WO2021003796A1 - 换能器振动悬挂系统、换能器及电子设备 - Google Patents

换能器振动悬挂系统、换能器及电子设备 Download PDF

Info

Publication number
WO2021003796A1
WO2021003796A1 PCT/CN2019/100299 CN2019100299W WO2021003796A1 WO 2021003796 A1 WO2021003796 A1 WO 2021003796A1 CN 2019100299 W CN2019100299 W CN 2019100299W WO 2021003796 A1 WO2021003796 A1 WO 2021003796A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
suspension system
transducer
conductive material
vibration suspension
Prior art date
Application number
PCT/CN2019/100299
Other languages
English (en)
French (fr)
Inventor
刘春发
祖峰磊
杨鑫峰
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to US17/625,654 priority Critical patent/US20220279280A1/en
Publication of WO2021003796A1 publication Critical patent/WO2021003796A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/045Mounting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2400/00Loudspeakers
    • H04R2400/11Aspects regarding the frame of loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers

Definitions

  • the invention relates to a transducer vibration suspension system, and also relates to a transducer and electronic equipment using the vibration suspension system.
  • Moving coil type Take the moving coil speaker as an example. Refer to Figure 1 and Figure 2. Its suspension system is a diaphragm 2'and a coil 4'. The coil 4'is located in a static magnetic field. 'Loading alternating current inside, the coil 4'will receive an alternating ampere force to drive the suspension system to vibrate, thereby realizing the conversion of alternating electrical signals to alternating mechanical motion.
  • the main defects are:
  • the coil must be connected to the electrical signal driver through a lead-out device.
  • the lead-out device has technical defects in vibration intensity, installation firmness, and system connection strength, so that the moving parts installed with the coil are highly reliable and firm. Restricted.
  • Moving iron type Refer to Figure 3 and Figure 4, which includes a diaphragm 2', a thimble 8, a coil 4'and a transmission mechanism 9.
  • the suspension system adopts a U iron or T iron fixed at one end and a transmission member 9 to drive the diaphragm 2'.
  • Its working principle is: the alternating magnetic field generated by the coil 4'is guided and focused by a magnetic material; through a special structure Design, such as U iron or T iron, the alternating magnetic field generated by the alternating current is concentrated in the magnetic conductive material, one end of which is located in a static magnetic field with orthogonal component to it, the static magnetic field will affect the U iron or T iron The force is generated at this end, so that the U iron or T iron is locally deformed.
  • the elastic suspension system is a diaphragm.
  • the U iron or T iron communicates with the diaphragm through the transmission component 9 to realize the alternating electrical signal to the alternating current. Conversion of mechanical movement.
  • Magnetically permeable material is used as a structural part and a magnetically permeable material at the same time, so there are restrictions on the choice of materials, such as silicon steel/permalloy material with good magnetic properties, which is difficult to form; material with good forming condition is magnetically permeable The characteristics are not as good as silicon steel/permalloy;
  • the technical solution provided by the present invention is: a transducer vibration suspension system, wherein the vibration suspension system includes:
  • At least one movement device the movement device is provided with a magnetic material
  • At least a part of the magnetic conductive material is placed in the area where the alternating magnetic field and the static magnetic field overlap, so that the static magnetic field and the alternating magnetic field converge; the magnetic field force generated by the interaction between the static magnetic field and the alternating magnetic field Acting on the magnetic material to drive the vibration suspension system to move.
  • At least one suspension device At least one suspension device
  • An elastic restoring device is included to provide the restoring force of the reciprocating vibration of the vibrating suspension system; one end of the elastic restoring device is fixed on the movement device, and the other end is fixed inside the transducer.
  • the alternating magnetic field is a magnetic field formed by a coil through an alternating current, and the coil and the magnetic conductive material are arranged in a horizontal direction.
  • the static magnetic field is a magnetic field formed by a permanent magnet
  • the direction of the static magnetic field is set on at least one side of the magnetically conductive material in a vertical direction
  • the static magnetic field and the alternating magnetic field are orthogonal or partially positive. cross.
  • the magnetic conductive material has a planar structure.
  • the transducer is a magnetic potential speaker
  • the vibration suspension system further includes a diaphragm, the diaphragm isolates the front and rear cavities of the speaker, and the magnetic conductive material is fixed on the diaphragm On the surface, the diaphragm forms a part of the elastic recovery device.
  • the magnetically permeable material is in the shape of a sheet, and the magnetically permeable material is multiple, which are symmetrically distributed on the surface of the diaphragm.
  • the magnetically permeable material is in one or more groups, and each group of the magnetically permeable material is arranged on the surface of the diaphragm.
  • a transducer including the above-mentioned vibration suspension system.
  • the core component of the vibrating suspension system of the present invention is a set of magnetically permeable materials that can be alternately polarized by the coils surrounding it.
  • the magnetically permeable material as a whole is a part of the moving parts, and the magnetically permeable material is focused
  • the alternating magnetic pole is located in a static magnetic field that is orthogonal or partially orthogonal to the alternating magnetic field.
  • the static magnetic field will exert a force on the alternating magnetic field, thereby prompting the magnetic material as a whole to interact with other alternating moving parts.
  • Variable motion to achieve the conversion of alternating electrical signals to alternating mechanical motion. This design improves the problem of insufficient driving force of the traditional transducer, and improves the electro-mechanical conversion efficiency of the full-band transducer.
  • the magnetic circuit structure used to form the magnetic field is simple in design, and the magnetic energy product of the permanent magnet can be fully utilized, and the magnetic material 1 does not need to be simultaneously Considering its performance requirements as structural parts and magnetic conductive parts, the material selection can be more flexible and free.
  • the transducer applying the present invention is mainly composed of a magnetic material, two interacting magnetic fields and a suspension device.
  • the assembly process of each component is simple, and it is beneficial to improve the firmness of the combination. Good reliability.
  • an electronic device including the above-mentioned transducer vibration suspension system.
  • Fig. 1 is a schematic cross-sectional view of a vibration suspension system of a moving coil speaker in the prior art
  • Figure 2 is a schematic diagram of the overall structure of a moving coil speaker in the prior art
  • FIG. 3 is a schematic cross-sectional view of a vibration suspension system of a moving iron speaker in the prior art
  • FIG. 4 is a schematic diagram of the overall structure of a moving coil speaker in the prior art
  • Figure 5 is a schematic cross-sectional view of the transducer movement device of the embodiment of the present invention.
  • Fig. 6 is a schematic cross-sectional view of the transducer movement device and the fixing part of the embodiment of the present invention.
  • Figure 7 is a schematic cross-sectional view of a transducer vibration suspension system according to an embodiment of the present invention.
  • Fig. 8 is a schematic cross-sectional view of the overall structure of the transducer according to the embodiment of the present invention.
  • Magnetically permeable material 11. The first group of magnetically permeable materials, 12, The second group of magnetically permeable materials; 2. Diaphragm; 2', Diaphragm; 3. Reinforcement part, 3', Reinforcement part; 4. Coil, 4', coil, 41, first coil, 42, second coil, 5, permanent magnet, 5', permanent magnet, 51, first permanent magnet, 52, second permanent magnet, 6, suspension device, 7 , Bracket, 8, thimble, 9, transmission mechanism, A, static magnetic field, B, alternating magnetic field.
  • the invention provides a transducer vibration suspension system, which includes: at least one moving device on which a magnetic conductive material is arranged; at least a part of the magnetic conductive material is placed in an area where an alternating magnetic field and a static magnetic field overlap, and the magnetic conductive material The magnetic field in the area where the static magnetic field and the alternating magnetic field overlap are converged, and the magnetic field force generated by the interaction between the static magnetic field and the alternating magnetic field acts on the magnetic conductive material, so that the magnetic conductive material drives the vibration suspension system to move.
  • At least one suspension device including an elastic restoring device, which provides the restoring force of the reciprocating vibration of the vibrating suspension system; one end of the elastic restoring device is fixed on the moving device, and the other end is fixed inside the transducer.
  • FIG. 5 shows the movement device of the transducer vibration suspension system of the present embodiment.
  • the movement device specifically includes a magnetically conductive material 1, and the magnetically conductive material 1 itself has a magnetic focusing function.
  • the motion device also includes a diaphragm 2 connected and fixed with the magnetically conductive material 1, and the diaphragm 2 can reciprocate under the drive of the magnetically conductive material 1, that is, the motion device moves as a whole.
  • the magnetic material 1 is provided with two groups, and each group of magnetic material has two sheet-shaped magnetic materials, which are marked as the first magnetic material group 11 and the second magnetic material group 12. All materials have a magnetizing effect. From a distribution point of view, the first magnetically permeable material group 11 and the second magnetically permeable material group 12 are distributed in parallel, and each includes two magnetic permeable parts symmetrically arranged on the upper and lower surfaces of the diaphragm 2. It should be noted that the specific form and distribution of the magnetically conductive material 1 are not limited by this embodiment.
  • the magnetically permeable material 1 may be provided with only one or one group, or more groups, and its form may be an independent magnetically permeable metal piece, or it may be a magnetically permeable material combined by coating on the surface of the diaphragm.
  • Materials or other forms of magnetically conductive structures When there are multiple sets of the magnetically conductive material 1, considering the balance of motion and driving force and other factors, it is preferably symmetrically distributed on the two opposite surfaces of the diaphragm 2, of course, staggered distribution can also be adopted.
  • the magnetically permeable material 1 may have a sheet-like structure, or a block or other irregular structure.
  • the quantity, structure, distribution form, etc. of the aforementioned pair of magnetically conductive materials 1 are not limited by the structure shown in this embodiment.
  • the diaphragm 2 in the motion device should be a material with a certain degree of flexibility, and its central part is combined with the magnetic conductive material 1, and an upwardly convex arc structure as shown in the figure can be arranged around the central part. It can also be configured as a downwardly recessed arc-shaped structure, and in addition, it also includes an edge portion arranged outside the arc-shaped structure.
  • the diaphragm 2 and the magnetic conductive material 1 move as a whole.
  • the reinforcing part 3 can be arranged at the central part close to the edge of the arc-shaped structure, of course, can also be arranged at other positions, without affecting the implementation of the technical solution.
  • the drive module in this embodiment includes an external magnetic field and a magnetically conductive material 1.
  • the external magnetic field mentioned here specifically includes static magnetic field A and alternating magnetic field B.
  • the "external" in the external magnetic field is relative to the vibration suspension system, it is the magnetic field generated outside the vibration suspension system, and does not mean The magnetic field outside the transducer device.
  • the static magnetic field A is the static magnetic field formed by the permanent magnet 5, and the direction of the static magnetic field is arranged in the vertical direction; and the alternating magnetic field B is the alternating magnetic field formed by the alternating magnetic field generator coil 4 through the alternating current signal.
  • the direction of the magnetic field is arranged in the horizontal direction, and is orthogonal to the static magnetic field A (of course, it can also be partially orthogonal in specific implementation).
  • the magnetic conductive material 1 is arranged in the horizontal direction, and it is located in the area where the static magnetic field A and the alternating magnetic field B overlap each other. It can be understood that at least a part of the magnetic conductive material 1 needs to be located in the overlapping area of the two magnetic fields at the same time, and It exerts a magnetism gathering function in this area.
  • the magnetically permeable material 1 itself will be affected by the static magnetic force of the static magnetic field A, and the static magnetic force is on the magnetically permeable material 1
  • the two sides of is shown to be equal in size and opposite in direction, so the overall magnetostatic force is shown as a resultant force of 0, and the magnetically permeable material 1 can therefore be kept in a balanced position.
  • the resultant force of the static magnetic field A exerted on the magnetic material 1 is ⁇ 0.
  • the magnetic material 1 has a tendency to deviate from the equilibrium position, but due to the existence of the elastic recovery device, it can provide elastic recovery The force keeps the magnetic conductive material 1 in the original equilibrium position.
  • the content of the elastic recovery device will be described in detail below in conjunction with FIG. 7.
  • the effect between the magnetic field and the magnetic conductive material 1 will be explained mainly in conjunction with FIG. 6).
  • the magnetically permeable material 1 When the alternating magnetic field B is generated, the magnetically permeable material 1 itself is located in the area where the static magnetic field A and the alternating magnetic field B overlap. The magnetically permeable material 1 converges the magnetic field in this area, and the alternating magnetic field B and the static magnetic field A mutual force will inevitably be generated between A, and this part of the force acts on the magnetic conductive material to make the magnetic conductive material 1 drive the moving part C to move.
  • two coils 4 are provided, namely the first coil 41 and the second coil 42.
  • Two permanent magnets 5 are also correspondingly provided, namely a first permanent magnet 51 and a second permanent magnet 52, and the first permanent magnet 51 and the second permanent magnet 52 are arranged oppositely on both sides of the magnetic conductive material 1, that is, the first permanent magnet
  • the magnet 51 can be arranged on the upper side of the magnetically permeable material 1
  • the second permanent magnet 52 can be arranged on the lower side of the magnetically permeable material 1 correspondingly.
  • the end of the first magnetically permeable material group 11 is located in the static magnetic field A generated by the first coil 41, And at least a part of the first magnetic material group 11 is located in the alternating magnetic field B generated by the first permanent magnet 51 and the second permanent magnet 52 at the same time.
  • the end of the second magnetically permeable material group 12 is located in the static magnetic field A generated by the second coil 42, and at least a part of the second magnetically permeable material group 12 is located in the first permanent magnet 51 and the second permanent magnet 52 at the same time.
  • the alternating magnetic field B is used to enable the magnetically permeable material 1 as a driving source to drive the vibrating device to vibrate.
  • the opposite ends of the first permanent magnet 51 and the second permanent magnet 52 have opposite magnetic poles.
  • the opposite ends of the first permanent magnet 51 and the second permanent magnet 52 have S poles.
  • the magnetic poles at the two ends that are far apart are the N pole and the S pole respectively.
  • the first coil 41 and the second coil pass alternating current signals in opposite directions, where, It means that the current direction is perpendicular to the paper surface inward, and " ⁇ " means that the current direction is perpendicular to the paper surface outward.
  • the first magnetic material group 11 is polarized in the alternating magnetic field generated by the first coil 41
  • the second magnetic material group 12 is The alternating magnetic field B generated by the second coil 42 is polarized.
  • the magnetic poles at the adjacent ends of the first magnetic material group 11 and the second magnetic material group 12 are both N poles, and the first The magnetic poles of the two remote ends of the magnetically conductive material group 11 and the second magnetically conductive material group 12 are both S poles.
  • the arrows in FIG. 6 respectively show the direction of the magnetic line of force inside the magnetically permeable material 1 after polarization and the direction of the magnetic line of force of the alternating magnetic field B.
  • first magnetically permeable material group 11 Take the first magnetically permeable material group 11 as an example, one end of which is an N pole, and one end of the first permanent magnet 51 is an S pole and is close to the N pole of the first magnetically permeable material group 11, and one end of the second permanent magnet 52 is N pole.
  • the pole is also close to the N pole of the first magnetically permeable material group 11, so the first magnetically permeable material group 11 will be respectively subjected to the attractive and repulsive forces of the static magnetic field between the first permanent magnet 51 and the second permanent magnet 52, two forces In the same direction.
  • the second magnetically conductive material group 12 will also be subjected to the same attractive and repulsive force of the static magnetic field between the first permanent magnet 51 and the second permanent magnet 52.
  • the magnetic conductive material 1 can reciprocate under the interaction of the alternating magnetic field B and the static magnetic field A.
  • the magnetically conductive material 1 participates in the vibration as a whole based on its own magnetic focusing effect and the interaction force of the two external magnetic fields, which can be regarded as
  • the driving source that drives the vibration of the suspension system also exists as a part of the motion device.
  • this embodiment shows only one possible implementation form, wherein the direction of the magnetic line of force of the alternating magnetic field B and the static magnetic field A is not limited to the directions shown in the figure, for example, the first permanent magnet 51 and the second permanent magnet 51
  • the magnetic poles of the opposite ends of the two permanent magnets 52 can be set to be opposite to those shown in the figure.
  • the direction of current flow of the first coil 41 and the second coil 42 can also be opposite to that shown in the figure.
  • two of the magnetic materials The polarities of the adjacent ends and the ends far away from each other after group polarization will also be opposite, but the corresponding attractive and repulsive forces will still be generated, and they can still move back and forth under the action of the alternating magnetic field and the static magnetic field.
  • this vibration suspension system its core component is a set of magnetically permeable materials that can be alternately polarized by the coils surrounding it.
  • the magnetically permeable material as a whole is a part of the moving parts, and the magnetically permeable material focuses on
  • the alternating magnetic pole is located in a static magnetic field that is orthogonal or partially orthogonal to the alternating magnetic field.
  • the static magnetic field exerts a force on the alternating magnetic field, thereby prompting the magnetic material as a whole and other alternating moving parts to alternate Movement, to realize the conversion of alternating electrical signals to alternating mechanical movements.
  • This design improves the problem of insufficient driving force of the traditional transducer, and improves the electro-mechanical conversion efficiency of the full-band transducer.
  • the vibration suspension system has a firm structure and simple assembly process.
  • the vibration suspension system also includes a suspension device 6, the main function of the suspension device 6 is to provide elastic restoring force to the motion device when it moves.
  • the first-order resonance frequency refers to the resonance frequency in the first-order mode.
  • Inverse stiffness is also called magnetic stiffness, that is, magnetic materials (including soft magnetic and hard magnetic materials) gradually increase their force when they are close to areas with higher magnetic flux density, and are consistent with the direction of their movement. The rate of change of the force on its displacement is called the inverse stiffness of the magnetic material.
  • the general design principle is to give priority to the requirements of driving force, which may result in excessive inverse stiffness.
  • the present invention further proposes to separately provide a suspension device 6 to balance the excessive inverse stiffness.
  • the suspension device 6 specifically includes an elastic restoring device. One end is fixed on the vibration suspension system, and the other end is fixed in the transducer. When the vibrating suspension system reciprocates, the device can provide elastic force to restore it to a balanced position.
  • the suspension device 6 can be a spring piece with a resilient arm, a spring, or other elastic components, which can be set as an independent ring-shaped component, or as a group or multiple components, as long as it can ensure It is made of elastic material, and one end is fixed on the vibration suspension system and the other end is fixed in the transducer.
  • the elastic piece has a first fixed end connected to the transducer and a second fixed end connected to the magnetic conductive material 1, and the first fixed end and the second fixed end There is a height difference in the direction of movement of the vibration suspension system, which facilitates its elastic deformation in the vibration direction to provide elastic restoring force.
  • the elastic sheet is used as the main suspension device 6 to provide elastic restoring force for the movement of the moving parts.
  • the edge portion of the diaphragm 2 actually works as a part of the elastic restoring device.
  • the force balance device is composed of an inverse stiffness balance device and a motion device (including the diaphragm 2 and the magnetic material 1).
  • a motion device including the diaphragm 2 and the magnetic material 1.
  • the stiffness requirements of the force balance device are obtained.
  • at least one inverse stiffness balancing device is designed.
  • the structure can have various forms, such as the aforementioned shrapnel, spring, magnetic spring, etc.;
  • the design of the inverse stiffness balance device should follow its own design criteria: such as shrapnel or spring structure, it must meet the tension or compression to the ultimate displacement when the stress is less than the yield strength of the member; such as magnetic spring The structure must satisfy the range of the magnetic field force when it is stretched or compressed to the limit displacement.
  • an inverse stiffness balancing device is additionally added to balance the excessive inverse stiffness.
  • the stiffness of the force balance device is only affected by its own structure, so that the total stiffness of the system can be adjusted by adjusting the stiffness, thereby indirectly adjusting the first-order resonance frequency of the system.
  • the total stiffness of the system is synthesized by superimposing the inverse stiffness and the positive stiffness of the suspension system, so that the total stiffness is always less than the positive stiffness of the vibrating suspension system. Since the first-order resonant frequency of the micro-transducer has a positive correlation with the total stiffness of the system, adjusting the inverse stiffness of the system can sufficiently reduce the first-order resonant frequency, thereby effectively improving the low-frequency performance of the micro-transducer.
  • the transducer device further includes a bracket 7, which provides a peripheral frame of the transducer, and the edge portion of the diaphragm 2 is fixed on the bracket 7 to hold the transducer device
  • the front and rear chambers are isolated.
  • the specific structure of the bracket 7 is not limited. It may be an integrally formed annular shell provided with an opening, or may be a shell assembly formed by connecting and fixing a plurality of independent shell parts. As a loudspeaker, a sound outlet needs to be opened on the bracket 7 for the sound waves generated by the vibrator to radiate to the external environment, so as to realize its sound function.
  • the bracket 7 provides a peripheral frame, wherein the permanent magnet 5, the first coil 41, and the second coil 42 can all be positioned in the frame provided by the bracket 7.
  • the first coil 41 , The permanent magnet 5 and the second coil 42 are assembled in order from left to right along the horizontal direction, that is, the first coil 41 and the second coil 42 are respectively fixed on both sides of the permanent magnet 5 and keep a certain gap with the permanent magnet 5.
  • a vibration space is formed in the vibration direction of the transducer.
  • a diaphragm 2 and a magnetic material 1 for driving the vibration 2 are assembled, wherein the magnetic material 1 is connected It is fixed on the surface of the diaphragm 2, and there is a certain distance between the second ends of the first permanent magnet 51 and the second permanent magnet 52, so that it can be guaranteed to be under the action of the alternating magnetic field B and the static magnetic field A Space for reciprocating motion.
  • the first fixing part of the inverse stiffness balancing device is assembled on the wall of the bracket 7, and the second fixing part is connected to the vibration suspension system to additionally provide independent elastic restoring force.
  • the magnetically conductive material 1 can move as a whole in the transducer.
  • the overall movement described here is to guide the magnetic material 1 to be freely arranged on the suspension device 6, and its boundary is not clamped on other parts.
  • This is the same as the U-shaped or T-shaped moving iron transducer described above.
  • the armature structure is essentially different.
  • the transducer without a moving iron structure usually has an armature wire that is too long, the magnetic field attenuates greatly along its path, and its bending area (clamping area) will also appear Large magnetic leakage, resulting in a rapid decline in drive performance.
  • the product design is not limited by size; the invention uses the interaction force of the static magnetic field A and the alternating magnetic field B to make the magnetic conductive material 1 drive the moving parts to vibrate, and through the principle of magnetomotive force balance, that is, the total magnetic potential of the system is within a certain range Keep the same, the magnetic field is distributed according to the principle of minimum potential energy of current and magnetic flux. On the basis of keeping the existing miniature transducer light and thin, the principle of magnetic potential is used to effectively improve the driving force.
  • the magnetically permeable material 1 can be a flat sheet structure, one piece can be provided, or two or more groups, and each group of magnetically permeable material can be provided with The number is also unlimited.
  • the composition of the magnetically permeable material does not necessarily have to be formed by an independent permeable magnet.
  • the permeable material when the permeable material is connected to the diaphragm, it can also be used to cover a part of the surface of the diaphragm by coating. Of materials.
  • the magnetically permeable material is preferably symmetrically distributed on the surface of the diaphragm.
  • the present invention when it is arranged in multiple groups, a staggered distribution method can also be used.
  • the present invention when it is specifically implemented, it can be applied to a square transducer or a round or other shaped transducer structure.
  • the diaphragm can be set to be square or round.
  • the number of the static magnetic field generating device, the alternating magnetic field generating device, the motion device, and the suspension device in the magnetic potential transducer can be one or more.
  • the permanent magnet generating the static magnetic field consists of more
  • the number of permanent magnets assembled on the upper and lower sides of the magnetic conductive material 1 is preferably equal and distributed in one-to-one correspondence, which is more conducive to the balance of the static magnetic field force.
  • this embodiment shows a magnetic potential speaker structure.
  • the magnetic material 1 drives the diaphragm 2 to vibrate and radiate sound waves to the outside.
  • structures such as motors. When applied to motor products At this time, it will further drive other vibrating components (such as counterweights, etc.) to vibrate under the drive of the magnetic conductive material 1.
  • the transducer vibration suspension system of the present invention is highly adaptable to products of different sizes and can be widely used in electronic equipment.
  • the micro speaker shown in this embodiment is only one of the preferred embodiments.
  • the present invention creates It can also be applied to motors and large speakers. Application areas include motors, automotive electronics, speakers, mobile phones, tablet computers and many other fields.

Abstract

本发明公开了一种换能器振动悬挂系统,振动悬挂系统包含至少一个运动装置,运动装置上设置有导磁材料;导磁材料的至少一部分置于交变磁场和静磁场交叠的区域,使静磁场和交变磁场汇聚,静磁场与交变磁场相互作用产生的磁场力作用在导磁材料上,驱动振动悬挂系统运动,还包括至少一个悬挂装置,其包括弹性回复装置,提供振动悬挂系统往复振动的回复力,弹性回复装置一端固定在运动装置上,另一端固定在换能器内部。本发明公开了一种新型的换能器振动悬挂系统,并且具有独立的逆刚度平衡装置,解决了传统换能器驱动力不足的问题,提高全频带的扬声器的电-机转换效率,并且具有良好的低频效果。

Description

换能器振动悬挂系统、换能器及电子设备 技术领域
本发明涉及一种换能器振动悬挂系统,还涉及一种应用该振动悬挂系统的换能器及其电子设备。
背景技术
换能器件是非常重要并被广泛使用的能量转换器件,以消费电子领域为例,作为手机、平板电脑、手提电脑、音响等各种消费类电子产品普遍的核心元器件,其悬挂系统设计对各种换能器的性能和结构设计有重要影响,现有技术中换能器悬挂系统的工作原理主要有两种:
一、动圈式:以动圈式扬声器为例,参照图1和图2所示,其悬挂系统为一个膜片2’和线圈4’,其中,线圈4’位于静态磁场中,在线圈4’内加载交变的电流,线圈4’会受到一个交变的安培作用力,带动悬挂系统振动,从而实现交变电学信号到交变机械运动的转换。
主要缺陷有:
1.扬声器局部磁通密度的提升受限,复杂的磁路设计带来成本和工艺难度提升;
2.随着工作时间的变长,很小的磁隙内容易吸附杂质,如果添加一些可移动的导磁液体提高局部磁通密度,那么在长时间的工作状态下,可移动的导磁液体自身特性也会老化衰减,从而影响线圈性能的一致性;
3.线圈必须通过一个引出装置和电信号驱动器连接,该引出装置在振动强度、安装牢固度、和系统的连接强度上存在工艺缺陷,从而使安装有该线圈的运动部件可靠性、牢固度大大受限。
二、动铁式:参照图3和图4所示,其包括振膜2’、顶针8、线圈4’以及传动机构9构成。悬挂系统采用一端固定的U铁或者T铁以及传动构件9传动振膜2’,其工作原理是:采用导磁材料对该线圈4’生成的交变磁场进行磁场导向与聚 焦;通过特殊的结构设计,比如U铁或T铁,由交变电流生成的交变磁场聚在导磁材料中,其一端位于一个与其存在正交分量的静态磁场中,该静态磁场会对U铁或者T铁的这一端产生作用力,从而使该U铁或T铁发生局部的形变,弹性悬挂系统为一膜片,U铁或T铁通过传动部件9与膜片相互连通从而实现交变电学信号到交变机械运动的转换。
这种设计的主要缺陷是:
1.把U铁或T铁的形变部分用作激励部件,需要设计一个耦合机构进行机械运动的传递,衔铁线度过长,磁场沿其路径衰减较大,其弯折区域(钳定区域)也将出现较大磁泄漏,从而导致驱动性能迅速下降。;
2.导磁材料同时当作一个结构部件和导磁材料,因此在材料选择上存在限制,比如导磁特性好的硅钢/坡莫合金材料,成型难度大;成型状态好的材料,其导磁特性又不如硅钢/坡莫合金;
3.为了维持U铁或者T铁中聚磁的一端在静态磁场中的平衡位置,通常需要对生成静态磁场的组件进行反复充磁校准,一方面未能充分应用永磁体的磁能积,另一方面也给制造带来了极大的难度。
所以,有必要对现有技术中换能器的振动悬挂系统进行改进,以避免上述缺陷。
发明内容
为解决上述技术问题,本发明提供的技术方案是:一种换能器振动悬挂系统,其中所述振动悬挂系统包含:
至少一个运动装置,所述运动装置上设置有导磁材料;
所述导磁材料的至少一部分置于交变磁场和静磁场交叠的区域,使所述静磁场和所述交变磁场汇聚;所述静磁场与所述交变磁场相互作用产生的磁场力作用在导磁材料上,驱动所述振动悬挂系统运动。
至少一个悬挂装置;
包括弹性回复装置,提供所述振动悬挂系统往复振动的回复力;弹性回复装置一端固定在所述运动装置上,另一端固定在所述换能器内部。
作为一种改进,所述交变磁场为线圈通过交变电流形成的磁场,所述 线圈和导磁材料沿水平方向设置。
作为一种改进,所述静磁场为永磁铁形成的磁场,所述静磁场方向沿竖直方向设置在导磁材料的至少一侧,所述静磁场和所述交变磁场正交或者部分正交。
作为一种改进,所述导磁材料为平面结构。
作为一种改进,所述导磁材料为两组,换能器上对应设置有两个交变磁场和两个静磁场。
作为一种改进,所述换能器为磁势扬声器,所述振动悬挂系统还包括振膜,所述振膜隔绝所述扬声器的前后腔体,所述导磁材料固定在所述振膜的表面,所述振膜形成所述弹性回复装置的一部分。
作为一种改进,所述导磁材料为片状,所述导磁材料为多个,在所述振膜的表面对称分布。
作为一种改进,所述导磁材料为一组或多组,所述每组导磁材料设置在所述振膜的表面。
根据本发明的另一个方面,还提供一种换能器,其包括上述的振动悬挂系统。
本发明提出的换能器振动悬挂系统和换能器,在性能以及装配工艺等方面均具有明显的技术优势:
首先,本发明的振动悬挂系统,其核心部件是一组可被包围在其外部的线圈交变极化的导磁材料,该导磁材料整体作为运动部件的一部分,并且该导磁材料所聚焦的交变磁极位于一个与交变磁场正交或者部分正交的静态磁场中,该静态磁场会对这个交变磁场产生作用力,从而促使该导磁材料整体和其他的交变运动部件产生交变运动,实现交变电学信号到交变机械运动的转换。这种设计改善了传统换能器的驱动力不足的问题,提高全频带的换能器的电-机转换效率。
其次,在本发明的振动悬挂系统中,相较于现有技术而言,其用于形成磁场的磁路结构设计简单,且能够充分利用永磁铁的磁能积,并且导磁材料1不需要同时考虑其作为结构件和导磁件的性能需求,因而选材上可以更为灵活、自由。
再者,应用本发明的换能器,其主要是由导磁材料、两个相互作用的磁场以及悬挂装置构成,各部件彼此间的装配工艺简单,且有利于提高结合后的牢固程度,产品可靠性好。
根据本发明的又一个方面,还提供一种电子设备,该电子设备包含上述的换能器振动悬挂系统。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。其中,
图1为现有技术中动圈式扬声器的振动悬挂系统的剖面示意图;
图2为现有技术中动圈式扬声器的整体结构示意图;
图3为现有技术中动铁式扬声器的振动悬挂系统的剖面示意图;
图4为现有技术中动圈式扬声器的整体结构示意图;
图5为本发明实施例的换能器运动装置的剖面示意图;
图6为本发明实施例的换能器运动装置及固定部件的剖面示意图;
图7为本发明实施例的换能器振动悬挂系统的剖面示意图;
图8为本发明实施例的换能器整体结构的剖面示意图。
附图标记说明:
1、导磁材料,11、第一导磁材料组,12、第二导磁材料组;2、振膜;2’、振膜;3、补强部,3’、补强部;4、线圈,4’、线圈,41、第一线圈,42、第二线圈,5、永磁铁,5’、永磁铁,51、第一永磁铁,52、第二永磁铁,6、悬挂装置,7、支架,8、顶针,9、传动机构,A、静磁场,B、交变磁场。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到: 除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本发明提供一种换能器振动悬挂系统,包含:至少一个运动装置,运动装置上设置有导磁材料;导磁材料的至少一部分置于交变磁场和静磁场交叠的区域,导磁材料使静磁场和交变磁场交叠的区域的磁场汇聚,静磁场与交变磁场相互作用产生的磁场力作用在导磁材料上,使导磁材料驱动振动悬挂系统运动。至少一个悬挂装置;包括弹性回复装置,提供振动悬挂系统往复振动的回复力;弹性回复装置一端固定在运动装置上,另一端固定在换能器内部。
具体的,结合本发明的具体实施例进行详细阐述。
实施例:
如图5所示,其示出了本实施方式换能器振动悬挂系统的运动装置,该运动装置具体包括导磁材料1,导磁材料1本身具备聚磁功能。运动装置还包括与导磁材料1连接固定在一起的振膜2,振膜2可在导磁材料1的带动下发生往复运动,即运动装置作为一个整体运动。
其中,导磁材料1设置有两组,每组导磁材料分别有两个片状的导磁材料,标记为第一导磁材料组11和第二导磁材料组12,该两组导磁材料均具有聚磁效应。从分布上看,第一导磁材料组11和第二导磁材料组12平 行分布,并且各自分别包括两个对称排布在振膜2的上、下侧表面的导磁件。需要说明的是,导磁材料1的具体形式及分布方式不受该实施例的限制。例如,导磁材料1可以仅设置有一个或者一组,或者更多组,其形式可以为独立的导磁金属件,也可以是采用在振膜的表面上通过涂覆等形式结合的导磁性材料或其他形式的导磁结构。当导磁材料1设置有多组时,考虑到运动的平衡性以及驱动力等因素,优选为在振膜2的两个相对的表面上对称分布,当然也可以采取交错分布等方式。导磁材料1可以呈片状结构,也可以呈块状或者其他不规则的结构等等。上述对导磁材料1的数量、结构、分布形式等均不受本实施例所示出结构的限制。
对于运动装置中的振膜2而言,其应当是具有一定柔性的材料,其中心部分与导磁材料1结合在一起,围绕中心部分可以设置如图所示的向上凸起的弧形结构,也可以设置为向下凹陷的弧形结构,另外,还包括有设置在弧形结构外侧的边缘部分。振膜2与导磁材料1作为一个整体运动。在这一过程中,为了改善分割振动的现象,优选为在振膜的中心部分设置补强部3,补强部3一般为刚性较大的材料。如图5所示,补强部3可以设置在中心部分靠近弧形结构的边缘,当然也可以设置在其他的位置,均不影响本技术方案的实施。
下面参照图6对运动装置的工作原理进行说明。应当理解的是,在换能器的整个工作过程中,运动过程的发生必然需要依赖驱动模块,而本实施方式中的驱动模块包括外部磁场及导磁材料1。此处所说的外部磁场,具体包括静磁场A和交变磁场B,当然,外部磁场中的“外部”是相对于振动悬挂系统而言的,是产生于振动悬挂系统外部的磁场,并不是指换能器装置外部的磁场。
优选的,静磁场A为永磁铁5形成的静磁场,静磁场的方向沿竖直方向设置;而交变磁场B是由交变磁场产生装置线圈4通过通入交流电信号形成的交变磁场,其磁场方向沿水平方向设置,与静磁场A相互正交(当然,在具体实施时,也可以是部分正交)。导磁材料1沿水平方向设置,且其本身位于静磁场A和交变磁场B相互交叠的区域,可以这样理解,导 磁材料1的至少一部分需要同时位于两个磁场的交叠区域,并在该区域内发挥聚磁功能。
当交变磁场产生装置线圈4未通电时,即交变磁场还未产生时,在理想状态下,导磁材料1本身会受到静磁场A的静磁力的作用,而静磁力在导磁材料1的两侧表现为大小相等、方向相反,因此静磁力的整体表现为合力为0,导磁材料1因此可保持在平衡位置。在另外的一些情况下,静磁场A施加在导磁材料1上的静磁力合力≠0,此时导磁材料1本身具有偏离平衡位置的倾向,但由于弹性回复装置的存在,可以提供弹性回复力使导磁材料1仍然保持在原来的平衡位置。(涉及到弹性回复装置的内容,将在下面结合图7时进行具体说明,此处主要结合图6对磁场以及导磁材料1之间的作用进行阐释)。
而当交变磁场B产生时,导磁材料1自身位于静磁场A和交变磁场B的交叠的区域,该导磁材料1使该区域内的磁场汇聚,而交变磁场B与静磁场A之间必然会产生相互的作用力,这部分作用力作用在导磁材料上,使导磁材料1驱动运动部件C运动。
具体的,在本实施方式中,线圈4设置有两个,分别为第一线圈41和第二线圈42。永磁铁5也对应设置有两个,即第一永磁铁51和第二永磁铁52,并且第一永磁铁51和第二永磁铁52相对设置在导磁材料1的两侧,即第一永磁铁51可设置在导磁材料1的上侧位置,而第二永磁铁52则对应设置在导磁材料1的下侧位置。
为了能够使得导磁材料1作为驱动源驱动振动装置振动,本实施方式中,从各个部件的分布上看,第一导磁材料组11的端部位于第一线圈41产生的静磁场A中,并且第一导磁材料组11的至少一部分同时位于第一永磁铁51和第二永磁铁52所产生的交变磁场B中。同样的,第二导磁材料组12的端部位于第二线圈42产生的静磁场A中,并且第二导磁材料组12的至少一部分同时位于第一永磁铁51和第二永磁铁52产生的交变磁场B中。
结合图6所示,第一永磁铁51与第二永磁铁52的相对端的磁极相反,在本实施方式中,可以假设第一永磁铁51和第二永磁铁52的相对端的磁 极分别为S极、N极,相远离的两个端部的磁极分别为N极、S极。同样的,第一线圈41和第二线圈中通入方向相反的交流电信号,其中,
Figure PCTCN2019100299-appb-000001
表示电流方向垂直纸面向里,用“⊙”表示电流方向垂直纸面向外,第一导磁材料组11在第一线圈41产生的交变磁场中被极化,第二导磁材料组12在第二线圈42产生的交变磁场B中被极化,根据右手定则可以判定,第一导磁材料组11、第二导磁材料组12的相邻端的磁极均为N极,且第一导磁材料组11、第二导磁材料组12的相远离的两个端部的磁极均为S极。图6中的箭头分别示出了导磁材料1极化后内部的磁感线方向以及交变磁场B的磁感线方向。以第一导磁材料组11为例,其一端为N极,而第一永磁铁51的一端为S极并且靠近第一导磁材料组11的N极,第二永磁铁52的一端为N极也靠近第一导磁材料组11的N极,因此第一导磁材料组11会分别受到第一永磁铁51、第二永磁铁52之间静磁场的吸引力和排斥力,两个力的方向相同。同样的,第二导磁材料组12也同样会受到相同的第一永磁铁51、第二永磁铁52之间静磁场的吸引力和排斥力。同时在悬挂装置6(后面结合图7进行详细说明)的共同作用下,导磁材料1在交变磁场B和静磁场A的相互作用下可做往复运动。
也就是说,在这种振动悬挂系统中,导磁材料1基于本身的聚磁效应以及对应设置的两个外部磁场的相互作用力,其本身就作为一个整体参与了振动,既可以看作是驱动振动悬挂系统运动的驱动源,也同时作为运动装置的一部分而存在。
如前面所述,在导磁材料1偏离平衡位置而运动时,必然带动与之连接的振膜2一同振动。
当然,本实施方式示出的仅仅是一种可能的实现形式,其中,交变磁场B和静磁场A的磁感线方向并不限于图示中的方向,例如,第一永磁铁51和第二永磁铁52的相对端的磁极可以设置为与图示中相反,另外,第一线圈41和第二线圈42的电流通入方向也可以与图示中相反,对应的,其中两个导磁材料组极化后的相邻端以及相互远离端的极性也会相反,但仍然会产生相应的吸引力和排斥力,仍然能够在交变磁场和静磁场的作用下往复运动。
这种振动悬挂系统的设计,其核心部件是一组可被包围在其外部的线圈交变极化的导磁材料,该导磁材料整体作为运动部件的一部分,并且该导磁材料所聚焦的交变磁极位于一个与交变磁场正交或者部分正交的静态磁场中,该静态磁场会对这个交变磁场产生作用力,从而促使该导磁材料整体和其他的交变运动部件产生交变运动,实现交变电学信号到交变机械运动的转换。这种设计改善了传统换能器的驱动力不足的问题,提高全频带的换能器的电-机转换效率。并且这种振动悬挂系统结构牢固,装配工艺简单。
继续参照图7所示,振动悬挂系统还包括悬挂装置6,悬挂装置6的主要功能是在运动装置运动时,对其提供弹性回复力。
如背景技术中所言,在消费类电子领域的微型换能器中,为提高驱动力或降低第一阶谐振频率以提升低频性能,在磁路设计时会产生逆刚度。为了便于阐述,此处对第一阶谐振频率以及逆刚度的概念进行解释:第一阶谐振频率是指在第一阶模态时的谐振频率。逆刚度也称为磁刚度,即导磁材料(包括软磁和硬磁材料)在靠近磁通量密度较高的区域时出现对其作用力逐渐增大,并与其移动的方向一致。该作用力对其位移的变化率称为该导磁材料的逆刚度。
对于微型换能器而言,一般的设计原则是优先满足驱动力的要求,而可能导致的逆刚度过大。本发明为了解决该技术问题,进一步提出单独设置悬挂装置6用以和过大的逆刚度相互平衡。在本实施方式中,悬挂装置6具体包括弹性回复装置,。其一端固定在振动悬挂系统上,另一端固定在换能器中。当振动悬挂系统往复运动时,装置可以提供使其回复到平衡位置的弹性作用力。具体的,悬挂装置6可以选择具有弹臂的弹片、弹簧或者其他的具有弹性的部件,其可以设置为环形的一个独立部件,也可以设置为一组或者多组分立的部件,只要其能够保证使用具有弹性的材料制成,并且一端固定在振动 悬挂系统上,一端固定在换能器中即可。
在本实施方式中,例如图7中所述,弹片具有连接在换能器上的第一固定端和连接在导磁材料1上的第二固定端,并且第一固定端与第二固定端之间在振动悬挂系统的运动方向上存在高度差,便于其在振动方向上发生弹性形变以提供弹性回复力。
综合上述说明,本实施方式中,弹片作为主要的悬挂装置6,为运动部件的运动提供弹性回复力,除此之外,振膜2的边缘部分实际也作为弹性回复装置的一部分而工作。
在本实施方式的结构中,力平衡装置是由逆刚度平衡装置以及运动装置(包括振膜2和导磁材料1)共同构成,具体设计时可以参照以下因素;
1)通过仿真或试验测量微型换能器内逆刚度的大小,如果存在非线性,必须仿真或测量得到运动装置受到的静磁场力随其位移变化的曲线;
2)根据第一阶谐振频率的设计要求并结合逆刚度的测量结果,得到力平衡装置的刚度要求。根据该要求并结合微型换能器内部空间结构,设计至少一个逆刚度平衡装置,该结构可以有多种形式,如前述的弹片、弹簧、磁弹簧等;
除上述因素以外,该逆刚度平衡装置的设计应遵循其自身的设计准则:如弹片或弹簧结构,就必须满足拉伸或压缩至极限位移时产生的应力小于该构件的屈服强度;如磁弹簧结构,就必须满足拉伸或压缩至极限位移时没有超出其磁场力的作用域等。
由此可见,本实施方式中,除振膜2能够兼顾弹性回复功能外,通过额外添加逆刚度平衡装置平衡过大的逆刚度。这样设计能够带来以下几点优势:
a)单独设计该力平衡装置的刚度和逆刚度平衡,那么驱动力就可以不考 虑逆刚度的大小进行单独设计;
b)该力平衡装置的刚度仅受其自身结构影响,这样就可以通过调节该刚度来调整系统总刚度,从而间接调整系统的第一阶谐振频率。
利用逆刚度与悬挂系统的正刚度相叠加合成系统总刚度,这样该总刚度总是小于振动悬挂系统的正刚度。由于微型换能器的第一阶谐振频率与系统总刚度是正相关关系,调节系统逆刚度将能够充分降低第一阶谐振频率,从而有效提升微型换能器的低频性能。
进一步地,参照图8所示,换能器装置还包括支架7,支架7提供该换能器的外围框架,振膜2的边缘部分固定在该支架7上,用以将换能器装置的前后腔隔绝。具体实施时,支架7的具体结构不限,其可以是一体成型且设置有开口的环状壳体,也可以是由多个独立的壳体部件相互连接固定在一起形成的壳体组件。作为扬声器而言,支架7上需要开设出声口,供振子振动产生的声波辐射至外界环境中,以实现其发声功能。
申请人进一步从换能器装配的角度对本发明实施方式的换能器进行阐述。如图7和图8共同所示,支架7提供外围框架,其中,永磁铁5、第一线圈41、第二线圈42均可以在支架7提供的框架中进行定位,具体的,第一线圈41、永磁铁5以及第二线圈42沿水平方向自左向右顺序装配,即第一线圈41和第二线圈42分别固定在永磁铁5的两侧,并与永磁铁5保持一定间隙。两个永磁铁对应安装后,在换能器的振动方向上形成了振动空间,在该振动空间内,装配有振膜2以及驱动振动2振动的导磁材料1,其中,导磁材料1连接固定在振膜2的表面上,并且与第一永磁铁51、第二永磁铁52的第二端之间均存在一定距离,这样可以保证其具有在交变磁场B和静磁场A的作用下往复运动的空间。逆刚度平衡装置的第一固定部装配在支架7的壁上,并且第二固定部连接到振动悬挂系统上额外提供独立的弹性回复力。
如前面所述,导磁材料1可在换能器中整体运动。此处所述的整体运动,是指导磁材料1在悬挂装置6上自由设置,其边界并没有钳定在其它 部件上,这与前述所描述的动铁换能器的U型或T型的衔铁结构有本质区别,本发明的这种设计,不存在动铁结构的换能器通常存在衔铁线度过长,磁场沿其路径衰减较大,其弯折区域(钳定区域)也将出现较大磁泄漏,从而导致驱动性能迅速下降的问题。另外产品设计上不受尺寸的限制;本发明通过静磁场A和交变磁场B的相互作用力使导磁材料1驱动运动部件振动,通过磁动势平衡原理,即系统总磁势在一定范围保持不变,磁场按电流和磁通的最小势能原则进行分布,在保持现有微型换能器轻薄化的基础上,利用磁势原理有效提高驱动力。
需要说明的是:第一、导磁材料1可以是平面的片状结构,可以设置一片,也可以也可以是两片或者更多组,且每一组导磁材料所能设置的导磁体的个数也不受限制。并且,导磁材料的构成也不一定必须由独立的导磁体形成,例如,当导磁材料连接振膜时,也可以采用在振膜的表面通过涂覆等方式覆盖一部分振膜表面的导磁性的材料所构成。第二、为了使运动装置振动更趋于平衡,导磁材料优选为在振膜的表面对称分布,当然,在设置为多组时,也可以采用交错分布的方式等。第三、本发明具体实施时,既可以应用到方形的换能器中,也可以应用到圆形或者其他形状的换能器结构中,对应的,振膜可以设置为方形或者圆形等。第四、磁势换能器中的静磁场产生装置、交变磁场产生装置以及运动装置、悬挂装置的数量可以是一个,也可以是多个,例如当产生静磁场的永磁铁由更多个磁铁组构成时,装配在导磁材料1的上下两侧的永磁铁的个数优选为相等,且一一对应分布,这样更有利于静磁场作用力的均衡。当然,也可以根据具体的需求进行灵活设计。第五、本实施方式示出的是一种磁势扬声器结构,由导磁材料1带动振膜2振动向外界辐射声波,当然,其也可以应用在马达等结构中,当应用在马达产品中时,其在导磁材料1的带动下会进一步带动其他振动部件(如配重块等)振动。
本发明中的换能器振动悬挂系统,对不同尺寸产品的适应性较强,可以广泛的应用在电子设备中,本实施方式中示出的微型扬声器只是优选的实施例之一,本发明创造也可以应用在马达、大型扬声器,应用的领域包括电机、汽车电子、音箱以及手机、平板电脑等诸多领域。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种换能器振动悬挂系统,其特征在于,所述振动悬挂系统包含:
    至少一个运动装置,所述运动装置上设置有导磁材料;
    所述导磁材料的至少一部分置于交变磁场和静磁场交叠的区域,使所述静磁场和所述交变磁场汇聚;所述静磁场与所述交变磁场相互作用产生的磁场力作用在导磁材料上,驱动所述振动悬挂系统运动;
    至少一个悬挂装置;
    包括弹性回复装置,提供所述振动悬挂系统往复振动的回复力;弹性回复装置一端固定在所述运动装置上,另一端固定在所述换能器内部。
  2. 根据权利要求1所述的换能器振动悬挂系统,其特征在于,所述交变磁场为线圈通过交变电流形成的磁场,所述线圈和导磁材料沿水平方向设置。
  3. 根据权利要求1所述的换能器振动悬挂系统,其特征在于,所述静磁场为永磁铁形成的磁场,所述静磁场方向沿竖直方向设置在导磁材料的至少一侧,所述静磁场和所述交变磁场正交或者部分正交。
  4. 根据权利要求1所述的换能器振动悬挂系统,其特征在于,所述导磁材料为平面结构。
  5. 根据权利要求4所述的换能器振动悬挂系统,其特征在于,所述导磁材料为两组,换能器上对应设置有两个交变磁场和两个静磁场。
  6. 根据权利要求1-5任一项所述的换能器振动悬挂系统,其特征在于,所述换能器为磁势扬声器,所述振动悬挂系统还包括振膜,所述振膜隔绝所述扬声器的前后腔体,所述导磁材料固定在所述振膜的表面,所述振膜形成所述弹性回复装置的一部分。
  7. 根据权利要求6所述的换能器振动悬挂系统,其特征在于,所述导磁材料为片状,所述导磁材料为多个,在所述振膜的表面对称分布。
  8. 根据权利要求7所述的换能器振动悬挂系统,其特征在于,所述导磁材料为一组或多组,所述每组导磁材料设置在所述振膜的表面。
  9. 一种换能器,其特征在于,包括如权利要求1-8任一项所述的换能器振动悬挂系统。
  10. 一种电子设备,其特征在于,包括如权利要求1-8任一项所述的换能器振动悬挂系统。
PCT/CN2019/100299 2019-07-08 2019-08-13 换能器振动悬挂系统、换能器及电子设备 WO2021003796A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/625,654 US20220279280A1 (en) 2019-07-08 2019-08-13 Vibration suspension system for transducer, transducer and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910612019.4A CN112203199B (zh) 2019-07-08 2019-07-08 换能器振动悬挂系统、换能器及电子设备
CN201910612019.4 2019-07-08

Publications (1)

Publication Number Publication Date
WO2021003796A1 true WO2021003796A1 (zh) 2021-01-14

Family

ID=74004496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100299 WO2021003796A1 (zh) 2019-07-08 2019-08-13 换能器振动悬挂系统、换能器及电子设备

Country Status (3)

Country Link
US (1) US20220279280A1 (zh)
CN (1) CN112203199B (zh)
WO (1) WO2021003796A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112203198B (zh) * 2019-07-08 2022-05-27 歌尔股份有限公司 换能器振动悬挂系统与驱动系统组件及其电子设备
CN112243183B (zh) * 2019-07-19 2023-08-04 歌尔股份有限公司 磁势扬声器及其电子设备
CN112383854B (zh) * 2020-11-30 2022-05-03 瑞声新能源发展(常州)有限公司科教城分公司 发声装置
CN113890301B (zh) * 2021-10-20 2022-12-06 中国科学院宁波材料技术与工程研究所 线圈悬浮式磁性液体动能采集器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020021819A1 (en) * 2000-08-11 2002-02-21 Star Micronics Co., Ltd. Electroacoustic transducer
CN1350766A (zh) * 1999-05-14 2002-05-22 松下电器产业株式会社 电磁换能器和便携式通信设备
CN103491478A (zh) * 2013-10-20 2014-01-01 姜福文 双层音圈组动铁耳机
CN108462924A (zh) * 2018-05-21 2018-08-28 潍坊帕萨蒂经贸有限公司 动铁式电声/声电转换装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3251868B2 (ja) * 1996-10-28 2002-01-28 スター精密株式会社 電磁音響変換器
CN102187689A (zh) * 2008-08-29 2011-09-14 宾夕法尼亚州研究基金会 用于减少失真的平衡电枢器件的方法和装置
CN103037294A (zh) * 2011-09-30 2013-04-10 苏州恒听电子有限公司 用于动铁式传声器/换能器的电枢装置
CN103067806B (zh) * 2012-12-25 2015-04-15 苏州恒听电子有限公司 超薄型受话器
KR101587477B1 (ko) * 2013-11-15 2016-01-21 주식회사 진영지앤티 초박형 스피커
US9668058B2 (en) * 2014-07-09 2017-05-30 Panasonic Intellectual Property Management Co., Ltd. Speaker diaphragm, speaker, device, and method for manufacturing speaker diaphragm
EP3035708A3 (en) * 2014-12-15 2016-09-21 EM-Tech Co., Ltd. Slim microspeaker
CN104507025A (zh) * 2014-12-31 2015-04-08 苏州恒听电子有限公司 新型小体积受话器
WO2018161475A1 (zh) * 2017-03-10 2018-09-13 华为技术有限公司 扬声器单元、扬声器、终端及扬声器控制方法
CN109660923A (zh) * 2018-11-22 2019-04-19 海菲曼(天津)科技有限公司 一种具有悬边的等磁式扬声器及耳机
CN209057343U (zh) * 2018-12-29 2019-07-02 歌尔股份有限公司 一种电子设备
CN110012398B (zh) * 2019-05-14 2024-03-12 潘国昌 一种平衡振动系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1350766A (zh) * 1999-05-14 2002-05-22 松下电器产业株式会社 电磁换能器和便携式通信设备
US20020021819A1 (en) * 2000-08-11 2002-02-21 Star Micronics Co., Ltd. Electroacoustic transducer
CN103491478A (zh) * 2013-10-20 2014-01-01 姜福文 双层音圈组动铁耳机
CN108462924A (zh) * 2018-05-21 2018-08-28 潍坊帕萨蒂经贸有限公司 动铁式电声/声电转换装置

Also Published As

Publication number Publication date
US20220279280A1 (en) 2022-09-01
CN112203199A (zh) 2021-01-08
CN112203199B (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2021003796A1 (zh) 换能器振动悬挂系统、换能器及电子设备
WO2021012326A1 (zh) 磁势扬声器及其电子设备
US9601980B2 (en) Electromechanical transducer and electroacoustic transducer
US9301054B2 (en) Electromechanical transducer and electrocoustic transducer
WO2020215786A1 (zh) 振动发声装置以及电子产品
JP7241452B2 (ja) 平衡振動システム
US11206492B2 (en) Screen sounding exciter and electronic device
JPWO2013038682A1 (ja) 発電素子
US20210136500A1 (en) Screen sounding exciter and electronic device
TWM384482U (en) Multi-function micro-speaker
US9641938B2 (en) Electro-acoustic transducer with radiating acoustic seal and stacked magnetic circuit assembly
WO2020135289A1 (zh) 一种屏幕振动发声装置和电子产品
WO2021003797A1 (zh) 换能器振动悬挂系统与驱动系统组件及其电子设备
WO2021012325A1 (zh) 换能器磁路结构、换能器及其电子设备
US10499158B2 (en) Electro-acoustic transducer with radiating acoustic seal and stacked magnetic circuit assembly
WO2021003795A1 (zh) 磁势换能器及其电子设备
CN204482030U (zh) 一种扬声器用新型磁力驱动组件
JP2007150408A (ja) 電気音響変換装置
CN108574920A (zh) 一种动铁单元
CN219305034U (zh) 一种振动装置及受话器
US20230372971A1 (en) Electrodynamic vibration exciter
CN219304997U (zh) 一种振动装置、受话器及电子设备
CN108702577A (zh) 扬声器
CN111479202A (zh) 动磁式扬声器
KR20110084736A (ko) 이종 탄성부재를 이용한 소형 액츄에이터 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937256

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19937256

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19937256

Country of ref document: EP

Kind code of ref document: A1