WO2021004347A1 - 背光模组及显示装置 - Google Patents

背光模组及显示装置 Download PDF

Info

Publication number
WO2021004347A1
WO2021004347A1 PCT/CN2020/099700 CN2020099700W WO2021004347A1 WO 2021004347 A1 WO2021004347 A1 WO 2021004347A1 CN 2020099700 W CN2020099700 W CN 2020099700W WO 2021004347 A1 WO2021004347 A1 WO 2021004347A1
Authority
WO
WIPO (PCT)
Prior art keywords
backlight module
sub
light
led
substrate
Prior art date
Application number
PCT/CN2020/099700
Other languages
English (en)
French (fr)
Inventor
张赞
李文洋
韩锐
佟泽源
崔栋
张志鹏
翟跃
冷寿阳
王丰平
迟卫宁
关冬
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2021004347A1 publication Critical patent/WO2021004347A1/zh
Priority to US17/201,202 priority Critical patent/US11506931B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133601Illuminating devices for spatial active dimming
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present disclosure relates to a backlight module and a display device including the backlight module.
  • Liquid crystal display devices have been widely used in people's daily work and life, and their display performance has been continuously improved with people's needs.
  • the overall thickness of the display device is as small as possible, so as to improve the flexibility of the display device and the comfort of the user.
  • the backlight module is an important part of the liquid crystal display device, and the thickness of the backlight module has a great influence on the overall thickness of the entire display device.
  • An embodiment of the present disclosure provides a backlight module, which includes a substrate and a plurality of micro LEDs arranged on the substrate, the plurality of micro LEDs include a micro LED array, and the micro LED array includes a plurality of LED sub-arrays , The light-emitting parameters of each LED sub-array in the micro LED array are independently controlled.
  • each LED sub-array is composed of M rows of micro LEDs and M columns of micro LEDs, and M is an integer greater than or equal to 2.
  • the backlight module further includes a light diffusion layer located on a side of the micro LED array away from the substrate, and the light diffusion layer directly contacts the micro LEDs.
  • the light diffusion layer includes two light diffusion films located on the side of the micro LED array away from the substrate and in contact with the micro LEDs.
  • the backlight module further includes a light conversion layer on a side of the light diffusion layer away from the substrate, a light condensing element and a brightness enhancement film on a side of the light conversion layer away from the substrate.
  • the light conversion layer includes a quantum dot material.
  • the length and width of the area occupied by each of the plurality of LED sub-arrays are both greater than or equal to 1.67 mm.
  • the micro LED includes an unpackaged blue-emitting micro LED chip, and the substrate is a flexible substrate.
  • Another embodiment of the present disclosure provides a display device, including the backlight module described in any of the foregoing embodiments, and a display panel on the light-emitting side of the backlight module.
  • the pixel resolution of the display panel is P*Q
  • the substrate of the backlight module includes a display area
  • the display area includes C*D sub-display areas.
  • Each sub-display area of the area is arranged with a corresponding LED sub-array of the backlight module, where C represents the number of sub-display areas in each row of sub-display areas along the length of the display area, and D represents the number of sub-display areas along the length of the display area.
  • the number of sub-display areas in each column of the sub-display areas in the width direction of the display area, and C and D are integers divisible by P and Q, respectively.
  • the length and width of the display area of the substrate of the backlight module are L mm and W mm, respectively, where the parameter C is less than L/1.67, and D is less than W/1.67.
  • Fig. 1 is a top view schematically showing a backlight module according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram used to schematically illustrate the lamp shadow phenomenon that may be caused by a backlight module without a light diffusion layer;
  • 3 and 4 are schematic diagrams for schematically illustrating the application of a light diffusion layer to alleviate the lamp shadow phenomenon
  • FIG. 5 is a cross-sectional view schematically showing a backlight module according to another embodiment of the present disclosure.
  • FIG. 6 is a top view schematically showing a backlight module according to another embodiment of the present disclosure.
  • the backlight module provided according to the embodiment of the present disclosure includes a substrate, and a plurality of micro LEDs arranged on the substrate.
  • Fig. 1 shows a schematic top view of a backlight module according to an embodiment of the present disclosure.
  • a plurality of micro LEDs (Mini LED or Micro LED) 20a are arranged on the substrate 10 of the backlight module, the plurality of micro LEDs include a micro LED array, and the micro LED array includes a plurality of LED sub-arrays. 200.
  • the lighting parameters of each LED sub-array 200 in the micro LED array are independently controlled. It can be understood that any number of LED sub-arrays can be provided on the substrate 10, and each LED sub-array can include any number of micro LEDs.
  • the size of the micro LED is much smaller than that of the conventional LED, and it has a higher luminous efficiency.
  • the micro LEDs can be arranged compactly, the backlight module using the micro LEDs may not be provided with a light guide plate. Therefore, the overall thickness of the backlight module using the micro LED can be greatly reduced, which also facilitates the thinning of the display device using the backlight module, and promotes the application of the display device in different situations.
  • the light emission parameters of each LED sub-array 200 in the micro LED array in the backlight module are independently controlled, which means that the light emission parameters on the substrate of the backlight module can be adjusted according to the image to be displayed.
  • Micro LEDs in different areas implement different controls or strategies, that is, the so-called "local dimming”. Therefore, fine control and adjustment of the picture to be displayed can be realized, and the quality of the displayed image can be improved.
  • the thickness of the direct type display panel using conventional LEDs is about 23 mm
  • the thickness of the direct type display panel using micro LEDs according to the present disclosure is about 3.8 mm.
  • the minimum thickness is about 11 mm.
  • the size of the micro LED is small relative to the conventional LED, and for example, the size of the micro LED may be one tens of the size of the conventional LED.
  • a commonly used LED in this field may have a size of 3.0*1.4*0.52 mm, while a commonly used micro LED in this field has a size of about 0.5*0.3*0.15 mm.
  • the length and width of a conventional LED can be about 2 millimeters, and the length and width of a micro LED can be about a few tenths of a millimeter. Therefore, multiple micro LEDs in the display area can be grouped more finely, so as to implement finer "local dimming".
  • the backlight module provided by the embodiments of the present disclosure can be applied to the instrument display of a motor vehicle or a navigation display device that can display various images, thereby reducing the volume and size of these instruments or display devices, and improving the display screen. quality.
  • each LED sub-array in the backlight module may include any number of micro LEDs.
  • each LED sub-array is composed of M rows of micro LEDs and M columns of micro LEDs, and M is an integer greater than or equal to 2.
  • each LED sub-array roughly forms a square array, which is beneficial to the uniformity of the luminous parameters (for example, luminous brightness) of the area where the single LED sub-array is located, and also facilitates the wire layout in the backlight module.
  • the number of rows and columns of the micro LEDs in each LED sub-array may be different, that is, each LED sub-array roughly forms a rectangular array.
  • FIG. 2 is used to schematically illustrate the "light shadow” phenomenon that may be caused by a backlight module without a light diffusion layer.
  • a single LED usually projects light in a certain direction in a certain range.
  • the maximum light-emitting range of a single LED is schematically shown with arrows.
  • the light beam emitted by a single LED is roughly cone-shaped.
  • the light-emitting area of a single LED refers to the area of a light-emitting area with obvious brightness centered on the LED that the user observes through the layer structure above the LED when the LED emits light, and the light-emitting area of a single LED is limited. Since the LEDs are separated from each other and the light-emitting area of a single LED is limited, when the backlight module without a light diffusion layer is operating, from the user's visual effect, there may be existing between adjacent LEDs. A dark area. In other words, there will be a blind area S between adjacent LEDs, and the blind area S is a "light shadow" for the user's visual effect.
  • One measure to reduce the lamp shadow phenomenon is to increase the density of LEDs in a backlight module without a light diffusion layer.
  • the denser the LEDs are arranged the smaller the size of the blind area S will be, and the less serious the lamp shadow phenomenon will be or even be eliminated.
  • too close a distance between adjacent LEDs will result in low heat dissipation efficiency, increase overall power consumption, and reduce LED luminous efficiency.
  • too dense LEDs will also cause a corresponding reduction in the area of the reflective layer 101 on the surface of the substrate, which is not conducive to light utilization efficiency.
  • Another measure to reduce the lamp shadow phenomenon is to increase the distance between the display panel and the backlight module without a light diffusion layer. Specifically, as shown in FIG.
  • the distance between the display panel and the upper surface of the LED on the substrate of the backlight module without the light diffusion layer may be greater than the vertical distance D shown in FIG. 2. That is, the display panel is arranged above the LED, and the upper surface of the LED of the backlight module without the light diffusion layer is separated by at least the vertical distance D between the display panel. However, this will increase the overall thickness of the display device, which is not conducive to reducing the volume of the display device.
  • the inventor arranges a light diffusion layer in the backlight module provided by the embodiment of the present disclosure to effectively eliminate the lamp shadow phenomenon and at the same time facilitate the thinning of the backlight module. Therefore, in some embodiments of the present disclosure, the backlight module includes a light diffusion layer above the micro LED.
  • the light diffusion layer has the function of diffusing light, increasing the light-emitting area of a single micro LED, and can enhance the uniformity of the emitted light.
  • the light diffusion layer can be directly arranged on the micro LED, that is, the light diffusion layer can be in contact with the micro LED to reduce the overall thickness of the backlight module.
  • another suitable layer structure may be provided between the light diffusion layer and the micro LED.
  • the light diffusion layer Due to the existence of the light diffusion layer, the light-emitting area of a single LED is actually enlarged.
  • the light diffusion layer can be arranged to overlap the illumination areas of adjacent micro LEDs, thereby greatly alleviating or even eliminating the aforementioned lamp shadow phenomenon.
  • the thickness of the light diffusion layer is much smaller than the aforementioned vertical distance D, which can effectively reduce the lamp shadow phenomenon and at the same time facilitate the thinning of the backlight module.
  • the light diffusion layer in the backlight module includes a diffusion film located above and in contact with the micro LED.
  • the light diffusion film can diffuse the light emitted from the LED, thereby uniformly mixing the light emitted from each LED.
  • the diffusion film may include a bulk diffusion film made by doping diffusion particles in a transparent material.
  • the transparent material can be acrylic, polystyrene (PS), polycarbonate (PC) or PMMA (polymethylmethacrylate)
  • the diffusion particles can be glass particles, metal particles, Metal oxide (for example, titanium oxide, barium sulfate, calcium carbonate) particles, coated particles or voids, etc.
  • the diffusion film can also be a surface microstructure diffusion film, for example, a holographic diffusion film.
  • the surface microstructure diffusion film usually forms a microstructure texture on the surface of a transparent material sheet to diffuse incident light.
  • the diffusion film may include a thin film substrate and a coating layer coated on the thin film substrate.
  • a bulk diffusion film in order to achieve a better diffusion effect in a thinner thickness, a bulk diffusion film is used, because the bulk diffusion film can increase the diffusion distance compared with the surface microstructure film.
  • the shape of the diffusion particles of the bulk diffusion membrane can be set as required, and for example, can be spherical, cylindrical, etc., thereby increasing the flexibility of the arrangement of the diffusion membrane.
  • FIG. 3 shows that the diffusion film is composed of two light diffusion films 30a and 30b. Due to the limited thickness of the diffusion film formed by existing materials, a single-layer diffusion film cannot provide a sufficient diffusion distance. Therefore, in order to increase the diffusion distance to a greater extent and to diffuse and homogenize the light, so as to achieve the effect of no flare in the backlight, two diffusion films are arranged above the micro LED. In the embodiment of the present disclosure, the physical dimensions and materials of the two diffusion films 30a and 30b are approximately the same. In some cases, the two diffusion films can be identical. In other embodiments, the materials and thickness of the diffusion films 30a and 30b may be different, and may be selected from the above embodiments respectively.
  • the thickness of the diffusion films 30a and 30b may range from one tenth of a millimeter to 1 millimeter according to actual needs. In an embodiment of the present disclosure, the thickness of the diffusion films 30a and 30b are both 0.12 mm.
  • FIG. 3 schematically shows the diffusion of light emitted from the two LEDs after the light diffusion film 30a, 30b is provided
  • Figure 4 schematically shows the micro LED in a light-emitting state when the light diffusion layer is not provided and the light is provided.
  • the top view of the diffusion layer in two scenarios.
  • the circle A1 with a smaller diameter in FIG. 4 represents the light-emitting area of the micro LED when the light diffusion layer is not provided. At this time, the user can clearly perceive that there is a gap between the light-emitting areas between adjacent LEDs.
  • Such a gap is an obvious dark area between the adjacent LEDs in the user's visual effect, that is, the above-mentioned lamp shadow phenomenon.
  • the circle A2 with a larger diameter in FIG. 4 represents the light emitting area of the micro LED when the light diffusion layer is provided. At this time, the light-emitting area of a single LED is enlarged so that the light-emitting areas of adjacent micro LEDs overlap with each other. Therefore, the lamp shadow phenomenon can be significantly alleviated.
  • FIG. 5 schematically shows a structural diagram of a backlight module according to another embodiment of the present disclosure.
  • the backlight module includes a substrate 10, a plurality of micro LEDs 20a disposed on the substrate, a light diffusion layer 30 on the micro LEDs, a light conversion layer 40 located above the light diffusion layer 30, and a light conversion layer 40.
  • the light conversion layer 40 includes a quantum dot material.
  • the quantum dot material in the light conversion layer can convert light originating from the micro LED into light of a desired color (for example, white light).
  • the light conversion layer 40 may include other fluorescent materials.
  • the aforementioned micro LED includes an unpackaged micro LED chip that can emit blue light, and the blue light emitted from the micro LED can be converted into white light via the light conversion layer 40, thereby providing a suitable backlight for the display panel.
  • the light condensing element 50 may make the light emitted from the light conversion layer 40 collimated light or condensed light.
  • the light condensing element 50 may be a micro lens array, a prism array, a grating array, or the like.
  • the brightness enhancement film 60 can enhance the brightness of the backlight provided by the backlight module.
  • the backlight module provided by the embodiments of the present disclosure is not provided with a light guide plate, which reduces the thickness of the backlight module.
  • the substrate 10 is a flexible substrate, so that a flexible display module can be implemented.
  • the backlight module further includes a back plate 70, so as to provide support and protection for the foregoing various structures of the backlight module.
  • FIG. 5 schematically shows an example of various elements of the backlight module, the arrangement order of these elements is not limited to FIG. 5.
  • the light conversion layer 40 may be under the light diffusion layer 30, and the arrangement order of the brightness enhancement film 60 and the light condensing element 50 may be interchanged.
  • a light reflective material may be arranged on the area on the surface of the substrate 10 that is not occupied by micro LEDs, so that the light irradiated on the surface of the substrate 10 is reflected to the light diffusion layer by the reflective material, thereby improving the utilization of light effectiveness.
  • FIG. 5 shows that the light diffusion layer 30 is in contact with the micro LED, in other embodiments, there may be any suitable structure between the micro LED and the light diffusion layer 30, such as a heat dissipation or heat insulation layer. Wait.
  • the diffusion layer 30 may also be composed of one diffusion film, or composed of more than three diffusion films, depending on the diffusion uniformity of the diffusion layer. ability.
  • the diffusion films constituting the diffusion layer 30 may not be adjacent to each other, and other layers of the backlight module may be sandwiched between the diffusion films, such as polarizing films, brightness enhancement films, Light conversion layer, etc.
  • the material and specific parameters of the diffusion film constituting the diffusion layer 30 can be selected according to actual needs, and the materials and parameters of each diffusion film can be different from each other.
  • the backlight module provided by the embodiments of the present disclosure can be applied to various scenarios. Below, specific examples are used to further illustrate the application of the backlight module provided by the embodiments of the present disclosure.
  • the backlight module is applied to the instrument display of an automobile, and a local dimming strategy is adopted to control the micro LEDs of the backlight module. Due to the local dimming method, the multiple micro LEDs in the display area of the substrate need to be divided into multiple LED sub-arrays as mentioned above, and the light-emitting parameters of each LED sub-array can be independently controlled.
  • the area where each LED sub-array is located also corresponds to a sub-display area of the display panel. The size of the sub-display area can be determined based on the resolution limit of the human eye.
  • N is the driver’s eye to the instrument
  • the distance of the display screen ⁇ is the wavelength of the most sensitive light of the human eye
  • D is the pupil diameter of the human eye.
  • the pupil diameter D of the human eye is roughly in the range of 2mm-9mm. In an example, the pupil diameter D can take a value of 5 mm, ⁇ is 5500 angstroms, and the distance N from the driver's eyes to the dashboard is 50 cm.
  • the minimum size of the image area that can be distinguished by the human eye is about 1.67 mm.
  • the minimum size of the area of a single LED sub-array in the display module may be about 1.67 mm. Therefore, in an embodiment of the present disclosure, the length and width of the area occupied by each LED sub-array are both greater than or equal to 1.67 mm. Since the pupil diameter D of the human eye is generally in the range of 2mm-9mm, correspondingly, the minimum size of the area of a single LED sub-array in the display module can be between 0.67mm and 3.0mm.
  • the size of the display area of the substrate of the backlight module is 292.302*109.512 mm. Therefore, in the length direction of the display area, a maximum of 175 LED sub-array areas can be divided, and in the width direction of the display area, a maximum of 65 LED sub-array areas can be divided.
  • the number of LED sub-array regions in the backlight module is considered in combination with the pixel resolution of the display panel, so as to achieve more accurate local dimming.
  • the display of the substrate of the backlight module is divided into C*D sub-display areas.
  • C represents the number of sub-display areas in each row of the sub-display areas along the length of the display area.
  • D represents the number of sub-display areas in each column of sub-display areas along the width direction of the display area, and C and D are integers that can be divisible by P and Q, respectively.
  • a corresponding LED sub-array is arranged in each sub-display area.
  • each sub-display area can be made as close as possible to a square, so that a square LED sub-array can be arranged in each sub-display area .
  • the size of the display area of the substrate of the backlight module is 292.302*109.512mm
  • the above-mentioned parameter C takes the value 40
  • the parameter D takes the value 15, that is, the multiple micro LEDs of the backlight module are Divided into 600 LED sub-arrays, the length and width of the area occupied by a single LED sub-array is about 7.3mm.
  • each LED sub-array includes 5 rows of micro LEDs and 5 columns of micro LEDs, that is, each LED sub-array includes 25 micro LEDs to achieve a suitable density of LED layout, which is beneficial to the backlight module Heat dissipation, and reduce the phenomenon of lamp shadow.
  • Another embodiment of the present disclosure provides a display device, including the backlight module of any of the foregoing embodiments and a display panel on the light-emitting side of the backlight module.
  • the substrate of the backlight module includes a display area
  • the display area includes C*D sub-display areas
  • each sub-display area of the C*D sub-display areas A corresponding LED sub-array is arranged with a backlight module, where C represents the number of sub-display areas in each row of sub-display areas along the length of the display area, and D represents each column of sub-displays along the width of the display area If the pixel resolution of the display panel of the display device is P*Q, then C and D are integers that can be divisible by P and Q respectively.
  • the display device provided by the embodiment of the present disclosure may be a vehicle-mounted instrument display.
  • a local dimming strategy can be used to control the micro LEDs of the backlight module.
  • the minimum size of the area of a single LED sub-array in the display module may be about 1.67 mm. Therefore, if the length and width of the substrate of the backlight module are L mm and W mm, respectively, the aforementioned parameter C is less than L/1.67, and the parameter D is less than W/1.67.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Planar Illumination Modules (AREA)

Abstract

提供了背光模组和包括该背光模组的显示装置。背光模组包括基板、以及布置在基板上的多个微型LED。所述多个微型LED包括微型LED阵列,所述微型LED阵列包括多个LED子阵列,所述微型LED阵列中的各LED子阵列的发光参数被独立地控制。

Description

背光模组及显示装置
相关申请的交叉引用
本申请要求于2019年7月8日递交的中国专利申请201910610786.1号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及背光模组以及包含该背光模组的显示装置。
背景技术
液晶显示装置已经在人们的日常工作和生活中得到广泛的应用,而且其显示性能也随着人们需求不断地在提升。另外,在很多应用场合,人们期望显示装置的整体厚度越小越好,以提升显示装置的使用方面的灵活性和用户的舒适度。背光模组是液晶显示装置的重要部件,背光模组的厚度对整个显示装置的整体厚度有着很大的影响。
发明内容
本公开的实施例提供了一种背光模组,其包括基板、以及布置在基板上的多个微型LED,所述多个微型LED包括微型LED阵列,所述微型LED阵列包括多个LED子阵列,所述微型LED阵列中的各LED子阵列的发光参数被独立地控制。
根据本公开的一些实施例,每个LED子阵列由M行微型LED和M列微型LED组成,M是大于等于2的整数。
根据本公开的一些实施例,背光模组还包括位于所述微型LED阵列的远离基板一侧的光扩散层,所述光扩散层与所述微型LED直接接触。
根据本公开的一些实施例,光扩散层包括位于所述微型LED阵列的远离基板一侧、与微型LED接触的两层光扩散膜。
根据本公开的一些实施例,背光模组还包括处于所述光扩散层的远离基板一侧的光转换层、处于所述光转换层的远离基板一侧的光会聚元件和增亮薄膜。在本公开的一个实施例中,所述光转换层包括量子点材料。
根据本公开的一些实施例,所述多个LED子阵列中的每个LED子阵列所占据区域的长度和宽度均大于等于1.67mm。
根据本公开的一些实施例,微型LED包括未封装的发蓝光的微型LED芯片,所述基板是柔性基板。
本公开的另外的实施例提供了一种显示装置,包括如前述的任一实施例所述的背光模组、和处于所述背光模组的出光侧的显示面板。
根据本公开的一些实施例,显示面板的像素分辨率为P*Q,所述背光模组的基板包括显示区,所述显示区包括C*D个子显示区,在所述C*D个子显示区的每一个子显示区内布置有所述背光模组的相应一个LED子阵列,其中C表示沿所述显示区的长度方向的每行子显示区中子显示区的数目,D表示沿所述显示区的宽度方向的每列子显示区中子显示区的数目,且C和D分别是能够由P和Q整除的整数。
根据本公开的一些实施例,背光模组的基板的显示区的长度和宽度分别为L毫米和W毫米,其中参数C小于L/1.67,D小于W/1.67。
以上简要描述了本公开的一些实施例,这些实施例以及这些实施例中的技术特征可以以不同方式组合,从而得到不同的另外的实施例,这些另外的实施例也属于本申请的保护范围。
附图说明
下面,参考附图更详细地并且通过非限制性的示例方式描述本公开的实施例,以提供对本公开的原理和精神的透彻理解。其中:
图1是示意性地示出了根据本公开的一个实施例的背光模组的俯视图;
图2是用于示意性地说明不具有光扩散层的背光模组可能导致的灯影现象的示意图;
图3和图4是用于示意性地说明应用光扩散层对灯影现象的缓解的示意图;
图5是示意性地示出了根据本公开的另一实施例的背光模组的截面图;
图6是示意性地示出了根据本公开的另一实施例的背光模组的俯视图。
具体实施方式
下面,通过示例的方式来详细说明本公开的具体实施例。应当理解的是,本公开的实施例不局限于以下所列举的示例,本领域技术人员利用本公开的原理或精神可以对所示出的各实施例进行修改和变型,得到形式不同的其它实施例。显然,这些实施例都落入本公开要求保护的范围。
在本文中,除非特意声明,这里使用“一”、“一个”、“所述”和“该”修饰的技术特征并不排除相关的技术方案包括多个这样的技术特征。进一步地,本说明书中使用的措辞“包括”是指存在其后所列出的特征、元件或步骤,但是并不排除存在另外的特征、元件、步骤或它们的组合。而且,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本公开所属领域中的普通技术人员的一般理解相同的意义。诸如通用字典中定义的那些术语,应该被理解为具有与本说明书的上下文中的意义一致的意义,并且除非在本文中被特定定义,否则不会用理想化或过于正式的含义来解释。
根据本公开实施例提供的背光模组包括基板、以及布置在基板上的多个微型LED。图1示出了根据本公开实施例的背光模组的示意性俯视图。如图1所示,背光模组的基板10上布置有多个微型LED(Mini LED或Micro LED)20a,所述多个微型LED包括微型LED阵列,所述微型LED阵列包括多个LED子阵列200,微型LED阵列中的各LED子阵列200的发光参数被独立地控制。能够理解到的是,基板10上可设置任何数量的LED子阵列,每个LED子阵列可包括任何数量的微型LED。
微型LED的尺寸相对于常规的LED要小得多,且具有较高的发光效率。此外,由于微型LED可以紧凑排列,所以应用微型LED的背光模组可以不设置导光板。因此,应用微型LED的背光模组的整体厚度得以大大降低,从而也有利于应用该背光模组的显示装置的薄化,促进显示装置在不同场合下的应用。另外,在本公开的实施例中,背光模组中的微型LED阵列中的各个LED子阵列200的发光参数被独立控制,这意味着可以根据要显示的图像而对背光模组的基板上的不同区域的微型LED实行不同的控制或策略,即,所谓的“局部调光”。因此,可以实现对要显示的画面的精细控制和调节,提升显示的图像的质量。为了实现“局部调光”,使用常规LED的直下式显示面板的厚度约为23mm,而根据本公开的采用微型LED的直下式显示面板的厚度约为3.8mm。此外,对于不具有“局部调光”的常规显示面板,其厚度最小为约11mm。此外,微型LED相对于的常规LED的尺寸小,并且例如微型LED的尺寸可以为常规LED的尺寸的几十分之一。例如,本领域中的一种常用的LED尺寸可以为3.0*1.4*0.52mm,而本领域中的一种常用的微型LED尺寸约为0.5*0.3*0.15mm。例如,常规LED的长度和宽度尺寸可以为2毫米左右,而微型LED的长度和宽度尺寸可以为十分之几毫米左右。因此,可以对显示区内的多个微型LED进行更加精细的分组,从而实施更加精细的“局部调光”。例如,本公开实施例提供的背光模组可以应用于机动车的仪表显示仪或者可显示各种不同画面的导航显示设备,从而减小这些仪表或显示设备的体积和尺寸,并提升显示画面的质量。
如上所述,根据本公开的实施例,背光模组中的每个LED子阵列可包括任何数量的微型LED。在本公开的一些实施例中,每个LED子阵列由M行微型LED和M列微型LED组成,M是大于等于2的整数。也就是说,每个LED子阵列大致形成一个正方形阵列,这有利于单个的LED子阵列所在区域的发光参数(例如,发光亮度)的均一性,同时也便于背光模组内的导线布局。在本公开的另一个实施例中,每个LED子阵列中的微型LED的行数和列数可以不一样,即,每个LED子阵列大致形成一个长方形阵列。
本申请的发明人在实践中意识到,影响显示装置的图像质量的一个不利因素是“灯影”问题。图2用于示意性地说明不具有光扩散层的背光模组可能导致的“灯影”现象。单个的LED通常朝某一方向在某一范围内投射光。在图2中,用箭头示意性地示出了单个的LED的最大的发光范围。在图2的示例中,单个LED发出的光束大致呈锥体。单个LED的发光面积指的是当LED发光时,用户透过LED上方的层结构观察到的以LED为中心的具有明显的亮度的发光区域的面积,并且单个LED的发光面积是有限的。由于各个LED之间是彼此间隔的并且单个LED的发光面积是有限的,所以当不具有光扩散层的背光模组运行时,从用户的视觉效果上看,相邻的LED之间可能会存在一个暗区。也就是说,相邻的LED之间会存在一个光照盲区S,该光照盲区S对用户的视觉效果而言就是“灯影”。减轻灯影现象的一个措施是增加不具有光扩散层的背光模组中LED的密度。LED布置得越密集,光照盲区S的尺寸就越小,灯影现象就越不严重甚至得以消除。然而,相邻LED之间的距离过近会造成散热效率低,增加整体功耗,降低LED的发光效率。另外,过于密集的LED还会导致基板表面的反射层101面积相应地减小,从而不利于光的利用效率。减轻灯影现象的另一措施是增加显示面板与不具有光扩散层的背光模组之间的距离。具体地,如图2所示,显示面板与不具有光扩散层的背光模组的基板上的LED的上表面之间的距离可以大于图2中所示的竖直距离D。也就是说,显示面板布置在LED的上方,并且显示面板与不具有光扩散层的背光模组的LED的上表面之间至少间隔竖直距离D。然而,这样会导致显示装置的整体厚度增加,不利于减小显示装置的体积。
鉴于上述对与灯影问题相关的技术认知,发明人在本公开实施例提供的背光模组中布置光扩散层,以有效地消除灯影现象,同时有利于背光模组的薄化。因此,在本公开的一些实施例中,背光模组包括位于微型LED上方的光扩散层。光扩散层具有对光进行扩散的作用,增加单个的微型LED的发光面积,并能增强发出的光的均匀性。光扩散层可以直接布置在微型LED上,即光扩散层可以与微型LED接触,以降低背光模组的整体厚度。在另外的实施例中,光扩散层与微型LED之间可以间隔有另外的适当的层结构。由 于光扩散层的存在,实际上扩大了单个LED的发光面积。可以设置光扩散层使得相邻的微型LED的光照区域存在重叠,从而大大地缓解甚至消除上述的灯影现象。在一些实施例中,光扩散层的厚度比前述的竖直距离D小得多,这样可以有效地减轻灯影现象,同时有利于背光模组的薄化。
根据本公开的实施例,背光模组中的光扩散层包括位于微型LED上方、与微型LED接触的扩散膜。光扩散膜可以使得从LED发出的光扩散,从而对从各个LED发出的光进行均匀地混合。扩散膜可以包括由透明材料中掺杂扩散颗粒来制成的体扩散膜。例如,透明材料可以是丙烯酸、聚苯乙烯(PS)、聚碳酸酯(PC)或PMMA(聚甲基丙烯酸甲酯),而扩散颗粒可以是折射率与透明材料不同的玻璃颗粒、金属颗粒、金属氧化物(例如氧化钛、硫酸钡、碳酸钙)颗粒、涂有涂料的颗粒或空隙等。此外,扩散膜还可以为表面微结构扩散膜,例如,全息扩散膜。表面微结构扩散膜通常是在透明材料片的表面上形成微结构纹理来对入射光进行扩散。此外,扩散膜可以包括薄膜基底和在薄膜基底上涂布的涂层。
在本公开的一个实施例中,为了在更薄的厚度内达成更好的扩散效果,采用了体扩散膜,因为与表面微结构膜相比,体扩散膜可以增加扩散距离。此外,体扩散膜的扩散颗粒的形状可以根据需要设置,并且例如可以为球形、圆柱形等,从而增加扩散膜的设置灵活性。
例如,图3中示出了扩散膜由两层光扩散膜30a、30b构成。由于现有材料形成的扩散膜的厚度有限,单层扩散膜无法提供足够的扩散距离。因此,为了更大程度地增加扩散距离以及使光扩散并均匀化,从而实现背光无光斑的效果,在微型LED上方布置两层扩散膜。在本公开的实施例中,两层扩散膜30a和30b的物理尺寸和材料大致相同。在一些情况下,两层扩散膜可以完全相同。在另外一些实施例中,扩散膜30a和30b的材料和厚度可以不同,并且可以是分别从以上实施例中选择的。在本公开的实施例中,根据实际需要,扩散膜30a和30b的厚度的范围可以为十分之一毫米到1毫米。在本公开的一个实施例中,扩散膜30a和30b的厚度都为0.12毫米。
通过布置扩散膜,可以有效地缓解或消除灯影现象,并且不会过度降低背光模组的发光亮度,从而改进显示装置显示图像的质量。图3示意性地示出了设置光扩散膜30a、30b之后从两个LED发出的光的扩散现象,图4示意性地示出了处于发光状态的微型LED在不设置光扩散层和设置光扩散层两种情境下的俯视图。图4中直径较小的圆A1表示在不设置光扩散层的情况下的微型LED的发光面积。此时,用户能明显感知到相邻的LED之间的发光区域之间存在间隔,这样的间隔在用户的视觉夏效果上为相邻的LED之间的 明显暗区,即上述的灯影现象。图4中的直径较大的圆A2表示在设置光扩散层的情况下微型LED的发光面积。此时,单个的LED的发光面积得以扩大,使得相邻的微型LED的发光区域彼此重叠。因此,灯影现象可以得到明显的缓解。
图5示意性地示出了根据本公开的另一实施例的背光模组的结构图。如图5所示,背光模组包括基板10、设置在基板上的多个微型LED 20a、位于微型LED上的光扩散层30、位于光扩散层30上方的光转换层40、光转换层40上方的光会聚元件50和增亮薄膜60。光转换层40包括量子点材料。光转换层中的量子点材料可以将源自于微型LED的光转换为期望颜色的光(例如,白光)。在一些实施例中,光转换层40可以包括其他荧光材料。在一些实施例中,前述的微型LED包括未封装的可发出蓝光的微型LED芯片,从微型LED发出的蓝光可经由光转换层40转换为白光,从而为显示面板提供合适的背光。光会聚元件50可以使得从光转换层40发出的光成为准直光或会聚光。在本公开的实施例中,光会聚元件50可以是微透镜阵列、棱镜阵列、光栅阵列等。增亮薄膜60可以增强背光模组所提供的背光的亮度。本公开实施例提供的背光模组不设置导光板,降低了背光模组的厚度。同时,上述的光扩散层、光转换层、光会聚元件和增亮薄膜可以使得背光模组提供良好的背光。同时,灯影现象可以得到明显的减缓。在另外的实施例中,基板10是柔性基板,从而可以实施柔性显示模组。在图5的示例中,背光模组还包括背板70,从而为背光模组的上述各个结构提供支撑和保护。另外,虽然图5示意性地示出了背光模组的各个元件的示例,但是,这些元件的布置次序并不局限于图5。例如,光转换层40可以处于光扩散层30的下方,增亮薄膜60、光会聚元件50的布置次序可以互换。在不影响提供背光功能的情况下,本领域技术人员可以对它们的层叠次序进行任何合适的调整。根据本公开的实施例,在基板10的表面上未由微型LED占据的区域,可以布置光反射材料,使得照射到基板10的表面的光由反射材料反射到光扩散层,从而提升光的利用效率。另外,虽然图5中示出了光扩散层30与微型LED接触,但是,在其它的实施例中,微型LED与光扩散层30之间可以存在任何适当的结构,例如,散热或隔热层等。
在本公开的实施例中,以扩散层30由重叠的两层扩散膜构成的情况为例进行了说明。本领域技术人员可以理解,根据实际情况和对于背光的均匀度的要求,扩散层30也可以由一层扩散膜构成,或者由三层以上的扩散膜构成,这取决于扩散层的扩散匀光能力。此外,在本公开的另一个实施例中,构成扩散层30的扩散膜可以彼此不相邻,并且在扩散膜之间可以夹置背光模组的其他层,例如,偏振膜、增亮薄膜、光转换层等。此外,构成扩散层30的扩散膜的材料和具体参数可以根据实际需要来选择,并且各个扩散膜的材料 和参数可以彼此不同。
本公开实施例提供的背光模组可以应用于多种场景。下面,通过具体的示例来进一步说明本公开实施例提供的背光模组的应用。
根据本公开的一个实施例,背光模组应用于汽车的仪表显示器,并采用局部调光策略对背光模组的微型LED进行控制。由于采用局部调光方法,因此,需要将处于基板的显示区的多个微型LED分成多个为上文中提到的LED子阵列,每个LED子阵列的发光参数可被独立控制。每个LED子阵列所在区域也对应于显示面板的一个子显示区域。可以基于人眼的分辨率极限来确定子显示区域的大小。根据瑞利判据,可以得到汽车的仪表显示屏上可由人眼分辨的图像区域的最小尺寸为:△y=N*△Q=N*1.22*λ*D,其中N为驾驶员眼睛到仪表显示屏的距离,λ为人眼最敏感的光的波长,D为人眼的瞳孔直径。人眼的瞳孔直径D的范围大致在2mm~9mm。在一个示例中,瞳孔直径D可以取值5mm,λ为5500埃,驾驶员眼睛到仪表盘的距离N为50cm。此时,通过以上公式,可以得到人眼可分辨的图像区域的最小尺寸约为1.67mm。相应地,显示模组中单个LED子阵列的区域的最小尺寸可以为大约1.67mm。因此,在本公开的一个实施例中,每个LED子阵列所占据区域的长度和宽度均大于等于1.67mm。由于人眼的瞳孔直径D的范围大致在2mm~9mm,相应地,显示模组中单个LED子阵列的区域的最小尺寸可以在0.67mm至3.0mm之间。
如图6所示,假设显示模组的显示区域的长度和宽度分别为A和B,单个的LED子阵列所在区域200的长度和宽度分别为L和H,那么L和H均大于等于以上计算的1.67mm。在本公开的一个实施例中,背光模组的基板的显示区的尺寸为292.302*109.512mm。因此,在显示区的长度方向上,最多可以划分得到175个LED子阵列区域,在显示区的宽度方向上,最多可以划分得到65个LED子阵列区域。
在本公开的一个实施例中,结合显示面板的像素分辨率来考虑背光模组中的LED子阵列区域的数目,以实现更精确的局部调光。若显示面板的像素分辨率为P*Q,将背光模组的基板的显示区分成C*D个子显示区,C表示沿显示区的长度方向的每行子显示区中子显示区的数目,D表示沿所述显示区的宽度方向的每列子显示区中子显示区的数目,且C和D分别是能够由P和Q整除的整数。在每个子显示区域中布置有相应的一个LED子阵列。在一个示例中,若显示面板的像素分辨率为1920*720,则C可以是能够由1920整除的整数,例如,192、160、120、96、80……,D可以是能够由720整除的整数,例如,72、60、48、45、40、36……。为了有益于各个LED子阵列所在区域的发光参数的均一 性,并便于背光模组内的导线布局,可以尽量使得每个子显示区接近正方形,这样可以在每个子显示区内布置方形的LED子阵列。C和D的数值越大,越有利于显示画面的精细控制,但是,这也需要更多数目的控制芯片,导致成本上升和散热问题。根据本公开的一个实施例,背光模组的基板的显示区的尺寸为292.302*109.512mm,上述的参数C取值为40,参数D取值为15,即背光模组的多个微型LED被分成600个LED子阵列,单个LED子阵列所占区域的长度和宽度均大约为7.3mm。进一步地,在该实施例中,每个LED子阵列包括5行微型LED和5列微型LED,即每个LED子阵列包括25个微型LED,以实现合适密度的LED布置,有利于背光模组的散热,并减轻灯影现象。
本公开的另外的实施例提供了一种显示装置,包括如前述的任一实施例的背光模组和处于所述背光模组的出光侧的显示面板。
如前所述,根据本公开的实施例,背光模组的基板包括显示区,所述显示区包括C*D个子显示区,在所述C*D个子显示区内的每一个子显示区内布置有背光模组的相应一个LED子阵列,其中C表示沿所述显示区的长度方向的每行子显示区中子显示区的数目,D表示沿所述显示区的宽度方向的每列子显示区中子显示区的数目,若显示装置的显示面板的像素分辨率为P*Q,则C和D分别是能够由P和Q整除的整数。
本公开实施例提供的显示装置可以是车载仪表显示器。如之前所讨论的,可以采用局部调光策略对背光模组的微型LED进行控制。考虑到人眼的极限分辨能力,显示模组中单个LED子阵列的区域的最小尺寸可以大约为1.67mm。因此,若背光模组的基板的长度和宽度分别为L毫米和W毫米,则上述的参数C小于L/1.67,参数D小于W/1.67。
以上具体描述了本公开的一些示例性实施例,但是本领域技术人员在实践所要求保护的公开时根据对附图、公开内容已经权利要求的研究,能够理解和实现所公开实施例的其他变型。在权利要求中,词语“包括”不排除其它元件的存在。虽然一些特征被记载在不同的从属权利要求中,但是本公开也意图涵盖将这些特征组合在一起的实施例。

Claims (12)

  1. 一种背光模组,所述背光模组包括基板、以及布置在基板上的多个微型LED,所述多个微型LED包括微型LED阵列,所述微型LED阵列包括多个LED子阵列,所述微型LED阵列中的各LED子阵列的发光参数被独立地控制。
  2. 根据权利要求1中所述的背光模组,其中,每个LED子阵列由M行微型LED和M列微型LED组成,M是大于等于2的整数。
  3. 根据权利要求1所述的背光模组,其中,所述背光模组包括位于所述微型LED阵列的远离基板一侧的光扩散层,所述光扩散层与所述微型LED直接接触。
  4. 根据权利要求3所述的背光模组,其中,所述光扩散层包括至少两层光扩散膜。
  5. 根据权利要求4所述的背光模组,其中,所述光扩散膜为体扩散膜。
  6. 根据权利要求3所述的背光模组,其中,所述背光模组还包括处于所述光扩散层的远离基板一侧的光转换层、处于所述光转换层的远离基板一侧的光会聚元件和增亮薄膜。
  7. 根据权利要求6所述的背光模组,其中,所述光转换层包括量子点材料。
  8. 根据权利要求1所述的背光模组,其中,所述多个LED子阵列中的每个LED子阵列所占据区域的长度和宽度中的每个的最小值在0.67mm和3mm之间。
  9. 根据权利要求1所述的背光模组,其中,所述微型LED包括未封装的发蓝光的微型LED芯片,所述基板是柔性基板。
  10. 一种显示装置,包括如权利要求1-9中任一项所述的背光模组以及处于所述背光模组的出光侧的显示面板。
  11. 如权利要求10所述的显示装置,其中,所述显示面板的像素分辨率为P*Q,所述背光模组的基板包括显示区,所述显示区包括C*D个子显示区,在所述C*D个子显示区的每一个子显示区内布置有所述背光模组的相应一个LED子阵列,其中C表示沿所述显示区的长度方向的每行子显示区中子显示区的数目,D表示沿所述显示区的宽度方向的每列子显示区中子显示区的数目,且C和D分别是能够由P和Q整除的整数。
  12. 根据权利要求11所述的显示装置,所述基板的显示区的长度和宽度分别为L毫米和W毫米,其中参数C小于L/1.67,D小于W/1.67。
PCT/CN2020/099700 2019-07-08 2020-07-01 背光模组及显示装置 WO2021004347A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/201,202 US11506931B2 (en) 2019-07-08 2021-03-15 Backlight module and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910610786.1 2019-07-08
CN201910610786.1A CN112198708A (zh) 2019-07-08 2019-07-08 背光模组及包含该背光模组的显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/201,202 Continuation US11506931B2 (en) 2019-07-08 2021-03-15 Backlight module and display device

Publications (1)

Publication Number Publication Date
WO2021004347A1 true WO2021004347A1 (zh) 2021-01-14

Family

ID=74004476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099700 WO2021004347A1 (zh) 2019-07-08 2020-07-01 背光模组及显示装置

Country Status (3)

Country Link
US (1) US11506931B2 (zh)
CN (1) CN112198708A (zh)
WO (1) WO2021004347A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI783875B (zh) * 2022-02-18 2022-11-11 友達光電股份有限公司 顯示面板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12088371B2 (en) * 2022-02-14 2024-09-10 Qualcomm Incorporated Selection of beamforming configuration parameters for a multi-panel active antenna system (AAS)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070242477A1 (en) * 2006-04-14 2007-10-18 Samsung Electro-Mechanics Co., Ltd. Backlight for liquid crystal display using light emitting diode
CN207020427U (zh) * 2017-08-04 2018-02-16 纳晶科技股份有限公司 背光单元及包括其的显示装置
US20180120639A1 (en) * 2016-11-02 2018-05-03 Innolux Corporation Display device
CN207799288U (zh) * 2018-01-12 2018-08-31 安徽芯瑞达科技股份有限公司 一种高色域直下式背光模组
CN108490683A (zh) * 2018-03-12 2018-09-04 安徽芯瑞达科技股份有限公司 一种新型背光模组用背光源及其制备方法
CN109116626A (zh) * 2018-09-04 2019-01-01 京东方科技集团股份有限公司 一种背光源及其制作方法、显示装置
CN109254451A (zh) * 2018-10-19 2019-01-22 住华科技股份有限公司 背光模块及应用其的面板及其制造方法
CN109459886A (zh) * 2018-10-31 2019-03-12 厦门天马微电子有限公司 一种背光模组、制作方法及显示装置
CN210573097U (zh) * 2019-07-08 2020-05-19 京东方科技集团股份有限公司 背光模组及包含该背光模组的显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6289718B1 (ja) * 2017-01-02 2018-03-07 ルーメンス カンパニー リミテッド Ledディスプレイ装置
CN106896577A (zh) * 2017-03-27 2017-06-27 武汉华星光电技术有限公司 透反射式液晶显示器
US10957820B2 (en) * 2017-12-21 2021-03-23 Lumileds Llc Monolithic, segmented light emitting diode array

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070242477A1 (en) * 2006-04-14 2007-10-18 Samsung Electro-Mechanics Co., Ltd. Backlight for liquid crystal display using light emitting diode
US20180120639A1 (en) * 2016-11-02 2018-05-03 Innolux Corporation Display device
CN207020427U (zh) * 2017-08-04 2018-02-16 纳晶科技股份有限公司 背光单元及包括其的显示装置
CN207799288U (zh) * 2018-01-12 2018-08-31 安徽芯瑞达科技股份有限公司 一种高色域直下式背光模组
CN108490683A (zh) * 2018-03-12 2018-09-04 安徽芯瑞达科技股份有限公司 一种新型背光模组用背光源及其制备方法
CN109116626A (zh) * 2018-09-04 2019-01-01 京东方科技集团股份有限公司 一种背光源及其制作方法、显示装置
CN109254451A (zh) * 2018-10-19 2019-01-22 住华科技股份有限公司 背光模块及应用其的面板及其制造方法
CN109459886A (zh) * 2018-10-31 2019-03-12 厦门天马微电子有限公司 一种背光模组、制作方法及显示装置
CN210573097U (zh) * 2019-07-08 2020-05-19 京东方科技集团股份有限公司 背光模组及包含该背光模组的显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI783875B (zh) * 2022-02-18 2022-11-11 友達光電股份有限公司 顯示面板

Also Published As

Publication number Publication date
US20210200028A1 (en) 2021-07-01
CN112198708A (zh) 2021-01-08
US11506931B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
TWI309324B (en) Backlight device and liquid crystal display device
JP4589361B2 (ja) 光源キューブ及びこれを利用した平面光源ユニット及び液晶表示装置
JP4838986B2 (ja) 輝度プロフィールの生成装置
JP4600257B2 (ja) 導光板、バックライト装置とその製造方法及び液晶表示装置
JP4461197B1 (ja) 面状照明装置およびこれを備えた液晶表示装置
TWI412832B (zh) 彩色液晶顯示裝置組合
JP2010272245A (ja) バックライトユニットおよびこれを備えた液晶表示装置
US20060181866A1 (en) Multi-chip light emitting diode unit, and backlight unit and liquid crystal display device employing the same
US20110051044A1 (en) Light quantity control member, surface light source unit and display device
TW201219925A (en) Backlight unit and display apparatus using the same
JP2006252958A (ja) 照明装置、及びこれを備えた液晶表示装置
TW201202799A (en) Liquid display device
WO2019138722A1 (ja) バックライトユニットおよび液晶表示装置
WO2021004347A1 (zh) 背光模组及显示装置
JP4160481B2 (ja) 面状光源装置及び表示装置
JP2004109992A (ja) 液晶表示装置のバックライトモジュール
TWI750935B (zh) 擴散板及具擴散板的背光模組
JP2012018880A (ja) 面状照明装置、映像表示装置および光学シート
JP2010040192A (ja) バックライトユニットおよびこれを備えた液晶表示装置
JP2010123551A (ja) 面状光源及び液晶表示装置
JP5602329B2 (ja) 面光源装置及び液晶表示装置
CN210573097U (zh) 背光模组及包含该背光模组的显示装置
JP2010108601A (ja) 面状光源及び液晶表示装置
CN114063347B (zh) 一种显示装置
JP2010055998A (ja) バックライトユニットおよびこれを備えた液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837631

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20837631

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20837631

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC DATED 02.08.2022 (EPO FORM 1205A)

122 Ep: pct application non-entry in european phase

Ref document number: 20837631

Country of ref document: EP

Kind code of ref document: A1