WO2021005744A1 - 空気分離装置、および空気分離方法 - Google Patents

空気分離装置、および空気分離方法 Download PDF

Info

Publication number
WO2021005744A1
WO2021005744A1 PCT/JP2019/027313 JP2019027313W WO2021005744A1 WO 2021005744 A1 WO2021005744 A1 WO 2021005744A1 JP 2019027313 W JP2019027313 W JP 2019027313W WO 2021005744 A1 WO2021005744 A1 WO 2021005744A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
low
argon
oxygen
gas
Prior art date
Application number
PCT/JP2019/027313
Other languages
English (en)
French (fr)
Inventor
博志 橘
Original Assignee
太陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽日酸株式会社 filed Critical 太陽日酸株式会社
Priority to US17/624,707 priority Critical patent/US20220252344A1/en
Priority to EP19937350.7A priority patent/EP3998447A4/en
Priority to CN201980098080.XA priority patent/CN114041034B/zh
Priority to PCT/JP2019/027313 priority patent/WO2021005744A1/ja
Publication of WO2021005744A1 publication Critical patent/WO2021005744A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04478Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for controlling purposes, e.g. start-up or back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04448Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with an intermediate pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04709Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
    • F25J3/04715The auxiliary column system simultaneously produces oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04787Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • F25J3/048Argon recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04818Start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04884Arrangement of reboiler-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/08Processes or apparatus using separation by rectification in a triple pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/10Processes or apparatus using separation by rectification in a quadruple, or more, column or pressure system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/58Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/52One fluid being oxygen enriched compared to air, e.g. "crude oxygen"

Definitions

  • the present invention relates to an air separation device and an air separation method.
  • FIG. 10 is a system diagram showing a schematic configuration of a conventional air separation device.
  • the conventional air separation device 200 includes an air compressor 211, an air precooler 212, an air purifier 213, an air booster 214, an air booster aftercooler 215, a main heat exchanger 216, and a high pressure tower. 217, low pressure column 218, argon column 219, supercooler 223, delivery liquefied oxygen pump P204, argon column capacitor H201 arranged at the top of argon column 219, main condenser H202, and turbine 224.
  • Patent Document 1 describes the configuration of a conventional three-tower type air separation device and an air separation method (operation method of the air separation device). That is, in the conventional air separation device 200, first, the high pressure tower 217 and the low pressure tower 218 are started to generate argon-enriched oxygen. Next, the oxygen component is removed and argon is collected by introducing argon-enriched oxygen into the argon column 219 and distilling it.
  • the low pressure column 218 and the argon column 219 are operated at the same pressure, and are obtained by vaporizing by indirect heat exchange with the argon gas in the argon column capacitor H201, and then the low pressure column 218. Since the oxygen concentration of the gas fluid supplied to the gas fluid cannot be increased to about 40% or more, there is a problem that the rectification conditions of the low pressure column 218 are deteriorated and it becomes difficult to separate argon.
  • the oxygen concentration of the gas fluid vaporized by the argon tower condenser H201 and supplied to the low pressure tower is increased, the rectification conditions of the low pressure tower 218 are improved, but the saturation temperature of the gas fluid vaporized by the argon tower condenser H201 is increased. It becomes higher than the saturation temperature of argon gas, and indirect heat exchange becomes impossible.
  • Patent Document 2 describes a configuration of a three-tower type air separation device including a low pressure tower, an argon tower operated at a pressure higher than that of the low pressure tower, and a high pressure tower operated at a pressure higher than that of the argon tower.
  • An air separation method operation method of an air separation device for vaporizing liquefied oxygen in a low-pressure column with argon gas in an argon column is disclosed (hereinafter referred to as a high-performance three-tower process).
  • the argon tower is operated at a higher pressure than the low pressure tower, and the oxygen gas is reduced in pressure by indirect heat exchange with the argon gas in the argon tower condenser. Since it can be supplied to the column, the rectification conditions of the low-pressure column are improved, which is useful in that argon can be easily separated.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an air separation device and an air separation method that can be easily started.
  • the present invention has the following configurations.
  • a high-pressure tower that distills high-pressure raw material air at a low temperature and separates it into high-pressure nitrogen gas and high-pressure oxygen-enriched liquefied air.
  • a low-pressure tower that distills the high-pressure oxygen-enriched liquefied air at a low temperature and separates it into low-pressure nitrogen gas, low-pressure liquefied oxygen, and argon-enriched liquefied oxygen.
  • An argon tower that distills the argon-enriched liquefied oxygen at a pressure higher than the pressure of the low-pressure tower at a low temperature and separates it into argon gas and medium-pressure liquefied oxygen.
  • a first indirect heat exchange that indirectly exchanges heat between the argon gas and the low-pressure liquefied oxygen, liquefies the argon gas to generate liquefied argon, and vaporizes the low-pressure liquefied oxygen to generate a low-pressure oxygen gas.
  • the high-pressure nitrogen gas and the medium-pressure liquefied oxygen are indirectly heat-exchanged, the high-pressure nitrogen gas is liquefied to generate high-pressure liquefied nitrogen, and the medium-pressure liquefied oxygen is vaporized to generate medium-pressure oxygen gas.
  • a first gas-liquid separation chamber that separates low-pressure oxygen gas vaporized by the first indirect heat exchanger and low-pressure liquefied oxygen that has not been vaporized into a gas phase and a liquid phase.
  • a second gas-liquid separation chamber that separates the medium-pressure oxygen gas vaporized by the second indirect heat exchanger and the unvaporized medium-pressure liquefied oxygen into a gas phase and a liquid phase.
  • a first path communicating the gas phase portion of the low pressure column and the gas phase portion of the second gas-liquid separation chamber,
  • a second path communicating the liquid phase portion of the low pressure column and the second gas-liquid separation chamber, and
  • An air separation device including a second opening / closing mechanism located in the second path.
  • the argon tower is composed of a first argon tower and a second argon tower connected in series.
  • the second argon column is the second gas-liquid separation chamber.
  • the high-pressure oxygen-enriched liquefied air is distilled at a low temperature to separate it into low-pressure nitrogen gas, low-pressure liquefied oxygen, and argon-enriched liquefied oxygen.
  • the low-pressure liquefied oxygen is introduced into the second indirect heat exchanger to indirectly exchange heat between the high-pressure nitrogen gas and the low-pressure liquefied oxygen, and the high-pressure nitrogen gas is liquefied to generate high-pressure liquefied nitrogen.
  • An air separation method in which the low-pressure liquefied oxygen is vaporized to generate low-pressure oxygen gas, and the low-pressure oxygen gas is introduced into a gas phase portion of the low-pressure tower.
  • the medium-pressure liquefied oxygen obtained by pressurizing the low-pressure liquefied oxygen is introduced into the second indirect heat exchanger to indirectly exchange heat between the high-pressure nitrogen gas and the medium-pressure liquefied oxygen, and the high-pressure liquefied oxygen is exchanged indirectly.
  • Nitrogen gas is liquefied to generate high-pressure liquefied nitrogen
  • the medium-pressure liquefied oxygen is vaporized to generate medium-pressure oxygen gas
  • the medium-pressure oxygen gas is depressurized
  • a first indirect heat exchange that indirectly exchanges heat between the argon gas and the low-pressure liquefied oxygen, liquefies the argon gas to generate liquefied argon, and vaporizes the low-pressure liquefied oxygen to generate a low-pressure oxygen gas.
  • Process and The high-pressure nitrogen gas and the medium-pressure liquefied oxygen are indirectly heat-exchanged, the high-pressure nitrogen gas is liquefied to generate high-pressure liquefied nitrogen, and the medium-pressure liquefied oxygen is vaporized to generate medium-pressure oxygen gas.
  • the air separation method according to the preceding item [6] or [7], wherein the steady operation including the second indirect heat exchange step is performed.
  • the steady operation is
  • the preceding item includes a part of the argon gas, a product derivation step of extracting at least one kind of argon as a product from the argon gas not liquefied in the first indirect heat exchange step and a part of the liquefied argon.
  • the air separation device and the air separation method of the present invention are easy to start.
  • the configuration of the air separation device according to the embodiment to which the present invention is applied will be described in detail with reference to the drawings together with the air separation method using the air separation device.
  • the featured parts may be enlarged for convenience, and the dimensional ratio of each component may not be the same as the actual one. Absent. Further, the layout of each component may be different from the actual one. For example, in FIG. 1, the low pressure tower 18 and the argon tower 19 may be installed at the ground level like the high pressure tower 17.
  • the "line” refers to a flow path through which a fluid can flow in an inner space.
  • Lines include supply lines, introduction lines, out-licensing lines, discharge lines, collection lines, and the like.
  • the line may include one or more branches or merges.
  • the line consists of one or more pipes made of metal or resin.
  • the fluid flowing through the line includes one kind of gas (gas), two or more kinds of mixed gas (gas), one kind of liquid, two or more kinds of mixed liquid, and a mixed fluid thereof.
  • the valve includes an on-off valve, a pressure reducing valve, a flow rate adjusting valve, and the like.
  • FIG. 1 is a system diagram showing an example of the configuration of the air separation device according to the first embodiment of the present invention.
  • the air separation device 10 of the first embodiment includes an air compressor 11, an air precooler 12, an air purifier 13, an air booster 14, an air booster aftercooler 15, and a main heat exchanger 16.
  • low pressure means the pressure below the operating pressure of the low pressure column 18 and below 400 kPaA.
  • medium pressure is the fluid having the highest pressure among the oxygen gas generated in the second indirect heat exchanger H2 and the oxygen-enriched air generated in the third indirect heat exchanger H3. It means a pressure below the pressure and higher than the operating pressure of the low pressure column 18.
  • high pressure means the pressure of the fluid having the highest pressure among the oxygen gas generated in the second indirect heat exchanger H2 and the oxygen-enriched air generated in the third indirect heat exchanger H3. Higher pressure.
  • low temperature distillation (hereinafter, also referred to simply as” low temperature distillation ”) means that the rising gas and the falling liquid come into direct direct contact with each other at a temperature lower than the boiling point of high-pressure oxygen. It means to separate the high boiling point component and the low boiling point component.
  • Line L1 is located between the raw material air supply source (not shown) and the high pressure tower 17.
  • One end of the line L1 serves as an introduction port for taking in raw material air from a raw material air supply source (not shown).
  • the other end of the line L1 is connected to the lower part of the high pressure tower 17.
  • the line L1 is provided with an air compressor 11, an air precooler 12, an air refiner 13, and a main heat exchanger 16 in this order.
  • the line L1 branches off from the line L2 between the air purifier 13 and the main heat exchanger 16.
  • the air compressor 11 is located on line L1.
  • Raw material air containing oxygen, nitrogen, and argon is introduced into the air compressor 11 from a raw material air supply source (not shown) via line L1.
  • the air compressor 11 compresses the raw material air.
  • the raw material air compressed by the air compressor 11 is supplied to the air precooler 12 via the line L1.
  • the air precooler 12 is located on the secondary side of the air compressor 11 on the line L1. Raw material air compressed via the line L1 is introduced into the air precooler 12. The air precooler 12 removes the heat of compression of the compressed raw material air. The raw material air from which the heat of compression has been removed by the air precooler 12 is supplied to the air refiner 13 via the line L1.
  • the air purifier 13 is located on the secondary side of the air precooler 12 on the line L1. Raw material air from which compression heat has been removed is introduced into the air purifier 13 via the line L1.
  • the air refiner 13 removes impurities (specifically, water, carbon dioxide, etc.) contained in the raw material air from which the heat of compression has been removed.
  • the k of the air purifier 13 is filled with an adsorbent for adsorbing and removing impurities.
  • the container size of the air purifier 13 is designed to be below a certain flow velocity so that the adsorbent is not wound up by the air passing through the inside from the bottom to the top. Therefore, when the pressure of the air passing through the inside of the air purifier 13 becomes lower than the pressure assumed at the time of design, the flow velocity of the air passing through the inside becomes large even if the mass flow rate is the same, and the adsorbent is wound up. There is a fear.
  • the pressure of the air passing through the inside of the air purifier 13 decreases, the amount of water in the air supplied to the air purifier 13 increases, so that the air purifier 13 may not be able to sufficiently remove water. Therefore, it is not preferable that the pressure of the air passing through the inside of the air purifier 13 is lower than the pressure assumed at the time of design even during the activation of the apparatus.
  • the raw material air from which impurities have been removed by the air purifier 13 is partially cooled by the main heat exchanger 16 and then supplied to the lower part of the high-pressure column 17 via the line L1, and the rest is branched from the line L1. It is supplied to the line L2.
  • the line L2 is located between the line L1 between the air refiner 13 and the main heat exchanger 16 and the high pressure tower 17.
  • One end of the line L2 serves as an introduction port for taking in the raw material air from which impurities have been removed.
  • the other end of the line L2 is connected to the lower part of the high pressure tower 17.
  • the line L2 is provided with an air booster 14, an air booster aftercooler 15, a main heat exchanger 16, and a valve V2 in this order.
  • the air booster 14 is located on line L2. Raw material air from which impurities have been removed is introduced into the air booster 14 via the line L2. The air booster 14 further compresses the introduced raw material air. The high-pressure raw material air further compressed by the air booster 14 is introduced into the air booster aftercooler 15 via the line L2.
  • the air booster aftercooler 15 is located on the secondary side of the air booster 14 on line L2. High-pressure raw material air is introduced into the air booster aftercooler 15 via the line L2. The air booster aftercooler 15 removes the heat of compression of the high-pressure raw material air. The high-pressure raw material air from which the heat of compression has been removed by the air booster aftercooler 15 is supplied to the lower or intermediate portion of the high-pressure tower 17 via the main heat exchanger 16 and the valve V2, and then via the line L2. ..
  • the main heat exchanger 16 is arranged so as to extend over the lines L1, L2, L6, L9, L14, L21, and L27. A part of the lines L1, L2, L6, L9, L14, L21, and L27 passes through the main heat exchanger 16, respectively.
  • each high temperature fluid is cooled by indirectly exchanging heat between the high temperature fluid flowing through the lines L1 and L2 and the low temperature fluid flowing through the lines L6, L9, L14, L21, and L27. Each cold fluid is heated.
  • the valve V2 is located on the line L2 between the main heat exchanger 16 and the high pressure tower 17.
  • the valve V2 is not particularly limited as long as it has a depressurizing function, but it is preferable that the valve V2 can freely adjust the opening degree from fully closed (opening 0%) to fully open (opening 100%).
  • High-pressure raw material air cooled by the air booster aftercooler 15 and the main heat exchanger 16 is supplied to the valve V2 via the line L2.
  • the valve V2 depressurizes the high-pressure raw material air flowing through the line L2 according to its opening degree.
  • the raw material air is compressed by the air compressor 11, precooled by the air precooler 12, refined by the air purifier 13, cooled by the main heat exchanger 16, and then supplied to the high pressure tower 17. Further, in the line L2, a part of the air purified by the air purifier 13 is compressed by the air booster 14, precooled by the air booster aftercooler 15, cooled by the main heat exchanger 16, and depressurized by the valve V2. After that, it is supplied to the high pressure tower 17.
  • Lines L1, L2, and L10 are connected to the high-voltage tower 17, respectively.
  • the high-pressure tower 17 distills a mixed fluid containing the raw material air supplied from the line L1, the high-pressure fluid supplied from the line L2, and the fluid supplied from the line L10 at a low temperature to obtain high-pressure nitrogen gas. Separates from high-pressure oxygen-enriched liquefied air. By this low-temperature distillation, high-pressure nitrogen gas is concentrated in the upper part of the high-pressure tower 17, and high-pressure oxygen-enriched liquefied air is concentrated in the lower part of the high-pressure tower 17.
  • Line L8 is located between the high pressure tower 17 and the second indirect heat exchanger H2. One end of the line L8 is connected to the upper part of the high pressure tower 17. The other end of the line L8 is connected to the liquefaction passage inlet of the second indirect heat exchanger H2. The line L8 extracts a part of the high-pressure nitrogen gas concentrated on the upper part of the high-pressure tower 17 and supplies it to the second indirect heat exchanger H2.
  • the second indirect heat exchanger H2 is housed inside the second indirect heat exchanger outer cylinder (second gas-liquid separation chamber) 21, which will be described later.
  • second indirect heat exchanger outer cylinder 21 second gas-liquid separation chamber 21.
  • steady operation medium-pressure liquefied oxygen is stored inside the second indirect heat exchanger outer cylinder 21. Will be done.
  • a line L8 is connected to the inlet of the liquefaction passage of the second indirect heat exchanger H2, and a line L10 described later is connected to the outlet of the liquefaction passage of the second indirect heat exchanger H2.
  • the second indirect heat exchanger H2 indirectly heats the high-pressure nitrogen gas supplied from the line L8 and the medium-pressure liquefied oxygen stored inside the outer cylinder 21 of the second indirect heat exchanger during steady operation. It is exchanged to liquefy high-pressure nitrogen gas to generate high-pressure liquefied nitrogen, and vaporize medium-pressure liquefied oxygen to generate medium-pressure oxygen gas.
  • Line L9 is a product high-pressure nitrogen gas (HPGN 2 ) recovery line branched from line L8. A part of the high-pressure nitrogen gas flowing through the line L8 is supplied to the line L9. The line L9 is arranged so that a part thereof passes through the main heat exchanger 16. As a result, the high-pressure nitrogen gas flowing through the line L9 is heat-recovered by the main heat exchanger 16 and then recovered as the product high-pressure nitrogen gas (HPGN 2 ).
  • HPGN 2 product high-pressure nitrogen gas
  • Line L10 is located between the second indirect heat exchanger H2 and the high pressure tower 17. One end of the line L10 is connected to the liquefaction passage outlet of the second indirect heat exchanger H2. The other end of the line L10 is connected to the top of the high pressure tower 17. The line L10 supplies the high-pressure liquefied nitrogen generated by the second indirect heat exchanger H2 to the top of the high-pressure tower 17.
  • Line L11 branches off from line L10 and is connected to the top of the low pressure tower 18.
  • the line L11 is arranged so that a part thereof passes through the supercooler 23.
  • a valve V3 is provided on the line L11.
  • the line L11 extracts a part of the high-pressure liquefied nitrogen generated by the second indirect heat exchanger H2, cools it by the supercooler 23, decompresses it by the valve V3, and then supplies it to the low-pressure column 18.
  • the valve V3 is located on the line L11 between the low pressure tower 18 and the supercooler 23.
  • the valve V3 is not particularly limited as long as it has a depressurizing function, but it is preferable that the valve V3 can freely adjust the opening degree from fully closed (opening 0%) to fully open (opening 100%).
  • a part of the high-pressure liquefied nitrogen generated by the second indirect heat exchanger H2 is supplied to the valve V3 via the line L11.
  • the valve V3 depressurizes the high-pressure liquefied nitrogen flowing through the line L11 according to its opening degree.
  • Line L12 is a recovery line for product high-pressure liquefied nitrogen (HPRN 2 ) branched from line L11. A part of high-pressure liquefied nitrogen flowing through the line L11 is supplied to the line L12. The high-pressure liquefied nitrogen flowing through the line L12 is recovered as product high-pressure liquefied nitrogen (HPRN 2 ).
  • HPRN 2 product high-pressure liquefied nitrogen
  • Line L13 is located between the high pressure tower 17 and the low pressure tower 18. One end of the line L13 is connected to the bottom of the high pressure tower 17. The other end of the line L13 is connected to the intermediate portion of the low pressure tower 18. The line L13 is arranged so that a part thereof passes through the supercooler 23. A valve V5 is provided on the line L13. In the line L13, a part of the high-pressure oxygen-enriched liquefied air extracted from the bottom of the high-pressure tower 17 is cooled by the supercooler 23, depressurized by the valve V5, and then supplied to the low-pressure tower 18.
  • Valve V5 is located on line L13.
  • the valve V5 is not particularly limited as long as it has a depressurizing function, but it is preferable that the valve V5 can freely adjust the opening degree from fully closed (opening 0%) to fully open (opening 100%).
  • High-pressure oxygen-enriched liquefied air is supplied to the valve V5 via the line L13.
  • the valve V5 decompresses the high-pressure oxygen-enriched liquefied air flowing through the line L13 according to its opening degree.
  • Line L5 branches off from line L13.
  • One end of the line L5 is connected to the bottom of the high pressure tower 17 via the line L13.
  • the other end of the line L5 is connected to the third indirect heat exchanger outer cylinder 22.
  • a valve V1 is provided on the line L5.
  • the line L5 decompresses a part of the high-pressure oxygen-enriched liquefied air extracted from the bottom of the high-pressure tower 17 with the valve V1 and then supplies it to the third indirect heat exchanger outer cylinder 22.
  • Valve V1 is located on line L5.
  • the valve V1 is not particularly limited as long as it has a depressurizing function, but it is preferable that the valve V1 can freely adjust the opening degree from fully closed (opening 0%) to fully open (opening 100%).
  • High-pressure oxygen-enriched liquefied air is supplied to the valve V1 via the line L5.
  • the valve V1 decompresses the high-pressure oxygen-enriched liquefied air flowing through the line L5 according to its opening degree to generate medium-pressure oxygen-enriched liquefied air.
  • Line L3 is located between the high pressure tower and the third indirect heat exchanger H3.
  • One end of the line L3 is connected to the middle or lower part of the high pressure tower 17.
  • the other end of the line L3 is connected to the liquefaction passage inlet of the third indirect heat exchanger H3.
  • the line L3 extracts a part of the high-pressure nitrogen-enriched air rising in the middle or lower part of the high-pressure tower 17 and supplies it to the third indirect heat exchanger H3.
  • the third indirect heat exchanger outer cylinder 22 accommodates the third indirect heat exchanger H3.
  • the third indirect heat exchanger outer cylinder 22 has a fluid (medium pressure oxygen-enriched liquefied air) supplied from the line L5 after being decompressed by the valve V1 and a medium pressure vaporized by the third indirect heat exchanger H3.
  • a mixed fluid of oxygen-enriched air and medium-pressure oxygen-enriched liquefied air that was not vaporized by the third indirect heat exchanger H3 is stored, and the mixed fluid is mixed with medium-pressure oxygen-enriched air and medium-pressure oxygen-enriched air. Separate into liquefied air.
  • Lines L5, L6, and L7 are connected to the third indirect heat exchanger outer cylinder 22, respectively.
  • the third indirect heat exchanger H3 is housed inside the third indirect heat exchanger outer cylinder 22.
  • the liquefaction passage inlet of the third indirect heat exchanger H3 is connected to the line L3.
  • the outlet of the liquefaction passage of the third indirect heat exchanger H3 is connected to the line L4.
  • the third indirect heat exchanger H3 indirectly exchanges heat between the fluid supplied from the line L3 and the medium-pressure oxygen-enriched liquefied air stored in the third indirect heat exchanger outer cylinder 22.
  • the fluid supplied from the line L3 is liquefied to generate a high-pressure liquefied gas fluid, and the medium-pressure oxygen-enriched liquefied air stored in the third indirect heat exchanger outer cylinder 22 is vaporized to generate medium-pressure oxygen-enriched air. To generate.
  • Line L4 is located between the third indirect heat exchanger H3 and the low pressure tower 18.
  • One end of the line L4 is connected to the liquefaction passage outlet of the third indirect heat exchanger H3.
  • the other end of the line L4 is connected to the middle or upper part of the low pressure tower 18.
  • the line L4 is arranged so that a part thereof passes through the supercooler 23.
  • a valve V4 is provided on the line L4. In the line L4, the high-pressure liquefied gas fluid generated by the third indirect heat exchanger H3 is cooled by the supercooler 23, depressurized by the valve V4, and then supplied to the low-pressure column 18.
  • the valve V4 is located on the line L4 between the low pressure tower 18 and the supercooler 23.
  • the valve V4 is not particularly limited as long as it has a depressurizing function, but it is preferable that the valve V4 can freely adjust the opening degree from fully closed (opening 0%) to fully open (opening 100%).
  • the high-pressure liquefied gas fluid generated by the third indirect heat exchanger H3 is supplied to the valve V4 via the line L4.
  • the valve V4 depressurizes the high-pressure liquefied gas fluid flowing through the line L4 according to its opening degree.
  • Line L6 is located between the third indirect heat exchanger outer cylinder 22 and the low pressure tower 18. One end of the line L6 is connected to the gas outlet (top) of the third indirect heat exchanger outer cylinder 22. The other end of the line L6 is connected to the intermediate portion of the low pressure tower 18. The line L6 is arranged so that a part thereof passes through the main heat exchanger 16. The expansion turbine 24 is provided on the line L6. In the line L6, the medium-pressure oxygen-enriched air generated by the third indirect heat exchanger H3 is recovered by the main heat exchanger 16 and then adiabatically expanded by the expansion turbine 24 to cool the cold required for the operation of the apparatus. After the generation, it is supplied to the intermediate portion of the low pressure tower 18.
  • the expansion turbine 24 is located on the line L6 between the main heat exchanger 16 and the low pressure column 18. Medium-pressure oxygen-enriched air generated by the third indirect heat exchanger H3 and heat-recovered by the main heat exchanger 16 is introduced into the expansion turbine 24.
  • the expansion turbine 24 adiabatically expands the medium-pressure oxygen-enriched air to generate the cold required for the operation of the apparatus.
  • the fluid adiabatically expanded by the expansion turbine 24 is supplied to the intermediate portion of the low pressure column 18 via the line L6.
  • Line L7 is located between the third indirect heat exchanger outer cylinder 22 and the low pressure tower 18. One end of the line L7 is connected to the liquid outlet (bottom) of the third indirect heat exchanger outer cylinder 22. The other end of the line L7 is connected to the intermediate portion of the low pressure tower 18. A valve V6 is provided on the line L7. The line L7 supplies the medium-pressure oxygen-enriched liquefied air stored inside the third indirect heat exchanger outer cylinder 22 to the low-pressure column 18 after decompressing it with the valve V6.
  • Valve V6 is located on line L7.
  • the valve V6 is not particularly limited as long as it has a depressurizing function, but it is preferable that the valve V6 can freely adjust the opening degree from fully closed (opening 0%) to fully open (opening 100%).
  • Medium-pressure oxygen-enriched liquefied air stored inside the third indirect heat exchanger outer cylinder 22 is supplied to the valve V6 via the line L7.
  • the valve V6 depressurizes the fluid flowing through the line L7 according to its opening degree.
  • Lines L4, L6, L7, L11, L13, L14, L15, L16, L19, L26, and L33 are connected to the low pressure tower 18, respectively.
  • the low pressure tower 18 includes a fluid supplied from the line L4, a fluid supplied from the line L6, a fluid supplied from the line L7, a fluid supplied from the line L11, and a fluid supplied from the line L13.
  • a mixed fluid containing the fluid supplied from the line L16 and the fluid supplied from the line L26 is distilled at a low temperature to separate the low-pressure nitrogen gas, the low-pressure liquefied oxygen, and the argon-enriched liquefied oxygen.
  • low-pressure nitrogen gas is concentrated in the upper part of the low-pressure column 18, and low-pressure liquefied oxygen is concentrated in the bottom of the low-pressure column 18.
  • Line L14 is a recovery line for product low pressure nitrogen gas (LPGN 2 ).
  • One end of the line L14 is connected to the top of the low pressure tower 18.
  • the other end of the line L14 is an outlet for the product low-pressure nitrogen gas (LPGN 2 ).
  • Low pressure nitrogen gas is supplied to line L14.
  • the line L14 is arranged so that a part thereof passes through the supercooler 23 and the main heat exchanger 16. As a result, the low-pressure nitrogen gas flowing through the line L14 is recovered as the product low-pressure nitrogen gas (LPGN 2 ) after being heat-recovered by the supercooler 23 and the main heat exchanger 16.
  • Line L15 is located between the low pressure tower 18 and the first indirect heat exchanger outer cylinder 20. One end of the line L15 is connected to the bottom of the low pressure tower 18. The other end of the line L15 is connected to the first indirect heat exchanger outer cylinder 20.
  • the line L15 is provided with a liquefied oxygen pump P2. The line L15 extracts a part of the low-pressure liquefied oxygen concentrated at the bottom of the low-pressure column 18, pressurizes it with the liquefied oxygen pump P2, and then supplies it to the first indirect heat exchanger outer cylinder 20.
  • the liquefied oxygen pump P2 is located on line L15. Low-pressure liquefied oxygen is supplied to the liquefied oxygen pump P2 via the line L15. The liquefied oxygen pump P2 pressurizes the low-pressure liquefied oxygen flowing through the line L15.
  • the low-pressure tower 18 is installed at a position sufficiently higher than the first indirect heat exchanger outer cylinder 20, the low-pressure liquefied oxygen can be pressurized by using the difference between the liquid heads, so that the liquefied oxygen pump P2 May be omitted in some cases.
  • Line L19 is located between the low pressure tower 18 and the argon tower 19. One end of the line L19 is connected to the intermediate portion of the low pressure tower 18. The other end of the line L19 is connected to the middle or lower part of the argon column 19. A part of the argon-enriched liquefied oxygen concentrated in the middle part of the low-pressure column 18 is supplied to the line L19.
  • the line L19 is provided with an argon-enriched liquefied oxygen pump P1.
  • the argon-enriched liquefied oxygen flowing through the line L19 is supplied to the argon tower 19 after being pressurized by the argon-enriched liquefied oxygen pump P1.
  • the argon-enriched liquefied oxygen pump P1 is located on line L19. Argon-enriched liquefied oxygen is supplied to the argon-enriched liquefied oxygen pump P1 via the line L19. The argon-enriched liquefied oxygen pump P1 pressurizes the argon-enriched liquefied oxygen flowing through the line L19.
  • the liquid head difference is used. Since the argon-enriched liquefied oxygen can be pressurized and sent, the argon-enriched liquefied oxygen pump P1 may be omitted in some cases.
  • Line L33 is an introduction line for introducing liquid nitrogen into the low pressure column 18.
  • One end of the line L33 is a liquid nitrogen supply port.
  • the other end of the line L33 is connected to the upper part of the low pressure tower 18.
  • the line L33 is provided with a valve (opening / closing valve) (not shown).
  • the air separation device 10 of the present embodiment can supply liquid nitrogen to the low pressure column 18 via the line L33. As a result, when the air separation device 10 is started, the low pressure column 18 can be cooled by liquid nitrogen, so that the orbital time can be shortened.
  • the first indirect heat exchanger outer cylinder (first gas-liquid separation chamber) 20 is located between the low-pressure column 18 and the argon column 19. That is, the first indirect heat exchanger outer cylinder 20 is installed so as to be below the low-voltage column 18 and above the argon column 19.
  • the first indirect heat exchanger outer cylinder 20 accommodates the first indirect heat exchanger H1. Lines L15, L16, and L17 are connected to the first indirect heat exchanger outer cylinder 20, respectively.
  • the first indirect heat exchanger outer cylinder 20 includes low-pressure liquefied oxygen supplied from the low-pressure tower 18 via the line L15, low-pressure oxygen gas vaporized by the first indirect heat exchanger H1, and first indirect heat.
  • the mixed fluid with the low-pressure liquefied oxygen that has not been vaporized by the exchanger H1 is stored, and the mixed fluid is separated into the low-pressure oxygen gas and the low-pressure liquefied oxygen.
  • the first indirect heat exchanger H1 is housed inside the outer cylinder 20 of the first indirect heat exchanger.
  • the liquefaction passage inlet of the first indirect heat exchanger H1 is connected to the line L20.
  • the outlet of the liquefaction passage of the first indirect heat exchanger H1 is connected to the line L22.
  • the first indirect heat exchanger H1 indirectly heats the argon gas supplied via the line L20 and the low-pressure liquefied oxygen stored in the outer cylinder 20 of the first indirect heat exchanger during steady operation.
  • the gas is exchanged and the argon gas supplied from the line L20 is liquefied to generate liquefied argon, and the low-pressure liquefied oxygen stored in the first indirect heat exchanger outer cylinder 20 is vaporized to generate low-pressure oxygen gas.
  • Line L16 is located between the first indirect heat exchanger outer cylinder 20 and the low pressure tower 18. One end of the line L16 is connected to the gas outlet (gas phase portion) of the first indirect heat exchanger outer cylinder 20. The other end of the line L16 is connected to the lower part (gas phase portion) of the low pressure tower 18. A valve (fourth opening / closing mechanism) V8 is provided on the line L16. The line L16 extracts the low-pressure oxygen gas generated by the first indirect heat exchanger H1 from the gas phase portion of the first indirect heat exchanger outer cylinder 20 and supplies it to the lower part of the low-pressure column 18.
  • the line L16 communicates the gas phase portion of the low pressure tower 18 with the gas phase portion of the first indirect heat exchanger outer cylinder (first gas-liquid separation chamber) 20.
  • 4 routes are constructed.
  • the fourth path is a path for supplying the low-pressure oxygen gas generated by the first indirect heat exchanger H1 and stored in the outer cylinder 20 of the first indirect heat exchanger to the gas phase portion of the low-pressure tower 18. is there.
  • the fourth path may include a flow path other than the line L16. That is, all the flow paths through which the low-pressure oxygen gas stored in the first indirect heat exchanger outer cylinder 20 reaches the low-pressure tower 18 become the fourth path.
  • the valve (fourth opening / closing mechanism) V8 is located on the line L16.
  • the valve V8 is not particularly limited as long as it has a function of opening and closing the flow path (fourth path) of the line L16, but is not particularly limited, but is fully closed (opening 0%) to fully open (opening 100%). ), It is preferable that the opening degree can be freely adjusted.
  • the low-pressure oxygen gas stored in the first indirect heat exchanger outer cylinder 20 is supplied to the valve V8 via the line L16.
  • the valve V8 depressurizes the low-pressure oxygen gas flowing through the line L16 according to its opening degree.
  • Line L17 is located between the first indirect heat exchanger outer cylinder 20 and the second indirect heat exchanger outer cylinder 21. One end of the line L17 is connected to the liquid outlet (bottom) of the first indirect heat exchanger outer cylinder 20. The other end of the line L17 is connected to the second indirect heat exchanger outer cylinder 21.
  • a valve (second opening / closing mechanism) V7 is provided on the line L17. The line L17 extracts the low-pressure liquefied oxygen stored in the first indirect heat exchanger outer cylinder 20, depressurizes it with the valve V7, and then supplies it to the second indirect heat exchanger outer cylinder 21.
  • the bottom portion (liquid phase portion) of the low-pressure column 18 and the second indirect heat exchanger outer cylinder (by the line L15, the first indirect heat exchanger outer cylinder 20, and the line L17)
  • a second path communicating with the second gas-liquid separation chamber) 21 is configured.
  • the second path is a path for supplying the low-pressure liquefied oxygen concentrated in the liquid phase portion of the low-pressure column 18 to the second indirect heat exchanger outer cylinder 21.
  • the second path may include a flow path other than the above-mentioned line and device. That is, all the flow paths through which the low-pressure liquefied oxygen concentrated in the liquid phase portion of the low-pressure column 18 reaches the second indirect heat exchanger outer cylinder 21 become the second path.
  • the low-pressure liquefied oxygen of the low-pressure tower 18 is supplied to the second indirect heat exchanger outer cylinder 21 (second gas-liquid separation chamber) via the line L19, the argon tower 19, and the line L24 at the time of startup.
  • These routes are the second routes.
  • a valve as a second opening / closing mechanism is provided on the line L19.
  • the valve (second opening / closing mechanism) V7 is located on the line L17.
  • the valve V7 is not particularly limited as long as it has a function of opening and closing the flow path (second path) of the line L17, but is not particularly limited, but is fully closed (opening 0%) to fully open (opening 100%). ), It is preferable that the opening degree can be freely adjusted.
  • Low-pressure liquefied oxygen stored in the outer cylinder 20 of the first indirect heat exchanger is supplied to the valve V7 via the line L17.
  • the valve V7 depressurizes the low-pressure liquefied oxygen flowing through the line L17 according to its opening degree.
  • Line L18 is a product low-pressure liquefied oxygen (LPLO 2 ) recovery line branched from line L17. A part of the low-pressure liquefied oxygen flowing through the line L17 is supplied to the line L18. The low-pressure liquefied oxygen flowing through the line L18 is recovered as a product low-pressure liquefied oxygen (LPLO 2 ).
  • LPLO 2 product low-pressure liquefied oxygen
  • the line L20 is located between the argon tower 19 and the first indirect heat exchanger H1. One end of the line L20 is connected to the upper part of the argon tower 19. The other end of the line L20 is connected to the liquefaction passage inlet of the first indirect heat exchanger H1. The line L20 extracts the concentrated argon gas from the upper part of the argon column 19 and supplies it to the first indirect heat exchanger H1.
  • Line L21 is a recovery line for product argon gas (GAR) branched from line L20. A part of the argon gas flowing through the line L20 is supplied to the line L21. The line L21 is arranged so that a part thereof passes through the main heat exchanger 16. As a result, the argon gas flowing through the line L21 is recovered as the product argon gas (GAR) after being heat-recovered by the main heat exchanger 16.
  • GAR product argon gas
  • the line L22 is located between the first indirect heat exchanger H1 and the argon tower 19. One end of the line L22 is connected to the liquefaction passage outlet of the first indirect heat exchanger H1. The other end of the line L22 is connected to the upper part of the argon column 19. The line L22 supplies the liquefied argon produced by the first indirect heat exchanger H1 to the argon column 19.
  • Line L23 is a recovery line for product liquefied argon (LAR) branched from line L22. A part of the liquefied argon flowing through the line L22 is supplied to the line L23. The liquefied argon flowing through the line L23 is recovered as product liquefied argon (LAR).
  • LAR product liquefied argon
  • the argon tower 19 is located between the low pressure tower 18 and the high pressure tower 17.
  • the argon tower 19 is arranged below the low pressure tower 18 and above the high pressure tower 17. Further, the argon tower 19 is located between the first indirect heat exchanger outer cylinder 20 and the second indirect heat exchanger outer cylinder 21.
  • the argon tower 19 is arranged below the first indirect heat exchanger outer cylinder 20 and above the second indirect heat exchanger outer cylinder 21.
  • Lines L19, L20, L22, L24, and L25 are connected to the argon tower 19, respectively.
  • the argon tower 19 distills a mixed fluid containing argon-enriched liquefied oxygen supplied via the line L19, a fluid supplied from the line L22, and a fluid supplied from the line L25 at a low temperature to perform argon. Separates into gas and medium pressure liquefied oxygen. Distillation in the argon column 19 is performed at a pressure higher than that in the low pressure column 18. By this distillation at a low temperature, argon gas is concentrated in the upper part of the argon column 19, and medium pressure liquefied oxygen is concentrated in the lower part of the argon column 19.
  • Line L24 is located between the argon tower 19 and the second indirect heat exchanger outer cylinder 21. One end of the line L24 is connected to the bottom of the argon tower 19. The other end of the line L24 is connected to the second indirect heat exchanger outer cylinder 21. A part of the medium pressure liquefied oxygen stored in the lower part of the argon column 19 is supplied to the line L24.
  • the line L24 is provided with a liquefied oxygen pump P3.
  • the medium-pressure liquefied oxygen flowing through the line L24 is supplied to the second indirect heat exchanger outer cylinder 21 by the liquefied oxygen pump P3.
  • the liquefied oxygen pump P3 is located on line L24.
  • the liquefied oxygen pump P3 sends medium-pressure liquefied oxygen flowing through the line L24.
  • the liquefied oxygen pump can send the medium pressure liquefied oxygen by utilizing the difference between the liquid heads. In some cases, P3 can be omitted.
  • the second indirect heat exchanger outer cylinder (second gas-liquid separation chamber) 21 is located between the argon tower 19 and the high-pressure tower 17.
  • the second indirect heat exchanger outer cylinder 21 is arranged below the argon tower 19 and above the high-pressure tower 17.
  • the second indirect heat exchanger outer cylinder 21 houses the second indirect heat exchanger H2.
  • Lines L17, L24, L25, and L27 are connected to the second indirect heat exchanger outer cylinder 21, respectively.
  • the second indirect heat exchanger outer cylinder 21 was vaporized by the medium-pressure liquefied oxygen supplied via the line L24, the low-pressure liquefied oxygen supplied via the line L17, and the second indirect heat exchanger H2.
  • a mixed fluid of medium-pressure oxygen gas and medium-pressure liquefied oxygen that has not been vaporized by the second indirect heat exchanger H2 is stored, and the mixed fluid is separated into medium-pressure oxygen gas and medium-pressure liquefied oxygen.
  • the line L25 is located between the second indirect heat exchanger outer cylinder 21 and the argon tower 19. One end of the line L25 is connected to the gas outlet (gas phase portion) of the second indirect heat exchanger outer cylinder 21. The other end of the line L25 is connected to the lower part (gas phase portion) of the argon column 19. Medium-pressure oxygen gas generated by the second indirect heat exchanger H2 and stored in the second indirect heat exchanger outer cylinder 21 is led out to the line L25. A valve (third opening / closing mechanism) V9 is provided on the line L25. The medium-pressure oxygen gas flowing through the line L25 is supplied to the lower part of the argon column 19.
  • the line L25 communicates the gas phase portion of the argon tower 19 with the gas phase portion of the second indirect heat exchanger outer cylinder (second gas-liquid separation chamber) 21.
  • Three routes are constructed.
  • the third path is a path for supplying the medium-pressure oxygen gas generated by the second indirect heat exchanger H2 and stored in the outer cylinder 21 of the second indirect heat exchanger to the gas phase portion of the argon tower 19. Is.
  • the third path may include a flow path other than the line L25. That is, all the flow paths through which the medium-pressure oxygen gas stored in the second indirect heat exchanger outer cylinder 21 reaches the argon tower 19 become the third path.
  • the valve (third opening / closing mechanism) V9 is located on line L25.
  • the valve V9 is not particularly limited as long as it has a function of opening and closing the flow path (third path) of the line L25, but is not particularly limited, but is fully closed (opening 0%) to fully open (opening 100%). ), It is preferable that the opening degree can be freely adjusted.
  • Medium-pressure oxygen gas stored in the second indirect heat exchanger outer cylinder 21 is supplied to the valve V9 via the line L25.
  • the valve V9 depressurizes the medium-pressure oxygen gas flowing through the line L25 according to its opening degree.
  • Line L26 branches off from line L25.
  • the line L26 is located between the second indirect heat exchanger outer cylinder 21 and the low pressure column 18.
  • One end of line L26 is connected to a branch point of line L25.
  • the other end of the line L26 is connected to the lower part (gas phase portion) of the low pressure tower 18.
  • a part of the medium pressure oxygen gas flowing through the line L25 is supplied to the line L26. That is, a part of the medium pressure oxygen gas line generated by the second indirect heat exchanger H2 and stored inside the second indirect heat exchanger outer cylinder 21 is supplied to the line L26 via L25. Will be done.
  • the line L26 is provided with a valve (first opening / closing mechanism) V10.
  • the medium-pressure oxygen gas flowing through the line L26 is depressurized by the valve V10 and then supplied to the lower part (gas phase portion) of the low-pressure column 18.
  • the lower part (gas phase part) of the low pressure column 18 and the lower part of the second indirect heat exchanger outer cylinder (second gas-liquid separation chamber) 21 are provided by the line L25 and the line L26.
  • a first path communicating with (gas phase part) is constructed. The first path is a path for supplying the medium-pressure oxygen gas generated by the second indirect heat exchanger H2 to the gas phase portion of the low-pressure column 18.
  • One end of the line L26 may be directly connected to the gas outlet (gas phase portion) of the second indirect heat exchanger outer cylinder 21 instead of the branch point of the line L25.
  • the medium-pressure oxygen gas generated by the second indirect heat exchanger H2 is supplied to the gas phase portion of the low-pressure column 18 via the line L26. That is, the line L26 becomes the first route.
  • one end of the line L26 may be connected to a gas outlet (gas phase portion) of the argon tower 19, a branch point of the line L20, or a branch point of the line L21.
  • the medium-pressure oxygen gas generated by the second indirect heat exchanger H2 passes through any or all of the second indirect heat exchanger outer cylinder 21, line L25, argon tower 19, line L20, and line L21. Then, it is supplied to the gas phase portion of the low pressure tower 18 via the line L26. That is, all of the flow paths (at least including the line L26) through which the medium-pressure oxygen gas generated by the second indirect heat exchanger H2 reaches the gas phase portion of the low-pressure column 18 are the first paths. Become.
  • the valve (first opening / closing mechanism) V10 is located on the line L26.
  • the valve V10 is not particularly limited as long as it has a function of opening and closing the flow path (first path) of the line L26, but is not particularly limited, but is fully closed (opening 0%) to fully open (opening 100%). ), It is preferable that the opening degree can be freely adjusted.
  • a part of the medium pressure oxygen gas stored in the second indirect heat exchanger outer cylinder 21 is supplied to the valve V10 via the line L26.
  • the valve V10 depressurizes the medium-pressure oxygen gas flowing through the line L26 according to its opening degree.
  • Line L27 is a recovery line for product high pressure oxygen gas (HPGO 2 ).
  • One end of the line L27 is connected to the liquid outlet (bottom) of the second indirect heat exchanger outer cylinder 21.
  • the other end of the line L27 is an outlet for the product high-pressure oxygen gas (HPGO 2 ).
  • a part of the medium pressure liquefied oxygen stored in the outer cylinder 21 of the second indirect heat exchanger is supplied to the line L27.
  • the line L27 is provided with a liquefied oxygen pump P4.
  • the line L27 is arranged so that a part thereof passes through the main heat exchanger 16.
  • the medium-pressure liquefied oxygen flowing through the line L27 is pressurized by the liquefied oxygen pump P4, vaporized by the main heat exchanger 16, and after heat recovery, it is recovered as a product high-pressure oxygen gas (HPGO 2 ).
  • the liquefied oxygen pump P4 is located on the line L27.
  • the liquefied oxygen pump P4 is supplied with medium-pressure liquefied oxygen stored in the second indirect heat exchanger outer cylinder 21 via the line L27.
  • the liquefied oxygen pump P4 pressurizes the medium-pressure liquefied oxygen flowing through the line L27.
  • the medium pressure liquefied oxygen can be pressurized by using the difference between the liquid heads, so that the liquefied oxygen pump P4 can be omitted. There is also.
  • One end of the line L27 may be connected to the liquid outlet of the first indirect heat exchanger outer cylinder 20.
  • a part of the low-pressure liquefied oxygen stored in the first indirect heat exchanger outer cylinder 20 is supplied to the line L27.
  • the low-pressure liquefied oxygen flowing through the line L27 is pressurized by the liquefied oxygen pump P4, vaporized by the main heat exchanger 16, and after heat recovery, it is recovered as a product high-pressure oxygen gas (HPGO 2 ).
  • Line L28 is a recovery line for medium pressure liquefied oxygen (MPLO 2 ) branched from line L27. A part of the medium pressure liquefied oxygen flowing through the line L27 is supplied to the line L28. As a result, the medium-pressure liquefied oxygen flowing through the line L28 is recovered as the product medium-pressure liquefied oxygen (MPLO 2 ).
  • MPLO 2 medium pressure liquefied oxygen
  • the supercooler 23 is arranged so as to extend over the lines L4, L11, L13, and L14. Part of the lines L4, L11, L13, and L14 passes through the supercooler 23, respectively.
  • the low-temperature fluid flowing through the line L14 and the high-temperature fluid flowing through the lines L4, L11, and L13 indirectly exchange heat to heat the low-temperature fluid and cool each high-temperature fluid. ..
  • the combination of the low temperature fluid and the high temperature fluid in the supercooler 23 is not limited to these.
  • the air separation device 10 of the present embodiment when recovering the product low-pressure oxygen gas (LPGO 2 ), has one end of the first indirect heat exchanger outer cylinder 20 or the low-pressure tower 18. It may have a product take-out line connected to the lower part of the main heat exchanger 16 and a part thereof passes through the main heat exchanger 16. In this case, the low-pressure oxygen gas flowing through the product lead-out line is recovered as the product low-pressure oxygen gas (LPGO 2 ) after being heat-recovered by the main heat exchanger 16.
  • one end of the air separation device 10 of the present embodiment is connected to the second indirect heat exchanger outer cylinder 21 or the lower part of the argon tower 19.
  • the unit may have a product lead-out line through which the main heat exchanger 16 passes.
  • the medium-pressure oxygen gas flowing through the product lead-out line is recovered as the product medium-pressure oxygen gas (MPGO 2 ) after being heat-recovered by the main heat exchanger 16.
  • connection positions of the lines L15, L17, and L24 for transporting the low-pressure liquefied oxygen or the medium-pressure liquefied oxygen can be appropriately changed depending on the layout of each device.
  • the place where one end of the line L15 is connected is changed from the first indirect heat exchanger outer cylinder 20 to the bottom of the argon tower 19, and the low pressure tower 18 is liquefied by the line L15.
  • Oxygen is supplied to the bottom of the argon tower 19, and the place where one end of the line L24 is connected is changed from the second indirect heat exchanger outer cylinder 21 to the first indirect heat exchanger outer cylinder 20, and the argon tower is connected by the line L24.
  • the medium pressure liquefied oxygen of 19 may be supplied to the first indirect heat exchanger outer cylinder 20.
  • a liquefied oxygen pump may be provided in each line or the liquefied oxygen pump may be changed to a valve according to the difference in the liquid head due to the layout of each device.
  • the air separation device 10 is started from a normal temperature state, and the product argon gas (GAR) or the product liquefied argon (LAR) can be recovered. After that, it shifts to steady operation.
  • the procedure from the start of the air separation device 10 to the switching to the steady operation will be shown with reference to FIG.
  • the raw material air containing oxygen, nitrogen, and argon is compressed, precooled, purified, and cooled to generate high-pressure raw material air, and the high-pressure tower 17
  • the raw material air is distilled at a low temperature to separate it into high-pressure nitrogen gas and high-pressure oxygen-enriched liquefied air
  • the high-pressure oxygen-enriched liquefied air is distilled at a low temperature to obtain low-pressure nitrogen gas and low pressure. Separates into liquefied oxygen and argon-enriched liquefied oxygen.
  • the second indirect heat exchanger outer cylinder (second gas-liquid separation chamber) 21 to pressurize the high-pressure nitrogen gas and the low-pressure liquefied oxygen.
  • the medium-pressure liquefied oxygen is indirectly exchanged with heat, and the high-pressure nitrogen gas is liquefied to generate high-pressure liquefied oxygen, and the medium-pressure liquefied oxygen is vaporized to generate medium-pressure oxygen gas.
  • the oxygen gas After depressurizing the oxygen gas, it is introduced into the gas phase portion of the low pressure column 18.
  • the argon-enriched liquefied oxygen is distilled at a low temperature to separate it into argon gas and medium-pressure liquefied oxygen.
  • the argon gas and the low-pressure liquefied oxygen are indirectly heat-exchanged, the argon gas is liquefied to generate liquefied argon, and the low-pressure liquefied oxygen is vaporized to generate low-pressure oxygen gas.
  • the flow rate of the medium-pressure oxygen gas drawn from the outer cylinder of the second indirect heat exchanger (second gas-liquid separation chamber) and introduced into the gas phase portion of the low-pressure column 18 is reduced or reduced to zero. ..
  • the air compressor 11, the air precooler 12, and the air purifier 13 are sequentially started, and the compressed, refined, and cooled raw material air having a pressure of about 800 kPaA is supplied to the high pressure tower 17.
  • a part of the raw material air is supplied to the expansion turbine 24 by using a bypass line (not shown) for starting, and a part of the raw material air is adiabatically expanded to generate low temperature air.
  • the line and each valve are gradually cooled.
  • liquefied nitrogen is supplied into the low pressure column 18 from the upper part of the low pressure column 18 using the line L33 for supplying liquefied nitrogen.
  • the supplied liquid nitrogen passes through the low pressure tower 18, the line L15, the liquefied oxygen pump P2, the first indirect heat exchanger outer cylinder 20, the line L17, and the valve V7, and the second indirect heat exchanger outer cylinder 21. Is stored as a liquefied gas fluid.
  • the liquefied gas fluid is not stored in the first indirect heat exchanger outer cylinder 20 so that indirect heat exchange does not occur in the first indirect heat exchanger H1. That is, the valve V7 (second opening / closing mechanism) is opened, and the line L17 (second path) is opened according to the opening degree of the valve V7.
  • the liquefied gas fluid When the liquefied gas fluid is accumulated in the second indirect heat exchanger outer cylinder 21, it is supplied to the high pressure tower 17 by the second indirect heat exchanger H2 housed in the second indirect heat exchanger outer cylinder 21. Indirect heat exchange with high pressure air begins. By this heat exchange, high-pressure air is liquefied, and at the same time, gas fluid is generated in the second indirect heat exchanger outer cylinder 21.
  • the liquefied high-pressure liquefied air is supplied from the line L10 to the high-pressure column 17, becomes a reflux liquid of the high-pressure column 17, and low-temperature distillation starts in the high-pressure column 17.
  • the gas fluid generated in the second indirect heat exchanger outer cylinder 21 is the lines L25, L26 (first path), and the valve V10 (first opening / closing mechanism). It is supplied to the lower part of the low pressure tower 18 via.
  • the low pressure column 18 low temperature distillation starts by gas-liquid contact between the gas fluid supplied from the lower part and the liquefied nitrogen supplied from the upper part.
  • the high pressure tower 17 and the low pressure tower 18 are started.
  • high-pressure nitrogen gas is concentrated in the upper part of the high-pressure tower 17, and high-pressure oxygen-enriched liquefied air is concentrated in the lower part.
  • low-pressure nitrogen gas is concentrated in the upper part of the low-pressure tower 18, argon-enriched liquefied oxygen is concentrated in the middle part, and low-pressure liquefied oxygen is concentrated in the lower part.
  • the pressure of the low pressure tower 18 is the same as that during the steady operation, for example, about 130 kPaA.
  • the pressure of the second indirect heat exchanger outer cylinder 21 is also about 130 kPaA, and the heat is integrated by the second indirect heat exchanger H2 ( The pressure of the high pressure column 17 which is heat integrated) becomes about 500 kPaA.
  • the pressure of the air purifier 13 designed at about 800 kPaA which is the pressure of the high pressure tower 17 during steady operation, drops to nearly 500 kPaA, and the adsorbent inside the air purifier 13 may be rolled up. , The amount of water in the air supplied to the air purifier 13 increases, and there is a risk that the water cannot be sufficiently removed.
  • the valve V10 provided on the line L26 can be operated to adjust the pressure of the second indirect heat exchanger outer cylinder 21 to about 230 kPaA, which is the same as during steady operation. it can.
  • the pressure of the high pressure tower 17 can be maintained at about 800 kPaA, so that the pressure drop of the air purifier 13 can be avoided.
  • Argon-enriched liquefied oxygen is concentrated in the middle part of the low-pressure column 18 by low-temperature distillation in the low-pressure column 18.
  • the operation of the argon-enriched liquefied oxygen pump P1 is started, and a part of the argon-enriched liquefied oxygen is led out to the line L19 from the intermediate portion of the low-pressure column 18.
  • the supply of the argon-enriched liquefied oxygen to the argon tower 19 is started via the line L19 and the argon-enriched liquefied oxygen pump P1.
  • the opening degree of the valve V7 is adjusted to start the storage of low-pressure liquefied oxygen in the first indirect heat exchanger outer cylinder 20.
  • the low-pressure liquefied oxygen and the medium-pressure oxygen gas supplied from the argon tower 19 are indirectly in the first indirect heat exchanger H1. Heat exchange is started. Low-pressure liquefied oxygen is vaporized in the outer cylinder 20 of the first indirect heat exchanger to generate low-pressure oxygen gas, and at the same time, medium-pressure oxygen gas supplied from the argon tower 19 is liquefied to generate medium-pressure liquefied oxygen. At this point, since low-temperature distillation is not performed in the argon column 19, the argon gas is not concentrated in the upper part of the argon column 19, and medium-pressure oxygen gas is present.
  • the valve V8 is opened, and the low-pressure oxygen gas of the first indirect heat exchanger outer cylinder 20 is led out to the line L16.
  • the derived low-pressure oxygen gas is supplied to the lower part of the low-pressure tower 18 via the line L16 and the valve V8.
  • the medium-pressure liquefied oxygen liquefied by the first indirect heat exchanger H1 is supplied to the upper part of the argon column 19 via the line L22, becomes a reflux liquid of the argon column 19, and low-temperature distillation starts in the argon column 19.
  • the argon component is not concentrated in the upper part of the argon column 19, and oxygen is the main component. Therefore, in the first indirect heat exchanger H1, the indirect heat exchange between the liquefied oxygen and the oxygen gas is performed, and the pressure difference between the fluids becomes smaller than the indirect heat exchange between the liquefied oxygen and the argon gas during steady operation. ..
  • the first The pressure of the indirect heat exchanger outer cylinder 20 is about 130 kPaA, which is the same as the pressure of the low pressure column 18, and the pressure of the argon tower 19 which is thermally integrated by the first indirect heat exchanger H1 is about 150 kPaA, which is lower than that during steady operation. become. Therefore, the pressure of the second indirect heat exchanger outer cylinder 21 connected to the argon tower 19 is lower than the pressure of 230 kPaA during steady operation, and the pressure of the high pressure tower 17 is also lowered.
  • the valve V8 (fourth opening / closing mechanism) is connected to the line L16 (fourth path), and the valve V9 (third opening / closing mechanism) is connected to the line L25 (third path).
  • the opening degree of the valve V8 provided on the line L16 is adjusted to keep the pressure of the first indirect heat exchanger outer cylinder 20 in steady operation.
  • the pressure is made higher than the time, and the pressure of the argon tower 19 and the second indirect heat exchanger outer cylinder 21 connected to the argon tower 19 is maintained at the same level as in the steady operation.
  • the opening degree of the valve V8 in this way, the pressure of the high pressure tower 17 can be maintained at about 800 kPaA as in the case of steady operation, so that the pressure drop of the air purifier 13 can be avoided.
  • the opening degree of the valve V9 provided on the line L25 is adjusted to reduce the pressure of the second indirect heat exchanger outer cylinder 21. It may be maintained at the same level as during steady operation.
  • the pressure of the high pressure tower 17 can be maintained at about 800 kPaA as in the normal operation, so that the pressure drop of the air purifier 13 can be avoided.
  • the opening degree of the valve V10 is narrowed down while adjusting the pressure of the second indirect heat exchanger outer cylinder 21 so as to be maintained at the same level as in the steady operation, and finally. It is fully closed or slightly opened (valve opening during steady operation).
  • the flow rate of the medium-pressure oxygen gas flowing through the line L26 is reduced, and the medium-pressure oxygen gas supplied to the argon tower 19 is increased to a predetermined amount.
  • the operation method (air separation method) of the air separation device 10 of the present embodiment shifts to the steady operation.
  • a steady operation including the following steps is performed.
  • the raw material air is distilled at a low temperature and separated into high-pressure nitrogen gas and high-pressure oxygen-enriched liquefied air (high-pressure separation step).
  • high-pressure oxygen-enriched liquefied air is distilled at a low temperature and separated into low-pressure nitrogen gas, low-pressure liquefied oxygen, and argon-enriched liquefied oxygen (low-pressure separation step).
  • the argon-enriched liquefied oxygen is pressurized to a pressure higher than the pressure in the low-pressure separation step and then distilled at a low temperature to separate the argon gas and the medium-pressure liquefied oxygen (argon separation step).
  • the argon gas and the low-pressure liquefied oxygen are indirectly heat-exchanged, the argon gas is liquefied to generate liquefied argon, and the low-pressure liquefied oxygen is vaporized to generate the low-pressure oxygen gas.
  • the valve V10 (first opening / closing mechanism) is fully closed and no fluid flows in the line L26 (first path), or the valve V10 is slightly opened. It is assumed that only a small amount of medium-pressure oxygen gas flows through the line L26.
  • the amount of rising gas in the low pressure column 18 can be adjusted by a small amount of medium pressure oxygen gas flowing through the line L26, and the composition of the argon-enriched liquefied oxygen derived from the line L19 can be adjusted.
  • the air separation device 10 of the present embodiment has a high pressure tower 17 that distills high pressure raw material air at a low temperature and separates it into high pressure nitrogen gas and high pressure oxygen enriched liquefied air, and the high pressure oxygen enrichment.
  • the low-pressure tower 18 that distills liquefied air at a low temperature and separates it into low-pressure nitrogen gas, low-pressure liquefied oxygen, and argon-enriched liquefied oxygen, and the argon-enriched liquefied oxygen at a pressure higher than the pressure of the low-pressure tower 18 are distilled at a low temperature.
  • the argon tower 19 that separates the argon gas and the medium pressure liquefied oxygen indirectly exchanges heat between the argon gas and the low pressure liquefied oxygen, and the argon gas is liquefied to generate liquefied argon, and the low pressure is generated.
  • the first indirect heat exchanger H1 that vaporizes liquefied oxygen to generate low-pressure oxygen gas and the high-pressure nitrogen gas and the medium-pressure liquefied oxygen indirectly exchange heat, and the high-pressure nitrogen gas is liquefied to obtain high pressure.
  • the first path (lines L25, L26) communicating the portion with the gas phase portion of the second indirect heat exchanger outer cylinder 21, the liquid phase portion of the low pressure column 18, and the second indirect heat exchanger outer cylinder 21
  • a second path (line L17) communicating with the gas, a first opening / closing mechanism (valve V10) located in the first path, and a second opening / closing mechanism (valve V7) located in the second path.
  • valve V10 a first opening / closing mechanism located in the first path
  • a second opening / closing mechanism (valve V7) located in the second path.
  • the air separation device 10 of the present embodiment by switching the open / closed state of the valve V7, the second path for communicating the liquid phase portion of the low pressure column 18 and the second indirect heat exchanger outer cylinder 21 is opened. Alternatively, it can be blocked.
  • the gas phase portion of the low pressure tower 18 and the gas phase portion of the second indirect heat exchanger outer cylinder 21 communicate with each other by switching the open / closed state of the valve V10.
  • the first path can be opened or blocked.
  • the high-pressure tower 17 and the low-pressure tower 18 are first started even in the conventional high-performance three-tower process described in Patent Document 2, and the low-pressure tower 18 generates argon-enriched oxygen. Let me. Next, this argon-enriched liquefied oxygen is introduced into the argon column 19 and distilled. As a result, the oxygen component can be removed from the argon tower 19 to collect argon, and the argon tower 19 is started. According to the air separation method of the present embodiment, the air separation device 10 can be easily started.
  • the valve V10 (first opening / closing mechanism) is fully closed and no fluid flows in the line L26 (first path), or the valve.
  • V10 is slightly opened, only a small amount of medium pressure oxygen gas flows through the line L26.
  • the valve V10 opens and most (at least half or more) of the medium-pressure oxygen gas generated by the second indirect heat exchanger H2 flows to the line L26.
  • the high-pressure column 17 and the low-pressure column 18 can be started before the argon gas supplied to the first indirect heat exchanger H1 is generated by the low-temperature distillation in the argon column 19.
  • the argon-enriched liquefied oxygen can be separated by low-temperature distillation in the low-pressure column 18 to generate the argon-enriched liquefied oxygen as a raw material of the argon column 19.
  • the valve V10 is operated to adjust the opening degree, so that the second indirect heat exchanger outer cylinder 21
  • the pressure inside can be maintained at the same level as during steady operation.
  • the pressure of the high-pressure nitrogen gas liquefied by the second indirect heat exchanger H2 and the pressure of the raw material air supplied to the high-pressure tower 17 are maintained at the same pressure as during steady operation, and the air flowing through the air purifier 13 Since the pressure of the air purifier 13 can be maintained at the same level as during steady operation, troubles due to a decrease in the pressure of the air purifier 13 can be prevented.
  • the air separation device 10 When the air separation device 10 is started, the high pressure tower 17 and the low pressure tower 18 are started, and then the low pressure liquefied oxygen supplied from the low pressure tower 18 is stored in the first indirect heat exchanger outer cylinder 20 and the first.
  • the fluid supplied to the inlet of the liquefaction passage of the first indirect heat exchanger H1 is not an argon gas but an oxygen gas having a saturation pressure lower than that of the argon gas. Therefore, by the indirect heat exchange in the first indirect heat exchanger H1, the oxygen gas existing in the argon tower 19 is liquefied at a pressure lower than that in the steady operation, and the argon tower 19 and the second indirect heat exchange connected to it are liquefied.
  • the pressure of the outer cylinder 21 may be lower than that during steady operation.
  • the air separation device 10 of the present embodiment has a valve V8 (fourth opening / closing mechanism) on the line L16 (fourth path), and the first indirect heat exchanger outer cylinder 20 is operated by operating the valve V8.
  • the pressure can be kept higher than during steady operation.
  • the pressures of the argon tower 19 and the second indirect heat exchanger outer cylinder 21 can be maintained at the same level as during steady operation.
  • the air separation device 10 of the present embodiment has a valve V9 (third opening / closing mechanism) on the line L25 (third path), and the pressure of the argon tower 19 is reduced by operating the valve V9. Even in this case, the pressure of the second indirect heat exchanger outer cylinder 21 can be maintained at the same level as during steady operation.
  • the air purifier 13 caused by the pressure drop of the second indirect heat exchanger outer cylinder 21 when the device is started. Trouble due to pressure drop can be prevented. Further, when performing the weight loss operation in which the processing amount is suppressed during the steady operation, the pressure loss of the low pressure tower 18 and the argon tower 19 is reduced, and the fluid of the first indirect heat exchanger H1 and the second indirect heat exchanger H2. There is an advantage that the pressure drop of the high pressure tower 17 due to the decrease of the temperature difference between the two can be prevented and the pressure of the product high pressure nitrogen gas (HPGN 2 ) can be maintained constant.
  • HPGN 2 product high pressure nitrogen gas
  • the valve V10 when the air separation device 10 is started, the valve V10 is operated at the stage where each device is cooled by the low temperature air derived from the expansion turbine 24.
  • the low temperature air supplied to the low pressure column 18 via the line L26 and the line L25 (that is, the first path) can be supplied to the lower part of the argon column 19.
  • the argon tower 19 can be cooled in a relatively short time by supplying the argon tower 19 with low-temperature air by using the first path in the direction opposite to the above-described direction.
  • the low-temperature air led out from the expansion turbine 24 passes through the line L6, the low-pressure column 18, the line L26, the line L25, the argon column 19, the line L20, and the line L21, and after cooling each device, enters the atmosphere. It is released.
  • the argon tower 19 is cooled by using the line L19.
  • the liquefied fluid flows in the line L19 during steady operation, a pipe thinner than that of the gas line is usually used. Therefore, it is difficult to flow a large amount of gas fluid through the line L19, and the cooling time of the argon column 19 becomes long.
  • a pressure control valve can be installed on the secondary side of the air purifier 13 of the line L1 as a means of preventing the pressure drop of the air purifier 13 at the time of starting, but this line has a relatively large pipe diameter. It is more preferable to use the above device and method because the valve becomes large and the cost increases.
  • FIGS. 4 to 6 are system diagrams showing a main part of a modified example of the air separation device according to the first embodiment of the present invention.
  • the high pressure tower 17 and the low pressure tower 18 are started first when the air separation device 10 is started. Then, the start of indirect heat exchange in the first indirect heat exchanger H1 can be avoided until the low-pressure nitrogen gas, the argon-enriched liquefied oxygen, and the low-pressure liquefied oxygen are concentrated in the low-pressure tower 18. preferable.
  • the gas fluid in the argon column 19 is liquefied and the inside of the argon column 19 is liquefied. It becomes below the atmospheric pressure, and there is a risk of inhaling air containing impurities in the atmosphere and a risk of damaging the argon tower 19.
  • the opening degree of the valve V7 located on the line L17 is opened so that low-pressure liquefied oxygen does not accumulate in the first indirect heat exchanger outer cylinder 20. To adjust.
  • the air separation device 10A which is a modification of the first embodiment, may be used. As shown in FIG. 2, the air separation device 10A includes a line L31 and a valve V12 in addition to the configuration of the air separation device 10 described above.
  • Line L31 is located between the low pressure column 18 and the second indirect heat exchanger outer cylinder 21 (or argon column 19).
  • the line L31 branches from the line L15.
  • One end of the line L31 is connected to the line L15 (branch point) on the secondary side of the liquefied oxygen pump P2.
  • the other end of the line L31 is connected to the argon column 19 or the second indirect heat exchanger outer cylinder 21.
  • a valve V12 is provided on the line L31. When the valve V12 is in the open state, the low-pressure liquefied oxygen concentrated in the low-pressure column 18 is pressurized to the line L31 via the line L15 and the liquefied oxygen pump P2, and is supplied as medium-pressure liquefied oxygen.
  • the medium-pressure liquefied oxygen flowing through the line L31 is supplied to the argon tower 19 or the second indirect heat exchanger outer cylinder 21 via the valve V12.
  • Valve V12 is located on line L31.
  • the valve V12 is not particularly limited as long as it has a function of opening and closing the flow path (a part of the second path) of the line L31, but the valve V12 is fully closed (opening 0%) to fully open (open). It is preferable that the opening degree can be freely adjusted over 100%).
  • the low-pressure liquefied oxygen concentrated in the low-pressure column 18 is pressurized to the valve V12 via the line L15 and the line L31, and is supplied as medium-pressure liquefied oxygen.
  • the valve V12 supplies medium-pressure liquefied oxygen flowing through the line L31 according to its opening degree.
  • the bottom portion (liquid phase portion) of the low pressure column 18 and the second indirect heat exchanger outer cylinder (second gas-liquid separation chamber) 21 communicate with each other by the line L15 and the line L31.
  • a second route is constructed.
  • the valve V12 is a second opening / closing mechanism.
  • the first A part or all of the low-pressure liquefied oxygen can be supplied to the bottom of the argon tower 19 or the second indirect heat exchanger outer cylinder 21 without supplying the low-pressure liquefied oxygen to the indirect heat exchanger outer cylinder 20 of 1.
  • the air separation device 10B which is a modification of the first embodiment, may be used. As shown in FIG. 3, the air separation device 10B has different configurations of the lines L15 and L24 among the configurations of the above-mentioned air separation device 10, and further includes a line L32 and a valve V13.
  • Line L15 is located between the low pressure tower 18 and the argon tower 19. One end of the line L15 is connected to the bottom of the low pressure tower 18. The other end of the line L15 is connected to the lower part of the argon column 19.
  • the line L15 is supplied with low-pressure liquefied oxygen concentrated at the bottom of the low-pressure column 18.
  • a valve V14 is provided on the line L15. The low-pressure liquefied oxygen flowing through the line L15 is supplied to the lower part of the argon column 19 via the valve V14.
  • Line L24 is located between the argon tower 19 and the first indirect heat exchanger outer cylinder 20. One end of the line L24 is connected to the bottom of the argon tower 19. The other end of the line L24 is connected to the first indirect heat exchanger outer cylinder 20.
  • the line L24 is supplied with medium-pressure liquefied oxygen stored in the lower part of the argon column 19.
  • the line L24 is provided with a liquefied oxygen pump P3.
  • the medium-pressure liquefied oxygen flowing through the line L24 is supplied to the first indirect heat exchanger outer cylinder 20 by the liquefied oxygen pump P3.
  • Line L32 branches off from line L24.
  • the line L32 is located between the argon column 19 and the second indirect heat exchanger outer cylinder 21.
  • One end of the line L32 is connected to the line L24 (branch point) on the secondary side of the liquefied oxygen pump P3.
  • the other end of the line L32 is connected to the second indirect heat exchanger outer cylinder 21.
  • a valve V13 is provided on the line L32. When the valve V13 is in the open state, the line L32 is supplied with medium-pressure liquefied oxygen concentrated at the bottom of the argon column 19 via the line L24. The medium-pressure liquefied oxygen flowing through the line L32 is supplied to the second indirect heat exchanger outer cylinder 21.
  • Valve V13 is located on line L32.
  • the valve V13 is not particularly limited as long as it has a function of opening and closing the flow path (a part of the second path) of the line L32, but the valve V13 is fully closed (opening 0%) to fully open (open). It is preferable that the opening degree can be freely adjusted over 100%).
  • the valve V13 is supplied with medium-pressure liquefied oxygen concentrated at the bottom of the argon column 19 via the lines L24 and L32.
  • the valve V13 supplies medium-pressure liquefied oxygen flowing through the line L32 according to its opening degree.
  • the bottom portion (liquid phase portion) of the low pressure column 18 and the second indirect heat exchanger outer cylinder (second gas-liquid separation chamber) are provided by the lines L15, the argon column 19, and the lines L24 and L32.
  • a second route communicating with 21 is configured.
  • the valve V13 is a second opening / closing mechanism.
  • the line L15, the argon tower 19, the lines L24, L32 (that is, the second path) and the valve V13 (the second opening / closing mechanism) are provided.
  • the device is started, a part or all of the medium pressure liquefied oxygen can be supplied to the second indirect heat exchanger outer cylinder 21 without supplying the medium pressure liquefied oxygen to the first indirect heat exchanger outer cylinder 20. ..
  • the air separation device 10C which is a modification of the first embodiment, may be used.
  • the first indirect heat exchanger outer cylinder 20 is omitted from the configuration of the air separation device 10 described above, and the line L34 and the first gas-liquid separator 25 are Has been added.
  • Line L34 is located between the first indirect heat exchanger H1 and the first gas-liquid separator 25. One end of the line L34 is connected to the vaporization passage outlet of the first indirect heat exchanger H1. The other end of the line L34 is connected to the first gas-liquid separator 25.
  • a gas-liquid two-phase mixed fluid of low-pressure oxygen gas vaporized by low-pressure liquefied oxygen and low-pressure liquefied oxygen not vaporized by the first indirect heat exchanger H1 is derived to the line L34.
  • the mixed fluid of the low-pressure oxygen gas flowing through the line L34 and the low-pressure liquefied oxygen is supplied to the first gas-liquid separator 25.
  • the first gas-liquid separator 25 is located between the first indirect heat exchanger H1 and the argon tower 19. Lines L16, L17, and L34 are connected to the first gas-liquid separator 25, respectively.
  • the first gas-liquid separator 25 stores a mixed fluid of low-pressure oxygen gas and low-pressure liquefied oxygen supplied via the line L34, and separates the low-pressure oxygen gas in the gas phase and the low-pressure liquefied oxygen in the liquid phase. ..
  • Line L16 is located between the first gas-liquid separator 25 and the low pressure tower 18. One end of the line L16 is connected to the gas outlet (top) of the first gas-liquid separator 25. The other end of the line L16 is connected to the gas phase portion of the low pressure column 18. A valve (fourth opening / closing mechanism) V8 is provided on the line L16. Low-pressure oxygen gas is led out from the gas phase portion of the first gas-liquid separator 25 to the line L16. The low pressure oxygen gas flowing through the line L16 is supplied to the lower part of the low pressure tower 18.
  • the valve V8 is a fourth opening / closing mechanism.
  • the high pressure tower 17 and the low pressure tower 18 are first activated, and then the argon tower 19 is formed, similarly to the air separation device 10 of the first embodiment. It can be started easily.
  • the upper part of the argon tower 19 is formed at the time of starting. Until the argon gas is concentrated, the opening degree of the valve V8 provided on the line L16 is adjusted to keep the pressure in the vaporization passages of the first gas-liquid separator 25 and the first indirect heat exchanger H1 constant. The pressure can be made higher than that during operation, and the pressure of the argon tower 19 and the second indirect heat exchanger outer cylinder 21 connected thereto can be maintained at the same level as during steady operation.
  • the pressure of the high pressure tower 17 can be maintained at the same level as during steady operation (for example, about 800 kPaA), so that the pressure drop of the air purifier 13 can be avoided. Can be done.
  • the fluid vaporized by the first indirect heat exchanger H1 is medium-pressure oxygen gas
  • the fluids separated by the first gas-liquid separator 25 are medium-pressure oxygen gas and medium-pressure liquefied oxygen. ..
  • the air separation device 10D which is a modification of the first embodiment, may be used. Further, as shown in FIG. 5, in the air separation device 10D, the first indirect heat exchanger outer cylinder 20 and the valve V8 are omitted from the configuration of the air separation device 10 described above, and a line L34 is added. ..
  • Line L34 is located between the first indirect heat exchanger H1 and the low pressure column 18. One end of the line L34 is connected to the vaporization passage outlet of the first indirect heat exchanger H1. The other end of the line L34 is connected to the gas phase portion at the lower part of the low pressure column 18. A gas-liquid two-phase mixed fluid of low-pressure oxygen gas vaporized by low-pressure liquefied oxygen and low-pressure liquefied oxygen not vaporized by the first indirect heat exchanger H1 is derived to the line L34. The mixed fluid of the low-pressure oxygen gas flowing through the line L34 and the low-pressure liquefied oxygen is supplied to the lower part of the low-pressure column 18.
  • the lower part of the low-pressure column 18 low-pressure liquefied oxygen separated by low-temperature distillation in the low-pressure column 18 and a mixed fluid of low-pressure oxygen gas and low-pressure liquefied oxygen supplied via the line L34 are stored, and the gas phase It separates into low-pressure oxygen gas and low-pressure liquefied oxygen in the liquid phase.
  • the lower part of the low pressure column 18 is the first gas-liquid separation chamber.
  • the high pressure tower 17 and the low pressure tower 18 are first activated, and then the argon tower 19 is formed, similarly to the air separation device 10 of the first embodiment. It can be started easily.
  • the air separation device 10E which is a modification of the first embodiment, may be used. Further, as shown in FIG. 6, in the air separation device 10E, the second indirect heat exchanger outer cylinder 21 is omitted from the configuration of the air separation device 10 described above, and the line L35 and the first gas-liquid separator are omitted. 26 have been added.
  • Line L35 is located between the second indirect heat exchanger H2 and the second gas-liquid separator 26.
  • One end of the line L35 is connected to the vaporization passage outlet of the second indirect heat exchanger H2.
  • the other end of the line L35 is connected to the second gas-liquid separator 26.
  • a gas-liquid two-phase mixed fluid of medium-pressure oxygen gas vaporized by medium-pressure liquefied oxygen and medium-pressure liquefied oxygen not vaporized by the second indirect heat exchanger H2 is derived to the line L35.
  • the mixed fluid of the medium pressure oxygen gas flowing through the line L35 and the medium pressure liquefied oxygen is supplied to the second gas-liquid separator 26.
  • the second gas-liquid separator 26 is located between the second indirect heat exchanger H2 and the high-pressure tower 17. Lines L25, L27, and L35 are connected to the second gas-liquid separator 26, respectively.
  • the second gas-liquid separator 26 stores a mixed fluid of medium-pressure oxygen gas and medium-pressure liquefied oxygen supplied via the line L35, and stores the medium-pressure oxygen gas in the gas phase and the medium-pressure liquefied oxygen in the liquid phase. Separate into and.
  • Line L25 is located between the second gas-liquid separator 26 and the argon tower 19. One end of the line L25 is connected to the gas outlet (top) of the second gas-liquid separator 26. The other end of the line L25 is connected to the gas phase portion of the argon column 19. A valve (third opening / closing mechanism) V9 is provided on the line L25. Medium-pressure oxygen gas is led out from the gas phase portion of the second gas-liquid separator 26 to the line L25. The medium-pressure oxygen gas flowing through the line L25 is supplied to the lower part of the argon column 19.
  • the valve V9 is a third opening / closing mechanism.
  • the high pressure tower 17 and the low pressure tower 18 are first activated, and then the argon tower 19 is formed, similarly to the air separation device 10 of the first embodiment. It can be started easily.
  • the opening degree of the valve V9 provided on the line L25 can be adjusted to maintain the pressure of the second gas-liquid separator 26 at the same level as during steady operation.
  • the pressure of the high pressure tower 17 can be maintained at the same level as during steady operation (for example, about 800 kPaA), so that the pressure drop of the air refiner 13 can be avoided. it can.
  • FIG. 7 is a system diagram showing an example of the configuration of the air separation device according to the second embodiment of the present invention.
  • the same components of the air separation device 10 of the first embodiment shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the air separation device 30 of the present embodiment is configured in the same manner as the air separation device 10 of the first embodiment described above, except for the changes listed below.
  • the air separation device 30 of the present embodiment includes a first argon tower 19a and a second argon tower 19b connected in series in place of the argon tower 19 of the air separation device 10 of the first embodiment.
  • the air separation device 30 of the present embodiment removes the second indirect heat exchanger outer cylinder 21 of the air separation device 10 of the first embodiment from the components.
  • the air separation device 30 of the present embodiment accommodates the second indirect heat exchanger H2 in the bottom of the second argon column 19b.
  • the air separation device 30 of the present embodiment replaces the lines L24, L25, the valve V9, and the liquefied oxygen pump P3, which constitute the air separation device 10 of the first embodiment, with the lines L29, L30, the valve V11, and the liquefied argon. It has a pump P5.
  • the air separation device 30 of the present embodiment has a line L26 configuration different from that of the air separation device 10 of the first embodiment.
  • the air separation device 30 of the present embodiment has a line L17 configuration different from that of the air separation device 10 of the first embodiment.
  • the first argon tower 19a is located between the first indirect heat exchanger outer cylinder 20 and the second argon tower 19b. Lines L20, L22, L29, and L30 are connected to the first argon tower 19a, respectively.
  • the first argon column 19a is an argon gas obtained by low-temperature distillation of liquefied argon supplied through the line L22 and low-purity argon gas supplied via the line L30 at a pressure higher than that of the low-pressure column 18. And low-purity liquefied argon.
  • argon gas is concentrated in the upper part of the first argon column 19a, and low-purity liquefied argon is concentrated in the lower part of the first argon column 19a.
  • the second argon tower (second gas-liquid separation chamber) 19b is located between the first argon tower 19a and the high-pressure tower 17.
  • Lines L17, L19, L26, L27, L29, and L30 are connected to the second argon tower 19b, respectively.
  • a second indirect heat exchanger H2 is housed in the bottom of the second argon column 19b.
  • the second argon column 19b includes argon-enriched liquefied oxygen pressurized by the argon-enriched liquefied oxygen pump P1, low-purity liquefied argon supplied via the line L29, and low-pressure liquefied supplied via the line L17.
  • Low-purity argon gas and medium-pressure liquefied oxygen are obtained by low-temperature distillation of oxygen and medium-pressure oxygen gas generated by vaporization in the second indirect heat exchanger H2 at a pressure higher than that of the low-pressure column 18. To separate. By this low-temperature distillation, low-purity argon gas is concentrated in the upper part of the second argon column 19b, and medium-pressure liquefied oxygen is concentrated in the lower part of the second argon column 19b.
  • the line L29 is located between the first argon tower 19a and the second argon tower 19b. One end of the line L29 is connected to the bottom of the first argon column 19a. The other end of the line L29 is connected to the top (or top) of the second argon column 19b. A part of the low-purity liquefied argon stored in the bottom of the first argon column 19a is led out to the line L29.
  • the line L29 is provided with a liquefied argon pump P5.
  • the low-purity liquefied argon flowing through the line L29 is pressurized by the liquefied argon pump P5 and then supplied to the top of the second argon column 19b.
  • the liquefied argon pump P5 is located on line L29.
  • the liquefied argon pump P5 pressurizes the low-purity liquefied argon led out to the line L29 from the bottom of the first argon column 19a.
  • the line L30 is located between the second argon column 19b and the first argon column 19a. One end of the line L30 is connected to the top (or top) of the second argon column 19b. The other end of the line L30 is connected to the lower part of the first argon column 19a. Low-purity argon gas (during steady operation) or medium-pressure oxygen gas (during start-up) concentrated on the top of the second argon column 19b is led out to the line L30.
  • the line L30 is provided with a valve (third opening / closing mechanism) V11. The low-purity argon gas flowing through the line L30 is supplied to the lower part of the first argon column 19a via the valve V11.
  • the gas phase portion of the first argon tower 19a (argon tower) and the gas phase portion of the second argon tower 19b (second gas-liquid separation chamber) are communicated by the line L30.
  • a third route is constructed.
  • the third route is a route for supplying the low-purity argon gas or the medium-pressure oxygen gas stored in the gas phase portion of the second argon tower 19b to the gas phase portion of the first argon tower 19a.
  • the third path may include a flow path other than the line L30. That is, all of the flow paths through which the low-purity argon gas or the medium-pressure oxygen gas stored in the second argon tower 19b reaches the first argon tower 19a become the third path.
  • Valve V11 is located on line L30.
  • the valve V11 is not particularly limited as long as it has a depressurizing function, but it is preferable that the valve V11 can freely adjust the opening degree from fully closed (opening 0%) to fully open (opening 100%).
  • the valve V11 is supplied with low-purity argon gas concentrated on the top of the second argon column 19b via the line L30.
  • the valve V11 depressurizes the fluid flowing through the line L30 according to its opening degree.
  • the second indirect heat exchanger H2 is housed in the bottom of the second argon column 19b.
  • the entrance of the liquefaction passage of the second indirect heat exchanger H2 is connected to one end of the line L8.
  • One end of the line L17 is connected to the liquid outlet of the second indirect heat exchanger H2.
  • the second indirect heat exchanger H2 indirectly exchanges heat between the high-pressure nitrogen gas supplied from the line L8 and the medium-pressure liquefied oxygen stored in the bottom of the second argon tower 19b to exchange high-pressure nitrogen.
  • the gas is liquefied to generate high-pressure liquefied nitrogen, and medium-pressure liquefied oxygen is vaporized to generate medium-pressure oxygen gas.
  • the second argon tower 19b serves as the second gas-fluid separation chamber, and the medium-pressure oxygen gas generated by vaporization in the second indirect heat exchanger H2 and the second indirect heat exchanger H2.
  • the mixed fluid of the medium-pressure liquefied oxygen that has not been vaporized in is stored, and the mixed fluid is separated into the medium-pressure oxygen gas and the medium-pressure liquefied oxygen.
  • Line L17 is located between the first indirect heat exchanger outer cylinder 20 and the second argon tower 19b. One end of the line L17 is connected to the liquid outlet (bottom) of the first indirect heat exchanger outer cylinder 20. The other end of the line L17 is connected to the bottom (or bottom) of the second argon column 19b. A part of the low-pressure liquefied oxygen stored in the outer cylinder 20 of the first indirect heat exchanger and not vaporized by the first indirect heat exchanger H1 is derived to the line L17. A valve V7 is provided on the line L17. The low-pressure liquefied oxygen flowing through the line L17 is supplied to the bottom of the second argon column 19b via the valve V7.
  • Line L19 is located between the low pressure column 18 and the second argon column 19b. One end of the line L19 is connected to the intermediate portion of the low pressure tower 18. The other end of the line L19 is connected to the middle or lower part of the second argon column 19b. A part of the argon-enriched liquefied oxygen concentrated in the middle part of the low-pressure column 18 is supplied to the line L19.
  • the line L19 is provided with an argon-enriched liquefied oxygen pump P1.
  • the argon-enriched liquefied oxygen flowing through the line L19 is supplied to the second argon column 19b after being pressurized by the argon-enriched liquefied oxygen pump P1.
  • Line L26 is located between the second argon column 19b (second gas-liquid separation chamber) and the low pressure column 18. One end of the line L26 is connected to the lower part of the second argon column 19b. The other end of the line L26 is connected to the lower part of the low pressure tower 18. A part of the medium-pressure oxygen gas stored in the lower part of the second argon column 19b is led out to the line L26.
  • the line L26 is provided with a valve V10 (first opening / closing mechanism). The medium-pressure oxygen gas flowing through the line L26 is depressurized by the valve V10 and then supplied to the lower part of the low-pressure column 18.
  • the lower portion (gas phase portion) of the low pressure column 18 and the lower portion (gas phase portion) of the second argon column (second gas-liquid separation chamber) 19b are communicated by the line L26.
  • the first route is constructed.
  • the present invention is not limited to this.
  • One end of the line L26 is located at the middle or upper gas outlet of the second argon tower 19b, the branch point of the line L30, the gas outlet of the first argon tower 19a, the branch point of the line L20, or the branch point of the line L21. It may be connected.
  • the medium-pressure oxygen gas generated by the second indirect heat exchanger H2 passes through any or all of the second argon column 19b, the line L30, the first argon column 19a, the line L20, and the line L21.
  • the air separation device 30 is started from a normal temperature state, and the product argon gas (GAR) or the product liquefied argon (LAR) can be recovered. After that, it shifts to steady operation.
  • GAR product argon gas
  • LAR product liquefied argon
  • the raw material air containing oxygen, nitrogen, and argon is compressed, precooled, purified, and cooled to generate high-pressure raw material air, and the high-pressure tower 17
  • the raw material air is distilled at a low temperature to separate it into high-pressure nitrogen gas and high-pressure oxygen-enriched liquefied air
  • the high-pressure oxygen-enriched liquefied air is distilled at a low temperature to obtain low-pressure nitrogen gas and low pressure. Separates into liquefied oxygen and argon-enriched liquefied oxygen.
  • the medium-pressure liquefied oxygen obtained by pressurizing the low-pressure liquefied oxygen is introduced into the second argon tower (second gas-liquid separation chamber) 19b to separate the high-pressure nitrogen gas and the medium-pressure liquefied oxygen.
  • Indirect heat exchange is performed to liquefy the high-pressure nitrogen gas to generate high-pressure liquefied nitrogen, vaporize the medium-pressure liquefied oxygen to generate medium-pressure oxygen gas, and after depressurizing the medium-pressure oxygen gas, the low-pressure tower 18 Introduce to the gas phase part of.
  • the argon-enriched liquefied oxygen is distilled at a low temperature to separate it into argon gas and medium-pressure liquefied oxygen.
  • the argon gas and the low-pressure liquefied oxygen are indirectly heat-exchanged, the argon gas is liquefied to generate liquefied argon, and the low-pressure liquefied oxygen is vaporized to generate low-pressure oxygen gas.
  • the flow rate of the medium-pressure oxygen gas derived from the second argon column 19b (second gas-liquid separation chamber) and introduced into the gas phase portion of the low-pressure column 18 is reduced or reduced to zero.
  • the product (product liquefied argon LAR, product argon gas GAR, etc.) having a predetermined flow rate is extracted to shift to the state of steady operation.
  • the air compressor 11, the air precooler 12, and the air purifier 13 are sequentially started, and the compressed, refined, and cooled raw material air having a pressure of about 800 kPaA is supplied to the high pressure tower 17.
  • a part of the raw material air is supplied to the expansion turbine 24 by using a bypass line (not shown) for starting, and a part of the raw material air is adiabatically expanded to generate low temperature air. Due to the generated low temperature air, the high pressure tower 17, the low pressure tower 18, the first argon tower 19a, the second argon tower 19b, the first indirect heat exchanger H1, the second indirect heat exchanger H2, and the third indirect heat.
  • liquefied nitrogen is supplied into the low pressure column 18 from the upper part of the low pressure column 18 using the line L33 for supplying liquefied nitrogen.
  • the supplied liquid nitrogen is used as a liquefied gas fluid in the second argon tower 19b via the low pressure tower 18, the line L15, the liquefied oxygen pump P2, the first indirect heat exchanger outer cylinder 20, the line L17, and the valve V7. It is stored.
  • the liquefied gas fluid is not stored in the first indirect heat exchanger outer cylinder 20 so that indirect heat exchange does not occur in the first indirect heat exchanger H1. That is, the valve V7 (second opening / closing mechanism) is opened, and the line L17 (second path) is opened according to the opening degree of the valve V7.
  • the gas fluid generated in the second argon tower 19b passes through the line L26 (first path) and the valve V10 (first opening / closing mechanism), and the low pressure tower. It is supplied to the bottom of 18.
  • the low pressure column 18 low temperature distillation starts by gas-liquid contact between the gas fluid supplied from the lower part and the liquefied nitrogen supplied from the upper part.
  • the high pressure tower 17 and the low pressure tower 18 are started.
  • high-pressure nitrogen gas is concentrated in the upper part of the high-pressure tower 17, and high-pressure oxygen-enriched liquefied air is concentrated in the lower part.
  • low-pressure nitrogen gas is concentrated in the upper part of the low-pressure tower 18, argon-enriched liquefied oxygen is concentrated in the middle part, and low-pressure liquefied oxygen is concentrated in the lower part.
  • Argon-enriched liquefied oxygen is concentrated in the middle part of the low-pressure column 18 by low-temperature distillation in the low-pressure column 18.
  • the operation of the argon-enriched liquefied oxygen pump P1 is started, and a part of the argon-enriched liquefied oxygen is led out to the line L19 from the intermediate portion of the low-pressure column 18.
  • the supply of the argon-enriched liquefied oxygen to the second argon column 19b is started via the line L19 and the argon-enriched liquefied oxygen pump P1.
  • the opening degree of the valve V7 is adjusted to start the storage of low-pressure liquefied oxygen in the first indirect heat exchanger outer cylinder 20.
  • the low-pressure liquefied oxygen and the medium-pressure oxygen gas supplied from the first argon tower 19a are combined in the first indirect heat exchanger H1.
  • Indirect heat exchange is initiated.
  • Low-pressure liquefied oxygen is vaporized in the outer cylinder 20 of the first indirect heat exchanger to generate low-pressure oxygen gas, and at the same time, the medium-pressure oxygen gas supplied from the first argon tower 19a is liquefied to generate medium-pressure liquefied oxygen.
  • the argon gas is not concentrated in the upper part of the first argon column 19a, and medium-pressure oxygen gas is present.
  • the valve V8 is opened, and a part of the low-pressure oxygen gas of the first indirect heat exchanger outer cylinder 20 is led out to the line L16.
  • the derived low-pressure oxygen gas is supplied to the lower part of the low-pressure tower 18 via the line L16 and the valve V8.
  • the medium-pressure liquefied oxygen liquefied by the first indirect heat exchanger H1 is supplied to the upper part of the first argon column 19a via the line L22 to become the reflux liquid of the first argon column 19a, and then the first argon column.
  • the fluid derived from the bottom of 19a is supplied to the second argon column 19b via the line L29 and the liquefied argon pump P5, and becomes the reflux liquid of the second argon column 19b.
  • low temperature distillation starts in the first argon column 19a and the second argon column 19b.
  • the argon component is not concentrated in the upper part of the first argon column 19a, and oxygen is the main component. Therefore, in the first indirect heat exchanger H1, the indirect heat exchange between the liquefied oxygen and the oxygen gas is performed, and the pressure difference between the fluids becomes smaller than the indirect heat exchange between the liquefied oxygen and the argon gas during steady operation. ..
  • the first The pressure of the indirect heat exchanger outer cylinder 20 is about 130 kPaA, which is the same as the pressure of the low pressure column 18, and the pressure of the first argon column 19a, which is thermally integrated by the first indirect heat exchanger H1, is lower than that during normal operation. It will be about 150 kPaA. Further, the pressure of the second argon tower 19b connected to the first argon tower 19a is also lower than the pressure of 230 kPaA during steady operation.
  • the pressure of the high-pressure tower 17 also decreases, and as in the case of the air separation device 10 of the first embodiment, there is a possibility that a trouble may occur due to the pressure decrease of the air purifier 13. In this case, even if the valve V10 for adjusting the pressure of the second argon tower 19b is fully closed, the pressure of the second argon tower 19b cannot maintain the pressure during steady operation.
  • the valve V8 (fourth opening / closing mechanism) is connected to the line L16 (fourth path), and the valve V11 (third opening / closing mechanism) is connected to the line L30 (third path).
  • the opening degree of the valve V8 provided on the line L16 is adjusted to control the pressure of the first indirect heat exchanger outer cylinder 20.
  • the pressure is set higher than that during steady operation, and the pressure of the first argon tower 19a and the second argon tower 19b connected thereto is maintained at the same level as during steady operation.
  • the opening degree of the valve V8 in this way, the pressure of the high pressure tower 17 can be maintained at about 800 kPaA as in the case of steady operation, so that the pressure drop of the air purifier 13 can be avoided.
  • the opening degree of the valve V11 provided on the line L30 is adjusted so that the pressure of the second argon tower 19b is the same as that during the steady operation. It may be maintained to a certain degree.
  • the pressure of the high pressure tower 17 can be maintained at about 800 kPaA as in the normal operation, so that the pressure drop of the air refiner 13 can be avoided.
  • the opening degree of the valve V10 is narrowed while adjusting the pressure of the second argon tower 19b so as to be maintained at the same level as in the steady operation, and finally fully closed. Or slightly open (valve opening during steady operation).
  • the flow rate of the medium pressure oxygen gas flowing through the line L26 is reduced, and the medium pressure oxygen gas supplied to the first argon column 19a is increased to a predetermined amount.
  • the operation method (air separation method) of the air separation device 30 of the present embodiment shifts to the steady operation.
  • a steady operation including the following steps is performed.
  • the raw material air is distilled at a low temperature and separated into high-pressure nitrogen gas and high-pressure oxygen-enriched liquefied air (high-pressure separation step).
  • high-pressure oxygen-enriched liquefied air is distilled at a low temperature and separated into low-pressure nitrogen gas, low-pressure liquefied oxygen, and argon-enriched liquefied oxygen (low-pressure separation step).
  • the argon-enriched liquefied oxygen is pressurized to a pressure higher than the pressure in the low-pressure separation step and then distilled at a low temperature to separate the argon gas and the medium-pressure liquefied oxygen.
  • Argon separation step -In the first indirect heat exchanger H1, the argon gas and the low-pressure liquefied oxygen are indirectly heat-exchanged, the argon gas is liquefied to generate liquefied argon, and the low-pressure liquefied oxygen is vaporized to generate the low-pressure oxygen gas.
  • valve V10 first opening / closing mechanism
  • the valve V10 is fully closed and no fluid flows in the line L26 (first path), or the valve V10 is slightly opened. It is assumed that only a small amount of medium-pressure oxygen gas flows through the line L26.
  • the air separation device 30 of the present embodiment has a high pressure tower 17 that distills high pressure raw material air at a low temperature and separates it into high pressure nitrogen gas and high pressure oxygen enriched liquefied air, and the high pressure oxygen enrichment.
  • the low-pressure tower 18 that distills liquefied air at a low temperature and separates it into low-pressure nitrogen gas, low-pressure liquefied oxygen, and argon-enriched liquefied oxygen, and the argon-enriched liquefied oxygen at a pressure higher than the pressure of the low-pressure tower 18 are distilled at a low temperature.
  • the first argon tower 19a and the second argon tower 19b which separate the argon gas and the medium-pressure liquefied oxygen, indirectly exchange heat between the argon gas and the low-pressure liquefied oxygen to liquefy the argon gas.
  • the first indirect heat exchanger H1 that generates liquefied argon and vaporizes the low-pressure liquefied oxygen to generate low-pressure oxygen gas, and the high-pressure nitrogen gas and the medium-pressure liquefied oxygen indirectly exchange heat with each other.
  • a second indirect heat exchanger H2 that liquefies a high-pressure nitrogen gas to generate high-pressure liquefied nitrogen and vaporizes the medium-pressure liquefied oxygen to generate a medium-pressure oxygen gas
  • a first indirect heat exchanger H1 A first indirect heat exchanger outer cylinder (first gas-liquid separation chamber) 20 for separating the low-pressure oxygen gas and the low-pressure liquefied oxygen that has not vaporized into a gas phase and a liquid phase, and a second indirect heat.
  • a line L17), a first opening / closing mechanism (valve V10) located in the first path, and a second opening / closing mechanism (valve V7) located in the second path are provided.
  • the air separation device 30 of the present embodiment by switching the open / closed state of the valve V7, the second path communicating the liquid phase portion of the low pressure column 18 and the second argon column 19b can be opened or blocked. Further, according to the air separation device 30 of the present embodiment, by switching the open / closed state of the valve V10, a first path for communicating the gas phase portion of the low pressure column 18 and the gas phase portion of the second argon column 19b is provided. Can be opened or blocked.
  • the high-pressure column 17 and the low-pressure column 18 are first started in the high-performance three-column process, and the low-pressure column 18 generates argon-enriched oxygen.
  • this argon-enriched liquefied oxygen is introduced into the second argon column 19b and distilled in the first argon column 19a and the second argon column 19b.
  • the oxygen component can be removed from the first argon column 19a to collect argon, and the first argon column 19a, the second argon column 19b, and (argon column) can be started.
  • the air separation device 30 can be easily started.
  • the valve V10 during steady operation of the air separation device 30, the valve V10 is fully closed and no fluid flows in the line L26, or the valve V10 is slightly open and gas. Only a small amount of medium pressure oxygen gas flows through the bypass line L26.
  • the valve V10 opens and most (at least half or more) of the medium-pressure oxygen gas generated by the second indirect heat exchanger H2 flows into the line L26.
  • the high pressure column 17 and the low pressure column 18 can be started before the argon gas supplied to the first indirect heat exchanger H1 is generated by the low temperature distillation in the first argon column 19a and the second argon column 19b. ..
  • the argon-enriched liquefied oxygen can be separated by low-temperature distillation in the low-pressure column 18 to generate argon-enriched liquefied oxygen as a raw material for the first argon column 19a and the second argon column 19b.
  • the pressure of the second argon tower 19b can be adjusted to the same pressure as in the steady operation.
  • the pressure of the high-pressure nitrogen gas liquefied by the second indirect heat exchanger H2 and the pressure of the raw material air supplied to the high-pressure tower 17 can be maintained at the same pressure as during steady operation. Therefore, the pressure of the air flowing through the air purifier 13 can be maintained at the same pressure as in the steady operation, and troubles due to the pressure drop of the air purifier 13 can be prevented.
  • the air separation device 30 when the air separation device 30 is started, the high pressure tower 17 and the low pressure tower 18 are started, and then the low pressure liquefied oxygen supplied from the low pressure tower 18 is stored in the first indirect heat exchanger outer cylinder 20 and the first.
  • the fluid supplied to the inlet of the liquefaction passage of the first indirect heat exchanger H1 is not argon gas but oxygen gas having a lower saturation pressure than argon gas. ..
  • the oxygen gas existing in the first argon tower 19a begins to liquefy at a pressure lower than that during steady operation, and the first argon tower 19a and the first argon tower 19a connected thereto 2
  • the pressure of the argon tower 19b may be lower than that during steady operation.
  • the pressure of the first indirect heat exchanger outer cylinder 20 can be maintained at a pressure higher than that during steady operation, and the first The pressures of the argon column 19 and the second argon column 19b can be maintained at the same level as during steady operation.
  • valve V11 when the air separation device 30 is started, even if the pressure of the first argon tower 19a drops, the pressure of the second argon tower 19b can be maintained at the same level as during steady operation.
  • adjusting the valve V8 or the valve V11 to prevent the pressure drop of the second argon column 19b can prevent troubles due to the pressure drop of the air purifier 13 at the time of starting the apparatus. Further, when performing the weight loss operation in which the processing amount is suppressed during the steady operation, the pressure loss of the low pressure column 18, the first argon column 19a and the second argon column 19b is reduced, and the first indirect heat exchangers H1 and 2 are used. There is an advantage that the pressure drop of the high pressure tower 17 due to the decrease of the temperature difference between the fluids of the indirect heat exchanger H2 can be prevented and the pressure of the product high pressure nitrogen gas (HPGN 2 ) can be kept constant.
  • the first indirect heat exchanger outer cylinder 20, lines L15, L16, valve V8, and liquefied oxygen pump P2 are excluded from the components of the air separation device 30, and the first indirect heat exchanger is located at the bottom of the low pressure column 18. It may be configured to accommodate the indirect heat exchanger H1 of 1.
  • FIG. 8 is a system diagram showing a modified example of the air separation device according to the second embodiment of the present invention.
  • FIG. 9 is a system diagram showing a main part of a modified example of the air separation device according to the second embodiment of the present invention.
  • the high pressure tower 17 and the low pressure tower 18 are started first when the air separation device 30 is started. Then, the start of indirect heat exchange in the first indirect heat exchanger H1 can be avoided until the low-pressure nitrogen gas, the argon-enriched liquefied oxygen, and the low-pressure liquefied oxygen are concentrated in the low-pressure tower 18. preferable.
  • the opening degree of the valve V7 located on the line L17 is opened so that the low-pressure liquefied oxygen does not accumulate in the first indirect heat exchanger outer cylinder 20. To adjust.
  • the air separation device 30A which is a modification of the second embodiment, may be used. As shown in FIG. 8, the air separation device 30A includes a line L31 and a valve V12 in addition to the configuration of the air separation device 30 described above.
  • the line L31 is located between the low pressure column 18 and the second argon column 19b.
  • the line L31 branches from the line L15.
  • One end of the line L31 is connected to the line L15 (branch point) on the secondary side of the liquefied oxygen pump P2.
  • the other end of the line L31 is connected to the second argon column 19b.
  • a valve V12 is provided on the line L31. When the valve V12 is in the open state, the low-pressure liquefied oxygen concentrated in the low-pressure column 18 is pressurized to the line L31 via the line L15 and the liquefied oxygen pump P2, and is supplied as medium-pressure liquefied oxygen.
  • the medium-pressure liquefied oxygen flowing through the line L31 is supplied to the second argon column 19b via the valve V12.
  • Valve V12 is located on line L31.
  • the valve V12 is not particularly limited as long as it has a function of opening and closing the flow path (a part of the second path) of the line L31, but the valve V12 is fully closed (opening 0%) to fully open (open). It is preferable that the opening degree can be freely adjusted over 100%).
  • the low-pressure liquefied oxygen concentrated in the low-pressure column 18 is pressurized to the valve V12 via the line L15 and the line L31, and is supplied as medium-pressure liquefied oxygen.
  • the valve V12 supplies medium-pressure liquefied oxygen flowing through the line L31 according to its opening degree.
  • a second path communicating the bottom portion (liquid phase portion) of the low pressure column 18 and the second argon column (second gas-liquid separation chamber) 19b by the line L15 and the line L31 is provided. It is composed. Further, the valve V12 is a second opening / closing mechanism.
  • the first A part or all of the low-pressure liquefied oxygen can be supplied to the second argon column 19b without supplying the low-pressure liquefied oxygen to the indirect heat exchanger outer cylinder 20 of 1.
  • the air separation device 30B which is a modification of the second embodiment, may be used. As shown in FIG. 9, in the air separation device 30B, a line L35 is added to the configuration of the air separation device 30 described above. Further, below the air separation device 30, the second indirect heat exchanger H2 housed inside the argon tower 19b in the above-mentioned air separation device 30 is arranged outside the second argon tower 19b.
  • Line L35 is located between the second indirect heat exchanger H2 and the second argon tower 19b. One end of the line L35 is connected to the vaporization passage outlet of the second indirect heat exchanger H2. The other end of the line L35 is connected to the gas phase portion at the lower part of the second argon column 19b.
  • a gas-liquid two-phase mixed fluid of medium-pressure oxygen gas vaporized by medium-pressure liquefied oxygen and medium-pressure liquefied oxygen not vaporized in the second indirect heat exchanger H2 is derived to the line L35.
  • the mixed fluid of the medium pressure oxygen gas and the medium pressure liquefied oxygen flowing through the line L35 is supplied to the lower part of the second argon column 19b.
  • the medium-pressure liquefied oxygen separated by low-temperature distillation in the second argon column 19b, and the mixed fluid of the medium-pressure oxygen gas and the medium-pressure liquefied oxygen supplied via the line L35. Is stored and separated into medium-pressure oxygen gas in the gas phase and medium-pressure liquefied oxygen in the liquid phase.
  • the lower part of the second argon column 19b becomes the second gas-liquid separation chamber
  • the line L26 is the gas phase portion of the low-pressure column 18 and the lower part of the second argon column 19b (second gas-liquid). It is the first route that communicates with the gas phase part of the separation chamber).
  • the high pressure tower 17 and the low pressure tower 18 are first activated, and then the first and first pressure towers 18 are started, similarly to the air separation device 30 of the second embodiment.
  • the argon towers 19a and 19b of No. 2 can be easily started.
  • the gas is led out from the high pressure column 17 by using a circulating nitrogen compressor instead of the air booster 14, and the heat is recovered by the main heat exchanger 16.
  • the high-pressure nitrogen gas may be compressed, cooled, liquefied, and then supplied to the high-pressure tower 17.
  • the medium-pressure oxygen-enriched air generated by the third indirect heat exchanger H3 is adiabatically expanded to cool the air required for the device operation.
  • the expansion turbine 24 instead of the expansion turbine 24 to be generated, a part of the raw material air or the high-pressure nitrogen gas derived from the high-pressure tower 17 may be adiabatically expanded to generate the cold required for the operation of the apparatus.
  • the fluid to be liquefied by the third indirect heat exchanger H3 is high-pressure nitrogen-enriched air rising in the middle or lower part of the high-pressure tower 17.
  • the fluid may be obtained by adiabatic expansion of a part of the raw material air.
  • the air separation device and the air separation method of the present invention are methods for separating and recovering nitrogen, oxygen and argon from air, and can be industrially used in fields such as distillation technology and gas-liquid separation technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本発明は、空気を低温で蒸留する空気分離装置において、高圧の原料空気を高圧窒素ガスと高圧酸素富化液化空気とに分離する高圧塔、高圧酸素富化液化空気を低圧窒素ガスと低圧液化酸素とアルゴン富化液化酸素とに分離する低圧塔、低圧塔の圧力よりも高い圧力のアルゴン富化液化酸素をアルゴンガスと中圧液化酸素とに分離するアルゴン塔、アルゴンガスと低圧液化酸素とを熱交換する第1の間接熱交換器、高圧窒素ガスと中圧液化酸素とを熱交換する第2の間接熱交換器、第1の間接熱交換器で気化した低圧酸素ガスと気化しなかった低圧液化酸素とを分離する第1の気液分離室、第2の間接熱交換器で気化した中圧酸素ガスと気化しなかった中圧液化酸素とを分離する第2の気液分離室、低圧塔の気相部と第2の気液分離室の気相部とを連通する第1の経路、低圧塔の液相部と第2の気液分離室とを連通する第2の経路、第1の経路に位置する第1の開閉機構、及び、第2の経路に位置する第2の開閉機構、を備える。

Description

空気分離装置、および空気分離方法
 本発明は、空気分離装置、および空気分離方法に関する。 
 工業的に酸素、窒素、アルゴンを製造する方法としては、空気を原料としてこれを液化し、その組成分を沸点差によって蒸留分離する、いわゆる空気液化分離方法が多く採用されている。
 図10は、従来の空気分離装置の概略構成を示す系統図である。図10に示すように、従来の空気分離装置200は、空気圧縮機211、空気予冷器212、空気精製器213、空気昇圧機214、空気昇圧機アフタークーラ215、主熱交換器216、高圧塔217、低圧塔218、アルゴン塔219、過冷器223、送出液化酸素ポンプP204、アルゴン塔219の頂部に配置されたアルゴン塔コンデンサH201、主凝縮器H202、及びタービン224を備える。
 ここで、特許文献1には、従来の三塔式の空気分離装置の構成、及び空気分離方法(空気分離装置の運転方法)が記載されている。すなわち、従来の空気分離装置200では、先ず、高圧塔217と低圧塔218とを起動してアルゴン富化酸素を発生させる。次いで、アルゴン富化酸素をアルゴン塔219に導入して蒸留することにより、酸素成分を除去してアルゴンを採取する。
 しかしながら、従来の空気分離装置200では、低圧塔218とアルゴン塔219とが同じ圧力で運転されており、アルゴン塔コンデンサH201においてアルゴンガスとの間接熱交換により気化して得られ、その後低圧塔218に供給されるガス流体の酸素濃度が40%程度以上にできないため、低圧塔218の精留条件が悪化してアルゴンを分離しにくくなるといった課題があった。即ち、アルゴン塔コンデンサH201で気化して低圧塔に供給されるガス流体の酸素濃度を高くすると低圧塔218の精留条件は改善されるが、アルゴン塔コンデンサH201において気化するガス流体の飽和温度がアルゴンガスの飽和温度よりも高くなり、間接熱交換ができなくなる。
 また、特許文献2には、低圧塔、低圧塔よりも高い圧力で運転されるアルゴン塔、及びアルゴン塔よりも高い圧力で運転される高圧塔を備える三塔式の空気分離装置の構成と、アルゴン塔のアルゴンガスで低圧塔の液化酸素を気化させる空気分離方法(空気分離装置の運転方法)とが開示されている(以降、高性能三塔式プロセスと呼ぶ)。特許文献2に記載の空気分離装置、及びこれを用いる空気分離方法は、アルゴン塔が低圧塔よりも高い圧力で運転されており、アルゴン塔コンデンサにおいてアルゴンガスとの間接熱交換により酸素ガスを低圧塔に供給できるようになるため、低圧塔の精留条件が改善されアルゴンを分離しやすい点で有用である。
特開2000-039257号公報 特許第6155515号公報
 特許文献2に記載の空気分離装置を起動するには、従来の空気分離装置200と同様に、低圧塔でアルゴン富化酸素を発生させ、これをアルゴン塔に導入して蒸留する必要がある。しかしながら、特許文献2に記載の空気分離装置では、従来の空気分離装置200と異なり、高圧塔と低圧塔との間にアルゴン塔が配置され、低圧塔と高圧塔とが間接熱交換器により熱統合(heat integration)されていない。このため、従来の空気分離装置200のように、最初に高圧塔と低圧塔とを起動し、次いで、アルゴン塔を起動することが難しいという課題があった。
 本発明は、上記事情に鑑みてなされたものであって、起動が容易な空気分離装置、及び空気分離方法を提供することを課題とする。
 本発明は以下の構成を有する。
[1] 高圧の原料空気を低温で蒸留し、高圧窒素ガスと高圧酸素富化液化空気とに分離する高圧塔と、
 前記高圧酸素富化液化空気を低温で蒸留し、低圧窒素ガスと低圧液化酸素とアルゴン富化液化酸素とに分離する低圧塔と、
 前記低圧塔の圧力よりも高い圧力の前記アルゴン富化液化酸素を低温で蒸留し、アルゴンガスと中圧液化酸素とに分離するアルゴン塔と、
 前記アルゴンガスと前記低圧液化酸素とを間接的に熱交換し、前記アルゴンガスを液化して液化アルゴンを生成し、前記低圧液化酸素を気化して低圧酸素ガスを生成する第1の間接熱交換器と、
 前記高圧窒素ガスと前記中圧液化酸素とを間接的に熱交換し、前記高圧窒素ガスを液化して高圧液化窒素を生成し、前記中圧液化酸素を気化して中圧酸素ガスを生成する第2の間接熱交換器と、
 前記第1の間接熱交換器によって気化した低圧酸素ガスと気化しなかった低圧液化酸素とを、気相と液相とに分離する第1の気液分離室と、
 前記第2の間接熱交換器によって気化した中圧酸素ガスと気化しなかった中圧液化酸素とを、気相と液相とに分離する第2の気液分離室と、
 前記低圧塔の気相部と前記第2の気液分離室の気相部とを連通する第1の経路と、
 前記低圧塔の液相部と前記第2の気液分離室とを連通する第2の経路と、
 前記第1の経路に位置する第1の開閉機構と、
 前記第2の経路に位置する第2の開閉機構と、を備える、空気分離装置。
[2] 前記第1の開閉機構が、開度調整機能を有する、前項[1]に記載の空気分離装置。
[3] 前記アルゴン塔の気相部と前記第2の気液分離室の気相部とを連通する第3の経路と、
 前記第3の経路に位置し、開度調整機能を有する第3の開閉機構と、を備える、前項[1]又は[2]に記載の空気分離装置。
[4] 前記アルゴン塔が、直列に接続された第1アルゴン塔と第2アルゴン塔とから構成され、
 前記第2アルゴン塔が前記第2の気液分離室であり、
 前記第1アルゴン塔と前記第2アルゴン塔との間に前記第3の経路が位置する、前項[3]に記載の空気分離装置。
[5] 前記低圧塔の気相部と前記第1の気液分離室の気相部とを連通する第4の経路と、
 前記第4の経路に位置し、開度調整機能を有する第4の開閉機構と、を備える、前項[1]乃至[4]のいずれかに記載の空気分離装置。
[6] 前項[1]乃至[5]のいずれかに記載の空気分離装置を用いた空気分離方法であって、
 前記空気分離装置の起動時に、
 酸素、窒素、及びアルゴンを含む原料空気を圧縮、予冷、精製、及び冷却して、高圧の原料空気を生成し、
 前記高圧塔において、前記原料空気を低温で蒸留して、高圧窒素ガスと高圧酸素富化液化空気とに分離し、
 前記低圧塔において、前記高圧酸素富化液化空気を低温で蒸留して、低圧窒素ガスと低圧液化酸素とアルゴン富化液化酸素とに分離し、
 前記低圧液化酸素を前記第2の間接熱交換器に導入して、前記高圧窒素ガスと前記低圧液化酸素とを間接的に熱交換し、前記高圧窒素ガスを液化して高圧液化窒素を生成し、前記低圧液化酸素を気化して低圧酸素ガスを生成し、前記低圧酸素ガスを前記低圧塔の気相部に導入する、空気分離方法。
[7] 前項[1]乃至[5]のいずれかに記載の空気分離装置を用いた空気分離方法であって、
 前記空気分離装置の起動時に、
 酸素、窒素、及びアルゴンを含む原料空気を圧縮、予冷、精製、及び冷却して、高圧の原料空気を生成し、
 前記高圧塔において、前記原料空気を低温で蒸留して、高圧窒素ガスと高圧酸素富化液化空気とに分離し、
 前記低圧塔において、前記高圧酸素富化液化空気を低温で蒸留して、低圧窒素ガスと低圧液化酸素とアルゴン富化液化酸素とに分離し、
 前記低圧液化酸素を加圧して得られた中圧液化酸素を前記第2の間接熱交換器に導入して、前記高圧窒素ガスと前記中圧液化酸素とを間接的に熱交換し、前記高圧窒素ガスを液化して高圧液化窒素を生成し、前記中圧液化酸素を気化して中圧酸素ガスを生成し、前記中圧酸素ガスを減圧した後に前記低圧塔の気相部に導入する、空気分離方法。
[8] 所要の供給量の前記アルゴン富化液化酸素が得られた後、
 前記原料空気を低温で蒸留し、前記高圧窒素ガスと前記高圧酸素富化液化空気とに分離する高圧分離工程と、
 前記高圧酸素富化液化空気を低温で蒸留し、前記低圧窒素ガスと前記低圧液化酸素と前記アルゴン富化液化酸素とに分離する低圧分離工程と、
 前記アルゴン富化液化酸素を前記低圧分離工程の圧力よりも高い圧力に加圧した後に低温で蒸留し、アルゴンガスと中圧液化酸素とに分離するアルゴン分離工程と、
 前記アルゴンガスと前記低圧液化酸素とを間接的に熱交換し、前記アルゴンガスを液化して液化アルゴンを生成し、前記低圧液化酸素を気化して低圧酸素ガスを生成する第1の間接熱交換工程と、
 前記高圧窒素ガスと前記中圧液化酸素とを間接的に熱交換し、前記高圧窒素ガスを液化して高圧液化窒素を生成し、前記中圧液化酸素を気化して中圧酸素ガスを生成する第2の間接熱交換工程と、を含む定常運転を行う、前項[6]又は[7]に記載の空気分離方法。
[9] 前記定常運転が、
 前記アルゴンガスの一部、前記第1の間接熱交換工程において液化されなかったアルゴンガス及び前記液化アルゴンの一部のうち、少なくとも1種のアルゴンを製品として抜き出す製品導出工程と、を含む、前項[8]に記載の空気分離方法。
 本発明の空気分離装置、及び空気分離方法は、起動が容易である。
本発明の第1実施形態の空気分離装置の構成の一例を示す系統図である。 本発明の第1実施形態の空気分離装置の変形例を示す系統図である。 本発明の第1実施形態の空気分離装置の変形例を示す系統図である。 本発明の第1実施形態の空気分離装置の変形例を示す系統図である。 本発明の第1実施形態の空気分離装置の変形例を示す系統図である。 本発明の第1実施形態の空気分離装置の変形例を示す系統図である。 本発明の第2実施形態の空気分離装置の構成の一例を示す系統図である。 本発明の第2実施形態の空気分離装置の変形例を示す系統図である。 本発明の第2実施形態の空気分離装置の変形例を示す系統図である。 従来の空気分離装置の構成を示す系統図である。
 以下、本発明を適用した一実施形態である空気分離装置の構成について、それを用いた空気分離方法と併せて、図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、各構成要素のレイアウトは実際と異なる場合があり、例えば、図1において低圧塔18やアルゴン塔19が高圧塔17と同じくグラウンドレベルに設置される場合もある。
 本発明において、「ライン」とは、内側の空間に流体を流通可能な流路をいう。ラインには、供給ライン、導入ライン、導出ライン、排出ライン、回収ライン等が含まれる。ラインには、1以上の分岐や合流が含まれていてもよい。ラインは、金属製又は樹脂製の、1以上の配管から構成される。
 また、ラインを流れる流体は、1種類の気体(ガス)、2種以上の混合気体(ガス)、1種類の液体、2種以上の混合液体、及びこれらの混合流体を含む。
 バルブは、開閉バルブ、減圧バルブ、流量調整バルブ等を含む。
<第1の実施形態>
 図1は、本発明の第1実施形態の空気分離装置の構成の一例を示す系統図である。
 図1に示すように、第1実施形態の空気分離装置10は、空気圧縮機11、空気予冷器12、空気精製器13、空気昇圧機14、空気昇圧機アフタークーラ15、主熱交換器16、高圧塔17、低圧塔18、アルゴン塔19、第1の間接熱交換器外筒20、第2の間接熱交換器外筒21、第3の間接熱交換器外筒22、過冷器23、膨張タービン24、アルゴン富化液化酸素ポンプP1、液化酸素ポンプP2~P4、第1の間接熱交換器H1、第2の間接熱交換器H2、第3の間接熱交換器H3、ラインL1~L28,L33と、バルブV1~V10と、を備える。
 なお、本明細書中、以下の全ての実施形態の説明において、「低圧」とは、低圧塔18の操作圧力以下、かつ400kPaA以下の圧力のことをいう。
 また、「中圧」とは、第2の間接熱交換器H2において生成される酸素ガス、第3の間接熱交換器H3において生成される酸素富化空気のうち、最も高い圧力を有する流体の圧力以下、かつ低圧塔18の操作圧力よりも高い圧力のことをいう。
 また、「高圧」とは、第2の間接熱交換器H2において生成される酸素ガス、第3の間接熱交換器H3において生成される酸素富化空気のうち、最も高い圧力を有する流体の圧力よりも高い圧力のことをいう。
 さらに、「低温での蒸留(以下、単に「低温蒸留」ということもある)」とは、高圧の酸素の沸点よりも低い温度において、上昇ガスと下降液とが連続的に直接接触することにより高沸点成分と低沸点成分とを分離することをいう。
 ラインL1は、原料空気供給源(図示略)と、高圧塔17との間に位置する。ラインL1の一端は、原料空気供給源(図示略)から原料空気を取り込むための導入口となる。ラインL1の他端は、高圧塔17の下部と接続される。
 ラインL1には、空気圧縮機11、空気予冷器12、空気精製器13、主熱交換器16が、この順序で設けられている。ラインL1は、空気精製器13と主熱交換器16との間で、ラインL2と分岐する。
 空気圧縮機11は、ラインL1に位置する。空気圧縮機11には、ラインL1を介して、原料空気供給源(図示略)から酸素、窒素、及びアルゴンを含む原料空気が導入される。空気圧縮機11は、原料空気を圧縮する。空気圧縮機11によって圧縮された原料空気は、ラインL1を介して、空気予冷器12に供給される。
 空気予冷器12は、ラインL1の空気圧縮機11の二次側に位置する。空気予冷器12には、ラインL1を介して圧縮された原料空気が導入される。空気予冷器12は、圧縮された原料空気の圧縮熱を取り除く。空気予冷器12によって圧縮熱が取り除かれた原料空気は、ラインL1を介して、空気精製器13に供給される。
 空気精製器13は、ラインL1の空気予冷器12の二次側に位置する。空気精製器13には、ラインL1を介して圧縮熱が取り除かれた原料空気が導入される。空気精製器13は、圧縮熱が取り除かれた原料空気中に含まれる不純物(具体的には、水、二酸化炭素等)を除去する。
 空気精製器13のkには、不純物を吸着除去するための吸着剤が充填されている。空気精製器13の容器サイズは、内部を下方から上方に向けて通過する空気によって吸着剤が巻き上げられないような、ある一定の流速以下となるように設計されている。このため、空気精製器13の内部を通過する空気の圧力が設計時に想定した圧力よりも低くなると、質量流量が同じであっても内部を通過する空気の流速が大きくなり、吸着剤が巻き上げられる恐れがある。また、空気精製器13の内部を通過する空気の圧力が低下すると、空気精製器13に供給される空気中の水分量が増えるため、空気精製器13において水を十分に除去できない恐れが生じる。従って、空気精製器13の内部を通過する空気の圧力は、装置の起動中であっても設計時に想定した圧力を下回ることは好ましくない。
 空気精製器13によって不純物が除去された原料空気は、一部が主熱交換器16で冷却された後、ラインL1を介して高圧塔17の下部に供給され、残部がラインL1から分岐されたラインL2に供給される。
 ラインL2は、空気精製器13と主熱交換器16との間のラインL1と、高圧塔17との間に位置する。ラインL2の一端は、不純物が除去された原料空気を取り込むための導入口となる。ラインL2の他端は、高圧塔17の下部と接続される。
 ラインL2には、空気昇圧機14、空気昇圧機アフタークーラ15、主熱交換器16、バルブV2が、この順序で設けられている。
 空気昇圧機14は、ラインL2に位置する。空気昇圧機14には、ラインL2を介して不純物が除去された原料空気が導入される。空気昇圧機14は、導入された原料空気をさらに圧縮する。空気昇圧機14によってさらに圧縮された高圧の原料空気は、ラインL2を介して、空気昇圧機アフタークーラ15に導入される。
 空気昇圧機アフタークーラ15は、ラインL2の空気昇圧機14の二次側に位置する。空気昇圧機アフタークーラ15には、ラインL2を介して、高圧の原料空気が導入される。空気昇圧機アフタークーラ15は、高圧の原料空気の圧縮熱を取り除く。空気昇圧機アフタークーラ15によって圧縮熱が取り除かれた高圧の原料空気は、主熱交換器16及びバルブV2を経由した後、ラインL2を介して、高圧塔17の下部または中間部に供給される。
 主熱交換器16は、ラインL1,L2,L6,L9,L14,L21,L27に亘るように配置されている。主熱交換器16には、ラインL1,L2,L6,L9,L14,L21,L27の一部がそれぞれ通過する。主熱交換器16では、ラインL1,L2を流れる高温流体と、ラインL6,L9,L14,L21,L27を流れる低温流体と、が間接的に熱交換することで、各高温流体が冷却され、各低温流体が加温される。
 バルブV2は、主熱交換器16と高圧塔17との間のラインL2に位置する。バルブV2は、減圧機能を有していれば特に限定されないが、全閉(開度0%)から全開(開度100%)にわたって開度を自在に調整できるものが好ましい。バルブV2には、ラインL2を介して、空気昇圧機アフタークーラ15及び主熱交換器16によって冷却された高圧の原料空気が供給される。バルブV2は、ラインL2を流れる高圧の原料空気を、その開度に応じて減圧する。
 すなわち、ラインL1は、原料空気を空気圧縮機11で圧縮し、空気予冷器12で予冷し、空気精製器13で精製し、主熱交換器16で冷却した後、高圧塔17に供給する。
 また、ラインL2は、空気精製器13で精製された空気の一部を空気昇圧機14で圧縮し、空気昇圧機アフタークーラ15で予冷し、主熱交換器16で冷却し、バルブV2で減圧した後、高圧塔17に供給する。
 高圧塔17には、ラインL1,L2,L10が、それぞれ接続されている。
 高圧塔17は、ラインL1から供給される原料空気と、ラインL2から供給される高圧の流体と、ラインL10から供給される流体と、を含む混合流体を低温で蒸留して、高圧窒素ガスと高圧酸素富化液化空気とに分離する。この低温での蒸留により、高圧塔17の上部には高圧窒素ガスが濃縮され、高圧塔17の下部には高圧酸素富化液化空気が濃縮される。
 ラインL8は、高圧塔17と第2の間接熱交換器H2との間に位置する。ラインL8の一端は、高圧塔17の上部と接続されている。ラインL8の他端は、第2の間接熱交換器H2の液化通路入口と接続されている。ラインL8は、高圧塔17の上部に濃縮した高圧窒素ガスの一部を抜き出して、第2の間接熱交換器H2に供給する。
 第2の間接熱交換器H2は、後述する第2の間接熱交換器外筒(第2の気液分離室)21の内側に収容されている。なお、本実施形態の空気分離装置10の定常運転時(以下、単に「定常運転時」ということもある)、第2の間接熱交換器外筒21の内側には、中圧液化酸素が貯留される。第2の間接熱交換器H2の液化通路入口には、ラインL8が接続されており、第2の間接熱交換器H2の液化通路出口には、後述するラインL10が接続されている。
 第2の間接熱交換器H2は、定常運転時、ラインL8から供給される高圧窒素ガスと第2の間接熱交換器外筒21の内側に貯留される中圧液化酸素とを間接的に熱交換させ、高圧窒素ガスを液化して高圧液化窒素を生成し、中圧液化酸素を気化して中圧酸素ガスを生成する。
 ラインL9は、ラインL8から分岐した、製品高圧窒素ガス(HPGN)の回収ラインである。ラインL9には、ラインL8を流れる高圧窒素ガスの一部が供給される。ラインL9は、その一部が主熱交換器16を通過するように配置されている。これにより、ラインL9を流れる高圧窒素ガスは、主熱交換器16で熱回収された後、製品高圧窒素ガス(HPGN)として回収される。
 ラインL10は、第2の間接熱交換器H2と高圧塔17との間に位置する。ラインL10の一端は、第2の間接熱交換器H2の液化通路出口と接続されている。ラインL10の他端は、高圧塔17の頂部と接続されている。ラインL10は、第2の間接熱交換器H2で生成した高圧液化窒素を高圧塔17の頂部に供給する。
 ラインL11は、ラインL10から分岐しており、低圧塔18の頂部と接続されている。ラインL11は、その一部が過冷器23を通過するように配置されている。ラインL11には、バルブV3が設けられている。ラインL11は、第2の間接熱交換器H2で生成した高圧液化窒素の一部を抜き出し、過冷器23で冷却し、バルブV3で減圧した後に低圧塔18に供給する。
 バルブV3は、低圧塔18と過冷器23との間のラインL11に位置する。バルブV3は、減圧機能を有していれば特に限定されないが、全閉(開度0%)から全開(開度100%)にわたって開度を自在に調整できるものが好ましい。バルブV3には、ラインL11を介して、第2の間接熱交換器H2で生成した高圧液化窒素の一部が供給される。バルブV3は、ラインL11を流れる高圧液化窒素を、その開度に応じて減圧する。
 ラインL12は、ラインL11から分岐した、製品高圧液化窒素(HPLN)の回収ラインである。ラインL12には、ラインL11を流れる高圧液化窒素の一部が供給される。ラインL12を流れる高圧液化窒素は、製品高圧液化窒素(HPLN)として回収される。
 ラインL13は、高圧塔17と低圧塔18との間に位置する。ラインL13の一端は、高圧塔17の底部と接続される。ラインL13の他端は、低圧塔18の中間部と接続される。ラインL13は、その一部が過冷器23を通過するように配置されている。ラインL13には、バルブV5が設けられている。ラインL13は、高圧塔17の底部から抜き出した高圧酸素富化液化空気の一部を、過冷器23で冷却し、バルブV5で減圧した後に低圧塔18に供給する。
 バルブV5は、ラインL13に位置する。バルブV5は、減圧機能を有していれば特に限定されないが、全閉(開度0%)から全開(開度100%)にわたって開度を自在に調整できるものが好ましい。バルブV5には、ラインL13を介して、高圧酸素富化液化空気が供給される。バルブV5は、ラインL13を流れる高圧酸素富化液化空気を、その開度に応じて減圧する。
 ラインL5は、ラインL13から分岐する。ラインL5の一端は、ラインL13を介して高圧塔17の底部と接続されている。ラインL5の他端は、第3の間接熱交換器外筒22と接続されている。ラインL5には、バルブV1が設けられている。ラインL5は、高圧塔17の底部から抜き出した高圧酸素富化液化空気の一部をバルブV1で減圧した後、第3の間接熱交換器外筒22に供給する。
 バルブV1は、ラインL5に位置する。バルブV1は、減圧機能を有していれば特に限定されないが、全閉(開度0%)から全開(開度100%)にわたって開度を自在に調整できるものが好ましい。バルブV1には、ラインL5を介して、高圧酸素富化液化空気が供給される。バルブV1は、ラインL5を流れる高圧酸素富化液化空気を、その開度に応じて減圧し、中圧酸素富化液化空気を生成する。
 ラインL3は、高圧塔と第3の間接熱交換器H3との間に位置する。ラインL3の一端は、高圧塔17の中間部または下部と接続されている。ラインL3の他端は、第3の間接熱交換器H3の液化通路入口と接続されている。ラインL3は、高圧塔17の中間部または下部を上昇する高圧窒素富化空気の一部を抜き出して、第3の間接熱交換器H3に供給する。
 なお、ラインL3は、高圧塔17の中間部または下部から高圧窒素富化空気を抜き出す替わりに、ラインL1から分岐させて高圧の原料空気の一部を抜き出したり、高圧塔17の上部から高圧窒素ガスを抜き出したりすることもできる。
 第3の間接熱交換器外筒22は、第3の間接熱交換器H3を収容する。第3の間接熱交換器外筒22は、バルブV1で減圧された後にラインL5から供給される流体(中圧酸素富化液化空気)と、第3の間接熱交換器H3によって気化した中圧酸素富化空気と、第3の間接熱交換器H3によって気化しなかった中圧酸素富化液化空気との混合流体を貯留し、上記混合流体を中圧酸素富化空気と中圧酸素富化液化空気とに分離する。第3の間接熱交換器外筒22には、ラインL5、L6、L7がそれぞれ接続されている。
 第3の間接熱交換器H3は、第3の間接熱交換器外筒22の内側に収容されている。第3の間接熱交換器H3の液化通路入口は、ラインL3と接続されている。第3の間接熱交換器H3の液化通路出口は、ラインL4と接続されている。第3の間接熱交換器H3は、ラインL3から供給される流体と、第3の間接熱交換器外筒22に貯留される中圧酸素富化液化空気と、を間接的に熱交換し、ラインL3から供給された流体を液化して高圧液化ガス流体を生成し、第3の間接熱交換器外筒22に貯留された中圧酸素富化液化空気を気化して中圧酸素富化空気を生成する。
 ラインL4は、第3の間接熱交換器H3と低圧塔18との間に位置する。ラインL4の一端は、第3の間接熱交換器H3の液化通路出口と接続されている。ラインL4の他端は、低圧塔18の中間部または上部と接続されている。ラインL4は、その一部が過冷器23を通過するように配置されている。ラインL4には、バルブV4が設けられている。ラインL4は、第3の間接熱交換器H3で生成した高圧液化ガス流体を、過冷器23で冷却し、バルブV4で減圧した後に低圧塔18に供給する。
 バルブV4は、低圧塔18と過冷器23との間のラインL4に位置する。バルブV4は、減圧機能を有していれば特に限定されないが、全閉(開度0%)から全開(開度100%)にわたって開度を自在に調整できるものが好ましい。バルブV4には、ラインL4を介して、第3の間接熱交換器H3で生成した高圧液化ガス流体が供給される。バルブV4は、ラインL4を流れる高圧液化ガス流体を、その開度に応じて減圧する。
 ラインL6は、第3の間接熱交換器外筒22と低圧塔18との間に位置する。ラインL6の一端は、第3の間接熱交換器外筒22のガス取出し口(頂部)と接続されている。ラインL6の他端は、低圧塔18の中間部と接続されている。ラインL6は、その一部が主熱交換器16を通過するように配置されている。ラインL6には、膨張タービン24が設けられている。ラインL6は、第3の間接熱交換器H3で生成した中圧酸素富化空気を、主熱交換器16によって熱回収し、次いで膨張タービン24で断熱膨張させて装置の運転に必要な寒冷を発生させた後に低圧塔18の中間部に供給する。
 膨張タービン24は、主熱交換器16と低圧塔18との間のラインL6に位置する。膨張タービン24には、第3の間接熱交換器H3によって生成され、主熱交換器16によって熱回収された中圧酸素富化空気が導入される。膨張タービン24は、中圧酸素富化空気を断熱膨張させて、装置の運転に必要な寒冷を発生させる。膨張タービン24によって断熱膨張された流体は、ラインL6を介して、低圧塔18の中間部に供給される。
 ラインL7は、第3の間接熱交換器外筒22と低圧塔18との間に位置する。ラインL7の一端は、第3の間接熱交換器外筒22の液取出し口(底部)と接続されている。ラインL7の他端は、低圧塔18の中間部と接続されている。ラインL7には、バルブV6が設けられている。ラインL7は、第3の間接熱交換器外筒22の内部に貯留される中圧酸素富化液化空気を、バルブV6で減圧した後に低圧塔18に供給する。
 バルブV6は、ラインL7に位置する。バルブV6は、減圧機能を有していれば特に限定されないが、全閉(開度0%)から全開(開度100%)にわたって開度を自在に調整できるものが好ましい。バルブV6には、ラインL7を介して、第3の間接熱交換器外筒22の内部に貯留される中圧酸素富化液化空気が供給される。バルブV6は、ラインL7を流れる流体を、その開度に応じて減圧する。
 低圧塔18には、ラインL4,L6,L7,L11,L13,L14,L15,L16,L19,L26,L33が、それぞれ接続されている。
 低圧塔18は、ラインL4から供給される流体と、ラインL6から供給される流体と、ラインL7から供給される流体と、ラインL11から供給される流体と、ラインL13から供給される流体と、ラインL16から供給される流体と、ラインL26から供給される流体と、を含む混合流体を低温で蒸留して、低圧窒素ガスと低圧液化酸素とアルゴン富化液化酸素とに分離する。この低温での蒸留により、低圧塔18の上部には低圧窒素ガスが濃縮され、低圧塔18の底部には低圧液化酸素が濃縮される。
 ラインL14は、製品低圧窒素ガス(LPGN)の回収ラインである。ラインL14の一端は、低圧塔18の頂部と接続されている。ラインL14の他端は、製品低圧窒素ガス(LPGN)の取り出し口となっている。ラインL14には、低圧窒素ガスが供給される。ラインL14は、その一部が過冷器23及び主熱交換器16を通過するように配置されている。これにより、ラインL14を流れる低圧窒素ガスは、過冷器23及び主熱交換器16によって熱回収された後、製品低圧窒素ガス(LPGN)として回収される。
 ラインL15は、低圧塔18と第1の間接熱交換器外筒20との間に位置する。ラインL15の一端は、低圧塔18の底部と接続されている。ラインL15の他端は、第1の間接熱交換器外筒20と接続されている。ラインL15には、液化酸素ポンプP2が設けられている。ラインL15は、低圧塔18の底部に濃縮される低圧液化酸素の一部を抜き出し、液化酸素ポンプP2で加圧した後に第1の間接熱交換器外筒20に供給する。
 液化酸素ポンプP2は、ラインL15に位置する。液化酸素ポンプP2には、ラインL15を介して、低圧液化酸素が供給される。液化酸素ポンプP2は、ラインL15に流れる低圧液化酸素を加圧する。
 なお、低圧塔18が、第1の間接熱交換器外筒20よりも十分に高い位置に設置されている場合、液ヘッド差を利用して低圧液化酸素を加圧できるため、液化酸素ポンプP2を省略できる場合もある。
 ラインL19は、低圧塔18とアルゴン塔19との間に位置する。ラインL19の一端は、低圧塔18の中間部と接続されている。ラインL19の他端は、アルゴン塔19の中間部または下部と接続されている。ラインL19には、低圧塔18の中間部に濃縮するアルゴン富化液化酸素の一部が供給される。ラインL19には、アルゴン富化液化酸素ポンプP1が設けられている。ラインL19を流れるアルゴン富化液化酸素は、アルゴン富化液化酸素ポンプP1で加圧された後にアルゴン塔19に供給される。
 アルゴン富化液化酸素ポンプP1は、ラインL19に位置する。アルゴン富化液化酸素ポンプP1には、ラインL19を介して、アルゴン富化液化酸素が供給される。アルゴン富化液化酸素ポンプP1は、ラインL19に流れるアルゴン富化液化酸素を加圧する。
 なお、低圧塔18の中間部に接続されるラインL19の一端が、アルゴン塔19の中間部または下部に接続されるラインL19の他端よりも十分に高い位置である場合、液ヘッド差を利用してアルゴン富化液化酸素を加圧、送液できるため、アルゴン富化液化酸素ポンプP1を省略できる場合もある。
 ラインL33は、低圧塔18に液体窒素を導入するための導入ラインである。ラインL33の一端は、液体窒素の供給口である。ラインL33の他端は、低圧塔18の上部に接続されている。ラインL33には、図示略のバルブ(開閉弁)が設けられている。本実施形態の空気分離装置10は、ラインL33を介して、低圧塔18に液体窒素を供給できる。これにより、空気分離装置10を起動する際、液体窒素により低圧塔18を冷却することができるため、軌道時間を短縮できる。
 第1の間接熱交換器外筒(第1の気液分離室)20は、低圧塔18とアルゴン塔19との間に位置する。すなわち、第1の間接熱交換器外筒20は、低圧塔18よりも下方、かつアルゴン塔19よりも上方となるように設置されている。第1の間接熱交換器外筒20は、第1の間接熱交換器H1を収容する。第1の間接熱交換器外筒20には、ラインL15、L16、L17がそれぞれ接続されている。第1の間接熱交換器外筒20は、低圧塔18からラインL15を介して供給される低圧液化酸素と、第1の間接熱交換器H1によって気化した低圧酸素ガスと、第1の間接熱交換器H1によって気化しなかった低圧液化酸素との混合流体を貯留し、上記混合流体を低圧酸素ガスと低圧液化酸素とに分離する。
 第1の間接熱交換器H1は、第1の間接熱交換器外筒20の内側に収容されている。第1の間接熱交換器H1の液化通路入口は、ラインL20と接続されている。第1の間接熱交換器H1の液化通路出口は、ラインL22と接続されている。第1の間接熱交換器H1は、定常運転時、ラインL20を介して供給されるアルゴンガスと、第1の間接熱交換器外筒20に貯留される低圧液化酸素と、を間接的に熱交換し、ラインL20から供給されるアルゴンガスを液化して液化アルゴンを生成し、第1の間接熱交換器外筒20に貯留される低圧液化酸素を気化して低圧酸素ガスを生成する。
 ラインL16は、第1の間接熱交換器外筒20と低圧塔18との間に位置する。ラインL16の一端は、第1の間接熱交換器外筒20のガス取出し口(気相部)と接続されている。ラインL16の他端は、低圧塔18の下部(気相部)と接続されている。ラインL16には、バルブ(第4の開閉機構)V8が設けられている。ラインL16は、第1の間接熱交換器外筒20の気相部から第1の間接熱交換器H1によって生成する低圧酸素ガスを抜き出し、低圧塔18の下部に供給する。
 本実施形態の空気分離装置10では、ラインL16により、低圧塔18の気相部と第1の間接熱交換器外筒(第1の気液分離室)20の気相部とを連通する第4の経路が構成される。
 第4の経路は、第1の間接熱交換器H1によって生成され、第1の間接熱交換器外筒20に貯留される低圧酸素ガスを低圧塔18の気相部に供給するための経路である。
 なお、第4の経路は、ラインL16以外の流路を含んでいてもよい。
 すなわち、第1の間接熱交換器外筒20に貯留される低圧酸素ガスが低圧塔18に至るまでに経由する流路の全てが、第4の経路となる。
 バルブ(第4の開閉機構)V8は、ラインL16に位置する。バルブV8は、ラインL16の流路(第4の経路)を開放状態及び閉止状態にできる機能を有していれば特に限定されないが、全閉(開度0%)から全開(開度100%)にわたって開度を自在に調整できるものが好ましい。バルブV8には、ラインL16を介して、第1の間接熱交換器外筒20に貯留される低圧酸素ガスが供給される。バルブV8は、ラインL16を流れる低圧酸素ガスを、その開度に応じて減圧する。
 ラインL17は、第1の間接熱交換器外筒20と第2の間接熱交換器外筒21との間に位置する。ラインL17の一端は、第1の間接熱交換器外筒20の液取出し口(底部)と接続されている。ラインL17の他端は、第2の間接熱交換器外筒21と接続されている。ラインL17には、バルブ(第2の開閉機構)V7が設けられている。ラインL17は、第1の間接熱交換器外筒20に貯留される低圧液化酸素を抜き出し、バルブV7で減圧した後に第2の間接熱交換器外筒21に供給する。
 本実施形態の空気分離装置10では、ラインL15、第1の間接熱交換器外筒20、及びラインL17により、低圧塔18の底部(液相部)と第2の間接熱交換器外筒(第2の気液分離室)21とを連通する第2の経路が構成される。
 第2の経路は、低圧塔18の液相部に濃縮される低圧液化酸素を第2の間接熱交換器外筒21に供給するための経路である。
 なお、第2の経路は、上述したライン及び機器以外の流路を含んでいてもよい。
 すなわち、低圧塔18の液相部に濃縮される低圧液化酸素が第2の間接熱交換器外筒21に至るまでに経由する流路の全てが、第2の経路となる。例えば、起動時において低圧塔18の低圧液化酸素を、ラインL19、アルゴン塔19、ラインL24を経由して第2の間接熱交換器外筒21(第2の気液分離室)に供給する場合、これらの経路が第2の経路となる。この場合、図1には図示されていないがラインL19に第2の開閉機構としてのバルブが設けられる。
 バルブ(第2の開閉機構)V7は、ラインL17に位置する。バルブV7は、ラインL17の流路(第2の経路)を開放状態及び閉止状態にできる機能を有していれば特に限定されないが、全閉(開度0%)から全開(開度100%)にわたって開度を自在に調整できるものが好ましい。バルブV7には、ラインL17を介して、第1の間接熱交換器外筒20に貯留される低圧液化酸素が供給される。バルブV7は、ラインL17を流れる低圧液化酸素を、その開度に応じて減圧する。
 ラインL18は、ラインL17から分岐した、製品低圧液化酸素(LPLO)の回収ラインである。ラインL18には、ラインL17を流れる低圧液化酸素の一部が供給される。ラインL18を流れる低圧液化酸素は、製品低圧液化酸素(LPLO)として回収される。
 ラインL20は、アルゴン塔19と第1の間接熱交換器H1との間に位置する。ラインL20の一端は、アルゴン塔19の上部と接続されている。ラインL20の他端は、第1の間接熱交換器H1の液化通路入口と接続されている。ラインL20は、アルゴン塔19の上部に濃縮したアルゴンガスを抜き出して、第1の間接熱交換器H1に供給する。
 ラインL21は、ラインL20から分岐した、製品アルゴンガス(GAR)の回収ラインである。ラインL21には、ラインL20を流れるアルゴンガスの一部が供給される。ラインL21は、その一部が主熱交換器16を通過するように配置されている。これにより、ラインL21を流れるアルゴンガスは、主熱交換器16で熱回収された後に製品アルゴンガス(GAR)として回収される。
 ラインL22は、第1の間接熱交換器H1とアルゴン塔19との間に位置する。ラインL22一端は、第1の間接熱交換器H1の液化通路出口と接続されている。ラインL22の他端は、アルゴン塔19の上部と接続されている。ラインL22は、第1の間接熱交換器H1で生成する液化アルゴンをアルゴン塔19に供給する。
 ラインL23は、ラインL22から分岐した、製品液化アルゴン(LAR)の回収ラインである。ラインL23には、ラインL22を流れる液化アルゴンの一部が供給される。ラインL23を流れる液化アルゴンは、製品液化アルゴン(LAR)として回収される。
 アルゴン塔19は、低圧塔18と高圧塔17との間に位置する。アルゴン塔19は、低圧塔18よりも下方に、かつ高圧塔17よりも上方に配置されている。
 また、アルゴン塔19は、第1の間接熱交換器外筒20と第2の間接熱交換器外筒21との間に位置する。アルゴン塔19は、第1の間接熱交換器外筒20よりも下方に、かつ第2の間接熱交換器外筒21よりも上方に配置されている。
 アルゴン塔19には、ラインL19,L20,L22,L24,L25が、それぞれ接続されている。アルゴン塔19は、ラインL19を介して供給されるアルゴン富化液化酸素と、ラインL22から供給される流体と、ラインL25から供給される流体と、を含む混合流体を低温で蒸留して、アルゴンガスと中圧液化酸素とに分離する。なお、アルゴン塔19での蒸留は、低圧塔18よりも高い圧力で行う。この低温での蒸留により、アルゴン塔19の上部には、アルゴンガスが濃縮され、アルゴン塔19の下部には中圧液化酸素が濃縮される。
 ラインL24は、アルゴン塔19と第2の間接熱交換器外筒21との間に位置する。ラインL24の一端は、アルゴン塔19の底部と接続されている。ラインL24の他端は、第2の間接熱交換器外筒21と接続されている。ラインL24には、アルゴン塔19の下部に貯留される中圧液化酸素の一部が供給される。ラインL24には、液化酸素ポンプP3が設けられている。ラインL24を流れる中圧液化酸素は、液化酸素ポンプP3によって第2の間接熱交換器外筒21に供給される。
 液化酸素ポンプP3は、ラインL24に位置する。液化酸素ポンプP3は、ラインL24を流れる中圧液化酸素を送液する。
 なお、アルゴン塔19が、第2の間接熱交換器外筒21よりも十分に高い位置に設置されている場合、液ヘッド差を利用して中圧液化酸素を送液できるため、液化酸素ポンプP3を省略できる場合もある。
 第2の間接熱交換器外筒(第2の気液分離室)21は、アルゴン塔19と高圧塔17との間に位置する。第2の間接熱交換器外筒21は、アルゴン塔19よりも下方、かつ高圧塔17よりも上方に配置されている。第2の間接熱交換器外筒21は、第2の間接熱交換器H2を収納する。第2の間接熱交換器外筒21には、ラインL17,L24,L25,L27がそれぞれ接続されている。第2の間接熱交換器外筒21は、ラインL24を介して供給される中圧液化酸素と、ラインL17を介して供給される低圧液化酸素と、第2の間接熱交換器H2によって気化した中圧酸素ガスと、第2の間接熱交換器H2によって気化しなかった中圧液化酸素との混合流体を貯留し、上記混合流体を中圧酸素ガスと中圧液化酸素とに分離する。
 ラインL25は、第2の間接熱交換器外筒21とアルゴン塔19との間に位置する。ラインL25の一端は、第2の間接熱交換器外筒21のガス取出し口(気相部)と接続されている。ラインL25の他端は、アルゴン塔19の下部(気相部)と接続されている。ラインL25には、第2の間接熱交換器H2によって生成され、第2の間接熱交換器外筒21に貯留される中圧酸素ガスが導出される。ラインL25には、バルブ(第3の開閉機構)V9が設けられている。ラインL25を流れる中圧酸素ガスはアルゴン塔19の下部に供給される。
 本実施形態の空気分離装置10では、ラインL25により、アルゴン塔19の気相部と第2の間接熱交換器外筒(第2の気液分離室)21の気相部とを連通する第3の経路が構成される。
 第3の経路は、第2の間接熱交換器H2によって生成され、第2の間接熱交換器外筒21に貯留される中圧酸素ガスをアルゴン塔19の気相部に供給するための経路である。
 なお、第3の経路は、ラインL25以外の流路を含んでいてもよい。
 すなわち、第2の間接熱交換器外筒21に貯留される中圧酸素ガスがアルゴン塔19に至るまでに経由する流路の全てが、第3の経路となる。
 バルブ(第3の開閉機構)V9は、ラインL25に位置する。バルブV9は、ラインL25の流路(第3の経路)を開放状態及び閉止状態にできる機能を有していれば特に限定されないが、全閉(開度0%)から全開(開度100%)にわたって開度を自在に調整できるものが好ましい。バルブV9には、ラインL25を介して、第2の間接熱交換器外筒21に貯留される中圧酸素ガスが供給される。バルブV9は、ラインL25を流れる中圧酸素ガスを、その開度に応じて減圧する。
 ラインL26は、ラインL25から分岐する。ラインL26は、第2の間接熱交換器外筒21と低圧塔18との間に位置する。ラインL26一端は、ラインL25の分岐点に接続されている。ラインL26の他端は、低圧塔18の下部(気相部)と接続されている。ラインL26には、ラインL25を流れる中圧酸素ガスの一部が供給される。すなわち、ラインL26には、第2の間接熱交換器H2によって生成され、第2の間接熱交換器外筒21の内部に貯留される中圧酸素ガスラインの一部が、L25を介して供給される。ラインL26には、バルブ(第1の開閉機構)V10が設けられている。ラインL26を流れる中圧酸素ガスは、バルブV10で減圧された後に低圧塔18の下部(気相部)に供給される。
 本実施形態の空気分離装置10では、ラインL25とラインL26とにより、低圧塔18の下部(気相部)と第2の間接熱交換器外筒(第2の気液分離室)21の下部(気相部)とを連通する第1の経路が構成される。
 第1の経路は、第2の間接熱交換器H2により生成する中圧酸素ガスを低圧塔18の気相部に供給するための経路である。
 なお、ラインL26の一端は、ラインL25の分岐点の代わりに、第2の間接熱交換器外筒21のガス取り出し口(気相部)に直接接続されていてもよい。
 この場合、第2の間接熱交換器H2により生成する中圧酸素ガスは、ラインL26を経由して、低圧塔18の気相部に供給される。
 すなわち、ラインL26が、第1の経路となる。
 また、ラインL26の一端は、アルゴン塔19のガス取り出し口(気相部)、ラインL20の分岐点、又はラインL21の分岐点に接続されていてもよい。
 この場合、第2の間接熱交換器H2により生成する中圧酸素ガスは、第2の間接熱交換器外筒21、ラインL25、アルゴン塔19、ラインL20、ラインL21のいずれか又は全てを経由し、その後、ラインL26を経由して低圧塔18の気相部に供給される。
 すなわち、第2の間接熱交換器H2により生成する中圧酸素ガスが低圧塔18の気相部に至るまでに経由する(少なくとも、ラインL26を含む)流路の全てが、第1の経路となる。
 バルブ(第1の開閉機構)V10は、ラインL26に位置する。バルブV10は、ラインL26の流路(第1の経路)を開放状態及び閉止状態にできる機能を有していれば特に限定されないが、全閉(開度0%)から全開(開度100%)にわたって開度を自在に調整できるものが好ましい。バルブV10には、ラインL26を介して、第2の間接熱交換器外筒21に貯留される中圧酸素ガスの一部が供給される。バルブV10は、ラインL26を流れる中圧酸素ガスを、その開度に応じて減圧する。
 ラインL27は、製品高圧酸素ガス(HPGO)の回収ラインである。ラインL27の一端は、第2の間接熱交換器外筒21の液取り出し口(底部)と接続されている。ラインL27の他端は、製品高圧酸素ガス(HPGO)の取り出し口となっている。ラインL27には、第2の間接熱交換器外筒21に貯留される中圧液化酸素の一部が供給される。ラインL27には液化酸素ポンプP4が設けられている。ラインL27は、その一部が主熱交換器16を通過するように配置されている。これにより、ラインL27を流れる中圧液化酸素は、液化酸素ポンプP4で加圧され、主熱交換器16によって気化され、熱回収された後、製品高圧酸素ガス(HPGO)として回収される。
 液化酸素ポンプP4は、ラインL27に位置する。液化酸素ポンプP4には、ラインL27を介して、第2の間接熱交換器外筒21に貯留される中圧液化酸素が供給される。液化酸素ポンプP4は、ラインL27に流れる中圧液化酸素を加圧する。
 なお、第2の間接熱交換器外筒21が、十分に高い位置に設置されている場合、液ヘッド差を利用して中圧液化酸素を加圧できるため、液化酸素ポンプP4を省略できる場合もある。
 なお、ラインL27の一端は、第1の間接熱交換器外筒20の液取り出し口と接続されていてもよい。この場合、ラインL27には、第1の間接熱交換器外筒20に貯留される低圧液化酸素の一部が供給される。ラインL27を流れる低圧液化酸素は、液化酸素ポンプP4によって加圧され、主熱交換器16によって気化され、熱回収された後、製品高圧酸素ガス(HPGO)として回収される。
 ラインL28は、ラインL27から分岐した、製品中圧液化酸素(MPLO)の回収ラインである。ラインL28には、ラインL27を流れる中圧液化酸素の一部が供給される。これにより、ラインL28を流れる中圧液化酸素は、製品中圧液化酸素(MPLO)として回収される。
 過冷器23は、ラインL4,L11,L13,L14に亘るように配置されている。過冷器23には、ラインL4,L11,L13,L14の一部がそれぞれ通過する。過冷器21では、ラインL14を流れる低温流体と、ラインL4,L11,L13を流れる高温流体と、が間接的に熱交換することで、低温流体が加温され、各高温流体が冷却される。なお、過冷器23における低温流体と高温流体との組み合わせは、これらに限定されない。
 なお、図1には示していないが、製品低圧酸素ガス(LPGO)を回収する場合、本実施形態の空気分離装置10は、一端が第1の間接熱交換器外筒20または低圧塔18の下部に接続され、その一部が主熱交換器16を通過する製品導出ラインを有してもよい。この場合、製品導出ラインを流れる低圧酸素ガスは、主熱交換器16で熱回収された後に製品低圧酸素ガス(LPGO)として回収される。
 また、製品中圧酸素ガス(MPGO)を回収する場合、本実施形態の空気分離装置10は、一端が第2の間接熱交換器外筒21またはアルゴン塔19の下部に接続され、その一部が主熱交換器16を通過する製品導出ラインを有してもよい。この場合、製品導出ラインを流れる中圧酸素ガスは、主熱交換器16で熱回収された後に製品中圧酸素ガス(MPGO)として回収される。
 また、製品低圧酸素ガス(LPGO)、製品中圧酸素ガス(MPGO)、製品中圧液化酸素(MPLO)、及び製品低圧液化酸素(LPLO)等を回収する代わりに、製品高圧酸素ガス(HPGO)を回収しない場合、または製品高圧酸素ガス(HPGO)の圧力が低い場合(例えば、300kPaA以下の場合)には、ラインL2、空気昇圧機14、空気昇圧機アフタークーラ15、バルブV2、及び液化酸素ポンプP4を省略できる。
 また、本実施形態の空気分離装置10は、各機器のレイアウトにより、低圧液化酸素または中圧液化酸素を輸送するラインL15、L17、L24の接続位置を適宜変更することができる。
 例えば、本実施形態の空気分離装置10では、ラインL15の一端が接続する場所を第1の間接熱交換器外筒20からアルゴン塔19の底部に変更し、ラインL15によって低圧塔18の低圧液化酸素をアルゴン塔19の底部に供給し、ラインL24の一端が接続する場所を第2の間接熱交換器外筒21から第1の間接熱交換器外筒20に変更し、ラインL24によってアルゴン塔19の中圧液化酸素を第1の間接熱交換器外筒20に供給してもよい。このとき、各機器のレイアウトによる液ヘッド差に応じて、各ラインに液化酸素ポンプを設けてもよいし、液化酸素ポンプをバルブに変更してもよい。
 以下、本実施形態の空気分離装置10の運転方法、すなわち、空気分離方法の一例について、詳細に説明する。
 本実施形態の空気分離装置10の運転方法(空気分離方法)は、先ず、空気分離装置10を常温状態から起動し、製品アルゴンガス(GAR)または製品液化アルゴン(LAR)を回収できる状態となった後に定常運転に移行する。
 以下、空気分離装置10の起動時から定常運転に切り替えるまでの手順について、図1を参照しながら示す。
(起動時)
 本実施形態の空気分離方法は、空気分離装置10の起動時に、酸素、窒素、及びアルゴンを含む原料空気を圧縮、予冷、精製、及び冷却して、高圧の原料空気を生成し、高圧塔17において、原料空気を低温で蒸留して、高圧窒素ガスと高圧酸素富化液化空気とに分離し、低圧塔18において、前記高圧酸素富化液化空気を低温で蒸留して、低圧窒素ガスと低圧液化酸素とアルゴン富化液化酸素とに分離する。この時、前記低圧液化酸素を加圧した後に第2の間接熱交換器外筒(第2の気液分離室)21に導入して、前記高圧窒素ガスと前記低圧液化酸素を加圧して得られた中圧液化酸素とを間接的に熱交換し、前記高圧窒素ガスを液化して高圧液化窒素を生成し、前記中圧液化酸素を気化して中圧酸素ガスを生成し、前記中圧酸素ガスを減圧した後に低圧塔18の気相部に導入する。
 次に、アルゴン塔19において、前記アルゴン富化液化酸素を低温で蒸留して、アルゴンガスと中圧液化酸素とに分離する。この時、前記アルゴンガスと前記低圧液化酸素とを間接的に熱交換し、前記アルゴンガスを液化して液化アルゴンを生成し、前記低圧液化酸素を気化して低圧酸素ガスを生成する。これと同時に第2の間接熱交換器外筒(第2の気液分離室)から導出し、低圧塔18の気相部に導入していた前記中圧酸素ガスの流量を減量またはゼロとする。
 次に、アルゴン塔19の塔頂に所定の濃度のアルゴンガスが濃縮したら、所定の流量の製品(製品液化アルゴンLAR、製品アルゴンガスGARなど)を抜き出して、定常運転の状態に移行する。
 具体的には、先ず、空気圧縮機11、空気予冷器12、空気精製器13を順次起動し、圧縮、精製、冷却された、約800kPaAの圧力の原料空気を高圧塔17に供給する。同時に、原料空気の一部を起動用のバイパスライン(図示略)を用いて膨張タービン24に供給し、原料空気の一部を断熱膨張させて低温の空気を発生させる。発生した低温の空気により、高圧塔17、低圧塔18、アルゴン塔19、第1の間接熱交換器H1、第2の間接熱交換器H2、第3の間接熱交換器H3、第1の間接熱交換器外筒20、第2の間接熱交換器外筒21、第3の間接熱交換器外筒22、過冷器23、アルゴン富化液化酸素ポンプP1、液化酸素ポンプP2~P4、各ライン、各バルブを徐々に冷却していく。
 次に、各機器が飽和温度付近まで冷却されたら、液化窒素供給用のラインL33を用い、低圧塔18の上部から低圧塔18内に液化窒素を供給する。供給された液体窒素は、低圧塔18、ラインL15、液化酸素ポンプP2、第1の間接熱交換器外筒20、ラインL17、バルブV7を経由して、第2の間接熱交換器外筒21に液化ガス流体として貯留される。
 このとき、第1の間接熱交換器H1で間接熱交換が生じないように、第1の間接熱交換器外筒20には液化ガス流体を貯めない。すなわち、バルブV7(第2の開閉機構)を開状態とし、バルブV7の開度に応じてラインL17(第2の経路)を開放する。
 第2の間接熱交換器外筒21に液化ガス流体が貯まると、第2の間接熱交換器外筒21に収容される第2の間接熱交換器H2によって、高圧塔17に供給されている高圧の空気との間接熱交換が開始される。この熱交換により、高圧の空気が液化すると同時に、第2の間接熱交換器外筒21にガス流体が発生する。液化した高圧の液化空気は、ラインL10から高圧塔17に供給され、高圧塔17の還流液となり、高圧塔17で低温蒸留が始まる。
 一方で、バルブV10を開状態とすることで、第2の間接熱交換器外筒21で発生したガス流体は、ラインL25、L26(第1の経路)、バルブV10(第1の開閉機構)を経由して、低圧塔18の下部に供給される。これにより、低圧塔18では、下部から供給されたガス流体と頂部から供給された液化窒素との気液接触により低温蒸留が始まる。
 このとき、バルブV9を開状態とすることで、第2の間接熱交換器外筒21で発生したガス流体の一部は、ラインL25、バルブV9、アルゴン塔19、ラインL20、ラインL21を経由して、大気放出される。これにより、アルゴン塔19は冷却されるが、還流液が存在しないため、低温蒸留は始まらない。
 上述の手順により、先ず、高圧塔17と低圧塔18とが起動される。これにより、高圧塔17の上部には高圧窒素ガスが、下部には高圧酸素富化液化空気がそれぞれ濃縮される。また、低圧塔18の上部には低圧窒素ガスが、中間部にはアルゴン富化液化酸素が、下部には低圧液化酸素がそれぞれ濃縮される。
 ところで、空気分離装置10の起動時においても、低圧塔18の圧力は定常運転時と同じ圧力、例えば、約130kPaAで運転される。仮に、第1の経路を構成するラインL26にバルブV10が設けられていない場合、第2の間接熱交換器外筒21の圧力も約130kPaAとなり、第2の間接熱交換器H2で熱統合(heat integration)されている高圧塔17の圧力が約500kPaAになる。このため、定常運転時の高圧塔17の圧力である約800kPaAで設計されている空気精製器13の圧力が500kPaA近くまで低下してしまい、空気精製器13の内部の吸着剤が巻き上げられる恐れや、空気精製器13に供給される空気の水分量が増えて、水を十分に除去できない恐れがある。
 本実施形態の空気分離装置10によれば、ラインL26に設けられたバルブV10を操作して、第2の間接熱交換器外筒21の圧力を定常運転時と同じ230kPaA程度に調節することができる。これにより、高圧塔17の圧力を約800kPaAに維持できるため、空気精製器13の圧力低下を避けることができる。
 低圧塔18での低温蒸留により、低圧塔18の中間部にはアルゴン富化液化酸素が濃縮される。次に、アルゴン富化液化酸素ポンプP1の運転を開始し、低圧塔18の中間部からアルゴン富化液化酸素の一部をラインL19に導出する。次いで、ラインL19及びアルゴン富化液化酸素ポンプP1を介して、アルゴン塔19へのアルゴン富化液化酸素の供給を開始する。これと同時に、バルブV7の開度を調節して、第1の間接熱交換器外筒20への低圧液化酸素の貯留を開始する。
 次に、第1の間接熱交換器外筒20に低圧液化酸素が貯まると、第1の間接熱交換器H1において、低圧液化酸素とアルゴン塔19から供給される中圧酸素ガスとの間接的な熱交換が開始される。第1の間接熱交換器外筒20内で低圧液化酸素が気化して低圧酸素ガスが発生すると同時に、アルゴン塔19から供給される中圧酸素ガスが液化して中圧液化酸素が発生する。なお、この時点において、アルゴン塔19では低温蒸留が行われていないため、アルゴン塔19の上部にはアルゴンガスが濃縮されず、中圧酸素ガスが存在する。
 次に、バルブV8を開状態とし、第1の間接熱交換器外筒20の低圧酸素ガスをラインL16に導出する。導出された低圧酸素ガスは、ラインL16、バルブV8を介して、低圧塔18の下部に供給される。一方、第1の間接熱交換器H1で液化した中圧液化酸素は、ラインL22を介してアルゴン塔19の上部に供給され、アルゴン塔19の還流液となり、アルゴン塔19で低温蒸留が始まる。
 ところで、低温蒸留が開始した段階では、アルゴン塔19の上部にアルゴン成分が濃縮しておらず酸素が主成分となる。このため、第1の間接熱交換器H1では液化酸素と酸素ガスとの間接熱交換となり、定常運転時の液化酸素とアルゴンガスとの間接熱交換に比べて、流体間の圧力差が小さくなる。
 仮に、ラインL16(第4の経路)にバルブV8(第4の開閉機構)が、ラインL25(第3の経路)にバルブV9(第3の開閉機構)がそれぞれ設けられていない場合、第1の間接熱交換器外筒20の圧力は低圧塔18の圧力と同じく130kPaA程度となり、第1の間接熱交換器H1で熱統合されているアルゴン塔19の圧力が定常運転時よりも低い約150kPaAになる。このため、アルゴン塔19に繋がる第2の間接熱交換器外筒21の圧力が定常運転時の圧力230kPaAよりも低下し、高圧塔17の圧力も低下する。したがって、前述の通り、空気精製器13の圧力低下によるトラブルが生じる恐れがある。なお、この場合、第2の間接熱交換器外筒21の圧力を調節するバルブV10を全閉としても、第2の間接熱交換器外筒21の圧力が定常運転時の圧力を保持できない状態になる。
 本実施形態の空気分離装置10によれば、ラインL16(第4の経路)にバルブV8(第4の開閉機構)が、ラインL25(第3の経路)にバルブV9(第3の開閉機構)がそれぞれ設けられている。ここで、アルゴン塔19の上部にアルゴンガスが濃縮されるまでの間、ラインL16に設けられたバルブV8の開度を調整して、第1の間接熱交換器外筒20の圧力を定常運転時よりも高くし、アルゴン塔19およびそれに繋がる第2の間接熱交換器外筒21の圧力を定常運転時と同程度に維持する。このようにバルブV8の開度を調整することで、高圧塔17の圧力を定常運転時と同様に約800kPaAに維持できるため、空気精製器13の圧力低下を避けることができる。
 また、本実施形態の空気分離装置10によれば、バルブV8を用いる代わりに、ラインL25に設けられたバルブV9の開度を調整して、第2の間接熱交換器外筒21の圧力が定常運転時と同程度になるように維持してもよい。上記バルブV8と同様に、バルブV9の開度を調整することで、高圧塔17の圧力を定常運転時と同様に約800kPaAに維持できるため、空気精製器13の圧力低下を避けることができる。
 次に、バルブV8またはバルブV9の操作により、第2の間接熱交換器外筒21の圧力を定常運転時と同程度に保つように調節しながら、バルブV10の開度を絞っていき、最終的には全閉または微開(定常運転時のバルブ開度)とする。この操作により、ラインL26に流れる中圧酸素ガスの流量を減らし、アルゴン塔19に供給される中圧酸素ガスを所定量まで増加させる。
その後、アルゴン塔19の上部にアルゴンが濃縮し、ラインL21またはラインL23から導出される製品アルゴンガス(GAR)または製品液化アルゴン(LAR)が所定量まで増加したことを確認して、空気分離装置10の起動を完了する。
(定常運転時)
 本実施形態の空気分離装置10の運転方法(空気分離方法)では、空気分離装置10の起動後、定常運転に移行する。
 本実施形態の空気分離方法では、空気分離装置10の起動後、以下の各工程を含む定常運転を行う。
・高圧塔17において、原料空気を低温で蒸留し、高圧窒素ガスと高圧酸素富化液化空気とに分離する(高圧分離工程)。
・低圧塔18において、高圧酸素富化液化空気を低温で蒸留し、低圧窒素ガスと低圧液化酸素とアルゴン富化液化酸素とに分離する(低圧分離工程)。
・アルゴン塔19において、アルゴン富化液化酸素を低圧分離工程の圧力よりも高い圧力に加圧した後に低温で蒸留し、アルゴンガスと中圧液化酸素とに分離する(アルゴン分離工程)。
・第1の間接熱交換器H1において、アルゴンガスと低圧液化酸素とを間接的に熱交換し、アルゴンガスを液化して液化アルゴンを生成し、低圧液化酸素を気化して低圧酸素ガスを生成する(第1の間接熱交換工程)。
・第2の間接熱交換器H2において、高圧窒素ガスと中圧液化酸素とを間接的に熱交換し、高圧窒素ガスを液化して高圧液化窒素を生成し、中圧液化酸素を気化して中圧酸素ガスを生成する(第2の間接熱交換工程)。
・ラインL21またはラインL23において、アルゴンガスの一部、第1の間接熱交換工程において液化されなかったアルゴンガス及び液化アルゴンの一部のうち、少なくとも1種のアルゴンを製品アルゴンガス(GAR)または製品液化アルゴン(LAR)として回収する(製品導出工程)。
 なお、本実施形態の空気分離方法では、定常運転時は、バルブV10(第1の開閉機構)が全閉でラインL26(第1の経路)に流体が流れないか、またはバルブV10が微開でラインL26に少量の中圧酸素ガスが流れるのみとする。ラインL26に流れる少量の中圧酸素ガスにより、低圧塔18の上昇ガス量を調節し、ラインL19から導出されるアルゴン富化液化酸素の組成を調節することができる。
 以上説明したように、本実施形態の空気分離装置10は、高圧の原料空気を低温で蒸留し、高圧窒素ガスと高圧酸素富化液化空気とに分離する高圧塔17と、前記高圧酸素富化液化空気を低温で蒸留し、低圧窒素ガスと低圧液化酸素とアルゴン富化液化酸素とに分離する低圧塔18と、低圧塔18の圧力よりも高い圧力の前記アルゴン富化液化酸素を低温で蒸留し、アルゴンガスと中圧液化酸素とに分離するアルゴン塔19と、前記アルゴンガスと前記低圧液化酸素とを間接的に熱交換し、前記アルゴンガスを液化して液化アルゴンを生成し、前記低圧液化酸素を気化して低圧酸素ガスを生成する第1の間接熱交換器H1と、前記高圧窒素ガスと前記中圧液化酸素とを間接的に熱交換し、前記高圧窒素ガスを液化して高圧液化窒素を生成し、前記中圧液化酸素を気化して中圧酸素ガスを生成する第2の間接熱交換器H2と、第1の間接熱交換器H1によって気化した低圧酸素ガスと気化しなかった低圧液化酸素とを、気相と液相とに分離する第1の間接熱交換器外筒(第1の気液分離室)20と、第2の間接熱交換器H2によって気化した中圧酸素ガスと気化しなかった中圧液化酸素とを、気相と液相とに分離する第2の間接熱交換器外筒(第2の気液分離室)21と、低圧塔18の気相部と第2の間接熱交換器外筒21の気相部とを連通する第1の経路(ラインL25,L26)と、低圧塔18の液相部と第2の間接熱交換器外筒21とを連通する第2の経路(ラインL17)と、第1の経路に位置する第1の開閉機構(バルブV10)と、第2の経路に位置する第2の開閉機構(バルブV7)と、を備える。
 本実施形態の空気分離装置10によれば、バルブV7の開閉状態を切り替えることで、低圧塔18の液相部と第2の間接熱交換器外筒21とを連通する第2の経路を開放あるいは遮断できる。
 また、本実施形態の空気分離装置10によれば、バルブV10の開閉状態を切り替えることで、低圧塔18の気相部と第2の間接熱交換器外筒21の気相部とを連通する第1の経路を開放あるいは遮断できる。
 本実施形態の空気分離方法は、特許文献2に記載された従来の高性能三塔式プロセスにおいても高圧塔17と低圧塔18とを最初に起動し、低圧塔18でアルゴン富化酸素を発生させる。次いで、このアルゴン富化液化酸素をアルゴン塔19に導入して蒸留する。これにより、アルゴン塔19から酸素成分を除去してアルゴンを採取することができ、アルゴン塔19を起動する。
 本実施形態の空気分離方法によれば、空気分離装置10を容易に起動できる。
 本実施形態の空気分離装置10および空気分離方法によれば、定常運転時には、バルブV10(第1の開閉機構)が全閉でラインL26(第1の経路)に流体が流れないか、またはバルブV10が微開でラインL26に少量の中圧酸素ガスが流れるのみである。これに対して、空気分離装置10の起動時には、バルブV10が開いて、第2の間接熱交換器H2で生成される中圧酸素ガスの大部分(少なくとも半分以上)がラインL26に流れる。これにより、アルゴン塔19での低温蒸留によって第1の間接熱交換器H1に供給されるアルゴンガスが生成されるよりも前の段階で、高圧塔17と低圧塔18とを起動できる。次いで、低圧塔18での低温蒸留によってアルゴン富化液化酸素を分離して、アルゴン塔19の原料となるアルゴン富化液化酸素を生成することができる。
 また、本実施形態の空気分離装置10および空気分離方法によれば、空気分離装置10の起動時に、バルブV10を操作して開度を調整することで、第2の間接熱交換器外筒21内の圧力を定常運転時と同程度の圧力に維持できる。これにより、第2の間接熱交換器H2で液化する高圧窒素ガスの圧力および高圧塔17に供給される原料空気の圧力を定常運転時と同程度の圧力に保ち、空気精製器13を流れる空気の圧力を定常運転時と同程度の圧力に保つことができるため、空気精製器13の圧力低下によるトラブルを防止できる。
 なお、空気分離装置10の起動時に、高圧塔17と低圧塔18とを起動し、次いで、第1の間接熱交換器外筒20に低圧塔18から供給される低圧液化酸素を貯めて第1の間接熱交換器H1で間接熱交換を開始すると、第1の間接熱交換器H1の液化通路入口に供給される流体はアルゴンガスではなく、アルゴンガスよりも飽和圧力が低い酸素ガスとなる。このため、第1の間接熱交換器H1での間接熱交換により、アルゴン塔19に存在する酸素ガスが定常運転時よりも低い圧力で液化し、アルゴン塔19およびそれに繋がる第2の間接熱交換器外筒21の圧力が定常運転時よりも低下する恐れがある。
 本実施形態の空気分離装置10は、ラインL16(第4の経路)にバルブV8(第4の開閉機構)を有しており、バルブV8の操作により、第1の間接熱交換器外筒20の圧力を定常運転時よりも高い圧力に保つことができる。これにより、アルゴン塔19および第2の間接熱交換器外筒21の圧力を定常運転時と同程度に保つことができる。
 また、本実施形態の空気分離装置10は、ラインL25(第3の経路)にバルブV9(第3の開閉機構)を有しており、バルブV9の操作により、アルゴン塔19の圧力が低下した場合でも第2の間接熱交換器外筒21の圧力を定常運転時と同程度に保つことができる。
 また、本実施形態の空気分離装置10によれば、バルブV8またはバルブV9を操作することで、装置の起動時に第2の間接熱交換器外筒21の圧力低下に起因する空気精製器13の圧力低下によるトラブルを防ぐことができる。さらに、定常運転時に処理量を抑えた減量運転を行う際に、低圧塔18やアルゴン塔19の圧力損失の低下や、第1の間接熱交換器H1や第2の間接熱交換器H2の流体間の温度差の低下に起因する高圧塔17の圧力低下を防ぎ、製品高圧窒素ガス(HPGN)の圧力を一定に維持できるという利点がある。
 また、本実施形態の空気分離装置10及び空気分離方法によれば、空気分離装置10の起動時に、膨張タービン24から導出される低温の空気で各機器を冷却していく段階において、バルブV10を開状態とすることで、ラインL26およびラインL25(すなわち、第1の経路)を介して低圧塔18に供給された低温の空気をアルゴン塔19の下部に供給できる。このように、第1の経路を上述した方向と逆方向に用いて、アルゴン塔19に低温の空気を供給することにより、アルゴン塔19を比較的短時間で冷却できる。この場合、膨張タービン24から導出される低温の空気は、ラインL6、低圧塔18、ラインL26、ラインL25、アルゴン塔19、ラインL20、ラインL21を経由し、各機器を冷却した後に大気中に放出される。
 これに対して、ラインL26を含む第1の経路を有さない場合には、ラインL19を利用してアルゴン塔19を冷却することになる。しかしながら、ラインL19は、定常運転時に液化流体が流れるため、通常、ガスラインに比べて細い配管が使用される。したがって、ラインL19にガス流体を多量に流すことは困難であり、アルゴン塔19の冷却時間が長くなる。
 なお、起動時における空気精製器13の圧力低下を防ぐ手段として、ラインL1の空気精製器13の二次側に圧力調節バルブを設置することもできるが、このラインは配管口径が比較的大きく、バルブが大型になりコストアップになることから上記の装置および方法を用いるのがより好ましい。
(第1実施形態の変形例)
 本発明を適用した第1の実施形態である空気分離装置10の構成は、一例であり、これに限定されるものではない。
 図2および図3は、本発明の第1実施形態の空気分離装置の変形例を示す系統図である。
 さらに、図4~図6は、本発明の第1実施形態の空気分離装置の変形例の要部を示す系統図である。
 本実施形態の空気分離装置10を用いた空気分離方法によれば、空気分離装置10の起動時に、先に高圧塔17と低圧塔18とを起動する。そして、低圧塔18において低圧窒素ガスと、アルゴン富化液化酸素と、低圧液化酸素とが濃縮されるまでの間は、第1の間接熱交換器H1での間接熱交換の開始を避けることが好ましい。
 すなわち、低圧塔18で低圧液化酸素が濃縮されていない段階で、第1の間接熱交換器H1での間接熱交換を開始すると、アルゴン塔19内のガス流体が液化してアルゴン塔19内が大気圧以下となり、大気中の不純物を含んだ空気を吸入する恐れや、アルゴン塔19が破損する恐れがある。
 そこで、本実施形態の空気分離装置10を用いた空気分離方法によれば、第1の間接熱交換器外筒20に低圧液化酸素が貯まらないように、ラインL17に位置するバルブV7の開度を調節する。
 他の方法として、第1実施形態の変形例である空気分離装置10Aを用いてもよい。
 図2に示すように、空気分離装置10Aは、上述した空気分離装置10の構成に加えて、ラインL31と、バルブV12とを備える。
 ラインL31は、低圧塔18と第2の間接熱交換器外筒21(またはアルゴン塔19)との間に位置する。ラインL31は、ラインL15から分岐する。ラインL31の一端は、液化酸素ポンプP2の二次側のラインL15(分岐点)と接続されている。ラインL31の他端は、アルゴン塔19または第2の間接熱交換器外筒21に接続されている。ラインL31には、バルブV12が設けられている。バルブV12が開状態のとき、ラインL31には、ラインL15および液化酸素ポンプP2を介して低圧塔18に濃縮される低圧液化酸素が加圧され、中圧液化酸素となって供給される。ラインL31を流れる中圧液化酸素は、バルブV12を経由してアルゴン塔19、あるいは第2の間接熱交換器外筒21に供給される。
 バルブV12は、ラインL31に位置する。バルブV12は、ラインL31の流路(第2の経路の一部)を開放状態及び閉止状態にできる機能を有していれば特に限定されないが、全閉(開度0%)から全開(開度100%)にわたって開度を自在に調整できるものが好ましい。バルブV12には、ラインL15およびラインL31を介して、低圧塔18に濃縮される低圧液化酸素が加圧され、中圧液化酸素となって供給される。バルブV12は、ラインL31を流れる中圧液化酸素を、その開度に応じて供給する。
 ここで、空気分離装置10Aでは、ラインL15及びラインL31により、低圧塔18の底部(液相部)と第2の間接熱交換器外筒(第2の気液分離室)21とを連通する第2の経路が構成される。また、バルブV12が第2の開閉機構である。
 図2に示す空気分離装置10Aを用いた空気分離方法によれば、ラインL15,L31(すなわち、第2の経路)及びバルブV12(第2の開閉機構)を有するため、装置の起動時に、第1の間接熱交換器外筒20に低圧液化酸素を供給することなく、低圧液化酸素の一部または全量をアルゴン塔19の底部または第2の間接熱交換器外筒21に供給できる。
 さらに、他の方法として、第1実施形態の変形例である空気分離装置10Bを用いてもよい。
 図3に示すように、空気分離装置10Bは、上述した空気分離装置10の構成のうち、ラインL15,L24の構成が異なり、さらに、ラインL32と、バルブV13とを備える。
 ラインL15は、低圧塔18とアルゴン塔19との間に位置する。ラインL15の一端は、低圧塔18の底部と接続されている。ラインL15の他端は、アルゴン塔19の下部と接続されている。ラインL15には、低圧塔18の底部に濃縮される低圧液化酸素が供給される。ラインL15には、バルブV14が設けられている。ラインL15を流れる低圧液化酸素は、バルブV14を経由してアルゴン塔19の下部に供給される。
 ラインL24は、アルゴン塔19と第1の間接熱交換器外筒20との間に位置する。ラインL24の一端は、アルゴン塔19の底部と接続されている。ラインL24の他端は、第1の間接熱交換器外筒20と接続されている。定常運転時、ラインL24には、アルゴン塔19の下部に貯留される中圧液化酸素が供給される。ラインL24には、液化酸素ポンプP3が設けられている。ラインL24を流れる中圧液化酸素は、液化酸素ポンプP3によって第1の間接熱交換器外筒20に供給される。
 ラインL32は、ラインL24から分岐する。ラインL32は、アルゴン塔19と第2の間接熱交換器外筒21との間に位置する。ラインL32の一端は、液化酸素ポンプP3の二次側のラインL24(分岐点)と接続されている。ラインL32の他端は、第2の間接熱交換器外筒21に接続されている。ラインL32には、バルブV13が設けられている。バルブV13が開状態のとき、ラインL32には、ラインL24を介してアルゴン塔19の底部に濃縮される中圧液化酸素が供給される。ラインL32を流れる中圧液化酸素は、第2の間接熱交換器外筒21に供給される。
 バルブV13は、ラインL32に位置する。バルブV13は、ラインL32の流路(第2の経路の一部)を開放状態及び閉止状態にできる機能を有していれば特に限定されないが、全閉(開度0%)から全開(開度100%)にわたって開度を自在に調整できるものが好ましい。バルブV13には、ラインL24およびラインL32を介して、アルゴン塔19の底部に濃縮される中圧液化酸素が供給される。バルブV13は、ラインL32を流れる中圧液化酸素を、その開度に応じて供給する。
 ここで、空気分離装置10Bでは、ラインL15,アルゴン塔19,ラインL24,L32により、低圧塔18の底部(液相部)と第2の間接熱交換器外筒(第2の気液分離室)21とを連通する第2の経路が構成される。また、バルブV13が第2の開閉機構である。
 図3に示す空気分離装置10Bを用いた空気分離方法によれば、ラインL15,アルゴン塔19,ラインL24,L32(すなわち、第2の経路)及びバルブV13(第2の開閉機構)を有するため、装置の起動時に、第1の間接熱交換器外筒20に中圧液化酸素を供給することなく、中圧液化酸素の一部または全量を第2の間接熱交換器外筒21に供給できる。
 さらに、他の方法として、第1実施形態の変形例である空気分離装置10Cを用いてもよい。
 図4に示すように、空気分離装置10Cは、上述した空気分離装置10の構成から第1の間接熱交換器外筒20が省略されており、ラインL34および第1の気液分離器25が追加されている。
 ラインL34は、第1の間接熱交換器H1と第1の気液分離器25との間に位置する。ラインL34の一端は、第1の間接熱交換器H1の気化通路出口と接続されている。ラインL34の他端は、第1の気液分離器25と接続されている。ラインL34には、第1の間接熱交換器H1によって低圧液化酸素が気化した低圧酸素ガスと気化しなかった低圧液化酸素との気液二相の混合流体が導出される。ラインL34を流れる低圧酸素ガスと低圧液化酸素との混合流体は、第1の気液分離器25に供給される。
 第1の気液分離器25は、第1の間接熱交換器H1とアルゴン塔19との間に位置する。第1の気液分離器25には、ラインL16,L17,L34がそれぞれ接続される。第1の気液分離器25は、ラインL34を介して供給される低圧酸素ガスと低圧液化酸素との混合流体を貯留し、気相の低圧酸素ガスと液相の低圧液化酸素とに分離する。
 ラインL16は、第1の気液分離器25と低圧塔18との間に位置する。ラインL16の一端は、第1の気液分離器25のガス取出し口(頂部)と接続されている。ラインL16の他端は、低圧塔18の気相部と接続されている。ラインL16には、バルブ(第4の開閉機構)V8が設けられている。ラインL16には、第1の気液分離器25の気相部から低圧酸素ガスが導出される。ラインL16を流れる低圧酸素ガスは、低圧塔18の下部に供給される。
 ここで、空気分離装置10Cでは、ラインL16により、低圧塔18の気相部と第1の気液分離器(第1の気液分離室)25の気相部とを連通する第4の経路が構成される。また、バルブV8が第4の開閉機構である。
 第1実施形態の変形例である空気分離装置10Cによれば、第1実施形態の空気分離装置10と同様に、最初に高圧塔17と低圧塔18とを起動し、次いで、アルゴン塔19を容易に起動することができる。
 また、図4に示す空気分離装置10Cを用いた空気分離方法によれば、ラインL16(第4の経路)及びバルブV8(第4の開閉機構)を有するため、起動時にアルゴン塔19の上部にアルゴンガスが濃縮されるまでの間、ラインL16に設けられたバルブV8の開度を調整して、第1の気液分離器25および第1の間接熱交換器H1の気化通路の圧力を定常運転時よりも高くし、アルゴン塔19およびそれに繋がる第2の間接熱交換器外筒21の圧力を定常運転時と同程度に維持することができる。このように、バルブV8の開度を調整することで、高圧塔17の圧力を定常運転時と同程度の圧力(例えば、約800kPaA)に維持できるため、空気精製器13の圧力低下を避けることができる。なお、この場合、第1の間接熱交換器H1で気化する流体は中圧酸素ガスであり、第1の気液分離器25で分離される流体は中圧酸素ガスと中圧液化酸素である。
 さらに、他の方法として、第1実施形態の変形例である空気分離装置10Dを用いてもよい。
 また、図5に示すように、空気分離装置10Dは、上述した空気分離装置10の構成から第1の間接熱交換器外筒20およびバルブV8が省略されており、ラインL34が追加されている。
 ラインL34は、第1の間接熱交換器H1と低圧塔18との間に位置する。ラインL34の一端は、第1の間接熱交換器H1の気化通路出口と接続されている。ラインL34の他端は、低圧塔18の下部の気相部と接続されている。ラインL34には、第1の間接熱交換器H1によって低圧液化酸素が気化した低圧酸素ガスと気化しなかった低圧液化酸素との気液二相の混合流体が導出される。ラインL34を流れる低圧酸素ガスと低圧液化酸素との混合流体は、低圧塔18の下部に供給される。
 低圧塔18の下部では、低圧塔18での低温蒸留により分離された低圧液化酸素と、ラインL34を介して供給される低圧酸素ガスと低圧液化酸素との混合流体とを貯留し、気相の低圧酸素ガスと液相の低圧液化酸素とに分離する。ここで、空気分離装置10Dでは、低圧塔18の下部が第1の気液分離室となる。
 第1実施形態の変形例である空気分離装置10Dによれば、第1実施形態の空気分離装置10と同様に、最初に高圧塔17と低圧塔18とを起動し、次いで、アルゴン塔19を容易に起動することができる。
 さらに、他の方法として、第1実施形態の変形例である空気分離装置10Eを用いてもよい。
 また、図6に示すように、空気分離装置10Eは、上述した空気分離装置10の構成から第2の間接熱交換器外筒21が省略されており、ラインL35および第1の気液分離器26が追加されている。
 ラインL35は、第2の間接熱交換器H2と第2の気液分離器26との間に位置する。ラインL35の一端は、第2の間接熱交換器H2の気化通路出口と接続されている。ラインL35の他端は、第2の気液分離器26と接続されている。ラインL35には、第2の間接熱交換器H2によって中圧液化酸素が気化した中圧酸素ガスと気化しなかった中圧液化酸素との気液二相の混合流体が導出される。ラインL35を流れる中圧酸素ガスと中圧液化酸素との混合流体は、第2の気液分離器26に供給される。
 第2の気液分離器26は、第2の間接熱交換器H2と高圧塔17との間に位置する。第2の気液分離器26には、ラインL25,L27,L35がそれぞれ接続される。第2の気液分離器26は、ラインL35を介して供給される中圧酸素ガスと中圧液化酸素との混合流体を貯留し、気相の中圧酸素ガスと液相の中圧液化酸素とに分離する。
 ラインL25は、第2の気液分離器26とアルゴン塔19との間に位置する。ラインL25の一端は、第2の気液分離器26のガス取出し口(頂部)と接続されている。ラインL25の他端は、アルゴン塔19の気相部と接続されている。ラインL25には、バルブ(第3の開閉機構)V9が設けられている。ラインL25には、第2の気液分離器26の気相部から中圧酸素ガスが導出される。ラインL25を流れる中圧酸素ガスは、アルゴン塔19の下部に供給される。
 ここで、空気分離装置10Eでは、ラインL25によって、アルゴン塔19の気相部と第2の気液分離器(第2の気液分離室)26の気相部とを連通する第3の経路が構成される。また、バルブV9が第3の開閉機構である。
 第1実施形態の変形例である空気分離装置10Eによれば、第1実施形態の空気分離装置10と同様に、最初に高圧塔17と低圧塔18とを起動し、次いで、アルゴン塔19を容易に起動することができる。
 また、図6に示す空気分離装置10Eを用いた空気分離方法によれば、ラインL25(第3の経路)及びバルブV9(第3の開閉機構)を有するため、起動時にアルゴン塔19の上部にアルゴンガスが濃縮されるまでの間、ラインL25に設けられたバルブV9の開度を調整して、第2の気液分離器26の圧力を定常運転時と同程度に維持することができる。このようにバルブV9の開度を調整することで、高圧塔17の圧力を定常運転時と同程度の圧力(例えば、約800kPaA)に維持できるため、空気精製器13の圧力低下を避けることができる。
<第2の実施形態>
 図7は、本発明の第2実施形態の空気分離装置の構成の一例を示す系統図である。図7において、図1に示す第1実施形態の空気分離装置10を同一構成部分には、同一符号を付し、その説明を省略する。
 図7に示すように、本実施形態の空気分離装置30は、以下に列挙する変更点以外は、上述した第1実施形態の空気分離装置10と同様に構成される。
・本実施形態の空気分離装置30は、第1実施形態の空気分離装置10のアルゴン塔19に代えて、直列に接続される第1アルゴン塔19aと第2アルゴン塔19bとを備える。
・本実施形態の空気分離装置30は、第1実施形態の空気分離装置10の第2の間接熱交換器外筒21を構成要素から除く。
・本実施形態の空気分離装置30は、第2の間接熱交換器H2を第2アルゴン塔19bの底部に収容する。
・本実施形態の空気分離装置30は、第1実施形態の空気分離装置10を構成する、ラインL24、L25、バルブV9、液化酸素ポンプP3に代えて、ラインL29、L30、バルブV11、液化アルゴンポンプP5を有する。
・本実施形態の空気分離装置30は、ラインL26の構成が第1実施形態の空気分離装置10と異なる。
・本実施形態の空気分離装置30は、ラインL17の構成が第1実施形態の空気分離装置10と異なる。
 以下、変更点に係る構成について、詳細に説明する。
 第1アルゴン塔19aは、第1の間接熱交換器外筒20と、第2アルゴン塔19bとの間に位置する。第1アルゴン塔19aには、ラインL20,L22,L29,L30がそれぞれ接続されている。第1アルゴン塔19aは、ラインL22を介して供給される液化アルゴンと、ラインL30を介して供給される低純度アルゴンガスと、を低圧塔18よりも高い圧力で低温蒸留することで、アルゴンガスと低純度液化アルゴンとに分離する。この低温蒸留により、第1アルゴン塔19aの上部にはアルゴンガスが濃縮され、第1アルゴン塔19aの下部には低純度液化アルゴンが濃縮される。
 第2アルゴン塔(第2の気液分離室)19bは、第1アルゴン塔19aと、高圧塔17との間に位置する。第2アルゴン塔19bには、ラインL17,L19,L26,L27,L29,L30がそれぞれ接続される。第2アルゴン塔19bの底部には、第2の間接熱交換器H2が収容される。第2アルゴン塔19bは、アルゴン富化液化酸素ポンプP1で加圧されたアルゴン富化液化酸素と、ラインL29を介して供給される低純度液化アルゴンと、ラインL17を介して供給される低圧液化酸素と、第2の間接熱交換器H2で気化して生成される中圧酸素ガスと、を低圧塔18よりも高い圧力で低温蒸留することで、低純度アルゴンガスと中圧液化酸素とに分離する。この低温蒸留により、第2アルゴン塔19bの上部には低純度アルゴンガスが濃縮され、第2アルゴン塔19bの下部には中圧液化酸素が濃縮される。
 ラインL29は、第1アルゴン塔19aと第2アルゴン塔19bとの間に位置する。ラインL29の一端は、第1アルゴン塔19aの底部と接続される。ラインL29の他端は、第2アルゴン塔19bの頂部(あるいは上部)と接続される。ラインL29には、第1アルゴン塔19aの底部に貯留される低純度液化アルゴンの一部が導出される。ラインL29には、液化アルゴンポンプP5が設けられている。ラインL29を流れる低純度液化アルゴンは、液化アルゴンポンプP5で加圧された後に第2アルゴン塔19bの頂部に供給される。
 液化アルゴンポンプP5は、ラインL29に位置する。液化アルゴンポンプP5は、第1アルゴン塔19aの底部からラインL29に導出された低純度液化アルゴンを加圧する。
 ラインL30は、第2アルゴン塔19bと第1アルゴン塔19aとの間に位置する。ラインL30の一端は、第2アルゴン塔19bの頂部(あるいは上部)と接続される。ラインL30の他端は、第1アルゴン塔19aの下部と接続される。ラインL30には、第2アルゴン塔19bの頂部に濃縮される低純度アルゴンガス(定常運転時)または中圧酸素ガス(起動時)が導出される。ラインL30には、バルブ(第3の開閉機構)V11が設けられている。ラインL30を流れる低純度アルゴンガスは、バルブV11を経由して第1アルゴン塔19aの下部に供給される。
 本実施形態の空気分離装置30では、ラインL30により、第1アルゴン塔19a(アルゴン塔)の気相部と第2アルゴン塔19b(第2の気液分離室)の気相部とを連通する第3の経路が構成される。
 第3の経路は、第2アルゴン塔19bの気相部に貯留された低純度アルゴンガスまたは中圧酸素ガスを第1アルゴン塔19aの気相部に供給するための経路である。
 なお、第3の経路は、ラインL30以外の流路を含んでいてもよい。すなわち、第2アルゴン塔19bに貯留される低純度アルゴンガスまたは中圧酸素ガスが第1アルゴン塔19aに至るまでに経由する流路の全てが、第3の経路となる。
 バルブV11は、ラインL30に位置する。バルブV11は、減圧機能を有していれば特に限定されないが、全閉(開度0%)から全開(開度100%)にわたって開度を自在に調整できるものが好ましい。バルブV11には、ラインL30を介して、第2アルゴン塔19bの頂部に濃縮される低純度アルゴンガスが供給される。バルブV11は、ラインL30を流れる流体を、その開度に応じて減圧する。
 第2の間接熱交換器H2は、第2アルゴン塔19bの底部に収容される。第2の間接熱交換器H2の液化通路入口には、ラインL8の一端と接続される。第2の間接熱交換器H2の液取出し口には、ラインL17の一端が接続される。第2の間接熱交換器H2は、ラインL8から供給される高圧窒素ガスと、第2アルゴン塔19bの底部に貯留される中圧液化酸素と、を間接的に熱交換することで、高圧窒素ガスを液化して高圧液化窒素を生成し、中圧液化酸素を気化して中圧酸素ガスを生成する。
 本実施形態においては、第2アルゴン塔19bが第2の気液分離室となり、第2の間接熱交換器H2で気化して生成された中圧酸素ガスと、第2の間接熱交換器H2で気化しなかった中圧液化酸素との混合流体を貯留するとともに、該混合流体を中圧酸素ガスと中圧液化酸素とに分離する。
 ラインL17は、第1の間接熱交換器外筒20と第2アルゴン塔19bとの間に位置する。ラインL17の一端は、第1の間接熱交換器外筒20の液取出し口(底部)と接続される。ラインL17の他端は、第2アルゴン塔19bの底部(あるいは下部)と接続される。ラインL17には、第1の間接熱交換器外筒20に貯留され、第1の間接熱交換器H1で気化されなかった低圧液化酸素の一部が導出される。ラインL17には、バルブV7が設けられている。ラインL17を流れる低圧液化酸素は、バルブV7を経由して第2アルゴン塔19bの底部に供給される。
 ラインL19は、低圧塔18と第2アルゴン塔19bとの間に位置する。ラインL19の一端は、低圧塔18の中間部と接続されている。ラインL19の他端は、第2アルゴン塔19bの中間部または下部と接続されている。ラインL19には、低圧塔18の中間部に濃縮するアルゴン富化液化酸素の一部が供給される。ラインL19には、アルゴン富化液化酸素ポンプP1が設けられている。ラインL19を流れるアルゴン富化液化酸素は、アルゴン富化液化酸素ポンプP1で加圧された後に第2アルゴン塔19bに供給される。
 ラインL26は、第2アルゴン塔19b(第2の気液分離室)と低圧塔18との間に位置する。ラインL26の一端は、第2アルゴン塔19bの下部と接続される。ラインL26の他端は、低圧塔18の下部と接続される。ラインL26には、第2アルゴン塔19bの下部に貯留される中圧酸素ガスの一部が導出される。ラインL26には、バルブV10(第1の開閉機構)が設けられている。ラインL26を流れる中圧酸素ガスは、バルブV10で減圧された後に低圧塔18の下部に供給される。
 本実施形態の空気分離装置30は、ラインL26により、低圧塔18の下部(気相部)と第2アルゴン塔(第2の気液分離室)19bの下部(気相部)とを連通する第1の経路が構成される。
 なお、本実施形態の空気分離装置30では、ラインL26の一端が、第2アルゴン塔19bの下部と接続される構成を一例として説明したが、これに限定されない。ラインL26の一端は、第2アルゴン塔19bの中間部または上部のガス取り出し口、ラインL30の分岐点、第1アルゴン塔19aのガス取り出し口、ラインL20の分岐点、又はラインL21の分岐点に接続される場合もある。
 この場合、第2の間接熱交換器H2で生成される中圧酸素ガスは、第2アルゴン塔19b、ラインL30、第1アルゴン塔19a、ラインL20、ラインL21のいずれか又は全てを経由し、その後、ラインL26を経由してバルブV10で減圧された後に低圧塔18の下部に供給される。
 すなわち、第2の間接熱交換器H2により生成する中圧酸素ガスが低圧塔18の気相部に至るまでに経由する流路の全てが、第1の経路となる。
 以下、本実施形態の空気分離装置30の運転方法、すなわち、空気分離方法の一例について、詳細に説明する。
 本実施形態の空気分離装置30の運転方法(空気分離方法)は、先ず、空気分離装置30を常温状態から起動し、製品アルゴンガス(GAR)または製品液化アルゴン(LAR)を回収できる状態となった後に定常運転に移行する。
 以下、空気分離装置30の起動時から定常運転に切り替えるまでの手順について、図7を参照しながら示す。
(起動時)
 本実施形態の空気分離方法は、空気分離装置30の起動時に、酸素、窒素、及びアルゴンを含む原料空気を圧縮、予冷、精製、及び冷却して、高圧の原料空気を生成し、高圧塔17において、原料空気を低温で蒸留して、高圧窒素ガスと高圧酸素富化液化空気とに分離し、低圧塔18において、前記高圧酸素富化液化空気を低温で蒸留して、低圧窒素ガスと低圧液化酸素とアルゴン富化液化酸素とに分離する。この時、前記低圧液化酸素を加圧して得られた中圧液化酸素を第2アルゴン塔(第2の気液分離室)19bに導入して、前記高圧窒素ガスと前記中圧液化酸素とを間接的に熱交換し、前記高圧窒素ガスを液化して高圧液化窒素を生成し、前記中圧液化酸素を気化して中圧酸素ガスを生成し、前記中圧酸素ガスを減圧後に低圧塔18の気相部に導入する。
 その後、第1アルゴン塔19aと第2アルゴン塔19bにおいて、前記アルゴン富化液化酸素を低温で蒸留して、アルゴンガスと中圧液化酸素とに分離する。この時、前記アルゴンガスと前記低圧液化酸素とを間接的に熱交換し、前記アルゴンガスを液化して液化アルゴンを生成し、前記低圧液化酸素を気化して低圧酸素ガスを生成する。これと同時に第2アルゴン塔19b(第2の気液分離室)から導出し、低圧塔18の気相部に導入していた前記中圧酸素ガスの流量を減量またはゼロとする。
 その後、第1アルゴン塔19aの塔頂に所定の濃度のアルゴンガスが濃縮したら、所定の流量の製品(製品液化アルゴンLAR、製品アルゴンガスGARなど)を抜き出して、定常運転の状態に移行する。
 具体的には、先ず、空気圧縮機11、空気予冷器12、空気精製器13を順次起動し、圧縮、精製、冷却された、約800kPaAの圧力の原料空気を高圧塔17に供給する。同時に、原料空気の一部を起動用のバイパスライン(図示略)を用いて膨張タービン24に供給し、原料空気の一部を断熱膨張させて低温の空気を発生させる。発生した低温の空気により、高圧塔17、低圧塔18、第1アルゴン塔19a、第2アルゴン塔19b、第1の間接熱交換器H1、第2の間接熱交換器H2、第3の間接熱交換器H3、第1の間接熱交換器外筒20、第3の間接熱交換器外筒22、過冷器23、アルゴン富化液化酸素ポンプP1、液化酸素ポンプP2,P4、液化アルゴンポンプP5、各ライン、各バルブを徐々に冷却していく。
 次に、各機器が飽和温度付近まで冷却されたら、液化窒素供給用のラインL33を用い、低圧塔18の上部から低圧塔18内に液化窒素を供給する。供給された液体窒素は、低圧塔18、ラインL15、液化酸素ポンプP2、第1の間接熱交換器外筒20、ラインL17、バルブV7を経由して、第2アルゴン塔19bに液化ガス流体として貯留される。
 このとき、第1の間接熱交換器H1で間接熱交換が生じないように、第1の間接熱交換器外筒20には液化ガス流体を貯めない。すなわち、バルブV7(第2の開閉機構)を開状態とし、バルブV7の開度に応じてラインL17(第2の経路)を開放する。
 第2アルゴン塔19bに液化ガス流体が貯まると、第2アルゴン塔19bに収容される第2の間接熱交換器H2によって、高圧塔17に供給されている高圧の空気との間接熱交換が開始される。この熱交換により、高圧の空気が液化すると同時に、第2アルゴン塔19bにガス流体が発生する。液化した高圧の液化空気は、ラインL10から高圧塔17に供給され、高圧塔17の還流液となり、高圧塔17で低温蒸留が始まる。
 一方で、バルブV10を開状態とすることで、第2アルゴン塔19bで発生したガス流体は、ラインL26(第1の経路)、バルブV10(第1の開閉機構)を経由して、低圧塔18の下部に供給される。これにより、低圧塔18では、下部から供給されたガス流体と頂部から供給された液化窒素との気液接触により低温蒸留が始まる。
 このとき、バルブV11を開状態とすることで、第2アルゴン塔19bで発生したガス流体の一部は、ラインL30、バルブV11、第1アルゴン塔19a、ラインL20、ラインL21を経由して、大気放出される。これにより、第1アルゴン塔19aは冷却されるが、還流液が存在しないため、低温蒸留は始まらない。
 上述の手順により、先ず、高圧塔17と低圧塔18とが起動される。これにより、高圧塔17の上部には高圧窒素ガスが、下部には高圧酸素富化液化空気がそれぞれ濃縮される。また、低圧塔18の上部には低圧窒素ガスが、中間部にはアルゴン富化液化酸素が、下部には低圧液化酸素がそれぞれ濃縮される。
 低圧塔18での低温蒸留により、低圧塔18の中間部にはアルゴン富化液化酸素が濃縮される。次に、アルゴン富化液化酸素ポンプP1の運転を開始し、低圧塔18の中間部からアルゴン富化液化酸素の一部をラインL19に導出する。次いで、ラインL19及びアルゴン富化液化酸素ポンプP1を介して、第2アルゴン塔19bへのアルゴン富化液化酸素の供給を開始する。これと同時に、バルブV7の開度を調節して、第1の間接熱交換器外筒20への低圧液化酸素の貯留を開始する。
 次に、第1の間接熱交換器外筒20に低圧液化酸素が貯まると、第1の間接熱交換器H1において、低圧液化酸素と第1アルゴン塔19aから供給される中圧酸素ガスとの間接的な熱交換が開始される。第1の間接熱交換器外筒20内で低圧液化酸素が気化して低圧酸素ガスが発生すると同時に、第1アルゴン塔19aから供給される中圧酸素ガスが液化して中圧液化酸素が発生する。なお、この時点において、第1アルゴン塔19aでは低温蒸留が行われていないため、第1アルゴン塔19aの上部にはアルゴンガスが濃縮されず、中圧酸素ガスが存在する。
 次に、バルブV8を開状態とし、第1の間接熱交換器外筒20の低圧酸素ガスの一部をラインL16に導出する。導出された低圧酸素ガスは、ラインL16、バルブV8を介して、低圧塔18の下部に供給される。一方、第1の間接熱交換器H1で液化した中圧液化酸素は、ラインL22を介して第1アルゴン塔19aの上部に供給され、第1アルゴン塔19aの還流液となり、次いで第1アルゴン塔19aの底部から導出された流体がラインL29と液化アルゴンポンプP5を介して第2アルゴン塔19bに供給され、第2アルゴン塔19bの還流液となる。これにより第1アルゴン塔19aと第2アルゴン塔19bで低温蒸留が始まる。
 ところで、低温蒸留が開始した段階では、第1アルゴン塔19aの上部にアルゴン成分が濃縮しておらず酸素が主成分となる。このため、第1の間接熱交換器H1では液化酸素と酸素ガスとの間接熱交換となり、定常運転時の液化酸素とアルゴンガスとの間接熱交換に比べて、流体間の圧力差が小さくなる。
 仮に、ラインL16(第4の経路)にバルブV8(第4の開閉機構)が、ラインL30(第3の経路)にバルブV11(第3の開閉機構)がそれぞれ設けられていない場合、第1の間接熱交換器外筒20の圧力は低圧塔18の圧力と同じく130kPaA程度となり、第1の間接熱交換器H1で熱統合されている第1アルゴン塔19aの圧力が定常運転時よりも低い約150kPaAになる。また、第1アルゴン塔19aに繋がる第2アルゴン塔19bの圧力も定常運転時の圧力230kPaAよりも低下する。このため、高圧塔17の圧力も低下し、第1実施形態の空気分離装置10と同様に、空気精製器13の圧力低下によるトラブルが生じる恐れがある。なお、この場合、第2アルゴン塔19bの圧力を調節するバルブV10を全閉としても、第2アルゴン塔19bの圧力が定常運転時の圧力を保持できない状態になる。
 本実施形態の空気分離装置30によれば、ラインL16(第4の経路)にバルブV8(第4の開閉機構)が、ラインL30(第3の経路)にバルブV11(第3の開閉機構)がそれぞれ設けられている。ここで、第1アルゴン塔19aの上部にアルゴンガスが濃縮されるまでの間、ラインL16に設けられたバルブV8の開度を調整して、第1の間接熱交換器外筒20の圧力を定常運転時よりも高くし、第1アルゴン塔19aおよびそれに繋がる第2アルゴン塔19bの圧力を定常運転時と同程度に維持する。このようにバルブV8の開度を調整することで、高圧塔17の圧力を定常運転時と同様に約800kPaAに維持できるため、空気精製器13の圧力低下を避けることができる。
 また、本実施形態の空気分離装置30によれば、バルブV8を用いる代わりに、ラインL30に設けられたバルブV11の開度を調整して、第2アルゴン塔19bの圧力が定常運転時と同程度になるように維持してもよい。上記バルブV8と同様に、バルブV11の開度を調整することで、高圧塔17の圧力を定常運転時と同様に約800kPaAに維持できるため、空気精製器13の圧力低下を避けることができる。
 次に、バルブV8またはバルブV11の操作により、第2アルゴン塔19bの圧力を定常運転時と同程度に保つように調節しながら、バルブV10の開度を絞っていき、最終的には全閉または微開(定常運転時のバルブ開度)とする。この操作により、ラインL26に流れる中圧酸素ガスの流量を減らし、第1アルゴン塔19aに供給される中圧酸素ガスを所定量まで増加させる。
 その後、第1アルゴン塔19aの上部にアルゴンが濃縮し、ラインL21またはラインL23から導出される製品アルゴンガス(GAR)または製品液化アルゴン(LAR)が所定量まで増加したことを確認して、空気分離装置30の起動を完了する。
(定常運転時)
 本実施形態の空気分離装置30の運転方法(空気分離方法)では、空気分離装置30の起動後、定常運転に移行する。
 本実施形態の空気分離方法では、空気分離装置30の起動後、以下の各工程を含む定常運転を行う。
・高圧塔17において、原料空気を低温で蒸留し、高圧窒素ガスと高圧酸素富化液化空気とに分離する(高圧分離工程)。
・低圧塔18において、高圧酸素富化液化空気を低温で蒸留し、低圧窒素ガスと低圧液化酸素とアルゴン富化液化酸素とに分離する(低圧分離工程)。
・第1アルゴン塔19a及び第2アルゴン塔19bにおいて、アルゴン富化液化酸素を低圧分離工程の圧力よりも高い圧力に加圧した後に低温で蒸留し、アルゴンガスと中圧液化酸素とに分離する(アルゴン分離工程)。
・第1の間接熱交換器H1において、アルゴンガスと低圧液化酸素とを間接的に熱交換し、アルゴンガスを液化して液化アルゴンを生成し、低圧液化酸素を気化して低圧酸素ガスを生成する(第1の間接熱交換工程)。
・第2アルゴン塔第2の間接熱交換器H2において、高圧窒素ガスと中圧液化酸素とを間接的に熱交換し、高圧窒素ガスを液化して高圧液化窒素を生成し、中圧液化酸素を気化して中圧酸素ガスを生成する(第2の間接熱交換工程)。
・ラインL21またはラインL23において、アルゴンガスの一部、第1の間接熱交換工程において液化されなかったアルゴンガス及び液化アルゴンの一部のうち、少なくとも1種のアルゴンを製品アルゴンガス(GAR)または製品液化アルゴン(LAR)として回収する(製品導出工程)。
 なお、本実施形態の空気分離方法では、定常運転時は、バルブV10(第1の開閉機構)が全閉でラインL26(第1の経路)に流体が流れないか、またはバルブV10が微開でラインL26に少量の中圧酸素ガスが流れるのみとする。
 以上説明したように、本実施形態の空気分離装置30は、高圧の原料空気を低温で蒸留し、高圧窒素ガスと高圧酸素富化液化空気とに分離する高圧塔17と、前記高圧酸素富化液化空気を低温で蒸留し、低圧窒素ガスと低圧液化酸素とアルゴン富化液化酸素とに分離する低圧塔18と、低圧塔18の圧力よりも高い圧力の前記アルゴン富化液化酸素を低温で蒸留し、アルゴンガスと中圧液化酸素とに分離する第1アルゴン塔19a及び第2アルゴン塔19bと、前記アルゴンガスと前記低圧液化酸素とを間接的に熱交換し、前記アルゴンガスを液化して液化アルゴンを生成し、前記低圧液化酸素を気化して低圧酸素ガスを生成する第1の間接熱交換器H1と、前記高圧窒素ガスと前記中圧液化酸素とを間接的に熱交換し、前記高圧窒素ガスを液化して高圧液化窒素を生成し、前記中圧液化酸素を気化して中圧酸素ガスを生成する第2の間接熱交換器H2と、第1の間接熱交換器H1によって気化した低圧酸素ガスと気化しなかった低圧液化酸素とを、気相と液相とに分離する第1の間接熱交換器外筒(第1の気液分離室)20と、第2の間接熱交換器H2によって気化した中圧酸素ガスと気化しなかった中圧液化酸素とを、気相と液相とに分離する第2アルゴン塔(第2の気液分離室)19bと、低圧塔18の気相部と第2アルゴン塔19bの気相部とを連通する第1の経路(ラインL26)と、低圧塔18の液相部と第2アルゴン塔19bとを連通する第2の経路(ラインL17)と、第1の経路に位置する第1の開閉機構(バルブV10)と、第2の経路に位置する第2の開閉機構(バルブV7)と、を備える。
 本実施形態の空気分離装置30によれば、バルブV7の開閉状態を切り替えることで、低圧塔18の液相部と第2アルゴン塔19bとを連通する第2の経路を開放あるいは遮断できる。
 また、本実施形態の空気分離装置30によれば、バルブV10の開閉状態を切り替えることで、低圧塔18の気相部と第2アルゴン塔19bの気相部とを連通する第1の経路を開放あるいは遮断できる。
 本実施形態の空気分離方法は、高性能三塔式プロセスにおいても高圧塔17と低圧塔18とを最初に起動し、低圧塔18でアルゴン富化酸素を発生させる。次いで、このアルゴン富化液化酸素を第2アルゴン塔19bに導入し、第1アルゴン塔19aと第2アルゴン塔19bで蒸留する。これにより、第1アルゴン塔19aから酸素成分を除去してアルゴンを採取することができ、第1アルゴン塔19aと第2アルゴン塔19bと(アルゴン塔)を起動できる。
 本実施形態の空気分離方法によれば、空気分離装置30を容易に起動できる。
 また、本実施形態の空気分離装置30および空気分離方法によれば、空気分離装置30の定常運転時には、バルブV10が全閉でラインL26に流体が流れないか、またはバルブV10が微開でガスバイパスラインL26に少量の中圧酸素ガスが流れるのみである。これに対して、空気分離装置30の起動時には、バルブV10が開き、第2の間接熱交換器H2で生成された中圧酸素ガスの大部分(少なくとも半分以上)がラインL26に流れることで、第1アルゴン塔19aおよび第2アルゴン塔19bでの低温蒸留により第1の間接熱交換器H1に供給されるアルゴンガスを生成するよりも前の段階で、高圧塔17と低圧塔18を起動できる。さらに、低圧塔18での低温蒸留でアルゴン富化液化酸素を分離し、第1アルゴン塔19aおよび第2アルゴン塔19bの原料となるアルゴン富化液化酸素を生成できる。
 また、空気分離装置30の起動時に、バルブV10を操作することで、第2アルゴン塔19bの圧力を定常運転時と同程度の圧力に調節できる。これにより、第2の間接熱交換器H2で液化する高圧窒素ガスの圧力および高圧塔17に供給される原料空気の圧力を定常運転時と同程度の圧力に維持できる。したがって、空気精製器13を流れる空気の圧力を定常運転時と同程度の圧力に維持でき、空気精製器13の圧力低下によるトラブルを防ぐことができる。
 また、空気分離装置30の起動時に、高圧塔17と低圧塔18とを起動し、次いで、第1の間接熱交換器外筒20に低圧塔18から供給される低圧液化酸素を貯めて第1の間接熱交換器H1で間接熱交換を開始する際、第1の間接熱交換器H1の液化通路入口に供給される流体はアルゴンガスではなく、アルゴンガスよりも飽和圧力が低い酸素ガスである。このため、第1の間接熱交換器H1での間接熱交換により、第1アルゴン塔19aに存在する酸素ガスが定常運転時よりも低い圧力で液化し始め、第1アルゴン塔19aおよびそれに繋がる第2アルゴン塔19bの圧力が定常運転時よりも低下する恐れがある。本実施形態の空気分離装置30および空気分離方法によれば、バルブV8を操作することで、第1の間接熱交換器外筒20の圧力を定常運転時よりも高い圧力に維持でき、第1アルゴン塔19および第2アルゴン塔19bの圧力を定常運転時と同程度に維持できる。
 また、空気分離装置30の起動時に、バルブV11を操作することで、第1アルゴン塔19aの圧力が低下した場合でも第2アルゴン塔19bの圧力を定常運転時と同程度に維持できる。
 上述したように、バルブV8またはバルブV11を調節して第2アルゴン塔19bの圧力低下を防ぐことは、装置の起動時において空気精製器13の圧力低下によるトラブルを防ぐことができる。さらに、定常運転時に処理量を抑えた減量運転を行う際に、低圧塔18、第1アルゴン塔19aおよび第2アルゴン塔19bの圧力損失の低下、並びに第1の間接熱交換器H1および第2の間接熱交換器H2の流体間の温度差の低下に起因する高圧塔17の圧力低下を防ぎ、製品高圧窒素ガス(HPGN)の圧力を一定に維持できるという利点がある。
 なお、空気分離装置30の構成要素から、第1の間接熱交換器外筒20と、ラインL15、L16と、バルブV8と、液化酸素ポンプP2と、を除いて、低圧塔18の底部に第1の間接熱交換器H1を収容する構成としてもよい。
(第2実施形態の変形例)
 本発明を適用した第2の実施形態である空気分離装置30の構成は、一例であり、これに限定されるものではない。
 図8は、本発明の第2実施形態の空気分離装置の変形例を示す系統図である。
 さらに、図9は、本発明の第2実施形態の空気分離装置の変形例の要部を示す系統図である。
 本実施形態の空気分離装置30を用いた空気分離方法によれば、空気分離装置30の起動時に、先に高圧塔17と低圧塔18とを起動する。そして、低圧塔18において低圧窒素ガスと、アルゴン富化液化酸素と、低圧液化酸素とが濃縮されるまでの間は、第1の間接熱交換器H1での間接熱交換の開始を避けることが好ましい。
 そこで、本実施形態の空気分離装置30を用いた空気分離方法によれば、第1の間接熱交換器外筒20に低圧液化酸素が貯まらないように、ラインL17に位置するバルブV7の開度を調節する。
 他の方法として、第2実施形態の変形例である空気分離装置30Aを用いてもよい。
 図8に示すように、空気分離装置30Aは、上述した空気分離装置30の構成に加えて、ラインL31と、バルブV12とを備える。
 ラインL31は、低圧塔18と第2アルゴン塔19bとの間に位置する。ラインL31は、ラインL15から分岐する。ラインL31の一端は、液化酸素ポンプP2の二次側のラインL15(分岐点)と接続されている。ラインL31の他端は、第2アルゴン塔19bに接続されている。ラインL31には、バルブV12が設けられている。バルブV12が開状態のとき、ラインL31には、ラインL15および液化酸素ポンプP2を介して低圧塔18に濃縮される低圧液化酸素が加圧され、中圧液化酸素となって供給される。ラインL31を流れる中圧液化酸素は、バルブV12を経由して第2アルゴン塔19bに供給される。
 バルブV12は、ラインL31に位置する。バルブV12は、ラインL31の流路(第2の経路の一部)を開放状態及び閉止状態にできる機能を有していれば特に限定されないが、全閉(開度0%)から全開(開度100%)にわたって開度を自在に調整できるものが好ましい。バルブV12には、ラインL15およびラインL31を介して、低圧塔18に濃縮される低圧液化酸素が加圧され、中圧液化酸素となって供給される。バルブV12は、ラインL31を流れる中圧液化酸素を、その開度に応じて供給する。
 ここで、空気分離装置30Aでは、ラインL15及びラインL31により、低圧塔18の底部(液相部)と第2アルゴン塔(第2の気液分離室)19bとを連通する第2の経路が構成される。また、バルブV12が第2の開閉機構である。
 図8に示す空気分離装置30Aを用いた空気分離方法によれば、ラインL15,L31(すなわち、第2の経路)及びバルブV12(第2の開閉機構)を有するため、装置の起動時に、第1の間接熱交換器外筒20に低圧液化酸素を供給することなく、低圧液化酸素の一部または全量を第2アルゴン塔19bに供給できる。
 さらに、他の方法として、第2実施形態の変形例である空気分離装置30Bを用いてもよい。
 図9に示すように、空気分離装置30Bは、上述した空気分離装置30の構成にラインL35が追加されている。また、空気分離装置30の下方において、上述した空気分離装置30ではアルゴン塔19bの内側に収容される第2の間接熱交換器H2が、第2アルゴン塔19bの外側に配置されている。
 ラインL35は、第2の間接熱交換器H2と第2アルゴン塔19bとの間に位置する。ラインL35の一端は、第2の間接熱交換器H2の気化通路出口と接続されている。ラインL35の他端は、第2アルゴン塔19bの下部の気相部と接続されている。ラインL35には、第2の間接熱交換器H2において中圧液化酸素が気化した中圧酸素ガスと気化しなかった中圧液化酸素との気液二相の混合流体が導出される。ラインL35を流れる中圧酸素ガスと中圧液化酸素との混合流体は、第2アルゴン塔19bの下部に供給される。
 第2アルゴン塔19bの下部では、第2アルゴン塔19bでの低温蒸留によって分離された中圧液化酸素と、ラインL35を介して供給される中圧酸素ガスと中圧液化酸素との混合流体とを貯留し、気相の中圧酸素ガスと液相の中圧液化酸素とに分離する。
 ここで、空気分離装置30Bでは、第2アルゴン塔19bの下部が第2の気液分離室となり、ラインL26が低圧塔18の気相部と第2アルゴン塔19bの下部(第2の気液分離室)の気相部とを連通する第1の経路となる。
 第2実施形態の変形例である空気分離装置30Bによれば、第2実施形態の空気分離装置30と同様に、最初に高圧塔17と低圧塔18とを起動し、次いで、第1及び第2のアルゴン塔19a,19bを容易に起動することができる。
 なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、上述した第1及び第2実施形態の空気分離装置10,30において、空気昇圧機14の代わりに循環窒素圧縮機を用いて高圧塔17から導出され、主熱交換器16で熱回収された高圧窒素ガスを圧縮して、冷却、液化した後に高圧塔17に供給する構成としてもよい。
 また、上述した第1及び第2実施形態の空気分離装置10,30において、第3の間接熱交換器H3で生成される中圧酸素富化空気を断熱膨張させて装置運転に必要な寒冷を発生させる膨張タービン24の代わりに、原料空気の一部や高圧塔17から導出される高圧窒素ガスを断熱膨張させて装置運転に必要な寒冷を発生させる構成としてもよい。
 また、上述した第1及び第2実施形態の空気分離装置10,30において、第3の間接熱交換器H3で液化させる流体を、高圧塔17の中間部または下部を上昇する高圧窒素富化空気に代えて、原料空気の一部を断熱膨張させて得られた流体とする構成としてもよい。
 本発明の空気分離装置および空気分離方法は、空気から窒素、酸素及びアルゴンを分離、回収する方法であり、蒸留技術、気液分離技術などの分野において、産業上利用が可能である。
10,30・・・空気分離装置
11・・・空気圧縮機
12・・・空気予冷器
13・・・空気精製器
14・・・空気昇圧機
15・・・空気昇圧機アフタークーラ
16・・・主熱交換器
17・・・高圧塔
18・・・低圧塔
19・・・アルゴン塔
19a・・・第1アルゴン塔
19b・・・第2アルゴン塔
20・・・第1の間接熱交換器外筒
21・・・第2の間接熱交換器外筒
22・・・第3の間接熱交換器外筒
23・・・過冷器
24・・・膨張タービン
25・・・第1の気液分離器
26・・・第2の気液分離器
P1・・・アルゴン富化液化酸素ポンプ
P2~P4・・・液化酸素ポンプ
P5・・・液化アルゴンポンプ
H1・・・第1の間接熱交換器
H2・・・第2の間接熱交換器
H3・・・第3の間接熱交換器
L1~L35・・・ライン
V1~V14・・・バルブ

Claims (9)

  1.  高圧の原料空気を低温で蒸留し、高圧窒素ガスと高圧酸素富化液化空気とに分離する高圧塔と、
     前記高圧酸素富化液化空気を低温で蒸留し、低圧窒素ガスと低圧液化酸素とアルゴン富化液化酸素とに分離する低圧塔と、
     前記低圧塔の圧力よりも高い圧力の前記アルゴン富化液化酸素を低温で蒸留し、アルゴンガスと中圧液化酸素とに分離するアルゴン塔と、
     前記アルゴンガスと前記低圧液化酸素とを間接的に熱交換し、前記アルゴンガスを液化して液化アルゴンを生成し、前記低圧液化酸素を気化して低圧酸素ガスを生成する第1の間接熱交換器と、
     前記高圧窒素ガスと前記中圧液化酸素とを間接的に熱交換し、前記高圧窒素ガスを液化して高圧液化窒素を生成し、前記中圧液化酸素を気化して中圧酸素ガスを生成する第2の間接熱交換器と、
     前記第1の間接熱交換器によって気化した低圧酸素ガスと気化しなかった低圧液化酸素とを、気相と液相とに分離する第1の気液分離室と、
     前記第2の間接熱交換器によって気化した中圧酸素ガスと気化しなかった中圧液化酸素とを、気相と液相とに分離する第2の気液分離室と、
     前記低圧塔の気相部と前記第2の気液分離室の気相部とを連通する第1の経路と、
     前記低圧塔の液相部と前記第2の気液分離室とを連通する第2の経路と、
     前記第1の経路に位置する第1の開閉機構と、
     前記第2の経路に位置する第2の開閉機構と、を備える、空気分離装置。
  2.  前記第1の開閉機構が、開度調整機能を有する、請求項1に記載の空気分離装置。
  3.  前記アルゴン塔の気相部と前記第2の気液分離室の気相部とを連通する第3の経路と、
     前記第3の経路に位置し、開度調整機能を有する第3の開閉機構と、を備える、請求項1又は2に記載の空気分離装置。
  4.  前記アルゴン塔が、直列に接続された第1アルゴン塔と第2アルゴン塔とから構成され、
     前記第2アルゴン塔が前記第2の気液分離室であり、
     前記第1アルゴン塔と前記第2アルゴン塔との間に前記第3の経路が位置する、請求項3に記載の空気分離装置。
  5.  前記低圧塔の気相部と前記第1の気液分離室の気相部とを連通する第4の経路と、
     前記第4の経路に位置し、開度調整機能を有する第4の開閉機構と、を備える、請求項1乃至4のいずれか一項に記載の空気分離装置。
  6.  請求項1乃至5のいずれか一項に記載の空気分離装置を用いた空気分離方法であって、
     前記空気分離装置の起動時に、
     酸素、窒素、及びアルゴンを含む原料空気を圧縮、予冷、精製、及び冷却して、高圧の原料空気を生成し、
     前記高圧塔において、前記原料空気を低温で蒸留して、高圧窒素ガスと高圧酸素富化液化空気とに分離し、
     前記低圧塔において、前記高圧酸素富化液化空気を低温で蒸留して、低圧窒素ガスと低圧液化酸素とアルゴン富化液化酸素とに分離し、
     前記低圧液化酸素を前記第2の間接熱交換器に導入して、前記高圧窒素ガスと前記低圧液化酸素とを間接的に熱交換し、前記高圧窒素ガスを液化して高圧液化窒素を生成し、前記低圧液化酸素を気化して低圧酸素ガスを生成し、前記低圧酸素ガスを前記低圧塔の気相部に導入する、空気分離方法。
  7.  請求項1乃至5のいずれか一項に記載の空気分離装置を用いた空気分離方法であって、
     前記空気分離装置の起動時に、
     酸素、窒素、及びアルゴンを含む原料空気を圧縮、予冷、精製、及び冷却して、高圧の原料空気を生成し、
     前記高圧塔において、前記原料空気を低温で蒸留して、高圧窒素ガスと高圧酸素富化液化空気とに分離し、
     前記低圧塔において、前記高圧酸素富化液化空気を低温で蒸留して、低圧窒素ガスと低圧液化酸素とアルゴン富化液化酸素とに分離し、
     前記低圧液化酸素を加圧して得られた中圧液化酸素を前記第2の間接熱交換器に導入して、前記高圧窒素ガスと前記中圧液化酸素とを間接的に熱交換し、前記高圧窒素ガスを液化して高圧液化窒素を生成し、前記中圧液化酸素を気化して中圧酸素ガスを生成し、前記中圧酸素ガスを減圧した後に前記低圧塔の気相部に導入する、空気分離方法。
  8.  所要の供給量の前記アルゴン富化液化酸素が得られた後、
     前記原料空気を低温で蒸留し、前記高圧窒素ガスと前記高圧酸素富化液化空気とに分離する高圧分離工程と、
     前記高圧酸素富化液化空気を低温で蒸留し、前記低圧窒素ガスと前記低圧液化酸素と前記アルゴン富化液化酸素とに分離する低圧分離工程と、
     前記アルゴン富化液化酸素を前記低圧分離工程の圧力よりも高い圧力に加圧した後に低温で蒸留し、アルゴンガスと中圧液化酸素とに分離するアルゴン分離工程と、
     前記アルゴンガスと前記低圧液化酸素とを間接的に熱交換し、前記アルゴンガスを液化して液化アルゴンを生成し、前記低圧液化酸素を気化して低圧酸素ガスを生成する第1の間接熱交換工程と、
     前記高圧窒素ガスと前記中圧液化酸素とを間接的に熱交換し、前記高圧窒素ガスを液化して高圧液化窒素を生成し、前記中圧液化酸素を気化して中圧酸素ガスを生成する第2の間接熱交換工程と、を含む定常運転を行う、請求項6又は7に記載の空気分離方法。
  9.  前記定常運転が、
     前記アルゴンガスの一部、前記第1の間接熱交換工程において液化されなかったアルゴンガス及び前記液化アルゴンの一部のうち、少なくとも1種のアルゴンを製品として抜き出す製品導出工程と、を含む、請求項8に記載の空気分離方法。
PCT/JP2019/027313 2019-07-10 2019-07-10 空気分離装置、および空気分離方法 WO2021005744A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/624,707 US20220252344A1 (en) 2019-07-10 2019-07-10 Air separation device and air separation method
EP19937350.7A EP3998447A4 (en) 2019-07-10 2019-07-10 AIR SEPARATION DEVICE AND METHOD
CN201980098080.XA CN114041034B (zh) 2019-07-10 2019-07-10 空气分离装置及空气分离方法
PCT/JP2019/027313 WO2021005744A1 (ja) 2019-07-10 2019-07-10 空気分離装置、および空気分離方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027313 WO2021005744A1 (ja) 2019-07-10 2019-07-10 空気分離装置、および空気分離方法

Publications (1)

Publication Number Publication Date
WO2021005744A1 true WO2021005744A1 (ja) 2021-01-14

Family

ID=74115184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027313 WO2021005744A1 (ja) 2019-07-10 2019-07-10 空気分離装置、および空気分離方法

Country Status (4)

Country Link
US (1) US20220252344A1 (ja)
EP (1) EP3998447A4 (ja)
CN (1) CN114041034B (ja)
WO (1) WO2021005744A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155515B2 (ja) 1977-10-12 1986-11-28 Merck & Co Inc
JPH06159929A (ja) * 1992-07-20 1994-06-07 Air Prod And Chem Inc 空気の低温蒸留方法
JP2000039257A (ja) 1998-07-27 2000-02-08 Nippon Sanso Kk アルゴンの製造方法及び装置
JP2000356465A (ja) * 1999-05-25 2000-12-26 L'air Liquide 空気分離用低温蒸留システム
JP2016008778A (ja) * 2014-06-24 2016-01-18 大陽日酸株式会社 空気分離方法、及び空気分離装置
JP2018169051A (ja) * 2017-03-29 2018-11-01 大陽日酸株式会社 空気分離方法、及び空気分離装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9414938D0 (en) * 1994-07-25 1994-09-14 Boc Group Plc Air separation
GB9505645D0 (en) * 1995-03-21 1995-05-10 Boc Group Plc Air separation
US5706675A (en) * 1995-08-18 1998-01-13 G & A Associates High efficiency oxygen/air separation system
JPH1082582A (ja) * 1996-09-06 1998-03-31 Nippon Sanso Kk 空気液化分離装置及びその起動方法
JP3414947B2 (ja) * 1996-09-30 2003-06-09 株式会社神戸製鋼所 アルゴン精製方法および空気分離装置
US5682766A (en) * 1996-12-12 1997-11-04 Praxair Technology, Inc. Cryogenic rectification system for producing lower purity oxygen and higher purity oxygen
JP3676668B2 (ja) * 2000-11-30 2005-07-27 株式会社神戸製鋼所 空気分離装置
US20070095100A1 (en) * 2005-11-03 2007-05-03 Rankin Peter J Cryogenic air separation process with excess turbine refrigeration
US7549301B2 (en) * 2006-06-09 2009-06-23 Praxair Technology, Inc. Air separation method
JP5878310B2 (ja) * 2011-06-28 2016-03-08 大陽日酸株式会社 空気分離方法及び装置
US20150316317A1 (en) * 2012-12-27 2015-11-05 Linde Aktiengesellschaft Method and device for low-temperature air separation
JP5655104B2 (ja) * 2013-02-26 2015-01-14 大陽日酸株式会社 空気分離方法及び空気分離装置
PL3133361T3 (pl) * 2015-08-20 2018-11-30 Linde Aktiengesellschaft System kolumn destylacyjnych i urządzenie do wytwarzania tlenu przez niskotemperaturowy rozkład powietrza
KR102137940B1 (ko) * 2015-12-14 2020-07-27 엑손모빌 업스트림 리서치 캄파니 액화 질소를 사용하여 액화 천연 가스로부터 질소를 분리하기 위한 방법 및 시스템
DE102016006714A1 (de) * 2016-06-01 2017-12-07 Linde Aktiengesellschaft Mehrsäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung
KR20200009041A (ko) * 2017-05-19 2020-01-29 레르 리키드 쏘시에떼 아노님 뿌르 레뜌드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 분석될 액체를 처리하기 위한 장치
CN207081276U (zh) * 2017-08-29 2018-03-09 侨源气体(福州)有限公司 一种提高空分装置氩产品提取率的装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155515B2 (ja) 1977-10-12 1986-11-28 Merck & Co Inc
JPH06159929A (ja) * 1992-07-20 1994-06-07 Air Prod And Chem Inc 空気の低温蒸留方法
JP2000039257A (ja) 1998-07-27 2000-02-08 Nippon Sanso Kk アルゴンの製造方法及び装置
JP2000356465A (ja) * 1999-05-25 2000-12-26 L'air Liquide 空気分離用低温蒸留システム
JP2016008778A (ja) * 2014-06-24 2016-01-18 大陽日酸株式会社 空気分離方法、及び空気分離装置
JP2018169051A (ja) * 2017-03-29 2018-11-01 大陽日酸株式会社 空気分離方法、及び空気分離装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3998447A4

Also Published As

Publication number Publication date
EP3998447A1 (en) 2022-05-18
EP3998447A4 (en) 2023-04-12
CN114041034A (zh) 2022-02-11
US20220252344A1 (en) 2022-08-11
CN114041034B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
US6829907B2 (en) Process and apparatus for the recovery of krypton and/or xenon
JP5878310B2 (ja) 空気分離方法及び装置
JPH0579753A (ja) 圧力下のガス状酸素の製造方法及び製造装置
JP5655104B2 (ja) 空気分離方法及び空気分離装置
WO2006124796A2 (en) Gas separation liquefaction means and processes
RU2761562C2 (ru) Способ и устройство для разделения воздуха криогенной дистилляцией
MXPA02004856A (es) Metodo de rechazo del nitrogeno.
US20130340472A1 (en) Method and apparatus for liquefaction of co2
US20220074656A1 (en) Apparatus and method for separating air by cryogenic distillation
EP0751358A2 (en) Method and apparatus for producing ultra-high purity oxygen
KR101947112B1 (ko) 정화된 두 개의 부분 공기 스트림을 발생시키기 위한 방법 및 장치
JP2007147113A (ja) 窒素製造方法及び装置
JP6155515B2 (ja) 空気分離方法、及び空気分離装置
JP4206083B2 (ja) 深冷空気分離装置によるアルゴン製造方法
EP1384966B1 (en) Nitrogen rejection method and apparatus
JPH11325717A (ja) 空気の分離
JPH07151458A (ja) 圧力下のガス状酸素及び/又はガス状窒素の製造方法並びに設備
WO2021005744A1 (ja) 空気分離装置、および空気分離方法
US9103587B2 (en) Process and apparatus for the separation of air by cryogenic distillation
US20240044578A1 (en) Method for separating air by cryogenic distillation
JP7458226B2 (ja) 空気分離装置及び酸素ガス製造方法
JP7329714B1 (ja) 窒素製造方法及び装置
EP1207363A1 (en) Air separation process employing a pressurized liquid cryogen
JP2006275378A (ja) 空気液化分離方法及び装置
JP2019178816A (ja) 空気液化分離装置及び空気液化分離装置の運転停止方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019937350

Country of ref document: EP

Effective date: 20220210

NENP Non-entry into the national phase

Ref country code: JP