WO2021003723A1 - 指纹识别的方法、装置和电子设备 - Google Patents

指纹识别的方法、装置和电子设备 Download PDF

Info

Publication number
WO2021003723A1
WO2021003723A1 PCT/CN2019/095495 CN2019095495W WO2021003723A1 WO 2021003723 A1 WO2021003723 A1 WO 2021003723A1 CN 2019095495 W CN2019095495 W CN 2019095495W WO 2021003723 A1 WO2021003723 A1 WO 2021003723A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
fingerprint
signal
optical
identification device
Prior art date
Application number
PCT/CN2019/095495
Other languages
English (en)
French (fr)
Inventor
杨方明
张玮
余书宝
李顺展
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201980004489.0A priority Critical patent/CN111183429B/zh
Priority to PCT/CN2019/095495 priority patent/WO2021003723A1/zh
Publication of WO2021003723A1 publication Critical patent/WO2021003723A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms

Definitions

  • the embodiments of the present application relate to the field of fingerprint identification, and more specifically, to a method, device, and electronic device for fingerprint identification.
  • the current fingerprint technology under the optical screen is basically applied to the self-luminous mobile phone screens such as Organic Light-Emitting Diode (OLED) and Active-matrix Organic Light-emitting Diode (AMOLED)
  • OLED Organic Light-Emitting Diode
  • AMOLED Active-matrix Organic Light-emitting Diode
  • the self-luminous screen pixels included in this type of screen are used as the light source.
  • the light shines on the finger and is reflected by the finger, passes through the mobile phone screen and special optical lens, and is received by the sensor under the screen to realize fingerprint image collection and fingerprint recognition.
  • this method of fingerprint recognition using self-luminous screen pixels as a light source has the problem of poor image quality.
  • the embodiments of the present application provide a fingerprint identification method, device, and electronic equipment, which can improve the imaging quality of fingerprints.
  • a fingerprint identification device which is suitable for electronic equipment with a display screen.
  • the fingerprint identification device includes an optical path guide structure and a fingerprint sensor, and the fingerprint detection area of the fingerprint sensor is set at all.
  • the light path guiding structure is arranged between the display screen and the fingerprint sensor, and is used to guide the return light signal formed by the finger above the fingerprint detection area to the fingerprint sensor;
  • the fingerprint sensor is configured to be arranged below the display screen, and the fingerprint sensor includes a sensing array having a plurality of optical sensing units, and the sensing array is used to receive the return light signal passing through the optical path guiding structure, and
  • the fingerprint image of the finger is detected according to the return light signal, wherein the return light signal includes a first return light signal, and the first return light signal is the first light signal transmitted into the finger above the fingerprint detection area And the light signal transmitted from the finger and passing through the display screen, the incident angle when the first light signal reaches the glass cover plate at the fingerprint detection area is greater than or equal to the light
  • the incident angle is greater than or equal to 42.6°.
  • the fingerprint identification device further includes a light-emitting component, the light-emitting component is arranged below the non-display area of the display screen, and is used to emit the first light to the fingerprint detection area. signal.
  • the light-emitting component is arranged in the chin area of the display screen.
  • the light-emitting component includes a vertical cavity surface emitting laser, and the incident angle when the first light signal emitted by the vertical cavity surface emitting laser reaches the glass cover plate at the fingerprint detection area Greater than or equal to the total reflection angle.
  • the light-emitting component includes a light source and a lens, and the lens is used to converge the first light signal emitted by the light source to the fingerprint detection area, so that it reaches the fingerprint detection area
  • the incident angle of the first optical signal when the glass cover plate is located is greater than or equal to the total reflection angle.
  • the light-emitting assembly includes a light source and a shielding member, and the shielding member is used to shield the light signal emitted by the light source so that the light source emitted by the light source is not shielded by the shielding member.
  • the incident angle when the first optical signal reaches the glass cover at the fingerprint detection area is greater than or equal to the total reflection angle.
  • the shielding member is ink
  • the ink is coated on the lower surface of the glass cover plate and is arranged on a side of the light source away from the fingerprint detection area.
  • the ink is used to block the light signal emitted by the light source.
  • the light source in the light-emitting assembly is arranged obliquely with respect to the display screen, so that the first light signal emitted by the light source can reach the fingerprint detection area at a preset angle and reach The incident angle of the first optical signal when the glass cover at the fingerprint detection area is greater than or equal to the total reflection angle.
  • the light-emitting assembly includes a light source and a light guide rod, and the light guide rod is used to guide the first light signal emitted by the light source to the fingerprint detection area so that it passes through the light guide rod
  • the incident angle when the first optical signal reaches the glass cover plate at the fingerprint detection area is greater than or equal to the total reflection angle.
  • the light guide column includes a first section of light guide column and a second section of light guide column, the first section of light guide column is connected to the second section of light guide column, and the first section of light guide
  • the light beam is arranged around the light source, and the axis of the first light guide is perpendicular to the display screen, and the axis of the second section of light guide is inclined to the display screen so that it passes through the second
  • the incident angle when the optical signal of the section of light guide rod reaches the glass cover plate at the fingerprint detection area is greater than or equal to the total reflection angle.
  • the light-emitting assembly includes a light source and a light reflecting device, the light source emits a light signal toward the light reflecting device, and the light reflecting device is used to reflect the light signal emitted by the light source so as to pass through
  • the incident angle when the light signal reflected by the light reflecting device reaches the glass cover of the display screen is greater than or equal to the total reflection angle.
  • the light reflecting device is arranged on the side surface of the glass cover, and the light reflecting surface of the light reflecting device is perpendicular to the surface of the glass cover.
  • the reflective device is a reflective coating or a reflective film.
  • the first optical signal light emitted by the light-emitting component is infrared light or visible light.
  • the wavelength of the infrared light is 940 nm; or, the wavelength of the visible light is 550 nm.
  • the distance between the light-emitting component and the fingerprint sensor in the length direction of the display screen is 15-20 mm.
  • the light-emitting component includes a first light source
  • the display screen includes a first position opposite to the position where the first light source is located, and a second position opposite to the position where the fingerprint sensor is located.
  • the first position is located at a position where the center of the second position extends along the length direction of the display screen.
  • the light-emitting component includes a first light source
  • the display screen includes a first position opposite to the position where the first light source is located, and a second position opposite to the position where the fingerprint sensor is located.
  • the first position is located at one side of a position extending along the length direction of the display screen in the center position of the second position.
  • the light-emitting assembly includes a second light source and a third light source
  • the display screen includes a third position opposite to a position where the second light source is located, and a position opposite to the third light source position.
  • the fourth position of the fingerprint sensor and the second position opposite to the position of the fingerprint sensor, the third position and the fourth position are set at the center of the second position extending along the length of the display screen Both sides of the location.
  • the display screen includes a plurality of self-luminous display units, the plurality of self-luminous display units are used to display images, and the return light signal further includes a second return light signal, and the first The second return light signal is a light signal generated by at least part of the second light signal emitted by the self-luminous display unit illuminating the finger and reflected or scattered by the finger.
  • the fingerprint sensor is used to detect the first fingerprint image of the finger according to the first return light signal, and is also used to detect the finger according to the second return light signal The second fingerprint image.
  • the wavelength of the second optical signal is 550 nm.
  • the fingerprint identification device further includes a processor configured to: obtain the first fingerprint image, the first fingerprint image being generated according to the first return light signal When the first fingerprint image matches the first preset fingerprint image, it is determined that the fingerprint recognition is successful; or, when the first fingerprint image does not match the first preset fingerprint image, it is determined that the fingerprint recognition fails .
  • the processor is configured to: acquire the second fingerprint image, the second fingerprint image is generated according to the second return light signal; between the first fingerprint image and the first fingerprint image When a preset fingerprint image is successfully matched, and/or when the second fingerprint image is successfully matched with the second preset fingerprint image, it is determined that the fingerprint recognition is successful; or when the first fingerprint image and the first fingerprint image are matched successfully. When the preset fingerprint image does not match, and the second fingerprint image does not match the second preset fingerprint image, it is determined that the fingerprint recognition fails.
  • the fingerprint identification device further includes a control unit configured to control the at least part of the self-luminous display unit not to emit the first light signal when the light-emitting assembly emits the first light signal.
  • the second light signal and controlling the light-emitting component not to emit the first light signal when the at least part of the self-luminous display unit emits the second light signal.
  • the fingerprint identification device further includes a control unit configured to control the light-emitting component not to emit light after the fingerprint sensor collects the data of the first fingerprint image, And controlling the at least part of the self-luminous unit to emit the second light signal.
  • the optical path guiding structure includes an optical lens, the optical lens is arranged above the fingerprint sensor, and is used to converge the return light signal passing through the display screen to the fingerprint sensor. Induction array.
  • the first return light signal is infrared light
  • the second return light signal is visible light
  • the optical lens can image infrared light and has no aberration for visible light imaging.
  • the fingerprint recognition device further includes a filter located above the fingerprint sensor, and the filter is used to filter the first return light signal and the second return light Optical signals other than signals.
  • the first return optical signal is infrared light with a wavelength of 940 nm
  • the second return optical signal is visible light with a wavelength of 550 nm
  • the filter is used to filter at least a wavelength that is not equal to 940 nm.
  • 550nm light is used to filter at least a wavelength that is not equal to 940 nm.
  • the optical path guiding structure includes an optical collimator having a plurality of collimating units or a microhole array, and the optical collimator is used to pass the return light signal passing through the display screen.
  • the plurality of collimating units or microhole arrays are respectively transmitted to the corresponding optical sensing units in the sensing array of the fingerprint sensor; or, the light path guiding structure includes a microlens array with a plurality of microlenses and a microlens array with a plurality of microlenses.
  • the light-blocking layer of the hole, the microlens array is used to focus the return light signals passing through the display screen to the corresponding micro-holes of the light-blocking layer, and transmit them to the fingerprint sensor through the micro-holes.
  • the corresponding optical sensor unit in the sensor array is used to focus the return light signals passing through the display screen to the corresponding micro-holes of the light-blocking layer, and transmit them to the fingerprint sensor through the micro-holes.
  • the fingerprint image is not generated based on the principle of reflection imaging, but is generated based on the principle of transmission.
  • This application uses total reflection light as the light source for fingerprint identification. Because all the light signals at the valley line are totally reflected and cannot be received by the fingerprint sensor, most of the light signals at the ridge line are transmitted into the finger and come from the fingerprint ridge of the hand. It is transmitted through the display screen and received by the fingerprint sensor, so that the light signal returned from the ridges and valleys received by the fingerprint sensor has a higher contrast, and a better imaging effect can be obtained.
  • an electronic device including: the fingerprint identification device in the first aspect or each possible implementation manner thereof.
  • a fingerprint identification method is provided, which can be applied to the fingerprint identification device in the first aspect or each of its possible implementations.
  • the method includes: acquiring a first fingerprint image, and the first fingerprint The image is generated based on the first return light signal, which is the light signal transmitted by the first light signal into the finger above the fingerprint detection area and transmitted from the finger and passing through the display screen , The incident angle when the first light signal reaches the glass cover plate at the fingerprint detection area is greater than or equal to the total reflection angle of the light signal from the glass cover plate into the air; according to the first fingerprint image, Fingerprint recognition.
  • the performing fingerprint recognition according to the first fingerprint image includes: determining that the fingerprint recognition is successful when the first fingerprint image matches a first preset fingerprint image; or, When the first fingerprint image does not match the first preset fingerprint image, it is determined that the fingerprint recognition fails.
  • the display screen includes a plurality of self-luminous units
  • the method further includes: acquiring a second fingerprint image, the second fingerprint image being generated according to the second return light, the first Second, the return light is the light signal reflected after the finger is illuminated by the second light signal, and the second light signal is the light signal emitted by at least part of the self-luminous unit;
  • the fingerprint recognition based on the first fingerprint image includes : When the first fingerprint image matches the first preset fingerprint image, and/or the second fingerprint image matches the second preset fingerprint image, it is determined that the fingerprint recognition is successful.
  • the performing fingerprint recognition according to the first fingerprint image includes: when the first fingerprint image does not match the first preset fingerprint image, or the second fingerprint image When the image does not match the second preset fingerprint image, it is determined that the fingerprint recognition fails.
  • the first light signal is a light signal emitted by a light emitting component
  • the method further includes: when the light emitting component emits the first light signal, controlling the plurality of self-luminous The display unit does not emit the second light signal; when the plurality of self-luminous display units emit the second light signal, the light-emitting assembly is controlled not to emit the first light signal.
  • the first light signal is a light signal emitted by a light-emitting component
  • the method further includes: controlling the light-emitting component not to emit light after collecting data of the first fingerprint image, And control the self-luminous unit to emit the second light signal.
  • FIG. 1 is a top view of the structure of an electronic device according to an embodiment of the present application.
  • Fig. 2 is a side view of the structure of the electronic device of the embodiment of the present application.
  • FIG. 3 is a schematic diagram of guiding the light path through the collimator according to the embodiment of the present application.
  • Fig. 4 is a schematic diagram of guiding an optical path through a lens in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the principle of reflection imaging based on an embodiment of the present application.
  • Fig. 6 is a fingerprint image obtained based on reflection imaging according to an embodiment of the present application.
  • Fig. 7 is a fingerprint image obtained based on reflection imaging of a dry finger in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the imaging principle when total reflection light is used as a light source according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another imaging principle when total reflection light is used as a light source according to an embodiment of the present application.
  • Fig. 10 is a schematic diagram of a fingerprint identification device provided by an embodiment of the basic application.
  • FIG. 11 is a schematic diagram of a fingerprint identification process when a self-luminous display screen is used as a light source according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a light-emitting component provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another light-emitting assembly provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another light-emitting assembly provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of yet another light-emitting assembly provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of yet another light-emitting assembly provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of a position of a light source corresponding to a display screen included in a light-emitting assembly provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a position of a light source corresponding to a display screen included in another light-emitting assembly provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of the positions of two light sources corresponding to the display screen of the light-emitting assembly provided by the embodiment of the present application.
  • FIG. 20 is a schematic diagram of a fingerprint identification device provided by an embodiment of the present application.
  • FIG. 21 is a schematic diagram of another fingerprint identification device provided by an embodiment of the present application.
  • FIG. 22 is a curve of the focus shift of the polychromatic light of the optical lens provided by the embodiment of the present application.
  • FIG. 23 is a curve of the transmittance of the filter provided in the embodiment of the present application to light of different wavelengths.
  • FIG. 24 is a schematic block diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 25 is a schematic flowchart of a fingerprint identification method provided by an embodiment of the present application.
  • embodiments of this application can be applied to optical fingerprint systems, including but not limited to optical fingerprint identification systems and medical diagnostic products based on optical fingerprint imaging.
  • the embodiments of this application only take optical fingerprint systems as an example for description, but should not The embodiments of the application constitute any limitation, and the embodiments of the present application are also applicable to other systems using optical imaging technology.
  • the optical fingerprint system provided in the embodiments of the present application can be applied to portable or mobile computing devices such as smart phones, tablet computers, and gaming devices, as well as electronic databases, automobiles, and automated teller machines (ATMs). ) And other electronic equipment, but the embodiments of this application are not limited to this.
  • the embodiments of this application can be applied to other mobile terminals with display screens or other electronic equipment; more specifically, in the above electronic equipment, the fingerprint identification device can Specifically, it is an optical fingerprint device, which can be arranged in a partial area or all of the area below the display screen to form an under-display optical fingerprint system. Alternatively, the fingerprint identification device may be partially or fully integrated into the display screen of the electronic device, thereby forming an in-display optical fingerprint system.
  • FIG. 1 and FIG. 2 show two structural diagrams of electronic devices to which the embodiments of this application can be applied.
  • FIG. 1 is a top view
  • FIG. 2 is a side view.
  • the electronic device 10 includes a display screen 120 and an optical fingerprint device 130, wherein the optical fingerprint device 130 is disposed in a partial area under the display screen 120.
  • the optical fingerprint device 130 includes an optical fingerprint sensor, and the optical fingerprint sensor includes a sensing array 133 with a plurality of optical sensing units 131, and the area where the sensing array is located or its sensing area is the fingerprint detection area 103 corresponding to the optical fingerprint device 130. As shown in FIG. 1, the fingerprint detection area 103 is located in the display area of the display screen 120.
  • the optical fingerprint device 130 can also be arranged in other positions, such as the side of the display screen 120 or the non-transmissive area on the edge of the electronic device 10, and the optical fingerprint device 130 can be designed through the optical path. At least part of the optical signal of the display area is guided to the optical fingerprint device 130, so that the fingerprint detection area 103 is actually located in the display area of the display screen 120.
  • the area of the fingerprint detection area 103 may be different from the area of the sensing array of the optical fingerprint device 130.
  • the reflective folding optical path design, or other optical path design such as light convergence or reflection, it can make
  • the area of the fingerprint detection area 103 corresponding to the optical fingerprint device 130 is larger than the area of the sensing array of the optical fingerprint device 130.
  • the fingerprint detection area 103 corresponding to the optical fingerprint device 130 may also be designed to be substantially the same as the area of the sensing array of the optical fingerprint device 130.
  • the electronic device 10 adopting the above structure does not need to reserve space on the front side to set fingerprint buttons (such as the Home button), so that a full screen solution can be adopted, that is, the display area of the display screen 120 can be It basically extends to the front of the entire electronic device 10.
  • the optical fingerprint device 130 includes a light detecting portion 134 and an optical component 132, the light detecting portion 134 includes a sensing array and a reading circuit electrically connected to the sensing array And other auxiliary circuits, which can be fabricated on a chip (Die) through a semiconductor process, such as an optical imaging chip or an optical fingerprint sensor.
  • the sensing array is specifically a photodetector array, which includes a plurality of arrays distributed
  • the optical detector can be used as the above-mentioned optical sensing unit; the optical component 132 can be arranged above the sensing array of the light detecting part 134, and it can specifically include a filter layer, a light guide layer or Optical path guiding structure and other optical elements, the filter layer can be used to filter out the ambient light penetrating the finger, and the light guiding layer or optical path guiding structure is mainly used to guide the light returned from the finger to the sensing array Optical inspection.
  • the optical assembly 132 and the light detecting part 134 may be packaged in the same optical fingerprint component.
  • the optical component 132 and the optical detection part 134 can be packaged in the same optical fingerprint chip, or the optical component 132 can be arranged outside the chip where the optical detection part 134 is located, for example, the optical component 132 can be attached to the Above the chip, or part of the components of the optical assembly 132 are integrated in the above chip.
  • the light guide layer or light path guiding structure of the optical component 132 has multiple implementation schemes.
  • the light guide layer of the optical component 132 may be specifically a collimator fabricated on a semiconductor silicon wafer.
  • the Collimator layer has a plurality of collimator units or micro-hole arrays.
  • the collimator unit can be specifically a small hole.
  • the reflected light reflected from the finger the light that is perpendicularly incident on the collimator unit can pass through and It is received by the optical sensor unit below it, and the light with too large incident angle is attenuated by multiple reflections inside the collimating unit, so each optical sensor unit can basically only receive the fingerprint pattern directly above it. The light is reflected, so that the sensor array can detect the fingerprint image of the finger.
  • the light guide layer or the light path guide structure may also be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more aspheric lenses, for example,
  • the optical component 132 may include a lens for condensing the reflected light reflected from the finger to the sensing array of the light detecting portion 134 below it, so that the sensing array can perform based on the reflected light. Imaging to obtain a fingerprint image of the finger.
  • the optical lens layer may further have a pinhole formed in the optical path of the lens unit, and the pinhole may cooperate with the optical lens layer to expand the field of view of the optical fingerprint device, so as to improve the fingerprint imaging of the optical fingerprint device 130 effect.
  • the light guide layer or the light path guide structure may also specifically adopt a micro-lens (Micro-Lens) layer.
  • the micro-lens layer has a micro-lens array formed by a plurality of micro-lens, which may be formed by a semiconductor growth process or Other processes are formed above the sensing array of the light detection part 134, and each microlens can correspond to one of the sensing units of the sensing array.
  • other optical film layers may be formed between the microlens layer and the sensing unit, such as a dielectric layer or a passivation layer. More specifically, a barrier with microholes may also be formed between the microlens layer and the sensing unit.
  • the light blocking layer can block the optical interference between the adjacent micro lens and the sensing unit, and allow the light corresponding to the sensing unit to pass through the
  • the micro lens is converged into the micro hole and is transmitted to the sensing unit through the micro hole to perform optical fingerprint imaging.
  • a microlens layer can be further provided under the collimator layer or the optical lens layer.
  • the collimator layer or the optical lens layer is used in combination with the microlens layer, the specific laminated structure or optical path may need to be adjusted according to actual needs.
  • the optical fingerprint device 130 may include only one optical fingerprint sensor.
  • the fingerprint detection area 103 of the optical fingerprint device 130 has a small area and a fixed position. Therefore, when the user performs fingerprint input It is necessary to press the finger to a specific position of the fingerprint detection area 103, otherwise the optical fingerprint device 130 may not be able to collect fingerprint images, resulting in poor user experience.
  • the optical fingerprint device 130 may specifically include a plurality of optical fingerprint sensors; the plurality of optical fingerprint sensors may be arranged side by side under the display screen 120 in a splicing manner, and the sensing of the plurality of optical fingerprint sensors The areas collectively constitute the fingerprint detection area 103 corresponding to the optical fingerprint device 130.
  • the fingerprint detection area 103 corresponding to the optical fingerprint device 130 may include multiple sub-areas, and each sub-area corresponds to the sensing area of one of the optical fingerprint sensors, so that the fingerprint collection area 103 of the optical fingerprint module 130 It can be extended to the main area of the lower half of the display screen, that is, to the area where the finger is habitually pressed, so as to realize the blind fingerprint input operation.
  • the fingerprint detection area 130 can also be extended to half of the display area or even the entire display area, thereby realizing half-screen or full-screen fingerprint detection.
  • the electronic device 10 further includes a transparent cover 110, or referred to as a transparent protective cover 110.
  • the cover 110 may be a glass cover or a sapphire cover, which is located on the display screen 120. And cover the front of the electronic device 10. Because, in the embodiment of the present application, the so-called finger pressing on the display screen 120 actually refers to pressing the cover 110 above the display 120 or covering the surface of the protective layer of the cover 110.
  • the display screen 120 in the embodiment of the present application may adopt a display screen with a self-luminous display unit, such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen or a micro-LED (Micro-LED) display screen .
  • a self-luminous display unit such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen or a micro-LED (Micro-LED) display screen .
  • OLED Organic Light-Emitting Diode
  • the optical fingerprint device 130 can use the display unit (ie, an OLED light source) of the OLED display screen 120 located in the fingerprint detection area 103 as an excitation light source for optical fingerprint detection.
  • the display screen 120 emits a beam of light 111 to the target finger 140 above the fingerprint detection area 103.
  • the light 111 is reflected on the surface of the finger 140 to form reflected light or passes through the finger 140. Internal scattering forms scattered light.
  • the optical fingerprint device 130 may also use a built-in light source or an external light source to provide an optical signal for fingerprint detection.
  • the optical fingerprint device 130 may be suitable for non-self-luminous display screens, such as liquid crystal display screens or other passively-luminous display screens.
  • the optical fingerprint system of the electronic device 10 may also include an excitation light source for optical fingerprint detection.
  • the excitation light source may specifically be an infrared light source or a light source of non-visible light of a specific wavelength, which may be arranged under the backlight module of the liquid crystal display or in the edge area under the protective cover of the electronic device 10, and the The optical fingerprint device 130 can be arranged under the edge area of the liquid crystal panel or the protective cover and guided by the light path so that the fingerprint detection light can reach the optical fingerprint device 130; or, the optical fingerprint device 130 can also be arranged in the backlight module. Under the group, and the backlight module is designed to allow the fingerprint detection light to pass through the liquid crystal panel and the backlight module and reach the optical fingerprint device 130 through openings or other optical designs on the film layers such as diffuser, brightness enhancement film, and reflective film. .
  • the display screen 120 may also be a non-self-luminous display screen, such as a backlit liquid crystal display screen; in this case, the optical detection device 130 cannot use the display screen 120
  • the display unit is used as an excitation light source, so it is necessary to integrate an excitation light source inside the optical detection device 130 or set an excitation light source outside it to achieve optical fingerprint detection.
  • a built-in light source or an external light source is used to provide when performing fingerprint detection of optical signals, the detection principle is consistent with the description of the self-luminous display above.
  • the above-mentioned reflected light and scattered light are collectively referred to as reflected light. Since the ridge and valley of the fingerprint have different light reflection capabilities, the reflected light 151 from the fingerprint ridge and the generated light 152 from the fingerprint ridge have different light intensities. After the reflected light passes through the optical component 132, It is received by the sensor array 134 in the optical fingerprint device 130 and converted into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, so that the electronic device 10 Realize the optical fingerprint recognition function.
  • FIG. 5 shows a schematic diagram based on the principle of reflected light imaging.
  • the surface of the mobile phone is a glass cover
  • the fingerprint ridge line of the finger can make good contact with the surface, and the fingerprint valley line of the finger exists on the surface.
  • a void, the void is air.
  • the light I irradiated to the finger through the glass cover is uniform.
  • the light I can be a light signal emitted by at least part of the self-luminous display unit of the display screen.
  • the light-emitting area of the display screen is set directly below the fingerprint detection area, which can reduce the path length of the light signal from the light-emitting unit to the finger, making it more More light signals are used for fingerprint detection. Therefore, the incident angle of the light signal I from the self-luminous display unit to the glass interface is usually small.
  • the light signal received by the fingerprint sensor is usually a light signal with an incident angle of less than 10°.
  • the light signal returned by the finger For the fingerprint identification device shown in FIG. 4, the light signal received by the fingerprint sensor is usually the light signal returned by the finger with an incident angle of less than 30°.
  • the fingerprint ridge line is in good contact, and the refractive index of the finger and the glass cover is similar, so more light I T1 is absorbed by the finger, while the reflected light I R1 is less; but there is an air gap at the valley line. Because the refractive index difference between air and the glass cover is large, the light refracted into the finger I T2 is less, and the reflected light I R2 is more reflected on the surface of the glass cover , Thus forming a contrast signal between the valley ridges of the fingerprint.
  • the reflected signal IR2 at the valley line is stronger, while the reflected signal I R1 at the ridge line is weak.
  • the fingerprint sensor passes through the signal difference between the valley line and the ridge line. Furthermore, a fingerprint image can be formed, for example, as shown in FIG. 6.
  • Dry fingers mean that there is less oil and sweat on the surface of the fingers. For example, currently about 10% to 20% of people have dry fingers.
  • the general population will also turn into dry fingers in special situations, such as after washing hands or under low temperature conditions. , Will cause the fingers to become dry.
  • the embodiment of the present application provides a fingerprint recognition device, which can improve the success rate of fingerprint recognition.
  • the fingerprint identification device is suitable for electronic equipment with a display screen.
  • the device may include a fingerprint sensor whose fingerprint detection area is located in the display area of the display screen to form an under-screen fingerprint identification.
  • the fingerprint sensor is used to receive the return light signal and generate a fingerprint image of the finger according to the return light signal.
  • the return optical signal may include a first return optical signal
  • the first return optical signal is an optical signal that the first optical signal passes through and is transmitted from the finger above the fingerprint detection area, and the first optical signal reaches the fingerprint detection area
  • the incident angle of the glass cover is greater than or equal to the total reflection angle of the optical signal from the glass cover to the air.
  • the first optical signal in the embodiment of the present application may also be referred to as a total reflection optical signal.
  • the first optical signal is an optical signal with directivity, and the first optical signal may be an optical signal emitted toward the fingerprint collection area at a preset angle.
  • the first light signal may be a light signal emitted by an external light source, or a light signal emitted by a self-luminous display unit in a self-luminous display screen, as long as the light signal emitted is a total reflection light signal.
  • the display screen in the embodiment of the present application may be a self-luminous display screen, such as an OLED display screen, or a passively illuminated display screen, such as a liquid crystal display (LCD) screen.
  • a self-luminous display screen such as an OLED display screen
  • a passively illuminated display screen such as a liquid crystal display (LCD) screen.
  • LCD liquid crystal display
  • the fingerprint sensor in the embodiment of the present application may include a sensing array with a plurality of optical sensing units, the sensing array is used to receive the return light signal passing through the optical path guiding structure, and detect the fingerprint image of the finger according to the return light signal.
  • the first optical signal L when the first optical signal L reaches the glass cover, due to the gap between the fingerprint valley line and the glass cover, the first optical signal L is totally reflected at the valley. Because the density of fingerprints is greater than the density of air, the total reflection angle of the light signal from the glass cover to the ridge of the finger is greater than the total reflection angle of the light signal from the glass cover to the air.
  • the ridge is in contact with the glass cover, A part of the first optical signal that reaches the ridge is reflected, and a part is transmitted into the ridge of the finger. The optical signal transmitted into the finger is used for fingerprint imaging.
  • L R1 and valleys reflected light reflected at the ridge line L R2 at the total reflection of light occurs at the upper and lower surfaces 8 of the cover glass, finally attenuated.
  • the transmitted light L T1 at the ridge After the transmitted light L T1 at the ridge enters the finger, it is transmitted from the finger to form a first return light signal.
  • the first return light signal passes through the display screen and is received by the fingerprint sensor below the display screen.
  • the fingerprint sensor performs fingerprint identification according to the received first return light signal.
  • the fingerprint sensor can hardly receive the light signal returned at the valley line, and most of the light signal at the ridge line will be transmitted into the finger, and then transmitted from the finger by the fingerprint sensor Received, so that the fingerprint sensor can perform fingerprint recognition based on the intensity difference of the light signal at the ridge and valley.
  • the reflected light at the ridges and valleys is used for imaging.
  • the contrast difference between the reflected light I R1 and the reflected light I R2 is about 1:40.
  • the embodiment of this application does not use transmitted light for imaging.
  • the contrast of the light signal at the ridges and ridges is about 1:200. In this way, using transmitted light for imaging can achieve 5 times Compared with traditional reflected light imaging signals, better imaging quality can be obtained, which is beneficial to improve the success rate of fingerprint recognition.
  • the reflected light at the ridges and valleys is similar, resulting in unclear fingerprint images.
  • the light signal will still be transmitted into the ridge, the light signal transmitted from the ridge will be received by the fingerprint sensor, and the light signal at the valley will occur. Total reflection will not be received by the fingerprint sensor, so the light signal returned from the ridges and valleys still has a high contrast, so the transmission light imaging is used, and it is less affected by dry fingers.
  • the incident angle when the first optical signal reaches the glass cover plate at the fingerprint detection area is greater than or equal to 42.6°.
  • the fingerprint identification device may further include a light path guide structure, which is arranged between the display screen and the fingerprint sensor, and is used to guide the return light signal formed by the finger above the fingerprint detection area to the fingerprint sensor.
  • a light path guide structure which is arranged between the display screen and the fingerprint sensor, and is used to guide the return light signal formed by the finger above the fingerprint detection area to the fingerprint sensor.
  • the optical path guiding structure may include an optical lens, an optical collimator or a micro lens array.
  • the optical path guiding structure may be, for example, the collimator array and the optical lens in FIGS. 3 and 4.
  • the light source 260 can be used to emit a total reflection optical signal, such as the first optical signal 201, the total reflection optical signal 203 at the groove of the first optical signal 201, and the reflected optical signal 204 at the groove of the glass.
  • the upper and lower surfaces of the cover 220 continuously perform total reflection and are finally attenuated.
  • the first optical signal 201 is refracted at the valley, and the refracted optical signal is transmitted into the finger.
  • the optical signal transmitted through the finger is the optical signal 205.
  • the optical signal 205 passes through the glass cover 220 and is finally received by the fingerprint under the display screen.
  • the sensor receives it.
  • the fingerprint identification device may include a fingerprint sensor 280 for receiving a first return light signal 205.
  • the first return light signal 205 is the first light signal 202 that is transmitted into the finger 210 through the fingerprint ridge, and then from the finger
  • the incident angle ⁇ when the first optical signal 201 is incident on the glass cover 220 where the finger presses is greater than or equal to the total reflection angle of the optical signal from the glass cover to the air.
  • the incident angle when the first optical signal 201 reaches any position of the fingerprint collection area may be greater than or equal to the total reflection angle, for example, the incident angle when the first optical signal reaches the edge position of the fingerprint detection area is greater than For the total reflection angle, the incident angle when the first optical signal reaches the fingerprint detection area close to the light source is greater than or equal to the total reflection angle.
  • the first optical signal may have an incident angle greater than or equal to the total reflection angle when reaching a part of the fingerprint collection area.
  • the first optical signal may have an incident angle greater than or equal to the said total reflection angle when reaching the central area of the fingerprint collection area. Total reflection angle.
  • the fingerprint identification device shown in FIG. 9 may further include a conductive glass 230 and a polarizer 240 between the glass cover 220 and the display layer 250.
  • the fingerprint identification device in the embodiment of the present application may further include an optical lens 270 for focusing the optical signal 205 onto the fingerprint sensor 280.
  • the fingerprint sensor 280 in the embodiment of the present application may be arranged inside an electronic device, where the electronic device may be the aforementioned electronic device 10.
  • the fingerprint sensor 280 may be arranged on the front or back of the electronic device, or may be arranged under the display screen of the electronic device, or arranged around the display screen, for example, at the bottom of the display screen.
  • the embodiment of the present application takes the optical fingerprint sensor disposed below the display screen of the electronic device as an example for description.
  • the finger touches above the display screen when performing fingerprint recognition that is, the fingerprint sensor is an under-screen fingerprint sensor.
  • the fingerprint sensor 280 in the embodiment of the present application may correspond to the light detection part 134 in the electronic device 10, and for the sake of brevity, it will not be repeated here.
  • the fingerprint identification device may further include a light-emitting component 260, which is disposed under the non-display area of the display screen and used to emit the first light signal to the fingerprint detection area.
  • the light-emitting assembly 260 may be arranged below the edge area of the glass cover 220, for example. As a preferred implementation manner, the light-emitting assembly 260 may be disposed under the glass cover in the chin area of the electronic device.
  • the position setting between the conductive glass 230 and the polarizer 240 and the light emitting component 260 can refer to the relationship between the display layer 250 and the light emitting component 260.
  • the light emitting component 260 is located at the edge of the conductive glass 230 and the polarizer 240; the light emitting component 260 and the conductive glass 230 do not block each other; the light emitting component 260 and the polarizer 240 do not block each other.
  • the glass cover 310 is used for finger touch, the fingerprint detection area 330 is provided on the glass cover 310, and the light source 320 is arranged under the edge area of the glass cover 310.
  • the concept signal from the light source 320 is The incident angle ⁇ when incident on the upper surface of the glass cover plate 310 at the fingerprint detection area 330 is greater than or equal to the total reflection angle of the glass to the air.
  • the light-emitting component may emit the first light signal to the fingerprint detection area at a preset angle, so that the incident angle when the first light signal reaches the glass cover of the fingerprint detection area is smaller than the total reflection angle.
  • the first light signal emitted by the light-emitting component may be visible light or invisible light.
  • the invisible light may be infrared light, for example.
  • Invisible light is used as the light source for fingerprint recognition, so that users will not perceive light signals on the screen in the non-display area, which can improve user experience.
  • the wavelength of infrared light emitted by the light-emitting component may be 940 nm, or the wavelength of visible light emitted by the light-emitting component may be 550 nm.
  • the self-luminous display unit is used as the light source for fingerprint recognition.
  • the data collection needs to wait for the light spot to light up, as shown in the figure. 11 shown.
  • the OLED screen takes 50ms to 100ms to light up the light spot, and then the fingerprint sensor can collect fingerprint data.
  • the pressing time of one touch to unlock is very short, about 150ms ⁇ 200ms, so a long time has passed since the user presses the screen until the light spot lights up, leaving less time for the fingerprint sensor to collect data.
  • tapping to unlock it is possible that the finger will leave before the data has been collected, causing unlocking failure and poor user experience.
  • the embodiment of the application uses an external light source as the light source for fingerprint identification.
  • the external light source only needs a short time to emit light, so it can leave more time for the fingerprint sensor to collect fingerprint data.
  • the user can perform fingerprint identification with a light touch, which is beneficial to improve fingerprints.
  • the success rate of recognition improves user experience.
  • the structure of the light-emitting component can be various, which will be described in detail below with reference to FIGS. 12-16.
  • the light-emitting assembly may include a light source 320, which may be a laser. Since the laser can emit a directional light signal, the laser is used as the light source to easily realize the total reflection light signal.
  • the light emitting component may include a VCSEL.
  • the VCSEL can be installed obliquely to better obtain the total reflection angle light.
  • the VCSEL can be installed obliquely.
  • the oblique installation of the VCSEL can be understood as the optical signal 301 emitted by the VCSEL is inclined relative to the display screen, so that the VCSEL emits light toward the fingerprint detection area, and the utilization of the optical signal emitted by the VCSEL Most of the optical signals can reach the fingerprint detection area, and the incident angle when the optical signal 301 from the VCSEL reaches the upper surface of the glass cover 310 of the fingerprint detection area 330 is greater than or equal to the total reflection angle of the glass to the air.
  • the light-emitting assembly may further include a support frame 340 of the VCSEL.
  • the VCSEL is arranged in the support frame 340.
  • the inclined installation of the VCSEL can be understood as the inclined installation of the supporting frame 340.
  • Fig. 13 shows the structure of another light emitting component.
  • the light-emitting assembly may include a light source 320 and a lens 350, and the lens 350 is used to converge the light signal emitted by the light source 320 to the fingerprint detection area 330 so that the light signal reaching the upper surface of the glass cover 310 at the fingerprint detection area 330 is incident The angle is greater than or equal to the total reflection angle of the glass to the air.
  • the light source 320 may be, for example, a light emitting diode (LED) lamp, or other light sources, such as a laser.
  • LED light emitting diode
  • the light-emitting assembly shown in FIG. 12 can also be arranged obliquely, so that the light-emitting assembly emits light toward the fingerprint detection area 330, and most of the light signals emitted by the light-emitting assembly can reach the fingerprint detection area 330, which improves the utilization of the light signals emitted by the light source 320.
  • the oblique installation of the light-emitting component can be understood as an oblique installation of the optical axis of the lens 350 relative to the glass cover 310.
  • the optical axis of the lens 350 is inclined toward the fingerprint detection area 330, so that the optical signal converged by the lens 350 is transmitted toward the fingerprint detection area 330.
  • the light-emitting assembly may further include a supporting frame 340, and the light source 320 and the lens 350 may be arranged in the supporting frame 340. Inclined installation of the light-emitting assembly can also be understood as oblique installation of the supporting frame 340.
  • Fig. 14 shows the structure of another light-emitting component.
  • the light-emitting assembly may include a light source 320 and a shielding member 360, and the shielding member 360 is used to shield the light signal emitted by the light source 320, so that the first light signal emitted by the light source 320 that is not shielded by the shielding member reaches the fingerprint detection area 330
  • the incident angle of the glass cover 310 is greater than or equal to the total reflection angle of the glass to the air.
  • the light source can be an LED lamp or a laser.
  • the shielding member 360 may be formed by coating a light-absorbing layer on a part of the surface of the light source 320, so that the incident angle when the light signal from the uncoated surface reaches the glass cover 310 of the fingerprint detection area 330 is greater than or equal to the glass The total reflection angle of the air.
  • the shielding member 360 can also be formed by coating a light-absorbing layer on the lower surface of the glass cover 310, and the light-absorbing layer is arranged on the side of the light source 320 away from the fingerprint detection area 330 to reduce the light leakage of the light signal emitted by the light source 320.
  • the amount of light in the display area improves user experience.
  • the blocking member 360 may be ink, or other light-absorbing materials, for example.
  • the light-emitting assembly may further include a supporting frame 340, and the light source 320 may be arranged in the supporting frame 340.
  • the supporting frame 340 may be arranged in parallel with the glass cover 310, as shown in FIG. 14, or may be arranged obliquely relative to the glass cover 310, such as
  • the supporting frame 340 shown in FIG. 12 and FIG. 13 is not specifically limited in the embodiment of the present application.
  • FIG. 15 shows the structure of another light-emitting assembly.
  • the light-emitting assembly may include a light source 320 and a light guide rod 370.
  • the light source 320 may be arranged in the light guide rod 370.
  • the light guide rod 370 is used to guide the light signal emitted by the light source 320 to the fingerprint.
  • the incident angle when the first light signal passing through the light guide 370 reaches the upper surface of the glass cover 310 of the fingerprint detection area 330 is greater than or equal to the total reflection angle of the glass to the air.
  • the light source 320 may be an LED lamp or a laser.
  • the light guide column 370 may include a first section of light guide column 370-1 and a second section of light guide column 370-2, and the first section of light guide column 370-1 is connected to the second section of light guide column 370-2 , The axial direction of the second section of light guide column 370-2 is inclined relative to the axial direction of the first section of light guide column 370-1.
  • the first section of light guide rod 370-1 is arranged around the light source 320, and its axis is perpendicular to the surface of the glass cover plate 310, and the axis of the second section of light guide rod 370-2 is arranged obliquely to the glass cover plate 310, and Its axis is inclined towards the fingerprint detection area 330, so that the optical signal passing through the second section of light guide 370-2 can be transmitted toward the fingerprint detection area 330, and the optical signal passing through the second section of light guide 370-2 reaches the fingerprint detection area 330
  • the incident angle of the upper surface of the glass cover 310 is greater than or equal to the total reflection angle of the glass to the air.
  • the light guide column may also only include a section of the light guide column, the light source 320 is arranged in the middle of the light guide column, the axial direction of the section of the light guide column is inclined relative to the glass cover 310, and the axial direction thereof is inclined toward the fingerprint detection area 330, so as to pass through the
  • the optical signal of the light guide rod is transmitted toward the fingerprint detection area 330, and the incident angle of the light signal passing through the light guide rod to the upper surface of the glass cover 310 at the fingerprint detection area 330 is greater than or equal to the total reflection angle of the glass to the air.
  • FIG. 16 shows a schematic structural view of another light-emitting assembly.
  • the light-emitting assembly includes a light source 320 and a light reflecting device 380.
  • the light source 320 emits light signals toward the light reflecting device 380.
  • the light reflecting device 380 is used to perform the light signal emission from the light source 320. Reflected, the optical signal 303 reflected by the reflector 380 is transmitted toward the fingerprint detection area 330, and the incident angle of the optical signal 303 reflected by the reflector 380 to the upper surface of the glass cover 310 at the fingerprint detection area 330 is greater than or equal to The angle of total reflection from the glass to the air, resulting in total reflection light.
  • the light reflecting device 380 can be arranged on the side of the glass cover 310, specifically, it can be arranged on the side of the edge of the glass cover 310.
  • the reflective surface of the reflective device 380 can face the fingerprint detection area 330, and the reflective surface of the reflective device 380 can be perpendicular to the surface of the glass cover 310.
  • the reflective device 380 may include, for example, a reflective coating or a reflective film.
  • the reflective coating can be coated on the side of the glass cover 310, or the reflective film can be attached to the side of the glass cover 310.
  • the light source 320 may be a common light source, such as an LED, or a laser, which is not specifically limited in the embodiment of the present application.
  • the light-emitting component can be arranged at any position below the non-display area of the display screen, which is not specifically limited in the embodiment of the present application.
  • the position setting of the light-emitting assembly will be described below in conjunction with specific embodiments.
  • the distance between the light-emitting component and the fingerprint sensor in the length direction of the display screen may be 15 mm to 20 mm. As shown in Figures 17-19, the length of m 1 is 15mm-20mm.
  • the light-emitting assembly may include one light source or multiple light sources. When the light intensity of one light source is insufficient, multiple light sources can be used to increase the light intensity.
  • the light-emitting component may include a first light source, and the display screen 410 includes a first position 401 opposite to the position of the first light source, and a second position 402 opposite to the position of the fingerprint sensor.
  • first position 401 and the second position 402 are both used below to describe the position setting of the light-emitting assembly.
  • FIG. 17 shows a schematic diagram of the position of a light source included in the light-emitting assembly relative to the display screen 410.
  • the first position 401 may be set at a position where the center position of the second position 402 extends along the length of the display screen 410, that is, the line connecting the center of the first position 401 and the center of the second position 402 is parallel to the display screen.
  • the side edge of 410, or the line connecting the center of the first position 401 and the center of the second position 402 is perpendicular to the lower edge of the display screen 410.
  • the distance between the center of the first position 401 and the second position 402 is 15-20 mm.
  • the first position 401 may also be set on one side of the second position 402, as shown in FIG. 18, or the first position 401 may be set on the edge positions on both sides of the display screen 410.
  • multiple light sources can be used as the light source for fingerprint identification.
  • two light sources can be used as the light source for fingerprint identification.
  • the layout of the two light sources can be as shown in Figure 19.
  • the light-emitting component may include a second light source and a third light source.
  • the display screen includes a third position 403 opposite to the position of the second light source, a fourth position 404 opposite to the position of the third light source, and a second position opposite to the fingerprint sensor.
  • the position 402, where the third position 403 and the fourth position 404 may be set on both sides of the position extending along the length direction of the display screen 410 in the center position of the second position 402.
  • the third position 403 and the fourth position 404 may be symmetrically distributed on both sides of the position extending along the length direction of the display screen 410 at the center position of the second position 402, or may be distributed asymmetrically at the center position of the second position 402 along the display screen.
  • the length of 410 extends on both sides of the position.
  • the third position 403 and the fourth position 404 may also be arranged on the same side of the position where the second position 402 extends along the length direction of the display screen 410.
  • the above descriptions are all solutions that use an external light source as the light source for fingerprint identification.
  • the embodiments of this application are compatible with traditional fingerprint identification solutions, that is, fingerprint identification is performed using light signals emitted by the self-luminous unit to improve The success rate of fingerprint recognition.
  • the display screen may include a plurality of self-luminous display units, which can also be understood as light-emitting pixels, and the multiple self-luminous display units can be used to display images.
  • the return light signal received by the fingerprint sensor may include a second return light signal, and the second return light signal may be at least part of the second light signal emitted by the self-luminous display unit illuminating the finger, and is generated by reflection or scattering of the finger Light signal.
  • the second light signal may be the light signal emitted by the light spot described above, and the embodiment of the present application may use the difference in light intensity of the second return light signal at the ridge and valley for fingerprint identification.
  • the second optical signal may be visible light, and the wavelength of the visible light may be 550 nm, or the second optical signal may also be an optical signal of other wavelengths.
  • the fingerprint sensor may detect the first fingerprint image of the finger according to the first return light signal, and detect the second fingerprint image of the finger according to the second return light signal.
  • the first fingerprint image is different from the second fingerprint image.
  • the first fingerprint image is generated based on the principle of transmission imaging
  • the second fingerprint image is generated based on the principle of reflection imaging.
  • the first fingerprint image is generated by illuminating the finger with total reflection light. See the description above. Therefore, the light intensity at the ridges in the first fingerprint image is brighter, and the light intensity at the valleys is darker;
  • the fingerprint image is mainly generated based on the reflected light at the ridges and valleys, so the light intensity at the valleys in the second fingerprint image is brighter, and the light intensity at the ridges is darker.
  • the first fingerprint image and/or the second fingerprint image can be correspondingly obtained by using the fingerprint identification device of the embodiment of the present application. Therefore, in the fingerprint identification process, according to different application scenarios, you can choose to use the first fingerprint image and / Or the second fingerprint image for identification.
  • the fingerprint identification device in the embodiment of the present application may further include a processor, which may be used to obtain the first fingerprint image and/or the second fingerprint image, and then perform fingerprint identification according to the first fingerprint image and/or the second fingerprint image .
  • the processor may be used to obtain a first fingerprint image, the first fingerprint image being generated according to the first return light signal.
  • the processor is further configured to determine that the fingerprint recognition is successful when the first fingerprint image matches the first preset fingerprint image; or when the first fingerprint image does not match the first preset fingerprint image, determine that the fingerprint recognition fails.
  • the first preset fingerprint image may be a fingerprint image entered by the user during the fingerprint registration process, and used as a fingerprint template for subsequent fingerprint identification.
  • the first preset fingerprint image may also be updated in the subsequent fingerprint identification process to improve the success rate of fingerprint identification.
  • the processor may be used to obtain a second fingerprint image, the second fingerprint image being generated according to the second return light signal.
  • the processor is further configured to determine that the fingerprint recognition is successful when the second fingerprint image matches the second preset fingerprint image; or when the second fingerprint image does not match the second preset fingerprint image, determine that the fingerprint recognition fails.
  • the second preset fingerprint image may be a fingerprint image entered by the user during the fingerprint registration process, and used as a fingerprint template for subsequent fingerprint identification.
  • the second preset fingerprint image can also be updated in the subsequent fingerprint identification process to improve the success rate of fingerprint identification.
  • the processor is used to obtain the first fingerprint image and the second fingerprint image, and when the first fingerprint image is successfully matched with the first preset fingerprint image, and/ Or when the second fingerprint image is successfully matched with the second preset fingerprint image, it is determined that the fingerprint recognition is successful; or when the first fingerprint image does not match the first preset fingerprint image, and the second fingerprint image does not match the second preset fingerprint image When matching, it is determined that the fingerprint recognition fails.
  • the fingerprint identification device may further include a control unit that can be used to control the light-emitting assembly and the self-luminous display unit to emit light.
  • the control unit can be used to control the light-emitting component and the self-luminous display unit to emit light separately, that is, the control unit can be used to control the light-emitting component and the self-luminous display unit to not emit light at the same time.
  • the light-emitting component and the self-luminous display unit can be controlled to emit light through the control unit, so that it will not interfere with fingerprint imaging.
  • control unit can be used to control at least part of the self-luminous display unit not to emit the second light signal when the light-emitting component emits the first light signal, so that the fingerprint sensor only receives the first return light signal corresponding to the first light signal, and not Affected by the second return light signal; the control unit can also control the light-emitting component not to emit the first light signal when at least part of the self-luminous display unit emits the second light signal, so that the fingerprint sensor only accepts the first light signal corresponding to the second light signal
  • the second return optical signal is not affected by the first return optical signal.
  • control unit may control the light-emitting component not to emit light after the fingerprint sensor collects the data of the first fingerprint image, that is, control the light-emitting component to turn off the light source, and control at least part of the self-luminous display unit to emit the second light signal.
  • the first optical signal and the second optical signal are seamlessly switched, which is beneficial to save the time required for the fingerprint sensor to collect data, and can also reduce the time for the user to press the screen and improve the user experience.
  • control unit can immediately control the light-emitting component to emit the first light signal when the finger presses the screen, and control the light-emitting component to turn off the light source and control the self-illumination after a preset period of time after the finger presses the screen
  • the display unit emits a second light signal.
  • the processor may perform fingerprint recognition on the first fingerprint image in parallel while the fingerprint sensor collects the second fingerprint image, thereby saving the overall time for fingerprint recognition.
  • the fingerprint sensor may be arranged below the display screen.
  • the fingerprint identification module may be arranged below the display screen, and the fingerprint identification module may include a fingerprint sensor.
  • the fingerprint identification module may correspond to the fingerprint identification device 130 shown in FIG. 1 to FIG. 4, and for the sake of brief description, it will not be repeated here.
  • the fingerprint identification device may also include a light path guiding structure.
  • the fingerprint recognition module under the display screen may include a light path guiding structure.
  • the optical path guiding structure is arranged above the fingerprint sensor and is used to guide the return light signal to the fingerprint sensor.
  • the optical path guiding structure may correspond to the optical component 132 in the electronic device 10, for example, it may correspond to the optical path guiding structure in the optical component 132. For the sake of introduction, it will not be repeated here.
  • the optical path guiding structure may include an optical lens, an optical collimator or a micro lens layer.
  • the following uses an optical lens as an example to describe the structure of the fingerprint recognition module.
  • Figures 20 and 21 show the structures of two fingerprint recognition modules.
  • the optical lens in Figure 20 includes one layer of optical lenses, and the optical lens in Figure 21 includes two layers of optical lenses.
  • the two-layer optical lens requires shorter exposure time. Therefore, if two light sources are used for imaging separately, for example, an external light source is used to generate the first fingerprint image and a self-luminous display unit is used as the light source to generate the second image.
  • the fingerprint module shown in FIG. 21 can preferably be used.
  • the light path guiding structure includes a micro lens layer
  • two micro lens layers can also be used to reduce the exposure time.
  • the fingerprint recognition module shown in FIG. 20 can also be used for imaging of two light sources separately. Although a longer exposure time may be required, the manufacturing cost of a layer of optical lens is lower.
  • the optical lens 308 needs to be reasonably designed.
  • a common optical lens may have aberrations for light of different wavelength bands.
  • the optical lens 308 in the embodiment of the present application needs to image the light signals of the two wavelength bands without aberration.
  • the optical lens 308 needs to be reasonably designed so that the optical lens 308 can image infrared light and has no aberration for visible light imaging. That is, the aberration design of the optical lens 308 is compatible with the wavelength light imaging in the visible light waveband and the infrared waveband, so as to ensure better imaging in the visible light and infrared waveband.
  • the optical lens 308 can be designed correspondingly with reference to FIG. 22.
  • FIG. 22 shows the curve of the focus shift of the polychromatic light of the optical lens 308.
  • the first return light signal is infrared light, and the wavelength is selected at 940nm; the second return light signal is visible light, and the wavelength is selected at 550nm.
  • the focal position of the optical lens 308 can be determined to avoid aberrations. .
  • the light path guiding structure may further include a filter 306.
  • the filter 306 is used to filter out the interference of other optical signals except the first return optical signal and the second return optical signal, so as to reduce the interference of environmental stray light.
  • the filter 306 in the embodiment of the present application may be specially designed to transmit two specific wavelength bands of visible light and infrared light.
  • FIG. 23 shows a curve of the transmittance of the filter 306 to light of different wavelengths.
  • the first return light signal is infrared light, and the wavelength is selected at 940nm; the second return light signal is visible light, and the wavelength is selected at 550nm.
  • the transmittance of the filter 306 to these two wavelengths is far greater.
  • the filter 306 can be used to filter out light of wavelengths other than these two wavelengths.
  • the optical fingerprint recognition module in the embodiment of the present application may also include other structures.
  • the optical fingerprint recognition module may also include a flexible printed circuit (FPC) 305 and a frame 307, and the embodiment of the present application is not limited thereto.
  • the optical fingerprint identification module may further include a processor configured to generate a first fingerprint image from the first return optical signal. Among them, the processor can be set on the FPC305.
  • the light path guiding structure in the embodiment of the present application may include an optical collimator having a plurality of collimating units or a microhole array, and the optical collimator is used to pass the return light signal passing through the display screen.
  • the plurality of collimating units or microhole arrays are respectively transmitted to corresponding optical sensing units in the sensing array of the fingerprint sensor.
  • the light path guiding structure in the embodiments of the present application may include a microlens array with a plurality of microlenses and a light blocking layer with a plurality of microholes, and the microlens array is used to pass through the display screen.
  • the return light signals are respectively focused on the microholes corresponding to the light blocking layer, and transmitted through the microholes to the corresponding optical sensing units in the sensing array of the fingerprint sensor.
  • the fingerprint identification device in the embodiment of the present application may be a fingerprint module or an electronic device including a display screen.
  • an embodiment of the present application also provides an electronic device 2500, and the electronic device 2500 may include any fingerprint identification device 2510 as described above.
  • the electronic device 2500 may also include a display screen, and the display screen may be a self-luminous display screen, such as an OLED display screen, or a non-self-luminous display screen, such as an LCD screen.
  • FIG. 25 is a schematic flowchart of a fingerprint identification method provided by an embodiment of the present application. This method is applicable to any fingerprint identification device described above, and the corresponding technical features in the method in FIG. 25 can be referred to the above description.
  • the method includes steps S510-520.
  • the first fingerprint image is generated according to a first return light signal
  • the first return light signal is the first light signal transmitted into the finger above the fingerprint detection area and from the finger
  • the incident angle of the first optical signal when it reaches the glass cover plate at the fingerprint detection area is greater than or equal to the total incident angle of the optical signal from the glass cover plate into the air Angle of reflection.
  • S520 Perform fingerprint recognition according to the first fingerprint image.
  • the fingerprint recognition is successful; in the case where the first fingerprint image does not match the first preset fingerprint image, it may be determined that the fingerprint recognition is unsuccessful.
  • the second fingerprint image can also be acquired, and fingerprint recognition can be performed based on the first fingerprint image and the second fingerprint image. As long as at least one of the first fingerprint image and the second fingerprint image is matched successfully, the fingerprint is confirmed The recognition is successful, wherein the second fingerprint image is generated according to the second return light, the second return light is the light signal reflected after the second light signal irradiates the finger, and the second light signal is at least partially self-luminous display The light signal from the unit.
  • the fingerprint recognition is successful when the first fingerprint image matches the first preset fingerprint image, and/or the second fingerprint image matches the second preset fingerprint image; In a case where a preset fingerprint image does not match, and the second fingerprint image does not match the second preset fingerprint image, it is determined that the fingerprint recognition is unsuccessful.
  • the first light signal is a light signal emitted by a light-emitting component
  • the method may further include: when the light-emitting component emits the first light signal, controlling the plurality of self-luminous display units not to emit the first light signal Two light signals; when the plurality of self-luminous display units emit the second light signal, the light-emitting assembly is controlled not to emit the first light signal.
  • the method further includes: after collecting the data of the first fingerprint image, controlling the light-emitting component not to emit light, and controlling the self-luminous unit to emit the second light signal.
  • optical fingerprint sensor in the embodiments of the present application may represent an optical fingerprint sensor chip.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence or the parts that contribute to the prior art or the parts of the technical solutions, and the computer software products are stored in a storage medium.
  • Including several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • the division of units or modules or components in the device embodiments described above is only a logical function division, and there may be other divisions in actual implementation.
  • multiple units or modules or components can be combined or integrated.
  • To another system, or some units or modules or components can be ignored or not executed.
  • the units/modules/components described as separate/display components may or may not be physically separated, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units/modules/components may be selected according to actual needs to achieve the objectives of the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)

Abstract

一种指纹识别的方法、装置(130)和电子设备(10),能够提高指纹的成像质量。该指纹识别装置(130)适用于具有显示屏(120)的电子设备(10),包括指纹传感器(280),指纹传感器(280)的指纹检测区域(103)位于显示屏(120)的显示区域,指纹传感器(280)用于设置在显示屏(120)的下方,并用于接收返回光信号,以及根据返回光信号检测手指(210)的指纹图像,其中,返回光信号包括第一返回光信号(205),第一返回光信号(205)为第一光信号(201)透射进指纹检测区域(103)上方的手指(210)并从手指(210)透射出并穿过显示屏(120)的光信号,第一光信号(201)到达指纹检测区域(103)处的玻璃盖板(220)时的入射角大于或等于光信号从玻璃盖板(220)入射到空气的全反射角。

Description

指纹识别的方法、装置和电子设备 技术领域
本申请实施例涉及指纹识别领域,并且更具体地,涉及一种指纹识别的方法、装置和电子设备。
背景技术
近年来,智能手机进入全面屏时代,手机的屏占比越来越大,屏下指纹识别技术顺势成为潮流,光学屏下指纹技术率先进入商用,国内主流手机厂商均发布了光学屏下指纹机型,国际品牌厂商的屏下指纹技术新机也在紧密锣鼓地研发中。
目前的光学屏下指纹技术基本都应用在有机发光二极管(Organic Light-Emitting Diode,OLED)和有源矩阵有机发光二极体(Active-matrix organic light-emitting diode,AMOLED)等自发光的手机屏幕上,利用这类屏幕包括的自发光的屏幕像素作为光源,光线照射到手指上经过手指反射,透过手机屏幕和特殊光学镜头,被屏下的传感器接收到,实现指纹图像采集和指纹识别。但是这种利用自发光的屏幕像素作为光源进行指纹识别的方式,存在成像质量差的问题。
发明内容
本申请实施例提供了一种指纹识别的方法、装置和电子设备,能够提高指纹的成像质量。
第一方面,提供了一种指纹识别装置,所述指纹识别装置适用于具有显示屏的电子设备,所述指纹识别装置包括光路引导结构和指纹传感器,所述指纹传感器的指纹检测区域设置在所述显示屏的显示区域,所述光路引导结构设置在所述显示屏和所述指纹传感器之间,用于将所述指纹检测区域上方的手指形成的返回光信号引导至所述指纹传感器;所述指纹传感器用于设置在所述显示屏的下方,所述指纹传感器包括具有多个光学感应单元的感应阵列,所述感应阵列用于接收经过所述光路引导结构的所述返回光信号,并根据所述返回光信号检测所述手指的指纹图像,其中,所述返回光信号包括第一返回光信号,所述第一返回光信号为第一光信号透射进所述指纹检测区域 上方的手指并从所述手指透射出并穿过所述显示屏的光信号,所述第一光信号到达所述指纹检测区域处的玻璃盖板时的入射角大于或等于光信号从所述玻璃盖板入射到空气的全反射角。
在一种可能的实现方式中,所述入射角大于或等于42.6°。
在一种可能的实现方式中,所述指纹识别装置还包括发光组件,所述发光组件设置在所述显示屏的非显示区域的下方,用于向所述指纹检测区域发射所述第一光信号。
在一种可能的实现方式中,所述发光组件设置在所述显示屏的下巴区域。
在一种可能的实现方式中,所述发光组件包括垂直腔表面发射激光器,所述垂直腔表面发射激光器发出的所述第一光信号到达所述指纹检测区域处的玻璃盖板时的入射角大于或等于所述全反射角。
在一种可能的实现方式中,所述发光组件包括光源和透镜,所述透镜用于将所述光源发出的所述第一光信号汇聚至所述指纹检测区域,使得到达所述指纹检测区域处的玻璃盖板时的所述第一光信号的入射角大于或等于所述全反射角。
在一种可能的实现方式中,所述发光组件包括光源和遮挡件,所述遮挡件用于对所述光源发出的光信号进行遮挡,使得所述光源发出的未被所述遮挡件遮挡的所述第一光信号到达所述指纹检测区域处的玻璃盖板时的入射角大于或等于所述全反射角。
在一种可能的实现方式中,所述遮挡件为油墨,所述油墨涂覆在所述玻璃盖板的下表面,且设置在所述光源的远离所述指纹检测区域的一侧,所述油墨用于对所述光源发出的光信号进行遮挡。
在一种可能的实现方式中,所述发光组件中的光源相对所述显示屏倾斜设置,使得所述光源发出的所述第一光信号能够以预设角度到达所述指纹检测区域,且到达所述指纹检测区域处的玻璃盖板时所述第一光信号的入射角大于或等于所述全反射角。
在一种可能的实现方式中,所述发光组件包括光源和导光柱,所述导光柱用于将所述光源发出的所述第一光信号导向所述指纹检测区域,使得经过所述导光柱的所述第一光信号到达所述指纹检测区域处的玻璃盖板时的入射角大于或等于所述全反射角。
在一种可能的实现方式中,所述导光柱包括第一段导光柱和第二段导光柱,所述第一段导光柱和所述第二段导光柱相连接,所述第一段导光柱设置在所述光源的周围,且所述第一导光柱的轴向与所述显示屏垂直,所述第二段导光柱的轴向相对所述显示屏倾斜设置,使得经过所述第二段导光柱的光信号到达所述指纹检测区域处的玻璃盖板时的入射角大于或等于所述全反射角。
在一种可能的实现方式中,所述发光组件包括光源和反光装置,所述光源朝向所述反光装置发射光信号,所述反光装置用于对所述光源发出的光信号进行反射,使得经过所述反光装置反射后的光信号到达所述显示屏的玻璃盖板时的入射角大于或等于所述全反射角。
在一种可能的实现方式中,所述反光装置设置在所述玻璃盖板的侧面,且所述反光装置的反光面与所述玻璃盖板的表面垂直。
在一种可能的实现方式中,所述反光装置为反光涂层或反光薄膜。
在一种可能的实现方式中,所述发光组件发出的所述第一光信号光为红外光或可见光。
在一种可能的实现方式中,所述红外光的波长为940nm;或者,所述可见光的波长为550nm。
在一种可能的实现方式中,所述发光组件与所述指纹传感器在所述显示屏的长度方向上的距离为15mm~20mm。
在一种可能的实现方式中,所述发光组件包括第一光源,所述显示屏包括与所述第一光源所在位置相对的第一位置,以及与所述指纹传感器所在位置相对的第二位置,所述第一位置位于所述第二位置的中心沿所述显示屏的长度方向延伸的位置上。
在一种可能的实现方式中,所述发光组件包括第一光源,所述显示屏包括与所述第一光源所在位置相对的第一位置,以及与所述指纹传感器所在位置相对的第二位置,所述第一位置位于所述第二位置的中心位置沿所述显示屏的长度方向延伸的位置的一侧。
在一种可能的实现方式中,所述发光组件包括第二光源和第三光源,所述显示屏包括与所述第二光源所在位置相对的第三位置、与所述第三光源所在位置相对的第四位置、以及与所述指纹传感器所在位置相对的第二位置,所述第三位置和所述第四位置设置在所述第二位置的中心位置沿所述显示 屏的长度方向延伸的位置的两侧。
在一种可能的实现方式中,所述显示屏包括多个自发光显示单元,所述多个自发光显示单元用于显示图像,所述返回光信号还包括第二返回光信号,所述第二返回光信号为至少部分自发光显示单元发出的第二光信号照射所述手指,并经过所述手指反射或散射而产生的光信号。
在一种可能的实现方式中,所述指纹传感器用于根据所述第一返回光信号检测出所述手指的第一指纹图像,还用于根据所述第二返回光信号检测出所述手指的第二指纹图像。
在一种可能的实现方式中,所述第二光信号的波长为550nm。
在一种可能的实现方式中,所述指纹识别装置还包括处理器,所述处理器用于:获取所述第一指纹图像,所述第一指纹图像是根据所述第一返回光信号生成的;在所述第一指纹图像与第一预设指纹图像相匹配时,确定指纹识别成功;或,在所述第一指纹图像与所述第一预设指纹图像不匹配时,确定指纹识别失败。
在一种可能的实现方式中,所述处理器用于:获取所述第二指纹图像,所述第二指纹图像是根据所述第二返回光信号生成的;在所述第一指纹图像与第一预设指纹图像匹配成功时,和/或在所述第二指纹图像与所述第二预设指纹图像匹配成功时,确定指纹识别成功;或在所述第一指纹图像与所述第一预设指纹图像不匹配,且所述第二指纹图像与所述第二预设指纹图像不匹配时,确定指纹识别失败。
在一种可能的实现方式中,所述指纹识别装置还包括控制单元,所述控制单元用于在所述发光组件发出所述第一光信号时控制所述至少部分自发光显示单元不发出所述第二光信号,以及在所述至少部分自发光显示单元发出所述第二光信号时控制所述发光组件不发出所述第一光信号。
在一种可能的实现方式中,所述指纹识别装置还包括控制单元,所述控制单元用于在所述指纹传感器采集完所述第一指纹图像的数据后,控制所述发光组件不发光,以及控制所述至少部分自发光单元发出所述第二光信号。
在一种可能的实现方式中,所述光路引导结构包括光学透镜,所述光学透镜设置在所述指纹传感器上方,用于将穿过所述显示屏的返回光信号汇聚到所述指纹传感器的感应阵列。
在一种可能的实现方式中,所述第一返回光信号为红外光,所述第二返 回光信号为可见光,所述光学透镜对红外光可成像和对可见光成像不具有像色差。
在一种可能的实现方式中,所述指纹识别装置还包括滤光片,位于所述指纹传感器上方,所述滤光片用于滤除所述第一返回光信号和所述第二返回光信号以外的其他光信号。
在一种可能的实现方式中,所述第一返回光信号为波长940nm的红外光,所述第二返回光信号为波长550nm的可见光,所述滤光片至少用于滤除波长不等于940nm和550nm的光。
在一种可能的实现方式中,所述光路引导结构包括具有多个准直单元或者微孔阵列的光学准直器,所述光学准直器用于将穿过所述显示屏的返回光信号通过所述多个准直单元或者微孔阵列分别传输到所述指纹传感器的感应阵列中对应的光学感应单元;或者,所述光路引导结构包括具有多个微透镜的微透镜阵列和具有多个微孔的挡光层,所述微透镜阵列用于将穿过所述显示屏的返回光信号分别聚焦到所述挡光层对应的微孔,并通过所述微孔传输到所述指纹传感器的感应阵列中对应的光学感应单元。
本申请提供的指纹识别装置,指纹图像不是基于反射成像的原理生成的,而是基于透射原理生成的。本申请利用全反射光作为指纹识别的光源,由于谷线处的光信号全部发生全反射,不能被指纹传感器接收到,而脊线处的光信号大部分透射进手指,并从手指纹脊处透射出来穿过显示屏被指纹传感器接收到,这样指纹传感器接收到的纹脊和纹谷处返回的光信号存在较高的对比度,能够获得较好的成像效果。
第二方面,提供一种电子设备,包括:上述第一方面或其各个可能的实现方式中的指纹识别的装置。
第三方面,提供了一种指纹识别的方法,该方法可应用于上述第一方面或其各个可能的实现方式中的指纹识别装置,该方法包括:获取第一指纹图像,所述第一指纹图像是根据第一返回光信号生成的,所述第一返回光信号为第一光信号透射进所述指纹检测区域上方的手指并从所述手指透射出并穿过所述显示屏的光信号,所述第一光信号到达所述指纹检测区域处的玻璃盖板时的入射角大于或等于光信号从所述玻璃盖板入射到空气的全反射角;根据所述第一指纹图像,进行指纹识别。
在一种可能的实现方式中,所述根据所述第一指纹图像,进行指纹识别, 包括:在所述第一指纹图像与第一预设指纹图像相匹配时,确定指纹识别成功;或,在所述第一指纹图像与所述第一预设指纹图像不匹配时,确定指纹识别失败。
在一种可能的实现方式中,所述显示屏包括多个自发光单元,所述方法还包括:获取第二指纹图像,所述第二指纹图像为根据第二返回光生成的,所述第二返回光为第二光信号照射所述手指后反射的光信号,所述第二光信号为至少部分自发光单元发出的光信号;所述根据所述第一指纹图像,进行指纹识别,包括:在所述第一指纹图像与第一预设指纹图像相匹配,和/或所述第二指纹图像与所述第二预设指纹图像相匹配时,确定指纹识别成功。
在一种可能的实现方式中,所述根据所述第一指纹图像,进行指纹识别,包括:在所述第一指纹图像与所述第一预设指纹图像不匹配,或所述第二指纹图像与第二预设指纹图像不匹配时,确定指纹识别失败。
在一种可能的实现方式中,所述第一光信号为发光组件发出的光信号,所述方法还包括:在所述发光组件发出所述第一光信号时,控制所述多个自发光显示单元不发出所述第二光信号;在所述多个自发光显示单元发出所述第二光信号时,控制所述发光组件不发出所述第一光信号。
在一种可能的实现方式中,所述第一光信号为发光组件发出的光信号,所述方法还包括:在采集完所述第一指纹图像的数据后,控制所述发光组件不发光,并控制所述自发光单元发出所述第二光信号。
附图说明
图1是本申请实施例的电子设备的结构的俯视图。
图2是本申请实施例的电子设备的结构的侧视图。
图3是本申请实施例的通过准直器引导光路的示意图。
图4是本申请实施例的通过透镜引导光路的示意图。
图5是本申请实施例的基于反射成像的原理的示意图。
图6是本申请实施例的基于反射成像获得的指纹图像。
图7是本申请实施例的干手指基于反射成像获得的指纹图像。
图8是本申请实施例的以全反射光作为光源时的成像原理示意图。
图9是本申请实施例的又一种以全反射光作为光源时的成像原理示意图。
图10是根本申请实施例提供的指纹识别装置的示意图。
图11是本申请实施例提供的以自发光显示屏作为光源时的指纹识别过程的示意图。
图12是本申请实施例提供的一种发光组件的结构示意图。
图13是本申请实施例提供的又一种发光组件的结构示意图。
图14是本申请实施例提供的又一种发光组件的结构示意图。
图15是本申请实施例提供的又一种发光组件的结构示意图。
图16是本申请实施例提供的又一种发光组件的结构示意图。
图17是本申请实施例提供的发光组件包括的一个光源对应于显示屏的位置的示意图。
图18是本申请实施例提供的又一种发光组件包括的一个光源对应于显示屏的位置的示意图。
图19是本申请实施例提供的发光组件包括的两个光源对应于显示屏的位置的示意图。
图20是本申请实施例提供的一种指纹识别装置的示意图。
图21是本申请实施例提供的又一种指纹识别装置的示意图。
图22是本申请实施例提供的光学透镜的多色光焦点偏移的曲线。
图23是本申请实施例提供的滤光片对不同波长的光的透过率的曲线。
图24是本申请实施例提供的电子设备的示意性框图。
图25是本申请实施例提供的指纹识别方法的示意性流程图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例可以应用于光学指纹系统,包括但不限于光学指纹识别系统和基于光学指纹成像的医疗诊断产品,本申请实施例仅以光学指纹系统为例进行说明,但不应对本申请实施例构成任何限定,本申请实施例同样适用于其他采用光学成像技术的系统等。
作为一种常见的应用场景,本申请实施例提供的光学指纹系统可以应用在智能手机、平板电脑、游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(automated teller machine,ATM)等其他电子设备,但本申请实施例对此并不限定,本申请实施例可以应用在其他具有显示 屏的移动终端或者其他电子设备;更具体地,在上述电子设备中,指纹识别装置可以具体为光学指纹装置,其可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under-display)光学指纹系统。或者,所述指纹识别装置也可以部分或者全部集成至所述电子设备的显示屏内部,从而形成屏内(In-display)光学指纹系统。
如图1和图2所示为本申请实施例可以适用的电子设备的两个结构示意图,其中,图1为俯视图,图2为侧视图。该电子设备10包括显示屏120和光学指纹装置130,其中,该光学指纹装置130设置在该显示屏120下方的局部区域。该光学指纹装置130包括光学指纹传感器,该光学指纹传感器包括具有多个光学感应单元131的感应阵列133,该感应阵列所在区域或者其感应区域为该光学指纹装置130对应的指纹检测区域103。如图1所示,该指纹检测区域103位于该显示屏120的显示区域之中。在一种替代实施例中,该光学指纹装置130还可以设置在其他位置,比如该显示屏120的侧面或者该电子设备10的边缘非透光区域,并通过光路设计来将该显示屏120的至少部分显示区域的光信号导引到该光学指纹装置130,从而使得该指纹检测区域103实际上位于该显示屏120的显示区域。
应当理解,该指纹检测区域103的面积可以与该光学指纹装置130的感应阵列的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线汇聚或者反射等光路设计,可以使得该光学指纹装置130对应的指纹检测区域103的面积大于该光学指纹装置130感应阵列的面积。在其他替代实现方式中,如果采用例如光线准直方式进行光路引导,该光学指纹装置130对应的指纹检测区域103也可以设计成与该光学指纹装置130的感应阵列的面积基本一致。
因此,使用者在需要对该电子设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于该显示屏120的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的电子设备10无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即该显示屏120的显示区域可以基本扩展到整个电子设备10的正面。
作为一种可选的实现方式,如图2所示,该光学指纹装置130包括光检测部分134和光学组件132,该光检测部分134包括感应阵列以及与该感应 阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die),比如光学成像芯片或者光学指纹传感器,该感应阵列具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,该光探测器可以作为上述的光学感应单元;该光学组件132可以设置在该光检测部分134的感应阵列的上方,其可以具体包括滤光层(Filter)、导光层或光路引导结构以及其他光学元件,该滤光层可以用于滤除穿透手指的环境光,而该导光层或光路引导结构主要用于将从手指处返回的光导引至该感应阵列进行光学检测。
在具体实现上,该光学组件132可以与该光检测部分134封装在同一个光学指纹部件。比如,该光学组件132可以与该光学检测部分134封装在同一个光学指纹芯片,也可以将该光学组件132设置在该光检测部分134所在的芯片外部,比如将该光学组件132贴合在该芯片上方,或者将该光学组件132的部分元件集成在上述芯片之中。
其中,该光学组件132的导光层或者光路引导结构有多种实现方案,比如,如图3所示,该光学组件132的该导光层可以具体为在半导体硅片制作而成的准直器(Collimator)层,其具有多个准直单元或者微孔阵列,该准直单元可以具体为小孔,从手指反射回来的反射光中,垂直入射到该准直单元的光线可以穿过并被其下方的光学感应单元接收,而入射角度过大的光线在该准直单元内部经过多次反射被衰减掉,因此每一个光学感应单元基本只能接收到其正上方的指纹纹路反射回来的反射光,从而该感应阵列便可以检测出手指的指纹图像。
在另一种实施例中,该导光层或者光路引导结构也可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组,例如,如图4所示,该光学组件132可以包括一个透镜,其用于将从手指反射回来的反射光汇聚到其下方的光检测部分134的感应阵列,以使得该感应阵列可以基于该反射光进行成像,从而得到该手指的指纹图像。可选地,该光学透镜层在该透镜单元的光路中还可以形成有针孔,该针孔可以配合该光学透镜层扩大该光学指纹装置的视场,以提高该光学指纹装置130的指纹成像效果。
在其他实施例中,该导光层或者光路引导结构也可以具体采用微透镜(Micro-Lens)层,该微透镜层具有由多个微透镜形成的微透镜阵列,其可以 通过半导体生长工艺或者其他工艺形成在该光检测部分134的感应阵列上方,并且每一个微透镜可以分别对应于该感应阵列的其中一个感应单元。并且,该微透镜层和该感应单元之间还可以形成其他光学膜层,比如介质层或者钝化层,更具体地,该微透镜层和该感应单元之间还可以包括具有微孔的挡光层,其中该微孔形成在其对应的微透镜和感应单元之间,该挡光层可以阻挡相邻微透镜和感应单元之间的光学干扰,并使得该感应单元所对应的光线通过该微透镜汇聚到该微孔内部并经由该微孔传输到该感应单元以进行光学指纹成像。应当理解,上述光路引导结构的几种实现方案可以单独使用也可以结合使用,比如,可以在该准直器层或者该光学透镜层下方进一步设置微透镜层。当然,在该准直器层或者该光学透镜层与该微透镜层结合使用时,其具体叠层结构或者光路可能需要按照实际需要进行调整。
可选的,在某些实施例中,该光学指纹装置130可以仅包括一个光学指纹传感器,此时光学指纹装置130的指纹检测区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到该指纹检测区域103的特定位置,否则光学指纹装置130可能无法采集到指纹图像而造成用户体验不佳。
在其他替代实施例中,该光学指纹装置130可以具体包括多个光学指纹传感器;该多个光学指纹传感器可以通过拼接方式并排设置在该显示屏120的下方,且该多个光学指纹传感器的感应区域共同构成该光学指纹装置130对应的指纹检测区域103。也即是说,该光学指纹装置130对应的指纹检测区域103可以包括多个子区域,每个子区域分别对应于其中一个光学指纹传感器的感应区域,从而将该光学指纹模组130的指纹采集区域103可以扩展到该显示屏的下半部分的主要区域,即扩展到手指惯常按压区域,从而实现盲按式指纹输入操作。可替代地,当该光学指纹传感器数量足够时,该指纹检测区域130还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
应当理解的是,在具体实现上,该电子设备10还包括透明盖板110,或者称为透明保护盖板110,该盖板110可以为玻璃盖板或者蓝宝石盖板,其位于该显示屏120的上方并覆盖该电子设备10的正面。因为,本申请实施例中,所谓的手指按压在该显示屏120实际上是指按压在该显示屏120上方的盖板110或者覆盖该盖板110的保护层表面。
应理解,本申请实施例中的该显示屏120可以采用具有自发光显示单元的显示屏,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,该光学指纹装置130可以利用该OLED显示屏120位于该指纹检测区域103的显示单元(即OLED光源)来作为光学指纹检测的激励光源。当手指140按压在该指纹检测区域103时,显示屏120向该指纹检测区域103上方的目标手指140发出一束光111,该光111在手指140的表面发生反射形成反射光或者经过该手指140内部散射而形成散射光。
在其他实施例中,所述光学指纹装置130也可以采用内置光源或者外置光源来提供用于进行指纹检测的光信号。在这种情况下,所述光学指纹装置130可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示屏。以应用在具有背光模组和液晶面板的液晶显示屏为例,为支持液晶显示屏的屏下指纹检测,所述电子设备10的光学指纹系统还可以包括用于光学指纹检测的激励光源,所述激励光源可以具体为红外光源或者特定波长非可见光的光源,其可以设置在所述液晶显示屏的背光模组下方或者设置在所述电子设备10的保护盖板下方的边缘区域,而所述光学指纹装置130可以设置液晶面板或者保护盖板的边缘区域下方并通过光路引导以使得指纹检测光可以到达所述光学指纹装置130;或者,所述光学指纹装置130也可以设置在所述背光模组下方,且所述背光模组通过对扩散片、增亮片、反射片等膜层进行开孔或者其他光学设计以允许指纹检测光穿过液晶面板和背光模组并到达所述光学指纹装置130。
在其他替代实现方式中,该显示屏120也可以采用非自发光的显示屏,比如采用背光的液晶显示屏;在这种情况下,所述光学检测装置130便无法采用所述显示屏120的显示单元作为激励光源,因此需要在所述光学检测装置130内部集成激励光源或者在其外部设置激励光源来实现光学指纹检测,当采用所述光学指纹装置130采用内置光源或者外置光源来提供用于进行指纹检测的光信号时,其检测原理与上面自发光显示屏的描述内容是一致的。
应理解,为便于描述,上述反射光和散射光统称为反射光。由于指纹的嵴(ridge)与峪(vally)对于光的反射能力不同,因此,来自指纹嵴的反射光151和来自指纹峪的发生过152具有不同的光强,反射光经过光学组件132后,被光学指纹装置130中的感应阵列134所接收并转换为相应的电信号, 即指纹检测信号;基于该指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在该电子设备10实现光学指纹识别功能。
具体地,图5示出了基于反射光成像的原理的示意图。如图5所示,这里假设手机的表面为玻璃盖板,手指进行指纹识别时接触手机玻璃盖板表面,其中,手指的指纹脊线可以与表面接触良好,而手指的指纹谷线与表面存在空隙,该空隙内为空气。
另外,如图5所示,这里还假设通过该玻璃盖板照射至手指的光I为均匀的。该光I可以为显示屏的至少部分自发光显示单元发出的光信号,通常显示屏的发光区域设置在指纹检测区域的正下方,这样能够减少光信号从发光单元到达手指的路径长度,使得较多的光信号用于指纹检测。因此,自发光显示单元发出的光信号I到达玻璃界面的入射角通常较小,例如,对于图3所示的指纹识别装置,指纹传感器接收到的光信号通常是入射角度小于10°的光信号经过手指返回的光信号,对于图4所示的指纹识别装置,指纹传感器接收到的光信号通常是入射角度小于30°的光信号经过手指返回来的光信号。
根据光学的折射和反射定律,当光I照射至手指时,指纹脊线处因为接触良好,并且手指与玻璃盖板的折射率相近,所以被手指吸收的光I T1较多,而反射光I R1较少;但谷线处存在空气间隙,由于空气与玻璃盖板的折射率差异较大,所以折射进手指的光I T2较少,在玻璃盖板表面发生反射的反射光I R2较多,由此形成了指纹谷脊之间的对比信号,谷线处的反射信号I R2较强,而脊线处的反射信号I R1较弱,指纹传感器通过谷线与脊线处的信号差异,进而可以形成指纹图像,例如,如图6所示的指纹图像。
但是在实际应用中,由于利用反射式成像的光学指纹原理上存在干手指问题,所以可能会存在指纹图像不清晰的情况。干手指是指手指表面的油脂和汗液较少,例如,目前大约有10%~20%的人群是干手指,另外,普通人群在特殊场景也会转化为干手指,如洗手后或者低温状态下,都会导致手指变干。
手指上的油脂和汗液较少,会影响手指的折射率,导致手指的折射率与玻璃的折射率的差异增大,当光I照射到手指时,被指纹脊线吸收的光信号I T1变少,而反射的光信号I R1变多;谷线处反射的光信号基本不变,这样由于脊线处反射的光信号增强,导致脊线处的光信号I R1和谷线处的光信号I R2 的对比度降低,造成指纹图像不清晰的现象。例如,如图7所示,在干手指状态下,光学指纹无法获得很好的信号,指纹图像十分不清楚,这将导致解锁的成功率严重下降。
因此,本申请实施例提供一种指纹识别的装置,能够提高指纹识别的成功率。
该指纹识别装置适用于具有显示屏的电子设备,该装置可以包括指纹传感器,该指纹传感器的指纹检测区域位于显示屏的显示区域,以形成屏下指纹识别。该指纹传感器用于接收返回光信号,并根据该返回光信号,生成手指的指纹图像。
其中,该返回光信号可以包括第一返回光信号,第一返回光信号为第一光信号经过指纹检测区域上方的手指并从手指透射出的光信号,且第一光信号到达指纹检测区域处的玻璃盖板时的入射角大于或等于光信号从玻璃盖板入射到空气的全反射角。
本申请实施例中的第一光信号也可以称为全反射光信号。该第一光信号为具有方向性的光信号,该第一光信号可以为以预设角度朝向指纹采集区域发射的光信号。该第一光信号可以是外部光源发出的光信号,也可以是自发光显示屏中的自发光显示单元发出的光信号,只要其发出的光信号为全反射光信号即可。
本申请实施例中的显示屏可以是自发光显示屏,如OLED显示屏,也可以是被动式发光的显示屏,如液晶显示(liquid crystal display,LCD)屏。
本申请实施例中的指纹传感器可包括具有多个光学感应单元的感应阵列,该感应阵列用于接收经过光路引导结构的返回光信号,并根据该返回光信号检测手指的指纹图像。
如图8所示,第一光信号L到达玻璃盖板时,由于指纹谷线与玻璃盖板之间存在空隙,第一光信号L在纹谷处发生全反射。由于指纹的密度大于空气的密度,因此光信号从玻璃盖板入射至手指脊线的全反射角大于光信号从玻璃盖板入射至空气的全反射角,当脊线与玻璃盖板接触时,到达纹脊处的第一光信号一部分发生反射,一部分透射进手指的纹脊,透射进手指的光信号用于指纹成像。
如图8所示,脊线处的反射光L R1和谷线处的反射光L R2会在玻璃盖板的上下表面发生全反射,最后被衰减掉。脊线处的透射光L T1进入手指后, 再从手指中透射出来,形成第一返回光信号,第一返回光信号经过显示屏后,被显示屏下方的指纹传感器接收到。指纹传感器根据接收到的第一返回光信号,进行指纹识别。
由于谷线处的光信号都发生了全反射,指纹传感器几乎接收不到谷线处返回的光信号,而脊线处的大部分光信号会透射进手指,然后从手指中透射出来被指纹传感器接收到,从而指纹传感器可以根据纹脊和纹谷处的光信号的强度差进行指纹识别。
传统的指纹识别方式中,利用纹脊和纹谷处的反射光进行成像,如图5所示,反射光I R1和反射光I R2的对比度差异约为1:40。与传统的指纹识别方式不同,本申请实施例并不是而是利用透射光进行成像,纹谷和纹脊处的光信号的对比度约为1:200,这样采用透射光进行成像,能够获得5倍于传统的反射光成像的信号,能够获得更好的成像质量,有利于提高指纹识别的成功率。
此外,传统方案中会存在手指为干手指时,纹脊和纹谷处的反射光相近导致指纹图像不清晰的现象。本申请实施例提供的技术方案,即使手指为干手指,仍然会有光信号透射进纹脊,从纹脊处透射出来的光信号会被指纹传感器接收到,而纹谷处的光信号会发生全反射,不会被指纹传感器接收到,这样纹脊和纹谷处返回的光信号仍然存在较高的对比度,因此采用透射光成像,受干手指的影响较小。
本申请实施例中,第一光信号到达指纹检测区域处的玻璃盖板时的入射角大于或等于42.6°。
该指纹识别装置还可以包括光路引导结构,该光路引导结构设置在显示屏和指纹传感器之间,用于将指纹检测区域上方的手指形成的返回光信号引导至指纹传感器。
该光路引导结构可以包括光学透镜、光学准直器或微透镜阵列。该光路引导结构例如可以是图3和图4中的准直器阵列和光学透镜。
下面结合具体实施例,对本申请实施例的指纹识别装置进行描述。
如图9所示,光源260可用于发射全反射光信号,如第一光信号201,第一光信号201在纹谷处的全反射光信号203以及在纹谷处的反射光信号204在玻璃盖板220的上下表面不断进行全反射,最后被衰减掉。第一光信号201在纹谷处发生折射,折射后的光信号透射进手指,经手指透射出来的 光信号为光信号205,光信号205穿过玻璃盖板220等最后被显示屏下方的指纹传感器接收到。
指纹识别装置可以包括指纹传感器280,该指纹传感器280用于接收第一返回光信号205,该第一返回光信号205为第一光信号202通过指纹纹脊透射进手指210,然后从所述手指210透射出来的光信号,该第一光信号201入射至手指按压处的玻璃盖板220时的入射角θ大于或等于光信号从玻璃盖板入射至空气的全反射角。
可以理解的是,第一光信号201到达指纹采集区域的任意位置时的入射角可以均大于或等于所述全反射角,例如,第一光信号到达指纹检测区域的边缘位置时的入射角大于所述全反射角,第一光信号到达指纹检测区域的靠近光源位置时的入射角大于或等于所述全反射角。或者,第一光信号可以在到达部分指纹采集区域时的入射角大于或等于所述全反射角,例如,第一光信号可以在到达指纹采集区域的中心区域时的入射角大于或等于所述全反射角。
图9所示的指纹识别装置还可以包括位于玻璃盖板220和显示层250之间的导电玻璃230和偏光片240。
本申请实施例中的指纹识别装置还可以包括光学镜头270,该光学镜头用于将光信号205聚焦至指纹传感器280上。
本申请实施例中的指纹传感器280可以设置在电子设备内部,其中,该电子设备可以为上述电子设备10。例如,该指纹传感器280可以设置在该电子设备的正面或者背面,或者,可以设置在该电子设备的显示屏下方,或者设置在显示屏的周围,例如,显示屏的底部。
为了便于说明,本申请实施例以将该光学指纹传感器设置在电子设备的显示屏下方为例进行说明。对应地,手指在进行指纹识别时,触摸在该显示屏的上方,也就是说,该指纹传感器为屏下指纹传感器。
应理解,本申请实施例的指纹传感器280可以对应于电子设备10中的光检测部分134,为了简洁,在此不再赘述。
指纹识别装置还可以包括发光组件260,该发光组件260设置在显示屏的非显示区域的下方,用于向指纹检测区域发射第一光信号。该发光组件260例如可以设置在玻璃盖板220的边缘区域的下方。作为一种优选的实现方式,发光组件260可以设置在电子设备的下巴区域的玻璃盖板的下方。
其中,导电玻璃230和偏光片240同发光组件260之间的位置设置可以参照显示层250与发光组件260之间的关系。具体地,该发光组件260位于该导电玻璃230和该偏光片240的边缘;该发光组件260与该导电玻璃230互不遮挡;该发光组件260与该偏光片240互不遮挡。
如图10所示,玻璃盖板310用于手指触摸,玻璃盖板310上设置有指纹检测区域330,光源320设置在玻璃盖板310的边缘区域的下方,其中,光源320发出的概念股信号入射至指纹检测区域330处的玻璃盖板310的上表面时的入射角θ大于或等于玻璃到空气的全反射角。
发光组件可以以预设角度向指纹检测区域发射第一光信号,使得第一光信号到达指纹检测区域的玻璃盖板时的入射角小于所述全反射角。
发光组件发出的第一光信号可以是可见光,也可以是不可见光。不可见光例如可以是红外光。采用不可见光作为指纹识别的光源,使得用户不会在非显示区域的屏幕上感知到光信号,能够提高用户体验。
发光组件发出的红外光的波长可以为940nm,或者,发光组件发出的可见光的波长可以为550nm。
在传统的指纹识别装置中,对于自发光显示屏,如OLED屏幕,都是采用自发光显示单元作为指纹识别的光源,当用户手指按压在屏幕上时,采集数据需要等待光斑亮起,如图11所示。OLED屏幕需要50ms~100ms的时间点亮光斑,然后指纹传感器才能进行指纹数据采集。而通常一次轻触的按压解锁,手指的按压时间很短,约为150ms~200ms,所以从用户按压屏幕到光斑亮起,已经经过了较长时间,留给指纹传感器采集数据的时间较少,轻触解锁时,有可能数据还未采集完手指就离开了,导致解锁失败,造成用户体验较差。
本申请实施例采用外部光源作为指纹识别的光源,外部光源发光仅需较短的时间,因此能够留给指纹传感器较多的时间采集指纹数据,用户轻触就可进行指纹识别,有利于提高指纹识别的成功率,提高用户体验。
发光组件的结构可以有多种,下面结合图12-图16进行详细描述。
如图12所示,该发光组件可以包括光源320,该光源320可以为激光器,由于激光器可以发出定向光信号,因此采用激光器作为光源,容易实现全反射光信号。
另外,由于垂直腔表面发射激光器(vertical cavity surface emitting laser, VCSEL)的方向性更强,因此,该发光组件可以包括VCSEL。
本申请实施例可以将VCSEL倾斜安装,以更好地获得全反射角度光。如图12所示,VCSEL可以倾斜安装,VCSEL倾斜安装可以理解为VCSEL的发出的光信号301相对显示屏倾斜,使得VCSEL朝向指纹检测区域发光,提高VCSEL发出的光信号的利用率,使得VCSEL发出的大部分光信号都能到达指纹检测区域,并且VCSEL发出的光信号301到达指纹探测区域330的玻璃盖板310的上表面时的入射角度大于或等于玻璃到空气的全反射角。
该发光组件还可以包括VCSEL的支撑框架340,VCSEL设置在该支撑框架340中,将VCSEL倾斜安装,可以理解为将支撑框架340倾斜安装。
图13示出了另一种发光组件的结构。该发光组件可以包括光源320和透镜350,该透镜350用于将光源320发出的光信号汇聚至指纹检测区域330,使得到达指纹检测区域330处的玻璃盖板310的上表面的光信号的入射角大于或等于玻璃到空气的全反射角。
该光源320例如可以为发光二极管(light emitting diode,LED)灯,也可以为其他光源,例如激光器等。
图12所示的发光组件也可以倾斜设置,使得该发光组件朝向指纹检测区域330发光,发光组件发出的大部分光信号都能到达指纹检测区域330,提高光源320发出的光信号的利用率。
发光组件倾斜安装可以理解为透镜350的光轴相对玻璃盖板310倾斜安装,该透镜350的光轴例如朝向指纹检测区域330倾斜,使得经过透镜350汇聚的光信号朝向指纹检测区域330传输。
该发光组件还可以包括支撑框架340,光源320和透镜350可以设置在该支撑框架340中,发光组件倾斜安装也可以理解为将支撑框架340倾斜安装。
图14示出了另一种发光组件的结构。该发光组件可以包括光源320和遮挡件360,该遮挡件360用于对光源320发出的光信号进行遮挡,使得光源320发出的未被遮挡件遮挡的所述第一光信号到达指纹检测区域330的玻璃盖板310时的入射角大于或等于玻璃到空气的全反射角。
该光源可以为LED灯,也可以为激光器。
该遮挡件360可以是在光源320的部分表面上涂覆吸光层形成的,使得未被涂覆的表面发出的光信号到达指纹检测区域330的玻璃盖板310时的入 射角大于或等于玻璃到空气的全反射角。
该遮挡件360也可以是在在玻璃盖板310的下表面涂覆吸光层形成的,且吸光层设置在光源320的远离指纹检测区域330的一侧,减少光源320发出的光信号漏光到非显示区域的光量,提高用户体验。
该遮挡件360例如可以是油墨,也可以是其他吸光物质。
该发光组件还可以包括支撑框架340,光源320可以设置在支撑框架340中,该支撑框架340可以与玻璃盖板310平行设置,如图14所示,也可以相对玻璃盖板310倾斜设置,如图12和图13所示的支撑框架340,本申请实施例对此不作具体限定。
图15示出了另一种发光组件的结构,该发光组件可以包括光源320和导光柱370,光源320可以设置在导光柱370中,导光柱370用于将光源320发出的光信号引导至指纹检测区域330,使得经过导光柱370的所述第一光信号到达指纹检测区域330的玻璃盖板310的上表面时的入射角大于或等于玻璃到空气的全反射角。
该光源320可以为LED灯,也可以为激光器。
如图15所示,该导光柱370可以包括第一段导光柱370-1和第二段导光柱370-2,该第一段导光柱370-1与第二段导光柱370-2相连接,第二段导光柱370-2的轴向相对第一段导光柱370-1的轴向倾斜。例如,第一段导光柱370-1设置在光源320的周围,且其轴向垂直于玻璃盖板310的表面,第二段导光柱370-2的轴向相对玻璃盖板310倾斜设置,且其轴向朝向指纹检测区域330倾斜,使得经过第二段导光柱370-2的光信号能够朝向指纹检测区域330传输,且经过第二段导光柱370-2的光信号到达指纹检测区域330处的玻璃盖板310的上表面的入射角大于或等于玻璃到空气的全反射角。
当然,该导光柱也可以仅包括一段导光柱,光源320设置在该导光柱中间,该一段导光柱的轴向相对玻璃盖板310倾斜,且其轴向朝向指纹检测区域330倾斜,使得经过该导光柱的光信号朝向指纹检测区域330传输,且经过该导光柱的光信号到达指纹检测区域330处的玻璃盖板310的上表面的入射角大于或等于玻璃到空气的全反射角。
图16示出了又一种发光组件的结构示意图,该发光组件包括光源320和反光装置380,该光源320朝向反光装置380发射光信号,该反光装置380用于对光源320发出的光信号进行反射,经过反光装置380反射后的光信号 303朝向指纹检测区域330传输,并且经过反光装置380反射后的光信号303到达指纹检测区域330处的玻璃盖板310的上表面的入射角大于或等于玻璃到空气的全反射角,从而形成全反射光。
如图16所示,该反光装置380可以设置在玻璃盖板310的侧面,具体地,可以设置在玻璃盖板310的边缘位置的侧面。该反光装置380的反光面可以朝向指纹检测区域330,该反光装置380的反光面可以与玻璃盖板310的表面垂直。
该反光装置380例如可以包括反光涂层或反光薄膜。该反光涂层可以涂覆在玻璃盖板310的侧面,或该反光薄膜可以贴合在玻璃盖板310的侧面。
该光源320可以为普通光源,如LED等,也可以为激光器,本申请实施例对此不作具体限定。
发光组件可以设置在显示屏的非显示区域下方的任意位置,本申请实施例对此不作具体限定。下面结合具体实施例,对发光组件的位置设置进行描述。
作为一种实现方式,该发光组件与指纹传感器在显示屏的长度方向上的距离可以为15mm~20mm。如图17-图19所示,m 1的长度为15mm~20mm。
该发光组件可以包括一个光源,也可以包括多个光源,当一个光源的光强不够时,可以通过多个光源来增加光强。
发光组件可以包括第一光源,显示屏410包括与第一光源所在位置相对的第一位置401,以及与指纹传感器所在位置相对的第二位置402。为方便描述,下文均采用第一位置401和第二位置402对发光组件的位置设置进行描述。
图17示出了发光组件包括的一个光源相对显示屏410的位置的示意图。第一位置401可以设置在第二位置402的中心位置沿显示屏410的长度方向延伸的位置上,也就是说,第一位置401的中心和第二位置402的中心的连线平行于显示屏410的侧边缘,或者说第一位置401的中心和第二位置402的中心的连线垂直于显示屏410的下边缘。
优选地,第一位置401的中心和第二位置402的之间的距离为15mm~20mm。
如果存在结构干涉,第一位置401也可以设置在第二位置402的一侧,如图18所示,或者,第一位置401可以设置在显示屏410的两侧的边缘位 置等。
如果一个光源的光强不够,可以采用多个光源作为指纹识别的光源,例如可以使用两个光源作为指纹识别的光源。两个光源的布局可以如图19所示。
发光组件可以包括第二光源和第三光源,显示屏包括与第二光源所在位置相对的第三位置403、与第三光源所在位置相对的第四位置404以及与指纹传感器所在位置相对的第二位置402,其中,第三位置403和第四位置404可以设置在第二位置402的中心位置沿显示屏410的长度方向延伸的位置的两侧。
第三位置403和第四位置404可以对称分布在第二位置402的中心位置沿显示屏410的长度方向延伸的位置的两侧,也可以不对称分布在第二位置402的中心位置沿显示屏410的长度方向延伸的位置的两侧。
当然,如果存在结构干涉,第三位置403和第四位置404也可以设置在第二位置402沿显示屏410的长度方向延伸的位置的同一侧。
上文描述的都是采用外置光源作为指纹识别的光源的方案,本申请实施例在此基础上,可以兼容传统的指纹识别方案,即采用自发光单元发出的光信号进行指纹识别,以提高指纹识别的成功率。
显示屏可以包括多个自发光显示单元,该自发光显示单元也可以理解为发光像素点,该多个自发光显示单元可用于显示图像。指纹传感器接收到的返回光信号可以包括第二返回光信号,该第二返回光信号可以为至少部分的自发光显示单元发出的第二光信号照射手指,并经过所述手指反射或散射而产生的光信号。
该第二光信号可以为上文描述的光斑发出的光信号,本申请实施例可以利用第二返回光信号在纹脊和纹谷处的光强的差异进行指纹识别。
第二光信号可以为可见光,该可见光的波长可以为550nm,或者第二光信号也可以为其他波长的光信号。
本申请实施例中,指纹传感器可以根据第一返回光信号检测出手指的第一指纹图像,根据第二返回光信号检测出手指的第二指纹图像。
可以理解的是,第一指纹图像和第二指纹图像不同,第一指纹图像是基于透射成像原理生成的,第二指纹图像是根据反射成像原理生成的。
第一指纹图像由于是采用全反射光照射手指而生成的,参见上文的描 述,因此第一指纹图像中的纹脊处的光强较亮,纹谷处的光强较暗;而第二指纹图像主要是根据纹脊和纹谷处的反射光生成的,因此第二指纹图像中的纹谷处的光强较亮,而纹脊处的光强较暗。
应理解,采用本申请实施例的指纹识别装置可以对应获得第一指纹图像和/或第二指纹图像,因此,在指纹识别过程中,根据不同的应用场景,可以选择根据该第一指纹图像和/或第二指纹图像进行识别。
本申请实施例中的指纹识别装置还可以包括处理器,该处理器可用于获取第一指纹图像和/或第二指纹图像,然后根据该第一指纹图像和/或第二指纹图像进行指纹识别。
作为一个示例,该处理器可用于获取第一指纹图像,该第一指纹图像是根据第一返回光信号生成的。该处理器还用于在第一指纹图像与第一预设指纹图像相匹配时,确定指纹识别成功;或在第一指纹图像与第一预设指纹图像不匹配时,确定指纹识别失败。
该第一预设指纹图像可以为用户在指纹注册过程中录入的指纹图像,作为后续指纹识别的指纹模板。此外,第一预设指纹图像还可以在后续的指纹识别过程中进行更新,以提高指纹识别的成功率。
作为又一示例,该处理器可用于获取第二指纹图像,该第二指纹图像是根据第二返回光信号生成的。该处理器还用于在第二指纹图像与第二预设指纹图像相匹配时,确定指纹识别成功;或在第二指纹图像与第二预设指纹图像不匹配时,确定指纹识别失败。
该第二预设指纹图像可以为用户在指纹注册过程中录入的指纹图像,作为后续指纹识别的指纹模板。此外,第二预设指纹图像还可以在后续的指纹识别过程中进行更新,以提高指纹识别的成功率。
作为再一示例,在采用两种光源进行指纹识别的过程中,处理器用于获取第一指纹图像和第二指纹图像,并在第一指纹图像与第一预设指纹图像匹配成功时,和/或第二指纹图像与第二预设指纹图像匹配成功时,确定指纹识别成功;或在第一指纹图像与第一预设指纹图像不匹配,且第二指纹图像与第二预设指纹图像不匹配时,确定指纹识别失败。
因此,在采用两种光源进行指纹识别的过程中,只要第一指纹图像和第二指纹图像中的至少一个匹配成功,则可以确认指纹识别成功,这样能够提高指纹识别的成功率。
该指纹识别装置还可以包括控制单元,该控制单元可用于控制发光组件和自发光显示单元发光。具体地,该控制单元可用于控制发光组件和自发光显示单元分别发光,也就是说,控制单元可用于控制发光组件和自发光显示单元不同时发光。
由于根据第一光信号和第二光信号生成的指纹图像不同,因此,可以通过控制单元分别控制发光组件和自发光显示单元发光,这样就不会对指纹成像造成干扰。
例如,该控制单元可用于在发光组件发出第一光信号时控制至少部分自发光显示单元不发出第二光信号,以便于指纹传感器仅接收第一光信号对应的第一返回光信号,而不受第二返回光信号的影响;该控制单元还可以在至少部分自发光显示单元发出第二光信号时控制发光组件不发出第一光信号,以便于指纹传感器仅接受第二光信号对应的第二返回光信号,而不受第一返回光信号的影响。
又例如,该控制单元可以在指纹传感器采集完第一指纹图像的数据后,控制发光组件不发光,即控制发光组件关闭光源,且控制至少部分自发光显示单元发出第二光信号。这样,第一光信号和第二光信号无缝切换,有利于节约指纹传感器采集数据所需的时间,也能够减少用户按压屏幕的时间,提高用户体验。
作为一种简单的实现方式,该控制单元可以在手指按压屏幕时,立即控制发光组件发出第一光信号,并且在手指按压屏幕后的预设时长之后,控制发光组件关闭光源,且控制自发光显示单元发出第二光信号。
在本申请实施例中,处理器可以在指纹传感器采集第二指纹图像的同时,并行对第一指纹图像进行指纹识别,从而节约指纹识别的整体时间。
本申请实施例可以将指纹传感器设置在显示屏的下方,具体地,可以将指纹识别模组设置在显示屏的下方,该指纹识别模组可以包括指纹传感器。
其中,该指纹识别模组可以对应于图1至图4所示的指纹识别装置130,为了简介,此处不再赘述。
该指纹识别装置还可以包括光路引导结构,具体地,显示屏下方的指纹识别模组可以包括光路引导结构。该光路引导结构设置在指纹传感器的上方,用于将返回光信号引导至指纹传感器。
该光路引导结构可以对应于电子设备10中的光学组件132,例如,可以 对应于光学组件132中的光路引导结构,为了简介,此处不再赘述。
该光路引导结构可以包括光学透镜,光学准直器或者微透镜层。
下面以光学透镜为例,对指纹识别模组的结构进行描述。
图20和图21示出了两种指纹识别模组的结构,图20中的光学镜头包括一层光学镜头,图21中的光学镜头包括两层光学镜头。
两层光学镜头相对一层光学镜头来说,所需要的曝光时间较短,因此如果采用两种光源分别成像,如采用外置光源生成第一指纹图像和采用自发光显示单元作为光源生成第二指纹图像,则优选地可以使用图21所示的指纹模组。
如果光路引导结构包括微透镜层,也可以采用两层微透镜层来减少曝光时长。
但是,图20所示的指纹识别模组也可以用于两种光源分别成像,虽然可能需要较长的曝光时间,但是一层光学镜头的制造成本较低。
如果采用两种光源进行成像,需要对光学镜头308进行合理设计。普通的光学镜头对于不同波段的光可能存在像色差,本申请实施例中的光学镜头308需要对两个波段的光信号的成像不具有像色差。
例如,对于第一返回光信号为红外光,第二返回光信号为可见光的情况,需要合理设计该光学镜头308,使得该光学透镜308对红外光可成像和对可见光成像不具有像色差。即光学透镜308的像色差设计兼容可见光波段和红外波段的波长光成像,保证在可见光和红外波段上都能成像较优。
例如可以参见图22对应设计光学透镜308。图22出了光学透镜308的多色光焦点偏移的曲线。如图22所示,这里假设该第一返回光信号为红外光,波长选择940nm;该第二返回光信号为可见光,波长选择550nm,对应可以确定该光学透镜308的焦点位置,以避免像色差。
此外,参见图20和图21,该光路引导结构还可以包括滤光片(filter)306。该滤光片306用于滤除除了第一返回光信号和第二返回光信号以外的其他光信号的干扰,以减少环境杂散光的干扰。
常规滤光片一般都是针对单一波长,但是本申请实施例的滤光片306可以采用特殊设计,使其可以透过可见光和红外光两种特定波段。
例如,图23示出了滤光片306对不同波长的光的透过率的曲线。如图23所示,这里假设该第一返回光信号为红外光,波长选择940nm;该第二返 回光信号为可见光,波长选择550nm,该滤光片306对这两种波长的透过率远大于其他波长的光,即该滤光片306可以用于滤掉这两种波长以外其他波长的光。
可选的,本申请实施例中的光学指纹识别模组还可以包括其他结构。例如,如图20和图21所示,该光学指纹识别模组还可以包括柔性电路板(flexible printed circuit,FPC)305和边框307,本申请实施例并不限于此。再例如,该光学指纹识别模组还可以包括处理器,该处理器用于将第一返回光信号生成第一指纹图像。其中,该处理器可以设置在FPC305上。
可选地,本申请实施例中的光路引导结构可以包括具有多个准直单元或者微孔阵列的光学准直器,所述光学准直器用于将穿过所述显示屏的返回光信号通过所述多个准直单元或者微孔阵列分别传输到所述指纹传感器的感应阵列中对应的光学感应单元。
可选地,本申请实施例中的光路引导结构可以包括具有多个微透镜的微透镜阵列和具有多个微孔的挡光层,所述微透镜阵列用于将穿过所述显示屏的返回光信号分别聚焦到所述挡光层对应的微孔,并通过所述微孔传输到所述指纹传感器的感应阵列中对应的光学感应单元。
本申请实施例中的指纹识别装置可以为指纹模组,也可以为包括显示屏的电子设备。
如图24所示,本申请实施例还提供了一种电子设备2500,该电子设备2500可以包括如上文描述的任一种指纹识别装置2510。该电子设备2500还可以包括显示屏,该显示屏可以是自发光的显示屏,例如OLED显示屏,也可以是非自发光的显示屏,例如LCD屏。
图25是本申请实施例提供的一种指纹识别的方法的示意性流程图。该方法适用于上文描述的任一种指纹识别装置中,图25的方法中的相应技术特征可以参见上文的描述。该方法包括步骤S510~520。
S510、获取第一指纹图像,该第一指纹图像是根据第一返回光信号生成的,所述第一返回光信号为第一光信号透射进所述指纹检测区域上方的手指并从所述手指透射出并穿过所述显示屏的光信号,所述第一光信号到达所述指纹检测区域处的玻璃盖板时的入射角大于或等于光信号从所述玻璃盖板入射到空气的全反射角。
S520、根据第一指纹图像,进行指纹识别。
本申请实施例中的指纹识别的方法可以有多种。
作为一个示例,可以在第一指纹图像匹配成功的情况下,确定指纹识别成功。
例如,可以在第一指纹图像与第一预设指纹图像匹配的情况下,确定指纹识别成功;在第一指纹图像与第一预设指纹图像不匹配的情况下,确定指纹识别不成功。
作为又一示例,还可以获取第二指纹图像,并根据第一指纹图像和第二指纹图像进行指纹识别,只要第一指纹图像和第二指纹图像中的至少一个指纹图像匹配成功,则确认指纹识别成功,其中,该第二指纹图像为根据第二返回光生成的,所述第二返回光为第二光信号照射所述手指后反射的光信号,第二光信号为至少部分自发光显示单元发出的光信号。
例如,可以在第一指纹图像与第一预设指纹图像相匹配,和/或第二指纹图像与第二预设指纹图像相匹配的情况下,确定指纹识别成功;在第一指纹图像与第一预设指纹图像不匹配,且第二指纹图像与第二预设指纹图像不匹配的情况下,确定指纹识别不成功。
可选地,第一光信号为发光组件发出的光信号,该方法还可以包括:在所述发光组件发出所述第一光信号时,控制所述多个自发光显示单元不发出所述第二光信号;在所述多个自发光显示单元发出所述第二光信号时,控制所述发光组件不发出所述第一光信号。
可选地,所述方法还包括:在采集完所述第一指纹图像的数据后,控制所述发光组件不发光,并控制所述自发光单元发出所述第二光信号。
具体的指纹识别方式可以参见上文的描述,此处不再赘述。
需要说明的是,本申请实施例中的光学指纹传感器可以表示光学指纹传感器芯片。
可以理解的是,本申请附图中的结构仅表示一种示意图,不代表真实的尺寸和比例,这并不会对本申请实施例造成限定。
需要说明的是,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。
例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的设备、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的电子设备、装置和方法,可以通过其它的方式实现。
例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。
又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。
最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的 技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (39)

  1. 一种指纹识别装置,其特征在于,所述指纹识别装置适用于具有显示屏的电子设备,指纹传感器的指纹检测区域设置在所述显示屏的显示区域,
    所述光路引导结构设置在所述显示屏和所述指纹传感器之间,用于将所述指纹检测区域上方的手指形成的返回光信号引导至所述指纹传感器;
    所述指纹传感器用于设置在所述显示屏的下方,所述指纹传感器包括具有多个光学感应单元的感应阵列,所述感应阵列用于接收经过所述光路引导结构的所述返回光信号,并根据所述返回光信号检测所述手指的指纹图像,
    其中,所述返回光信号包括第一返回光信号,所述第一返回光信号为第一光信号透射进所述指纹检测区域上方的手指并从所述手指透射出并穿过所述显示屏的光信号,所述第一光信号到达所述指纹检测区域处的玻璃盖板时的入射角大于或等于光信号从所述玻璃盖板入射到空气的全反射角。
  2. 根据权利要求1所述的指纹识别装置,其特征在于,所述入射角大于或等于42.6°。
  3. 根据权利要求1或2所述的指纹识别装置,其特征在于,所述指纹识别装置还包括发光组件,所述发光组件设置在所述显示屏的非显示区域的下方,用于向所述指纹检测区域发射所述第一光信号。
  4. 根据权利要求3所述的指纹识别装置,其特征在于,所述发光组件设置在所述显示屏的下巴区域。
  5. 根据权利要求3或4所述的指纹识别装置,其特征在于,所述发光组件包括垂直腔表面发射激光器,所述垂直腔表面发射激光器发出的所述第一光信号到达所述指纹检测区域处的玻璃盖板时的入射角大于或等于所述全反射角。
  6. 根据权利要求3或4所述的指纹识别装置,其特征在于,所述发光组件包括光源和透镜,所述透镜用于将所述光源发出的所述第一光信号汇聚至所述指纹检测区域,使得到达所述指纹检测区域处的玻璃盖板时的所述第一光信号的入射角大于或等于所述全反射角。
  7. 根据权利要求3或4所述的指纹识别装置,其特征在于,所述发光组件包括光源和遮挡件,所述遮挡件用于对所述光源发出的光信号进行遮 挡,使得所述光源发出的未被所述遮挡件遮挡的所述第一光信号到达所述指纹检测区域处的玻璃盖板时的入射角大于或等于所述全反射角。
  8. 根据权利要求7所述的指纹识别装置,其特征在于,所述遮挡件为油墨,所述油墨涂覆在所述玻璃盖板的下表面,且设置在所述光源的远离所述指纹检测区域的一侧,所述油墨用于对所述光源发出的光信号进行遮挡。
  9. 根据权利要求3-8中任一项所述的指纹识别装置,其特征在于,所述发光组件中的光源相对所述显示屏倾斜设置,使得所述光源发出的所述第一光信号能够以预设角度到达所述指纹检测区域,且到达所述指纹检测区域处的玻璃盖板时所述第一光信号的入射角大于或等于所述全反射角。
  10. 根据权利要求3或4所述的指纹识别装置,其特征在于,所述发光组件包括光源和导光柱,所述导光柱用于将所述光源发出的所述第一光信号导向所述指纹检测区域,使得经过所述导光柱的所述第一光信号到达所述指纹检测区域处的玻璃盖板时的入射角大于或等于所述全反射角。
  11. 根据权利要求10所述的指纹识别装置,其特征在于,所述导光柱包括第一段导光柱和第二段导光柱,所述第一段导光柱和所述第二段导光柱相连接,所述第一段导光柱设置在所述光源的周围,且所述第一导光柱的轴向与所述显示屏垂直,所述第二段导光柱的轴向相对所述显示屏倾斜设置,使得经过所述第二段导光柱的光信号到达所述指纹检测区域处的玻璃盖板时的入射角大于或等于所述全反射角。
  12. 根据权利要求3或4所述的指纹识别装置,其特征在于,所述发光组件包括光源和反光装置,所述光源朝向所述反光装置发射光信号,所述反光装置用于对所述光源发出的光信号进行反射,使得经过所述反光装置反射后的光信号到达所述显示屏的玻璃盖板时的入射角大于或等于所述全反射角。
  13. 根据权利要求12所述的指纹识别装置,其特征在于,所述反光装置设置在所述玻璃盖板的侧面,且所述反光装置的反光面与所述玻璃盖板的表面垂直。
  14. 根据权利要求12或13所述的指纹识别装置,其特征在于,所述反光装置为反光涂层或反光薄膜。
  15. 根据权利要求3-14中任一项所述的指纹识别装置,其特征在于,所述发光组件发出的所述第一光信号光为红外光或可见光。
  16. 根据权利要求15所述的指纹识别装置,其特征在于,所述红外光的波长为940nm;或者,所述可见光的波长为550nm。
  17. 根据权利要求3-16中任一项所述的指纹识别装置,其特征在于,所述发光组件与所述指纹传感器在所述显示屏的长度方向上的距离为15mm~20mm。
  18. 根据权利要求3-17中任一项所述的指纹识别装置,其特征在于,所述发光组件包括第一光源,所述显示屏包括与所述第一光源所在位置相对的第一位置,以及与所述指纹传感器所在位置相对的第二位置,所述第一位置位于所述第二位置的中心沿所述显示屏的长度方向延伸的位置上。
  19. 根据权利要求3-17中任一项所述的指纹识别装置,其特征在于,所述发光组件包括第一光源,所述显示屏包括与所述第一光源所在位置相对的第一位置,以及与所述指纹传感器所在位置相对的第二位置,所述第一位置位于所述第二位置的中心位置沿所述显示屏的长度方向延伸的位置的一侧。
  20. 根据权利要求3-17中任一项所述的指纹识别装置,其特征在于,所述发光组件包括第二光源和第三光源,所述显示屏包括与所述第二光源所在位置相对的第三位置、与所述第三光源所在位置相对的第四位置、以及与所述指纹传感器所在位置相对的第二位置,所述第三位置和所述第四位置设置在所述第二位置的中心位置沿所述显示屏的长度方向延伸的位置的两侧。
  21. 根据权利要求1-20中任一项所述的指纹识别装置,其特征在于,所述显示屏包括多个自发光显示单元,所述多个自发光显示单元用于显示图像,所述返回光信号还包括第二返回光信号,所述第二返回光信号为至少部分自发光显示单元发出的第二光信号照射所述手指,并经过所述手指反射或散射而产生的光信号。
  22. 根据权利要求21所述的指纹识别装置,其特征在于,所述指纹传感器用于根据所述第一返回光信号检测出所述手指的第一指纹图像,还用于根据所述第二返回光信号检测出所述手指的第二指纹图像。
  23. 根据权利要求22所述的指纹识别装置,其特征在于,所述第二光信号的波长为550nm。
  24. 根据权利要求21-23中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括处理器,所述处理器用于:
    获取所述第一指纹图像,所述第一指纹图像是根据所述第一返回光信号生成的;
    在所述第一指纹图像与第一预设指纹图像相匹配时,确定指纹识别成功;或,
    在所述第一指纹图像与所述第一预设指纹图像不匹配时,确定指纹识别失败。
  25. 根据权利要求21-23中任一项所述的指纹识别装置,其特征在于,所述处理器用于:
    获取所述第二指纹图像,所述第二指纹图像是根据所述第二返回光信号生成的;
    在所述第一指纹图像与第一预设指纹图像匹配成功时,和/或在所述第二指纹图像与所述第二预设指纹图像匹配成功时,确定指纹识别成功;或
    在所述第一指纹图像与所述第一预设指纹图像不匹配,且所述第二指纹图像与所述第二预设指纹图像不匹配时,确定指纹识别失败。
  26. 根据权利要求21-25中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括控制单元,所述控制单元用于在所述发光组件发出所述第一光信号时控制所述至少部分自发光显示单元不发出所述第二光信号,以及在所述至少部分自发光显示单元发出所述第二光信号时控制所述发光组件不发出所述第一光信号。
  27. 根据权利要求21-26中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括控制单元,所述控制单元用于在所述指纹传感器采集完所述第一指纹图像的数据后,控制所述发光组件不发光,以及控制所述至少部分自发光单元发出所述第二光信号。
  28. 根据权利要求21-27中任一项所述的指纹识别装置,其特征在于,所述光路引导结构包括光学透镜,所述光学透镜设置在所述指纹传感器上方,用于将穿过所述显示屏的返回光信号汇聚到所述指纹传感器的感应阵列。
  29. 根据权利要求28所述的指纹识别装置,其特征在于,所述第一返回光信号为红外光,所述第二返回光信号为可见光,
    所述光学透镜对红外光可成像和对可见光成像不具有像色差。
  30. 根据权利要求21-29中任一项所述的指纹识别装置,其特征在于, 所述指纹识别装置还包括滤光片,位于所述指纹传感器上方,所述滤光片用于滤除所述第一返回光信号和所述第二返回光信号以外的其他光信号。
  31. 根据权利要求30所述的指纹识别装置,其特征在于,所述第一返回光信号为波长940nm的红外光,所述第二返回光信号为波长550nm的可见光,
    所述滤光片至少用于滤除波长不等于940nm和550nm的光。
  32. 根据权利要求1-31中任一项所述的指纹识别装置,其特征在于,所述光路引导结构包括具有多个准直单元或者微孔阵列的光学准直器,所述光学准直器用于将穿过所述显示屏的返回光信号通过所述多个准直单元或者微孔阵列分别传输到所述指纹传感器的感应阵列中对应的光学感应单元;或者,
    所述光路引导结构包括具有多个微透镜的微透镜阵列和具有多个微孔的挡光层,所述微透镜阵列用于将穿过所述显示屏的返回光信号分别聚焦到所述挡光层对应的微孔,并通过所述微孔传输到所述指纹传感器的感应阵列中对应的光学感应单元。
  33. 一种电子设备,其特征在于,包括:如权利要求1至32中任一项所述的指纹识别装置。
  34. 一种指纹识别的方法,其特征在于,适用于如权利要求1至32中任一项所述的指纹识别装置,所述方法包括:
    获取第一指纹图像,所述第一指纹图像是根据第一返回光信号生成的,所述第一返回光信号为第一光信号透射进所述指纹检测区域上方的手指并从所述手指透射出并穿过所述显示屏的光信号,所述第一光信号到达所述指纹检测区域处的玻璃盖板时的入射角大于或等于光信号从所述玻璃盖板入射到空气的全反射角;
    根据所述第一指纹图像,进行指纹识别。
  35. 根据权利要求34所述的方法,其特征在于,所述根据所述第一指纹图像,进行指纹识别,包括:
    在所述第一指纹图像与第一预设指纹图像相匹配时,确定指纹识别成功;或,
    在所述第一指纹图像与所述第一预设指纹图像不匹配时,确定指纹识别失败。
  36. 根据权利要求35所述的方法,其特征在于,所述显示屏包括多个自发光单元,所述方法还包括:
    获取第二指纹图像,所述第二指纹图像为根据第二返回光生成的,所述第二返回光为第二光信号照射所述手指后反射的光信号,所述第二光信号为至少部分自发光单元发出的光信号;
    所述根据所述第一指纹图像,进行指纹识别,包括:
    在所述第一指纹图像与第一预设指纹图像相匹配,和/或所述第二指纹图像与所述第二预设指纹图像相匹配时,确定指纹识别成功。
  37. 根据权利要求36所述的方法,其特征在于,所述根据所述第一指纹图像,进行指纹识别,包括:
    在所述第一指纹图像与所述第一预设指纹图像不匹配,或所述第二指纹图像与第二预设指纹图像不匹配时,确定指纹识别失败。
  38. 根据权利要求36或37所述的方法,其特征在于,所述第一光信号为发光组件发出的光信号,所述方法还包括:
    在所述发光组件发出所述第一光信号时,控制所述多个自发光显示单元不发出所述第二光信号;
    在所述多个自发光显示单元发出所述第二光信号时,控制所述发光组件不发出所述第一光信号。
  39. 根据权利要求36-38中任一项所述的方法,其特征在于,所述第一光信号为发光组件发出的光信号,所述方法还包括:
    在采集完所述第一指纹图像的数据后,控制所述发光组件不发光,并控制所述自发光单元发出所述第二光信号。
PCT/CN2019/095495 2019-07-10 2019-07-10 指纹识别的方法、装置和电子设备 WO2021003723A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980004489.0A CN111183429B (zh) 2019-07-10 2019-07-10 指纹识别的方法、装置和电子设备
PCT/CN2019/095495 WO2021003723A1 (zh) 2019-07-10 2019-07-10 指纹识别的方法、装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/095495 WO2021003723A1 (zh) 2019-07-10 2019-07-10 指纹识别的方法、装置和电子设备

Publications (1)

Publication Number Publication Date
WO2021003723A1 true WO2021003723A1 (zh) 2021-01-14

Family

ID=70622040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095495 WO2021003723A1 (zh) 2019-07-10 2019-07-10 指纹识别的方法、装置和电子设备

Country Status (2)

Country Link
CN (1) CN111183429B (zh)
WO (1) WO2021003723A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111902823A (zh) * 2020-01-21 2020-11-06 深圳市汇顶科技股份有限公司 光学指纹检测装置、触摸屏和电子设备
WO2021237521A1 (zh) * 2020-05-27 2021-12-02 深圳市汇顶科技股份有限公司 屏下指纹识别装置及系统、指纹识别方法和电子装置
CN111797767A (zh) * 2020-07-06 2020-10-20 厦门天马微电子有限公司 指纹识别组件、显示模组以及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078660A1 (ja) * 2004-02-16 2005-08-25 Lite-On Japan Ltd. 指紋画像入力装置
CN105279486A (zh) * 2015-10-12 2016-01-27 格科微电子(上海)有限公司 光学指纹识别的方法
CN107004130A (zh) * 2015-06-18 2017-08-01 深圳市汇顶科技股份有限公司 用于屏幕上指纹感应的屏幕下光学传感器模块
CN109074492A (zh) * 2018-08-06 2018-12-21 深圳市汇顶科技股份有限公司 屏下光学指纹识别装置及电子设备
CN109643382A (zh) * 2018-07-04 2019-04-16 深圳市汇顶科技股份有限公司 指纹识别装置和终端

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109496314B (zh) * 2018-10-15 2021-11-05 深圳市汇顶科技股份有限公司 屏下指纹识别装置和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078660A1 (ja) * 2004-02-16 2005-08-25 Lite-On Japan Ltd. 指紋画像入力装置
CN107004130A (zh) * 2015-06-18 2017-08-01 深圳市汇顶科技股份有限公司 用于屏幕上指纹感应的屏幕下光学传感器模块
CN105279486A (zh) * 2015-10-12 2016-01-27 格科微电子(上海)有限公司 光学指纹识别的方法
CN109643382A (zh) * 2018-07-04 2019-04-16 深圳市汇顶科技股份有限公司 指纹识别装置和终端
CN109074492A (zh) * 2018-08-06 2018-12-21 深圳市汇顶科技股份有限公司 屏下光学指纹识别装置及电子设备

Also Published As

Publication number Publication date
CN111183429A (zh) 2020-05-19
CN111183429B (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
JP6864120B2 (ja) 指紋認識装置及び電子機器
US11455823B2 (en) Under-screen fingerprint identification apparatus and electronic device
CN209962265U (zh) 指纹识别装置和电子设备
US11048903B2 (en) Under-LCD screen optical sensor module for on-screen fingerprint sensing
CN109863506B (zh) 指纹识别装置和电子设备
US10318791B2 (en) Anti-spoofing sensing for rejecting fake fingerprint patterns in under-screen optical sensor module for on-screen fingerprint sensing
US10331939B2 (en) Multi-layer optical designs of under-screen optical sensor module having spaced optical collimator array and optical sensor array for on-screen fingerprint sensing
CN209895353U (zh) 指纹识别装置和电子设备
US10614283B2 (en) Devices with peripheral task bar display zone and under-LCD screen optical sensor module for on-screen fingerprint sensing
CN110235143B (zh) 屏下指纹识别装置和电子设备
WO2020151158A1 (zh) 生物特征识别的装置
WO2020181489A1 (zh) 指纹识别装置、指纹识别方法和电子设备
WO2020243935A1 (zh) 光学指纹识别的方法、装置和电子设备
US20180129798A1 (en) Optical sensing performance of under-screen optical sensor module for on-screen fingerprint sensing
KR102374723B1 (ko) 광학 지문 장치 및 전자 기기
WO2021035622A1 (zh) 指纹识别装置和电子设备
WO2021203337A1 (zh) 指纹识别的方法、装置和电子设备
WO2021003723A1 (zh) 指纹识别的方法、装置和电子设备
WO2020082375A1 (zh) 复合透镜结构、指纹识别装置和电子设备
WO2021051737A1 (zh) 指纹识别装置、背光模组、液晶显示屏和电子设备
CN210295114U (zh) 光学指纹识别装置和电子设备
CN210534801U (zh) 指纹识别装置和电子设备
CN210605731U (zh) 指纹识别装置和电子设备
CN211087274U (zh) 指纹检测装置和电子设备
CN210402402U (zh) 指纹识别装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937340

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19937340

Country of ref document: EP

Kind code of ref document: A1