing or learning processing is realized by each OS (Operating System), or when it is realized through cooperation between the OS and an application, only the parts other than the OS are used as the medium. It may be stored and distributed, or it may be downloaded. Further, the means for realizing the functions of the tool path correction device 1 is not limited to software, and a part or all of it may be realized by dedicated hardware including a circuit.
  • Tool path correction device 10 Machining center, 11 Learning unit, 12 Estimating unit, 13 Calculating unit, 14 Transmitting unit, 15 Input device, 16 Learning DB storage unit, 17 Learned data storage unit, 18, 19 Neural network unit, 20 tool, 21 workpiece, 22, 23 workpiece part, 31 processor, 32 memory, 33 network interface, 34 bus, 35 learning database, 36 tool path and machining condition data, 40 tool path, 41 starting point, 42 , 43 error, 44 correction path, 50 numerical control device, 51 memory, 52, 53 microprocessor, 54 numerical data storage section, 55 calculation section, 56 control section, 100 machining center system, 110 column, 120 table, 121 guide rail, 130 saddle, 131 guide rail, 140 spindle head, 141 guide rail, 142 holder, 150 base, 200 network.

Abstract

A tool route correction device (1) comprises: an estimation unit (12) that estimates, on the basis of a tool route that is the route of a tool and a condition for machining using the tool, the shape and size of a portion to be machined when an object to be machined is machined by the tool; a calculation unit (13) for correcting the tool route on the basis of a positional deviation, from the tool route, of the portion to be machined having the shape and size estimated by the estimation unit (12) , and generating a tool correction route for bringing the portion to be machined closer to a theoretical shape and a theoretical size; and a transmission unit (14) that transmits data of the correction route to a numerical control device (50) for controlling a machine tool which holds the tool.

Description

工具経路補正装置、工作機械システム、工具経路の補正方法およびプログラムTool path correction device, machine tool system, tool path correction method and program
 本開示は工具経路補正装置、工作機械システム、工具経路の補正方法およびプログラムに関する。 The present disclosure relates to a tool path correction device, a machine tool system, a tool path correction method, and a program.
 工作機械には、被加工物を高い精度で加工するため、工具の経路である工作経路を補正するものがある。 Some machine tools correct the machining path, which is the path of the tool, in order to process the workpiece with high precision.
 例えば、特許文献1には、加工中に被加工物の寸法を含む諸パラメータを検出、または検査し、ミーリングの工具、すなわちフライス盤の工具の工具経路を補正する工作機械が開示されている。 For example, Patent Document 1 discloses a machine tool that detects or inspects various parameters including the dimensions of a workpiece during machining, and corrects the tool path of a milling tool, that is, a milling machine tool.
特開2020-108918号公報JP2020-108918A
 特許文献1に記載の工作機械では、加工中に諸パラメータを検出または検査するため、すなわち、加工中にモニタリングするため、ユーザーの負担が大きい。 The machine tool described in Patent Document 1 detects or inspects various parameters during machining, that is, monitors during machining, which places a heavy burden on the user.
 本開示は上記の課題を解決するためになされたもので、加工中にモニタリングを行うことなく、工具経路を、被加工物を高い精度で加工できる経路に補正することができる工具経路補正装置、工作機械システム、工具経路の補正方法およびプログラムを提供することを目的とする。 The present disclosure has been made to solve the above problems, and includes a tool path correction device that can correct the tool path to a path that allows the workpiece to be machined with high accuracy without monitoring during machining; The purpose of this invention is to provide a machine tool system, a tool path correction method, and a program.
 上記の目的を達成するため、本開示に係る工具経路補正装置は、推定部と、演算部と、送信部と、を備える。推定部は、工具の経路である工具経路と工具による加工の条件とに基づいて、被加工物が工具により加工されたときの被加工部分の形状および大きさを推定する。演算部は、推定部が推定した形状および大きさを有する被加工部分の工具経路に対する位置ずれから工具経路を補正することにより、被加工部分を理論上の形状および大きさに近づける工具の補正経路を求める。送信部は、工具を保持する工作機械を制御する数値制御装置に補正経路のデータを送信する。 In order to achieve the above object, a tool path correction device according to the present disclosure includes an estimation section, a calculation section, and a transmission section. The estimation unit estimates the shape and size of the workpiece when the workpiece is machined by the tool, based on a tool path that is a path of the tool and conditions for machining by the tool. The calculation unit corrects the tool path based on the positional deviation of the workpiece having the shape and size estimated by the estimation unit with respect to the tool path, thereby creating a tool correction path that brings the workpiece closer to the theoretical shape and size. seek. The transmitter transmits the correction path data to a numerical control device that controls a machine tool that holds the tool.
 本開示の構成によれば、推定部が、工具の経路である工具経路と工具による加工の条件とに基づいて、被加工物が工具により加工されたときの被加工部分の形状および大きさを推定し、演算部が、推定された形状および大きさを有する被加工部分の工具経路に対する位置ずれから工具経路を補正することにより、被加工部分を理論上の形状および大きさに近づける工具の補正経路を求める。このため、加工中にモニタリングを行うことなく工具経路を補正して、より正確な経路を得ることができる。その結果、本開示の構成によれば、工具経路を、被加工物を高い精度で加工できる経路に補正することができる。 According to the configuration of the present disclosure, the estimation unit calculates the shape and size of the workpiece when the workpiece is machined by the tool, based on the tool path, which is the path of the tool, and the machining conditions using the tool. The calculation unit corrects the tool path based on the positional deviation of the workpiece having the estimated shape and size with respect to the tool path, thereby making the workpiece closer to the theoretical shape and size. Find a route. Therefore, the tool path can be corrected without monitoring during machining, and a more accurate path can be obtained. As a result, according to the configuration of the present disclosure, the tool path can be corrected to a path that allows the workpiece to be machined with high accuracy.
本開示の実施の形態に係る工具経路補正装置が補正する工具経路で動作するマシニングセンタの斜視図A perspective view of a machining center operating on a tool path corrected by a tool path correction device according to an embodiment of the present disclosure マシニングセンタが円形を描く工具経路で工具を移動させて被加工物を加工したときの、理論上の被加工部分の形状と加工で得られた実際の被加工部分の形状の一例を示す図A diagram showing an example of the theoretical shape of the workpiece and the shape of the actual workpiece obtained by machining when the machining center moves the tool along a circular tool path to machine the workpiece. 工具の総加工距離と誤差の最大値との関係を示すグラフGraph showing the relationship between the total machining distance of the tool and the maximum error value 工具の総加工距離が0mmのときの、実際の被加工部分の形状の一例を示す図Diagram showing an example of the shape of the actual machined part when the total machining distance of the tool is 0 mm 工具の総加工距離が90000mmのときの、実際の被加工部分の形状の一例を示す図A diagram showing an example of the shape of the actual workpiece when the total machining distance of the tool is 90,000 mm. 工具の送り速度が640mm/分のときの、実際の被加工部分の形状の一例を示す図A diagram showing an example of the shape of the actual workpiece when the tool feed rate is 640 mm/min. 工具の送り速度が1270mm/分のときの、実際の被加工部分の形状の一例を示す図A diagram showing an example of the shape of the actual workpiece when the tool feed rate is 1270 mm/min. 工具の送り速度が2400mm/分のときの、実際の被加工部分の形状の一例を示す図A diagram showing an example of the shape of the actual workpiece when the tool feed rate is 2400 mm/min. 工具の送り速度が3590mm/分のときの、実際の被加工部分の形状の一例を示す図A diagram showing an example of the shape of the actual workpiece when the tool feed rate is 3590 mm/min. 工具の切込量が0.07mmのときの、実際の被加工部分の形状の一例を示す図Diagram showing an example of the shape of the actual workpiece when the depth of cut of the tool is 0.07mm 工具の切込量が0mmのときの、実際の被加工部分の形状の一例を示す図Diagram showing an example of the shape of the actual workpiece when the depth of cut of the tool is 0 mm 本開示の実施の形態に係る工具経路補正装置のハードウエア構成図Hardware configuration diagram of a tool path correction device according to an embodiment of the present disclosure 本開示の実施の形態に係る工具経路補正装置のブロック図Block diagram of a tool path correction device according to an embodiment of the present disclosure 本開示の実施の形態に係る工具経路補正装置が備える学習部の学習に用いられる学習用データベースの一例を示す図A diagram showing an example of a learning database used for learning by a learning section included in a tool path correction device according to an embodiment of the present disclosure. 本開示の実施の形態に係る工具経路補正装置が備える学習部の学習に用いられる工具経路および加工条件データの一例を示す図A diagram showing an example of tool path and machining condition data used for learning by a learning unit included in a tool path correction device according to an embodiment of the present disclosure. 本開示の実施の形態に係る工具経路補正装置が行う工具経路補正処理のフローチャートFlowchart of tool path correction processing performed by the tool path correction device according to the embodiment of the present disclosure 本開示の実施の形態に係る工具経路補正装置が備える推定部が推定した被加工部分の形状と補正対象となる工具経路の概念図Conceptual diagram of the shape of the workpiece portion estimated by the estimation unit included in the tool path correction device according to the embodiment of the present disclosure and the tool path to be corrected 本開示の実施の形態に係る工具経路補正装置が備える演算部が生成した補正経路と推定部が推定した被加工部分の形状との関係を示す概念図A conceptual diagram showing the relationship between the correction path generated by the calculation unit included in the tool path correction device according to the embodiment of the present disclosure and the shape of the workpiece portion estimated by the estimation unit 本開示の実施の形態に係る工具経路補正装置が備える推定部が推定した被加工部分を工具経路の周方向に展開したときの展開図A developed view when the workpiece portion estimated by the estimation unit included in the tool path correction device according to the embodiment of the present disclosure is developed in the circumferential direction of the tool path 本開示の実施の形態に係る工具経路補正装置が備える演算部が生成した補正経路を工具経路の周方向に展開したときの展開図A developed view when the correction path generated by the calculation unit included in the tool path correction device according to the embodiment of the present disclosure is developed in the circumferential direction of the tool path 本開示の実施の形態に係る工具経路補正装置が備える演算部が生成した補正経路とその補正経路で加工された被加工部分の概念図Conceptual diagram of a correction path generated by a calculation unit included in a tool path correction device according to an embodiment of the present disclosure and a workpiece portion machined by the correction path 本開示の実施の形態に係る工具経路補正装置が補正する工具経路の第1変形例の概念図Conceptual diagram of a first modification of the tool path corrected by the tool path correction device according to the embodiment of the present disclosure 本開示の実施の形態に係る工具経路補正装置が補正する工具経路の第2変形例の概念図Conceptual diagram of a second modification of the tool path corrected by the tool path correction device according to the embodiment of the present disclosure 本開示の実施の形態に係る工具経路補正装置が補正する工具経路の第3変形例の概念図Conceptual diagram of a third modification of the tool path corrected by the tool path correction device according to the embodiment of the present disclosure 本開示の実施の形態に係る工具経路補正装置が補正する工具経路の第4変形例の概念図Conceptual diagram of a fourth modification of the tool path corrected by the tool path correction device according to the embodiment of the present disclosure
 以下、本開示の実施の形態に係る工具経路補正装置、工作機械システム、工具経路の補正方法およびプログラムについて図面を参照して詳細に説明する。なお、図中、同一又は同等の部分には同一の符号を付す。 Hereinafter, a tool path correction device, a machine tool system, a tool path correction method, and a program according to an embodiment of the present disclosure will be described in detail with reference to the drawings. In addition, in the figures, the same or equivalent parts are given the same reference numerals.
 実施の形態に係る工具経路補正装置は、工作機械の工具経路を工具による加工の条件に応じて補正する装置である。以下、工具経路補正装置が補正する工具経路が、工作機械の一種であるマシニングセンタの工具経路である場合を例に、工具経路補正装置の構成について説明する。まず、図1-図5を参照して、マシニングセンタとそのマシニングセンタでの工具経路の課題について説明する。 The tool path correction device according to the embodiment is a device that corrects the tool path of a machine tool according to processing conditions using the tool. The configuration of the tool path correction device will be described below, taking as an example the case where the tool path corrected by the tool path correction device is a tool path of a machining center, which is a type of machine tool. First, with reference to FIGS. 1 to 5, a machining center and problems with tool paths in the machining center will be described.
 図1は、実施の形態に係る工具経路補正装置が補正する工具経路で動作するマシニングセンタ10の斜視図である。なお、図1では、理解を容易にするため、ツールマガジン、パレット等を省略して簡略化している。 FIG. 1 is a perspective view of a machining center 10 operating on a tool path corrected by a tool path correction device according to an embodiment. Note that in FIG. 1, the tool magazine, pallet, etc. are omitted for simplicity in order to facilitate understanding.
 図1に示すように、マシニングセンタ10は、コラム110と、コラム110に対して相対的に移動可能なテーブル120、サドル130および主軸ヘッド140とを備える。 As shown in FIG. 1, the machining center 10 includes a column 110, a table 120 that is movable relative to the column 110, a saddle 130, and a spindle head 140.
 コラム110は、設置箇所に固定されるベース150からその上方へ柱状に延びている。 The column 110 extends upward from a base 150 fixed to the installation location in a columnar shape.
 一方、テーブル120は、コラム110の下部に設けられている。テーブル120は、前後方向、すなわちY軸方向へ延在する案内レール121に沿って移動可能である。そして、テーブル120には、マシニングセンタ10の被加工物21が図示しないパレットを介して取り付け可能である。 On the other hand, the table 120 is provided at the bottom of the column 110. The table 120 is movable along a guide rail 121 extending in the front-rear direction, that is, in the Y-axis direction. A workpiece 21 of the machining center 10 can be attached to the table 120 via a pallet (not shown).
 また、サドル130は、コラム110の上部に設けられている。サドル130は、左右方向、すなわちX軸方向へ延在する案内レール131に沿って移動可能である。 Additionally, the saddle 130 is provided at the top of the column 110. The saddle 130 is movable along a guide rail 131 extending in the left-right direction, that is, in the X-axis direction.
 さらに、主軸ヘッド140は、サドル130に設けられている。主軸ヘッド140は、上下方向、すなわちZ軸方向へ延在する案内レール141に沿って移動可能である。また、主軸ヘッド140は、図示しないがサーボモータによって回転する主軸を備える。そして、主軸ヘッド140の下端には、その主軸にホルダ142に保持された工具20が取り付けられている。 Furthermore, the spindle head 140 is provided on the saddle 130. The spindle head 140 is movable along a guide rail 141 extending in the vertical direction, that is, in the Z-axis direction. Further, the spindle head 140 includes a spindle rotated by a servo motor (not shown). A tool 20 held by a holder 142 is attached to the lower end of the spindle head 140.
 マシニングセンタ10は、このような構成を備えることにより、テーブル120に取り付けられた被加工物21に対して、主軸ヘッド140に取り付けられた工具20をXYZの方向へ相対的に移動可能である。その結果、マシニングセンタ10は、所望の工具経路で工具20を被加工物21に対して相対的に移動させて、被加工物21を所望の形状に加工することが可能である。 By having such a configuration, the machining center 10 can move the tool 20 attached to the spindle head 140 relative to the workpiece 21 attached to the table 120 in the XYZ directions. As a result, the machining center 10 can move the tool 20 relative to the workpiece 21 along a desired tool path to machine the workpiece 21 into a desired shape.
 しかしながら、マシニングセンタ10が一定の工具経路で工具20を被加工物21に対して相対的に移動させた場合でも、工具20による加工の条件により、被加工物21の工具20によって加工された部分の形状と大きさ、すなわち、被加工部分の形状と大きさが異なってしまうことがある。例えば、工具20の摩耗の状況により、被加工部分の形状と大きさが異なってしまうことがある。続いて、図2-図5を参照して、この課題について説明する。 However, even when the machining center 10 moves the tool 20 relative to the workpiece 21 along a constant tool path, the part of the workpiece 21 machined by the tool 20 may change depending on the machining conditions of the tool 20. The shape and size, that is, the shape and size of the processed part may differ. For example, depending on the state of wear of the tool 20, the shape and size of the machined portion may differ. Next, this problem will be explained with reference to FIGS. 2 to 5.
 図2は、マシニングセンタ10が円形を描く工具経路で工具20を移動させて被加工物21を加工したときの、理論上の被加工部分22の形状と加工で得られた実際の被加工部分23の形状の一例を示す図である。 FIG. 2 shows the theoretical shape of the workpiece 22 and the actual workpiece 23 obtained by machining when the machining center 10 moves the tool 20 along a circular tool path to machine the workpiece 21. It is a figure showing an example of the shape.
 図2に示す例では、理論上の被加工部分22の形状は円形であるのに対して、実際の被加工部分23の形状は、くびれを有する形状に楕円を変形させた形状である。また、実際の被加工部分23の形状は、楕円の長軸部分で理論上の被加工部分22よりも大きく、楕円の短軸部分で理論上の被加工部分22よりも小さい。このように、実際の加工で得られた被加工部分23の形状と大きさは、理論上の被加工部分22の形状と大きさと異なることがある。この現象は、工具20の総加工距離、送り速度および切込量と相関性がある。図3-図5、図6A-図6D、図7Aおよび図7Bにマシニングセンタ10を用いた実験結果を示す。 In the example shown in FIG. 2, the theoretical shape of the processed portion 22 is circular, whereas the actual shape of the processed portion 23 is a shape obtained by deforming an ellipse into a shape with a constriction. Further, the shape of the actual processed portion 23 is larger than the theoretical processed portion 22 at the major axis of the ellipse, and smaller than the theoretical processed portion 22 at the short axis of the ellipse. As described above, the shape and size of the processed portion 23 obtained by actual processing may differ from the theoretical shape and size of the processed portion 22. This phenomenon is correlated with the total machining distance, feed rate, and depth of cut of the tool 20. Experimental results using the machining center 10 are shown in FIGS. 3-5, 6A-6D, 7A, and 7B.
 図3は、工具20の総加工距離と誤差の最大値との関係を示すグラフである。 FIG. 3 is a graph showing the relationship between the total machining distance of the tool 20 and the maximum error value.
 ここで、工具20の総加工距離とは、使用を開始されてから誤差の計測時に至るまで、工具20が被加工物21を加工しながら被加工物21に対して相対的に移動した総距離のことである。例えば、工具20の総加工距離は、切削長さ、利用長さまたは、加工長さとも呼ばれ、工具20が切削に利用された長さを意味する。一方、誤差とは、理論上の被加工部分22の各部分に対する実際の被加工部分23の各部分のずれの大きさのことである。 Here, the total machining distance of the tool 20 is the total distance that the tool 20 has moved relative to the workpiece 21 while machining the workpiece 21 from the start of use until the time of error measurement. It is about. For example, the total machining distance of the tool 20 is also called a cutting length, a usage length, or a machining length, and means the length of the tool 20 used for cutting. On the other hand, the error refers to the magnitude of the deviation of each part of the actual part to be processed 23 from each part of the theoretical part to be processed 22.
 図3に示すように、工具20の総加工距離が30000mm付近に達すると急激に誤差が大きくなり、その後、誤差の総加工距離に対する傾きは小さくなるものの、工具20の総加工距離が大きくなるに従い、誤差も大きくなっている。このように、工具20の総加工距離と誤差には相関性がある。また、誤差の大きさだけでなく、誤差が最も大きくなる箇所も工具20の総加工距離に応じて変化する。図4と図5にその例を示す。 As shown in FIG. 3, when the total machining distance of the tool 20 reaches around 30,000 mm, the error increases rapidly, and after that, although the slope of the error with respect to the total machining distance decreases, as the total machining distance of the tool 20 increases. , the error is also large. In this way, there is a correlation between the total machining distance of the tool 20 and the error. Furthermore, not only the magnitude of the error but also the location where the error is greatest changes depending on the total machining distance of the tool 20. Examples are shown in FIGS. 4 and 5.
 図4は、工具20の総加工距離が0mmのときの、実際の被加工部分23の形状の一例を示す図である。図5は、工具20の総加工距離が90000mmのときの、実際の被加工部分23の形状の一例を示す図である。なお、図4および図5では、理解を容易にするため、理論上の被加工部分22の形状もあわせて示している。また、図4および図5では、理論上の被加工部分22の円中心から右へ向かう方向を0°とし、その0°から反時計回りに角度が増加するとした場合の角度を示している。 FIG. 4 is a diagram showing an example of the actual shape of the machined portion 23 when the total machining distance of the tool 20 is 0 mm. FIG. 5 is a diagram showing an example of the actual shape of the machined portion 23 when the total machining distance of the tool 20 is 90,000 mm. Note that in FIGS. 4 and 5, the theoretical shape of the processed portion 22 is also shown for ease of understanding. Furthermore, in FIGS. 4 and 5, the angle is shown assuming that the direction to the right from the theoretical center of the circle of the processed portion 22 is 0°, and the angle increases counterclockwise from 0°.
 図4に示すように、工具20の総加工距離が0mmのとき、すなわち、工具20が新品のとき、誤差が最大となる角度は135°付近である。これに対して、図5に示すように、工具20の総加工距離が90000mmのとき、誤差が最大となる角度は210°付近である。このように、工具20の総加工距離が変化すると、その変化により誤差が最も大きくなる箇所の位置も変化する。すなわち、実際の被加工部分23の形状も変化する。 As shown in FIG. 4, when the total machining distance of the tool 20 is 0 mm, that is, when the tool 20 is new, the angle at which the error is maximum is around 135°. On the other hand, as shown in FIG. 5, when the total machining distance of the tool 20 is 90000 mm, the angle at which the error is maximum is around 210°. In this way, when the total machining distance of the tool 20 changes, the position of the point where the error is greatest also changes due to the change. That is, the shape of the actual processed portion 23 also changes.
 このように、工具20の総加工距離により、実際の被加工部分23の理論上の被加工部分22に対する形状と大きさが変化する。そして、その変化は、工具20の総加工距離と相関性がある。 In this way, the shape and size of the actual machined part 23 relative to the theoretical machined part 22 change depending on the total machining distance of the tool 20. The change has a correlation with the total machining distance of the tool 20.
 また、この実際の被加工部分23の理論上の被加工部分22に対する形状と大きさの変化は、工具20の送り速度とも相関性がある。さらに、その変化は、工具20の切込量とも相関性がある。図6A-図6D、図7Aおよび図7Bに実験結果を示す。 Further, the change in shape and size of the actual machined part 23 with respect to the theoretical machined part 22 is also correlated with the feed rate of the tool 20. Furthermore, the change has a correlation with the depth of cut of the tool 20. Experimental results are shown in FIGS. 6A-6D, FIG. 7A, and FIG. 7B.
 図6A-図6Dそれぞれは、工具20の送り速度が640mm/分、1270mm/分、2400mm/分、3590mm/分それぞれであるときの、実際の被加工部分23の形状の一例を示す図である。図7A、図7Bそれぞれは、工具20の切込量が0.07mm、0mmそれぞれであるときの、実際の被加工部分23の形状の一例を示す図である。なお、図6A-図6Dそれぞれでの工具20の切込量は、図7Bでの工具20の切込量と同じである。また、図7A、図7Bそれぞれでの工具20の送り速度は、図6Cと同じである。 6A to 6D are diagrams showing an example of the actual shape of the workpiece portion 23 when the feed speed of the tool 20 is 640 mm/min, 1270 mm/min, 2400 mm/min, and 3590 mm/min, respectively. . 7A and 7B are diagrams showing an example of the actual shape of the processed portion 23 when the depth of cut of the tool 20 is 0.07 mm and 0 mm, respectively. Note that the depth of cut of the tool 20 in each of FIGS. 6A to 6D is the same as the depth of cut of the tool 20 in FIG. 7B. Further, the feed speed of the tool 20 in each of FIGS. 7A and 7B is the same as in FIG. 6C.
 図6A-図6Dに示すように、工具20の送り速度が増加するに従い、実際の被加工部分23の理論上の被加工部分22に対する形状と大きさが大きく変化している。すなわち、工具20の送り速度が増加するに従い、誤差が大きくなっている。 As shown in FIGS. 6A to 6D, as the feed rate of the tool 20 increases, the shape and size of the actual machined part 23 relative to the theoretical machined part 22 change significantly. That is, as the feed rate of the tool 20 increases, the error increases.
 また、図7A、図7Bに示すように、工具20の切込量が増加すると、実際の被加工部分23の理論上の被加工部分22に対する形状と大きさが小さくなっている。すなわち、工具20の切込量の増加により、誤差が小さくなっている。これは、工具20の送り速度がある一定値を超えたときに、工具20の切込量の増加により切削抵抗が加わることが影響していると考えられる。 Furthermore, as shown in FIGS. 7A and 7B, as the depth of cut of the tool 20 increases, the shape and size of the actual machined part 23 with respect to the theoretical machined part 22 become smaller. That is, the error becomes smaller due to the increase in the depth of cut of the tool 20. This is considered to be due to the fact that cutting resistance is applied due to an increase in the depth of cut of the tool 20 when the feed rate of the tool 20 exceeds a certain value.
 以上のように、実際の被加工部分23の理論上の被加工部分22に対する形状と大きさの変化は、工具20の総加工距離と相関性があるだけでなく、工具20の送り速度および切込量とも相関性がある。その結果、マシニングセンタ10では、工具20の総加工距離、送り速度または切込量に応じて実際の被加工部分23の大きさが変化してしまい被加工部分23の加工精度が低下してしまうことがある。また、工具20の総加工距離、送り速度または切込量の変化により実際の被加工部分23の形状も変わってしまい被加工部分23の加工精度が低下してしまうことがある。 As described above, changes in shape and size of the actual workpiece 23 relative to the theoretical workpiece 22 are not only correlated with the total machining distance of the tool 20, but also with the feed rate of the tool 20 and the cutting speed. There is also a correlation with the amount of inclusion. As a result, in the machining center 10, the actual size of the machined part 23 changes depending on the total machining distance, feed rate, or depth of cut of the tool 20, and the machining accuracy of the machined part 23 decreases. There is. Further, due to a change in the total machining distance, feed rate, or depth of cut of the tool 20, the actual shape of the machined part 23 may change, resulting in a decrease in the machining accuracy of the machined part 23.
 そこで、工具経路補正装置は、このような加工精度の低下を抑制するため、工具20の加工の条件、例えば、総加工距離に応じて工具経路を補正する。次に、図8-図11を参照して工具経路補正装置の構成について説明する。 Therefore, in order to suppress such a decrease in machining accuracy, the tool path correction device corrects the tool path according to the machining conditions of the tool 20, for example, the total machining distance. Next, the configuration of the tool path correction device will be described with reference to FIGS. 8 to 11.
 図8は、実施の形態に係る工具経路補正装置1のハードウエア構成図である。図9は、工具経路補正装置1のブロック図である。図10は、工具経路補正装置1が備える学習部11の学習に用いられる学習用データベース35の一例を示す図である。図11は、学習部11の学習に用いられる工具経路および加工条件データ36の一例を示す図である。 FIG. 8 is a hardware configuration diagram of the tool path correction device 1 according to the embodiment. FIG. 9 is a block diagram of the tool path correction device 1. FIG. 10 is a diagram showing an example of the learning database 35 used for learning by the learning section 11 included in the tool path correction device 1. FIG. 11 is a diagram showing an example of tool path and machining condition data 36 used for learning by the learning section 11.
 なお、図8および図9では、理解を容易にするため、工具経路補正装置1とマシニングセンタ10により構成されるマシニングセンタシステム100の全体の構成を示している。 Note that, in order to facilitate understanding, FIGS. 8 and 9 show the overall configuration of a machining center system 100 that includes the tool path correction device 1 and the machining center 10.
 図8に示すように、工具経路補正装置1は、プロセッサ31、メモリ32およびネットワークインターフェース33を備える。そして、プロセッサ31、メモリ32およびネットワークインターフェース33は、バス34により接続されている。 As shown in FIG. 8, the tool path correction device 1 includes a processor 31, a memory 32, and a network interface 33. The processor 31, memory 32, and network interface 33 are connected by a bus 34.
 ネットワークインターフェース33は、プロセッサ31およびメモリ32をネットワーク200、例えば、インターネットを介して、外部装置に接続し、外部装置との通信を可能にする。詳細には、ネットワークインターフェース33は、プロセッサ31およびメモリ32をマシニングセンタ10が備える数値制御装置50に接続する。 The network interface 33 connects the processor 31 and the memory 32 to an external device via the network 200, for example, the Internet, and enables communication with the external device. Specifically, network interface 33 connects processor 31 and memory 32 to numerical control device 50 provided in machining center 10 .
 数値制御装置50は、メモリ51、マイクロプロセッサ52および53を備える。そして、メモリ51は、図9に示す数値データ記憶部54を含む。また、マイクロプロセッサ52と53は、メモリ51に格納されたプログラムをそれぞれ実行することにより、ソフトウェアとして構成される図9に示す演算部55と制御部56を実現する。そして、演算部55は、数値データ記憶部54に記憶された数値データから工具20の工具経路を演算する。一方、制御部56は、演算部55が演算した工具経路に基づいて、マシニングセンタ10の上述したコラム110、テーブル120、サドル130および主軸ヘッド140等を駆動する図示しないサーボモータを駆動する。 The numerical control device 50 includes a memory 51 and microprocessors 52 and 53. The memory 51 includes a numerical data storage section 54 shown in FIG. Further, the microprocessors 52 and 53 implement the calculation section 55 and the control section 56 shown in FIG. 9 configured as software by respectively executing programs stored in the memory 51. Then, the calculation unit 55 calculates the tool path of the tool 20 from the numerical data stored in the numerical data storage unit 54. On the other hand, the control unit 56 drives a servo motor (not shown) that drives the column 110, table 120, saddle 130, spindle head 140, etc. of the machining center 10, based on the tool path calculated by the calculation unit 55.
 図8に戻って、ネットワークインターフェース33は、このような構成の数値制御装置50が接続されることにより、ネットワーク200を介して、数値制御装置50とプロセッサ31およびメモリ32とのデータの送受信を可能にする。 Returning to FIG. 8, the network interface 33 is connected to the numerical control device 50 having such a configuration, so that data can be transmitted and received between the numerical control device 50, the processor 31, and the memory 32 via the network 200. Make it.
 プロセッサ31およびメモリ32は、コンピュータを構成する。そして、工具経路補正装置1は、プロセッサ31がメモリ32に記憶された各種プログラムを読み出して実行することにより、数値制御装置50とデータの送受信を行うための各種処理を行う。 The processor 31 and memory 32 constitute a computer. The tool path correction device 1 performs various processes for transmitting and receiving data with the numerical control device 50 by having the processor 31 read and execute various programs stored in the memory 32.
 例えば、工具経路補正装置1は、メモリ32に記憶された学習プログラムが読み出されて実行されることにより、工具経路から、実際に被加工物21がマシニングセンタ10によって加工されたときの被加工部分23の形状と大きさを推定するための推定モデルを生成するための学習処理を行う。また、工具経路補正装置1は、メモリ32に記憶された工具経路補正プログラムが読み出されて実行されることにより、上記の推定モデルから工具経路を補正する工具経路補正処理を行う。 For example, the tool path correction device 1 reads out and executes a learning program stored in the memory 32, so that from the tool path, the workpiece 21 is actually machined by the machining center 10. A learning process is performed to generate an estimation model for estimating the shape and size of 23. Further, the tool path correction device 1 performs tool path correction processing for correcting the tool path based on the above-mentioned estimated model by reading out and executing the tool path correction program stored in the memory 32.
 工具経路補正装置1は、これら学習処理と工具経路補正処理を行うため、図9に示すソフトウェアとして構成される機能ブロックを備える。詳細には、工具経路補正装置1は、学習部11、推定部12、演算部13および、送信部14を備える。 The tool path correction device 1 includes functional blocks configured as software shown in FIG. 9 in order to perform these learning processes and tool path correction processes. Specifically, the tool path correction device 1 includes a learning section 11, an estimating section 12, a calculating section 13, and a transmitting section 14.
 工具経路補正装置1には、キーボード、タッチパネル等で構成される入力装置15が接続される。学習部11は、その入力装置15から学習指令が入力された場合に、上述した学習処理を行う部分である。学習部11は、学習指令が入力されると、学習用DB(Data Base)記憶部16に格納された学習用データベース35に基づいた学習を行い、上述した推定モデルを生成する。 An input device 15 composed of a keyboard, touch panel, etc. is connected to the tool path correction device 1. The learning unit 11 is a part that performs the above-described learning process when a learning command is input from the input device 15. When the learning command is input, the learning unit 11 performs learning based on the learning database 35 stored in the learning DB (Data Base) storage unit 16, and generates the above-described estimated model.
 詳細に説明すると、学習用データベース35には、図10に示すように、工具経路、加工条件および追加加工条件のデータと加工結果のデータとが対応付けられた学習用データベース35が予め記憶されている。 To explain in detail, as shown in FIG. 10, the learning database 35 stores in advance a learning database 35 in which data on tool paths, machining conditions, and additional machining conditions are associated with data on machining results. There is.
 ここで、工具経路とは、本実施の形態の場合、マシニングセンタ10が被加工物21を加工するときの、被加工物21に対する工具20の経路のことである。すなわち、工具経路とは、工具20と被加工物21との相対経路のことである。 Here, in the case of this embodiment, the tool path refers to the path of the tool 20 with respect to the workpiece 21 when the machining center 10 processes the workpiece 21. That is, the tool path is a relative path between the tool 20 and the workpiece 21.
 なお、工具経路は、NCプログラムから得た経路、例えば、XYZ座標系で表される経路であるとよい。工具経路は、開始点、終了点、開始点から終了点までの経由点の各座標によって表されるとよい。 Note that the tool path is preferably a path obtained from an NC program, for example, a path expressed in an XYZ coordinate system. The tool path may be represented by coordinates of a starting point, an ending point, and a way point from the starting point to the ending point.
 また、加工条件とは、マシニングセンタ10が工具20で加工するときの条件であり、加工条件には、例えば、被加工物21の材料、工具20の送り速度、切削速度、そのマシニングセンタ10の装置番号、工具20の品種番号が含まれる。 Further, the machining conditions are the conditions under which the machining center 10 performs machining with the tool 20, and the machining conditions include, for example, the material of the workpiece 21, the feed rate of the tool 20, the cutting speed, and the device number of the machining center 10. , the model number of the tool 20 is included.
 なお、加工条件には、工具20の送り速度と切削速度の少なくとも1つが含まれているとよい。また、加工条件には、工具20の切込量が含まれてもよい。そのほか、加工条件には、切削速度または主軸ヘッド140の主軸回転数が含まれてもよい。さらに、加工条件には、工具20の材料、工具20の材料の硬度または被加工物21の材料の硬度が含まれてもよい。 Note that the machining conditions preferably include at least one of the feed rate and cutting speed of the tool 20. Further, the machining conditions may include the depth of cut of the tool 20. In addition, the machining conditions may include the cutting speed or the spindle rotation speed of the spindle head 140. Furthermore, the machining conditions may include the material of the tool 20, the hardness of the material of the tool 20, or the hardness of the material of the workpiece 21.
 追加加工条件とは、工具20による加工開始時から終了後までの間の検出、検査で判明する条件であり、加工後に追加される条件のことである。例えば、追加加工条件には、工具20の総加工距離、加工時の工具温度が含まれる。 The additional machining conditions are conditions that are found through detection and inspection from the start of machining to the end of machining by the tool 20, and are conditions that are added after machining. For example, the additional machining conditions include the total machining distance of the tool 20 and the tool temperature during machining.
 なお、追加加工条件では、工具20の総加工距離は、工具20の摩耗を示す一つの指標であることから、工具20の摩耗情報に代えられてもよい。その場合、工具20の摩耗情報は、工具20の研磨の有無、研磨回数、経年劣化する場合は製造からの経過時間等であってもよい。 Note that in the additional machining conditions, the total machining distance of the tool 20 is one index indicating wear of the tool 20, and therefore may be replaced with wear information of the tool 20. In this case, the wear information on the tool 20 may include whether or not the tool 20 has been polished, the number of times the tool 20 has been polished, and the elapsed time since manufacture if the tool 20 deteriorates over time.
 さらに、加工結果のデータとは、工具20が上記の工具経路を移動した結果、被加工物21に形成された、上述した実際の被加工部分23の形状、大きさのデータのことである。 Further, the machining result data refers to data on the shape and size of the actual machined portion 23, which is formed on the workpiece 21 as a result of the tool 20 moving along the tool path described above.
 図9に示す学習用DB記憶部16には、図11に示す工具経路および加工条件データ36が記憶されている。このような内容の学習用データベース35は、その工具経路および加工条件データ36に基づいて、マシニングセンタ10を動作させることにより生成されている。 The learning DB storage unit 16 shown in FIG. 9 stores tool path and machining condition data 36 shown in FIG. 11. The learning database 35 having such contents is generated by operating the machining center 10 based on the tool path and machining condition data 36.
 詳細には、学習用データベース35は、以下の手順により作成されている。(1)学習部11が工具経路および加工条件データ36を読み出し、読み出した工具経路および加工条件データ36をマシニングセンタ10の数値制御装置50に送信して、マシニングセンタ10に被加工物21を加工させる。(2)そのときのマシニングセンタ10から学習部11が上記の追加加工条件を取得する。さらに(3)接触式の三次元測定機、または、走査レーザプローブタイプ若しくは光学タイプの非接触式の三次元測定機を用いて、ユーザーが加工された被加工物21の被加工部分23を測定することにより、被加工部分23の形状、大きさのデータを取得し、取得した被加工部分23の形状、大きさのデータを加工結果データとする。そして、(4)(1)のステップで使用した工具経路および加工条件データ36と(2)のステップで取得した追加加工条件とに、(3)のステップで取得した加工結果データを対応付ける。これら(1)-(4)のステップを繰り返すことにより、学習用データベース35が作成されている。 In detail, the learning database 35 is created by the following procedure. (1) The learning unit 11 reads the tool path and machining condition data 36, transmits the read tool path and machining condition data 36 to the numerical control device 50 of the machining center 10, and causes the machining center 10 to process the workpiece 21. (2) The learning unit 11 acquires the above additional machining conditions from the machining center 10 at that time. Furthermore, (3) the user measures the processed portion 23 of the processed workpiece 21 using a contact type three-dimensional measuring machine, a scanning laser probe type, or an optical type non-contact type three-dimensional measuring machine. By doing so, data on the shape and size of the part to be machined 23 is acquired, and the acquired data on the shape and size of the part to be machined 23 is used as machining result data. (4) The tool path and machining condition data 36 used in step (1) and the additional machining conditions acquired in step (2) are associated with the machining result data acquired in step (3). By repeating these steps (1) to (4), the learning database 35 is created.
 図9に戻って、学習部11は、学習用DB記憶部16から学習用データベース35を読み出し、読み出した学習用データベース35の各データを、学習部11それ自体が有するニューラルネットワーク部18に学習させる。 Returning to FIG. 9, the learning unit 11 reads the learning database 35 from the learning DB storage unit 16, and causes the neural network unit 18 of the learning unit 11 itself to learn each data of the read learning database 35. .
 ニューラルネットワーク部18は、ニューロンと呼ばれるノードを複数個有する。そして、それらノード同士が結合して入力層、隠れ層および出力層を形成している。ニューラルネットワーク部18は、その入力層に、学習用データベース35の各Noの工具経路、加工条件および追加加工条件の各データが入力された場合に、出力層から、それらに対応付けられた各Noの加工結果データに関するパラメータが出力される状態に、ノード同士の結合の重みを調整する。これにより、ニューラルネットワーク部18は、学習済みモデルを生成する。換言すると、ニューラルネットワーク部18は、上述した推定モデルを生成する学習を行う。 The neural network unit 18 has a plurality of nodes called neurons. These nodes are combined to form an input layer, a hidden layer, and an output layer. When each data of the tool path, machining condition, and additional machining condition of each No. of the learning database 35 is input to the input layer, the neural network section 18 inputs the data of each No. corresponding to them from the output layer. The weights of connections between nodes are adjusted so that parameters related to the processed result data are output. Thereby, the neural network unit 18 generates a learned model. In other words, the neural network unit 18 performs learning to generate the above-mentioned estimation model.
 学習部11は、ニューラルネットワーク部18の学習が終了すると、そのノード同士の結合の重みを学習済みデータ記憶部17に記憶させる。これにより、学習部11は、推定モデルを構築するための重みパラメータを保存する。 When the learning of the neural network unit 18 is completed, the learning unit 11 stores the weights of the connections between the nodes in the learned data storage unit 17. Thereby, the learning unit 11 stores the weight parameters for constructing the estimation model.
 一方、推定部12は、入力装置15から工具経路の補正を行う旨の補正指令が入力された場合に、上述した工具経路補正処理のうちの、被加工物21の、工具20によって加工される被加工部分23の形状と大きさを推定する部分である。なお、推定部12は、被加工部分推定部とも呼ばれる部分である。 On the other hand, when a correction command to correct the tool path is input from the input device 15, the estimating unit 12 performs the above-mentioned tool path correction process to determine whether the workpiece 21 is machined by the tool 20. This is a part for estimating the shape and size of the part to be processed 23. Note that the estimating section 12 is also called a processed part estimating section.
 詳細な内容は後述するが、上述した補正指令には、学習用データベース35で説明した工具経路、加工条件および追加加工条件の各データが含まれている。推定部12は、補正指令からこれらデータを抽出し、上述した推定モデルを用いて、抽出した工具経路、加工条件および追加加工条件のデータから、被加工部分23の形状と大きさを推定する。推定部12は、推定した被加工部分23の形状と大きさのデータを演算部13へ送信する。 Although detailed contents will be described later, the above-mentioned correction command includes each data of the tool path, machining conditions, and additional machining conditions described in the learning database 35. The estimating unit 12 extracts these data from the correction command, and uses the above-mentioned estimation model to estimate the shape and size of the machined portion 23 from the extracted data of the tool path, machining conditions, and additional machining conditions. The estimation unit 12 transmits data on the estimated shape and size of the processed portion 23 to the calculation unit 13.
 演算部13は、上述した工具経路補正処理のうちの、工具経路を補正する部分である。詳細な内容は後述するが、演算部13は、推定部12が推定した形状および大きさを有する被加工部分23の工具経路に対する位置ずれから工具経路を補正する。これにより、演算部13は、被加工部分23を理論上の形状および大きさに近づける工具20の補正経路を求める。なお、演算部13は、補正経路を生成するため、補正経路生成部ともいう。 The calculation unit 13 is a part of the tool path correction process described above that corrects the tool path. Although detailed contents will be described later, the calculation unit 13 corrects the tool path based on the positional deviation of the workpiece portion 23 having the shape and size estimated by the estimation unit 12 with respect to the tool path. Thereby, the calculation unit 13 determines a correction path for the tool 20 that brings the processed portion 23 closer to the theoretical shape and size. Note that since the calculation unit 13 generates a correction path, it is also referred to as a correction path generation unit.
 一方、送信部14は、補正経路のデータをマシニングセンタ10の数値制御装置50へ送信する。これにより、演算部13は、従前の工具経路のまま被加工物21を加工して、被加工部分23の加工精度が低下することを抑制する。 On the other hand, the transmitter 14 transmits the correction path data to the numerical control device 50 of the machining center 10. Thereby, the calculation unit 13 processes the workpiece 21 using the previous tool path, thereby suppressing a decrease in the machining accuracy of the workpiece portion 23.
 続いて、図12、図13A-図13Eを参照して、推定部12と演算部13が行う処理、すなわち、工具経路補正処理について詳細に説明する。 Next, with reference to FIGS. 12 and 13A to 13E, the processing performed by the estimation unit 12 and the calculation unit 13, that is, the tool path correction processing, will be described in detail.
 なお、以下の工具経路補正処理の説明では、上述した学習用データベース35を作成して学習用DB記憶部16に記憶させておき、その学習用データベース35を用いて、予め学習部11がニューラルネットワーク部18に学習させておくものとする。すなわち、工具経路補正装置1が予め学習処理を実行しておくものとする。これにより、学習済みデータ記憶部17にニューラルネットワーク部18のノードの結合の重みが格納されているものとする。 In the following description of the tool path correction process, the above-mentioned learning database 35 is created and stored in the learning DB storage section 16, and the learning section 11 uses the learning database 35 to perform the neural network in advance. It is assumed that the section 18 is made to learn. That is, it is assumed that the tool path correction device 1 executes the learning process in advance. As a result, it is assumed that the learned data storage section 17 stores the weights of the connections of the nodes of the neural network section 18 .
 図12は、工具経路補正装置1が行う工具経路補正処理のフローチャートである。 FIG. 12 is a flowchart of the tool path correction process performed by the tool path correction device 1.
 まず、ユーザーが入力装置15から、工具経路の補正を行う旨の補正指令を入力する。工具経路補正装置1では、補正指令が入力されると、プロセッサ31がメモリ32に記憶された工具経路補正プログラムが読み出されて実行され、その結果、工具経路補正処理のフローが開始される。 First, the user inputs a correction command to correct the tool path from the input device 15. In the tool path correction device 1, when a correction command is input, the processor 31 reads and executes the tool path correction program stored in the memory 32, and as a result, the flow of tool path correction processing is started.
 工具経路補正処理のフローが開始されると、まず、図12に示すように、推定部12は、工具経路、加工条件および追加加工条件の取得の取得を行う(ステップS1)。 When the flow of the tool path correction process is started, first, as shown in FIG. 12, the estimation unit 12 acquires the tool path, machining conditions, and additional machining conditions (step S1).
 上述した補正指令には、ユーザーが入力装置15に入力した補正対象となる工具経路、加工条件および追加加工条件のデータが含まれている。推定部12は、その補正指令から工具経路、加工条件および追加加工条件を抽出することにより、工具経路、加工条件および追加加工条件を取得する。 The above-mentioned correction command includes data of the tool path to be corrected, machining conditions, and additional machining conditions input by the user into the input device 15. The estimation unit 12 obtains the tool path, machining conditions, and additional machining conditions by extracting the tool path, machining conditions, and additional machining conditions from the correction command.
 なお、推定部12は、ネットワーク200を介して、マシニングセンタシステム100が備える数値制御装置50から工具経路および加工条件を取得してもよい。この場合、追加加工条件は、ユーザーによって入力装置15から数値制御装置50に入力されるとよい。そして、推定部12は、入力された追加加工条件を入力装置15から取得してもよい。 Note that the estimation unit 12 may obtain the tool path and machining conditions from the numerical control device 50 included in the machining center system 100 via the network 200. In this case, the additional processing conditions may be input by the user to the numerical control device 50 from the input device 15. Then, the estimation unit 12 may acquire the input additional processing conditions from the input device 15.
 次に、推定部12は、工具20により被加工物21が加工されたときの、被加工部分23の形状と大きさの推定を行う(ステップS2)。 Next, the estimating unit 12 estimates the shape and size of the machined portion 23 when the workpiece 21 is machined by the tool 20 (step S2).
 詳細には、推定部12は、まず、学習済みデータ記憶部17からニューラルネットワーク部18のノードの結合の重みを読み出す。推定部12は、ニューラルネットワーク部18と同じ層構造を有する、図9に示すニューラルネットワーク部19を備える。そして、推定部12は、読み出したノードの結合の重みを自身が保有するニューラルネットワーク部19に適用して、学習済みモデル、すなわち、上述した推定モデルを構築する。 In detail, the estimating unit 12 first reads the weights of the connections of the nodes of the neural network unit 18 from the learned data storage unit 17. The estimation unit 12 includes a neural network unit 19 shown in FIG. 9, which has the same layer structure as the neural network unit 18. Then, the estimating unit 12 applies the read node connection weights to the neural network unit 19 that it owns to construct a learned model, that is, the above-described estimated model.
 構築した推定モデルは、ニューラルネットワーク部19により形成されている。推定部12は、ニューラルネットワーク部19が備える入力層に工具経路、加工条件および追加加工条件のデータを入力することにより、ニューラルネットワーク部19が備える出力層から、推定された被加工部分23の形状と大きさのデータに関するパラメータを得る。推定部12は、そのパラメータを用いて被加工部分23の形状と大きさの推定を行う。 The constructed estimation model is formed by the neural network unit 19. The estimation unit 12 inputs data on the tool path, machining conditions, and additional machining conditions to the input layer included in the neural network unit 19, and calculates the estimated shape of the workpiece portion 23 from the output layer included in the neural network unit 19. and obtain parameters regarding size data. The estimation unit 12 estimates the shape and size of the processed portion 23 using the parameters.
 次に、演算部13が補正経路の生成を行う(ステップS3)。その補正経路の生成を図13A-図13Eを参照して詳細に説明する。 Next, the calculation unit 13 generates a correction path (step S3). Generation of the correction path will be described in detail with reference to FIGS. 13A to 13E.
 図13Aは、工具経路補正装置1が備える推定部12が推定した被加工部分23の形状と補正対象となる工具経路40の概念図である。図13Bは、工具経路補正装置1が備える演算部13が生成した補正経路44と推定部12が推定した被加工部分23の形状との関係を示す概念図である。図13Cは、推定部12が推定した被加工部分23を工具経路40の周方向に展開したときの展開図である。図13Dは、演算部13が生成した補正経路44を工具経路40の周方向に展開したときの展開図である。図13Eは、演算部13が生成した補正経路44とその補正経路44で加工された被加工部分23の概念図である。 FIG. 13A is a conceptual diagram of the shape of the workpiece portion 23 estimated by the estimation unit 12 included in the tool path correction device 1 and the tool path 40 to be corrected. FIG. 13B is a conceptual diagram showing the relationship between the correction path 44 generated by the calculation unit 13 included in the tool path correction device 1 and the shape of the workpiece portion 23 estimated by the estimation unit 12. FIG. 13C is a developed view of the workpiece portion 23 estimated by the estimation unit 12 developed in the circumferential direction of the tool path 40. FIG. 13D is a developed view of the correction path 44 generated by the calculation unit 13 expanded in the circumferential direction of the tool path 40. FIG. 13E is a conceptual diagram of the correction path 44 generated by the calculation unit 13 and the processed portion 23 processed by the correction path 44.
 図13Aに示す例では、工具経路40が円形であるのに対して、推定された被加工部分23の形状は、楕円である。なお、工具経路40は開始点41から時計回りに円形に描く経路である。演算部13は、図13Bに示すように、推定された被加工部分23の各部の、工具経路40の各部に対する位置のずれ、すなわち誤差42を算出する。そして、演算部13は、誤差42の算出を、推定された被加工部分23全体について行う。 In the example shown in FIG. 13A, the tool path 40 is circular, whereas the estimated shape of the processed portion 23 is an ellipse. Note that the tool path 40 is a path drawn circularly clockwise from a starting point 41. As shown in FIG. 13B, the calculation unit 13 calculates the positional deviation of each part of the estimated workpiece part 23 with respect to each part of the tool path 40, that is, the error 42. Then, the calculation unit 13 calculates the error 42 for the entire estimated processed portion 23.
 さらに、演算部13は、算出した誤差がEであり、1未満の比例係数がκである場合に、図13Bに示す工具経路40の各部に対する各部の誤差43が-κEとなる補正経路44を求める。これにより、演算部13は、図13Cに示すように展開する工具経路40に対して、図13Dに示すように展開する補正経路44を生成する。その結果、演算部13は、工具経路40を補正した場合、その工具経路40と同形の被加工部分23を形成することができる図13Dに示す補正経路44を得る。 Furthermore, when the calculated error is E and the proportionality coefficient less than 1 is κ, the calculation unit 13 calculates a correction path 44 in which the error 43 of each part of the tool path 40 shown in FIG. 13B becomes -κE. demand. Thereby, the calculation unit 13 generates a correction path 44 that develops as shown in FIG. 13D for the tool path 40 that develops as shown in FIG. 13C. As a result, when the calculation unit 13 corrects the tool path 40, it obtains a correction path 44 shown in FIG. 13D that can form the processed portion 23 having the same shape as the tool path 40.
 このように、演算部13は、推定された被加工部分23の各部の、工具経路40の各部に対する誤差を求め、求めた誤差に基づいて工具経路40を補正することにより、被加工部分23を理論上の形状および大きさに近づける工具20の補正経路44を生成する。 In this way, the calculation unit 13 determines the error of each part of the estimated workpiece part 23 with respect to each part of the tool path 40, and corrects the tool path 40 based on the determined error, thereby adjusting the workpiece part 23. A correction path 44 for the tool 20 that approaches the theoretical shape and size is generated.
 図12に戻って、演算部13がステップS3で補正経路44を生成すると、送信部14は、生成した補正経路44データの送信を行う(ステップS4)。具体的には、送信部14は、補正経路44データを数値制御装置50へ送信する。 Returning to FIG. 12, when the calculation unit 13 generates the correction path 44 in step S3, the transmitting unit 14 transmits the generated correction path 44 data (step S4). Specifically, the transmitter 14 transmits the correction path 44 data to the numerical control device 50.
 その結果、数値制御装置50が補正経路44データに基づいて工具20を移動させることにより、マシニングセンタ10で加工された被加工部分23の大きさが変わってしまったり被加工部分23の形状が変わってしまったりすることが抑制される。これにより、被加工部分23の加工精度が低下してしまうことが抑制される。 As a result, when the numerical control device 50 moves the tool 20 based on the correction path 44 data, the size of the workpiece part 23 machined by the machining center 10 changes or the shape of the workpiece part 23 changes. It prevents you from storing things away. This prevents the processing accuracy of the processed portion 23 from decreasing.
 送信部14は、補正経路44データの送信が完了すると、工具経路補正処理のフローを終了させる。 When the transmission of the correction path 44 data is completed, the transmitter 14 ends the flow of the tool path correction process.
 なお、上記の実施の形態で説明したマシニングセンタ10は、本開示でいうところの工作機械の一例である。また、マシニングセンタ10の加工条件と追加加工条件は、本開示でいうところの工具による加工の条件の一例である。マシニングセンタシステム100は、本開示でいうところの工作機械システムの一例である。推定モデルは、本開示でいうところの学習済みモデルの一例である。工具経路補正プログラムは、本開示でいうところのプログラムの一例である。 Note that the machining center 10 described in the above embodiment is an example of a machine tool as referred to in the present disclosure. Furthermore, the machining conditions and additional machining conditions of the machining center 10 are examples of conditions for machining using a tool as referred to in the present disclosure. The machining center system 100 is an example of a machine tool system in the present disclosure. The estimated model is an example of a trained model as referred to in this disclosure. The tool path correction program is an example of a program referred to in the present disclosure.
 以上のように、工具経路補正装置1では、推定部12が、工具経路40と工具20による加工条件および追加加工条件とに基づいて、被加工物21が工具20により加工されたときの被加工部分23の形状および大きさを推定する。また、演算部13が、推定された形状および大きさを有する被加工部分23の工具経路40に対する位置ずれから工具経路40を補正する。詳細には、演算部13は、推定された被加工部分23の各部の工具経路40の各部に対するずれから工具経路40を補正して補正経路44を生成する。その結果、工具経路補正装置1では、加工中にモニタリングを行うことなく、工具経路40を補正して、より正確な経路である補正経路44を得ることができる。これにより、工具経路補正装置1は、工具経路40を、被加工物21を高い精度で加工できる補正経路44に補正することができる。 As described above, in the tool path correction device 1, the estimating unit 12 estimates the workpiece to be machined when the workpiece 21 is machined by the tool 20, based on the tool path 40, the machining conditions by the tool 20, and the additional machining conditions. Estimate the shape and size of portion 23. Further, the calculation unit 13 corrects the tool path 40 based on the positional deviation of the workpiece portion 23 having the estimated shape and size with respect to the tool path 40. Specifically, the calculation unit 13 generates a correction path 44 by correcting the tool path 40 based on the estimated deviation of each part of the workpiece portion 23 with respect to each part of the tool path 40. As a result, the tool path correction device 1 can correct the tool path 40 and obtain the corrected path 44, which is a more accurate path, without monitoring during machining. Thereby, the tool path correction device 1 can correct the tool path 40 to a correction path 44 that can process the workpiece 21 with high precision.
 工具経路補正装置1では、推定部12が被加工部分23の形状および大きさを推定するときの追加加工条件として摩耗情報、詳細には工具20の総加工距離が用いられる。このため、工具経路補正装置1は、工具20が摩耗した場合でも、工具経路40を補正経路44に補正して加工精度の低下を抑制することができる。なお、摩耗情報は、工具20の経時変化の情報である。工具経路補正装置1は、このような工具20が経時変化する場合に、加工精度の低下を抑制することができる。 In the tool path correction device 1, wear information, more specifically, the total machining distance of the tool 20, is used as an additional machining condition when the estimation unit 12 estimates the shape and size of the workpiece portion 23. Therefore, even when the tool 20 is worn out, the tool path correction device 1 can correct the tool path 40 to the correction path 44 to suppress a decrease in machining accuracy. Note that the wear information is information on changes in the tool 20 over time. The tool path correction device 1 can suppress a decrease in machining accuracy when the tool 20 changes over time.
 また、工具経路補正装置1では、推定部12が被加工部分23の形状および大きさを推定するときの加工条件として、工具20の送り速度と切削速度が用いられる。このため、工具経路補正装置1は、工具20の送り速度と切削速度が特定の大きさになって切削抵抗が増加することにより、被加工部分23の形状および大きさが変化する場合でも、工具経路40を補正経路44に補正して加工精度の低下を抑制することができる。 Furthermore, in the tool path correction device 1, the feed rate and cutting speed of the tool 20 are used as machining conditions when the estimation unit 12 estimates the shape and size of the workpiece portion 23. For this reason, the tool path correction device 1 can be used even when the shape and size of the workpiece portion 23 change due to the feed rate and cutting speed of the tool 20 reaching a specific level and cutting resistance increasing. By correcting the path 40 to the corrected path 44, it is possible to suppress a decrease in processing accuracy.
 さらに、工具経路補正装置1では、学習部11が実際にマシニングセンタ10に被加工物21を加工させることにより得た学習用データベース35を用いて、推定モデルを生成する。このため、工具経路補正装置1は、工具経路40を、実際のマシニングセンタ10に適した補正経路44に補正することができる。また、工具経路補正装置1は、学習部11が生成した推定モデルを用いて補正経路44を求めるので、構成が簡便である。例えば、工具経路補正装置1では、後述するマシニングセンタ10の動作の誤差要素をモデル化した数値シミュレーションを利用しないで、補正経路44を求めることができる。数値シミュレーションを利用しないため、当然ながら数値シミュレーションのパラメータの調整は不要である。 Furthermore, in the tool path correction device 1, the learning unit 11 generates an estimation model using the learning database 35 obtained by actually machining the workpiece 21 with the machining center 10. Therefore, the tool path correction device 1 can correct the tool path 40 to a correction path 44 suitable for the actual machining center 10. Furthermore, the tool path correction device 1 obtains the correction path 44 using the estimation model generated by the learning section 11, so the configuration is simple. For example, the tool path correction device 1 can determine the correction path 44 without using a numerical simulation that models error elements of the operation of the machining center 10, which will be described later. Since numerical simulation is not used, it is naturally unnecessary to adjust the numerical simulation parameters.
 工具経路補正装置1は、同じ位置に同じ方向から繰り返し位置決めを行ったときにどれだけの誤差が生じるかを表す繰り返し位置決め精度が高いマシニングセンタ10、すなわち、再現性が高いマシニングセンタ10に特に有効である。 The tool path correction device 1 is particularly effective for a machining center 10 with high repeatability positioning accuracy, which indicates how much error occurs when positioning is repeatedly performed at the same position from the same direction, that is, a machining center 10 with high reproducibility. .
(変形例)
 なお、実施の形態では、数値制御装置50が入力装置を備えていないが、数値制御装置50が入力装置を備えてもよい。その場合、その数値制御装置50の入力装置が、上述した入力装置15の代わりに用いられてもよい。
(Modified example)
Note that in the embodiment, the numerical control device 50 is not provided with an input device, but the numerical control device 50 may be provided with an input device. In that case, the input device of the numerical control device 50 may be used instead of the input device 15 described above.
 また、実施の形態では、マシニングセンタ10が円形を描く工具経路40で工具20を移動させて被加工物21を加工する場合を例に、工具経路補正装置1の動作を説明している。しかし、工具経路補正装置1はこれに限定されない。工具経路補正装置1は、工具20の経路である工具経路40を補正することにより、被加工物21の被加工部分23を理論上の形状および大きさに近づける工具20の補正経路44を求め、求めた補正経路44のデータを数値制御装置50に送信すればよい。従って、工具経路補正装置1は、円形以外の工具経路40を補正対象としてもよい。 Furthermore, in the embodiment, the operation of the tool path correction device 1 is described using an example in which the machining center 10 moves the tool 20 along a circular tool path 40 to process the workpiece 21. However, the tool path correction device 1 is not limited to this. The tool path correction device 1 corrects the tool path 40, which is the path of the tool 20, to obtain a correction path 44 of the tool 20 that brings the machined portion 23 of the workpiece 21 closer to the theoretical shape and size. The data of the determined correction path 44 may be transmitted to the numerical control device 50. Therefore, the tool path correction device 1 may correct a tool path 40 other than a circular shape.
 図14A-図14Dは、工具経路補正装置1が補正する工具経路40の第1-第4変形例の概念図である。なお、図14A-図14Dでは、理解を容易にするため、工具経路40の始点に工具20を配している。さらに、工具20の移動方向を矢印で示している。 14A to 14D are conceptual diagrams of first to fourth modifications of the tool path 40 corrected by the tool path correction device 1. Note that in FIGS. 14A to 14D, the tool 20 is placed at the starting point of the tool path 40 for easy understanding. Furthermore, the moving direction of the tool 20 is shown by an arrow.
 工具経路補正装置1は、図14Aに示す矩形状の工具経路40の第1変形例、または図14Bに示す菱形状の工具経路40の第2変形例を補正対象としてもよい。また、工具経路補正装置1は、図14Cに示す曲線状の工具経路40の第3変形例、または図14Dに示す直線状の工具経路40の第4変形例を補正対象としてもよい。さらに、工具経路補正装置1は、第1-第4変形例の組み合わせにより形成される工具経路40を補正対象としてもよい。 The tool path correction device 1 may correct a first modification of the rectangular tool path 40 shown in FIG. 14A or a second modification of the diamond-shaped tool path 40 shown in FIG. 14B. Further, the tool path correction device 1 may correct a third modification example of the curved tool path 40 shown in FIG. 14C or a fourth modification example of the linear tool path 40 shown in FIG. 14D. Further, the tool path correction device 1 may target the tool path 40 formed by the combination of the first to fourth modifications.
 工具経路補正装置1がこのような工具経路40を補正対象にするとよいのは、このような工具経路40であれば、工具20の加速または減速が大きくなりやすく、工具経路補正装置1による被加工物21を高い精度で加工できる効果が顕著だからである。また、マシニングセンタ10がこのような工具経路40で工具20を移動させた場合に、マシニングセンタ10それぞれに固有の静剛性、動剛性、動特性等のばらつきに起因して、或いは、マシニングセンタ10を構成するボールねじ、モータ、ギア等の部品の組み立て精度または動作精度に起因して、理論上の被加工部分22の形状と加工で得られた実際の被加工部分23の形状との間に差が生じやすく、このような工具経路40であれば、工具経路補正装置1による効果が顕著だからである。 The reason why the tool path correction device 1 should correct such a tool path 40 is that if the tool path 40 is like this, the acceleration or deceleration of the tool 20 is likely to be large, and the tool path correction device 1 can easily correct the workpiece. This is because the effect of being able to process the object 21 with high precision is remarkable. Furthermore, when the machining center 10 moves the tool 20 along such a tool path 40, due to variations in static stiffness, dynamic stiffness, dynamic characteristics, etc. unique to each machining center 10, or due to variations in the machining center 10, Due to the assembly accuracy or operation accuracy of parts such as ball screws, motors, gears, etc., a difference occurs between the theoretical shape of the machined part 22 and the shape of the actual machined part 23 obtained by machining. This is because such a tool path 40 is easy to use, and the effect of the tool path correction device 1 is significant.
 以上、本開示の実施の形態に係る工具経路補正装置1、工作機械システム、工具経路の補正方法およびプログラムについて説明したが、工具経路補正装置1、工作機械システム、工具経路の補正方法およびプログラムは、これに限定されない。 The tool path correction device 1, machine tool system, tool path correction method, and program according to the embodiment of the present disclosure have been described above, but the tool path correction device 1, machine tool system, tool path correction method, and program are , but not limited to.
 例えば、実施の形態では、工具経路補正装置1が追加加工条件として工具20の総加工距離を用いているが、工具経路補正装置1はこれに限定されない。工具経路補正装置1では、推定部12が工具経路40と工具20の加工の条件に基づいて、被加工部分23の形状および大きさを推定すればよい。実施の形態で説明したマシニングセンタ10の追加加工条件は、その工具20の加工の条件であればよい。また、実施の形態で説明したマシニングセンタ10の加工条件も工具20の加工の条件であればよい。従って、マシニングセンタ10の加工条件と追加加工条件は、工具20の加工の条件である限りにおいて、任意である。 For example, in the embodiment, the tool path correction device 1 uses the total machining distance of the tool 20 as the additional machining condition, but the tool path correction device 1 is not limited to this. In the tool path correction device 1, the estimation unit 12 may estimate the shape and size of the workpiece portion 23 based on the tool path 40 and the machining conditions of the tool 20. The additional machining conditions of the machining center 10 described in the embodiment may be the machining conditions of the tool 20. Further, the machining conditions of the machining center 10 described in the embodiment may also be conditions for machining the tool 20. Therefore, the machining conditions and additional machining conditions of the machining center 10 are arbitrary as long as they are conditions for machining the tool 20.
 例えば、実施の形態では、マシニングセンタ10の加工条件と追加加工条件に工具20の送り速度、切削速度、総加工距離が含まれているが、マシニングセンタ10の加工条件と追加加工条件は、工具20の送り速度、切削速度および総加工距離の少なくとも1つを含むだけでもよい。例えば、マシニングセンタ10の加工条件と追加加工条件は、工具20の送り速度、切削速度または総加工距離だけを含んでもよいし、これらの組み合わせを含んでもよい。このような加工条件と追加加工条件でも、実際の被加工部分23の理論上の被加工部分22に対する形状と大きさの変化と相関性があるパラメータを含むので、推定部12が、このような加工条件と追加加工条件に基づいて、被加工物21が工具20により加工されたときの被加工部分23の形状および大きさを推定することができるからである。 For example, in the embodiment, the machining conditions and additional machining conditions of the machining center 10 include the feed rate, cutting speed, and total machining distance of the tool 20; It is sufficient to include at least one of feed rate, cutting speed, and total machining distance. For example, the machining conditions and additional machining conditions of the machining center 10 may include only the feed rate, cutting speed, or total machining distance of the tool 20, or may include a combination thereof. Since these machining conditions and additional machining conditions also include parameters that are correlated with changes in shape and size of the actual workpiece 23 relative to the theoretical workpiece 22, the estimation unit 12 This is because the shape and size of the machined portion 23 when the workpiece 21 is machined by the tool 20 can be estimated based on the machining conditions and the additional machining conditions.
 さらに、マシニングセンタ10の加工条件と追加加工条件は、図7Aおよび図7Bを用いて説明した工具20の切込量をさらに含んでもよい。その場合、マシニングセンタ10の加工条件と追加加工条件は、工具20の送り速度、切削速度、総加工距離および切込量の少なくとも1つを含むとよい。このような加工条件と追加加工条件でも、上述した場合と同様に、実際の被加工部分23の理論上の被加工部分22に対する形状と大きさの変化と相関性があるパラメータを含むので、推定部12が被加工部分23の形状および大きさを推定することができるからである。 Furthermore, the machining conditions and additional machining conditions of the machining center 10 may further include the depth of cut of the tool 20 described using FIGS. 7A and 7B. In that case, the machining conditions and additional machining conditions of the machining center 10 may include at least one of the feed rate of the tool 20, the cutting speed, the total machining distance, and the depth of cut. These machining conditions and additional machining conditions also include parameters that are correlated with changes in shape and size of the actual machined part 23 with respect to the theoretical machined part 22, as in the case described above. This is because the section 12 can estimate the shape and size of the processed portion 23.
 また、実施の形態では、工具経路補正装置1が摩耗情報として工具20の総加工距離を用いているが、工具経路補正装置1はこれに限定されない。工具経路補正装置1では、上述したように、推定部12が工具経路40と工具20の加工の条件に基づいて、被加工部分23の形状および大きさを推定すればよい。そして、工具20の加工の条件として工具20の摩耗情報が用いられるとよい。その場合の摩耗情報は、上記の要件を満たす限りにおいて任意である。 Furthermore, in the embodiment, the tool path correction device 1 uses the total machining distance of the tool 20 as wear information, but the tool path correction device 1 is not limited to this. In the tool path correction device 1, as described above, the estimation unit 12 may estimate the shape and size of the workpiece portion 23 based on the tool path 40 and the machining conditions of the tool 20. It is preferable that the wear information of the tool 20 is used as the machining condition of the tool 20. The wear information in that case is arbitrary as long as it satisfies the above requirements.
 例えば、推定部12は、工具20の総加工距離をL、被加工物21の硬度をε、切削速度をs、一定のパラメータをβとしたとき、
 α=L×β×ε×s
 となる工具20の摩耗パラメータαを摩耗情報として用いていてもよい。
For example, when the total machining distance of the tool 20 is L, the hardness of the workpiece 21 is ε, the cutting speed is s, and the constant parameter is β,
α=L×β×ε×s
The wear parameter α of the tool 20 may be used as the wear information.
 また、推定部12は、工具20の加工の条件として、工具20の経時変化情報が用いられてもよい。また、推定部12は、工具20の加工の条件として、マシニングセンタ10に備えられる部材の経時変化情報が用いられてもよい。この場合、部材は、定期校正される、例えば、1年に一回または数回校正されるものであるとよい。 Additionally, the estimating unit 12 may use information on changes over time of the tool 20 as conditions for machining the tool 20. Further, the estimating unit 12 may use information on changes over time of members provided in the machining center 10 as conditions for machining the tool 20. In this case, the member may be calibrated periodically, for example, once or several times a year.
 また、実施の形態では、推定部12が図示しないニューラルネットワーク部により推定モデルを構築しているが、推定部12は、これに限定されない。推定部12は、上述したように、工具経路40と工具20の加工の条件に基づいて、被加工部分23の形状および大きさを推定すればよく、その限りにおいて、具体的な実現手段は任意である。例えば、推定部12は、ニューラルネットワーク以外の機械学習により学習された学習済みモデルにより構築されてもよい。この場合、実施の形態で説明した学習用データベース35が学習に用いられるとよい。 Furthermore, in the embodiment, the estimation unit 12 constructs the estimation model using a neural network unit (not shown), but the estimation unit 12 is not limited to this. As described above, the estimating unit 12 only needs to estimate the shape and size of the workpiece portion 23 based on the tool path 40 and the machining conditions of the tool 20, and as long as this is the case, the specific implementation means may be arbitrary. It is. For example, the estimation unit 12 may be constructed using a learned model learned by machine learning other than a neural network. In this case, the learning database 35 described in the embodiment is preferably used for learning.
 実施の形態では、演算部13が、推定された被加工部分23の各部の工具経路40の各部に対するずれから工具経路40を補正して補正経路44を生成する。しかし、演算部13はこれに限定されない。演算部13は、推定部12が推定した形状および大きさを有する被加工部分23の工具経路40に対する位置ずれから工具経路40を補正することにより、被加工部分23を理論上の形状および大きさに近づける工具20の補正経路44を生成するものであればよい。例えば、演算部13は、推定部12が推定した形状および大きさを有する被加工部分23の特徴部分を抽出し、抽出した特徴部分の、工具経路40の対応部分に対する位置ずれから工具経路40を補正してもよい。ここで特徴部分とは、例えば、重心、屈曲部、コーナー部のことである。 In the embodiment, the calculation unit 13 generates a correction path 44 by correcting the tool path 40 based on the estimated deviation of each part of the workpiece portion 23 with respect to each part of the tool path 40. However, the calculation unit 13 is not limited to this. The calculation unit 13 corrects the tool path 40 based on the positional deviation of the workpiece 23 having the shape and size estimated by the estimation unit 12 with respect to the tool path 40, so that the workpiece 23 has the theoretical shape and size. Any method that generates a correction path 44 for the tool 20 that brings the tool 20 closer to . For example, the calculation unit 13 extracts a characteristic part of the workpiece part 23 having the shape and size estimated by the estimation unit 12, and calculates the tool path 40 based on the positional deviation of the extracted characteristic part with respect to the corresponding part of the tool path 40. It may be corrected. Here, the characteristic portions include, for example, the center of gravity, bent portions, and corner portions.
 実施の形態では、推定部12は、入力装置15からユーザーが入力した工具経路を取得している。しかし、推定部12はこれに限定されない。推定部12は、数値制御装置50から工具20の工具経路のデータを受信して、その工具経路のデータを用いてもよい。 In the embodiment, the estimation unit 12 acquires the tool path input by the user from the input device 15. However, the estimation unit 12 is not limited to this. The estimation unit 12 may receive data on the tool path of the tool 20 from the numerical control device 50 and use the data on the tool path.
 また、同様に、実施の形態では、推定部12は、入力装置15からユーザーが入力した加工条件および追加加工条件を取得している。しかし、推定部12は、これに限定されない。推定部12は、数値制御装置50からマシニングセンタ10の動作情報を得て、例えば、過去の工具経路の履歴を得て、摩耗情報を算出してもよい。換言すると、推定部12は、マシニングセンタ10の動作情報を得て、工具20の総加工距離を算出してもよい。 Similarly, in the embodiment, the estimation unit 12 acquires the machining conditions and additional machining conditions input by the user from the input device 15. However, the estimation unit 12 is not limited to this. The estimation unit 12 may obtain operation information of the machining center 10 from the numerical control device 50, for example, obtain a history of past tool paths, and calculate wear information. In other words, the estimation unit 12 may obtain operation information of the machining center 10 and calculate the total machining distance of the tool 20.
 また、実施の形態では、工具経路補正装置1がマシニングセンタ10の工具経路を補正している。しかし、工具経路補正装置1はこれに限定されない。工具経路補正装置1は、工作機械を制御する数値制御装置に補正経路のデータを送信できるものであればよい。従って、工具経路補正装置1は、数値制御装置50に制御される工作機械であればよい。例えば、工具経路補正装置1は、フライス盤の工具経路を補正してもよい。そのほか、工具経路補正装置1は、旋盤、放電加工機の工具経路を補正してもよい。要するに、工具経路補正装置1は、例えば、フライス盤、旋盤、放電加工機の工作機械に適用することができる。 Furthermore, in the embodiment, the tool path correction device 1 corrects the tool path of the machining center 10. However, the tool path correction device 1 is not limited to this. The tool path correction device 1 may be any device that can send correction path data to a numerical control device that controls a machine tool. Therefore, the tool path correction device 1 may be any machine tool that is controlled by the numerical control device 50. For example, the tool path correction device 1 may correct the tool path of a milling machine. In addition, the tool path correction device 1 may correct the tool path of a lathe or an electrical discharge machine. In short, the tool path correction device 1 can be applied to machine tools such as milling machines, lathes, and electric discharge machines, for example.
 また、実施の形態では、工具経路補正装置1が学習部11、学習用DB記憶部16および学習済みデータ記憶部17を備えている。しかし、工具経路補正装置1はこれに限定されない。工具経路補正装置1は、推定部12、演算部13、送信部14を少なくとも備えていればよい。このため、学習部11、学習用DB記憶部16および学習済みデータ記憶部17は任意の構成である。例えば、学習部11、学習用DB記憶部16および学習済みデータ記憶部17は、ネットワーク200を介して、工具経路補正装置1に接続された学習装置に設けられていてもよい。その場合、学習装置は、マイクロプロセッサとメモリを備えるサーバにより構成されていてもよい。そして、そのサーバのメモリに実施の形態で説明した学習プログラムが記憶され、サーバのマイクロプロセッサが学習プログラムを実行することにより、サーバが学習処理を行ってもよい。 Furthermore, in the embodiment, the tool path correction device 1 includes a learning section 11, a learning DB storage section 16, and a learned data storage section 17. However, the tool path correction device 1 is not limited to this. The tool path correction device 1 only needs to include at least an estimation section 12, a calculation section 13, and a transmission section 14. Therefore, the learning section 11, the learning DB storage section 16, and the learned data storage section 17 have arbitrary configurations. For example, the learning section 11, the learning DB storage section 16, and the learned data storage section 17 may be provided in a learning device connected to the tool path correction device 1 via the network 200. In that case, the learning device may be configured by a server including a microprocessor and memory. Then, the learning program described in the embodiment is stored in the memory of the server, and the server's microprocessor executes the learning program, so that the server may perform the learning process.
 なお、実施形態では、工具経路補正プログラムと学習プログラムがメモリ32に格納されているが、工具経路補正プログラムと学習プログラムは、フレキシブルディスク、CD-ROM(Compact Disc Read-Only Memory)、DVD(Digital Versatile Disc)、MO(Magneto-Optical Disc)等のコンピュータが読み取り可能な非一時的な記録媒体に格納されて配布されてもよい。この場合、その記録媒体に格納された工具経路補正プログラムと学習プログラムがコンピュータにインストールされることにより、工具経路補正処理と学習処理を実行する工具経路補正装置1が構成されてもよい。 In the embodiment, the tool path correction program and the learning program are stored in the memory 32, but the tool path correction program and the learning program can be stored on a flexible disk, CD-ROM (Compact Disc Read-Only Memory), or DVD (Digital). The information may be stored and distributed in a computer-readable non-transitory recording medium such as a Versatile Disc or a Magneto-Optical Disc (MO). In this case, the tool path correction device 1 that executes the tool path correction process and the learning process may be configured by installing the tool path correction program and learning program stored in the recording medium into a computer.
 また、工具経路補正プログラムまたは学習プログラムは、インターネットに代表される通信ネットワーク上のサーバ装置が有するディスク装置に格納され、工具経路補正プログラムまたは学習プログラムが、例えば、搬送波に重畳されて、ダウンロードされてもよい。また、通信ネットワークを介して工具経路補正プログラムまたは学習プログラムが転送されながら起動実行されることによっても、上述した工具経路補正処理と学習処理が達成されてもよい。さらに、工具経路補正プログラムまたは学習プログラムの全部又は一部をサーバ装置上で実行させ、それら処理に関する情報をコンピュータが通信ネットワークを介して送受信しながらプログラムを実行することによっても、上述した工具経路補正処理または学習処理が達成されてもよい。 Further, the tool path correction program or learning program is stored in a disk device included in a server device on a communication network such as the Internet, and the tool path correction program or learning program is, for example, superimposed on a carrier wave and downloaded. Good too. The tool path correction process and learning process described above may also be achieved by starting and executing the tool path correction program or the learning program while being transferred via the communication network. Furthermore, the tool path correction described above can also be performed by executing all or part of the tool path correction program or learning program on a server device, and executing the program while the computer transmits and receives information regarding these processes via a communication network. A processing or learning process may be accomplished.
 また、工具経路補正処理または学習処理を、各OS(Operating System)が分担して実現する場合、又は、OSとアプリケーションとの協働により実現する場合等には、OS以外の部分のみが媒体に格納されて配布されてもよく、また、ダウンロードされてもよい。また、工具経路補正装置1の機能を実現する手段は、ソフトウェアに限られず、その一部又は全部を、回路を含む専用のハードウエアによって実現されてもよい。 In addition, when tool path correction processing or learning processing is realized by each OS (Operating System), or when it is realized through cooperation between the OS and an application, only the parts other than the OS are used as the medium. It may be stored and distributed, or it may be downloaded. Further, the means for realizing the functions of the tool path correction device 1 is not limited to software, and a part or all of it may be realized by dedicated hardware including a circuit.
 本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施形態および変形が可能とされるものである。また、上述した実施形態は、本開示を説明するためのものであり、本開示の範囲を限定するものではない。つまり、本開示の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内およびそれと同等の開示の意義の範囲内で施される様々な変形が、本開示の範囲内とみなされる。 The present disclosure is capable of various embodiments and modifications without departing from the broad spirit and scope of the present disclosure. Further, the embodiments described above are for explaining the present disclosure, and do not limit the scope of the present disclosure. That is, the scope of the present disclosure is indicated by the claims rather than the embodiments. Various modifications made within the scope of the claims and the meaning of the disclosure equivalent thereto are considered to be within the scope of the present disclosure.
 本出願は、2022年5月18日に出願された日本国特許出願特願2022-81458号に基づく。本明細書中に日本国特許出願特願2022-81458号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2022-81458 filed on May 18, 2022. The entire specification, claims, and drawings of Japanese Patent Application No. 2022-81458 are incorporated herein by reference.
 1 工具経路補正装置、10 マシニングセンタ、11 学習部、12 推定部、13 演算部、14 送信部、15 入力装置、16 学習用DB記憶部、17 学習済みデータ記憶部、18,19 ニューラルネットワーク部、20 工具、21 被加工物、22,23 被加工部分、31 プロセッサ、32 メモリ、33 ネットワークインターフェース、34 バス、35 学習用データベース、36 工具経路および加工条件データ、40 工具経路、41 開始点、42,43 誤差、44 補正経路、50 数値制御装置、51 メモリ、52,53 マイクロプロセッサ、54 数値データ記憶部、55 演算部、56 制御部、100 マシニングセンタシステム、110 コラム、120 テーブル、121 案内レール、130 サドル、131 案内レール、140 主軸ヘッド、141 案内レール、142 ホルダ、150 ベース、200 ネットワーク。 1 Tool path correction device, 10 Machining center, 11 Learning unit, 12 Estimating unit, 13 Calculating unit, 14 Transmitting unit, 15 Input device, 16 Learning DB storage unit, 17 Learned data storage unit, 18, 19 Neural network unit, 20 tool, 21 workpiece, 22, 23 workpiece part, 31 processor, 32 memory, 33 network interface, 34 bus, 35 learning database, 36 tool path and machining condition data, 40 tool path, 41 starting point, 42 , 43 error, 44 correction path, 50 numerical control device, 51 memory, 52, 53 microprocessor, 54 numerical data storage section, 55 calculation section, 56 control section, 100 machining center system, 110 column, 120 table, 121 guide rail, 130 saddle, 131 guide rail, 140 spindle head, 141 guide rail, 142 holder, 150 base, 200 network.

Claims (11)

  1.  工具の経路である工具経路と前記工具による加工の条件とに基づいて、被加工物が前記工具により加工されたときの被加工部分の形状および大きさを推定する推定部と、
     前記推定部が推定した前記形状および大きさを有する前記被加工部分の前記工具経路に対する位置ずれから前記工具経路を補正することにより、前記被加工部分を理論上の形状および大きさに近づける前記工具の補正経路を求める演算部と、
     前記工具を保持する工作機械を制御する数値制御装置に前記補正経路のデータを送信する送信部と、
     を備える、
     工具経路補正装置。
    an estimation unit that estimates the shape and size of a machined part when the workpiece is machined by the tool, based on a tool path that is a tool path and processing conditions by the tool;
    The tool corrects the tool path based on the positional deviation of the workpiece portion having the shape and size estimated by the estimation unit with respect to the tool path, thereby bringing the workpiece portion closer to a theoretical shape and size. an arithmetic unit that calculates a correction path of;
    a transmitter that transmits data of the correction path to a numerical control device that controls a machine tool that holds the tool;
    Equipped with
    Tool path correction device.
  2.  前記演算部は、前記推定部が推定した形状および大きさを有する前記被加工部分の各部分の、前記工具経路の各部分に対するずれを求め、求めた前記位置ずれに基づいて前記補正経路を生成する、
     請求項1に記載の工具経路補正装置。
    The calculation unit calculates a deviation of each part of the workpiece part having the shape and size estimated by the estimation unit with respect to each part of the tool path, and generates the correction path based on the calculated positional deviation. do,
    The tool path correction device according to claim 1.
  3.  前記推定部は、前記加工の条件として前記工具の摩耗情報を用いる、
     請求項1または2に記載の工具経路補正装置。
    The estimation unit uses wear information of the tool as a condition for the machining.
    The tool path correction device according to claim 1 or 2.
  4.  前記工具の摩耗情報は、前記工具が加工に用いられた総加工距離である、
     請求項3に記載の工具経路補正装置。
    The tool wear information is a total machining distance over which the tool was used for machining.
    The tool path correction device according to claim 3.
  5.  前記推定部は、前記加工の条件として前記工具の送り速度または切込量を用いる、
     請求項1または2に記載の工具経路補正装置。
    The estimation unit uses a feed rate or a depth of cut of the tool as a condition for the machining.
    The tool path correction device according to claim 1 or 2.
  6.  前記推定部は、前記工具経路および前記加工の条件に対する前記被加工部分の形状および大きさを学習した学習済みモデルを用いて前記被加工部分の形状および大きさを推定する、
     請求項1から5のいずれか1項に記載の工具経路補正装置。
    The estimation unit estimates the shape and size of the machined part using a trained model that has learned the shape and size of the machined part with respect to the tool path and the machining conditions.
    The tool path correction device according to any one of claims 1 to 5.
  7.  請求項1から6のいずれか1項に記載の工具経路補正装置と、
     前記工具を保持するホルダを有する前記工作機械と、
     前記工作機械を制御する前記数値制御装置と、
     を備える工作機械システム。
    A tool path correction device according to any one of claims 1 to 6,
    the machine tool having a holder that holds the tool;
    the numerical control device that controls the machine tool;
    A machine tool system equipped with
  8.  前記数値制御装置は、前記工具経路のデータを前記推定部に送信し、前記送信部からの前記補正経路のデータを受信して、前記補正経路で前記ホルダに保持された前記工具が動作する状態に前記工作機械を制御する、
     請求項7に記載の工作機械システム。
    The numerical control device transmits data on the tool path to the estimating unit, receives data on the correction path from the transmission unit, and determines a state in which the tool held in the holder operates on the correction path. controlling said machine tool to;
    The machine tool system according to claim 7.
  9.  前記加工の条件は、前記工具の摩耗情報であり、
     前記工具経路補正装置は、前記数値制御装置から前記工作機械の動作情報を得て、前記摩耗情報を算出する、
     請求項7または8に記載の工作機械システム。
    The processing conditions are wear information of the tool,
    The tool path correction device obtains operation information of the machine tool from the numerical control device and calculates the wear information.
    The machine tool system according to claim 7 or 8.
  10.  工作機械に取り付けられる工具の経路である工具経路と前記工具による加工の条件とに基づいて、被加工物が前記工具により加工されたときの被加工部分の形状および大きさを推定するステップと、
     前記被加工部分の形状および大きさを推定するステップで推定した前記形状および大きさを有する前記被加工部分の前記工具経路に対する位置ずれから前記工具経路を補正することにより、前記被加工部分を理論上の形状および大きさに近づける前記工具の補正経路を生成するステップと、
     を備える、
     工具経路の補正方法。
    estimating the shape and size of the workpiece when the workpiece is machined by the tool, based on a tool path that is a path of a tool attached to a machine tool and processing conditions by the tool;
    By correcting the tool path based on the positional deviation of the workpiece having the shape and size estimated in the step of estimating the shape and size of the workpiece with respect to the tool path, the workpiece is theoretically calculated. generating a correction path for the tool that approximates the shape and size above;
    Equipped with
    How to correct tool path.
  11.  工具を保持する工作機械を制御する数値制御装置とデータの送受信を行うコンピュータに、
     前記工具の経路である工具経路と前記工具による加工の条件とに基づいて、被加工物が前記工具により加工されたときの被加工部分の形状および大きさを推定するステップと、
     前記被加工部分の形状および大きさを推定するステップで推定した前記形状および大きさを有する前記被加工部分の前記工具経路に対する位置ずれから前記工具経路を補正することにより、前記被加工部分を理論上の形状および大きさに近づける前記工具の補正経路を生成するステップと、
     前記数値制御装置に前記補正経路のデータを送信するステップと、
     を実行させるためのプログラム。
    The computer that sends and receives data to the numerical control device that controls the machine tool that holds the tool,
    estimating the shape and size of the workpiece when the workpiece is machined by the tool, based on the tool path that is the path of the tool and the conditions for machining by the tool;
    By correcting the tool path based on the positional deviation of the workpiece having the shape and size estimated in the step of estimating the shape and size of the workpiece with respect to the tool path, the workpiece is theoretically calculated. generating a correction path for the tool that approximates the shape and size above;
    transmitting data of the correction path to the numerical control device;
    A program to run.
PCT/JP2022/035318 2022-05-18 2022-09-22 Tool route correction device, machine tool system, tool route correction method, and program WO2023223571A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022081458 2022-05-18
JP2022-081458 2022-05-18

Publications (1)

Publication Number Publication Date
WO2023223571A1 true WO2023223571A1 (en) 2023-11-23

Family

ID=88835063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035318 WO2023223571A1 (en) 2022-05-18 2022-09-22 Tool route correction device, machine tool system, tool route correction method, and program

Country Status (1)

Country Link
WO (1) WO2023223571A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266604A (en) * 1988-08-31 1990-03-06 Okuma Mach Works Ltd Numerical control system
JP2004255514A (en) * 2003-02-26 2004-09-16 Kobe Steel Ltd Prediction method of tool abrasion loss
JP2020011328A (en) * 2018-07-17 2020-01-23 ファナック株式会社 Automatic route generating device
JP2020184321A (en) * 2019-04-26 2020-11-12 芝浦機械株式会社 Work-piece processing method and work-piece processing machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266604A (en) * 1988-08-31 1990-03-06 Okuma Mach Works Ltd Numerical control system
JP2004255514A (en) * 2003-02-26 2004-09-16 Kobe Steel Ltd Prediction method of tool abrasion loss
JP2020011328A (en) * 2018-07-17 2020-01-23 ファナック株式会社 Automatic route generating device
JP2020184321A (en) * 2019-04-26 2020-11-12 芝浦機械株式会社 Work-piece processing method and work-piece processing machine

Similar Documents

Publication Publication Date Title
JP3887197B2 (en) NC machine tool correction device
JP6706518B2 (en) Processing time prediction device, cutting processing system, and processing time prediction method
JP6450732B2 (en) Numerical controller
JP6804657B2 (en) Numerical control system and motor control device
US20230152773A1 (en) Machine Tool Control and Method for Characteristic Diagram-based Error Compensation on a Machine Tool
US11567470B2 (en) Computer-aided optimization of numerically controlled machining of a workpiece
KR20220044506A (en) Machining error compensation system and method during precision jig grinding process
JP7292202B2 (en) Methods for Estimating Error Propagation
JP2013059839A (en) Machining control method of machine tool
JP2021088024A (en) Numerical control device and control method
WO2021005887A1 (en) Machining management method and machining management system
JP6856162B2 (en) Control system
JP2019152936A (en) Machine tool machining simulation device
Guiassa et al. Closed door machining error compensation of complex surfaces using the cutting compliance coefficient and on-machine measurement for a milling process
JP6961128B1 (en) Simulation equipment, machine tool system, simulation method and machining method
JP2008268118A (en) Method and device for measuring shape
WO2023223571A1 (en) Tool route correction device, machine tool system, tool route correction method, and program
JP2006235776A (en) Machine tool and processing method by this machine tool
JP7158636B1 (en) Machining evaluation device, machining system, and machining evaluation method
WO2023153446A1 (en) Proposal device, proposal system, proposal method, and program
Spescha et al. Design to Specifications-A Strategy for Specification-Based Machine Design
WO2022118709A1 (en) Computer, parameter estimation processing method, and parameter estimation processing program
JP6997360B1 (en) Numerical control device, machining system simulator and numerical control program
JP7476497B2 (en) A support device for creating analytical models of machine tools
JP6507619B2 (en) Method of determining condition of temperature detection position used for thermal displacement estimation device of machine tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942774

Country of ref document: EP

Kind code of ref document: A1