WO2021005879A1 - 流量制御装置、流量測定方法、及び、流量制御装置用プログラム - Google Patents

流量制御装置、流量測定方法、及び、流量制御装置用プログラム Download PDF

Info

Publication number
WO2021005879A1
WO2021005879A1 PCT/JP2020/018785 JP2020018785W WO2021005879A1 WO 2021005879 A1 WO2021005879 A1 WO 2021005879A1 JP 2020018785 W JP2020018785 W JP 2020018785W WO 2021005879 A1 WO2021005879 A1 WO 2021005879A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
pressure
control valve
flow
valve
Prior art date
Application number
PCT/JP2020/018785
Other languages
English (en)
French (fr)
Inventor
和弥 徳永
Original Assignee
株式会社堀場エステック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場エステック filed Critical 株式会社堀場エステック
Priority to JP2021530504A priority Critical patent/JP7529664B2/ja
Publication of WO2021005879A1 publication Critical patent/WO2021005879A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means

Definitions

  • the present invention relates to a flow rate control device such as a mass flow controller.
  • Mass flow controllers used for such applications include, for example, as described in Patent Document 1, a pressure control valve provided on the upstream side and a flow rate control valve provided on the downstream side and provided with an opening sensor. And various sensors that measure the temperature and pressure of the fluid within the volume between the two valves.
  • This mass flow controller controls the pressure of the gas in the volume to be kept constant by the pressure control valve on the upstream side, and then controls the flow rate of the gas flowing out of the volume by the flow control valve on the downstream side.
  • the mass flow controller stores a map showing the relationship between the temperature and pressure of the fluid in the volume, the flow rate of the fluid passing through the flow rate control valve, and the opening degree of the flow rate control valve. Then, the mass flow controller refers to the map based on the set flow rate and the measured temperature and pressure, and outputs the corresponding opening degree as the set opening degree. Further, the flow rate control valve is controlled so that the measured opening degree measured by the opening degree sensor becomes the set opening degree.
  • the following calibration operation is performed for map calibration, for example, by using a period during which the process is not performed in the chamber.
  • the flow control valve on the downstream side is fully closed, and a gas having a predetermined pressure is stored in the volume between the pressure control valve and the flow control valve.
  • the pressure control valve on the upstream side is fully closed and the flow rate control valve is opened, and changes in pressure and temperature within the volume from that point are measured.
  • the flow rate of the gas flowing out from the volume through the flow rate control valve is calculated by substituting the differential value of the pressure indicating the amount of time change of the pressure and the temperature into the flow rate calculation formula derived from the gas state equation.
  • the measured flow rate calculated in this way is compared with the flow rate under the corresponding conditions stored in the map, and if there is a difference of more than a predetermined value, the flow rate stored in the map is updated to the measured flow rate. Will be done.
  • the correctness of the valve flow rate can be guaranteed.
  • the flow velocity resistance is greatly increased by the provided fluid resistance or the like. Then, for example, the response speed at the time of transient response is significantly reduced, and there is a risk that the required specifications cannot be satisfied.
  • the present invention has been made in view of the above-mentioned problems, and a flow rate control device capable of guaranteeing the correctness of the valve flow rate without increasing the flow path resistance between the flow rate control valve and the supply target.
  • the purpose is to provide.
  • the flow rate control device is measured by a flow rate control valve provided in the main flow path, a second pressure sensor provided on the upstream side of the flow rate control valve, and at least the second pressure sensor.
  • a flow controller that controls the flow control valve based on the second pressure and a set flow rate, and a first branch that branches on the downstream side of the flow control valve in the main flow path and is connected to a fluid supply target.
  • the valve flow rate calculation unit for calculating the flow rate of the fluid passing through the flow rate control valve based on the third pressure measured by the three-pressure sensor is provided.
  • the flow control method according to the present invention is measured by a flow control valve provided in the main flow path, a second pressure sensor provided on the upstream side of the flow control valve, and at least the second pressure sensor.
  • a flow rate measuring method used in a flow rate control device wherein a flow rate controller that controls the flow rate control valve based on a second pressure and a set flow rate is used in the main flow path on the downstream side of the flow rate control valve.
  • a first branch flow path that branches and is connected to a fluid supply target, a second branch flow path that branches on the downstream side of the flow control valve in the main flow path, and a second branch flow path provided on the second branch flow path.
  • a third pressure sensor is provided, and the flow rate of the fluid passing through the flow control valve is calculated based on at least the second pressure and the third pressure measured by the third pressure sensor.
  • valve flow rate calculation unit can constantly calculate the valve flow rate, which is the flow rate of the fluid passing through the flow control valve, based on the second pressure and the third pressure, the valve flow rate is constantly monitored. be able to.
  • valve flow rate which is the flow rate of the fluid passing through the flow rate control valve
  • a fluid resistance provided on the upstream side of the second pressure sensor and the fluid resistance Resistance flow rate calculation that calculates the flow rate of the fluid flowing through the fluid resistance based on the first pressure sensor provided on the upstream side of the above, the first pressure measured by the first pressure sensor, and the second pressure.
  • the flow controller further comprises, and shows the relationship between at least the resistance flow rate calculated by the resistance flow rate calculation unit, the second pressure, and the flow rate of the fluid passing through the flow rate control valve.
  • the map is referred to, and the flow rate of the fluid passing through the corresponding flow control valve is used as the estimated valve flow rate.
  • An example includes a map reference unit that outputs a map, and an opening degree control unit that controls the flow control valve so that the estimated valve flow rate becomes the set flow rate. Further, in such a case, whether or not the result of controlling the flow rate control valve based on the estimated valve flow rate is operating correctly can be confirmed by referring to the measured valve flow rate calculated by the flow rate calculation unit. it can.
  • the pressure control provided on the upstream side of the first pressure sensor. It suffices to further include a valve and a pressure control unit that controls the pressure control valve so that the first pressure becomes a set pressure.
  • an opening sensor for measuring the opening degree of the flow rate control valve is further provided.
  • the flow rate controller is measured by a map storage unit that stores at least a map showing the relationship between the second pressure, the opening degree of the flow rate control valve, and the flow rate of the fluid passing through the flow rate control valve. Based on the second pressure and the set flow rate, the map is referenced and measured by the map reference unit that outputs the opening degree of the corresponding flow rate control valve as the set opening degree and the opening degree sensor. Examples thereof include an opening degree control unit that controls the flow rate control valve so that the measurement opening degree becomes the set opening degree.
  • a pressure control valve provided on the upstream side of the second pressure sensor and the second pressure are used.
  • Examples thereof include a pressure control unit that controls the pressure control valve so as to have a set pressure.
  • the map is based on the measured valve flow rate calculated by the valve flow rate calculation unit. It suffices if it is equipped with an additional calibrator to update.
  • the calibrator may use the estimated valve flow rate and the said.
  • the map may be updated when the difference between the measured valve flow rates is equal to or greater than a predetermined value.
  • the valve flow rate calculation unit has the conductance of the flow rate control valve and the said.
  • the measured valve flow rate is calculated based on the differential pressure between the second pressure and the third pressure.
  • a fluid resistance provided on the upstream side of the second pressure sensor and an upstream side of the fluid resistance
  • a resistance flow rate calculation unit that calculates the flow rate of the fluid flowing through the fluid resistance based on the provided first pressure sensor, the first pressure measured by the first pressure sensor, and the second pressure, and the above.
  • a pressure control valve provided on the upstream side of the first pressure sensor is provided, and the flow controller has a resistance flow rate calculated by the resistance flow rate calculation unit and a first pressure measured by the first pressure sensor.
  • the valve flow rate estimation unit that estimates the flow rate passing through the flow rate control valve based on the time change amount of, and the flow rate control so that the estimated valve flow rate estimated by the valve flow rate estimation unit becomes the set flow rate. It suffices if it is provided with an opening degree control unit for controlling the valve. In such a case, the flow rate of the fluid passing through the flow rate control valve is calculated by using the pressure information between the pressure control valve and the fluid resistance, and the control performance of the transient response is improved. Can be done.
  • a flow control valve provided in the main flow path, a second pressure sensor provided on the upstream side of the flow control valve, a pressure control valve provided on the upstream side of the second pressure sensor, and the pressure control valve. If the flow control device is provided with one or a plurality of temperature sensors provided in a volume formed between the flow control valve and the flow control valve, the temperature sensor is provided outside the volume. Therefore, it is possible to accurately measure the temperature of the actually flowing fluid as compared with the case of indirectly measuring the temperature of the fluid. As a result, it becomes possible to calculate, for example, an accurate flow rate by using an accurate fluid temperature.
  • a mesh member filled in the volume In order to stabilize the temperature of the fluid in the volume and allow the temperature of the fluid flowing in the volume to be measured more accurately, it may be further provided with a mesh member filled in the volume. ..
  • At least the second pressure measured by the second pressure sensor and the second pressure measured by the temperature sensor are measured. It may be further provided with a flow rate controller that controls the flow rate control valve based on the temperature and the set flow rate.
  • valve flow rate calculation unit that calculates the flow rate of the fluid passing through the flow rate control valve based on at least the second pressure and the measurement temperature measured by the temperature sensor, the measurement is accurate. It is possible to accurately calculate the flow rate of the fluid passing through the flow rate control valve by using the temperature.
  • the flow path resistance between the flow rate control valve and the fluid supply target is prevented from increasing.
  • a branch flow path and a third pressure sensor provided on the second branch flow path are further provided, and the valve flow rate calculation unit includes at least the second pressure and a third pressure measured by the third pressure sensor. , And, it may be configured to calculate the flow rate of the fluid passing through the flow rate control valve based on the measured temperature.
  • the flow rate control valve provided in the main flow path and the above-mentioned
  • a second pressure sensor provided on the upstream side of the flow rate control valve, a first branch flow path that branches on the downstream side of the flow rate control valve in the main flow path and is connected to a fluid supply target, and the main flow rate.
  • a program used in a flow rate control device including a second branch flow path that branches on the downstream side of the flow rate control valve on the road and a third pressure sensor provided on the second branch flow path, at least.
  • a flow controller that controls the flow control valve based on the second pressure measured by the second pressure sensor and the set flow rate, and at least the second pressure and the third pressure measured by the third pressure sensor. Based on the above, a valve flow rate calculation unit that calculates the flow rate of the fluid passing through the flow control valve, and a flow control device program characterized by causing the computer to exert the function as a valve may be used.
  • the program for the flow control device may be electronically distributed, or may be recorded on a program recording medium such as a CD, DVD, HDD, or flash memory.
  • the third pressure sensor is provided on the second branch flow path formed on the downstream side of the flow rate control valve and not connected to the fluid supply target. Therefore, the flow rate of the fluid passing through the flow rate control valve can be actually measured based on the output of the third pressure sensor without increasing the flow path resistance on the downstream side of the flow rate control valve. As a result, it becomes possible to control the flow rate while actually monitoring the valve flow rate.
  • FIG. 6 is a schematic cross-sectional view showing details of the internal structure of the flow rate control device according to the fourth embodiment of the present invention.
  • the flow rate control device 100 according to the first embodiment of the present invention will be described with reference to FIG.
  • the flow rate control device 100 of the first embodiment is used, for example, in a semiconductor manufacturing process to supply a fluid gas to the chamber CN at a set flow rate.
  • the flow rate control device 100 includes a fluid device including a sensor and a valve provided in the flow path, and a control mechanism COM that controls the control of the fluid device.
  • a flow control valve V2 is provided. Further, the downstream side of the flow control valve V2 of the main flow path ML is branched into two flow paths, and is connected to the first branch flow path DL1 connected to the chamber CN to which the fluid is supplied and to the chamber CN.
  • the fluid resistance R is, for example, a laminar flow element, and generates a differential pressure according to the gas flow rate before and after the fluid resistance R.
  • the supply pressure sensor P0 is for monitoring the pressure of the gas supplied from the upstream side.
  • the supply pressure sensor P0 may be omitted when it is guaranteed that the supply pressure is stable.
  • the first pressure sensor P1 measures the first pressure, which is the pressure of the gas charged in the upstream volume, which is the volume between the pressure control valve V1 on the upstream side and the fluid resistance R in the flow path. Is.
  • the second pressure sensor P2 measures the second pressure, which is the pressure of the gas charged in the downstream volume, which is the volume between the fluid resistance R and the flow control valve V2 on the downstream side in the flow path. is there.
  • the first pressure sensor P1 and the second pressure sensor P2 measure the pressures of the two volumes formed by the pressure control valve V1, the fluid resistance R, and the flow rate control valve V2, respectively.
  • the first pressure sensor P1 and the second pressure sensor P2 measure the pressure in each volume arranged before and after the fluid resistance R.
  • the pressure control valve V1 and the flow rate control valve V2 are of the same type in the first embodiment, and are, for example, piezo valves in which the valve body is driven with respect to the valve seat by a piezo element.
  • the opening degree of the pressure control valve V1 and the flow rate control valve V2 is changed according to the voltage input as the operation amount.
  • at least the flow rate control valve V2 is provided with an opening degree sensor V2, and the current opening degree can be measured.
  • the opening sensor V2 include a displacement sensor that outputs a valve body or an output according to the movement of a plunger, an actuator, or the like connected to the valve body.
  • control mechanism COM will be described in detail.
  • the control mechanism COM is a so-called computer including, for example, a CPU, a memory, an A / D converter, a D / A converter, an input / output means, etc., and various devices are executed by executing a program for a flow control device stored in the memory.
  • a program for a flow control device stored in the memory.
  • the resistance flow rate calculation unit 1 constitutes a so-called differential pressure type flow rate sensor FM together with the first pressure sensor P1, the fluid resistance R, and the second pressure sensor P2. That is, the resistance flow rate calculation unit 1 receives the first pressure measured by the first pressure sensor P1 and the second pressure measured by the second pressure sensor P2 as inputs, and is a resistance that is the flow rate of the fluid flowing through the fluid resistance R. It calculates the flow rate and outputs it.
  • an existing flow rate calculation formula can be used as the flow rate calculation formula used in the resistance flow rate calculation unit 1.
  • the resistance flow rate calculated by the resistance flow rate calculation unit 1 changes continuously, but is predetermined with respect to the actual flow rate passing through the flow rate control valve V2 realized by the control of the flow rate control valve V2. There is a time delay.
  • the valve flow rate which is the flow rate of the fluid passing through the flow rate control valve V2 is set based on at least the second pressure measured by the second pressure sensor P2 and the set flow rate set by the user.
  • the flow rate control valve V2 is controlled so as to be.
  • the flow rate controller 2 estimates the valve flow rate from the resistance flow rate calculated by the resistance flow rate calculation unit 1 and the second pressure measured by the second pressure sensor, and the valve flow rate becomes the set flow rate.
  • the flow rate control valve V2 is flow rate feedback controlled as described above.
  • the valve flow rate is estimated with reference to the map based on the resistance flow rate and the second pressure.
  • the flow rate controller 2 includes a map storage unit 21, a map reference unit 22, and an opening degree control unit 23.
  • the map storage unit 21 stores at least a map showing the relationship between the resistance flow rate, the second pressure, and the valve flow rate.
  • a map showing the relationship between the resistance flow rate, the second pressure, and the valve flow rate.
  • a flow rate sensor is actually placed on the downstream side of the flow rate control valve V2 to perform actual measurement, and the relationship between each parameter is stored in a database. It is a thing.
  • the map may be in the form of a table or an expression showing the relationship between each parameter.
  • the map reference unit 22 refers to the map stored in the map storage unit 21 based on the measured resistance flow rate and the second pressure, and sets the corresponding valve flow rate as the estimated valve flow rate as the opening degree control unit 23. Output to.
  • the valve flow rate estimated in this way is configured so that the delay with respect to the actual valve flow rate is smaller than that of the resistance flow rate.
  • the opening degree control unit 23 controls the flow rate control valve V2 so that the estimated valve flow rate becomes the set flow rate.
  • the voltage applied to the flow rate control valve V2 is feedback-controlled so that the deviation between the estimated valve flow rate and the set flow rate becomes small.
  • the valve flow rate calculation unit 3 shown in FIG. 1 calculates the flow rate of the fluid passing through the flow rate control valve V2 based on at least the second pressure and the third pressure measured by the third pressure sensor. Specifically, the valve flow rate calculation unit 3 calculates the measured valve flow rate from the conductance determined by the opening degree of the flow rate control valve V2 and the differential pressure between the second pressure and the third pressure. Here, the valve flow rate calculation unit 3 stores a table showing the relationship between the opening degree and the conductance, and outputs the actually measured valve flow rate using the conductance according to the opening degree measured by the opening degree sensor V21. To do. In this way, the valve flow rate calculation unit 3 calculates the flow rate of the fluid passing through the flow rate control valve V2 based on the measured value. Therefore, unlike the estimated valve flow rate, this valve flow rate is actually measured in real time during the flow rate control. It is the value that was set. Also, in this embodiment, the measured valve flow rate is used to update the map.
  • the calibrator 4 updates the map in the flow rate controller 2 based on the measured valve flow rate calculated by the valve flow rate calculation unit 3 as shown in FIGS. 1 and 2. Specifically, when the difference between the estimated valve flow rate used for controlling the flow rate control valve V2 and the measured valve flow rate is greater than or equal to a predetermined value, the second pressure and resistance flow rate at that time in the map are used. Update the corresponding valve flow rate to the measured valve flow rate.
  • the pressure control unit 5 controls the pressure control valve V1 based on the set pressure set by the user and the first pressure measured by the first pressure sensor P1. Specifically, the voltage applied to the pressure control valve V1 is pressure feedback controlled so that the deviation between the set pressure and the first pressure becomes small.
  • the flow rate of the fluid passing through the flow rate control valve V2 is determined while performing the flow rate feedback control so that the flow rate control valve V2 reaches the set flow rate. It can be monitored based on the 2nd pressure and the 3rd pressure.
  • the third pressure sensor P3 provided on the downstream side of the flow rate control valve V2 is provided on the second branch flow path DL2 not connected to the chamber CN to be supplied, the valve flow rate is actually measured.
  • the equipment provided for this does not increase the flow path resistance between the flow control valve V2 and the chamber CN. Therefore, the flow rate control device 100 of the first embodiment can maintain a high response speed while guaranteeing the accuracy of the valve flow rate of the fluid passing through the flow rate control valve V2.
  • the map may show the relationship between the resistance flow rate, the second pressure, the temperature, and the valve flow rate so that the temperature effect of the fluid can be taken into consideration.
  • the temperature of the fluid resistance R can be measured by a temperature sensor such as a thermistor, and the map reference unit 22 refers to the map based on the measured temperature, the second pressure, and the resistance flow rate to refer to the valve. It may be configured to output the flow rate.
  • a temperature sensor such as a thermistor
  • the map reference unit 22 refers to the map based on the measured temperature, the second pressure, and the resistance flow rate to refer to the valve. It may be configured to output the flow rate.
  • the flow rate control device 100 of the second embodiment has a different configuration of the flow rate controller 2 from that of the first embodiment as shown in FIGS. 3 and 4.
  • the flow controller 2 is configured to calculate the estimated valve flow rate based on the amount of time change of the first pressure, not on the map reference. Therefore, while the second pressure is input to the flow rate controller 2 of the first embodiment, the first pressure is input to the flow rate controller 2 of the second embodiment as shown in FIG. To.
  • the flow rate controller 2 measures the resistance flow rate calculated by the resistance flow rate calculation unit 1 instead of the map storage unit 21 and the map reference unit 22, and the first pressure sensor P1.
  • a valve flow rate estimation unit 24 that estimates the flow rate passing through the flow rate control valve V2 based on the amount of time change of the first pressure is provided.
  • the valve flow rate estimation unit 24 calculates, for example, a time differential value of the first pressure as the time change amount of the first pressure, and outputs a value obtained by multiplying the differential value by a predetermined coefficient.
  • An output unit 26 that calculates an estimated valve flow rate based on the time change amount and the resistance flow rate from the change amount calculation unit 25 is provided.
  • the time change amount calculation unit 25 is not limited to the one that differentiates the first pressure, and may perform the difference calculation for each sampling time of the first pressure sensor P1.
  • the calibrator 4 when the difference between the estimated valve flow rate and the measured valve flow rate is equal to or more than a predetermined value, the calibrator 4 corrects the coefficient used by the time change amount calculation unit 25 according to the difference.
  • the resistance flow rate can be corrected and calculated based on the time derivative value of the first pressure, and the estimated valve flow rate can be calculated. Further, since the change in pressure on the upstream side can output a value in consideration of the resistance flow rate, it is possible to correct the transient change in the valve flow rate.
  • the flow rate control device 100 of the third embodiment is different from the flow rate control device 100 shown in the first and second embodiments, and the fluid resistance R is not provided between the pressure control valve V1 and the flow rate control valve V2.
  • the space between the pressure control valve V1 and the flow rate control valve V2 is configured as one large volume VL.
  • the pressure sensor is omitted from the first pressure sensor, and only the second pressure sensor P2 is provided. That is, in this volume, the function for measuring the flow rate is omitted, and the pressure control valve V1 is also controlled based on the output of the second pressure sensor P2.
  • the configuration of the flow rate controller 2 is also different from that of the first and second embodiments as shown in FIG. That is, the flow rate controller 2 calculates the set opening corresponding to the realized valve flow rate based on the second pressure measured by the second pressure sensor P2 and the set flow rate, and the calculated set opening and opening sensor The flow rate control valve V2 is controlled so that the deviation of the measured opening degree measured by V21 becomes small.
  • the map shows the relationship between at least the second pressure, the opening degree of the flow rate control valve V2, and the flow rate of the fluid passing through the flow rate control valve V2.
  • the map reference unit 22 refers to the map based on the measured second pressure and the measured opening degree and the set flow rate set by the user, and outputs the corresponding set opening degree.
  • the opening degree control unit 23 applies to the flow rate control valve V2 so that the measurement opening degree output from the opening degree sensor V21 provided in the flow rate control valve V2 becomes the set opening degree output from the map reference unit 22. Control the voltage to be applied.
  • the valve flow rate calculation unit 3 inputs the second pressure, which is the pressure on the upstream side of the flow control valve V2, the third pressure, which is the pressure on the downstream side, and the measurement opening degree. Calculate the measured valve flow rate based on the value. More specifically, the valve flow rate calculation unit 3 calculates the measured valve flow rate for each control cycle, for example, based on the differential pressure between the second pressure and the third pressure and the conductance according to the measurement opening degree of the flow control valve V2. doing.
  • the calibrator 4 updates the map each time the measured valve flow rate is calculated from the valve flow rate calculation unit 3 as shown in FIGS. 5 and 6. Specifically, the flow rate is updated to the measured flow rate in the set of the second pressure, the opening degree, and the flow rate referred to for outputting the set opening degree.
  • the flow rate control device 100 of the third embodiment configured in this way, the flow rate control is performed without measuring the flow rate based on the differential pressure using the fluid resistance as in the first and second embodiments.
  • the flow rate of the valve passing through the valve V2 can be estimated and the flow rate can be controlled.
  • valve flow rate passing through the flow rate control valve V2 is measured from the pressure before and after the flow rate control valve V2 and the map is updated sequentially, even if the flow rate control valve V2 is controlled as described above, it is practical.
  • the valve flow rate can always be controlled based on the measured flow rate.
  • the opening degree of the flow rate control valve V2 may be controlled directly from the measured flow rate instead of controlling the flow rate control valve V2 by referring to the map.
  • the flow rate controller 2 does not include the map storage unit 21 and the map reference unit 22, and the measured valve flow rate calculated by the valve flow rate calculation unit 3 is fed back to the opening degree control unit 23.
  • the opening degree control unit 23 has a small deviation between the measured valve flow rate calculated from the second pressure measured by the second pressure sensor P2 and the third pressure measured by the third pressure sensor P3 and the set flow rate.
  • the voltage applied to the flow control valve V2 may be controlled as described above.
  • the flow rate control device 100 further includes a temperature sensor for measuring the temperature of the fluid flowing through the volume VL between the pressure control valve V1 and the flow rate control valve V2, and the flow rate control is performed based on the map considering this temperature. You may be asked. That is, the map shows the relationship between the second pressure, the opening degree, the temperature, and the flow rate, and the map reference unit 22 is set and opened from the measured second pressure, the opening degree, and the temperature. The degree may be output.
  • FIGS. 7 and 8 The members corresponding to the members described in the third embodiment are designated by the same reference numerals.
  • the flow rate control device 100 of the fourth embodiment is not provided with a fluid resistance R between the pressure control valve V1 and the flow rate control valve V2, and pressure control is performed.
  • the space between the valve V1 and the flow control valve V2 is configured as one large volume VL.
  • a volume VL which is a cavity formed inside, and an introduction path and a lead-out path for introducing or deriving gas into the volume VL are formed inside.
  • a block body BL is provided.
  • a pressure control valve V1 is provided at the gas inlet of the block body BL
  • a flow rate control valve V2 is provided at the gas outlet of the block body BL.
  • the mesh member M filled in the entire volume VL and the temperature sensor TS for measuring the temperature of the gas in the volume VL Is provided.
  • the mesh member M for example, a mesh member M having a mesh number that makes the temperature of the gas existing in the volume VL substantially uniform while not substantially obstructing the passage of the gas is selected. Since the mesh member M is filled in the volume VL, the stability of the measured temperature at the time of temperature measurement for updating the map described later can be improved, and an accurate value can be obtained.
  • the temperature sensor TS is provided so as to come into contact with a part of the mesh member M in the volume VL. As shown in FIG. 8, the temperature sensor TS is brought into contact with the inner wall surface of the block body BL in the volume VL, or is brought into contact with the mesh member M at a position close to the inner wall surface, and the wiring is taken out to the outside of the block body BL. It's easy. Since the temperature sensor TS is provided at a position where it comes into direct contact with the gas, for example, one having corrosion resistance is appropriately selected according to the type of gas to be flowed. In this embodiment, two temperature sensor TSs are provided in the volume VL, and the average value of the measured temperatures in these temperature sensor TSs is adopted as the gas temperature. The number of temperature sensors TS can be appropriately selected, and may be one or three or more. Further, the temperature sensor TS may be provided in the volume VL and directly measure the temperature of the fluid.
  • the map shows the relationship between at least the second pressure, the opening degree of the flow rate control valve V2, the gas temperature, and the flow rate of the gas passing through the flow rate control valve V2. Is shown. Then, the map reference unit 22 refers to the map based on the second pressure to be measured, the measurement opening degree, the measurement temperature measured by the temperature sensor TS, and the set flow rate set by the user, and the corresponding setting opening. Output degrees.
  • the opening degree control unit 23 applies to the flow rate control valve V2 so that the measurement opening degree output from the opening degree sensor V21 provided in the flow rate control valve V2 becomes the set opening degree output from the map reference unit 22. Control the voltage to be applied.
  • the valve flow rate calculation unit 3 determines the second pressure and the measured temperature, which are acquired while the flow rate control by the opening control unit 23 is not performed and the calibration control for updating the map is performed. Based on this, the measured valve flow rate is calculated from the existing ROF method or the like.
  • the ROF method can be briefly explained as follows. First, a gas having a predetermined pressure is charged in the space between the pressure control valve V1 and the flow rate control valve V2. After that, the flow rate control valve V2 is opened at a predetermined opening degree, causing a pressure drop in the gas in the space.
  • the flow rate passing through the flow control valve V2 is calculated based on the second pressure measured at the time of this pressure drop, the measured temperature, the volume value of the space charged with the gas, and the time derivative of the gas state equation. be able to.
  • the mesh member M is filled in the volume VL and the temperature of the gas is made uniform, so that the temperature of the gas at the time of pressure drop can be accurately measured.
  • the valve flow rate calculation unit 3 can accurately calculate the measured valve flow rate.
  • the calibrator 4 updates the map each time the measured valve flow rate is calculated from the valve flow rate calculation unit 3. Specifically, the flow rate corresponding to the set of the second pressure, the opening degree, and the temperature used when the valve flow rate calculation unit 3 calculates the measured valve flow rate is updated to the measured valve flow rate.
  • the mesh member M is filled in the volume VL between the pressure control valve V1 and the flow rate control valve V2, and the temperature sensor is filled in the volume VL. Since the TS is provided, it is possible to accurately obtain the gas temperature required for calculating the measured valve flow rate based on the gas state equation, for example. As a result, the measured valve flow rate calculated when the flow rate map is updated can be made more accurate, and the accuracy of the final flow rate control can be further improved.
  • the mesh member M is filled in the volume VL, but the mesh member M may be omitted and only the temperature sensor TS may be provided in the volume VL.
  • the main flow path ML is connected to the first branch flow path DL1 to which the fluid supply target is connected on the downstream side of the flow control valve V2, and the fluid supply target.
  • a third pressure sensor P3, which is a third pressure sensor, may be provided in the second branch flow path DL2, which is branched to the second branch flow path DL2 which is not provided.
  • valve flow rate calculation unit 3 has at least the second pressure and the third pressure measured by the second pressure sensor P2.
  • the flow rate of the fluid passing through the flow rate control valve V2 may be calculated based on the third pressure measured by the pressure sensation P3 and the measured temperature measured by the temperature sensor TS.
  • the method of calculating the measured valve flow rate based on the second pressure and the third pressure is not limited to the calculation using conductance as shown in each embodiment.
  • a map showing the relationship between the second pressure, the third pressure, and the valve flow rate is measured in advance and created in a database, and the measured second and third pressures are used with reference to the map to obtain the corresponding flow rates. It may be output as a valve flow rate.
  • the calibrator may be omitted and only the valve flow rate calculation unit may be provided, and the flow rate control valve may be feedback-controlled by the measured valve flow rate calculated by the valve flow rate calculation unit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Flow Control (AREA)
  • Measuring Volume Flow (AREA)

Abstract

流量制御バルブと供給対象間における流路抵抗の増大を招かずにバルブ流量の正しさを保証することが可能な流量制御装置を提供するために、メイン流路MLに設けられた流量制御バルブV2と、前記流量制御バルブV2の上流側に設けられた第2圧力センサP2と、少なくとも前記第2圧力センサP2で測定される第2圧力と、設定流量とに基づいて前記流量制御バルブV2を制御する流量制御器2と、前記メイン流路MLにおいて前記流量制御バルブV2の下流側において分岐し、流体の供給対象と接続される第1分岐流路DL1と、前記メイン流路MLにおいて前記流量制御バルブV2の下流側において分岐する第2分岐流路DL2と、前記第2分岐流路DL2上に設けられた第3圧力センサP3と、少なくとも前記第2圧力と前記第3圧力センサP3で測定される第3圧力に基づいて、前記流量制御バルブV2を通過する流体の流量を算出するバルブ流量算出部3と、を備えた。

Description

流量制御装置、流量測定方法、及び、流量制御装置用プログラム
 本発明は、例えばマスフローコントローラ等の流量制御装置に関するものである。
 例えば半導体製造プロセスにおいては、チャンバ等の供給対象に対して予め定められた設定流量でプロセスガス等を正確に供給する必要がある。このような用途に用いられるマスフローコントローラには、例えば特許文献1に記載されているように、上流側に設けられた圧力制御バルブと、下流側に設けられ、開度センサを具備する流量制御バルブと、2つのバルブ間の容積内における流体の温度及び圧力を測定する各種センサと、を備えたものがある。
 このマスフローコントローラは、上流側にある圧力制御バルブで容積内のガスの圧力を一定に保つように制御した上で、容積内から流出するガスの流量を下流側にある流量制御バルブで制御する。
 具体的には、マスフローコントローラは、容積内における流体の温度及び圧力、流量制御バルブを通過する流体の流量、流量制御バルブの開度の関係を示すマップを記憶している。そして、このマスフローコントローラは、設定流量と測定されている温度及び圧力に基づいてマップを参照して、対応する開度を設定開度として出力する。また、開度センサで測定される測定開度が設定開度となるように流量制御バルブが制御される。
 ところで、上記のようなマップは経年変化や使用環境等によって各パラメータ間の関係が変化し、マスフローコントローラから正しい流量が出力されなくなってしまう恐れがある。このため、マップを何らかの基準流量に基づいて適宜校正する必要がある。
 特許文献1ではマップの校正のために例えばチャンバにおいてプロセスが実施されていない期間等を利用して以下のような校正動作を行うようにしている。まず、下流側にある流量制御バルブを全閉して圧力制御バルブと流量制御バルブとの間の容積に所定圧力のガスが貯められる。その後、上流側にある圧力制御バルブを全閉するとともに流量制御バルブを開放し、その時点からの容積内の圧力と温度の変化が測定される。容積から流量制御バルブを介して流出するガスの流量は気体の状態方程式から導出される流量算出式に圧力の時間変化量を示す圧力の微分値と温度を代入することで算出される。このようにして算出された測定流量と、マップに記憶されている対応する条件での流量とが比較され、所定値以上の差がある場合にはマップに記憶されている流量は測定流量に更新される。
 しかしながら、このような校正方法によってマップを更新したとしても、実際に流量制御が行われている間は、上記のような各種バルブ動作を行うことはできないので、流量制御バルブから流出するガスの流量であるバルブ流量はモニタリングできていない。つまり、実際のプロセス中にチャンバ内に対して本当に正しい流量が供給されているかどうかを保証することはできていない。
 一方で、マスフローコントローラの流量制御バルブの下流側とチャンバとの間に流量センサ等を設けてバルブ流量を実測することによりバルブ流量の正しさを保証できるようにしてしまうと、流量測定のために設けられる流体抵抗等によって流路抵抗が大幅に増大することになる。そうすると、例えば過渡応答時における応答速度が大幅に低下してしまい、要求仕様を満たせなくなる恐れがある。
特開2015-064893号公報
 本発明は上述したような問題に鑑みてなされたものであり、流量制御バルブと供給対象間における流路抵抗の増大を招かずにバルブ流量の正しさを保証することが可能な流量制御装置を提供することを目的とする。
 すなわち、本発明に係る流量制御装置は、メイン流路に設けられた流量制御バルブと、前記流量制御バルブの上流側に設けられた第2圧力センサと、少なくとも前記第2圧力センサで測定される第2圧力と、設定流量とに基づいて前記流量制御バルブを制御する流量制御器と、前記メイン流路において前記流量制御バルブの下流側において分岐し、流体の供給対象と接続される第1分岐流路と、前記メイン流路において前記流量制御バルブの下流側において分岐する第2分岐流路と、前記第2分岐流路上に設けられた第3圧力センサと、少なくとも前記第2圧力と前記第3圧力センサで測定される第3圧力に基づいて、前記流量制御バルブを通過する流体の流量を算出するバルブ流量算出部と、を備えたことを特徴とする。
 また、本発明に係る流量制御方法は、メイン流路に設けられた流量制御バルブと、前記流量制御バルブの上流側に設けられた第2圧力センサと、少なくとも前記第2圧力センサで測定される第2圧力と、設定流量とに基づいて前記流量制御バルブを制御する流量制御器と、を流量制御装置に用いられる流量測定方法であって、前記メイン流路において前記流量制御バルブの下流側において分岐し、流体の供給対象と接続される第1分岐流路と、前記メイン流路において前記流量制御バルブの下流側において分岐する第2分岐流路と、前記第2分岐流路上に設けられた第3圧力センサと、を設け、少なくとも前記第2圧力と前記第3圧力センサで測定される第3圧力に基づいて、前記流量制御バルブを通過する流体の流量を算出することを特徴とする。
 このようなものであれば、前記流量制御バルブの下流側において供給対象と接続されている前記第1分岐流路とは別に分岐する前記第2分岐流路にバルブ流量を算出するために用いられる前記第3圧力センサを設けているので、前記流量制御バルブと供給対象との間において流路抵抗が増大するのを防げる。また、前記バルブ流量算出部は、前記第2圧力と前記第3圧力に基づいて前記流量制御バルブを通過する流体の流量であるバルブ流量を常時算出することが可能なので、常にバルブ流量をモニタリングすることができる。
 前記流量制御バルブを通過する流体の流量であるバルブ流量を推定して、流量フィードバック制御を実現できるようにするには、前記第2圧力センサの上流側に設けられた流体抵抗と、前記流体抵抗の上流側に設けられた第1圧力センサと、前記第1圧力センサで測定される第1圧力、及び、前記第2圧力に基づいて、前記流体抵抗を流れる流体の流量を算出する抵抗流量算出部と、をさらに備え、前記流量制御器が、少なくとも前記抵抗流量算出部で算出される抵抗流量、前記第2圧力、及び、前記流量制御バルブを通過する流体の流量との間の関係を示すマップを記憶するマップ記憶部と、測定されている前記抵抗流量、及び、前記第2圧力に基づいて、前記マップを参照し、対応する前記流量制御バルブを通過する流体の流量を推定バルブ流量として出力するマップ参照部と、前記推定バルブ流量が、前記設定流量となるように前記流量制御バルブを制御する開度制御部と、を備えたものが挙げられる。また、このようなものであれば、推定バルブ流量に基づいて前記流量制御バルブを制御した結果が正しく動作しているかどうかは、前記流量算出部で算出される実測バルブ流量を参照することで確認できる。
 例えば流量制御における過渡応答の応答速度をさらに向上させたり、チャンバへの供給圧の変動による影響が流量制御に現れにくくしたりするには、前記第1圧力センサの上流側に設けられた圧力制御バルブと、前記第1圧力が、設定圧力となるように前記圧力制御バルブを制御する圧力制御部と、をさらに備えたものであればよい。
 流量制御装置内において流体抵抗を用いず流量制御を実現するための制御方式としては、前記流量制御バルブの開度を測定する開度センサをさらに備え。前記流量制御器が、少なくとも前記第2圧力と、前記流量制御バルブの開度と、前記流量制御バルブを通過する流体の流量との間の関係を示すマップを記憶するマップ記憶部と、測定されている前記第2圧力と、前記設定流量に基づいて、前記マップを参照し、対応する前記流量制御バルブの開度を設定開度として出力するマップ参照部と、前記開度センサで測定される測定開度が、前記設定開度となるように前記流量制御バルブを制御する開度制御部と、を備えたものが挙げられる。
 前述した制御方式において圧力一定制御を実施して、流量制御の応答速度を向上させられるようにするには、前記第2圧力センサの上流側に設けられた圧力制御バルブと、前記第2圧力が設定圧力となるように前記圧力制御バルブを制御する圧力制御部と、をさらに備えたものが挙げられる。
 経年変化等が生じたとしても、流量制御バルブから出力されるバルブ流量が正確な値で出力されるようにするには、前記バルブ流量算出部で算出される実測バルブ流量に基づいて、前記マップを更新する校正器をさらに備えたものであればよい。
 偶発的な誤差が生じた場合には、マップをそのまま使用し、系統的な誤差が発生している場合のみマップが更新されるようにするには、前記校正器が、前記推定バルブ流量と前記実測バルブ流量の差が所定値以上の場合に前記マップを更新するものであればよい。
 前記第2圧力と前記第3圧力に基づいて、前記流量制御バルブを通過するバルブ流量を算出するための具体的な構成としては、前記バルブ流量算出部が、前記流量制御バルブのコンダクタンスと、前記第2圧力と前記第3圧力の差圧に基づいて、前記実測バルブ流量を算出するものが挙げられる。
 例えば前記流量制御バルブを通過する流体の流量の過渡応答制御をより高速化するための構成例としては、前記第2圧力センサの上流側に設けられた流体抵抗と、前記流体抵抗の上流側に設けられた第1圧力センサと、前記第1圧力センサで測定される第1圧力、及び、前記第2圧力に基づいて、前記流体抵抗を流れる流体の流量を算出する抵抗流量算出部と、前記第1圧力センサの上流側に設けられた圧力制御バルブと、を備え、前記流量制御器が、前記抵抗流量算出部で算出される抵抗流量と、前記第1圧力センサで測定される第1圧力の時間変化量と、に基づいて前記流量制御バルブを通過する流量を推定するバルブ流量推定部と、前記バルブ流量推定部で推定された推定バルブ流量が、前記設定流量となるように前記流量制御バルブを制御する開度制御部と、を備えたものであればよい。このようなものであれば、前記圧力制御バルブと前記流体抵抗との間の圧力の情報を利用して前記流量制御バルブを通過する流体の流量を算出し、過渡応答の制御性能を向上させることができる。
 メイン流路に設けられた流量制御バルブと、前記流量制御バルブの上流側に設けられた第2圧力センサと、前記第2圧力センサの上流側に設けられた圧力制御バルブと、前記圧力制御バルブと前記流量制御バルブとの間に形成された容積内に設けられた1又は複数の温度センサと、を備えたことを特徴とする流量制御装置であれば、前記容積の外側に温度センサが設けられ、間接的に流体の温度を測定する場合と比較して、実際に流れている流体の温度を正確に測定することが可能となる。この結果、正確な流体の温度を利用して例えば正確な流量を算出することが可能となる。
 前記容積内の流体の温度を安定化させ、前記容積内を流れる流体の温度をより正確に測定できるようにするには、前記容積内に充填されたメッシュ部材をさらに備えたものであればよい。
 正確に測定される流体の温度に基づいて、従来よりも正確な流量制御を実現できるようにするには、少なくとも前記第2圧力センサで測定される第2圧力と、前記温度センサで測定される温度と、設定流量とに基づいて前記流量制御バルブを制御する流量制御器をさらに備えたものであればよい。
 少なくとも前記第2圧力と前記温度センサで測定される測定温度に基づいて、前記流量制御バルブを通過する流体の流量を算出するバルブ流量算出部をさらに備えたものであれば、正確に測定される温度を利用して前記流量制御バルブを通過する流体の流量についても正確に算出することが可能となる。
 前記流量制御バルブを通過する流体の流量を流量制御中でもより正確に算出することを可能としながら、前記流量制御バルブと流体の供給対象との間における流路抵抗の増加は生じないようにするには、前記メイン流路において前記流量制御バルブの下流側において分岐し、流体の供給対象と接続される第1分岐流路と、前記メイン流路において前記流量制御バルブの下流側において分岐する第2分岐流路と、前記第2分岐流路上に設けられた第3圧力センサと、をさらに備え、前記バルブ流量算出部が、少なくとも前記第2圧力、前記第3圧力センサで測定される第3圧力、及び、前記測定温度に基づいて、前記流量制御バルブを通過する流体の流量を算出するように構成されたものであればよい。
 既存の流量制御装置において使用されているプログラムを更新することにより、本発明に係る流量制御装置と同様の効果を享受できるようにするには、メイン流路に設けられた流量制御バルブと、前記流量制御バルブの上流側に設けられた第2圧力センサと、前記メイン流路において前記流量制御バルブの下流側において分岐し、流体の供給対象と接続される第1分岐流路と、前記メイン流路において前記流量制御バルブの下流側において分岐する第2分岐流路と、前記第2分岐流路上に設けられた第3圧力センサと、を備えた流量制御装置に用いられるプログラムであって、少なくとも前記第2圧力センサで測定される第2圧力と、設定流量とに基づいて前記流量制御バルブを制御する流量制御器と、少なくとも前記第2圧力と前記第3圧力センサで測定される第3圧力に基づいて、前記流量制御バルブを通過する流体の流量を算出するバルブ流量算出部と、としての機能をコンピュータに発揮させることを特徴とする流量制御装置用プログラムを用いれば良い。
 なお、流量制御装置用プログラムは電子的に配信されるものであってもよいし、CD、DVD、HDD、フラッシュメモリ等のプログラム記録媒体に記録されたものであってもよい。
 このように本発明に係る流量制御装置であれば、前記流量制御バルブの下流側に形成され、流体の供給対象とは接続されていない前記第2分岐流路上に前記第3圧力センサを設けているので、前記流量制御バルブの下流側の流路抵抗を増大させることなく、当該第3圧力センサの出力に基づいて前記流量制御バルブを通過する流体の流量を実測できる。この結果、実際にバルブ流量をモニタリングしながら流量制御を行う事が可能となる。
本発明の第1実施形態に係る流量制御装置の構成を示す模式図。 本発明の第1実施形態に係る流量制御装置の流量制御器の構成を示す模式図。 本発明の第2実施形態に係る流量制御装置の構成を示す模式図。 本発明の第2実施形態に係る流量制御装置の流量制御器の構成を示す模式図。 本発明の第3実施形態に係る流量制御装置の構成を示す模式図。 本発明の第3実施形態に係る流量制御装置の流量制御器の構成を示す模式図。 本発明の第4実施形態に係る流量制御装置の構成を示す模式図。 本発明の第4実施形態に係る流量制御装置の内部構造の詳細を示す模式的断面図。
100・・・流量制御装置
FM ・・・流量センサ
1  ・・・抵抗流量算出部
2  ・・・流量制御器
21 ・・・マップ記憶部
22 ・・・マップ参照部
23 ・・・開度制御部
24 ・・・バルブ流量推定部
25 ・・・時間変化量算出部
26 ・・・出力部
3  ・・・バルブ流量算出部
4  ・・・校正器
5  ・・・圧力制御部
ML ・・・メイン流路
DL1・・・第1分岐流路
DL2・・・第2分岐流路
P1 ・・・第1圧力センサ
P2 ・・・第2圧力センサ
P3 ・・・第3圧力センサ
V1 ・・・圧力制御バルブ
V2 ・・・流量制御バルブ
R  ・・・流体抵抗
 本発明の第1実施形態に係る流量制御装置100について図1を参照しながら説明する。第1実施形態の流量制御装置100は、例えば半導体製造プロセスにおいてチャンバCNに対して流体であるガスを設定流量で供給するために用いられるものである。
 すなわち、流量制御装置100は、図1に示すように、流路に設けられたセンサ、バルブからなる流体機器と、当該流体機器の制御を司る制御機構COMと、を備えている。
 メイン流路MLに対して上流側から順番に供給圧センサP0、圧力制御バルブV1、第1圧力センサである第1圧力センサP1、流体抵抗R、第2圧力センサである第2圧力センサP2、流量制御バルブV2が設けてある。また、メイン流路MLの流量制御バルブV2の下流側は2つの流路に分岐しており、流体の供給対象であるチャンバCNと接続される第1分岐流路DL1と、チャンバCNには接続されず、下流端が閉止された第2分岐流路DL2と、が設けられている。さらに第2分岐流路DL2上には流量制御バルブV2の下流側の圧力を測定する第3圧力センサである第3圧力センサP3が設けてある。ここで、流体抵抗Rは例えば層流素子であり、その前後に流れるガス流量に応じた差圧を発生する。
 供給圧センサP0は、上流側から供給されるガスの圧力をモニタリングするためのものである。なお、供給圧センサP0については供給圧が安定していることが保証されている場合等には省略してもよい。
 第1圧力センサP1は、流路において上流側にある圧力制御バルブV1と流体抵抗Rとの間における容積である上流側容積内にチャージされているガスの圧力である第1圧力を測定するものである。
 第2圧力センサP2は、流路において流体抵抗Rと下流側にある流量制御バルブV2との間における容積である下流側容積にチャージされているガスの圧力である第2圧力を測定するものである。
 このように第1圧力センサP1と第2圧力センサP2は、圧力制御バルブV1、流体抵抗R、流量制御バルブV2で形成される2つの容積の圧力をそれぞれ測定している。また、別の表現をすると、第1圧力センサP1と第2圧力センサP2は、流体抵抗Rの前後に配置されたそれぞれの容積内の圧力を測定するものである。
 圧力制御バルブV1、及び、流量制御バルブV2は、第1実施形態では同型のものであり、例えばピエゾ素子によって弁体が弁座に対して駆動されるピエゾバルブである。圧力制御バルブV1、及び、流量制御バルブV2はそれぞれ操作量として入力される電圧に応じて開度が変更される。ここで、少なくとも流量制御バルブV2は開度センサV2を備えており、現在の開度を測定できる。開度センサV2としては、弁体又は弁体に接続されたプランジャやアクチュエータ等の動きに応じた出力をする変位センサ等が挙げられる。
 次に制御機構COMについて詳述する。
 制御機構COMは、例えばCPU、メモリ、A/Dコンバータ、D/Aコンバータ、入出力手段等を具備するいわゆるコンピュータであって、メモリに格納されている流量制御装置用プログラムが実行されて各種機器が協業することにより、少なくとも抵抗流量算出部1、流量制御器2、バルブ流量算出部3、校正器4、圧力制御部5としての機能を発揮する。
 抵抗流量算出部1は、第1圧力センサP1、流体抵抗R、第2圧力センサP2とともにいわゆる差圧式の流量センサFMを構成するものである。つまり、抵抗流量算出部1は、第1圧力センサP1で測定される第1圧力と、第2圧力センサP2で測定される第2圧力を入力として、流体抵抗Rを流れる流体の流量である抵抗流量を算出し、出力するものである。ここで、抵抗流量算出部1で用いられる流量の算出式は既存のものを用いることができる。抵抗流量算出部1が算出する抵抗流量は、連続的に変化するものであるが、流量制御バルブV2の制御により実現される当該流量制御バルブV2を通過している実際の流量に対して所定の時間遅れが発生している。
 流量制御器2は、少なくとも第2圧力センサP2で測定される第2圧力と、ユーザにより設定される設定流量と、に基づいて流量制御バルブV2を通過する流体の流量であるバルブ流量が設定流量となるように流量制御バルブV2を制御する。第1実施形態では、流量制御器2は抵抗流量算出部1で算出される抵抗流量と、第2圧力センサで測定される第2圧力からバルブ流量を推定し、そのバルブ流量が設定流量となるように流量制御バルブV2を流量フィードバック制御する。ここで、バルブ流量の推定は、抵抗流量及び第2圧力に基づいてマップを参照して行われる。
 具体的には図2に示すように流量制御器2は、マップ記憶部21、マップ参照部22、開度制御部23を備えている。
 マップ記憶部21は、少なくとも抵抗流量、第2圧力、及び、バルブ流量との間の関係を示すマップを記憶する。このようなマップは、例えば各抵抗流量、第2圧力の組み合わせを実現した状態で、流量制御バルブV2の下流側に実際に流量センサを配置して実測を行い、各パラメータの関係をデータベース化したものである。マップについては、テーブル形式であってもよいし、各パラメータの関係を示す式であってもよい。
 マップ参照部22は、測定されている抵抗流量、及び、第2圧力に基づいて、マップ記憶部21に記憶されているマップを参照し、対応するバルブ流量を推定バルブ流量として開度制御部23に出力する。このようにして推定されたバルブ流量は、抵抗流量と比較して実際のバルブ流量に対する遅れが小さくなるように構成されている。
 開度制御部23は、推定バルブ流量が、設定流量となるように流量制御バルブV2を制御する。第1実施形態では推定バルブ流量と設定流量の偏差が小さくなるように流量制御バルブV2に印加する電圧をフィードバック制御する。
 図1に示すバルブ流量算出部3は、少なくとも第2圧力と第3圧力センサで測定される第3圧力に基づいて、流量制御バルブV2を通過する流体の流量を算出する。具体的には、バルブ流量算出部3は流量制御バルブV2の開度から決まるコンダクタンスと、第2圧力と第3圧力の差圧とから実測バルブ流量を算出する。ここで、バルブ流量算出部3は開度とコンダクタンスとの間の関係を示すテーブルを記憶しており、開度センサV21で測定される開度に応じたコンダクタンスを使用して実測バルブ流量を出力する。このようにバルブ流量算出部3は、実測値に基づいて流量制御バルブV2を通過する流体の流量を算出しているので、推定バルブ流量とは異なり、このバルブ流量は流量制御中においてリアルタイムで実測された値である。また、この実施形態では、実測バルブ流量はマップの更新に用いられる。
 校正器4は、図1及び図2に示すようにバルブ流量算出部3で算出される実測バルブ流量に基づいて、流量制御器2内のマップを更新する。具体的には、流量制御バルブV2の制御に使用されている推定バルブ流量と実測バルブ流量との差が所定値以上となった場合には、マップにおけるその時点での第2圧力及び抵抗流量に対応するバルブ流量を実測バルブ流量に更新する。
 圧力制御部5は、ユーザにより設定される設定圧力と、第1圧力センサP1で測定される第1圧力に基づいて圧力制御バルブV1を制御する。具体的には、設定圧力と第1圧力の偏差が小さくなるように圧力制御バルブV1に印加される電圧を圧力フィードバック制御する。
 このように構成された第1実施形態の流量制御装置100によれば、流量制御バルブV2により設定流量となるように流量フィードバック制御を行いながら、当該流量制御バルブV2を通過する流体の流量を第2圧力と第3圧力に基づいてモニタリングすることができる。
 また、流量制御バルブV2の下流側に設けられた第3圧力センサP3は供給対象であるチャンバCNとは接続されていない第2分岐流路DL2上に設けられているので、バルブ流量を実測するために設けられた機器によって、流量制御バルブV2とチャンバCNとの間の流路抵抗を増大させることがない。したがって、第1実施形態の流量制御装置100は、流量制御バルブV2を通過する流体のバルブ流量の正確さを保証しつつ、応答速度を高く保つことができる。
 第1実施形態の変形例について説明する。
 マップについては、流体の温度影響を考慮できるようにするために、抵抗流量、第2圧力、温度、及び、バルブ流量との間の関係を示すものにしてもよい。
 この場合、例えば流体抵抗Rの温度をサーミスタ等の温度センサで測定できるようにしておき、マップ参照部22は、測定された温度、第2圧力、抵抗流量に基づいてマップを参照して、バルブ流量を出力するように構成すればよい。
 また、バルブ流量算出部3において用いられるコンダクタンスについても、温度センサで測定される温度に応じて異なる値が使用されるようにしてもよい。
 次に本発明の第2実施形態について説明する。
 第2実施形態の流量制御装置100は、図3及び図4に示すように流量制御器2の構成が第1実施形態とは異なっている。
 具体的には、流量制御器2において推定バルブ流量を算出するための構成がマップ参照ではなく、第1圧力の時間変化量に基づいて算出するように構成されている。このため、第1実施形態の流量制御器2には第2圧力が入力されていたのに対して、図3に示すように第2実施形態の流量制御器2には第1圧力が入力される。
 具体的には流量制御器2は、図4に示すようにマップ記憶部21及びマップ参照部22の代わりに抵抗流量算出部1で算出される抵抗流量と、第1圧力センサP1で測定される第1圧力の時間変化量と、に基づいて流量制御バルブV2を通過する流量を推定するバルブ流量推定部24を備えている。
 バルブ流量推定部24は、第1圧力の時間変化量として例えば第1圧力の時間微分値を算出し、その微分値に所定の係数を乗じた値を出力する時間変化量算出部25と、時間変化量算出部25から時間変化量と抵抗流量に基づいて推定バルブ流量を算出する出力部26と、を備えている。なお、時間変化量算出部25は、第1圧力を微分するものに限られず、第1圧力センサP1のサンプリングタイムごとに差分演算を行うものであってもよい。
 また、第2実施形態では校正器4は推定バルブ流量と実測バルブ流量との差が所定値以上の場合には、時間変化量算出部25で用いられる係数をその差に応じて補正する。
 このように構成された第2実施形態の流量制御装置100であれば、第1圧力の時間微分値に基づいて抵抗流量を補正演算して、推定バルブ流量を算出することができる。また、上流側の圧力の変化が抵抗流量に考慮された値を出力することができるので、バルブ流量における過渡的な変化を補正することが可能となる。
 次に本発明の第3実施形態に係る流量制御装置100について図5及び図6を参照しながら説明する。
 第3実施形態の流量制御装置100は、第1及び第2実施形態に示す流量制御装置100とは異なり、圧力制御バルブV1と流量制御バルブV2との間に流体抵抗Rが設けられておらず、圧力制御バルブV1と流量制御バルブV2との間が1つの大きな容積VLとして構成されている。また、圧力センサについては第1圧力センサについては省略されており、第2圧力センサP2のみが設けられている。すなわち、この容積においては流量の測定を行うための機能が省略されるとともに、圧力制御バルブV1の制御についても第2圧力センサP2の出力に基づいて行われる。
 また、抵抗流量の測定が行われていないため、流量制御器2の構成も図6に示すように第1及び第2実施形態とは異なっている。すなわち、流量制御器2は第2圧力センサP2で測定される第2圧力と設定流量に基づいて、実現したバルブ流量に相当する設定開度を算出し、算出された設定開度と開度センサV21で測定される測定開度の偏差が小さくなるように流量制御バルブV2の制御が行われる。
 具体的には第3実施形態の流量制御器2では、マップが少なくとも第2圧力と、流量制御バルブV2の開度と、流量制御バルブV2を通過する流体の流量との間の関係を示すものである。そして、マップ参照部22は、測定される第2圧力及び測定開度と、ユーザにより設定される設定流量に基づいてマップを参照して対応する設定開度を出力する。
 また、開度制御部23は流量制御バルブV2に設けられた開度センサV21から出力される測定開度が、マップ参照部22から出力された設定開度となるように流量制御バルブV2に印加される電圧を制御する。
 バルブ流量算出部3は、図5に示すように流量制御バルブV2の上流側の圧力である第2圧力と下流側の圧力である第3圧力と、測定開度とが、入力され、これらの値に基づいて実測バルブ流量を算出する。より具体的にはバルブ流量算出部3は、第2圧力と第3圧力の差圧と、流量制御バルブV2の測定開度に応じたコンダクタンスに基づいて、実測バルブ流量を例えば制御周期ごとに算出している。
 校正器4は、図5及び図6に示すようにバルブ流量算出部3から実測バルブ流量が算出されると、その度にマップを更新する。具体的には、設定開度を出力するために参照している第2圧力、開度、流量の組において流量を実測流量に更新する。
 このように構成された第3実施形態の流量制御装置100であれば、第1及び第2実施形態のように流体抵抗を用いた差圧に基づいた流量の測定を行わなくても、流量制御バルブV2を通過するバルブ流量を推定し、流量制御を行うことができる。
 また、流量制御バルブV2の前後の圧力から、当該流量制御バルブV2を通過するバルブ流量を実測し、マップを逐次更新しているので、上記のように流量制御バルブV2を制御しても実質的に常に測定された流量に基づいてバルブ流量を制御することができる。
 したがって、従来とは異なって、チャンバCNに対して流体を供給している状態でも、その流量を保証することが可能となる。また、メイン流路ML及び第2分岐流路DL2には流路抵抗となる機器を極力配置しないようにできるので、例えば過渡応答特性をよくしながら、流量の正確性を担保することが可能となる。
 第3実施形態の変形例について説明する。
 第3実施形態についてもマップ参照によって流量制御バルブV2を制御するのではなく、測定される流量から直接流量制御バルブV2の開度が制御されるようにしてもよい。具体的には、流量制御器2がマップ記憶部21及びマップ参照部22を備えておらず、開度制御部23に、バルブ流量算出部3で算出される実測バルブ流量がフィードバックされるようにしてもよい。すなわち、開度制御部23は、第2圧力センサP2で測定される第2圧力と第3圧力センサP3で測定される第3圧力から算出される実測バルブ流量と、設定流量の偏差が小さくなるように流量制御バルブV2に印加する電圧を制御するようにしてもよい。
 また、流量制御装置100が圧力制御バルブV1と流量制御バルブV2の間の容積VLを流れる流体の温度を測定する温度センサを更に備えており、この温度も考慮したマップに基づいて流量制御が行われるようにしてもよい。すなわち、マップは、第2圧力、開度、温度、及び、流量との間の関係を示すものであり、マップ参照部22は測定されている第2圧力、開度、及び、温度から設定開度を出力するようにしてもよい。
 次に本発明の第4実施形態について図7及び図8を参照しながら説明する。なお、第3実施形態において説明した部材に対応する部材には同じ符号を付すこととする。
 第4実施形態の流量制御装置100は、第3実施形態に示す流量制御装置100と同様に、圧力制御バルブV1と流量制御バルブV2との間に流体抵抗Rが設けられておらず、圧力制御バルブV1と流量制御バルブV2との間が1つの大きな容積VLとして構成されている。
 より具体的には圧力制御バルブV1と流量制御バルブV2との間には内部に形成された空洞である容積VLと、容積VLにガスを導入又は導出する導入路、導出路が内部に形成されたブロック体BLが設けられている。また、ブロック体BLのガスの導入口に対して圧力制御バルブV1が設けられ、ブロック体BLのガスの導出口に対して流量制御バルブV2が設けられている。図8に示すようにブロック体BLの内部に形成された容積VL内には、当該容積VLの全体に充填されたメッシュ部材Mと、容積VL内のガスの温度を測定するための温度センサTSが設けられている。
 メッシュ部材Mは、例えばガスの通過を実質的に阻害しないようにしつつ、容積VL内に存在するガスの温度をほぼ均一するようなメッシュ数のものが選択されている。メッシュ部材Mが容積VL内に充填されていることにより、後述するマップの更新のための温度測定時における測定温度の安定性を向上させ、正確な値を得ることができるようになる。
 温度センサTSは、容積VL内においてメッシュ部材Mの一部と接触するように設けられている。図8に示すように温度センサTSは、容積VLにおいてブロック体BLの内壁面に接触させる、あるいは、内壁面に近接する位置でメッシュ部材Mと接触させ、配線をブロック体BLの外部へと取り出しやすくしてある。温度センサTSとしては、ガスと直接接触する位置に設けられるので、例えば流されるガスの種類に応じて耐食性を有したものが適宜選択される。この実施形態では温度センサTSは、容積VL内に2つ設けられており、これらの温度センサTSにおける測定温度の平均値がガスの温度として採用される。なお、温度センサTSの個数については適宜選択でき、1つであってもよいし、3つ以上であってもよい。また、温度センサTSは容積VL内に設けられ、直接流体の温度を測定するものであればよい。
 また、第4実施形態の流量制御器2では、マップが少なくとも第2圧力と、流量制御バルブV2の開度と、ガスの温度と、流量制御バルブV2を通過するガスの流量との間の関係を示すものである。そして、マップ参照部22は、測定される第2圧力、測定開度、温度センサTSで測定される測定温度、及び、ユーザにより設定される設定流量に基づいてマップを参照して対応する設定開度を出力する。
 また、開度制御部23は流量制御バルブV2に設けられた開度センサV21から出力される測定開度が、マップ参照部22から出力された設定開度となるように流量制御バルブV2に印加される電圧を制御する。
 バルブ流量算出部3は、開度制御部23による流量制御が行われておらず、マップを更新するための校正用の制御が行われている間に取得される、第2圧力、測定温度に基づいて、既存のROF法等から実測バルブ流量を算出する。ROF法を簡単に説明すると以下のようなものになる。まず、圧力制御バルブV1と流量制御バルブV2との間の空間に所定圧力のガスがチャージされる。その後、流量制御バルブV2が所定の開度で開放され、空間内のガスに圧力低下を生じさせる。この圧力降下時に測定される第2圧力、測定温度、ガスがチャージされていた空間の体積値と、気体の状態方程式を時間微分した式に基づいて、流量制御バルブV2を通過する流量を算出することができる。第4実施形態ではメッシュ部材Mが容積VL内に充填されており、ガスの温度が均一化されているので、圧力降下時におけるガスの温度についても正確に測定することができる。この結果、バルブ流量算出部3は実測バルブ流量を正確に算出することができる。
 校正器4は、バルブ流量算出部3から実測バルブ流量が算出されると、その度にマップを更新する。具体的には、バルブ流量算出部3が実測バルブ流量を算出しているときに使用されている第2圧力、開度、温度の組に対応する流量を実測バルブ流量に更新する。
 このように構成された第4実施形態の流量制御装置100であれば、圧力制御バルブV1と流量制御バルブV2との間の容積VL内にメッシュ部材Mが充填され、当該容積VL内に温度センサTSを設けているので、例えば実測バルブ流量を気体の状態方程式に基づいて算出する際に必要となるガスの温度を正確に得ることができる。この結果、流量マップの更新時に算出される実測バルブ流量をより正確にすることができ、最終的な流量制御の正確さをさらに向上させることができる。
 第4実施形態の変形例について説明する。第4実施形態では容積VL内にメッシュ部材Mが充填されていたが、メッシュ部材Mを省略し、容積VL内には温度センサTSのみを設けるようにしてもよい。また、第4実施形態においても第3実施形態と同様にメイン流路MLが流量制御バルブV2の下流側において流体の供給対象と接続される第1分岐流路DL1と、流体の供給対象と接続されない第2分岐流路DL2とに分岐しており、第2分岐流路DL2に第3圧力センサである第3圧力センサP3が設けられていてもよい。このように各分岐流路DL1、DL2、及び、第3圧力センサP3が設けられている場合には、バルブ流量算出部3が、少なくとも第2圧力センサP2で測定される第2圧力、第3圧力センセP3で測定される第3圧力、及び、温度センサTSで測定される測定温度に基づいて、流量制御バルブV2を通過する流体の流量を算出するように構成してもよい。
 その他の実施形態について説明する。
 第2圧力及び第3圧力に基づいて実測バルブ流量を算出する方法は、各実施形態において示したようにコンダクタンスを利用した演算に限られない。例えば、予め第2圧力と第3圧力とバルブ流量との間の関係を示すマップを測定してデータベース化しておき、測定された第2圧力、第3圧力でマップを参照して対応する流量をバルブ流量として出力するようにしてもよい。また、校正器を省略してバルブ流量算出部のみを設けて、バルブ流量算出部で算出される実測バルブ流量で流量制御バルブをフィードバック制御するようにしてもよい。
 その他、本発明の趣旨に反しない限りにおいて各実施形態の一部同士を組み合わせてもよいし、変形を行っても構わない。
 このように本発明であれば、流量制御バルブと供給対象間における流路抵抗の増大を招かずにバルブ流量の正しさを保証することが可能な流量制御装置を提供できる。

Claims (16)

  1.  メイン流路に設けられた流量制御バルブと、
     前記流量制御バルブの上流側に設けられた第2圧力センサと、
     少なくとも前記第2圧力センサで測定される第2圧力と、設定流量とに基づいて前記流量制御バルブを制御する流量制御器と、
     前記メイン流路において前記流量制御バルブの下流側において分岐し、流体の供給対象と接続される第1分岐流路と、
     前記メイン流路において前記流量制御バルブの下流側において分岐する第2分岐流路と、
     前記第2分岐流路上に設けられた第3圧力センサと、
     少なくとも前記第2圧力と前記第3圧力センサで測定される第3圧力に基づいて、前記流量制御バルブを通過する流体の流量を算出するバルブ流量算出部と、を備えたことを特徴とする流量制御装置。
  2.  前記第2圧力センサの上流側に設けられた流体抵抗と、
     前記流体抵抗の上流側に設けられた第1圧力センサと、
     前記第1圧力センサで測定される第1圧力、及び、前記第2圧力に基づいて、前記流体抵抗を流れる流体の流量を算出する抵抗流量算出部と、をさらに備え、
     前記流量制御器が、
      少なくとも前記抵抗流量算出部で算出される抵抗流量、前記第2圧力、及び、前記流量制御バルブを通過する流体の流量との間の関係を示すマップを記憶するマップ記憶部と、
      測定されている前記抵抗流量、及び、前記第2圧力に基づいて、前記マップを参照し、対応する前記流量制御バルブを通過する流体の流量を推定バルブ流量として出力するマップ参照部と、
      前記推定バルブ流量が、前記設定流量となるように前記流量制御バルブを制御する開度制御部と、を備えた請求項1記載の流量制御装置。
  3.  前記第1圧力センサの上流側に設けられた圧力制御バルブと、
     前記第1圧力が、設定圧力となるように前記圧力制御バルブを制御する圧力制御部と、をさらに備えた請求項2記載の流量制御装置。
  4.  前記流量制御バルブの開度を測定する開度センサをさらに備え、
     前記流量制御器が、
      少なくとも前記第2圧力と、前記流量制御バルブの開度と、前記流量制御バルブを通過する流体の流量との間の関係を示すマップを記憶するマップ記憶部と、
      測定されている前記第2圧力と、前記設定流量に基づいて、前記マップを参照し、対応する前記流量制御バルブの開度を設定開度として出力するマップ参照部と、
      前記開度センサで測定される測定開度が、前記設定開度となるように前記流量制御バルブを制御する開度制御部と、を備えた請求項1記載の流量制御装置。
  5.  前記第2圧力センサの上流側に設けられた圧力制御バルブと、
     前記第2圧力が設定圧力となるように前記圧力制御バルブを制御する圧力制御部と、をさらに備えた請求項4記載の流量制御装置。
  6.  前記バルブ流量算出部で算出される実測バルブ流量に基づいて、前記マップを更新する校正器をさらに備えた請求項1乃至5いずれかに記載の流量制御装置。
  7.  前記校正器が、前記推定バルブ流量と前記実測バルブ流量の差が所定値以上の場合に前記マップを更新する請求項6記載の流量制御装置。
  8.  前記バルブ流量算出部が、前記流量制御バルブのコンダクタンスと、前記第2圧力と前記第3圧力の差圧に基づいて、前記実測バルブ流量を算出する請求項1乃至7いずれかに記載の流量制御装置。
  9.  前記第2圧力センサの上流側に設けられた流体抵抗と、
     前記流体抵抗の上流側に設けられた第1圧力センサと、
     前記第1圧力センサで測定される第1圧力、及び、前記第2圧力に基づいて、前記流体抵抗を流れる流体の流量を算出する抵抗流量算出部と、
     前記第1圧力センサの上流側に設けられた圧力制御バルブと、を備え、
     前記流量制御器が、
      前記抵抗流量算出部で算出される抵抗流量と、前記第1圧力センサで測定される第1圧力の時間変化量と、に基づいて前記流量制御バルブを通過する流量を推定するバルブ流量推定部と、
      前記バルブ流量推定部で推定された推定バルブ流量が、前記設定流量となるように前記流量制御バルブを制御する開度制御部と、を備えた請求項1記載の流量制御装置。
  10.  メイン流路に設けられた流量制御バルブと、
     前記流量制御バルブの上流側に設けられた第2圧力センサと、
     前記第2圧力センサの上流側に設けられた圧力制御バルブと、
     前記圧力制御バルブと前記流量制御バルブとの間に形成された容積内に設けられた1又は複数の温度センサと、を備えたことを特徴とする流量制御装置。
  11.  前記容積内に充填されたメッシュ部材をさらに備えた請求項10記載の流量制御装置。
  12.  少なくとも前記第2圧力センサで測定される第2圧力と、前記温度センサで測定される温度と、設定流量とに基づいて前記流量制御バルブを制御する流量制御器をさらに備えた請求項10又は11記載の流量制御装置。
  13.  少なくとも前記第2圧力と前記温度センサで測定される測定温度に基づいて、前記流量制御バルブを通過する流体の流量を算出するバルブ流量算出部をさらに備えた請求項10乃至12いずれかに記載の流量制御装置。
  14.  前記メイン流路において前記流量制御バルブの下流側において分岐し、流体の供給対象と接続される第1分岐流路と、
     前記メイン流路において前記流量制御バルブの下流側において分岐する第2分岐流路と、
     前記第2分岐流路上に設けられた第3圧力センサと、をさらに備え、
     前記バルブ流量算出部が、少なくとも前記第2圧力、前記第3圧力センサで測定される第3圧力、及び、前記測定温度に基づいて、前記流量制御バルブを通過する流体の流量を算出するように構成された請求項13記載の流量制御装置。
  15.  メイン流路に設けられた流量制御バルブと、前記流量制御バルブの上流側に設けられた第2圧力センサと、少なくとも前記第2圧力センサで測定される第2圧力と、設定流量とに基づいて前記流量制御バルブを制御する流量制御器と、を流量制御装置に用いられる流量測定方法であって、
     前記メイン流路において前記流量制御バルブの下流側において分岐し、流体の供給対象と接続される第1分岐流路と、前記メイン流路において前記流量制御バルブの下流側において分岐する第2分岐流路と、前記第2分岐流路上に設けられた第3圧力センサと、を設け、
     少なくとも前記第2圧力と前記第3圧力センサで測定される第3圧力に基づいて、前記流量制御バルブを通過する流体の流量を算出することを特徴とする流量測定方法。
  16.  メイン流路に設けられた流量制御バルブと、前記流量制御バルブの上流側に設けられた第2圧力センサと、前記メイン流路において前記流量制御バルブの下流側において分岐し、流体の供給対象と接続される第1分岐流路と、前記メイン流路において前記流量制御バルブの下流側において分岐する第2分岐流路と、前記第2分岐流路上に設けられた第3圧力センサと、を備えた流量制御装置に用いられるプログラムであって、
     少なくとも前記第2圧力センサで測定される第2圧力と、設定流量とに基づいて前記流量制御バルブを制御する流量制御器と、
     少なくとも前記第2圧力と前記第3圧力センサで測定される第3圧力に基づいて、前記流量制御バルブを通過する流体の流量を算出するバルブ流量算出部と、としての機能をコンピュータに発揮させることを特徴とする流量制御装置用プログラム。
PCT/JP2020/018785 2019-07-08 2020-05-11 流量制御装置、流量測定方法、及び、流量制御装置用プログラム WO2021005879A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021530504A JP7529664B2 (ja) 2019-07-08 2020-05-11 流量制御装置、流量測定方法、及び、流量制御装置用プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019126780 2019-07-08
JP2019-126780 2019-07-08

Publications (1)

Publication Number Publication Date
WO2021005879A1 true WO2021005879A1 (ja) 2021-01-14

Family

ID=74114575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018785 WO2021005879A1 (ja) 2019-07-08 2020-05-11 流量制御装置、流量測定方法、及び、流量制御装置用プログラム

Country Status (3)

Country Link
JP (1) JP7529664B2 (ja)
TW (1) TW202102962A (ja)
WO (1) WO2021005879A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176338A1 (ja) * 2021-02-17 2022-08-25 株式会社堀場エステック 静電チャック装置用のガス供給システム、ガス供給方法及びガス供給システム用プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185635A (ja) * 2010-03-05 2011-09-22 Surpass Kogyo Kk 圧力センサ、差圧式流量計及び流量コントローラ
JP2013228950A (ja) * 2012-04-26 2013-11-07 Fujikin Inc 可変オリフィス型圧力制御式流量制御器
JP2015109022A (ja) * 2013-12-05 2015-06-11 株式会社フジキン 圧力式流量制御装置
JP2018097759A (ja) * 2016-12-15 2018-06-21 株式会社堀場エステック 流量制御装置、及び、流量制御装置用プログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102314330B1 (ko) 2017-11-30 2021-10-19 가부시키가이샤 후지킨 유량 제어 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185635A (ja) * 2010-03-05 2011-09-22 Surpass Kogyo Kk 圧力センサ、差圧式流量計及び流量コントローラ
JP2013228950A (ja) * 2012-04-26 2013-11-07 Fujikin Inc 可変オリフィス型圧力制御式流量制御器
JP2015109022A (ja) * 2013-12-05 2015-06-11 株式会社フジキン 圧力式流量制御装置
JP2018097759A (ja) * 2016-12-15 2018-06-21 株式会社堀場エステック 流量制御装置、及び、流量制御装置用プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176338A1 (ja) * 2021-02-17 2022-08-25 株式会社堀場エステック 静電チャック装置用のガス供給システム、ガス供給方法及びガス供給システム用プログラム

Also Published As

Publication number Publication date
TW202102962A (zh) 2021-01-16
JPWO2021005879A1 (ja) 2021-01-14
JP7529664B2 (ja) 2024-08-06

Similar Documents

Publication Publication Date Title
TWI745507B (zh) 流量控制裝置和程式存儲介質
KR101990155B1 (ko) 압력 제어 장치, 유량 제어 장치, 및 압력 제어 장치용 프로그램을 기록한 기록 매체, 유량 제어 장치용 프로그램을 기록한 기록 매체
CN105247434B (zh) 流量控制装置和流量控制方法
JP5873681B2 (ja) 流量制御装置、流量制御装置に用いられる診断装置及び診断用プログラム
KR20200013591A (ko) 유량 제어 장치
KR20190107579A (ko) 유량 제어 장치, 유량 제어 방법, 및 유량 제어 장치용 프로그램
KR102470755B1 (ko) 유체 제어 장치, 유체 제어 방법, 및, 유체 제어 장치용 프로그램이 기록된 프로그램 기록 매체
JP2016035655A (ja) 流量制御装置、流量制御装置用プログラム、及び、流量制御方法
WO2018207553A1 (ja) 液体材料気化供給装置及び制御プログラム
KR20130040740A (ko) 유량 제어 장치, 유량 측정 기구, 또는 당해 유량 측정 기구를 구비한 유량 제어 장치에 이용되는 진단 장치 및 진단용 프로그램이 기록된 기록 매체
JP2019028747A (ja) 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
JP5931667B2 (ja) 流量センサの自己校正機構、自己校正方法、自己校正機構用プログラム、及び、マスフローコントローラ
JP5931668B2 (ja) 流量センサの診断機構、診断方法、診断機構用プログラム、及び、マスフローコントローラ
JP2022029854A (ja) 流量制御装置、流量制御方法、及び、流量制御プログラム
KR20200008947A (ko) 유량 제어 장치, 유량 제어 방법, 및 유량 제어 장치용 프로그램을 기록한 프로그램 기록 매체
WO2021005879A1 (ja) 流量制御装置、流量測定方法、及び、流量制御装置用プログラム
US20220163984A1 (en) Flow rate control apparatus, flow rate control method, and program recording medium in which program for flow rate control apparatus is recorded
US11789435B2 (en) Flow control device, diagnostic method, and program for flow control device
WO2023013381A1 (ja) バルブ制御装置、バルブ制御方法、バルブ制御プログラム、及び、流体制御装置
JP2022083378A (ja) 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
JP2021021677A (ja) 流量測定装置内の容積測定方法および流量測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530504

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20835987

Country of ref document: EP

Kind code of ref document: A1