WO2021004165A1 - 基于倒装焊芯片的压力传感器芯体、芯体制造及封装方法和压力传感器 - Google Patents

基于倒装焊芯片的压力传感器芯体、芯体制造及封装方法和压力传感器 Download PDF

Info

Publication number
WO2021004165A1
WO2021004165A1 PCT/CN2020/091090 CN2020091090W WO2021004165A1 WO 2021004165 A1 WO2021004165 A1 WO 2021004165A1 CN 2020091090 W CN2020091090 W CN 2020091090W WO 2021004165 A1 WO2021004165 A1 WO 2021004165A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
pressure
terminal
core
pressure sensor
Prior art date
Application number
PCT/CN2020/091090
Other languages
English (en)
French (fr)
Inventor
娄帅
费友健
刘召利
Original Assignee
南京新力感电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京新力感电子科技有限公司 filed Critical 南京新力感电子科技有限公司
Priority to EP20837472.8A priority Critical patent/EP3998465A4/en
Publication of WO2021004165A1 publication Critical patent/WO2021004165A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0061Electrical connection means
    • G01L19/0084Electrical connection means to the outside of the housing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0672Leakage or rupture protection or detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/141Monolithic housings, e.g. molded or one-piece housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means

Definitions

  • the invention relates to the field of pressure sensor manufacturing, in particular to a pressure sensor core based on flip-chip welding and a manufacturing method.
  • a pressure sensor is usually composed of a pressure sensitive element and a signal processing unit.
  • the pressure signal is sensed by the pressure sensitive unit, and the pressure signal is converted into a usable output electrical signal according to a certain rule, and then processed by the signal processing unit into the required analog output or Digital output.
  • the use environment of the sensor is more complex, including water, oil, various liquids, gases, refrigerants and other complex media environments.
  • Commonly used pressure sensor pressure sensitive units include the following technologies: ceramic capacitors, ceramic resistors, glass micro-melting, sputtering thin films, micro-electromechanical systems (MEMS). Ceramic capacitors/ceramic resistors can only be sealed with O-rings and cannot be compatible with a variety of pressure media. Under certain media (such as refrigerants), there is a long-term failure and leakage risk, and the package is large. Glass micro-melting sinters the sensor chip with glass on the diaphragm, the process is complicated, and the equipment investment is large. The sputtering film sputters the pressure sensor module on the base, and the equipment investment is large, the cost is high, and it is not popular.
  • MEMS micro-electromechanical systems
  • MEMS pressure sensors based on microelectromechanical systems can achieve high-precision, low-cost mass production with similar integrated circuit technology.
  • packaging technology and process severely limit the application range of MEMS pressure sensors.
  • common processes based on MEMS pressure sensors include backside glue sticking chips, eutectic welding and oil filling.
  • the backside glue sticks the chip through the glue to bond the pressure chip, and then realizes the electrical connection with gold or aluminum wire. It cannot be used for pressure measurement of complex media, and the chip has the risk of falling off from the adhesive under pressure, which cannot withstand large pressure.
  • the eutectic welding method uses eutectic welding to seal the pressure chip on the metal shell, and then realizes the electrical connection through gold or aluminum wire.
  • the material cost is high (chip/solder/Kovar, etc.), including eutectic laser welding Resistance welding and other processes are complicated.
  • the oil-filled core encapsulates the MEMS pressure-sensitive chip in a sealed structure filled with silicone oil.
  • the applied pressure is transferred from the stainless steel diaphragm to the pressure sensor chip through the silicone oil.
  • the oil-filled core can achieve good isolation of the medium, but the process is complex, and the product The cost is very high and the volume is large.
  • Flip-chip bonding technology is an advanced packaging technology that directly connects the chip to the substrate.
  • the chip In the packaging process, the chip is face-down, and the bonding point on the chip is connected to each other through the bonding point of the metal conductor and the substrate, as shown in Figure 2.
  • Flip-chip bonding has many excellent packaging characteristics such as short interconnection, small area, three-dimensional channel, and high mounting density. It can realize miniaturized packaging and has been widely used in the semiconductor industry.
  • flip-chip pressure chips In the field of pressure sensors, due to the limitations of packaging technology, flip-chip pressure chips have not been widely used. Its main package form is flip chip soldering on PCB or ceramic substrate. The PCB or ceramic substrate is then sealed by glue bonding or O-ring compression.
  • the present invention proposes a pressure sensor core with a simple process.
  • the sensor core can guide the pressure sensing signal from the pressure sensing side to the signal processing unit side in a very small space, and can be applied to In a variety of media including refrigerants.
  • the pressure core has a small volume and can realize different packaging forms according to different applications.
  • the core structure has a simple process and is easy to realize large-scale production.
  • a pressure sensor core based on flip-chip bonding includes:
  • a rigid shell the rigid shell having a through hole
  • a terminal one end of which is flip-chip welded to the MEMS pressure sensitive chip by solder, and the other end of the terminal passes through the through hole on the rigid housing and is connected to the circuit board of the sensor to realize signal processing;
  • An isolation medium which is filled in the through hole of the rigid shell, and is used for sealing and fixing the part of the terminal located in the through hole and the inner wall of the through hole;
  • Epoxy filler filled between and around the MEMS pressure-sensitive chip, terminal and cured isolation medium, for protecting the solder node;
  • the pressure of the measured medium acts on the MEMS pressure-sensitive chip, and the signal change caused by the pressure is output through the terminal.
  • the material of the rigid shell is Kovar or stainless steel.
  • the isolation medium is glass.
  • the epoxy filler is an epoxy resin with high Tg.
  • the isolation medium adopts high temperature glass with a low thermal expansion coefficient
  • the rigid shell adopts Kovar or stainless steel with a low thermal expansion coefficient
  • the terminal head adopts a pier
  • the method of pressing or flattening ensures the flatness of the four terminals.
  • the MEMS pressure sensitive chip is accurately mounted on the 4 terminals through the imaging system with a positioning accuracy of +/-0.05 mm.
  • step S3 the core is heated to 60 degrees by the heating system of the dispenser, and the epoxy filler is scribed from the side of the chip to dispense.
  • the epoxy has a very low viscosity under heating, and the epoxy filler is covered by capillary phenomenon. It is sucked into the bottom and cured at a high temperature after the dispensing is completed.
  • the packaging types of the pressure sensor core based on flip-chip bonding include the following 4 types:
  • the first type laser welding and sealing, for a weldable metal sensor housing, the metal sensor housing and the rigid housing of the core are welded by laser to achieve complete sealing;
  • the second type O-ring seal, an O-ring seal is set between the outer wall of the rigid shell of the core and the inner wall of the sensor shell.
  • the core is assisted by connectors or other parts. Apply a certain pressure on the upper part to prevent the core body from falling out;
  • an O-ring seal is arranged at the bottom of the rigid shell of the core body, and the upper part is riveted by the shell with connectors or other parts to fix the pressure core body, and the O-ring is compressed to form a seal;
  • the third type cementing and sealing, in which the side or bottom surface of the outer wall of the rigid shell of the core body and the inner wall of the sensor shell are sealed and connected with adhesive glue.
  • a pressure sensor adopts the pressure sensor core body based on the flip chip.
  • the pressure sensor core based on the flip-chip welding chip of the present invention has the following advantages:
  • the pressure sensor core of the present invention based on the flip-chip bonding chip has a simple core structure, few parts, and can be standardized and automated mass production.
  • the pressure signal can be connected to the circuit processing side through the terminal, and the core structure is small, which is beneficial to realize different forms of packaging.
  • the core terminal is encapsulated by the isolation medium to maintain the position between the terminals, which greatly reduces the impact of stress on the MEMS pressure chip, and can ensure reliability and accuracy.
  • the core has good adaptability to a variety of media, can be used in a variety of media such as refrigerants, and can be fully sealed, which solves the media compatibility problem of MEMS pressure chips.
  • FIG. 1 is a schematic diagram of the structure of a pressure sensor core based on a flip-chip chip of the present invention
  • MEMS pressure sensitive chip 1.
  • Solder 3.
  • Epoxy filler 4.
  • Rigid shell 5.
  • Isolation medium 6. Terminal.
  • FIG. 2 is a schematic structural diagram of a pressure sensor core package type 1 based on flip-chip bonding of the present invention
  • FIG. 3 is a schematic structural diagram of a pressure sensor core package type 2(a) based on a flip-chip chip of the present invention
  • FIG. 4 is a schematic structural diagram of a pressure sensor core package type 2(b) based on a flip-chip chip of the present invention
  • FIG. 5 is a schematic structural diagram of a pressure sensor core package type 3 based on a flip-chip chip according to the present invention.
  • a pressure sensor core based on flip-chip bonding includes:
  • the isolation medium 5 is filled in the through hole of the rigid housing 4, and is used for sealing and fixing the part of the terminal 6 located in the through hole and the inner wall of the through hole;
  • Epoxy filler 3 which is filled between and around the MEMS pressure sensitive chip, the terminal and the cured isolation medium, to protect the solder node;
  • the pressure of the measured medium acts on the MEMS pressure sensitive chip, and the signal change caused by the pressure is output through the terminal.
  • the material of the rigid shell is Kovar or stainless steel.
  • the expansion coefficient of Kovar or stainless steel is relatively low.
  • the isolation medium is glass. Glass has a small thermal expansion coefficient, can withstand applications such as refrigerants with rapid temperature changes, and has good media compatibility with oils and various gases.
  • the epoxy filler is an epoxy resin with high Tg. Fill the epoxy filler 3 with high Tg between and around the flip chip 1 and the glass 5 to protect the solder joints.
  • the high Tg epoxy has little stress on the solder joints and the chip, and can ensure soldering in a relatively large temperature range. The point does not crack and the chip does not cause precision drift due to stress.
  • the filler can withstand various media such as refrigerant oil.
  • the flatness of the terminal head is within the controllable range to ensure the effect of flip chip welding
  • the chip needs to be accurately positioned with the terminal when mounting the chip
  • solder joints need to be protected from corrosion by the medium.
  • the MEMS pressure-sensitive chip is welded to one end of the terminal with solder to realize the electrical connection between the MEMS pressure-sensitive chip and the terminal, and the other end of the terminal is connected to the circuit board of the sensor to realize signal processing; the terminal is passed through glass Sealed in the through hole of the rigid shell, the other end of the terminal passes through the through hole of the rigid shell. After the glass and the terminal are sintered, the terminal head adopts a method of pressing or grinding to ensure the flatness of the four terminals.
  • the linear expansion coefficient of glass is 4.6ppm, which is similar to that of silicon (3ppm).
  • the low glass expansion coefficient ensures that the relative positions of the 4 terminals and the chip solder joints remain unchanged, and the output accuracy of the chip will not be subjected to tensile stress. The impact of this produces a large drift.
  • the chip is accurately mounted on the 4 terminals by positioning the terminals with an imaging system with a positioning accuracy of +/-0.05mm.
  • the packaging types of pressure sensor cores based on flip-chip bonding include the following three types:
  • the first type as shown in Figure 2, laser welding and sealing.
  • the metal sensor housing and the rigid housing are completely sealed by laser welding; it can be applied to refrigerants that have strict requirements on leakage field.
  • O-ring seal As shown in Figure 3, an O-ring seal is provided between the outer wall of the rigid housing of the core and the inner wall of the sensor housing. Under high pressure application conditions, it is assisted with connectors or Other parts exert certain pressure on the upper part of the core to prevent the core from falling out;
  • an O-ring seal is arranged at the bottom of the rigid shell of the core, as shown in Figure 4, the upper part is riveted by the housing with connectors or other parts to fix the pressure core, and the O-ring is compressed to form a seal;
  • the package has a small volume and a simple packaging process.
  • the third type cementing and sealing, as shown in Fig. 5, the side or bottom surface of the outer wall of the rigid shell of the core body and the inner wall of the sensor shell are sealedly connected with adhesive glue.
  • the packaging process is simple and easy to control, does not require expensive equipment investment, and is suitable for some gas applications.
  • a pressure sensor adopts the pressure sensor core body based on the flip chip.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

基于倒装焊芯片的压力传感器芯体、芯体制造及封装方法和压力传感器,芯体包括:刚性外壳(4),刚性外壳(4)上具有通孔;端子(6),其一端通过焊料(2)与MEMS压力敏感芯片(1)倒装焊接,端子(6)另一端穿过刚性外壳(4)上的通孔后与传感器的电路板连接以实现信号处理;隔离介质(5),填充于刚性外壳(4)的通孔中,用于将端子(6)位于通孔中的部分与通孔的内壁之间密封固定连接;环氧填料(3),填充在MEMS压力敏感芯片(1)、端子(6)以及固化后的隔离介质(5)三者之间及周边,用于保护焊料节点;工作时,被测介质压力作用在MEMS压力敏感芯片(1)上,压力引起的信号变化通过端子(6)输出。

Description

基于倒装焊芯片的压力传感器芯体、芯体制造及封装方法和压力传感器 技术领域
本发明涉及压力传感器制造领域,具体是一种基于倒装焊芯片的压力传感器芯体及制造方法。
背景技术
压力传感器通常由压力敏感元件和信号处理单元组成,通过压力敏感单元感受压力信号,并按照一定的规律将压力信号转换成可用的输出的电信号,再由信号处理单元处理成需要的模拟输出或者数字输出。传感器的使用环境比较复杂包括水、油、各类液体、气体、制冷剂等复杂的介质环境。
常用压力传感器压力敏感单元包含以下几种技术:陶瓷电容,陶瓷电阻,玻璃微熔,溅射薄膜,微机电系统(MEMS)。陶瓷电容/陶瓷电阻只能采用O型圈密封,无法与多种压力介质兼容,某些介质下(如冷媒)长期存在失效泄露风险,并且封装体积大。玻璃微熔将感应芯片用玻璃烧结在膜片上,工艺过程复杂,设备投资大。溅射薄膜将压力感应模块溅射在基座上,设备投资大,成本高,并不普及。
基于微电子机械系统的MEMS压力传感器可以以类似集成电路技术实现高精度、低成本的大批量生产。但是封装技术及工艺严重限制了MEMS压力传感器的应用范围。目前基于MEMS压力传感器常用工艺有背面胶粘贴芯片、共晶焊和充油的方式。背面胶粘贴芯片通过胶粘接压力芯片,再以金线或铝线实现电连接,不能用于复杂介质的压力测量,并且芯片存在在压力下与粘结胶脱落的风险,不能承受大的压力。共晶焊方式以共晶焊接将压力芯片封接在金属管壳上,再通过金线或铝线实现电连接,材料成本高(芯片/焊料/可伐体等),包括共晶焊激光焊电阻焊等,工艺复杂。
充油芯体将MEMS感压芯片封装于充满硅油的密闭结构中,外加压力通过硅油从不锈钢膜片传递到压力传感器芯片上,充油芯体可以实现对介质的良好隔离,但是工艺复杂,产品的成本非常高,体积大。
倒装焊技术是一种将晶片直接与基板相互连接的先进封装技术。在封装过程中,芯片以正面朝下的方式,让芯片上的结合点透过金属导体与基板的结合点相互连接的封装技术,如图2所示。倒装焊接具有短互联、小面积、立体通道、安装密度高等许多优异的封装特性,可以实现小型化封装,在半导体行业已经得到广泛应用。
在压力传感器领域,由于封装技术的局限,倒装焊压力芯片并没有得到广泛应用。其主 要封装形式将芯片倒装焊在PCB或陶瓷基板上。PCB或陶瓷基板再以胶粘结或O型圈压缩的方式密封。
倒装焊在PCB板的主要缺陷:PCB与芯片膨胀系数相差很大,在温度差变化很大的应用领域焊点存在应力引起的开裂失效风险,应力对MEMS芯片的作用也会引起精度漂移,并且PCB介质耐受性也收到局限,不能应用在液体或腐蚀性的气体。PCB与壳体采用胶粘结的方式也容易由于背面压力造成胶脱落的风险。
采用陶瓷基板的只能采用双面板或其它复杂的方式将压力芯片信号从背面引出,同时要对感压面的电路进行涂敷保护,基板与壳体只能采用胶粘或O型圈密封的方式。胶粘同样存在介质适应范围小的缺陷。O型圈密封无法做到小尺寸密封,对于体积要求小的应用环境无法实现。在冷媒等应用领域O型圈密封也存在泄露风险。
发明内容
针对上述技术问题,本发明提出了一种工艺简单的压力传感器芯体,该传感器芯体能在极小的空间内将压力传感信号从压力感应一侧引向信号处理单元一侧,可以应用在包括冷媒的多种介质中。该压力芯体体积小,可以根据不同应用实现不同的封装形式。该芯体结构工艺简单,易于实现规模化生产。
为了实现上述技术目的,本发明采用如下技术方案:
一种基于倒装焊芯片的压力传感器芯体,包括:
刚性外壳,所述刚性外壳上具有通孔;
端子,其一端通过焊料与MEMS压力敏感芯片倒装焊接,端子另一端穿过刚性外壳上的所述通孔后与传感器的电路板连接以实现信号处理;
隔离介质,填充于刚性外壳的所述通孔中,用于将所述端子位于所述通孔中的部分与所述通孔的内壁之间密封固定连接;
环氧填料,填充在所述MEMS压力敏感芯片、端子以及固化后的隔离介质三者之间及周边,用于保护所述焊料节点;
工作时,被测介质压力作用在MEMS压力敏感芯片上,压力引起的信号变化通过端子输出。
所述刚性外壳的材料为可伐或不锈钢。
所述隔离介质为玻璃。
所述环氧填料为具有高Tg的环氧树脂。
所述的基于倒装焊芯片的压力传感器芯体的制造方法,
S1、将端子通过隔离介质固定在刚性外壳的通孔中,端子另一端穿出刚性外壳的所述通孔:
S2、将MEMS压力敏感芯片通过焊料与所述端子的一端焊接,实现所述MEMS压力敏感芯片和端子的电性能连接,端子的另一端与传感器的电路板连接以实现信号处理;
S3、在MEMS压力敏感芯片、端子以及固化后的隔离介质三者之间及周边填充具有高Tg的环氧填料以保护焊节点。
所述步骤S1中,所述隔离介质采用具有低的热膨胀系数的高温玻璃;所述刚性外壳采用具有低的热膨胀系数的可伐或不锈钢;在隔离介质与端子烧结完成后,端子头部采取墩压或磨平的方法保证四个端子的平面度。
所述步骤S2通过定位精度+/-0.05mm的影像系统将MEMS压力敏感芯片精确贴装在4根端子上。
所述步骤S3,通过点胶机加热系统将芯体加热到60度,将环氧填料从芯片侧面划线点胶,在加热状态下环氧具有极低的黏度,通过毛细现象环氧填料被吸入底部,点胶完成后进行高温固化。
所述的基于倒装焊芯片的压力传感器芯体的封装型式,包括以下4种:
第一种:激光焊接密封,对于可焊接的金属传感器外壳,将金属传感器外壳与芯体的所述刚性外壳通过激光焊接,实现完全密封;
第二种:O型圈密封,在芯体的所述刚性外壳外壁和传感器外壳内壁之间设置O型圈密封,在压力较大的应用条件下,辅助以接插件或其它零部件对芯体上部施加一定的压力以防止芯体脱出;
或者在芯体的所述刚性外壳底部设置O型圈密封,上部以接插件或其它零部件经壳体铆压后固定压力芯体,靠O型圈的压缩形成密封;
第三种:胶结密封,以粘结胶将芯体的所述刚性外壳外壁侧面或底面与传感器外壳的内壁密封连接。
一种压力传感器,采用所述的基于倒装焊芯片的压力传感器芯体。
有益效果:
本发明一种基于倒装焊芯片的压力传感器芯体相比现有压力传感器芯体具有以下优点:
1.本发明基于倒装焊芯片的压力传感器芯体芯体结构简单,零部件少,可以标准化自动化批量生产。
2.在很小的体积内可以实现压力信号通过端子连接到电路处理一侧,芯体结构很小,有 利于实现不同形式的封装。
3.芯体端子被隔离介质封装保持了端子之间的位置度,大幅度减小了应力对MEMS压力芯片的影响,可以保证可靠性及精度。
4.芯体对多种介质具有良好的适应性,可以应用于冷媒等多种介质中,并且可以做到全密封设计,解决了MEMS压力芯片的介质兼容性问题。
附图说明
图1为本发明一种基于倒装焊芯片的压力传感器芯体的结构示意图;
其中,1、MEMS压力敏感芯片;2、焊料;3、环氧填料;4.刚性外壳;5.隔离介质;6、端子。
图2为本发明一种基于倒装焊芯片的压力传感器芯体封装型式1的结构示意图;
其中,4、芯体;5、传感器外壳;6、激光焊接处;
图3为本发明一种基于倒装焊芯片的压力传感器芯体封装型式2(a)的结构示意图;
其中,7、O型圈密封;
图4为本发明一种基于倒装焊芯片的压力传感器芯体封装型式2(b)的结构示意图;
其中,8、接插件;
图5为本发明一种基于倒装焊芯片的压力传感器芯体封装型式3的结构示意图;
其中,9、粘结胶。
具体实施方式
下面结合具体说明书附图以及具体实施例对本发明的技术方案做进一步详细说明。
如图1所示,本发明采用如下技术方案:
一种基于倒装焊芯片的压力传感器芯体,包括:
刚性外壳4,所述刚性外壳4上具有通孔;
端子6,其一端通过焊料2与MEMS压力敏感芯片1倒装焊接,端子6另一端穿过刚性外壳4上的所述通孔后与传感器的电路板连接以实现信号处理;
隔离介质5,填充于刚性外壳4的所述通孔中,用于将所述端子6位于所述通孔中的部分与所述通孔的内壁之间密封固定连接;
环氧填料3,填充在所述MEMS压力敏感芯片、端子以及固化后的隔离介质三者之间及周边,用于保护所述焊料节点;
工作时,被测介质压力作用在MEMS压力敏感芯片上,压力引起的信号变化通过端子输 出。
作为本发明的优选实施例,所述刚性外壳的材料为可伐或不锈钢。可伐或不锈钢的膨胀系数比较低。
作为本发明的优选实施例,所述隔离介质为玻璃。玻璃的热膨胀系数小,可以耐受具有急剧温度变化的冷媒等应用领域,与油类及各种气体也具有良好的介质兼容性。
作为本发明的优选实施例,所述环氧填料为具有高Tg的环氧树脂。在倒装焊芯片1与玻璃5之间及周边填充具有高Tg的环氧填料3以保护焊节点,高Tg环氧对焊点和芯片的应力小,在比较大的温度范围内可以保证焊点不开裂并且芯片不会由于应力产生精度漂移,该填料可以耐受冷媒机油等多种介质。
基于倒装焊芯片的压力传感器芯体的制造方法,本发明方案的关键技术要点:
1.芯体对冷媒等介质的适用性;
2.端子头部平面度在可控范围内以保证芯片倒装焊的效果;
3.温度变化情况下应力对芯片的影响最小化;
4.芯片贴装时需要与端子精确定位;
5.焊点需要被保护不受介质的侵蚀。
包括以下步骤:
S1、将端子通过隔离介质固定在刚性外壳的通孔中,端子另一端穿出刚性外壳的所述通孔;端子采用高温玻璃(FS139,Elan48等空调压缩机接线端子封接玻璃)与可伐合金或不锈钢刚体封接,玻璃及可伐或不锈钢均具有低的热膨胀系数,在剧烈温度变化时不会产生应力开裂。玻璃体具有优异的气密性,低的热膨胀系数和高的耐温特性,气密性可达10^-9pa.cm3/sec,工作温度可以达到180℃,可以应用在压缩机冷媒等密封性要求高及温度变化大(-40℃~150℃)的测量环境。并且玻璃对多数介质都具有良好的兼容性,
S2、将MEMS压力敏感芯片通过焊料与所述端子的一端焊接,实现所述MEMS压力敏感芯片和端子的电性能连接,端子的另一端与传感器的电路板连接以实现信号处理;将端子通过玻璃封接在刚性外壳的通孔中,端子另一端穿出刚性外壳的所述通孔,在玻璃与端子烧结完成后,端子头部采取墩压或磨平的方法保证四个端子的平面度。
玻璃的线膨胀系数4.6ppm与硅相近(3ppm),在频繁温度变化的环境下低的玻璃膨胀系数保证了4根端子与芯片焊点的相对位置不变,芯片的输出精度不会受到拉应力的影响产生大的漂移。通过定位精度+/-0.05mm的影像系统对端子定位将芯片精确贴装在4根端子上。
S3、在MEMS压力敏感芯片、端子以及固化后的隔离介质三者之间及周边填充具有高Tg的环氧填料以保护焊节点。点胶机加热系统将芯体加热到60度,将环氧从芯片侧面划线 点胶,在加热状态下环氧具有极低的黏度,通过毛细现象环氧被吸入底部,点胶完成后进行高温固化。环氧对焊点形成保护不受液体或气体的侵蚀。高Tg环氧降低芯片和环氧填料之间的应力失配,不会对芯片造成大的拉应力引起精度漂移。
所述的基于倒装焊芯片的压力传感器芯体的封装型式,包括以下三种:
第一种:如图2所示,激光焊接密封,对于可焊接的金属传感器外壳,将金属传感器外壳与所述刚性外壳通过激光焊接,实现完全密封;可应用在冷媒等对泄露有严格要求的领域。
第二种:O型圈密封,如图3所示,在所述芯体的刚性外壳外壁和传感器外壳内壁之间设置O型圈密封,在压力较大的应用条件下,辅助以接插件或其它零部件对芯体上部施加一定的压力以防止芯体脱出;
或者在所述芯体的刚性外壳底部设置O型圈密封,如图4所示,上部以接插件或其它零部件经壳体铆压后固定压力芯体,靠O型圈的压缩形成密封;该封装体积小,封装工艺简单。
第三种:胶结密封,如图5所示,以粘结胶将所述芯体的刚性外壳外壁侧面或底面与传感器外壳的内壁密封连接。该种封装工艺简单易于控制,不需要昂贵的设备投资,在适用于一些气体应用领域。
一种压力传感器,采用所述的基于倒装焊芯片的压力传感器芯体。

Claims (10)

  1. 一种基于倒装焊芯片的压力传感器芯体,其特征在于,包括:
    刚性外壳,所述刚性外壳上具有通孔;
    端子,其一端通过焊料与MEMS压力敏感芯片倒装焊接,端子另一端穿过刚性外壳上的所述通孔后与传感器的电路板连接以实现信号处理;
    隔离介质,填充于刚性外壳的所述通孔中,用于将所述端子位于所述通孔中的部分与所述通孔的内壁之间密封固定连接;
    环氧填料,填充在所述MEMS压力敏感芯片、端子以及固化后的隔离介质三者之间及周边,用于保护所述焊料节点;
    工作时,被测介质压力作用在MEMS压力敏感芯片上,压力引起的信号变化通过端子输出。
  2. 根据权利要求1所述的基于倒装焊芯片的压力传感器芯体,其特征在于,所述刚性外壳的材料为可伐或不锈钢。
  3. 根据权利要求1所述的基于倒装焊芯片的压力传感器芯体,其特征在于,所述隔离介质为玻璃。
  4. 根据权利要求1所述的基于倒装焊芯片的压力传感器芯体,其特征在于,所述环氧填料为具有高Tg的环氧树脂。
  5. 如权利要求1~4中任一所述的基于倒装焊芯片的压力传感器芯体的制造方法,其特征在于:
    S1、将端子通过隔离介质固定在刚性外壳的通孔中,端子另一端穿出刚性外壳的所述通孔:
    S2、将MEMS压力敏感芯片通过焊料与所述端子的一端焊接,实现所述MEMS压力敏感芯片和端子的电性能连接,端子的另一端与传感器的电路板连接以实现信号处理;
    S3、在MEMS压力敏感芯片、端子以及固化后的隔离介质三者之间及周边填充具有高Tg的环氧填料以保护焊节点。
  6. 根据权利要求5所述的基于倒装焊芯片的压力传感器芯体的制造方法,其特征在于:
    所述步骤S1中,所述隔离介质采用具有低的热膨胀系数的高温玻璃;所述刚性外壳采用具有低的热膨胀系数的可伐或不锈钢;在隔离介质与端子烧结完成后,端子头部采取墩压或磨平的方法保证四个端子的平面度。
  7. 根据权利要求5所述的基于倒装焊芯片的压力传感器芯体的制造方法,其特征在于:
    所述步骤S2通过定位精度+/-0.05mm的影像系统将MEMS压力敏感芯片精确贴装在4根端子上。
  8. 根据权利要求5所述的基于倒装焊芯片的压力传感器芯体的制造方法,其特征在于:所述步骤S3,通过点胶机加热系统将芯体加热到60度,将环氧填料从芯片侧面划线点胶,在加热状态下环氧具有极低的黏度,通过毛细现象环氧填料被吸入底部,点胶完成后进行高温固化。
  9. 如权利要求1~4中任一所述的基于倒装焊芯片的压力传感器芯体的封装型式,其特征在于,包括以下4种:
    第一种:激光焊接密封,对于可焊接的金属传感器外壳,将金属传感器外壳与芯体的所述刚性外壳通过激光焊接,实现完全密封;
    第二种:O型圈密封,在芯体的所述刚性外壳外壁和传感器外壳内壁之间设置O型圈密封,在压力较大的应用条件下,辅助以接插件或其它零部件对芯体上部施加一定的压力以防止芯体脱出;
    或者在芯体的所述刚性外壳底部设置O型圈密封,上部以接插件或其它零部件经壳体铆压后固定压力芯体,靠O型圈的压缩形成密封;
    第三种:胶结密封,以粘结胶将芯体的所述刚性外壳外壁侧面或底面与传感器外壳的内壁密封连接。
  10. 一种压力传感器,采用如权利要求1~4中任一所述的基于倒装焊芯片的压力传感器芯体。
PCT/CN2020/091090 2019-07-08 2020-05-19 基于倒装焊芯片的压力传感器芯体、芯体制造及封装方法和压力传感器 WO2021004165A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20837472.8A EP3998465A4 (en) 2019-07-08 2020-05-19 FLIP CHIP PRESSURE SENSOR CORE, METHOD FOR MANUFACTURING AND PACKAGING CORE AND PRESSURE SENSOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910608670.4A CN110207885A (zh) 2019-07-08 2019-07-08 基于倒装焊芯片的压力传感器芯体、芯体制造及封装方法和压力传感器
CN201910608670.4 2019-07-08

Publications (1)

Publication Number Publication Date
WO2021004165A1 true WO2021004165A1 (zh) 2021-01-14

Family

ID=67796576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091090 WO2021004165A1 (zh) 2019-07-08 2020-05-19 基于倒装焊芯片的压力传感器芯体、芯体制造及封装方法和压力传感器

Country Status (3)

Country Link
EP (1) EP3998465A4 (zh)
CN (1) CN110207885A (zh)
WO (1) WO2021004165A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110207885A (zh) * 2019-07-08 2019-09-06 南京新力感电子科技有限公司 基于倒装焊芯片的压力传感器芯体、芯体制造及封装方法和压力传感器
CN110595681A (zh) * 2019-10-18 2019-12-20 南京新力感电子科技有限公司 一种传感器
CN111397668A (zh) * 2020-06-03 2020-07-10 南京新力感电子科技有限公司 一种传感器芯体、芯体制造及封装方法和传感器
CN114199425A (zh) * 2021-11-29 2022-03-18 南京理工大学 一种集成式压力芯体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4563697A (en) * 1982-02-25 1986-01-07 Fuji Electric Company, Ltd. Semiconductor pressure sensor
CN102341685A (zh) * 2009-03-03 2012-02-01 S3C公司 高温下应用的介质兼容型电隔离压力传感器
CN205785644U (zh) * 2016-06-23 2016-12-07 龙微科技无锡有限公司 Mems微压压力传感器
CN109534282A (zh) * 2018-10-26 2019-03-29 江西新力传感科技有限公司 基于倒装焊芯片介质隔离型压力传感器的生产工艺
CN110207885A (zh) * 2019-07-08 2019-09-06 南京新力感电子科技有限公司 基于倒装焊芯片的压力传感器芯体、芯体制造及封装方法和压力传感器
CN210243053U (zh) * 2019-07-08 2020-04-03 南京新力感电子科技有限公司 基于倒装焊芯片的压力传感器芯体和压力传感器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4763098A (en) * 1985-04-08 1988-08-09 Honeywell Inc. Flip-chip pressure transducer
JPH051962A (ja) * 1991-06-25 1993-01-08 Toyota Autom Loom Works Ltd 半導体圧力センサ
CN2307340Y (zh) * 1997-04-29 1999-02-10 水利部电力工业部机电研究所 一种有机外壳避雷器
US6076409A (en) * 1997-12-22 2000-06-20 Rosemount Aerospace, Inc. Media compatible packages for pressure sensing devices
DE19826426C2 (de) * 1998-06-16 2003-08-21 Elbau Elektronik Bauelemente G Miniaturisiertes elektronisches System und Verfahren zu seiner Herstellung
JP2002082009A (ja) * 2000-06-30 2002-03-22 Denso Corp 圧力センサ
US7073375B2 (en) * 2004-07-02 2006-07-11 Honeywell International Inc. Exhaust back pressure sensor using absolute micromachined pressure sense die
US7538401B2 (en) * 2005-05-03 2009-05-26 Rosemount Aerospace Inc. Transducer for use in harsh environments
JP4882967B2 (ja) * 2007-11-13 2012-02-22 株式会社デンソー 圧力温度センサ
CN102013354B (zh) * 2010-12-29 2013-07-03 常州森源力拓开关有限公司 三工位隔离开关
US8371176B2 (en) * 2011-01-06 2013-02-12 Honeywell International Inc. Media isolated pressure sensor
US9310267B2 (en) * 2014-02-28 2016-04-12 Measurement Specialities, Inc. Differential pressure sensor
US9593995B2 (en) * 2014-02-28 2017-03-14 Measurement Specialties, Inc. Package for a differential pressure sensing die
CN108878125B (zh) * 2018-06-20 2021-02-09 无锡新畅电子有限公司 一种灌胶变压器针脚焊接处理方法
CN208399071U (zh) * 2018-07-27 2019-01-18 扬州扬杰电子科技股份有限公司 硅压阻式压力传感器封装结构
CN108759934B (zh) * 2018-08-13 2024-05-17 合肥皖科智能技术有限公司 一种温压一体传感器的封装结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4563697A (en) * 1982-02-25 1986-01-07 Fuji Electric Company, Ltd. Semiconductor pressure sensor
CN102341685A (zh) * 2009-03-03 2012-02-01 S3C公司 高温下应用的介质兼容型电隔离压力传感器
CN205785644U (zh) * 2016-06-23 2016-12-07 龙微科技无锡有限公司 Mems微压压力传感器
CN109534282A (zh) * 2018-10-26 2019-03-29 江西新力传感科技有限公司 基于倒装焊芯片介质隔离型压力传感器的生产工艺
CN110207885A (zh) * 2019-07-08 2019-09-06 南京新力感电子科技有限公司 基于倒装焊芯片的压力传感器芯体、芯体制造及封装方法和压力传感器
CN210243053U (zh) * 2019-07-08 2020-04-03 南京新力感电子科技有限公司 基于倒装焊芯片的压力传感器芯体和压力传感器

Also Published As

Publication number Publication date
EP3998465A1 (en) 2022-05-18
CN110207885A (zh) 2019-09-06
EP3998465A4 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
WO2021004165A1 (zh) 基于倒装焊芯片的压力传感器芯体、芯体制造及封装方法和压力传感器
EP2316008B1 (en) Sensor device packaging and corresponding method
US6255728B1 (en) Rigid encapsulation package for semiconductor devices
US8230745B2 (en) Wet/wet differential pressure sensor based on microelectronic packaging process
US20020029639A1 (en) Isolation technique for pressure sensing structure
US8371176B2 (en) Media isolated pressure sensor
US8065917B1 (en) Modular pressure sensor
CN111638002A (zh) 一种mems压力传感器充油芯体及其封装方法
US20130214369A1 (en) Pressure sensor
JP2013506841A (ja) 圧力センサマウントを備えた圧力トランスミッタ
WO2001053789A1 (en) Isolation technique for pressure sensing structure
CN112188728B (zh) 一种基于倒装芯片的温度压力集成传感器及其封装方法
CN109534282B (zh) 基于倒装焊芯片介质隔离型压力传感器的生产工艺
CN210243053U (zh) 基于倒装焊芯片的压力传感器芯体和压力传感器
JP3374620B2 (ja) 半導体圧力センサ
US10144636B2 (en) Method of manufacturing a sensor
US10615142B2 (en) Microelectronic device having protected connections and manufacturing process thereof
CN110132462B (zh) 压力传感器封装结构及其封装方法
CN113049172A (zh) 一种多通道压力测量单元及压力测量装置
CN109387225B (zh) 一种mems惯性器件及其无应力电装方法
JP5804445B2 (ja) 半導体圧力センサ
Waber et al. Flip-chip packaging of piezoresistive barometric pressure sensors
CN209878186U (zh) 压力传感器封装结构
JPS61110023A (ja) 圧力電気変換器の構造
CN215064999U (zh) 一种多通道压力测量单元及压力测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020837472

Country of ref document: EP

Effective date: 20220208