WO2021004199A1 - 无线信号性能调整装置、方法和无线通信终端 - Google Patents

无线信号性能调整装置、方法和无线通信终端 Download PDF

Info

Publication number
WO2021004199A1
WO2021004199A1 PCT/CN2020/094086 CN2020094086W WO2021004199A1 WO 2021004199 A1 WO2021004199 A1 WO 2021004199A1 CN 2020094086 W CN2020094086 W CN 2020094086W WO 2021004199 A1 WO2021004199 A1 WO 2021004199A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission path
signal
radio frequency
frequency signal
digital
Prior art date
Application number
PCT/CN2020/094086
Other languages
English (en)
French (fr)
Inventor
郭帅
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/613,049 priority Critical patent/US11711153B2/en
Priority to EP20837265.6A priority patent/EP3965321B1/en
Publication of WO2021004199A1 publication Critical patent/WO2021004199A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/17Detection of non-compliance or faulty performance, e.g. response deviations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/103Reflected power, e.g. return loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/104Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof of other parameters, e.g. DC offset, delay or propagation times
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/18Monitoring during normal operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/24Arrangements for testing

Definitions

  • This application relates to electromagnetic compatibility technology, for example, to a wireless signal performance adjustment device, method, and wireless communication terminal.
  • the working status of wireless communication terminals such as mobile phones is clearly defined, and when testing, it is also necessary to strictly abide by the corresponding specifications to ensure that the electromagnetic compatibility test meets the standard.
  • the application scenario will exceed the scenario in the test specification. That is to say, the wireless communication terminal that meets the electromagnetic compatibility standard according to the test specification is likely to be in complex and changeable actual use scenarios. Can not achieve better electromagnetic compatibility performance.
  • the present application provides a wireless signal performance adjustment device, method and wireless communication terminal, which can meet electromagnetic compatibility performance requirements in complex and changeable actual use scenarios.
  • the embodiment of the present application provides a wireless signal performance adjustment device, including: a monitoring unit, a control unit, a measurement unit, and an adjustment unit; wherein,
  • the monitoring unit is set to monitor the radio frequency signal of the transmission path
  • the control unit is configured to receive the radio frequency signal from the transmission path of the monitoring unit; when the radio frequency signal of the transmission path does not meet the performance requirements, control the measurement unit to perform measurement; determine the adjustment information according to the load impedance from the measurement unit;
  • the measuring unit is set to measure the load impedance of the power amplifier in the transmitting path under the control of the control unit;
  • the adjustment unit is configured to adjust the transmission path according to the adjustment information under the control of the control unit, so that the radio frequency signal of the transmission path meets the performance requirement condition.
  • An embodiment of the present application also provides a wireless communication terminal, including: the wireless signal performance adjustment device described in any embodiment of the present application.
  • the embodiment of the present application also provides a wireless signal performance adjustment method, including:
  • the transmission path is adjusted according to the measured load impedance so that the radio frequency signal of the transmission path meets the performance requirements.
  • FIG. 1 is a schematic diagram of the composition structure of a wireless signal performance adjustment device provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of the composition structure of a monitoring unit provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of the composition structure of a measurement unit provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of the composition structure of another adjustment unit provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of the composition structure of a fourth embodiment of another adjustment unit provided by an embodiment of the application.
  • FIG. 9 is a schematic flowchart of a wireless signal performance adjustment method provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of a flow chart for adjusting a transmission path according to an embodiment of the application.
  • the computing device includes one or more central processing units (CPU), input/output interfaces, network interfaces, and memory.
  • CPU central processing units
  • input/output interfaces input/output interfaces
  • network interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-permanent memory in computer readable media, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM). Memory is an example of computer readable media.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Computer-readable media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer-readable instructions, data structures, program modules, or other data.
  • Examples of computer storage media include, but are not limited to, phase-change RAM (PRAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), and other types of Random Access Memory (RAM), Read-Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), flash memory or other memory technologies, read-only CD-ROM Storage (Compact Disc-ROM, CD-ROM), Digital Video Disc (DVD) or other optical storage, magnetic cassette tape, magnetic tape storage or other magnetic storage devices or any other non-transmission media can be set To store information that can be accessed by computing devices.
  • computer-readable media does not include non-transitory computer-readable media (transitory media), such as modulated data signals and carrier waves.
  • the transmit frequency and the receive frequency are different.
  • the power amplifier (referred to as the power amplifier) in the transmit path not only generates signals in the transmit frequency band, but also Produce interference signals that fall within the receiving frequency band. These interference signals falling in the receiving band are noises for the received signals, and are generally called Receive Band Noise (RxBN), so the smaller RxBN is, the better.
  • RxBN Receive Band Noise
  • the power amplifier on the transmission path will also generate harmonic signals. These harmonic signals need to be strictly limited. In a variety of electromagnetic compatibility (EMC) test specifications, the harmonic signals The intensity of the wave has strict requirements.
  • Both RxBN and harmonics come from the power amplifier, and these two indicators are closely related to the load impedance of the power amplifier. Different load impedances correspond to different RxBN and harmonic characteristics. Therefore, usually power amplifiers will have specific load pull (Loadpull) information (Also known as load-pull graph).
  • Loadpull load pull
  • a specific RF impedance location is selected according to Loadpull, but the premise is that the location of the RF test socket is connected to an RF meter with a 50 ohm load impedance.
  • the impedance of the RF test socket will change in real time with the application scenario, that is, the load impedance of the power amplifier will also change accordingly, which will cause the deterioration of RxBN and harmonics. happening.
  • this application proposes to detect abnormal conditions by monitoring the emission indicators of the transmission path in real time, and through adjustments to the power amplifier, such as adjusting the power amplifier's transmission power, or adjusting the matching of the power amplifier, or reducing the peak-to-average ratio of the transmitted signal. Or adjust the matching of the antenna to adjust the transmission performance of the transmission path to reduce the electromagnetic interference signal radiated by the wireless communication terminal, thereby improving the electromagnetic compatibility performance of the wireless communication terminal, and achieving the complex and changing reality of the wireless communication terminal. Meet the electromagnetic compatibility performance requirements under the use scene.
  • FIG. 1 is a schematic diagram of the composition structure of a wireless signal performance adjustment device provided by an embodiment of the application.
  • the wireless signal performance adjustment device at least includes: a monitoring unit, a control unit, a measurement unit, and an adjustment unit;
  • the unit is set to monitor the radio frequency signal of the transmission path;
  • the measurement unit is set to measure the load impedance of the power amplifier in the transmission path under the control of the control unit;
  • the control unit is set to receive the radio frequency signal from the transmission path of the monitoring unit; determine the transmission The radio frequency signal of the channel does not meet the performance requirements, the measurement unit is controlled to measure;
  • the adjustment information is determined according to the load impedance from the measurement unit;
  • the adjustment unit is set to adjust the transmission path according to the adjustment information under the control of the control unit to make the transmission
  • the RF signal of the channel meets the performance requirements.
  • the monitoring unit may monitor the transmission path of the wireless communication terminal in real time to obtain the radio frequency signal of the transmission path. It is also possible to monitor the transmission path of the wireless communication terminal to obtain the radio frequency signal of the transmission path according to a preset period or a specified time period.
  • the adjustment unit includes at least one of the following modules:
  • the power amplifier matching and tuning module is set to adjust the matching of the power amplifier in the transmission path so that the radio frequency signal of the transmission path meets the performance requirements;
  • the antenna matching and tuning module is set to adjust the impedance matching between the transmission path and the antenna to make the transmission path
  • the RF signal meets the performance requirements;
  • the first tuning module is set to adjust the peak-to-average ratio of the transmitted signal in the transmission path so that the RF signal in the transmission path meets the performance requirements;
  • the second tuning module is set to adjust the transmission power to make the transmission The RF signal of the channel meets the performance requirements.
  • the adjustment unit includes: a power amplifier matching and tuning module; or, the adjustment unit includes: a power amplifier matching and tuning module and an antenna matching and tuning module; or, the adjustment unit includes: a power amplifier matching and tuning module, an antenna matching and tuning module, and a second A tuning module; or, the adjustment unit includes: a power amplifier matching tuning module, an antenna matching tuning module, a first tuning module and a second tuning module.
  • condition of not meeting the performance requirement includes: not meeting the electromagnetic compatibility performance requirement.
  • This application discovers abnormal conditions by monitoring the emission indicators of the emission path in real time, and adjusts the power amplifier to realize the adjustment of the emission performance of the emission path, reduces the electromagnetic interference signal radiated by the wireless communication terminal, and improves the wireless communication terminal
  • the electromagnetic compatibility performance of the wireless communication terminal can also meet the electromagnetic compatibility performance requirements in complex and changeable actual use scenarios.
  • FIG. 2 is a schematic diagram of the composition structure of a monitoring unit provided by an embodiment of the application.
  • the monitoring unit at least includes: a coupler, a first down-conversion circuit, and a first analog-to-digital converter (Analog to Digital Converter, ADC) sampling circuit, first digital variable gain amplifier and first digital processing unit; wherein, the coupler is set to couple radio frequency signals from the transmission path and output to the first down-conversion circuit; the first down-conversion circuit is set to follow The preset frequency processes the coupled RF signal to obtain a low frequency signal of the required frequency; the first ADC sampling circuit is set to perform analog-to-digital conversion on the low-frequency signal to obtain a digital signal; the first digital variable gain amplifier is set to analog The digital signal obtained by the digital conversion is amplified to meet the range that can be processed by the first digital processing unit.
  • ADC Analog to Digital Converter
  • the first digital processing unit is configured to perform amplitude calculation on the amplified digital signal to obtain the signal strength of the transmission path at the required frequency point, and output the obtained signal strength of the transmission path to the control unit.
  • the required frequency point, for the second harmonic, the frequency point at which the second harmonic is located is the required frequency point. That is to determine the frequency point where the over-standard position is located
  • the coupler may share the broadband bidirectional coupler included in the transmission path of the mobile terminal, or the monitoring unit may use a broadband coupler alone.
  • the local oscillator frequency of the first down-conversion circuit can be arbitrarily selected, such as the transmission center frequency, or 2 times the transmission center frequency, or 3 times the transmission center frequency, and so on.
  • the first digital processing unit is configured to:
  • Figure 3 is a schematic diagram of the composition structure of a measurement unit provided by an embodiment of the application.
  • the measurement unit at least includes: a bidirectional coupler, a channel selection circuit, a second down-conversion circuit, a second ADC sampling circuit, and a second ADC sampling circuit.
  • the second down-conversion circuit is configured to process the coupled signal according to the preset frequency to obtain the first low frequency signal of the required frequency; to process the reflected signal according to the preset frequency to obtain the second low frequency signal of the required frequency ;
  • the preset frequency is the required frequency.
  • the second ADC sampling circuit is set to perform analog-to-digital conversion on the first low-frequency signal to obtain the first digital signal; perform analog-to-digital conversion on the second low-frequency signal to obtain the second digital signal; and the second digital variable gain amplifier is set to The digital signal is amplified to meet the range that can be processed by the second digital processing unit; the second digital signal is amplified to meet the range that can be processed by the second digital processing unit; the second digital processing unit is set according to the obtained first The digital signal and the second digital signal determine the current load impedance value of the power amplifier.
  • the second digital processing unit is configured to:
  • the ratio of the two signal strengths obtains the voltage standing wave ratio (VSWR, referred to as standing wave ratio), and obtains the impedance phase information according to the difference between the first phase information and the second phase information; according to the VSWR and the impedance phase information
  • the scattering parameters stored in the memory calculate the current load impedance value of the power amplifier, and output the obtained load impedance value to the control unit.
  • the scattering parameter stored in the memory is the real-time impedance information of the current circuit. After the adjustment unit adjusts the corresponding circuit, the scattering parameter will be updated accordingly.
  • the channel selection circuit may be a double-pole double-throw switch, or a similar functional circuit constructed by a single-pole double-throw switch.
  • the monitoring unit and the measuring unit are two independent functional units, but the circuits in the monitoring unit with the same functions as those in the measuring unit can be multiplexed, that is, only one set is provided in the wireless signal performance device, such as: The first down-conversion circuit and the second down-conversion circuit, the first ADC sampling circuit and the second ADC sampling circuit, the first digital variable gain amplifier and the second digital variable gain amplifier, etc.; the circuits in the monitoring unit and the measuring unit have the same functions You can also set one set separately.
  • FIG. 4 is a schematic diagram of the composition structure of a control unit provided by an embodiment of the application.
  • the control unit at least includes: a first processing module, a second processing module, a control module, and a storage module storing load pulling information ,among them,
  • the first processing module is set to receive the signal from the transmission channel of the monitoring unit, determine that the radio frequency signal of the transmission path does not meet the performance requirements, and control the measurement unit to perform measurement;
  • the second processing module is set to perform the measurement based on the load impedance from the measurement unit According to the load pull information of the power amplifier, the optimal impedance position information is queried and the adjustment information is calculated;
  • the control module is set to control the adjustment unit to adjust the emission path according to the obtained adjustment information, and update the scattering parameters in the memory according to the adjustment result .
  • the adjustment information includes: the tuning change of the tuning part, such as the change of the capacitance of the adjustable capacitor, the change of the inductance of the adjustable inductance, and so on.
  • the method of calculating the adjustment information is related to the number of devices with adjustable impedance in the matching circuit. After successfully completing the adjustment, it is determined that the radio frequency signal of the transmission path meets the performance requirements, and the final numerical information of the adjustable device is updated to the memory to facilitate future debugging.
  • the method for calculating adjustment information may include: the adjustment of the parallel circuit may be calculated according to the addition and subtraction of admittance, and the adjustment of the series circuit may be calculated according to the addition or subtraction of impedance.
  • FIG. 5 is a schematic diagram of the composition structure of an adjustment unit provided by an embodiment of the application.
  • the adjustment unit includes: a power amplifier matching and tuning module, which is set as:
  • the transmission path is adjusted according to the obtained adjustment information, and the load impedance of the power amplifier is tuned to match the current antenna to match the position to achieve the best RxBN and harmonics, so that the RF signal of the transmission path meets the performance Demand conditions.
  • the power amplifier matching and tuning module may use variable value inductors, variable value capacitors, etc. to achieve tuning, and may also use switches to perform different matching options to achieve tuning.
  • the adjustment information includes: the tuning change of the tuning part, such as the change of the capacitance of the adjustable capacitor, the change of the inductance of the adjustable inductance, and so on.
  • FIG. 6 is a schematic diagram of the composition structure of another adjustment unit provided by an embodiment of the application.
  • the adjustment unit includes: a power amplifier matching and tuning module and an antenna matching and tuning module.
  • the antenna matching and tuning module when the adjustment of the power amplifier matching and tuning module fails to achieve the purpose, that is, the radio frequency signal of the transmission path still does not meet the performance requirement condition, the antenna matching and tuning module is activated for adjustment.
  • the antenna matching and tuning module is set to adjust the impedance matching between the transmission path and the antenna according to the impedance position information stored in the memory, so that the signal transmitted through the radio frequency path meets the performance requirements.
  • the power amplifier matching and tuning module is the same as in the previous embodiment, and will not be repeated here.
  • FIG. 7 is a schematic diagram of the composition structure of another adjustment unit provided by an embodiment of the application.
  • the adjustment unit includes: a power amplifier matching and tuning module, an antenna matching and tuning module, and a first tuning module.
  • the first tuning module when the adjustment of the antenna matching and tuning circuit fails to achieve the goal, that is, the radio frequency signal of the transmission path still does not meet the performance requirement, the first tuning module is activated to adjust the peak-to-average ratio of the transmission signal for adjustment.
  • the first tuning module is configured to adjust the peak-to-average ratio of the transmission signal in the transmission path, so that the radio frequency signal of the transmission path meets the performance requirements.
  • the power amplifier matching and tuning module and the antenna matching and tuning module are the same as in the previous embodiment, and will not be repeated here.
  • the first tuning module belongs to the function of a modem (modem), and it can be set in the control unit.
  • modem modem
  • FIG. 8 is a schematic structural diagram of another adjustment unit provided by an embodiment of the application. As shown in FIG. 8, the adjustment unit includes: a power amplifier matching tuning module, an antenna matching tuning module, a first tuning module, and a second tuning module.
  • the second tuning module is configured to adjust the transmission power so that the radio frequency signal of the transmission path meets the performance requirement.
  • the second tuning module when the adjustment of the peak-to-average ratio of the transmitted signal fails to achieve the goal, that is, the radio frequency signal of the transmission path still does not meet the performance requirement, the second tuning module is activated to adjust the transmission power, and the transmission power is gradually reduced for adjustment.
  • the first tuning module and the second tuning module are functions of a modem, which can be set in the control unit.
  • the present application also provides a wireless communication terminal, including the wireless signal performance adjustment device described in any embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method for adjusting transmission performance according to an embodiment of this application, as shown in FIG. 9, including:
  • Step 900 Obtain the radio frequency signal of the transmission path of the wireless communication terminal.
  • the radio frequency signal of the transmission path can be obtained by monitoring the transmission path of the wireless communication terminal in real time. It is also possible to monitor the transmission path of the wireless communication terminal to obtain the radio frequency signal of the transmission path according to a preset period or a specified time period.
  • the frequency point of the spurious signal is also the location of the spurious signal. Because the EMC specification has different EMC requirements for different frequency points. Therefore, in this application, during monitoring, it is necessary to determine the frequency point of the measurement first, and then measure this position.
  • determining the current load impedance value of the power amplifier according to the obtained first digital signal and the second digital signal includes:
  • Step 1001 is the second adjustment: adjust the impedance matching between the transmit path and the antenna according to the adjustment information calculated from the load impedance measured again. If the radio frequency signal of the transmit path still does not meet the performance requirements, go to step 1002; if it meets The performance requirement condition ends this adjustment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)

Abstract

本文公开了一种无线信号性能调整装置、方法和无线通信终端。所述无线信号性能调整装置,包括:监测单元、控制单元、测量单元和调整单元;其中,所述监测单元,设置为监测发射通路的射频信号;所述控制单元,设置为接收来自所述监测单元的所述发射通路的射频信号;在所述发射通路的射频信号不满足性能需求条件的情况下,控制所述测量单元进行测量;根据来自所述测量单元的负载阻抗确定调整信息;所述测量单元,设置为在所述控制单元的控制下测量所述发射通路中功放的负载阻抗;所述调整单元,设置为在所述控制单元的控制下根据所述调整信息对所述发射通路进行调整,以使所述发射通路的射频信号满足所述性能需求条件。

Description

无线信号性能调整装置、方法和无线通信终端
本申请要求在2019年07月08日提交中国专利局、申请号为201910609100.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电磁兼容技术,例如涉及一种无线信号性能调整装置、方法和无线通信终端。
背景技术
对于电子产品来说,多个国家以及相关的标准组织制定了一系列电磁兼容的要求,为了满足这些测试规范,移动终端如手机等从设计到生产环节都需要重视其电磁兼容性能。
电磁兼容性能测试规范中,对于无线通信终端如手机等的工作状态进行了明确的规定,而且在进行测试时,也需要严格遵守相应的规范,以保证电磁兼容测试达标。但是,无线通信终端在实际的工作状态下,应用场景会超出测试规范中的场景,也就是说,按照测试规范测试电磁兼容性达标的无线通信终端,在复杂多变的实际使用场景下很可能不能达到较好的电磁兼容性能。
发明内容
本申请提供一种无线信号性能调整装置、方法和无线通信终端,能够达到在复杂多变的实际使用场景下满足电磁兼容性能要求。
本申请实施例提供了一种无线信号性能调整装置,包括:监测单元、控制单元、测量单元和调整单元;其中,
监测单元,设置为监测发射通路的射频信号;
控制单元,设置为接收来自监测单元的发射通路的射频信号;在发射通路的射频信号不满足性能需求条件的情况下,控制测量单元进行测量;根据来自测量单元的负载阻抗确定调整信息;
测量单元,设置为在控制单元的控制下测量发射通路中功放的负载阻抗;
调整单元,设置为在控制单元的控制下根据调整信息对发射通路进行调整,以使发射通路的射频信号满足性能需求条件。
本申请实施例还提供了一种无线通信终端,包括:本申请任一实施例所述 的无线信号性能调整装置。
本申请实施例还提供了一种无线信号性能调整方法,包括:
获取无线通信终端的发射通路的射频信号;
在根据获得的发射通路的射频信号判断出发射通路的射频信号不满足性能需求条件的情况下,测量发射通路中功放的负载阻抗;
根据测量得到的负载阻抗对发射通路进行调整,以使发射通路的射频信号满足性能需求条件。
附图说明
图1为本申请实施例提供的一种无线信号性能调整装置的组成结构示意图;
图2为本申请实施例提供的一种监测单元的组成结构示意图;
图3为本申请实施例提供的一种测量单元的组成结构示意图;
图4为本申请实施例提供的一种控制单元的组成结构示意图;
图5为本申请实施例提供的一种调整单元的组成结构示意图;
图6为本申请实施例提供的另一种调整单元的组成结构示意图;
图7为本申请实施例提供的另一种调整单元的组成结构示意图;
图8为本申请实施例提供的另一种调整单元的第四实施例的组成结构示意图;
图9为本申请实施例提供的一种无线信号性能调整方法的流程示意图;
图10为本申请实施例提供的一种对发射通路进行调整的流程示意图。
具体实施方式
一实施例的配置中,计算设备包括一个或多个中央处理器(Central Processing Unit,CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(Random Access Memory,RAM)和/或非易失性内存等形式,如只读存储器(Read-Only Memory,ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存 (Phase-Change RAM,PRAM)、静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(Compact Disc-ROM,CD-ROM)、数字多功能光盘(Digital Video Disc,DVD)或其他光学存储、磁盒式磁带,磁带磁盘存储或其他磁性存储设备或任何其他非传输介质,可设置为存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括非暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
下文中将结合附图对本申请的实施例进行说明。
以无线通信中的频分双工(Frequency-Division Duplexing,FDD)模式为例,发射频率和接收频率是不同的,发射通路的功率放大器(简称为功放)除了产生发射频带内的信号,还会产生落在接收频带内的干扰信号。而这些落在接收频带内的干扰信号,针对接收信号来说,就属于噪声,一般被称为接收频带内噪声(Receive Band Noise,RxBN),所以RxBN越小越好。另外,发射通路上的功放除放大发射频带内有用信号外,还会产生谐波信号,这些谐波信号是需要被严格限制的,在多种电磁兼容(Electromagnetic Compatibility,EMC)测试规范中对于谐波的强度都有严格的要求。RxBN和谐波都来源于功放,而这两个指标都与功放的负载阻抗密切相关,不同的负载阻抗对应不同的RxBN和谐波特性,因此,通常功放都会有特定的负载牵引(Loadpull)信息(也称为负载牵引图)。相关技术中,在无线通信终端如手机等的研发调试阶段,会按照Loadpull选出一个特定射频阻抗的位置,但是,前提是射频测试座的位置连接着50欧姆负载阻抗的射频仪表。而当移动终端在实际使用时,射频测试座所处位置的阻抗会随着应用场景实时变化,也就是说,功放的负载阻抗也在随之变化,这样,会造成RxBN和谐波产生恶化的情况。
由于天线阻抗会随着应用场景的变化而变化,从而导致功放的输出性能发生变化,容易造成移动终端的电磁兼容性能恶化。因此,本申请提出通过实时监测发射通路的发射指标来发现异常状态,并通过对功放的调整,比如调整功放的发射功率大小、或者调整功放的匹配,或者降低发射信号的峰均比等手段,或者调整天线的匹配,来实现对发射通路的发射性能的调整,以降低无线通信终端辐射出来的电磁干扰信号,从而提升无线通信终端的电磁兼容性能,进而达到无线通信终端在复杂多变的实际使用场景下满足电磁兼容性能要求。
图1为本申请实施例提供的一种无线信号性能调整装置的组成结构示意图,如图1所示,无线信号性能调整装置至少包括:监测单元、控制单元、测量单 元和调整单元;其中,监测单元,设置为监测发射通路的射频信号;测量单元,设置为在控制单元的控制下测量发射通路中功放的负载阻抗;控制单元,设置为接收来自监测单元的发射通路的射频信号;判断出发射通路的射频信号不满足性能需求条件,控制测量单元进行测量;根据来自测量单元的负载阻抗确定调整信息;调整单元,设置为在控制单元的控制下根据调整信息对发射通路进行调整,以使发射通路的射频信号满足性能需求条件。
在一种示例性实例中,监测单元可以通过实时对无线通信终端的发射通路进行监测以获得发射通路的射频信号。也可以按照预设周期或在指定时间段对无线通信终端的发射通路进行监测以获得发射通路的射频信号。
在一种示例性实例中,调整单元包括以下模块中的至少之一:
功放匹配调谐模块,设置为调整发射通路中功放的匹配,以使发射通路的射频信号满足性能需求条件;天线匹配调谐模块,设置为调整发射通路与天线之间的阻抗匹配,以使发射通路的射频信号满足性能需求条件;第一调谐模块,设置为调整发射通路中发射信号峰均比,以使发射通路的射频信号满足性能需求条件;第二调谐模块,设置为调整发射功率,以使发射通路的射频信号满足性能需求条件。
在一种示例性实例中,调整单元包括:功放匹配调谐模块;或者,调整单元包括:功放匹配调谐模块和天线匹配调谐模块;或者,调整单元包括:功放匹配调谐模块、天线匹配调谐模块和第一调谐模块;或者,调整单元包括:功放匹配调谐模块、天线匹配调谐模块、第一调谐模块和第二调谐模块。
在一种示例性实例中,不满足性能需求条件包括:不满足电磁兼容性能需求。
本申请通过实时监测发射通路的发射指标来发现异常状态,并通过对功放的调整,实现了对发射通路发射性能的调整,降低了无线通信终端辐射出来的电磁干扰信号,从而提升了无线通信终端的电磁兼容性能,进而达到了无线通信终端在复杂多变的实际使用场景下也能满足电磁兼容性能要求。
图2为本申请实施例提供的一种监测单元的组成结构示意图,如图2所示,监测单元至少包括:耦合器、第一下变频电路、第一模数转换器(Analog to Digital Converter,ADC)采样电路、第一数字变增益放大器和第一数字处理单元;其中,耦合器,设置为从发射通路耦合出射频信号,输出给第一下变频电路;第一下变频电路,设置为按照预设频率对耦合出的射频信号进行处理得到所需要的频率的低频信号;第一ADC采样电路,设置为对低频信号进行模数转换得到数字信号;第一数字变增益放大器,设置为对模数转换得到的数字信号进行放 大,以满足第一数字处理单元可以处理的范围。这样,防止了ADC采样出的信号幅度太大或者太小,保证了第一数字处理单元实现准确的幅度判断。第一数字处理单元,设置为对放大后的数字信号进行幅度计算得到所需要的频率点的发射通路的信号强度,将得到的发射通路的信号强度输出给控制单元。
在一种示例性实例中,所需要的频率点,对于二次谐波来说,二次谐波所处的频率点就是所需要的频率点。也就是判断超标位置所处的频率点
在一种示例性实例中,耦合器可以共用移动终端的发射通路中包含的宽带双向耦合器,也可以是监测单元单独采用一个宽带耦合器。
在一种示例性实例中,第一下变频电路的本振频率可以任意选择,如发射中心频率、或发射中心频率的2倍频、或发射中心频率的3倍频等等。
在一种示例性实例中,第一数字处理单元是设置为:
对来自第一数字变增益放大器输出的数字信号进行傅里叶变换,得到频率与信号幅度的对应关系;将得到的信号幅度加上第一数字变增益放大器的增益值,再加上耦合器的耦合度,即可得到所需要的频率点的信号强度。
图3为本申请实施例提供的一种测量单元的组成结构示意图,如图3所示,测量单元至少包括:双向耦合器、通道选择电路、第二下变频电路、第二ADC采样电路、第二数字变增益放大器和第二数字处理单元;其中,双向耦合器,设置为对发射通路中发射的参考信号进行耦合;通道选择电路,设置为通过第一通道接收前向信号的耦合信号,通过第二通道接收反射信号的耦合信号;在需要进行VSWR测量时,通道选择电路将第一通道和第二通道各自切换一次。第二下变频电路,设置为按照预设频率对耦合出的耦合信号进行处理得到所需要的频率的第一低频信号;按照预设频率对反射信号进行处理得到所需要的频率的第二低频信号;这里,预设频率就是所需要的频率。第二ADC采样电路,设置为对第一低频信号进行模数转换得到第一数字信号;对第二低频信号进行模数转换得到第二数字信号;第二数字变增益放大器,设置为对第一数字信号进行放大,以满足第二数字处理单元可以处理的范围;对第二数字信号进行放大,以满足第二数字处理单元可以处理的范围;第二数字处理单元,设置为根据得到的第一数字信号和第二数字信号确定功放当前的负载阻抗值。
在一种示例性实例中,第二数字处理单元是设置为:
对第一数字信号进行计算得到耦合信号的第一信号强度和第一相位信息,对第二数字信号进行计算得到发射合信号的第二信号强度和第二相位信息;计算第一信号强度与第二信号强度的比值得到电压驻波比(Voltage Standing Wave Ratio,VSWR,简称驻波比),根据第一相位信息与第二相位信息的差值获取 阻抗的相位信息;根据VSWR、阻抗的相位信息以及内存中存储的散射参数,计算得到功放当前的负载阻抗值,将得到的负载阻抗值输出给控制单元。
内存中存储的散射参数是当前电路的实时阻抗信息。在调整单元对相应电路进行匹配调整后,该散射参数会相应被更新。
在一种示例性实例中,通道选择电路可以为:双刀双掷开关,或者单刀双掷开关搭建的类似功能电路。
在一种示例性实例中,监测单元与测量单元为独立的两个功能单元,但是监测单元中与测量单元中功能相同的电路可以复用即在无线信号性能装置中仅设置一套,比如:第一下变频电路与第二下变频电路、第一ADC采样电路与第二ADC采样电路、第一数字变增益放大器与第二数字变增益放大器等;监测单元中与测量单元中功能相同的电路也可以分别设置一套。
图4为本申请实施例提供的一种控制单元的组成结构示意图,如图4所示,控制单元至少包括:第一处理模块、第二处理模块、控制模块和存储有负载牵引信息的存储模块,其中,
第一处理模块,设置为接收来自监测单元的发射通道的信号,判断出发射通路的射频信号不满足性能需求条件,控制测量单元进行测量;第二处理模块,设置为根据来自测量单元的负载阻抗值,按照功放的负载牵引信息查询到最优的阻抗位置信息并计算出调整信息;控制模块,设置为根据得到的调整信息控制调整单元对发射通路进行调整,根据调整结果更新内存中的散射参数。
在一种示例性实例中,调整信息包括:调谐部分的调谐变化量,比如可调电容的容值变化、可调电感的感值变化等。
在一种示例性实例中,计算调整信息的方法与匹配电路中的阻抗可调值的器件数量相关。成功完成调整即判断出发射通路的射频信号满足性能需求条件,会将可调器件的最终数值信息更新到内存中,以方便以后的调试使用。在一种示例性实例中,计算调整信息的方法可以包括:对于并联电路的调整可以按照导纳的加减进行计算,串联电路的调整可以按照阻抗的加减进行计算。
图5为本申请实施例提供的一种调整单元的组成结构示意图,如图5所示,调整单元包括:功放匹配调谐模块,设置为:
在控制单元的控制下,根据得到的调整信息对发射通路进行调整,将功放的负载阻抗调谐到和当前天线匹配以适配达到最佳RxBN和谐波的位置,使得发射通路的射频信号满足性能需求条件。
在一种示例性实例中,功放匹配调谐模块可以采用可变值电感、或可变值电容等实现调谐,也可以采用开关进行不同匹配的选择来实现调谐的作用。
在一种示例性实例中,调整信息包括:调谐部分的调谐变化量,比如可调电容的容值变化、可调电感的感值变化等。
图6为本申请实施例提供的另一种调整单元的组成结构示意图,如图6所示,调整单元包括:功放匹配调谐模块和天线匹配调谐模块。
本实施例中,当功放匹配调谐模块的调整达不到目的即发射通路的射频信号仍然不满足性能需求条件,启动天线匹配调谐模块进行调整。天线匹配调谐模块,设置为按照内存中存储的阻抗位置信息调整发射通路与天线之间的阻抗匹配,以使发射通射频路的信号满足性能需求条件。功放匹配调谐模块与上一实施例中一致,这里不再赘述。
图7为本申请实施例提供的另一种调整单元的组成结构示意图,如图7所示,调整单元包括:功放匹配调谐模块、天线匹配调谐模块和第一调谐模块。
本实施例中,当天线匹配调谐电路调整达不到目的即发射通路的射频信号还是不满足性能需求条件,启动第一调谐模块对发射信号峰均比进行调节,以进行调整。第一调谐模块,设置为调整发射通路中发射信号峰均比,以使发射通路的射频信号满足性能需求条件。功放匹配调谐模块和天线匹配调谐模块与上一实施例中一致,这里不再赘述。
在一种示例性实例中,第一调谐模块属于调制解调器(modem)的功能,可以将其设置在控制单元中。
图8为本申请实施例提供的另一种调整单元的组成结构示意图,如图8所示,调整单元包括:功放匹配调谐模块、天线匹配调谐模块、第一调谐模块和第二调谐模块。
第二调谐模块,设置为调整发射功率,以使发射通路的射频信号满足性能需求条件。
本实施例中,当发射信号峰均比调整达不到目的即仍然发射通路的射频信号仍然不满足性能需求条件,启动第二调谐模块对发射功率进行调节,逐步降低发射功率,以进行调整。
在一种示例性实例中,第一调谐模块、第二调谐模块属于modem的功能,可以将其设置在控制单元中。
本申请还提供一种无线通信终端,包括本申请任一实施例所述的无线信号性能调整装置。
图9为本申实施例提供的一种请发射性能调整方法的流程示意图,如图9所示,包括:
步骤900:获取无线通信终端发射通路的射频信号。
在一种示例性实例中,可以通过实时对无线通信终端的发射通路进行监测以获得发射通路的射频信号。也可以按照预设周期或在指定时间段对无线通信终端的发射通路进行监测以获得发射通路的射频信号。
步骤901:根据获得的发射通路的射频信号判断出发射通路的射频信号不满足性能需求条件,测量发射通路中功放的负载阻抗。
在一种示例性实例中,不满足性能需求条件包括:不满足电磁兼容性能需求。
在一种示例性实例中,根据获得的发射通路的射频信号判断出发射通路的射频信号不满足性能需求条件,可以包括:
根据杂散信号所在的频率点来监测发射通路的该频率点的信号强度,当获得的信号强度超标,确定发射通路的射频信号不满足性能需求条件,意味着无线通信终端存在电磁兼容风险。
杂散信号所在的频率点也就是杂散信号所在位置。因为EMC规范对不同的频率点有不同的EMC要求。因此,本申请中,在监测时,需要先确定测量的频率点,然后再对这个位置进行测量。
在一种示例性实例中,如果判断出发射通路的射频信号满足性能需求条件,那么,继续执行对获得的无线通信终端发射通路的射频信号进行判断的步骤。
在一种示例性实例中,测量发射通路中功放的负载阻抗,可以包括:
耦合发射通路中发射的参考信号;按照预设频率对耦合出的耦合信号进行处理得到第一数字信号,按照预设频率对耦合信号发射的反射信号进行处理得到第二数字信号;根据得到的第一数字信号和第二数字信号确定功放当前的负载阻抗值。
在一种示例性实例中,对耦合出的耦合信号或反射信号进行的处理,包括:下变频处理、模数转换、放大处理。
在一种示例性实例中,根据得到的第一数字信号和第二数字信号确定功放当前的负载阻抗值,包括:
对第一数字信号进行计算得到耦合信号的第一信号强度和第一相位信息,对第二数字信号进行计算得到发射合信号的第二信号强度和第二相位信息;在对第一数字信号或第二数字信号进行计算之前,还可以包括:放大第一数字信号,放大第二数字信号;计算第一信号强度与第二信号强度的比值得到VSWR,根据第一相位信息与第二相位信息的差值获取阻抗的相位信息;根据VSWR、 阻抗的相位信息以及内存中存储的散射参数,计算得到功放当前的负载阻抗值。
内存中存储的散射参数是当前电路的实时阻抗信息。在调整单元对相应电路进行匹配调整后,该散射参数会相应被更新。
步骤902:根据测量得到的负载阻抗对发射通路进行调整,以使发射通路的射频信号满足性能需求条件。
在一种示例性实例中,步骤902可以包括:
根据测量得到的负载阻抗值,按照功放的负载牵引信息查询到最优的阻抗位置信息并计算出调整信息;根据得到的调整信息对发射通路进行调整并根据调整结果更新内存中散射参数。
在一种示例性实例中,调整信息包括:调谐部分的调谐变化量,比如可调电容的容值变化、可调电感的感值变化等。
在一种示例性实例中,计算调整信息的方法与匹配电路中的阻抗可调值的器件数量相关。成功完成调整即判断出发射通路的射频信号满足性能需求条件,会将可调器件的最终数值信息更新到内存中,以方便以后的调试使用。在一种示例性实例中,计算调整信息的方法可以包括:对于并联电路的调整可以按照导纳的加减进行计算,串联电路的调整可以按照阻抗的加减进行计算。
在一种示例性实例中,根据调整信息对发射通路进行调整,可以包括至少之一:
根据调整信息调整发射通路中功放的匹配;根据调整信息调整发射通路与天线之间的阻抗匹配;根据调整信息调整发射通路中发射信号峰均比;根据调整信息调整发射功率。
在一种示例性实例中,根据调整信息对发射通路进行调整,以使发射通路的射频信号满足性能需求条件,包括:
根据调整信息调整发射通路中功放的匹配,以使发射通路的射频信号满足性能需求条件;或者,根据调整信息调整发射通路中功放的匹配,如果发射通路的射频信号仍然不满足性能需求条件,根据再次测量得到的负载阻抗计算得到的调整信息调整发射通路与天线之间的阻抗匹配,以使发射通路的射频信号满足性能需求条件;或者,根据调整信息调整发射通路中功放的匹配,如果发射通路的射频信号仍然不满足性能需求条件,根据再次测量得到的负载阻抗计算得到的调整信息调整发射通路与天线之间的阻抗匹配,如果发射通路的射频信号还是不满足性能需求条件,根据又一次测量得到的负载阻抗计算得到的调整信息调整发射通路中发射信号峰均比,以使发射通路的射频信号满足性能需求条件;或者,如图10所示,包括:
步骤1000为第一次调整:根据调整信息调整发射通路中功放的匹配,如果发射通路的射频信号仍然不满足性能需求条件,进入步骤1001;如果满足性能需求条件,结束本次调整。
步骤1001为第二次调整:根据再次测量得到的负载阻抗计算得到的调整信息调整发射通路与天线之间的阻抗匹配,如果发射通路的射频信号还是不满足性能需求条件,进入步骤1002;如果满足性能需求条件,结束本次调整。
步骤1002为第三次调整:根据又一次测量得到的负载阻抗计算得到的调整信息调整发射通路中发射信号峰均比,如果发射通路的射频信号还是不满足性能需求条件,进入步骤1003;如果满足性能需求条件,结束本次调整。
步骤1003为第四次调整:根据再一次测量得到的负载阻抗计算得到的调整信息调整发射功率,以使发射通路的射频信号满足性能需求条件。
本申请通过实时监测发射通路的发射指标来发现异常状态,并通过对功放的调整,实现了对发射通路发射性能的调整,降低了无线通信终端辐射出来的电磁干扰信号,从而提升了无线通信终端的电磁兼容性能,进而达到了无线通信终端在复杂多变的实际使用场景下也能满足电磁兼容性能要求。

Claims (19)

  1. 一种无线信号性能调整装置,包括:监测单元、控制单元、测量单元和调整单元;其中,
    所述监测单元,设置为监测发射通路的射频信号;
    所述控制单元,设置为接收来自所述监测单元的所述发射通路的射频信号;在所述发射通路的射频信号不满足性能需求条件的情况下,控制所述测量单元进行测量;根据来自所述测量单元的负载阻抗确定调整信息;
    所述测量单元,设置为在所述控制单元的控制下测量所述发射通路中功放的负载阻抗;
    所述调整单元,设置为在所述控制单元的控制下根据所述调整信息对所述发射通路进行调整,以使所述发射通路的射频信号满足所述性能需求条件。
  2. 根据权利要求1所述的装置,其中,所述调整单元包括以下模块中的至少之一:
    功放匹配调谐模块,设置为调整所述发射通路中功放的匹配,以使所述发射通路的射频信号满足所述性能需求条件;
    天线匹配调谐模块,设置为调整所述发射通路与天线之间的阻抗匹配,以使所述发射通路的射频信号满足所述性能需求条件;
    第一调谐模块,设置为调整所述发射通路中发射信号峰均比,以使所述发射通路的射频信号满足所述性能需求条件;
    第二调谐模块,设置为调整发射功率,以使所述发射通路的射频信号满足所述性能需求条件。
  3. 根据权利要求1所述的装置,其中,所述监测单元是设置为:
    实时对无线通信终端的发射通路进行监测以获得所述发射通路的射频信号;
    或者,按照预设周期或在指定时间段对无线通信终端的发射通路进行监测以获得所述发射通路的射频信号。
  4. 根据权利要求1所述的装置,其中,所述监测单元包括:耦合器、第一下变频电路、第一模数转换器ADC采样电路、第一数字变增益放大器和第一数字处理单元;其中,
    所述耦合器,设置为从所述发射通路耦合出射频信号,输出给所述第一下变频电路;
    所述第一下变频电路,设置为按照预设频率对耦合出的射频信号进行处理 得到所需要的频率点的低频信号;
    所述第一ADC采样电路,设置为对所述低频信号进行模数转换得到数字信号;
    所述第一数字变增益放大器,设置为对模数转换得到的数字信号进行放大;
    所述第一数字处理单元,设置为对放大后的数字信号进行幅度计算得到所需要的频率点的发射通路的信号强度,将得到的所需要的频率点的发射通路的信号强度输出给所述控制单元。
  5. 根据权利要求4所述的装置,其中,所述第一数字处理单元是设置为:
    对来自所述第一数字变增益放大器输出的数字信号进行傅里叶变换,得到频率与信号幅度的对应关系;将得到的信号幅度加上所述第一数字变增益放大器的增益值,再加上所述耦合器的耦合度,得到所述所需要的频率点的发射通路的信号强度。
  6. 根据权利要求1所述的装置,其中,所述测量单元包括:双向耦合器、通道选择电路、第二下变频电路、第二ADC采样电路、第二数字变增益放大器和第二数字处理单元;其中,
    所述双向耦合器,设置为对所述发射通路中发射的参考信号进行耦合得到耦合信号;
    所述通道选择电路,设置为通过第一通道接收所述耦合信号,通过第二通道接收所述耦合信号反射的反射信号;
    所述第二下变频电路,设置为按照预设频率对所述通道选择电路接收的耦合信号进行处理得到所需要的频率的第一低频信号;按照预设频率对所述通道选择电路接收的反射信号进行处理得到所需要的频率的第二低频信号;
    所述第二ADC采样电路,设置为对所述第一低频信号进行模数转换得到第一数字信号;对所述第二低频信号进行模数转换得到第二数字信号;
    所述第二数字变增益放大器,设置为对所述第一数字信号进行放大,对所述第二数字信号进行放大;
    所述第二数字处理单元,设置为根据放大后的第一数字信号和放大后的第二数字信号确定所述功放的负载阻抗值,输出给所述控制单元。
  7. 根据权利要求6所述的无线信号性能调整装置,其中,所述第二数字处理单元是设置为:
    对所述第一数字信号进行计算得到耦合信号的第一信号强度和第一相位信息,对所述第二数字信号进行计算得到发射合信号的第二信号强度和第二相位 信息;计算所述第一信号强度与所述第二信号强度的比值得到电压驻波比VSWR,根据所述第一相位信息与所述第二相位信息的差值获取阻抗的相位信息;根据所述VSWR、所述阻抗的相位信息以及内存中存储的散射参数,计算得到所述功放的负载阻抗值,将得到的负载阻抗值输出给所述控制单元。
  8. 根据权利要求1所述的装置,其中,所述控制单元包括:第一处理模块、第二处理模块、控制模块和存储有所述功放的负载牵引信息的存储模块;其中,
    所述第一处理模块,设置为接收来自所述监测单元的发射通道的信号,在所述发射通路的射频信号不满足所述性能需求条件的情况下,控制所述测量单元进行测量;
    所述第二处理模块,设置为根据来自所述测量单元的负载阻抗值,按照所述功放的负载牵引信息查询到最优的阻抗位置信息并计算出所述调整信息;
    所述控制模块,设置为根据得到的调整信息控制所述调整单元对所述发射通路进行调整,根据调整结果更新内存中的散射参数。
  9. 一种无线通信终端,包括:权利要求1~8任一项所述的无线信号性能调整装置。
  10. 一种无线信号性能调整方法,包括:
    获取无线通信终端的发射通路的射频信号;
    在根据获得的发射通路的射频信号判断出所述发射通路的射频信号不满足性能需求条件的情况下,测量所述发射通路中功放的负载阻抗;
    根据测量得到的负载阻抗对所述发射通路进行调整,以使所述发射通路的射频信号满足性能需求条件。
  11. 根据权利要求10所述的方法,还包括:
    在判断出所述发射通路的射频信号满足所述性能需求条件的情况下,继续执行对获得的所述无线通信终端的发射通路的射频信号进行判断的步骤。
  12. 根据权利要求10或11所述的方法,其中,所述获取无线通信终端的发射通路的射频信号,包括:
    通过实时对所述无线通信终端的发射通路进行监测以获得所述发射通路的射频信号;或者,
    按照预设周期或在指定时间段对所述无线通信终端的发射通路进行监测以获得所述发射通路的射频信号。
  13. 根据权利要求10或11所述的方法,其中,所述根据发射通路的射频 信号判断出所述发射通路的射频信号不满足性能需求条件,包括:
    根据所述发射通路的射频信号中的杂散信号所在的位置监测获得所述发射通路的射频信号的信号强度,在获得的信号强度超标的情况下,确定所述发射通路的射频信号不满足所述性能需求条件。
  14. 根据权利要求10或11所述的方法,其中,所述测量所述发射通路中功放的负载阻抗,包括:
    耦合所述发射通路中发射的参考信号得到耦合信号;
    按照预设频率对耦合出的耦合信号进行处理得到第一数字信号,按照预设频率对所述耦合信号发射的反射信号进行处理得到第二数字信号;
    根据得到的第一数字信号和第二数字信号确定所述功放的负载阻抗值。
  15. 根据权利要求14所述的方法,其中,所述根据得到的第一数字信号和第二数字信号确定所述功放的负载阻抗值,包括:
    对所述第一数字信号进行计算得到耦合信号的第一信号强度和第一相位信息,对所述第二数字信号进行计算得到发射合信号的第二信号强度和第二相位信息;
    计算所述第一信号强度与所述第二信号强度的比值得到电压驻波比VSWR,根据所述第一相位信息与所述第二相位信息的差值获取阻抗的相位信息;
    根据所述VSWR、所述阻抗的相位信息以及内存中存储的散射参数,计算得到所述功放的所述负载阻抗值。
  16. 根据权利要求14所述的方法,其中,对所述耦合出的耦合信号或所述反射信号进行的处理,包括:下变频处理、模数转换和放大。
  17. 根据权利要求10或11所述的方法,其中,所述根据测量得到的负载阻抗对所述发射通路进行调整,包括:
    根据所述测量得到的负载阻抗值,按照所述功放的负载牵引信息查询到最优的阻抗位置信息并计算出调整信息;
    根据得到的调整信息对所述发射通路进行调整,根据调整结果更新内存中散射参数。
  18. 根据权利要求17所述的方法,其中,所述根据调整信息对所述发射通路进行调整包括以下至少之一:
    根据所述调整信息调整所述发射通路中功放的匹配;
    根据所述调整信息调整所述发射通路与天线之间的阻抗匹配;
    根据所述调整信息调整所述发射通路中发射信号峰均比;
    根据所述调整信息调整发射功率。
  19. 根据权利要求17所述的方法,其中,所述根据调整信息对所述发射通路进行调整,包括以下之一:
    根据所述调整信息调整所述发射通路中功放的匹配,以使所述发射通路的射频信号满足所述性能需求条件;
    根据所述调整信息调整所述发射通路中功放的匹配,在调整所述发射通路中功放的匹配后,所述发射通路的射频信号不满足所述性能需求条件的情况下,根据再次测量得到的负载阻抗值计算得到的调整信息调整所述发射通路与天线之间的阻抗匹配,以使所述发射通路的射频信号满足所述性能需求条件;
    根据所述调整信息调整所述发射通路中功放的匹配,在调整所述发射通路中功放的匹配后,所述发射通路的射频信号不满足所述性能需求条件的情况下,根据再次测量得到的负载阻抗值计算得到的调整信息调整所述发射通路与天线之间的阻抗匹配,在调整所述发射通路与天线之间的阻抗匹配后,所述发射通路的射频信号不满足所述性能需求条件的情况下,根据又一次测量得到的负载阻抗值计算得到的调整信息调整所述发射通路中发射信号峰均比,以使所述发射通路的射频信号满足所述性能需求条件;
    根据所述调整信息调整所述发射通路中功放的匹配,在调整后的所述发射通路的射频信号不满足所述性能需求条件的情况下,根据再次测量得到的负载阻抗值计算得到的调整信息调整所述发射通路与天线之间的阻抗匹配,在调整所述发射通路与天线之间的阻抗匹配后,所述发射通路的射频信号不满足所述性能需求条件的情况下,根据又一次测量得到的负载阻抗值计算得到的调整信息调整所述发射通路中发射信号峰均比,在调整所述发射通路中发射信号峰均比后,所述发射通路的射频信号不满足所述性能需求条件的情况下,根据再一次测量得到的负载阻抗值计算得到的调整信息调整发射功率,以使所述发射通路的射频信号满足所述性能需求条件。
PCT/CN2020/094086 2019-07-08 2020-06-03 无线信号性能调整装置、方法和无线通信终端 WO2021004199A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/613,049 US11711153B2 (en) 2019-07-08 2020-06-03 Wireless signal performance adjustment apparatus and method and wireless communication terminal
EP20837265.6A EP3965321B1 (en) 2019-07-08 2020-06-03 Wireless signal performance adjustment apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910609100.7A CN112202508B (zh) 2019-07-08 2019-07-08 一种无线信号性能调整装置及方法和无线通信终端
CN201910609100.7 2019-07-08

Publications (1)

Publication Number Publication Date
WO2021004199A1 true WO2021004199A1 (zh) 2021-01-14

Family

ID=74004375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094086 WO2021004199A1 (zh) 2019-07-08 2020-06-03 无线信号性能调整装置、方法和无线通信终端

Country Status (4)

Country Link
US (1) US11711153B2 (zh)
EP (1) EP3965321B1 (zh)
CN (1) CN112202508B (zh)
WO (1) WO2021004199A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113783611A (zh) * 2021-07-29 2021-12-10 香港理工大学深圳研究院 一种信道监测方法、解调方法、装置、设备及存储介质
CN115334526A (zh) * 2022-08-10 2022-11-11 北京邮电大学 一种基于可变绕射调节结构的无线信号优化方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149291B (zh) * 2019-05-06 2023-05-09 南京睿赫电子有限公司 一种用于无线充电接收端ask负载调制电路及调制方法
WO2022165842A1 (zh) * 2021-02-08 2022-08-11 深圳市汇顶科技股份有限公司 信号传输方法、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140323065A1 (en) * 2011-01-04 2014-10-30 St-Ericsson Sa Method and Terminal Device for Automatically Tuning Impedance Matching of Multi-Frequency Band Antenna
CN104243721A (zh) * 2013-06-24 2014-12-24 联发科技股份有限公司 无线通信电路及其阻抗调整方法
CN105939417A (zh) * 2016-06-03 2016-09-14 上海摩软通讯技术有限公司 移动终端及其信号发射功率调整方法
CN106464392A (zh) * 2014-05-30 2017-02-22 天工方案公司 具有改善的线性度的rf收发器前端模块
CN108900206A (zh) * 2018-07-04 2018-11-27 青岛海信移动通信技术股份有限公司 一种阻抗匹配装置、阻抗匹配方法及通信终端

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7085330B1 (en) * 2002-02-15 2006-08-01 Marvell International Ltd. Method and apparatus for amplifier linearization using adaptive predistortion
CN1255938C (zh) * 2002-12-10 2006-05-10 株式会社Ntt都科摩 线性功率放大方法和线性功率放大器
CN100576724C (zh) * 2005-05-18 2009-12-30 株式会社Ntt都科摩 幂级数型前置补偿器及其控制方法
JP4941261B2 (ja) * 2007-12-04 2012-05-30 富士通株式会社 歪補償増幅装置および歪補償方法
CN101252752A (zh) 2008-03-14 2008-08-27 姜群星 数据监测与定位导航型双卡双网终端
CN101656512B (zh) * 2008-08-18 2012-06-27 富士通株式会社 功率放大器非线性程度度量装置、方法和预失真补偿装置
US8170509B2 (en) * 2009-04-10 2012-05-01 Freescale Semiconductor, Inc. Incident and reflected signal phase difference detection
CN102420353B (zh) 2010-09-28 2015-08-05 宏达国际电子股份有限公司 天线模块
US8611834B2 (en) * 2010-11-01 2013-12-17 Cree, Inc. Matching network for transmission circuitry
US8761698B2 (en) * 2011-07-27 2014-06-24 Intel Mobile Communications GmbH Transmit circuit, method for adjusting a bias of a power amplifier and method for adapting the provision of a bias information
JP5779725B2 (ja) * 2012-09-25 2015-09-16 株式会社日立国際電気 歪み補償回路および歪み補償回路と高周波電力増幅器を用いた送信装置
CN105472082A (zh) 2014-08-26 2016-04-06 深圳富泰宏精密工业有限公司 辐射杂散辅助测试电路
US9590701B2 (en) 2014-09-08 2017-03-07 Broadcom Corporation Feedback-based adaptive load modulation (ALM) for a near field communication (NFC) device
EP3337043B1 (en) * 2016-12-16 2019-10-16 Intel IP Corporation Control circuit and apparatus, radio frequency circuit and apparatus, transceiver, mobile terminal, methods and computer programs for determining calibration values for a radio frequency circuit
CN108183694B (zh) * 2018-01-15 2020-09-25 清华大学 负载可调的功率放大器
CN207977584U (zh) 2018-02-17 2018-10-16 深圳市肖端电子有限公司 一种电磁兼容性良好的手机连接器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140323065A1 (en) * 2011-01-04 2014-10-30 St-Ericsson Sa Method and Terminal Device for Automatically Tuning Impedance Matching of Multi-Frequency Band Antenna
CN104243721A (zh) * 2013-06-24 2014-12-24 联发科技股份有限公司 无线通信电路及其阻抗调整方法
CN106464392A (zh) * 2014-05-30 2017-02-22 天工方案公司 具有改善的线性度的rf收发器前端模块
CN105939417A (zh) * 2016-06-03 2016-09-14 上海摩软通讯技术有限公司 移动终端及其信号发射功率调整方法
CN108900206A (zh) * 2018-07-04 2018-11-27 青岛海信移动通信技术股份有限公司 一种阻抗匹配装置、阻抗匹配方法及通信终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3965321A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113783611A (zh) * 2021-07-29 2021-12-10 香港理工大学深圳研究院 一种信道监测方法、解调方法、装置、设备及存储介质
CN115334526A (zh) * 2022-08-10 2022-11-11 北京邮电大学 一种基于可变绕射调节结构的无线信号优化方法
CN115334526B (zh) * 2022-08-10 2024-01-05 北京邮电大学 一种基于可变绕射调节结构的无线信号优化方法

Also Published As

Publication number Publication date
EP3965321B1 (en) 2023-04-05
US11711153B2 (en) 2023-07-25
EP3965321A4 (en) 2022-06-29
CN112202508B (zh) 2022-09-27
US20220255640A1 (en) 2022-08-11
EP3965321A1 (en) 2022-03-09
CN112202508A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2021004199A1 (zh) 无线信号性能调整装置、方法和无线通信终端
US9641146B2 (en) Apparatus and method for detecting radio frequency power
US8483632B2 (en) Radiated power control systems and methods in wireless communication devices
US20230170927A1 (en) Adaptive antenna tuning system
KR20170028309A (ko) 안테나 피드백을 사용하는 근접성 검출
US8725441B2 (en) Antenna matching network tuning method
US9276312B2 (en) Antenna tuner control system using state tables
GB2469922A (en) Automatic tuning arrangements and method for a mobile FM transceiver
TW201400823A (zh) 用於量測天線阻抗的裝置及方法
CN106877946B (zh) 一种高性能信道模拟器自动控制接收机及其验证装置
JP2013142634A (ja) Vswr検出回路
CN107944312B (zh) 一种rfid读写器接收灵敏度检测方法和装置
CN1852062B (zh) 一种检测窄带基站系统的天馈故障点的装置和方法
CN113900071B (zh) 输出功率检测电路、调节方法、检测方法及相控阵雷达
DE102022105678A1 (de) Elektronische vorrichtungen mit objekterkennung im ultranahbereich mit hintergrundunterdrückung
KR20100071503A (ko) 이동통신 단말에서 채널 편차 개선을 위한 송신 장치 및 방법
US11689163B2 (en) Load insensitive power detection
CN117728831A (zh) 一种可校准的射频信号源及其校准方法
CN109951244B (zh) 一种应用于信道模拟器的功率测量及射频接收增益控制方法
CN113992215A (zh) 射频前端发射模块及其带外杂散自适应调节方法
WO2022087927A1 (zh) 一种天线调谐装置及方法
CN114866163A (zh) 射频校准电路、电子设备及射频校准方法
CN111130573B (zh) 一种提高宽带变频接收模块幅相一致性的电路
US6969985B2 (en) Active coupler
JP2019068166A (ja) Rfidリーダライタ装置、インピーダンス調整方法、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020837265

Country of ref document: EP

Effective date: 20211203