WO2021002273A1 - シート及び積層体 - Google Patents

シート及び積層体 Download PDF

Info

Publication number
WO2021002273A1
WO2021002273A1 PCT/JP2020/025046 JP2020025046W WO2021002273A1 WO 2021002273 A1 WO2021002273 A1 WO 2021002273A1 JP 2020025046 W JP2020025046 W JP 2020025046W WO 2021002273 A1 WO2021002273 A1 WO 2021002273A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
fiber
cellulose fiber
cellulose
mass
Prior art date
Application number
PCT/JP2020/025046
Other languages
English (en)
French (fr)
Inventor
浩己 山本
絵美 相澤
真代 野口
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to JP2021529989A priority Critical patent/JP7452542B2/ja
Publication of WO2021002273A1 publication Critical patent/WO2021002273A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration

Definitions

  • the present invention relates to a sheet and a laminate.
  • fibrous cellulose having a fiber diameter of 10 to 50 ⁇ m particularly fibrous cellulose (pulp) derived from wood, has been widely used mainly as paper products.
  • fine fibrous cellulose having a fiber diameter of 1 ⁇ m or less is also known. Fine fibrous cellulose is attracting attention as a new material, and its uses are diverse. For example, development of sheets, non-woven fabrics, and resin composites containing fine fibrous cellulose is underway.
  • Patent Document 1 discloses a microporous membrane made of cellulose fibers in which fibers having a thickness of 1 ⁇ m or more are contained in an amount of 1% by weight or more based on the total weight of the cellulose fibers.
  • Patent Document 2 describes a first fiber having a number average fiber width of 2 nm or more and less than 1000 nm, and a second fiber having a number average fiber width of 1000 nm or more and 100,000 nm or less and a number average fiber length of 0.1 to 20 mm.
  • Nonwoven fabrics containing fibers are disclosed.
  • Patent Document 3 discloses a cellulose nanofiber molded product containing cellulose nanofibers and cellulose fibers containing pulp as main components and having a predetermined elastic modulus.
  • Patent Document 4 discloses a non-woven fabric containing cellulose fibers having an average fiber diameter of 0.1 to 50 ⁇ m and polyolefin fibers having an average fiber diameter of 1.5 ⁇ m or less.
  • the present invention provides a sheet containing fibrous cellulose (pulp) having a fiber width of 10 ⁇ m or more and fine fibrous cellulose having a fiber width of 1 ⁇ m or less and having good adhesion to a resin. The purpose.
  • the present inventors have found that in a sheet containing a first cellulose fiber having a fiber width of 10 ⁇ m or more and a second cellulose fiber having a fiber width of 1000 nm or less. It has been found that a sheet having excellent adhesion to a resin can be obtained by setting the smoothness of each surface of the sheet within a predetermined range.
  • the present invention has the following configuration.
  • the smoothness of one surface of the sheet measured according to JIS P 8155: 2010 is 10 seconds or less, and the smoothness of the other surface of the sheet measured according to JIS P 8155: 2010 is 100 seconds or more.
  • a sheet having good adhesion to a resin can be obtained.
  • FIG. 1 is a graph showing the relationship between the amount of NaOH added dropwise and the pH of a fibrous cellulose-containing slurry having a phosphorus oxo acid group.
  • FIG. 2 is a graph showing the relationship between the amount of NaOH added dropwise to the fibrous cellulose-containing slurry having a carboxy group and the pH.
  • FIG. 3 is a photograph showing an example of twisting generated in the sheet of Example 7.
  • One embodiment of the present invention is a sheet containing a first cellulose fiber having a fiber width of 10 ⁇ m or more and a second cellulose fiber having a fiber width of 1000 nm or less.
  • the smoothness measured according to JIS P 8155: 2010 on one surface of the sheet is 10 seconds or less
  • the smoothness measured according to JIS P 8155: 2010 on the other surface of the sheet is 100 seconds or more.
  • cellulose fibers having a fiber width of 1000 nm or less may be referred to as fine fibrous cellulose.
  • the above-mentioned sheet may be referred to as a fiber sheet.
  • the sheet of the present embodiment has the above structure, it has good adhesion to the resin. Specifically, after the resin layer is laminated on the sheet of the present embodiment and heat-pressed (for example, the press pressure is 0.5 MPa or more), the adhesion between the resin layer and the sheet is good, and the layers are peeled off. It does not occur and the laminated structure is maintained.
  • the press pressure for example, the press pressure is 0.5 MPa or more
  • the smoothness of one surface of the sheet of the present embodiment measured according to JIS P 8155: 2010 is 10 seconds or less, preferably 8 seconds or less, more preferably 6 seconds or less, and 4 seconds. It is more preferably less than or equal to, more preferably 3 seconds or less, and particularly preferably 2 seconds or less.
  • the smoothness of one surface of the sheet of the present embodiment measured according to JIS P 8155: 2010 may be 0 seconds.
  • the smoothness of the other surface of the sheet of the present embodiment measured according to JIS P 8155: 2010 is 100 seconds or more, preferably 500 seconds or more, and more preferably 1000 seconds or more. It is more preferably 1500 seconds or more, and particularly preferably 2000 seconds or more.
  • the upper limit of the smoothness measured according to JIS P 8155: 2010 on the other surface of the sheet is not particularly limited, but is, for example, 100,000 seconds or less.
  • the smoothness of both surfaces of the sheet measured in accordance with JIS P 8155: 2010.
  • the surface of the sheet having a small smoothness is referred to as a rough surface
  • the surface having a large smoothness is referred to as a smooth surface.
  • the smoothness value is 10 or more, it can be said that there is a difference in the smoothness of both surfaces of the sheet and there is a difference between the front and back sides of the sheet.
  • the smoothness value is 0 seconds
  • the smoothness of the smooth surface / the smoothness of the rough surface is calculated with the smoothness of 1 second.
  • the value of the smoothness of the smooth surface / the smoothness of the rough surface is more preferably 100 or more, and further preferably 1000 or more.
  • the haze of the sheet of the present embodiment is preferably 20% or more, more preferably 40% or more, further preferably 60% or more, and particularly preferably 70% or more.
  • the haze of the sheet of the present embodiment may be higher than that of the sheet containing mainly fine fibrous cellulose as cellulose fibers. Further, the haze of the sheet of the present embodiment may be 90% or less, 85% or less, or 80% or less.
  • the haze of the sheet of the present embodiment conforms to JIS K 7136: 2000, and is a value measured using, for example, a haze meter (HM-150 manufactured by Murakami Color Technology Research Institute).
  • the total light transmittance of the sheet of the present embodiment is preferably 70% or more, more preferably 80% or more, and further preferably 85% or more.
  • the total light transmittance of the sheet is a value measured using, for example, a haze meter (HM-150 manufactured by Murakami Color Technology Research Institute) in accordance with JIS K 7361: 1997.
  • the sheet of this embodiment has excellent barrier properties.
  • the air permeability of the sheet of the present embodiment is preferably 10,000 seconds or more, more preferably 50,000 seconds or more, and further preferably 100,000 seconds or more.
  • the air permeability of the sheet is determined by, for example, J. It can be calculated according to the Oken-type air permeability method of TAPPI-5.
  • the sheet of the present embodiment has a low basis weight and is therefore lightweight.
  • a calendar treatment is performed after the papermaking process.
  • the sheet of the present embodiment since the first cellulose fiber having a fiber width of 10 ⁇ m or more and the second cellulose fiber having a fiber width of 1000 nm or less are used in combination, transparency and transparency can be achieved without performing calendar treatment. A sheet having excellent barrier properties can be obtained, and as a result, the basis weight can be reduced.
  • the present invention can achieve both low basis weight and high barrier properties, which are usually in a trade-off relationship.
  • the basis weight of the sheet of the present embodiment is preferably 40 g / m 2 or less, more preferably 30 g / m 2 or less, and further preferably 20 g / m 2 or less.
  • the basis weight of the sheet can be calculated according to, for example, JIS P 8124: 2011.
  • the basis weight of the sheet can be appropriately adjusted according to the performance required for the sheet, and the basis weight may be more than 40 g / m 2 in applications where a thick sheet is required. , 100 g / m 2 or more, or 150 g / m 2 or more.
  • the thickness of the sheet of the present embodiment is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, further preferably 20 ⁇ m or more, and particularly preferably 30 ⁇ m or more.
  • the upper limit of the thickness of the sheet is not particularly limited, but may be, for example, 1000 ⁇ m.
  • the thickness of the sheet is measured according to, for example, JIS P 8118: 2014.
  • the density of the sheet of the present embodiment is preferably 0.1 g / cm 3 or more, more preferably 0.2 g / cm 3 or more, and further preferably 0.3 g / cm 3 or more. It is more preferably 0.50 g / cm 3 or more, further preferably 0.60 g / cm 3 or more, and particularly preferably 0.65 g / cm 3 or more.
  • the upper limit of the density of the sheet is not particularly limited, but is preferably 5.0 g / cm 3 or less, for example.
  • the density of the sheet is calculated from these values by measuring the basis weight according to JIS P 8124: 2011 and measuring the thickness of the sheet according to JIS P 8118: 2014.
  • the density of the sheet may be appropriately adjusted by, for example, performing calendar processing or the like according to the performance required for the sheet.
  • the sheet of this embodiment is a single layer sheet. Specifically, both the first cellulose fiber having a fiber width of 10 ⁇ m or more and the second cellulose fiber having a fiber width of 1000 nm or less are randomly present in the single-layer sheet.
  • the sheet of the present embodiment is a double layer in which two or more single-layer sheets containing both a first cellulose fiber having a fiber width of 10 ⁇ m or more and a second cellulose fiber having a fiber width of 1000 nm or less are laminated. It may be a layered sheet.
  • the sheet of the present embodiment has a first layer containing both a first cellulose fiber having a fiber width of 10 ⁇ m or more and a second cellulose fiber having a fiber width of 1000 nm or less, and a first layer having a fiber width of 10 ⁇ m or more.
  • It may be a multi-layer sheet having both the cellulose fiber of 1 and the second layer containing both the second cellulose fiber having a fiber width of 1000 nm or less.
  • the first layer and the second layer may be the same layer or different layers.
  • the thickness and basis weight of the first layer and the second layer may be the same or different. That is, the sheet of the present invention also relates to a multi-layer sheet (for example, a two-layer sheet) in which two or more single-layer sheets are laminated.
  • the sheet of this embodiment contains a first cellulose fiber.
  • the first cellulose fiber is a cellulose fiber having a fiber width of 10 ⁇ m or more.
  • the fiber width of the first cellulose fiber may be 10 ⁇ m or more, but is preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, and further preferably 25 ⁇ m or more.
  • the fiber width of the first cellulose fiber is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, further preferably 60 ⁇ m or less, and particularly preferably 40 ⁇ m or less.
  • the first cellulose fiber is also referred to as coarse cellulose fiber or pulp.
  • the fiber width of the first cellulose fiber can be measured using a Kajaani fiber length measuring device (FS-200 type) manufactured by Kajaani Automation Co., Ltd.
  • the fiber width of the first cellulose fiber is the fiber width of the trunk fiber of the cellulose fiber.
  • the fiber width of the trunk fiber constituting the main shaft is referred to as the fiber width of the first cellulose fiber, not the fiber width of the fibrillated and branched fiber. ..
  • pulp As the fiber raw material of the first cellulose fiber.
  • pulp include wood pulp, non-wood pulp and deinked pulp.
  • the wood pulp is not particularly limited, and is, for example, broadleaf kraft pulp (LBKP), coniferous kraft pulp (NBKP), sulfite pulp (SP), dissolved pulp (DP), soda pulp (AP), and unbleached kraft pulp (UKP).
  • chemical pulp such as oxygen bleached kraft pulp (OKP), semi-chemical pulp such as semi-chemical pulp (SCP) and chemiground wood pulp (CGP), crushed wood pulp (GP) and thermomechanical pulp (TMP, BCTMP), etc. Examples include mechanical pulp.
  • the non-wood pulp is not particularly limited, and examples thereof include cotton pulp such as cotton linter and cotton lint, and non-wood pulp such as hemp, straw and bagasse.
  • the deinking pulp is not particularly limited, and examples thereof include deinking pulp made from used paper.
  • As the first cellulose fiber one of the above may be used alone, or two or more of them may be mixed and used.
  • the first cellulose fiber preferably has an ionic substituent.
  • the ionic substituent can include, for example, either one or both of an anionic group and a cationic group.
  • the anionic group include a phosphoric acid group or a substituent derived from a phosphoric acid group (sometimes simply referred to as a phosphoric acid group), a carboxy group or a substituent derived from a carboxy group (sometimes simply referred to as a carboxy group), And at least one selected from a sulfone group or a substituent derived from a sulfone group (sometimes simply referred to as a sulfone group), and at least one selected from a phosphorus oxo acid group and a carboxy group. More preferably, it is a phosphorusoxo acid group, and particularly preferably.
  • the phosphate group or the substituent derived from the phosphorus oxo acid group is, for example, a substituent represented by the following formula (1).
  • the phosphorus oxo acid group is, for example, a divalent functional group obtained by removing a hydroxy group from phosphoric acid. Specifically, it is a group represented by -PO 3 H 2 .
  • Substituents derived from a phosphorus oxo acid group include substituents such as a salt of a phosphorus oxo acid group and a phosphorus oxo acid ester group.
  • the substituent derived from the phosphoric acid group may be contained in the cellulose fiber as a group in which the phosphoric acid group is condensed (for example, a pyrophosphate group).
  • the phosphorous acid group may be, for example, a phosphorous acid group (phosphonic acid group), and the substituent derived from the phosphorous acid group is a salt of a phosphorous acid group, a phosphorous acid ester group, or the like. May be good.
  • R is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched chain hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, and an unsaturated-branched chain hydrocarbon, respectively.
  • n is preferably 1.
  • Examples of the saturated-linear hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group and the like, but are not particularly limited.
  • Examples of the saturated-branched chain hydrocarbon group include an i-propyl group and a t-butyl group, but are not particularly limited.
  • Examples of the saturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentyl group, a cyclohexyl group and the like.
  • Examples of the unsaturated-linear hydrocarbon group include a vinyl group, an allyl group and the like, but are not particularly limited.
  • Examples of the unsaturated-branched chain hydrocarbon group include an i-propenyl group and a 3-butenyl group, but the group is not particularly limited.
  • Examples of the unsaturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentenyl group, a cyclohexenyl group and the like.
  • Examples of the aromatic group include a phenyl group and a naphthyl group, but are not particularly limited.
  • the inducing group in R a functional group in which at least one of functional groups such as a carboxy group, a hydroxy group, or an amino group is added or substituted with respect to the main chain or side chain of the above-mentioned various hydrocarbon groups.
  • the group is mentioned, but is not particularly limited.
  • the number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, and more preferably 10 or less.
  • ⁇ b + is a monovalent or higher cation composed of an organic substance or an inorganic substance.
  • monovalent or higher cations composed of organic substances include aliphatic ammonium or aromatic ammonium
  • monovalent or higher valent cations composed of inorganic substances include ions of alkali metals such as sodium, potassium, and lithium.
  • alkali metals such as sodium, potassium, and lithium
  • divalent metals such as calcium and magnesium, hydrogen ions, and the like, but the present invention is not particularly limited. These may be applied alone or in combination of two or more.
  • the monovalent or higher cation composed of an organic substance or an inorganic substance is preferably sodium or potassium ion which is hard to yellow when the fiber raw material containing ⁇ is heated and is easily industrially used, but is not particularly limited.
  • ⁇ b + may be an organic onium ion, and in this case, it is particularly preferable that it is an organic ammonium ion.
  • the amount of the ionic substituent introduced into the first cellulose fiber is preferably 0.3 mmol / g or more, more preferably 0.4 mmol / g or more, and 0.5 mmol per 1 g (mass) of the cellulose fiber. It is more preferably / g or more, more preferably 0.7 mmol / g or more, and particularly preferably 1.0 mmol / g or more.
  • the amount of the ionic substituent introduced in the first cellulose fiber is preferably 5.20 mmol / g or less per 1 g (mass) of the cellulose fiber, and more preferably 3.65 mmol / g or less. It is more preferably 0.00 mmol / g or less.
  • the unit mmol / g indicates, for example, the amount of substituents per 1 g of mass of the first cellulose fiber when the counter ion of the anionic group is a hydrogen ion (H + ).
  • the amount of the ionic substituent introduced into the first cellulose fiber can be measured by, for example, the neutralization titration method.
  • the introduction amount is measured by determining the change in pH while adding an alkali such as an aqueous sodium hydroxide solution to the obtained slurry containing the first cellulose fiber.
  • FIG. 1 is a graph showing the relationship between the amount of NaOH added dropwise and the pH of a cellulose fiber-containing slurry having a phosphorus oxo acid group.
  • the amount of the phosphorus oxo acid group introduced into the cellulose fiber is measured, for example, as follows. First, the slurry containing the cellulose fibers is treated with a strongly acidic ion exchange resin. The first cellulose fiber is subjected to the same defibration treatment as the defibration treatment step described later on the measurement target before the treatment with the strongly acidic ion exchange resin. Next, the change in pH is observed while adding an aqueous sodium hydroxide solution, and a titration curve as shown in the upper part of FIG. 1 is obtained.
  • the titration curve shown in the upper part of FIG. 1 plots the measured pH with respect to the amount of alkali added
  • the titration curve shown in the lower part of FIG. 1 plots the pH with respect to the amount of alkali added.
  • the increment (differential value) (1 / mmol) is plotted.
  • two points are confirmed in which the increment (differential value of pH with respect to the amount of alkali dropped) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added.
  • the maximum point of the increment obtained first when alkali is added is called the first end point
  • the maximum point of the increment obtained next is called the second end point.
  • the amount of alkali required from the start of titration to the first end point is equal to the amount of first dissociating acid of the cellulose fibers contained in the slurry used for titration, and the amount of alkali required from the first end point to the second end point.
  • Is equal to the amount of second dissociation acid of the cellulose fibers contained in the slurry used for titration, and the amount of alkali required from the start of titration to the second end point is the total dissociation of cellulose fibers contained in the slurry used for titration. Equal to the amount of acid.
  • the value obtained by dividing the amount of alkali required from the start of titration to the first end point by the solid content (g) in the slurry to be titrated is the amount of phosphorus oxo acid group introduced (mmol / g).
  • the amount of phosphorus oxo acid group introduced (or the amount of phosphorus oxo acid group) simply means the amount of the first dissociated acid.
  • the region from the start of titration to the first end point is referred to as a first region, and the region from the first end point to the second end point is referred to as a second region.
  • the amount of weakly acidic groups in the phosphoric acid group is apparently It decreases, and the amount of alkali required for the second region is smaller than the amount of alkali required for the first region.
  • the amount of strongly acidic groups in the phosphorus oxo acid group also referred to as the first dissociated acid amount in the present specification matches the amount of phosphorus atoms regardless of the presence or absence of condensation.
  • the phosphorous acid group is a phosphorous acid group
  • the weakly acidic group does not exist in the phosphorous acid group, so that the amount of alkali required for the second region is reduced or the amount of alkali required for the second region is reduced. May be zero. In this case, there is only one point on the titration curve where the pH increment is maximized.
  • the denominator of the above-mentioned phosphorus oxo acid group introduction amount indicates the mass of the acid-type cellulose fiber
  • the phosphorus oxo acid group amount (hereinafter, acid) of the acid-type cellulose fiber (hereinafter, acid). Type)) is shown.
  • the counterion of the phosphorus oxo acid group is replaced with an arbitrary cation C so as to have a charge equivalent
  • the denominator is converted to the mass of the cellulose fiber when the cation C is the counterion.
  • the amount of phosphorus oxo acid groups (hereinafter, the amount of phosphorus oxo acid groups (C type)) possessed by the cellulose fibers whose cation C is a counterion can be obtained. That is, it is calculated by the following formula.
  • Amount of phosphorus oxo acid group (C type) Amount of phosphorus oxo acid group (acid type) / ⁇ 1+ (W-1) x A / 1000 ⁇ A [mmol / g]: Total amount of anion derived from phosphoric acid group of cellulose fiber (total amount of dissociated acid of phosphoric acid group)
  • W Formula unit of cation C per valence (for example, Na is 23, Al is 9)
  • FIG. 2 is a graph showing the relationship between the amount of NaOH added dropwise and pH with respect to a dispersion containing cellulose fibers having a carboxy group as an ionic substituent.
  • the amount of the carboxy group introduced into the cellulose fiber is measured, for example, as follows. First, the dispersion containing the cellulose fibers is treated with a strongly acidic ion exchange resin. The first cellulose fiber is subjected to the same defibration treatment as the defibration treatment step described later on the measurement target before the treatment with the strongly acidic ion exchange resin. Next, the change in pH is observed while adding an aqueous sodium hydroxide solution, and a titration curve as shown in the upper part of FIG. 2 is obtained.
  • the titration curve shown in the upper part of FIG. 2 plots the measured pH with respect to the amount of alkali added
  • the titration curve shown in the lower part of FIG. 2 plots the pH with respect to the amount of alkali added.
  • the increment (differential value) (1 / mmol) is plotted.
  • the increment (differential value of pH with respect to the amount of alkali dropped) became maximum, and this maximum point was the first. Called one end point.
  • the region from the start of titration to the first end point in FIG. 2 is referred to as a first region.
  • the amount of alkali required in the first region is equal to the amount of carboxy groups in the dispersion used for titration. Then, the amount of alkali (mmol) required in the first region of the titration curve is divided by the solid content (g) in the dispersion liquid containing the cellulose fiber to be titrated, so that the amount of carboxy group introduced (mmol / mmol /). g) is calculated.
  • the denominator is the mass of the acid-type cellulose fiber
  • the above-mentioned carboxy group introduction amount (mmol / g) is the carboxy group amount of the acid-type cellulose fiber (hereinafter referred to as the carboxy group amount (acid type)). Call).
  • the counterion of the carboxy group is replaced with an arbitrary cation C so as to have a charge equivalent
  • the denominator is converted to the mass of the cellulose fiber when the cation C is the counterion.
  • the amount of carboxy group (hereinafter, carboxy group amount (C type)) possessed by the cellulose fiber whose cation C is a counter ion can be determined. That is, it is calculated by the following formula.
  • Carboxylic acid group amount (C type) Carboxylic acid group amount (acid type) / ⁇ 1+ (W-1) x (carboxyl group amount (acid type)) / 1000 ⁇ W: Formula unit of cation C per valence (for example, Na is 23, Al is 9)
  • the amount of ionic substituents In the measurement of the amount of ionic substituents by the titration method, if the amount of one drop of sodium hydroxide aqueous solution is too large, or if the titration interval is too short, the amount of ionic substituents will be lower than it should be. It may not be obtained.
  • As an appropriate dropping amount and titration interval for example, it is desirable to titrate 10 to 50 ⁇ L of a 0.1 N sodium hydroxide aqueous solution every 5 to 30 seconds.
  • the amount of phosphorus oxo acid group introduced is measured by the method described above after separating and recovering by the centrifugation method.
  • a cellulose dispersion in which the first cellulose fiber and the second cellulose fiber are mixed is adjusted to a solid content concentration of 0.2% by mass, and a high-speed cooling centrifuge (Kokusan Co., Ltd., H-2000B) is used. Perform under the conditions of 12000G and 10 minutes. Then, the obtained precipitated solid content is recovered as the first cellulose fiber, and the supernatant is recovered as the second cellulose fiber.
  • the water retention degree of the first cellulose fiber is preferably 220% or more, more preferably 230% or more, further preferably 240% or more, further preferably 250% or more, and 280. % Or more is particularly preferable. Further, the water retention degree of the first cellulose fiber is preferably 600% or less, more preferably 500% or less, and further preferably 400% or less.
  • the water retention of the first cellulose fiber is determined by J. It is a value measured according to TAPPI-26.
  • the water retention degree of the first cellulose fiber is the water retention degree of the first cellulose fiber before sheet formation, but the water retention degree of the first cellulose fiber after sheet formation satisfies the above range. May be good.
  • the content of the first cellulose fiber is preferably 10% by mass or more, more preferably 20% by mass or more, and more preferably 30% by mass or more, based on the total mass of the cellulose fibers contained in the sheet. More preferably, it is more than 40% by mass, 41% by mass or more, 45% by mass or more, 50% by mass or more, more than 50% by mass or 55% by mass or more, and more preferably 60% by mass or more. It is more preferably 70% by mass or more, and particularly preferably 70% by mass or more.
  • the content of the first cellulose fiber is preferably 99% by mass or less, more preferably 95% by mass or less, and 90% by mass or less, based on the total mass of the cellulose fibers contained in the sheet. It is more preferably 85% by mass or less, and particularly preferably 80% by mass or less.
  • the production step of the first cellulose fiber includes a phosphorus oxo acid group introduction step.
  • the phosphorus oxo acid group introduction step at least one compound (hereinafter, also referred to as “compound A”) selected from compounds capable of introducing a phosphorus oxo acid group by reacting with a hydroxyl group of a fiber raw material containing cellulose is introduced into cellulose. It is a step of acting on a fiber raw material containing. By this step, a phosphorus oxo acid group-introduced fiber can be obtained.
  • the reaction between the fiber raw material containing cellulose and Compound A is carried out in the presence of at least one selected from urea and its derivatives (hereinafter, also referred to as “Compound B”). You may.
  • the reaction of the fiber raw material containing cellulose with the compound A may be carried out in the absence of the compound B.
  • the method of causing the compound A to act on the fiber raw material in the coexistence with the compound B there is a method of mixing the compound A and the compound B with the fiber raw material in a dry state, a wet state or a slurry state.
  • a fiber raw material in a dry state or a wet state since the reaction uniformity is high, it is preferable to use a fiber raw material in a dry state or a wet state, and it is particularly preferable to use a fiber raw material in a dry state.
  • the form of the fiber raw material is not particularly limited, but is preferably cotton-like or thin sheet-like, for example.
  • Examples of the compound A and the compound B include a method of adding the compound A and the compound B to the fiber raw material in the form of a powder or a solution dissolved in a solvent, or in a state of being heated to a melting point or higher and melted.
  • a method of adding the compound A and the compound B to the fiber raw material in the form of a powder or a solution dissolved in a solvent, or in a state of being heated to a melting point or higher and melted are examples of the compound A and the compound B.
  • the reaction is highly homogeneous, it is preferable to add the mixture in the form of a solution dissolved in a solvent, particularly in the form of an aqueous solution.
  • the compound A and the compound B may be added to the fiber raw material at the same time, may be added separately, or may be added as a mixture.
  • the method for adding the compound A and the compound B is not particularly limited, but when the compound A and the compound B are in the form of a solution, the fiber raw material may be immersed in the solution to absorb the liquid and then taken out, or the fiber raw material may be taken out. The solution may be dropped into the water. Further, the required amounts of Compound A and Compound B may be added to the fiber raw material, or after the excess amounts of Compound A and Compound B are added to the fiber raw material, respectively, the excess Compound A and Compound B are added by pressing or filtering. It may be removed.
  • the compound A used in this embodiment may be a compound having a phosphorus atom and capable of forming an ester bond with cellulose, and may be phosphoric acid or a salt thereof, phosphoric acid or a salt thereof, dehydration-condensed phosphoric acid or a salt thereof.
  • Examples thereof include salts and anhydrous phosphoric acid (diphosphorus pentoxide), but the present invention is not particularly limited.
  • the phosphoric acid those having various puritys can be used, and for example, 100% phosphoric acid (normal phosphoric acid) or 85% phosphoric acid can be used.
  • Examples of phosphorous acid include 99% phosphorous acid (phosphonic acid).
  • the dehydration-condensed phosphoric acid is one in which two or more molecules of phosphoric acid are condensed by a dehydration reaction, and examples thereof include pyrophosphoric acid and polyphosphoric acid.
  • Phosphates, phosphorous acids, dehydration-condensed phosphates include phosphoric acid, phosphorous acid or dehydration-condensed phosphoric acid lithium salts, sodium salts, potassium salts, ammonium salts, etc. It can be a sum.
  • sodium phosphate and sodium phosphate Salt potassium salt of phosphoric acid, ammonium or phosphite of phosphoric acid, sodium salt of phosphite, potassium salt of phosphite, ammonium salt of phosphite are preferred, phosphoric acid, sodium dihydrogen phosphate, Disodium hydrogen phosphate, ammonium dihydrogen phosphate, or phosphoric acid and sodium phosphite are more preferred.
  • the amount of compound A added to the fiber raw material is not particularly limited, but for example, when the amount of compound A added is converted to the phosphorus atomic weight, the amount of phosphorus atom added to the fiber raw material (absolute dry mass) is 0.5% by mass or more. It is preferably 100% by mass or less, more preferably 1% by mass or more and 50% by mass or less, and further preferably 2% by mass or more and 30% by mass or less.
  • the amount of phosphorus atom added to the fiber raw material within the above range, the yield of the first cellulose fiber can be further improved.
  • the addition amount of the phosphorus atom to the fiber raw material to be equal to or less than the above upper limit value, the effect of improving the yield and the cost can be balanced.
  • Compound B used in this embodiment is at least one selected from urea and its derivatives as described above.
  • Examples of compound B include urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, 1-ethylurea and the like.
  • compound B is preferably used as an aqueous solution. Further, from the viewpoint of further improving the uniformity of the reaction, it is preferable to use an aqueous solution in which both compound A and compound B are dissolved.
  • the amount of compound B added to the fiber raw material is not particularly limited, but is preferably 1% by mass or more and 500% by mass or less, and more preferably 10% by mass or more and 400% by mass or less. It is more preferably 100% by mass or more and 350% by mass or less.
  • amides or amines may be contained in the reaction system in addition to compound B.
  • amides include formamide, dimethylformamide, acetamide, dimethylacetamide and the like.
  • amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like. Among these, triethylamine is known to act as a good reaction catalyst.
  • the heat treatment temperature it is preferable to select a temperature at which a phosphorus oxo acid group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis reaction of the fiber.
  • the heat treatment temperature is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower.
  • equipment having various heat media can be used for the heat treatment, for example, a stirring drying device, a rotary drying device, a disk drying device, a roll type heating device, a plate type heating device, a fluidized layer drying device, and a band.
  • a mold drying device, a filtration drying device, a vibration flow drying device, an air flow drying device, a vacuum drying device, an infrared heating device, a far infrared heating device, a microwave heating device, and a high frequency drying device can be used.
  • a method of adding compound A to a thin sheet-shaped fiber raw material by a method such as impregnation and then heating, or a method of heating while kneading or stirring the fiber raw material and compound A with a kneader or the like. can be adopted. This makes it possible to suppress uneven concentration of the compound A in the fiber raw material and more uniformly introduce the phosphorus oxo acid group onto the surface of the cellulose fiber contained in the fiber raw material.
  • the heating device used for the heat treatment always keeps the water content retained by the slurry and the water content generated by the dehydration condensation (phosphate esterification) reaction between the compound A and the hydroxyl group contained in the cellulose or the like in the fiber raw material. It is preferable that the device can be discharged to the outside of the device system. Examples of such a heating device include a ventilation type oven and the like.
  • the heat treatment time is preferably 1 second or more and 300 minutes or less, more preferably 1 second or more and 1000 seconds or less, and 10 seconds or more and 800 seconds or less after the water is substantially removed from the fiber raw material. Is more preferable.
  • the amount of the phosphorus oxo acid group introduced can be within a preferable range by setting the heating temperature and the heating time within an appropriate range.
  • the phosphorus oxo acid group introduction step may be performed at least once, but may be repeated twice or more. By performing the phosphorus oxo acid group introduction step two or more times, many phosphorus oxo acid groups can be introduced into the fiber raw material.
  • the production step of the first cellulose fiber includes a carboxy group introduction step.
  • the carboxy group introduction step has an oxidation treatment such as ozone oxidation, oxidation by the Fenton method, TEMPO oxidation treatment, a compound having a group derived from carboxylic acid or a derivative thereof, or a group derived from carboxylic acid with respect to the fiber raw material containing cellulose. This is done by treating with an acid anhydride of the compound or a derivative thereof.
  • the compound having a group derived from a carboxylic acid is not particularly limited, but for example, a dicarboxylic acid compound such as maleic acid, succinic acid, phthalic acid, fumaric acid, glutaric acid, adipic acid, itaconic acid, citric acid, aconitic acid and the like.
  • Examples include tricarboxylic acid compounds.
  • the derivative of the compound having a group derived from a carboxylic acid is not particularly limited, and examples thereof include an imide of an acid anhydride of a compound having a carboxy group and a derivative of an acid anhydride of a compound having a carboxy group.
  • the imide of the acid anhydride of the compound having a carboxy group is not particularly limited, and examples thereof include an imide of a dicarboxylic acid compound such as maleimide, succinateimide, and phthalateimide.
  • the acid anhydride of the compound having a group derived from carboxylic acid is not particularly limited, but for example, a dicarboxylic acid compound such as maleic anhydride, succinic anhydride, phthalic anhydride, glutaric anhydride, adipic anhydride, itaconic anhydride and the like. Acid anhydride can be mentioned.
  • the derivative of the acid anhydride of the compound having a group derived from carboxylic acid is not particularly limited, but for example, a compound having a carboxy group such as dimethylmaleic acid anhydride, diethylmaleic acid anhydride, diphenylmaleic acid anhydride and the like. Examples thereof include those in which at least a part of hydrogen atoms of the acid anhydride is substituted with a substituent such as an alkyl group or a phenyl group.
  • the TEMPO oxidation treatment may be carried out under the condition that the pH is 10 or more and 11 or less. Such a treatment is also referred to as an alkaline TEMPO oxidation treatment.
  • the alkaline TEMPO oxidation treatment can be carried out, for example, by adding a nitroxy radical such as TEMPO as a catalyst, sodium bromide as a co-catalyst, and sodium hypochlorite as an oxidizing agent to pulp as a fiber raw material. ..
  • the amount of carboxy group introduced into the first cellulose fiber varies depending on the type of substituent, but for example, when a carboxy group is introduced by TEMPO oxidation, it is 0.10 mmol / g or more per 1 g (mass) of cellulose fiber. It is preferably 0.20 mmol / g or more, more preferably 0.40 mmol / g or more, and particularly preferably 0.60 mmol / g or more.
  • the amount of the carboxy group introduced into the first cellulose fiber is preferably 3.65 mmol / g or less, more preferably 3.00 mmol / g or less, and more preferably 2.50 mmol / g or less.
  • the substituent is a carboxymethyl group, it may be 5.8 mmol / g or less per 1 g (mass) of the cellulose fiber.
  • a washing step can be performed on the ionic substituent-introduced fibers, if necessary.
  • the washing step is performed by washing the ionic substituent-introduced fiber with, for example, water or an organic solvent. Further, the cleaning step may be performed after each step described later, and the number of cleanings performed in each cleaning step is not particularly limited.
  • the washed ionic substituent-introduced fibers may be treated with alkali.
  • the alkaline compound contained in the alkaline solution is not particularly limited, and may be an inorganic alkaline compound or an organic alkaline compound.
  • sodium hydroxide or potassium hydroxide is preferably used as the alkaline compound because of its high versatility.
  • the solvent contained in the alkaline solution may be either water or an organic solvent.
  • the solvent contained in the alkaline solution is preferably a polar solvent containing water or a polar organic solvent exemplified by alcohol, and more preferably an aqueous solvent containing at least water.
  • an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide is preferable because of its high versatility.
  • the temperature of the alkaline solution in the alkaline treatment step is not particularly limited, but is preferably 5 ° C. or higher and 80 ° C. or lower, and more preferably 10 ° C. or higher and 60 ° C. or lower.
  • the immersion time of the ionic substituent-introduced fiber in the alkaline solution in the alkali treatment step is not particularly limited, but is preferably 5 minutes or more and 30 minutes or less, and more preferably 10 minutes or more and 20 minutes or less.
  • the amount of the alkaline solution used in the alkaline treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1000% by mass or more and 10000% by mass or less, based on the absolute dry mass of the ionic substituent-introduced fiber. The following is more preferable.
  • the cleaning step described above may be further provided after the alkali treatment step.
  • the sheet of the present embodiment contains a second cellulose fiber (fine fibrous cellulose) having a fiber width of 1000 nm or less.
  • the fiber width of the second cellulose fiber can be measured, for example, by observation with an electron microscope.
  • the second cellulose fiber is, for example, a single fibrous cellulose.
  • the fiber width of the second cellulose fiber may be 1000 nm or less, preferably 500 nm or less, more preferably 300 nm or less, further preferably 200 nm or less, and further preferably 100 nm or less. It is more preferably 50 nm or less, even more preferably 20 nm or less, and particularly preferably 10 nm or less.
  • the adhesion to the resin can be effectively enhanced by using the fine fibrous cellulose having such a small fiber width in combination with the first cellulose fiber (coarse cellulose fiber).
  • the fine fibrous cellulose having a small fiber width in combination with the first cellulose fiber (coarse cellulose fiber) having an ionic substituent it is possible to suppress the occurrence of twisting of the sheet in the sheet manufacturing process. can do. Further, by using the fine fibrous cellulose having a small fiber width in combination with the first cellulose fiber (coarse cellulose fiber) having an ionic substituent, the transparency of the sheet is improved.
  • the fiber width of the second cellulose fiber is measured as follows, for example, using an electron microscope. First, an aqueous suspension of a second cellulose fiber having a concentration of 0.05% by mass or more and 0.1% by mass or less is prepared, and this suspension is cast on a hydrophilized carbon film-coated grid for TEM observation. Use as a sample for use. If it contains wide fibers, an SEM image of the surface cast on the glass may be observed. Next, observation is performed using an electron microscope image at a magnification of 1000 times, 5000 times, 10000 times, or 50,000 times depending on the width of the fiber to be observed. However, the sample, observation conditions and magnification should be adjusted so as to satisfy the following conditions.
  • a straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
  • a straight line Y that intersects the straight line perpendicularly is drawn in the same image, and 20 or more fibers intersect the straight line Y.
  • the width of the fiber intersecting the straight line X and the straight line Y is visually read with respect to the observation image satisfying the above conditions. In this way, at least three sets of observation images of surface portions that do not overlap each other are obtained. Next, for each image, the width of the fiber intersecting the straight line X and the straight line Y is read.
  • the fiber length of the second cellulose fiber is not particularly limited, but is preferably 0.1 ⁇ m or more and 1000 ⁇ m or less, more preferably 0.1 ⁇ m or more and 800 ⁇ m or less, and 0.1 ⁇ m or more and 600 ⁇ m or less. Is even more preferable.
  • the fiber length of the second cellulose fiber can be obtained by, for example, image analysis by TEM, SEM, or AFM.
  • the second cellulose fiber preferably has an I-type crystal structure.
  • the ratio of the type I crystal structure to the second cellulose fiber is, for example, preferably 30% or more, more preferably 40% or more, and further preferably 50% or more. As a result, even better performance can be expected in terms of heat resistance and low coefficient of linear thermal expansion.
  • the crystallinity is determined by measuring the X-ray diffraction profile and using the pattern by a conventional method (Seagal et al., Textile Research Journal, Vol. 29, p. 786, 1959).
  • the axial ratio (fiber length / fiber width) of the second cellulose fiber is not particularly limited, but is preferably 20 or more and 10000 or less, and more preferably 50 or more and 1000 or less. By setting the axial ratio to the above lower limit value or more, it is easy to form a sheet containing the second cellulose fiber. By setting the axial ratio to the above upper limit value or less, for example, when the second cellulose fiber is treated as an aqueous dispersion, it is preferable in that handling such as dilution becomes easy.
  • the second cellulose fiber in the present embodiment has, for example, both a crystalline region and a non-crystalline region.
  • the second cellulose fiber having both a crystalline region and a non-crystalline region and having a high axial ratio is realized by a method for producing fine fibrous cellulose described later.
  • the second cellulose fiber in this embodiment preferably has an ionic substituent.
  • the ionic substituent can include, for example, either one or both of an anionic group and a cationic group.
  • the anionic group include a phosphoric acid group or a substituent derived from a phosphoric acid group (sometimes simply referred to as a phosphoric acid group), a carboxy group or a substituent derived from a carboxy group (sometimes simply referred to as a carboxy group), And at least one selected from a sulfone group or a substituent derived from a sulfone group (sometimes simply referred to as a sulfone group), and at least one selected from a phosphorus oxo acid group and a carboxy group.
  • the phosphorus oxo acid group is similar to the phosphorus oxo acid group that the first cellulose fiber can have.
  • the ionic substituent of the first cellulose fiber and the ionic substituent of the second cellulose fiber are different even if they are the same. It may be, but it is preferable that they are the same.
  • the amount of the ionic substituent introduced into the second cellulose fiber is, for example, preferably 0.1 mmol / g or more, more preferably 0.3 mmol / g or more per 1 g (mass) of the second cellulose fiber. , 0.5 mmol / g or more, more preferably 0.7 mmol / g or more, and particularly preferably 1.0 mmol / g or more.
  • the amount of the ionic substituent introduced into the second cellulose fiber is preferably 5.20 mmol / g or less per 1 g (mass) of the cellulose fiber, and more preferably 3.65 mmol / g or less. It is more preferably 0.00 mmol / g or less.
  • the unit mmol / g indicates, for example, the amount of substituents per 1 g of mass of the second cellulose fiber when the counter ion of the anionic group is a hydrogen ion (H + ).
  • the amount of the ionic substituent introduced into the second cellulose fiber can be measured by, for example, the neutralization titration method.
  • the introduction amount is measured by determining the change in pH while adding an alkali such as an aqueous sodium hydroxide solution to the obtained slurry containing the second cellulose fiber.
  • the specific method for measuring the amount of ionic substituent introduced is the same as the method for measuring the amount of ionic substituent introduced in the first cellulose fiber.
  • the defibration treatment is carried out before the treatment with the strongly acidic ion exchange resin, but the ionic substitution in the second cellulose fiber.
  • the content of the second cellulose fiber is preferably 1% by mass or more, more preferably 5% by mass or more, and 10% by mass or more, based on the total mass of the cellulose fibers contained in the sheet. More preferably, it is more preferably 15% by mass or more, and particularly preferably 20% by mass or more.
  • the content of the second cellulose fiber is preferably 90% by mass or less, more preferably 80% by mass or less, and 70% by mass or less, based on the total mass of the cellulose fibers contained in the sheet. It is even more preferably 50% by mass or less, even more preferably 40% by mass or less, and particularly preferably 30% by mass or less.
  • Fine fibrous cellulose is produced from a fiber raw material containing cellulose.
  • the fiber raw material containing cellulose is not particularly limited, but pulp is preferably used because it is easily available and inexpensive. Examples of pulp include wood pulp, non-wood pulp, and deinked pulp.
  • the wood pulp is not particularly limited, and is, for example, broadleaf kraft pulp (LBKP), coniferous kraft pulp (NBKP), sulfite pulp (SP), dissolved pulp (DP), soda pulp (AP), and unbleached kraft pulp (UKP).
  • the non-wood pulp is not particularly limited, and examples thereof include cotton pulp such as cotton linter and cotton lint, and non-wood pulp such as hemp, straw and bagasse.
  • the deinking pulp is not particularly limited, and examples thereof include deinking pulp made from used paper. As the pulp of the present embodiment, one of the above types may be used alone, or two or more types may be mixed and used. Among the above pulps, for example, wood pulp and deinked pulp are preferable from the viewpoint of availability.
  • wood pulps from the viewpoint of high cellulose ratio and high yield of fine fibrous cellulose during defibration treatment, long fiber fine fibrous cellulose having a small decomposition of cellulose in pulp and a large axial ratio can be obtained.
  • chemical pulp is more preferable, and kraft pulp and sulfite pulp are further preferable.
  • the fiber raw material containing cellulose for example, cellulose contained in ascidians and bacterial cellulose produced by acetobacter can be used. Further, instead of the fiber raw material containing cellulose, a fiber formed by a linear nitrogen-containing polysaccharide polymer such as chitin or chitosan can also be used.
  • the step of producing the fine fibrous cellulose includes a step of introducing a phosphoric acid group.
  • the phosphorus oxo acid group introduction step is the same step as the phosphorus oxo acid group introduction step in the first cellulose fiber manufacturing step.
  • the step of producing the fine fibrous cellulose includes a step of introducing a carboxy group.
  • the carboxy group introduction step is the same step as the carboxy group introduction step in the first cellulose fiber manufacturing step.
  • a washing step can be performed on the phosphorus oxo acid group-introduced fibers as needed.
  • the washing step is the same step as the washing step in the first cellulose fiber manufacturing step.
  • the fiber raw material may be subjected to an alkali treatment between the step of introducing an ionic substituent and the step of defibration treatment described later.
  • the alkaline treatment method is the same as the alkaline treatment method in the first cellulose fiber manufacturing process.
  • the cleaning step described above may be further provided after the alkali treatment step.
  • Fine fibrous cellulose can be obtained by defibrating the fibers in the defibration treatment step.
  • a defibration treatment apparatus can be used.
  • the defibrating apparatus is not particularly limited, but for example, a high-speed defibrator, a grinder (stone mill type crusher), a high-pressure homogenizer or an ultra-high pressure homogenizer, a high-pressure collision type crusher, a ball mill, a bead mill, a disc type refiner, a conical refiner, and a twin shaft.
  • a kneader, a vibration mill, a homomixer under high speed rotation, an ultrasonic disperser, or a beater can be used.
  • the fibers In the defibration treatment step, it is preferable to dilute the fibers with a dispersion medium to form a slurry.
  • a dispersion medium one or more selected from water and an organic solvent such as a polar organic solvent can be used.
  • the polar organic solvent is not particularly limited, but for example, alcohols, polyhydric alcohols, ketones, ethers, esters, aprotic polar solvents and the like are preferable.
  • alcohols include methanol, ethanol, isopropanol, n-butanol, isobutyl alcohol and the like.
  • polyhydric alcohols include ethylene glycol, propylene glycol, glycerin and the like.
  • ketones include acetone, methyl ethyl ketone (MEK) and the like.
  • ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monon-butyl ether, propylene glycol monomethyl ether and the like.
  • esters include ethyl acetate, butyl acetate and the like.
  • the aprotic polar solvent include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
  • the solid content concentration of fine fibrous cellulose during the defibration treatment can be set as appropriate.
  • the slurry obtained by dispersing the fibers in a dispersion medium may contain solids other than the ionic substituent-introduced fibers such as urea having a hydrogen bond property.
  • the mass ratio of the first cellulose fiber to the second cellulose fiber is preferably 30:70 to 90:10, preferably 40:60 to 90:10. It is more preferably 60:40 to 90:10, and particularly preferably 70:30 to 90:10.
  • the first cellulose fiber in the sheet can be observed with, for example, a scanning electron microscope (manufactured by Hitachi High-Technologies Corporation, S-3600N).
  • the second cellulose fiber can be observed with, for example, a high-resolution field emission scanning electron microscope (manufactured by Hitachi, Ltd., S-5200). Based on such observation, the mass ratio may be calculated from the volume ratio of each fiber.
  • the mixing ratio of each cellulose fiber in the sheet manufacturing process as described later is equivalent to the ratio of the first cellulose fiber and the second cellulose fiber in the sheet.
  • the sheet of the present embodiment may contain other cellulose fibers in addition to the first cellulose fibers and the second cellulose fibers.
  • other cellulose fibers include highly beaten pulp in which the first cellulose fiber is beaten to make the fiber width larger than 1 ⁇ m and less than 10 ⁇ m.
  • the fiber width of the other fibers is the fiber width of the trunk fiber of the cellulose fiber.
  • the fiber width of the trunk fiber is referred to as the fiber width of the other fiber, not the fiber width of the fibrillated and branched fiber.
  • Beating of other cellulose fibers can be performed using, for example, a defibration treatment device.
  • the defibrating processing device is not particularly limited.
  • a high-speed defibrator, a grinder (stone mill type crusher), a high-pressure homogenizer, an ultra-high pressure homogenizer, a clear mix, a high-pressure collision type crusher, a ball mill, a bead mill, a disc type refiner, and a conical refiner can be mentioned.
  • a twin-screw kneader, a vibration mill, a homomixer under high-speed rotation, an ultrasonic disperser, a beater, or a wet pulverizer can be appropriately used.
  • the sheet of the present embodiment may further contain a water-soluble polymer.
  • a water-soluble polymer examples include carboxyvinyl polymer, polyvinyl alcohol, alkyl methacrylate / acrylic acid copolymer, polyvinylpyrrolidone, sodium polyacrylate, polyethylene glycol, diethylene glycol, triethylene glycol, polyethylene oxide, propylene glycol and dipropylene glycol.
  • Synthetic water-soluble polymers such as polypropylene glycol, isoprene glycol, hexylene glycol, 1,3-butylene glycol, and polyacrylamide; xanthan gum, guar gum, tamarind gum, carrageenan, locust bean gum, quince seed, alginic acid, purulan , Carrageenan, and thickening polysaccharides such as pectin; cellulose derivatives such as carboxymethyl cellulose, methyl cellulose, and hirodoxyethyl cellulose; cationized starch, raw starch, oxidized starch, etherified starch, esterified starch, etc.
  • starches such as amylose; glycerins such as polyglycerin; hyaluronic acid, metal salts of hyaluronic acid and the like.
  • the water-soluble polymer is preferably polyvinyl alcohol.
  • the sheet of the present embodiment may contain a hydrophilic low molecular weight compound instead of the water-soluble polymer.
  • a hydrophilic low molecular weight compound include, but are not limited to, glycerin, diglycerin, erythritol, xylitol, sorbitol, galactitol, mannitol and the like.
  • the content of the water-soluble polymer or hydrophilic low-molecular compound in the sheet is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, based on 100 parts by mass of the cellulose fiber. It is more preferably 1.0 part by mass or more, and particularly preferably 5.0 parts by mass or more.
  • the content of the water-soluble polymer is preferably 100 parts by mass or less, more preferably 50 parts by mass or less, and further preferably 30 parts by mass or less with respect to 100 parts by mass of the cellulose fiber. It is preferably 20 parts by mass or less, and particularly preferably 20 parts by mass or less.
  • the sheet of the present embodiment preferably further contains a paper strength enhancer.
  • a paper strength enhancer include a dry paper strength agent and a wet paper strength agent.
  • the dry paper strength agent include cationized starch, polyacrylamide (PAM), carboxymethyl cellulose (CMC), acrylic resin and the like.
  • the wet paper strength agent include polyamide epihalohydrin, urea, melamine, and heat-crosslinkable polyacrylamide.
  • the sheet of this embodiment preferably contains polyamine polyamide epihalohydrin.
  • Polyamine polyamide epihalohydrin is a cationic thermosetting resin obtained by heat-condensing an aliphatic dibasic carboxylic acid or a derivative thereof with a polyalkylene polyamine to synthesize a polyamide polyamine, and then reacting the polyamide polyamine with epihalohydrin. Is. Since the polyamine polyamide epihalohydrin is an aqueous resin, the polyamine polyamide epihalohydrin can be added as an aqueous solution to the sheet-forming slurry.
  • polyamine polyamide epihalohydrin examples include polyamine polyamide epichlorohydrin, polyamine polyamide epibromohydrin, and polyamine polyamide epiiodehydrin.
  • the content of the paper strength enhancer in the sheet is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, and 0.5 parts by mass with respect to 100 parts by mass of the cellulose fibers. It is more preferably parts or more, and particularly preferably 2.0 parts by mass or more.
  • the content of the paper strength enhancer is preferably 100 parts by mass or less, more preferably 50 parts by mass or less, and further preferably 30 parts by mass or less with respect to 100 parts by mass of the cellulose fiber. It is more preferably 15 parts by mass or less, and particularly preferably 7.0 parts by mass or less.
  • the sheet of the present embodiment may contain an arbitrary component other than the above-mentioned components.
  • Optional ingredients include, for example, preservatives, defoamers, lubricants, UV absorbers, dyes, pigments, stabilizers, surfactants, sizing agents, coagulants, yield improvers, bulking agents, drainage improvers, etc. Examples thereof include pH adjusters, fluorescent whitening agents, pitch control agents, slime control agents, defoaming agents, water retention agents, dispersants and the like.
  • the content of the optional component contained in the sheet is preferably 50% by mass or less, more preferably 40% by mass or less, and more preferably 30% by mass or less, based on the total mass of the sheet. Further, it is more preferably 20% by mass or less, further preferably 10% by mass or less, and particularly preferably 5% by mass or less.
  • the method for producing a sheet of the present embodiment includes a step of forming a sheet from a slurry containing a first cellulose fiber having a fiber width of 10 ⁇ m or more and a second cellulose fiber having a fiber width of 1000 nm or less.
  • the sheet of the present invention includes a first layer containing both a first cellulose fiber having a fiber width of 10 ⁇ m or more and a second cellulose fiber having a fiber width of 1000 nm or less, and a first layer having a fiber width of 10 ⁇ m or more.
  • the first cellulose fibers having a fiber width of 10 ⁇ m or more and the fiber width are After forming the first layer (or the second layer) from the slurry containing the second cellulose fiber of 1000 nm or less, the first cellulose fiber having a fiber width of 10 ⁇ m or more and the fiber width of 1000 nm or less are formed on the layer.
  • a step of forming a second layer (or a first layer) by applying a slurry containing a second cellulose fiber may be provided.
  • first layer and the second layer are laminated.
  • a multi-layer sheet having a first layer and a second layer may be formed.
  • the smoothness measured according to JIS P 8155: 2010 on one surface of the sheet becomes 10 seconds or less, and JIS P 8155: 2010 on the other surface of the sheet. Steps and conditions in which the smoothness measured in accordance with this is 100 seconds or more are adopted.
  • a method for coating a slurry containing the first cellulose fiber and the second cellulose fiber on the substrate, and the like the smoothness of both sides of the sheet can be set as a desired condition.
  • the solid content concentration contained in the slurry in which the first cellulose fiber and the second cellulose fiber are dispersed is preferably 10% by mass or less, and more preferably 5% by mass or less. Further, the solid content concentration contained in the slurry is preferably 0.01% by mass or more.
  • the water retention degree of the first cellulose fiber is preferably 220% or more, more preferably 230% or more, and further preferably 240% or more. Moreover, the water retention degree of the first cellulose fiber is preferably 600% or less.
  • the water retention of the first cellulose fiber is determined by J.I. It is a value measured according to TAPPI-26.
  • a slurry in which the fiber is uniformly dispersed can be obtained.
  • the first cellulose fiber having a water retention degree of 220% or more it is possible to suppress the aggregation of the cellulose fiber even in the slurry having a high cellulose fiber concentration.
  • ⁇ Papermaking process> When making a slurry containing a first cellulose fiber and a second cellulose fiber, the slurry is made by a paper machine.
  • the paper machine used in the paper making process is not particularly limited, and examples thereof include continuous paper machines such as a long net type, a circular net type, and an inclined type, and a multi-layer paper making machine combining these.
  • a known papermaking method such as handmaking may be adopted.
  • the papermaking process is performed by filtering and dehydrating the slurry with a wire to obtain a wet paper sheet, and then pressing and drying this sheet.
  • the filter cloth used for filtering and dehydrating the slurry is not particularly limited, but it is more preferable that, for example, fibrous cellulose does not pass through and the filtration rate does not become too slow.
  • Such a filter cloth is not particularly limited, but for example, a sheet made of an organic polymer, a woven fabric, or a porous membrane is preferable.
  • the organic polymer is not particularly limited, but non-cellulosic organic polymers such as polyethylene terephthalate, polyethylene, polypropylene, and polytetrafluoroethylene (PTFE) are preferable.
  • a porous membrane of polytetrafluoroethylene having a pore size of 0.1 ⁇ m or more and 20 ⁇ m or less, polyethylene terephthalate having a pore size of 0.1 ⁇ m or more and 20 ⁇ m or less, a polyethylene woven fabric, or the like can be mentioned.
  • a method of producing a sheet from a slurry includes, for example, a water-squeezed section in which a slurry containing cellulose fibers is discharged onto the upper surface of an endless belt and a dispersion medium is squeezed from the discharged slurry to generate a web.
  • a manufacturing apparatus with a drying section that dries the web to produce a sheet.
  • An endless belt is arranged from the watering section to the drying section, and the web generated in the watering section is conveyed to the drying section while being placed on the endless belt.
  • the dehydration method used in the papermaking process is not particularly limited, and examples thereof include a dehydration method normally used in the production of paper. Among these, a method of dehydrating with a long net, a circular net, an inclined wire or the like and then further dehydrating with a roll press is preferable.
  • the drying method used in the papermaking process is not particularly limited, and examples thereof include a method used in the production of paper. Among these, a drying method using a cylinder dryer, a Yankee dryer, hot air drying, a near infrared heater, an infrared heater, or the like is more preferable.
  • one side of the obtained sheet may be subjected to calendar processing. Further, one surface may be re-wetted with a re-wetting liquid and subjected to a rewet-casting process of pressure bonding to the cast drum. As a result, the smoothness of only one surface of the sheet may be 100 or more. Further, after the papermaking step, a step of forming a fine concavo-convex structure on one surface of the obtained sheet may be provided. For example, the smoothness of only one surface of the sheet may be set to 10 or less by providing a sandblasting process, a transfer processing step using a roller having a fine uneven structure, or the like.
  • the slurry containing fibrous cellulose (coating liquid) is coated on the base material.
  • a sheet can be obtained by peeling the sheet formed by drying the sheet from the base material. Further, by using a coating device and a long base material, sheets can be continuously produced.
  • the material of the base material used in the coating process is not particularly limited, but a material having high wettability to the slurry may suppress shrinkage of the sheet during drying, but the sheet formed after drying is easy. It is preferable to select one that can be peeled off.
  • a resin film or plate or a metal film or plate is preferable, but is not particularly limited.
  • resin films and plates such as polypropylene, acrylic, polyethylene terephthalate, vinyl chloride, polystyrene, polycarbonate, and polyvinylidene chloride, metal films and plates of aluminum, zinc, copper, and iron plates, and their surfaces are oxidized.
  • Stainless steel film or plate, brass film or plate, etc. can be used.
  • a dammed frame is fixed on the base material to obtain a sheet with a predetermined thickness and basis weight.
  • the frame for damming is not particularly limited, but it is preferable to select, for example, a frame in which the end portion of the sheet that adheres after drying can be easily peeled off. From this point of view, a resin plate or a metal plate molded is more preferable.
  • a resin plate such as a polypropylene plate, an acrylic plate, a polyethylene terephthalate plate, a vinyl chloride plate, a polystyrene plate, a polycarbonate plate, a polyvinylidene chloride plate, or a metal plate such as an aluminum plate, a zinc plate, a copper plate, or an iron plate.
  • a roll coater, a gravure coater, a die coater, a curtain coater, an air doctor coater, or the like can be used.
  • a die coater, a curtain coater, and a spray coater are particularly preferable because the thickness of the sheet can be made more uniform.
  • the slurry temperature and the atmospheric temperature when the slurry is applied to the substrate are not particularly limited, but are preferably, for example, 5 ° C. or higher and 80 ° C. or lower, more preferably 10 ° C. or higher and 60 ° C. or lower, and 15 ° C. It is more preferably 50 ° C. or lower, and particularly preferably 20 ° C. or higher and 40 ° C. or lower.
  • the coating temperature is equal to or higher than the above lower limit, the slurry can be coated more easily.
  • the coating temperature is not more than the above upper limit value, volatilization of the dispersion medium during coating can be suppressed.
  • the slurry is based so that the finished basis weight of the sheet is preferably 5 g / m 2 or more and 500 g / m 2 or less, and more preferably 10 g / m 2 or more and 300 g / m 2 or less. It is preferable to coat the material. In the coating process, it is also possible to produce a thin film sheet having a basis weight of 30 g / m 2 or less, for example.
  • the coating step includes a step of drying the slurry coated on the base material.
  • the step of drying the slurry is not particularly limited, but is performed by, for example, a non-contact drying method, a method of drying while restraining the sheet, or a combination thereof.
  • the non-contact drying method is not particularly limited, and for example, a method of heating and drying with hot air, infrared rays, far infrared rays or near infrared rays (heat drying method) or a method of vacuum drying (vacuum drying method) is applied. can do.
  • the heat drying method and the vacuum drying method may be combined, but the heat drying method is usually applied. Drying with infrared rays, far infrared rays or near infrared rays is not particularly limited, but can be performed by using, for example, an infrared device, a far infrared device or a near infrared device.
  • the heating temperature in the heat drying method is not particularly limited, but is preferably 20 ° C. or higher and 150 ° C. or lower, and more preferably 25 ° C. or higher and 105 ° C. or lower.
  • the heating temperature is at least the above lower limit value, the dispersion medium can be rapidly volatilized. Further, when the heating temperature is not more than the above upper limit value, it is possible to suppress the cost required for heating and suppress the discoloration due to the heat of the cellulose fibers.
  • the sheet of this embodiment is not particularly limited.
  • the sheet includes wrapping paper, tracing paper, cooking sheet, medicine wrapping paper, battery separator, filter, total heat exchange liner, vibrating plate, press molding member, flexible substrate, resin composite material, reinforced plastic laminate, etc. Suitable for applications.
  • the sheet of the present embodiment Since the sheet of the present embodiment has good adhesion to the resin, it is preferably used for forming a laminate with the resin layer. That is, the present invention may relate to a laminate having a resin layer on at least one surface of the above-mentioned sheet.
  • the resin layer that can be contained in the laminate is a layer containing a natural resin or a synthetic resin as a main component.
  • the main component refers to a component contained in an amount of 50% by mass or more with respect to the total mass of the resin layer.
  • the content of the resin is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and 90% by mass, based on the total mass of the resin layer. The above is particularly preferable.
  • the resin content may be 100% by mass or 95% by mass or less.
  • Examples of the natural resin include rosin-based resins such as rosin, rosin ester, and hydrogenated rosin ester.
  • the synthetic resin examples include polycarbonate resin, polyethylene terephthalate (PET) resin, polyethylene naphthalate resin, polyethylene resin, polypropylene resin, polyimide resin, polystyrene resin, polyurethane resin, acrylonitrile-butadiene-styrene (ABS) resin, and ethylene-acetic acid. It is preferably at least one selected from vinyl (EVA) resin and acrylic resin.
  • the synthetic resin is preferably at least one selected from polycarbonate resin, PET resin, ABS resin, EVA resin and acrylic resin, and more preferably at least one selected from polycarbonate resin and acrylic resin. It is preferably a polycarbonate resin, more preferably.
  • the acrylic resin is preferably at least one selected from polyacrylonitrile and poly (meth) acrylate.
  • polycarbonate resin constituting the resin layer examples include aromatic polycarbonate-based resin and aliphatic polycarbonate-based resin. These specific polycarbonate-based resins are known, and examples thereof include the polycarbonate-based resins described in JP-A-2010-023275.
  • One type of resin constituting the resin layer may be used alone, or a copolymer obtained by copolymerizing or graft-polymerizing a plurality of resin components may be used. Further, a plurality of resin components may be used as a blend material mixed by a physical process.
  • An adhesive layer or a resin coating layer may be provided between the sheet and the resin layer, and no adhesive layer or resin coating layer is provided, so that the sheet and the resin layer are in direct contact with each other. May be.
  • acrylic resin can be mentioned as an adhesive constituting the adhesive layer, for example.
  • the adhesive other than the acrylic resin include vinyl chloride resin, (meth) acrylic acid ester resin, styrene / acrylic acid ester copolymer resin, vinyl acetate resin, and vinyl acetate / (meth) acrylic acid ester co-weight.
  • the components constituting the resin coating layer include, for example, polycarbonate resin, polyester resin, urethane resin, acrylic resin, olefin resin, and fluorine.
  • examples thereof include based resins, vinyl chloride resins, styrene resins, epoxy resins, silicone resins, and resins having silsesquioxane having an organic-inorganic hybrid structure as a basic skeleton.
  • an adhesion aid may be contained in the resin coating liquid as needed.
  • the adhesion aid examples include a compound containing at least one selected from an isocyanate group, a carbodiimide group, an epoxy group, an oxazoline group, an amino group and a silanol group, and an organic silicon compound.
  • the adhesion aid is preferably at least one selected from a compound containing an isocyanate group (isocyanate compound) and an organosilicon compound.
  • the organosilicon compound include a silane coupling agent condensate and a silane coupling agent.
  • such an adhesion aid may be contained in a resin layer which can be contained in a laminated body.
  • the surface of the resin layer may be subjected to surface treatment such as hydrophilic treatment. Further, the surface of the resin layer may be subjected to a surface treatment other than the hydrophilic treatment, and such treatment methods include corona treatment, plasma discharge treatment, UV irradiation treatment, electron beam irradiation treatment, flame treatment and the like. Can be mentioned.
  • the laminate may contain an inorganic layer.
  • Such an inorganic layer may be laminated on a fiber sheet or may be laminated on a resin layer.
  • the substance constituting the inorganic layer is not particularly limited, and is, for example, aluminum, silicon, magnesium, zinc, tin, nickel, titanium; these oxides, carbides, nitrides, oxide carbides, oxide nitrides, or oxide carbide nitrides. Things; or mixtures thereof. From the viewpoint that high moisture resistance can be stably maintained, silicon oxide, silicon nitride, silicon oxide carbide, silicon nitride, silicon oxide, aluminum oxide, aluminum nitride, aluminum oxide carbide, aluminum nitride, or any of these. The mixture is preferred.
  • the method of forming the inorganic layer is not particularly limited.
  • the method for forming a thin film is roughly classified into a chemical vapor deposition method (CVD) and a physical vapor deposition method (PVD), and any method may be adopted.
  • CVD chemical vapor deposition method
  • PVD physical vapor deposition method
  • Specific examples of the CVD method include plasma CVD using plasma, catalytic chemical vapor deposition (Cat-CVD) in which a material gas is catalytically pyrolyzed using a heating catalyst, and the like.
  • Specific examples of the PVD method include vacuum deposition, ion plating, sputtering and the like.
  • an atomic layer deposition method (Atomic Layer Deposition, ALD) can also be adopted.
  • the ALD method is a method of forming a thin film in atomic layer units by alternately supplying the raw material gas of each element constituting the film to be formed to the surface on which the layer is formed. Although it has the disadvantage of a slow film formation rate, it has the advantage of being able to cleanly cover even a surface having a complicated shape and forming a thin film with few defects, as compared with the plasma CVD method. Further, the ALD method has an advantage that the film thickness can be controlled on the nano-order and it is relatively easy to cover a wide surface. Furthermore, the ALD method can be expected to improve the reaction rate, lower the temperature process, and reduce the amount of unreacted gas by using plasma.
  • Example 1 ⁇ Preparation of the first cellulose fiber (1)> [Preparation of phosphorylated pulp]
  • raw material pulp softwood kraft pulp made by Oji Paper (solid content 93% by mass, basis weight 208 g / m 2 sheets, disintegrated and measured according to JIS P 811-2: 2012 Canadian standard drainage degree (CSF) ) was 700 ml).
  • the raw material pulp was phosphorylated as follows. First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to obtain 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water.
  • the washing treatment is carried out by repeating the operation of pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of phosphorylated pulp, stirring the pulp dispersion liquid so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. went.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the phosphorylated pulp after washing was neutralized as follows. First, the washed phosphorylated pulp was diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution was added little by little with stirring to obtain a phosphorylated pulp slurry having a pH of 12 or more and 13 or less. .. Next, the phosphorylated pulp slurry was dehydrated to obtain a phosphorylated pulp that had been neutralized.
  • the amount of phosphoric acid group (first dissociated acid amount) measured by the measuring method described later was 1.45 mmol / g.
  • the fiber width measured by the measuring method described later was 30 ⁇ m.
  • Ion-exchanged water was added to the obtained phosphorylated pulp to obtain a first cellulose fiber dispersion liquid (1) containing the first cellulose fiber (1) having a solid content concentration of 2% by mass.
  • the first cellulose fiber dispersion liquid (1) obtained by the above method was treated twice with a wet atomizing device (manufactured by Sugino Machine Co., Ltd., Starburst) at a pressure of 200 MPa, and the second cellulose fiber.
  • a second cellulose fiber dispersion (1) containing (1) was obtained.
  • the amount of phosphoric acid group (first dissociated acid amount) measured by the measuring method described later was 1.45 mmol / g.
  • the fiber width measured by the measuring method described later was 3 to 5 nm.
  • a chlorohydrin solution manufactured by Arakawa Chemical Industry Co., Ltd., Arafix 255 was mixed to obtain a coating liquid 1.
  • the solid content concentration of the coating liquid 1 was adjusted to 0.5% by mass.
  • the coating liquid 1 is weighed so that the basis weight of the obtained sheet (layer composed of the solid content of the coating liquid) is 25 g / m 2 , and the coating liquid 1 is applied to a commercially available acrylic plate at 50 ° C. It was dried in a constant temperature dryer. A metal frame for damming (a gold frame having an inner dimension of 180 mm ⁇ 180 mm and a height of 5 cm) was placed on the acrylic plate so as to have a predetermined basis weight. Next, the dried sheet was peeled off from the acrylic plate to obtain a sheet containing the first cellulose fiber (1) and the second cellulose fiber (1). The smoothness was measured by a method described later, with the surface in contact with the acrylic plate as a smooth surface and the surface opposite to the surface in contact with the acrylic plate (non-contact surface) as a rough surface.
  • the mini test press was heated to a predetermined temperature (press temperature described below) over 3 minutes under a press pressure of 3 MPa, held in this state for 5 minutes, and then cooled to 30 ° C. over 5 minutes.
  • a laminate composed of a resin plate and a sheet was obtained.
  • Polycarbonate resin plate Thickness: 2.0 mm
  • press temperature: 150 ° C ⁇ PET resin plate Thickness: 0.5 mm
  • Example 2 In the sheet forming step, a sheet was obtained in the same manner as in Example 1 except that the coating liquid 1 was weighed so that the basis weight of the sheet was 100 g / m 2 . Further, a laminate was obtained from the obtained sheet in the same manner as in Example 1.
  • Example 3 In the sheet forming step, a sheet was obtained in the same manner as in Example 1 except that the coating liquid 1 was weighed so that the basis weight of the sheet was 180 g / m 2 . Further, a laminate was obtained from the obtained sheet in the same manner as in Example 1.
  • Example 4 ⁇ Preparation of the first cellulose fiber (2)> [Preparation of TEMPO oxidized pulp]
  • the raw material pulp softwood kraft pulp (undried) made by Oji Paper was used. Alkaline TEMPO oxidation treatment was carried out on this raw material pulp as follows. First, the raw material pulp equivalent to 100 parts by mass of dry mass, 1.6 parts by mass of TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl), and 10 parts by mass of sodium bromide are added to 10000 parts by mass of water. It was dispersed in the parts.
  • a 13 mass% sodium hypochlorite aqueous solution was added to 1.0 g of pulp so as to be 3.8 mmol, and the reaction was started.
  • a 0.5 M aqueous sodium hydroxide solution was added dropwise to keep the pH at 10 or more and 10.5 or less, and when no change in pH was observed, the reaction was considered to be completed, and a carboxy group was introduced into the cellulose in the pulp.
  • the resulting TEMPO oxide pulp was obtained.
  • a typical peak was confirmed, and it was confirmed that it had cellulose type I crystals.
  • the amount of carboxy groups measured by the measuring method described later was 1.30 mmol / g.
  • the fiber width measured by the measuring method described later was 30 ⁇ m.
  • Ion-exchanged water was added to the obtained TEMPO oxidized pulp to obtain a first cellulose fiber dispersion liquid (2) containing the first cellulose fiber (2) having a solid content concentration of 2% by mass.
  • the infrared absorption spectrum of the obtained subphosphorylated pulp was measured using FT-IR.
  • absorption based on P O of the phosphonic acid group, which is a tautomer of the phosphite group, was observed around 1210 cm -1 , and the phosphonic acid group (phosphonic acid group) was added to the pulp.
  • P O of the phosphonic acid group
  • the phosphonic acid group phosphonic acid group
  • the amount of phosphite group (first dissociated acid amount) measured by the measuring method described later was 1.51 mmol / g for the obtained phosphorous acid pulp.
  • the total amount of dissociated acid was 1.54 mmol / g.
  • the fiber width measured by the measuring method described later was 30 ⁇ m. Ion-exchanged water was added to the obtained subphosphorylated pulp to obtain a first cellulose fiber dispersion liquid (3) containing the first cellulose fiber (3) having a solid content concentration of 2% by mass.
  • Example 6 ⁇ Preparation of the second cellulose fiber (4)>
  • the softwood bleached kraft pulp (NBKP) was beaten with a double disc refiner until the irregular freeness reached 100 ml to obtain a pulp dispersion having a solid content concentration of 2% by mass.
  • the pulp dispersion was diluted with ion-exchanged water so that the solid content concentration became 0.2% by mass, and the pulp dispersion was finely divided three times at a processing pressure of 120 MPa with a high-pressure homogenizer "Panda Plus2000" manufactured by NiroSoavi.
  • a second cellulose fiber dispersion (4) containing the cellulose fiber (4) was obtained.
  • the fiber width of the obtained second cellulose fiber (4) was 130 nm, and the amount of carboxy groups was 0.03 mmol / g.
  • Example 1 A sheet was obtained in the same manner as in Example 1 except that the second cellulose fiber (4) was used instead of the second cellulose fiber (1) in the sheet forming step. Further, a laminate was obtained from the obtained sheet in the same manner as in Example 1.
  • Example 7 ⁇ Preparation of the first cellulose fiber (4)>
  • softwood kraft pulp made by Oji Paper solid content 93% by mass, basis weight 208 g / m 2 sheets, disintegrated and measured according to JIS P 811-2: 2012 Canadian standard drainage degree (CSF) ) was 700 ml).
  • Ion-exchanged water was added to the pulp to obtain a first cellulose fiber dispersion liquid (4) containing the first cellulose fiber (4) having a solid content concentration of 2% by mass.
  • the fiber width of the first cellulose fiber (4) was 29 ⁇ m, and the amount of carboxy groups was 0.03 mmol / g.
  • Example 1 A sheet was obtained in the same manner as in Example 1 except that the first cellulose fiber (4) was used instead of the first cellulose fiber (1) in the sheet forming step. Further, a laminate was obtained from the obtained sheet in the same manner as in Example 1.
  • Example 8 ⁇ Sheet> A sheet containing the first cellulose fiber (1) and the second cellulose fiber (1) was obtained in the same manner as in Example 1.
  • a resin composition was obtained by mixing 15 parts by mass of a special polycarbonate resin (manufactured by Mitsubishi Gas Chemical Company, Iupizeta 2136) having improved solvent solubility, 57 parts by mass of toluene, and 28 parts by mass of methyl ethyl ketone.
  • a special polycarbonate resin manufactured by Mitsubishi Gas Chemical Company, Iupizeta 2136
  • an isocyanate compound Duranate TPA-100, manufactured by Asahi Kasei Chemicals Co., Ltd.
  • was added to the resin composition as an adhesion aid and mixed was added to the resin composition as an adhesion aid and mixed, and the rough surface of the sheet obtained above was subjected to a bar coater. It was applied. Further, it was heated at 100 ° C. for 1 hour to be cured to form a resin layer.
  • the first cellulose fiber (1) is 75 parts by mass
  • the second cellulose fiber (1) is 25 parts by mass
  • polyvinyl alcohol is 10 parts by mass
  • polyamine polyamide / epichlorohydrin is 5 parts by mass.
  • 1 Cellulose Fiber Dispersion (1), 2nd Cellulose Fiber Dispersion (1), Polyvinyl Alcohol Solution (Gosenex Z-200, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), Polyamine Polyamide / Epichlorohydrin Solution (Arakawa) Arafix 255) manufactured by Kagaku Kogyo Co., Ltd. was mixed to obtain a coating liquid 1.
  • the solid content concentration of the coating liquid 1 was adjusted to 0.5% by mass.
  • the coating liquid 1 was weighed so that the basis weight of the obtained sheet was 100 g / m 2 , coated on a commercially available acrylic plate, and dried in a constant temperature dryer at 50 ° C.
  • the coating liquid 1 was weighed and applied again on the dried sheet so that the basis weight of the obtained sheet was 100 g / m 2, and dried in a constant temperature dryer at 50 ° C. In this way, a sheet having a total basis weight of the sheet of 200 g / m 2 was produced.
  • the dried sheet was peeled off from the acrylic plate to obtain a sheet containing the first cellulose fiber (1) and the second cellulose fiber (1).
  • the smoothness was measured by a method described later, with the surface in contact with the acrylic plate as a smooth surface and the surface opposite to the surface in contact with the acrylic plate (non-contact surface) as a rough surface. Further, a laminate was obtained from the obtained sheet in the same manner as in Example 1.
  • Comparative Example 1 Same as in Example 1 except that the second cellulose fiber (1) was blended in 100 parts by mass, polyvinyl alcohol in 10 parts by mass, and polyamine polyamide / epichlorohydrin in 5 parts by mass in the sheeting step. And got a sheet.
  • the sheet of Comparative Example 1 contains only the second cellulose fiber (1) as the cellulose fiber. Further, a laminate was obtained from the obtained sheet in the same manner as in Example 1.
  • Comparative Example 2 A sheet was obtained in the same manner as in Comparative Example 1 except that the basis weight of the sheet was set to 100 g / m 2 in the sheet forming step. Further, a laminate was obtained from the obtained sheet in the same manner as in Example 1.
  • Comparative Example 3 A sheet was obtained in the same manner as in Comparative Example 1 except that the basis weight of the sheet was set to 180 g / m 2 in the sheet forming step. Further, a laminate was obtained from the obtained sheet in the same manner as in Example 1.
  • ⁇ Measurement method> (Measurement of phosphorus oxo acid group amount)
  • the amount of ionic groups of the second cellulose fibers (1) and (3) was prepared by diluting the target fine fibrous cellulose dispersion with ion-exchanged water so that the content was 0.2% by mass.
  • the fine fibrous cellulose-containing slurry was treated with an ion exchange resin and then titrated with an alkali for measurement.
  • the treatment with the ion exchange resin was carried out by adding a strongly acidic ion exchange resin (Amberjet 1024; Organo Co., Ltd., conditioned) having a volume of 1/10 to the fine fibrous cellulose-containing slurry and shaking for 1 hour.
  • a strongly acidic ion exchange resin Amberjet 1024; Organo Co., Ltd., conditioned
  • titration using alkali changes the pH value indicated by the slurry while adding 10 ⁇ L of 0.1 N sodium hydroxide aqueous solution to the fine fibrous cellulose-containing slurry treated with an ion exchange resin every 5 seconds. It was done by measuring. The titration was carried out while blowing nitrogen gas into the slurry from 15 minutes before the start of the titration. In this neutralization titration, two points are observed where the increment (differential value of pH with respect to the amount of alkali dropped) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added.
  • the maximum point of the increment obtained first when alkali is added is called the first end point, and the maximum point of the increment obtained next is called the second end point (FIG. 1).
  • the amount of alkali required from the start of the titration to the first end point is equal to the amount of the first dissociated acid in the slurry used for the titration. Further, the amount of alkali required from the start of titration to the second end point becomes equal to the total amount of dissociated acid in the slurry used for titration.
  • the amount of alkali (mmol) required from the start of titration to the first end point divided by the solid content (g) in the slurry to be titrated is the amount of phosphorus oxo acid groups (first dissociated acid amount) (mmol / g). ).
  • first dissociated acid amount the amount of phosphorus oxo acid groups (first dissociated acid amount) (mmol / g). ).
  • ion-exchanged water was added to the first cellulose fibers (1) and (3) to prepare a slurry having a solid content concentration of 2% by mass.
  • This slurry was treated twice with a wet atomizer (manufactured by Sugino Machine Co., Ltd., Starburst) at a pressure of 200 MPa, and the dispersion was obtained by titration using an alkali in the same manner as in the above method. Was done.
  • a wet atomizer manufactured by Sugino Machine Co., Ltd., Starburst
  • the amount of carboxy group of the fine fibrous cellulose of the second cellulose fibers (2) and (4) was measured by a neutralization titration method. The measurement was carried out by adding ion-exchanged water to the target fine fibrous cellulose dispersion to make the content 0.2% by mass, treating with an ion-exchange resin, and then titrating with an alkali.
  • a strongly acidic ion exchange resin (Amberjet 1024; manufactured by Organo Co., Ltd., conditioned) with a volume of 1/10 is added to a dispersion containing 0.2% by mass of fine fibrous cellulose, and 1
  • the resin and the slurry were separated by pouring onto a mesh having a mesh size of 90 ⁇ m.
  • titration using alkali is performed by measuring the change in pH value indicated by the slurry while adding 0.1 N sodium hydroxide aqueous solution to the fibrous cellulose-containing dispersion after treatment with an ion exchange resin. It was.
  • a titration curve as shown in FIG. 2 can be obtained.
  • the increment (differential value of pH with respect to the amount of alkaline drop) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added.
  • the maximum point of this increment is called the first end point.
  • the region from the start of titration to the first end point in FIG. 2 is referred to as a first region.
  • the amount of alkali required in the first region is equal to the amount of carboxy groups in the slurry used for titration.
  • the amount of alkali (mmol) required in the first region of the titration curve is divided by the solid content (g) in the fine fibrous cellulose-containing dispersion to be titrated, so that the amount of carboxy group introduced (mmol / mmol /). g) was calculated.
  • the above-mentioned amount of carboxy group introduced (mmol / g) is the amount of substituents per 1 g of mass of fibrous cellulose when the counterion of the carboxy group is hydrogen ion (H + ) (hereinafter, the amount of carboxy group (acid). Type)) is shown.
  • first cellulose fiber (2) ion-exchanged water was added to the first cellulose fiber (2) to prepare a slurry having a solid content concentration of 2% by mass, and this slurry was subjected to a wet atomization apparatus.
  • the dispersion obtained by treating the dispersion twice with a pressure of 200 MPa (manufactured by Sugino Machine Co., Ltd., Starburst) was subjected to titration using an alkali in the same manner as described above.
  • the fiber width of the first cellulose fiber was determined by measuring using a Kajaani fiber length measuring device (FS-200 type) manufactured by Kajaani Automation Co., Ltd.
  • the fiber width of the second cellulose fiber was measured by the following method.
  • the supernatant of the fine fibrous cellulose dispersion obtained by treatment with a wet atomizing device is mixed with water so that the concentration of the fine fibrous cellulose is 0.01% by mass or more and 0.1% by mass or less. It was added dropwise to the diluted and hydrophilized carbon grid film. This was dried, stained with uranyl acetate, and observed with a transmission electron microscope (JEOL-2000EX, manufactured by JEOL Ltd.).
  • Basis weight The basis weight of the sheet was measured according to JIS P 8124: 2011.
  • the basis weight of the sheet was measured according to JIS P 8124: 2011, the thickness of the sheet was measured according to JIS P 8118: 2014, and the density of the sheet was calculated from these values.
  • Air permeability (Air permeability) J.
  • the air permeability of the sheet was measured according to the Oken-type air permeability method of TAPPI-5.
  • HM-150 manufactured by Murakami Color Technology Research Institute
  • JIS K 7136 JIS K 7136
  • JIS K 7136 total light transmittance
  • the sheet obtained in the examples had good adhesion to the resin.
  • the sheet obtained in the comparative example was inferior in adhesion to the resin.
  • the occurrence of twisting in the sheet was also suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Paper (AREA)

Abstract

本発明は、繊維幅が10μm以上の繊維状セルロースと、繊維幅が1μm以下の微細繊維状セルロースを含むシートであって、樹脂との密着性が良好なシートを提供することを課題とする。本発明は、繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維とを含むシートであって、シートの一方の面のJIS P 8155:2010に準じて測定した平滑度が10以下であり、シートの他方の面のJIS P 8155:2010に準じて測定した平滑度が100以上である、シートに関する。

Description

シート及び積層体
 本発明は、シート及び積層体に関する。
 近年、石油資源の代替及び環境意識の高まりから、再生産可能な天然繊維を利用した材料が着目されている。天然繊維の中でも、繊維径が10~50μmの繊維状セルロース、特に木材由来の繊維状セルロース(パルプ)は、主に紙製品としてこれまで幅広く使用されてきた。
 繊維状セルロースとしては、繊維径が1μm以下の微細繊維状セルロースも知られている。微細繊維状セルロースは、新たな素材として注目されており、その用途は多岐にわたる。例えば、微細繊維状セルロースを含むシートや不織布、樹脂複合体の開発が進められている。
 例えば、特許文献1には、セルロース繊維からなる微多孔膜であって、1μm以上の太さの繊維がセルロース繊維の全重量に対して1重量%以上含まれている微多孔膜が開示されている。また、特許文献2には、数平均繊維幅2nm以上1000nm未満の第1の繊維と、数平均繊維幅1000nm以上100000nm以下であり、かつ数平均繊維長が0.1~20mmである第2の繊維とを含む不織布が開示されている。さらに、特許文献3には、セルロースナノファイバーとパルプを含むセルロース繊維を主成分とし、所定の弾性率を有するセルロースナノファイバー成形体が開示されている。また、特許文献4には、平均繊維径0.1~50μmのセルロース繊維と平均繊維径1.5μm以下のポリオレフィン繊維とを含む不織布が開示されている。
特開2014-210987号公報 特開2015-4140号公報 特許第6313512号公報 特開2012-36518号公報
 上述したように、各種セルロース繊維を含むシートが知られている。しかしながら、本発明者らは、このようなシートに樹脂を塗布した場合、樹脂との密着性に課題があることを突き止めた。
 そこで本発明は、繊維幅が10μm以上の繊維状セルロース(パルプ)と、繊維幅が1μm以下の微細繊維状セルロースを含むシートであって、樹脂との密着性が良好なシートを提供することを目的とする。
 上記の課題を解決するために鋭意検討を行った結果、本発明者らは、繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維を含むシートにおいて、シートの各面の平滑度を所定範囲とすることにより、樹脂との密着性に優れたシートが得られることを見出した。
 具体的に、本発明は、以下の構成を有する。
[1] 繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維とを含むシートであって、
 シートの一方の面のJIS P 8155:2010に準じて測定した平滑度が10秒以下であり、シートの他方の面のJIS P 8155:2010に準じて測定した平滑度が100秒以上である、シート。
[2] シートは単層シートである、[1]に記載のシート。
[3] 第1のセルロース繊維は、イオン性置換基を有する[1]又は[2]に記載のシート。
[4] 第2のセルロース繊維は、イオン性置換基を有する[1]~[3]のいずれかに記載のシート。
[5] 第1のセルロース繊維の含有量が、セルロース繊維の全質量に対して10質量%以上である[1]~[4]のいずれかに記載のシート。
[6] 第1のセルロース繊維の含有量が、セルロース繊維の全質量に対して70質量%以上である[1]~[5]のいずれかに記載のシート。
[7] ヘーズが20%以上である[1]~[6]のいずれかに記載のシート。
[8] 全光線透過率が70%以上である[1]~[7]のいずれかに記載のシート。
[9] 透気度が10000秒以上である[1]~[8]のいずれかに記載のシート。
[10] 第1のセルロース繊維のイオン性置換基の導入量は0.3mmol/g以上である[3]~[9]のいずれかに記載のシート。
[11] 第1のセルロース繊維の保水度が220%以上である[1]~[10]のいずれかに記載のシート。
[12] [1]~[11]のいずれかに記載のシートを2層以上含む、複層シート。
[13] [1]~[12]のいずれかに記載のシートの少なくとも一方の面上に樹脂層を有する、積層体。
[14] 前記シートと前記樹脂層の間にさらに接着層を有する[13]に記載の積層体。
 本発明によれば、樹脂との密着性が良好なシートが得られる。
図1は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。 図2は、カルボキシ基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。 図3は、実施例7のシートに発生した撚れの一例を示す写真である。
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
(シート)
 本発明の一実施形態は、繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維とを含むシートである。ここで、シートの一方の面のJIS P 8155:2010に準じて測定した平滑度は10秒以下であり、シートの他方の面のJIS P 8155:2010に準じて測定した平滑度は100秒以上である。なお、本明細書において、繊維幅が1000nm以下のセルロース繊維を微細繊維状セルロースと呼ぶこともある。また、本明細書においては、上記シートを繊維シートと呼ぶこともある。
 本実施形態のシートは、上記構成を有するものであるため、樹脂との密着性が良好である。具体的には、本実施形態のシート上に樹脂層を積層し、熱プレス(例えば、プレス圧0.5MPa以上)した後の、樹脂層とシートの密着性が良好であり、層間に剥離が生じず、積層構造が維持される。
 本実施形態のシートの一方の面のJIS P 8155:2010に準じて測定した平滑度は10秒以下であり、8秒以下であることが好ましく、6秒以下であることがより好ましく、4秒以下であることがさらに好ましく、3秒以下であることが一層好ましく、2秒以下であることが特に好ましい。なお、本実施形態のシートの一方の面のJIS P 8155:2010に準じて測定した平滑度は0秒であってもよい。また、本実施形態のシートの他方の面のJIS P 8155:2010に準じて測定した平滑度は100秒以上であり、500秒以上であることが好ましく、1000秒以上であることがより好ましく、1500秒以上であることがさらに好ましく、2000秒以上であることが特に好ましい。シートの他方の面のJIS P 8155:2010に準じて測定した平滑度の上限値は、特に限定されないが、例えば100,000秒以下である。
 本実施形態のシートにおいては、JIS P 8155:2010に準拠して測定したシートの両表面の平滑度に差がある。本明細書においては、シートにおいて平滑度が小さい方の面を粗面と言い、平滑度が大きい方の面を平滑面と言う。なお、平滑面の平滑度/粗面の平滑度の値が10以上の場合、シートの両表面の平滑度に差があり、シートに表裏差があると言える。ただし、平滑度の値が0秒の場合は、平滑度1秒として平滑面の平滑度/粗面の平滑度の値を計算する。平滑面の平滑度/粗面の平滑度の値は、100以上であることがより好ましく、1000以上であることがさらに好ましい。
 本実施形態のシートのヘーズは、20%以上であることが好ましく、40%以上であることがより好ましく、60%以上であることがさらに好ましく、70%以上であることが特に好ましい。本実施形態のシートのヘーズは、セルロース繊維として主に微細繊維状セルロースを含むシートよりは高くなっていてもよい。また、本実施形態のシートのヘーズは、90%以下であってもよく、85%以下であってもよく、80%以下であってもよい。本実施形態のシートのヘーズを上記上限値以下とすることで、従来のグラシン紙やグラファン紙と比較して透明性に優れたシートが得られる。なお、シートのヘーズは、JIS K 7136:2000に準拠し、たとえばヘーズメータ(村上色彩技術研究所社製、HM-150)を用いて測定される値である。
 本実施形態のシートの全光線透過率は、70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。ここでシートの全光線透過率は、JIS K 7361:1997に準拠し、たとえばヘーズメータ(村上色彩技術研究所社製、HM-150)を用いて測定される値である。
 さらに、本実施形態のシートはバリア性にも優れている。本実施形態のシートにおいては、繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維を併用しているため、セルロース繊維を高密度化することができ、その結果、バリア性が高められる。具体的には、本実施形態のシートの透気度は、10000秒以上であることが好ましく、50000秒以上であることがより好ましく、100000秒以上であることがさらに好ましい。シートの透気度は、たとえばJ.TAPPI-5の王研式透気度法に準拠し、算出することができる。
 本実施形態のシートは、低坪量であるから軽量である。従来、グラシン紙やグラファン紙を製造する際には、透明性やバリア性を向上させるために、セルロース繊維を高密度化することが検討されており、抄紙工程の後工程でカレンダー処理を施すことが常法として行われていた。しかし、カレンダー処理の作業性を確保するためには、低坪量化には限界があった。一方、本実施形態のシートにおいては、繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維を併用しているため、カレンダー処理を施さずとも透明性やバリア性に優れたシートが得られ、その結果、低坪量化が可能となる。このため、シートの軽量化が達成される。本発明は、このように、通常はトレードオフの関係にある低坪量化と高バリア性を両立し得たものである。具体的には、本実施形態のシートの坪量は、40g/m以下であることが好ましく、30g/m以下であることがより好ましく、20g/m以下であることがさらに好ましい。シートの坪量は、たとえばJIS P 8124:2011に準拠し、算出することができる。なお、シートの坪量は、シートに求められる性能などに応じて、適宜調整することが可能であり、厚物シートが求められる用途においては、坪量は40g/m超であってもよく、100g/m以上であってもよく、150g/m以上であってもよい。
 本実施形態のシートの厚みは、5μm以上であることが好ましく、10μm以上であることがより好ましく、20μm以上であることがさらに好ましく、30μm以上であることが特に好ましい。またシートの厚みの上限値は、特に限定されないが、たとえば1000μmとすることができる。シートの厚みは、たとえばJIS P 8118:2014に準拠し、測定する。
 本実施形態のシートの密度は、0.1g/cm以上であることが好ましく、0.2g/cm以上であることがより好ましく、0.3g/cm以上であることがさらに好ましく、0.50g/cm以上であることが一層好ましく、0.60g/cm以上であることがより一層好ましく、0.65g/cm以上であることが特に好ましい。また、シートの密度の上限値は、特に限定されないが、たとえば5.0g/cm以下であることが好ましい。ここで、シートの密度は、JIS P 8124:2011に準拠して坪量を測定し、JIS P 8118:2014に準拠してシートの厚みを測定し、これらの値から算出したものである。なお、シートの密度は、シートに求められる性能などに応じて、たとえばカレンダー処理等を施すことにより適宜調整してもよい。
 本実施形態のシートは、単層シートである。具体的には、単層のシート内に、繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維の両方がランダムに存在している。なお、本実施形態のシートは、繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維の両方が含まれている単層シートを2層以上積層した複層シートであってもよい。例えば、本実施形態のシートは、繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維の両方が含まれる第1層と、繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維の両方が含まれる第2層とを有する複層シートであってもよい。この場合、第1層と第2層は同一の層であってもよく、異なる層であってもよい。また、第1層と第2層の厚みや坪量はそれぞれ同一であってもよく、異なっていてもよい。すなわち、本発明のシートは、単層シートが2層以上積層した複層シート(例えば2層シート)に関するものでもある。
(第1のセルロース繊維)
 本実施形態のシートは、第1のセルロース繊維を含む。ここで、第1のセルロース繊維は、繊維幅が10μm以上のセルロース繊維である。第1のセルロース繊維の繊維幅は10μm以上であればよいが、15μm以上であることが好ましく、20μm以上であることがより好ましく、25μm以上であることがさらに好ましい。なお、第1のセルロース繊維の繊維幅は100μm以下であることが好ましく、80μm以下であることがより好ましく、60μm以下であることがさらに好ましく、40μm以下であることが特に好ましい。本明細書では、第1のセルロース繊維を粗大セルロース繊維又はパルプともいう。
 第1のセルロース繊維の繊維幅は、カヤーニオートメーション社のカヤーニ繊維長測定器(FS-200形)を用いて測定することができる。ここで、第1のセルロース繊維の繊維幅とは、セルロース繊維の幹繊維における繊維幅である。たとえば、セルロース繊維がフィブリル化セルロース繊維である場合には、フィブリル化して分枝化した繊維の繊維幅ではなく、主軸を構成している幹繊維の繊維幅を第1のセルロース繊維の繊維幅という。
 第1のセルロース繊維の繊維原料としては、パルプを用いることが好ましい。パルプとしては、たとえば木材パルプ、非木材パルプおよび脱墨パルプが挙げられる。木材パルプとしては、特に限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)および酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)およびケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)およびサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、特に限定されないが、たとえばコットンリンターおよびコットンリント等の綿系パルプ、麻、麦わらおよびバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、特に限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。第1のセルロース繊維として上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。
 第1のセルロース繊維は、イオン性置換基を有することが好ましい。イオン性置換基としては、たとえばアニオン性基およびカチオン性基のいずれか一方または双方を含むことができる。アニオン性基としては、たとえばリンオキソ酸基またはリンオキソ酸基に由来する置換基(単にリンオキソ酸基ということもある)、カルボキシ基またはカルボキシ基に由来する置換基(単にカルボキシ基ということもある)、およびスルホン基またはスルホン基に由来する置換基(単にスルホン基ということもある)から選択される少なくとも1種であることが好ましく、リンオキソ酸基およびカルボキシ基から選択される少なくとも1種であることがより好ましく、リンオキソ酸基であることが特に好ましい。第1のセルロース繊維が上述したようなイオン性置換基を有することにより、例えば、シートの製造工程において、シートに撚れが発生することを抑制することができる。
 リンオキソ酸基又はリンオキソ酸基に由来する置換基は、たとえば下記式(1)で表される置換基である。リンオキソ酸基は、たとえばリン酸からヒドロキシ基を取り除いたものにあたる、2価の官能基である。具体的には-POで表される基である。リンオキソ酸基に由来する置換基には、リンオキソ酸基の塩、リンオキソ酸エステル基などの置換基が含まれる。なお、リンオキソ酸基に由来する置換基は、リン酸基が縮合した基(たとえばピロリン酸基)としてセルロース繊維に含まれていてもよい。また、リンオキソ酸基は、たとえば、亜リン酸基(ホスホン酸基)であってもよく、リンオキソ酸基に由来する置換基は、亜リン酸基の塩、亜リン酸エステル基などであってもよい。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、a、bおよびnは自然数である(ただし、a=b×mである)。α,α,・・・,αおよびα’のうちa個がOであり、残りはR,ORのいずれかである。なお、各αおよびα’の全てがOであっても構わない。Rは、各々、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、不飽和-環状炭化水素基、芳香族基、またはこれらの誘導基である。また、nは1であることが好ましい。
 飽和-直鎖状炭化水素基としては、メチル基、エチル基、n-プロピル基、又はn-ブチル基等が挙げられるが、特に限定されない。飽和-分岐鎖状炭化水素基としては、i-プロピル基、又はt-ブチル基等が挙げられるが、特に限定されない。飽和-環状炭化水素基としては、シクロペンチル基、又はシクロヘキシル基等が挙げられるが、特に限定されない。不飽和-直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、特に限定されない。不飽和-分岐鎖状炭化水素基としては、i-プロペニル基、又は3-ブテニル基等が挙げられるが、特に限定されない。不飽和-環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、特に限定されない。芳香族基としては、フェニル基、又はナフチル基等が挙げられるが、特に限定されない。
 また、Rにおける誘導基としては、上記各種炭化水素基の主鎖又は側鎖に対し、カルボキシ基、ヒドロキシ基、又はアミノ基などの官能基のうち、少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、特に限定されない。また、Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、リンオキソ酸基の分子量を適切な範囲とすることができ、繊維原料への浸透を容易にし、微細セルロース繊維の収率を高めることもできる。
 βb+は有機物又は無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、脂肪族アンモニウム、又は芳香族アンモニウムが挙げられ、無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属の陽イオン、又は水素イオン等が挙げられるが、特に限定されない。これらは1種又は2種類以上を組み合わせて適用することもできる。有機物又は無機物からなる1価以上の陽イオンとしては、βを含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。なお、βb+は有機オニウムイオンであってもよく、この場合、有機アンモニウムイオンであることが特に好ましい。
 第1のセルロース繊維のイオン性置換基の導入量は、セルロース繊維1g(質量)あたり0.3mmol/g以上であることが好ましく、0.4mmol/g以上であることがより好ましく、0.5mmol/g以上であることがさらに好ましく、0.7mmol/g以上であることが一層好ましく、1.0mmol/g以上であることが特に好ましい。また、第1のセルロース繊維のイオン性置換基の導入量は、セルロース繊維1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。ここで、単位mmol/gは、たとえばアニオン性基の対イオンが水素イオン(H)であるときの第1のセルロース繊維の質量1gあたりの置換基量を示す。イオン性置換基の導入量を上記範囲内とすることにより、シートの製造工程において、シートに撚れが発生することをより効果的に抑制することができる。
 第1のセルロース繊維に対するイオン性置換基の導入量は、たとえば中和滴定法により測定することができる。中和滴定法による測定では、得られた第1のセルロース繊維を含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながらpHの変化を求めることにより、導入量を測定する。
 図1は、リンオキソ酸基を有するセルロース繊維含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。セルロース繊維に対するリンオキソ酸基の導入量は、たとえば次のように測定される。
 まず、セルロース繊維を含有するスラリーを強酸性イオン交換樹脂で処理する。なお、第1のセルロース繊維については、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施する。
 次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図1の上側部に示すような滴定曲線を得る。図1の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図1の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ確認される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中に含まれるセルロース繊維の第1解離酸量と等しくなり、第1終点から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれるセルロース繊維の第2解離酸量と等しくなり、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれるセルロース繊維の総解離酸量と等しくなる。そして、滴定開始から第1終点までに必要としたアルカリ量を滴定対象スラリー中の固形分(g)で除して得られる値が、リンオキソ酸基導入量(mmol/g)となる。なお、単にリンオキソ酸基導入量(またはリンオキソ酸基量)と言った場合は、第1解離酸量のことを表す。
 なお、図1において、滴定開始から第1終点までの領域を第1領域と呼び、第1終点から第2終点までの領域を第2領域と呼ぶ。例えば、リンオキソ酸基がリン酸基の場合であって、このリン酸基が縮合を起こす場合、見かけ上、リンオキソ酸基における弱酸性基量(本明細書では第2解離酸量ともいう)が低下し、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、リンオキソ酸基における強酸性基量(本明細書では第1解離酸量ともいう)は、縮合の有無に関わらずリン原子の量と一致する。また、リンオキソ酸基が亜リン酸基の場合は、リンオキソ酸基に弱酸性基が存在しなくなるため、第2領域に必要としたアルカリ量が少なくなるか、第2領域に必要としたアルカリ量はゼロとなる場合もある。この場合、滴定曲線において、pHの増分が極大となる点は一つとなる。
 なお、上述のリンオキソ酸基導入量(mmol/g)は、分母が酸型のセルロース繊維の質量を示すことから、酸型のセルロース繊維が有するリンオキソ酸基量(以降、リンオキソ酸基量(酸型)と呼ぶ)を示している。一方で、リンオキソ酸基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときのセルロース繊維の質量に変換することで、陽イオンCが対イオンであるセルロース繊維が有するリンオキソ酸基量(以降、リンオキソ酸基量(C型))を求めることができる。
すなわち、下記計算式によって算出する。
リンオキソ酸基量(C型)=リンオキソ酸基量(酸型)/{1+(W-1)×A/1000}
A[mmol/g]:セルロース繊維が有するリンオキソ酸基由来の総アニオン量(リンオキソ酸基の総解離酸量)
W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)
 図2は、イオン性置換基としてカルボキシ基を有するセルロース繊維を含有する分散液に対するNaOH滴下量とpHの関係を示すグラフである。セルロース繊維に対するカルボキシ基の導入量は、たとえば次のように測定される。
 まず、セルロース繊維を含有する分散液を強酸性イオン交換樹脂で処理する。なお、第1のセルロース繊維については、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施する。
 次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図2の上側部に示すような滴定曲線を得る。図2の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図2の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が一つ確認され、この極大点を第1終点と呼ぶ。ここで、図2における滴定開始から第1終点までの領域を第1領域と呼ぶ。第1領域で必要としたアルカリ量が、滴定に使用した分散液中のカルボキシ基量と等しくなる。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象のセルロース繊維を含有する分散液中の固形分(g)で除すことで、カルボキシ基の導入量(mmol/g)を算出する。
 なお、上述のカルボキシ基導入量(mmol/g)は、分母が酸型のセルロース繊維の質量であることから、酸型のセルロース繊維が有するカルボキシ基量(以降、カルボキシ基量(酸型)と呼ぶ)を示している。一方で、カルボキシ基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときのセルロース繊維の質量に変換することで、陽イオンCが対イオンであるセルロース繊維が有するカルボキシ基量(以降、カルボキシ基量(C型))を求めることができる。すなわち、下記計算式によって算出する。
 カルボキシ基量(C型)=カルボキシ基量(酸型)/{1+(W-1)×(カルボキシ基量(酸型))/1000}
 W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)
 滴定法によるイオン性置換基量の測定においては、水酸化ナトリウム水溶液1滴の滴下量が多すぎる場合や、滴定間隔が短すぎる場合、本来より低いイオン性置換基量となるなど正確な値が得られないことがある。適切な滴下量、滴定間隔としては、例えば、0.1N水酸化ナトリウム水溶液を5~30秒に10~50μLずつ滴定するなどが望ましい。また、セルロース繊維含有スラリーに溶解した二酸化炭素の影響を排除するため、例えば、滴定開始の15分前から滴定終了まで、窒素ガスなどの不活性ガスをスラリーに吹き込みながら測定するなどが望ましい。
 なお、第1のセルロース繊維と第2のセルロース繊維が混在している場合には、遠心分離法により分離回収のうえ、前述した方法にてリンオキソ酸基導入量を測定する。遠心分離は、第1のセルロース繊維と第2のセルロース繊維が混在したセルロース分散液を固形分濃度0.2質量%に調整し、冷却高速遠心分離機(コクサン社、H-2000B)を用い、12000G、10分の条件で行う。その後、得られる沈降固形分を第1のセルロース繊維、上澄み液を第2のセルロース繊維として回収する。
 第1のセルロース繊維の保水度は、220%以上であることが好ましく、230%以上であることがより好ましく、240%以上であることがさらに好ましく、250%以上であることが一層好ましく、280%以上であることが特に好ましい。また、第1のセルロース繊維の保水度は、600%以下であることが好ましく、500%以下であることがより好ましく、400%以下であることがさらに好ましい。第1のセルロース繊維の保水度は、J.TAPPI-26に準拠して測定した値である。なお、第1のセルロース繊維の保水度は、シート化する前の第1のセルロース繊維の保水度であるが、シート化後の第1のセルロース繊維の保水度が上記範囲を満たすものであってもよい。 
 第1のセルロース繊維の含有量は、シートに含まれるセルロース繊維の全質量に対して、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることがさらに好ましく、40質量%超、41質量%以上、45質量%以上、50質量%以上、50質量%超または55質量%以上であることが一層好ましく、60質量%以上であることがより一層好ましく、70質量%以上であることが特に好ましい。また、第1のセルロース繊維の含有量は、シートに含まれるセルロース繊維の全質量に対して、99質量%以下であることが好ましく、95質量%以下であることがより好ましく、90質量%以下であることがさらに好ましく、85質量%以下であることが一層好ましく、80質量%以下であることが特に好ましい。
<第1のセルロース繊維の製造工程>
<リンオキソ酸基導入工程>
 第1のセルロース繊維がイオン性置換基としてリンオキソ酸基を有する場合、第1のセルロース繊維の製造工程は、リンオキソ酸基導入工程を含む。リンオキソ酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、リンオキソ酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。この工程により、リンオキソ酸基導入繊維が得られることとなる。
 本実施形態に係るリンオキソ酸基導入工程では、セルロースを含む繊維原料と化合物Aの反応を、尿素及びその誘導体から選択される少なくとも1種(以下、「化合物B」ともいう)の存在下で行ってもよい。一方で、化合物Bが存在しない状態において、セルロースを含む繊維原料と化合物Aの反応を行ってもよい。
 化合物Aを化合物Bとの共存下で繊維原料に作用させる方法の一例としては、乾燥状態、湿潤状態またはスラリー状の繊維原料に対して、化合物Aと化合物Bを混合する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態または湿潤状態の繊維原料を用いることが好ましく、特に乾燥状態の繊維原料を用いることが好ましい。繊維原料の形態は、特に限定されないが、たとえば綿状や薄いシート状であることが好ましい。化合物Aおよび化合物Bは、それぞれ粉末状または溶媒に溶解させた溶液状または融点以上まで加熱して溶融させた状態で繊維原料に添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、溶媒に溶解させた溶液状、特に水溶液の状態で添加することが好ましい。また、化合物Aと化合物Bは繊維原料に対して同時に添加してもよく、別々に添加してもよく、混合物として添加してもよい。化合物Aと化合物Bの添加方法としては、特に限定されないが、化合物Aと化合物Bが溶液状の場合は、繊維原料を溶液内に浸漬し吸液させたのちに取り出してもよいし、繊維原料に溶液を滴下してもよい。また、必要量の化合物Aと化合物Bを繊維原料に添加してもよいし、過剰量の化合物Aと化合物Bをそれぞれ繊維原料に添加した後に、圧搾や濾過によって余剰の化合物Aと化合物Bを除去してもよい。
 本実施態様で使用する化合物Aとしては、リン原子を有し、セルロースとエステル結合を形成可能な化合物であればよく、リン酸もしくはその塩、亜リン酸もしくはその塩、脱水縮合リン酸もしくはその塩、無水リン酸(五酸化二リン)などが挙げられるが特に限定されない。リン酸としては、種々の純度のものを使用することができ、たとえば100%リン酸(正リン酸)や85%リン酸を使用することができる。亜リン酸としては、99%亜リン酸(ホスホン酸)が挙げられる。脱水縮合リン酸は、リン酸が脱水反応により2分子以上縮合したものであり、例えばピロリン酸、ポリリン酸等を挙げることができる。リン酸塩、亜リン酸塩、脱水縮合リン酸塩としては、リン酸、亜リン酸または脱水縮合リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。これらのうち、リン酸基の導入効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩または亜リン酸、亜リン酸のナトリウム塩、亜リン酸のカリウム塩、亜リン酸のアンモニウム塩が好ましく、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸二水素アンモニウム、または亜リン酸、亜リン酸ナトリウムがより好ましい。
 繊維原料に対する化合物Aの添加量は、特に限定されないが、たとえば化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)に対するリン原子の添加量が0.5質量%以上100質量%以下となることが好ましく、1質量%以上50質量%以下となることがより好ましく、2質量%以上30質量%以下となることがさらに好ましい。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、第1のセルロース繊維の収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。
 本実施態様で使用する化合物Bは、上述のとおり尿素及びその誘導体から選択される少なくとも1種である。化合物Bとしては、たとえば尿素、ビウレット、1-フェニル尿素、1-ベンジル尿素、1-メチル尿素、および1-エチル尿素などが挙げられる。反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。
 繊維原料(絶乾質量)に対する化合物Bの添加量は、特に限定されないが、たとえば1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましい。
 セルロースを含む繊維原料と化合物Aの反応においては、化合物Bの他に、たとえばアミド類またはアミン類を反応系に含んでもよい。アミド類としては、たとえばホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、たとえばメチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。
 リンオキソ酸基導入工程においては、繊維原料に化合物A等を添加又は混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、リンオキソ酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置を用いることができる。
 本実施形態に係る加熱処理においては、たとえば薄いシート状の繊維原料に化合物Aを含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物Aを混練又は攪拌しながら加熱する方法を採用することができる。これにより、繊維原料における化合物Aの濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一にリンオキソ酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物Aが表面張力によって水分子に引き付けられ、同様に繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることに起因するものと考えられる。
 また、加熱処理に用いる加熱装置は、たとえばスラリーが保持する水分、及び化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合(リン酸エステル化)反応に伴って生じる水分、を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、例えば送風方式のオーブン等が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、軸比の高い第1のセルロース繊維を得ることが可能となる。
 加熱処理の時間は、たとえば繊維原料から実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本実施形態では、加熱温度と加熱時間を適切な範囲とすることにより、リンオキソ酸基の導入量を好ましい範囲内とすることができる。
 リンオキソ酸基導入工程は、少なくとも1回行えば良いが、2回以上繰り返して行うこともできる。2回以上のリンオキソ酸基導入工程を行うことにより、繊維原料に対して多くのリンオキソ酸基を導入することができる。
<カルボキシ基導入工程>
 第1のセルロース繊維がイオン性置換基としてカルボキシ基を有する場合、第1のセルロース繊維の製造工程は、カルボキシ基導入工程を含む。カルボキシ基導入工程は、セルロースを含む繊維原料に対し、オゾン酸化やフェントン法による酸化、TEMPO酸化処理などの酸化処理やカルボン酸由来の基を有する化合物もしくはその誘導体、またはカルボン酸由来の基を有する化合物の酸無水物もしくはその誘導体によって処理することにより行われる。
 カルボン酸由来の基を有する化合物としては、特に限定されないが、たとえばマレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸等のトリカルボン酸化合物が挙げられる。また、カルボン酸由来の基を有する化合物の誘導体としては、特に限定されないが、たとえばカルボキシ基を有する化合物の酸無水物のイミド化物、カルボキシ基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシ基を有する化合物の酸無水物のイミド化物としては、特に限定されないが、たとえばマレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。
 カルボン酸由来の基を有する化合物の酸無水物としては、特に限定されないが、たとえば無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。また、カルボン酸由来の基を有する化合物の酸無水物の誘導体としては、特に限定されないが、たとえばジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等のカルボキシ基を有する化合物の酸無水物の少なくとも一部の水素原子が、アルキル基、フェニル基等の置換基により置換されたものが挙げられる。
 カルボキシ基導入工程において、TEMPO酸化処理を行う場合には、たとえばその処理をpHが6以上8以下の条件で行うことが好ましい。このような処理は、中性TEMPO酸化処理ともいう。中性TEMPO酸化処理は、たとえばリン酸ナトリウム緩衝液(pH=6.8)に、繊維原料としてパルプと、触媒としてTEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)等のニトロキシラジカル、犠牲試薬として次亜塩素酸ナトリウムを添加することで行うことができる。さらに亜塩素酸ナトリウムを共存させることによって、酸化の過程で発生するアルデヒドを、効率的にカルボキシ基まで酸化することができる。また、TEMPO酸化処理は、その処理をpHが10以上11以下の条件で行ってもよい。このような処理は、アルカリTEMPO酸化処理ともいう。アルカリTEMPO酸化処理は、たとえば繊維原料としてのパルプに対し、触媒としてTEMPO等のニトロキシラジカルと、共触媒として臭化ナトリウムと、酸化剤として次亜塩素酸ナトリウムを添加することにより行うことができる。
 第1のセルロース繊維に対するカルボキシ基の導入量は、置換基の種類によっても変わるが、たとえばTEMPO酸化によりカルボキシ基を導入する場合、セルロース繊維1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.40mmol/g以上であることがさらに好ましく、0.60mmol/g以上であることがとくに好ましい。また、第1のセルロース繊維に対するカルボキシ基の導入量は、3.65mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましく、2.50mmol/g以下であることがさらに好ましく、2.00mmol/g以下であることが一層より好ましく、1.50mmol/g以下であることがより一層さらに好ましく、1.00mmol/g以下であることがとくに好ましい。その他、置換基がカルボキシメチル基である場合、セルロース繊維1g(質量)あたり5.8mmol/g以下であってもよい。カルボキシ基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、第1のセルロース繊維の安定性を高めることが可能となる。
<洗浄工程>
 本実施形態における第1のセルロース繊維の製造方法においては、必要に応じてイオン性置換基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶剤によりイオン性置換基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、特に限定されない。
<アルカリ処理工程>
 本実施形態における第1のセルロース繊維の製造方法においては、必要に応じて洗浄後のイオン性置換基導入繊維に対して、アルカリ処理を行ってもよい。この場合、洗浄後のイオン性置換基導入繊維を10Lのイオン交換水で希釈した後、撹拌しながら1Nのアルカリ溶液を少しずつ添加することにより、pHが12以上13以下に調整することが好ましい。アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、たとえば水酸化ナトリウムまたは水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水または有機溶剤のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、またはアルコールに例示される極性有機溶剤などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、たとえば水酸化ナトリウム水溶液、または水酸化カリウム水溶液が好ましい。
 アルカリ処理工程におけるアルカリ溶液の温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましい。アルカリ処理工程におけるイオン性置換基導入繊維のアルカリ溶液への浸漬時間は、特に限定されないが、たとえば5分以上30分以下であることが好ましく、10分以上20分以下であることがより好ましい。アルカリ処理におけるアルカリ溶液の使用量は、特に限定されないが、たとえばイオン性置換基導入繊維の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
 なお、アルカリ処理工程の後には、さらに上述した洗浄工程を設けてもよい。
(第2のセルロース繊維)
 本実施形態のシートは、繊維幅が1000nm以下の第2のセルロース繊維(微細繊維状セルロース)を含む。第2のセルロース繊維の繊維幅は、たとえば電子顕微鏡観察などにより測定することが可能である。なお、第2のセルロース繊維は、たとえば単繊維状のセルロースである。
 第2のセルロース繊維の繊維幅は、1000nm以下であればよく、500nm以下であることが好ましく、300nm以下であることがより好ましく、200nm以下であることがさらに好ましく、100nm以下であることが一層好ましく、50nm以下であることがより一層好ましく、20nm以下であることがさらに一層好ましく、10nm以下であることが特に好ましい。本実施形態のシートは、このように繊維幅が小さい微細繊維状セルロースを、第1のセルロース繊維(粗大セルロース繊維)と併用することで、樹脂との密着性を効果的に高めることができる。また、繊維幅が小さい微細繊維状セルロースを、イオン性置換基を有する第1のセルロース繊維(粗大セルロース繊維)と併用することで、シートの製造工程において、シートに撚れが発生することを抑制することができる。また、繊維幅が小さい微細繊維状セルロースを、イオン性置換基を有する第1のセルロース繊維(粗大セルロース繊維)と併用することで、シートの透明性が向上する。
 第2のセルロース繊維の繊維幅は、たとえば電子顕微鏡を用いて以下のようにして測定される。まず、濃度0.05質量%以上0.1質量%以下の第2のセルロース繊維の水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。次いで、観察対象となる繊維の幅に応じて1000倍、5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
 上記条件を満足する観察画像に対し、直線X、直線Yと交差する繊維の幅を目視で読み取る。このようにして、少なくとも互いに重なっていない表面部分の観察画像を3組以上得る。次いで、各画像に対して、直線X、直線Yと交差する繊維の幅を読み取る。
 第2のセルロース繊維の繊維長は、特に限定されないが、たとえば0.1μm以上1000μm以下であることが好ましく、0.1μm以上800μm以下であることがより好ましく、0.1μm以上600μm以下であることがさらに好ましい。繊維長を上記範囲内とすることにより、第2のセルロース繊維の結晶領域の破壊を抑制できる。また、第2のセルロース繊維のスラリー粘度を適切な範囲とすることも可能となる。なお、第2のセルロース繊維の繊維長は、たとえばTEM、SEM、AFMによる画像解析より求めることができる。
 第2のセルロース繊維はI型結晶構造を有していることが好ましい。ここで、第2のセルロース繊維がI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。
 第2のセルロース繊維に占めるI型結晶構造の割合は、たとえば30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。これにより、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。
 第2のセルロース繊維の軸比(繊維長/繊維幅)は、特に限定されないが、たとえば20以上10000以下であることが好ましく、50以上1000以下であることがより好ましい。軸比を上記下限値以上とすることにより、第2のセルロース繊維を含有するシートを形成しやすい。軸比を上記上限値以下とすることにより、たとえば第2のセルロース繊維を水分散液として扱う際に、希釈等のハンドリングがしやすくなる点で好ましい。
 本実施形態における第2のセルロース繊維は、たとえば結晶領域と非結晶領域をともに有している。特に、結晶領域と非結晶領域をともに有し、かつ軸比が高い第2のセルロース繊維は、後述する微細繊維状セルロースの製造方法により実現されるものである。
 本実施形態における第2のセルロース繊維は、イオン性置換基を有することが好ましい。イオン性置換基としては、たとえばアニオン性基およびカチオン性基のいずれか一方または双方を含むことができる。アニオン性基としては、たとえばリンオキソ酸基またはリンオキソ酸基に由来する置換基(単にリンオキソ酸基ということもある)、カルボキシ基またはカルボキシ基に由来する置換基(単にカルボキシ基ということもある)、およびスルホン基またはスルホン基に由来する置換基(単にスルホン基ということもある)から選択される少なくとも1種であることが好ましく、リンオキソ酸基およびカルボキシ基から選択される少なくとも1種であることがより好ましく、リンオキソ酸基であることが特に好ましい。リンオキソ酸基は、第1のセルロース繊維が有し得るリンオキソ酸基と同様である。第1のセルロース繊維および第2のセルロース繊維がともにイオン性置換基を有するとき、第1のセルロース繊維のイオン性置換基と、第2セルロース繊維のイオン性置換基は、同一であっても異なっていてもよいが、同一であることが好ましい。
 第2のセルロース繊維に対するイオン性置換基の導入量は、たとえば第2のセルロース繊維1g(質量)あたり0.1mmol/g以上であることが好ましく、0.3mmol/g以上であることがより好ましく、0.5mmol/g以上であることがさらに好ましく、0.7mmol/g以上であることが一層好ましく、1.0mmol/g以上であることが特に好ましい。また、第2のセルロース繊維のイオン性置換基の導入量は、セルロース繊維1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。ここで、単位mmol/gは、たとえばアニオン性基の対イオンが水素イオン(H)であるときの第2のセルロース繊維の質量1gあたりの置換基量を示す。
 第2のセルロース繊維に対するイオン性置換基の導入量は、たとえば中和滴定法により測定することができる。中和滴定法による測定では、得られた第2のセルロース繊維を含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながらpHの変化を求めることにより、導入量を測定する。具体的なイオン性置換基の導入量の測定方法は、第1のセルロース繊維におけるイオン性置換基の導入量の測定方法と同様である。なお、第1のセルロース繊維におけるイオン性置換基の導入量を測定する際には、強酸性イオン交換樹脂による処理の前に、解繊処理を実施するが、第2のセルロース繊維におけるイオン性置換基の導入量を測定する際には、強酸性イオン交換樹脂による処理の前に、解繊処理を実施しなくてもよい。
 第2のセルロース繊維の含有量は、シートに含まれるセルロース繊維の全質量に対して、1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることがさらに好ましく、15質量%以上であることが一層好ましく、20質量%以上であることが特に好ましい。また、第2のセルロース繊維の含有量は、シートに含まれるセルロース繊維の全質量に対して、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがさらに好ましく、50質量%以下であることが一層好ましく、40質量%以下であることがより一層好ましく、30質量%以下であることが特に好ましい。
<微細繊維状セルロースの製造工程>
<繊維原料>
 微細繊維状セルロースは、セルロースを含む繊維原料から製造される。セルロースを含む繊維原料としては、特に限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、たとえば木材パルプ、非木材パルプ、および脱墨パルプが挙げられる。木材パルプとしては、特に限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)および酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)およびケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)およびサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、特に限定されないが、たとえばコットンリンターおよびコットンリント等の綿系パルプ、麻、麦わらおよびバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、特に限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。
 上記パルプの中でも、入手のしやすさという観点からは、たとえば木材パルプおよび脱墨パルプが好ましい。また、木材パルプの中でも、セルロース比率が大きく解繊処理時の微細繊維状セルロースの収率が高い観点や、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の微細繊維状セルロースが得られる観点から、たとえば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。
 セルロースを含む繊維原料としては、たとえばホヤ類に含まれるセルロースや、酢酸菌が生成するバクテリアセルロースを利用することもできる。また、セルロースを含む繊維原料に代えて、キチン、キトサンなどの直鎖型の含窒素多糖高分子が形成する繊維を用いることもできる。
<リンオキソ酸基導入工程>
 微細繊維状セルロースがリンオキソ酸基を有する場合、微細繊維状セルロースの製造工程は、リンオキソ酸基導入工程を含む。リンオキソ酸基導入工程は、第1のセルロース繊維の製造工程におけるリンオキソ酸基導入工程と同様の工程である。
<カルボキシ基導入工程>
 微細繊維状セルロースがカルボキシ基を有する場合、微細繊維状セルロースの製造工程は、カルボキシ基導入工程を含む。カルボキシ基導入工程は、第1のセルロース繊維の製造工程におけるカルボキシ基導入工程と同様の工程である。
<洗浄工程>
 本実施形態における微細繊維状セルロースの製造方法においては、必要に応じてリンオキソ酸基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、第1のセルロース繊維の製造工程における洗浄工程と同様の工程である。
<アルカリ処理工程>
 微細繊維状セルロースを製造する場合、イオン性置換基導入工程と、後述する解繊処理工程との間に、繊維原料に対してアルカリ処理を行ってもよい。アルカリ処理の方法は、第1のセルロース繊維の製造工程におけるアルカリ処理の方法と同様である。
 なお、アルカリ処理工程の後には、さらに上述した洗浄工程を設けてもよい。
<解繊処理>
 繊維を解繊処理工程で解繊処理することにより、微細繊維状セルロースが得られる。解繊処理工程においては、たとえば解繊処理装置を用いることができる。解繊処理装置は、特に限定されないが、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、またはビーターなどを使用することができる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーを用いるのがより好ましい。
 解繊処理工程においては、繊維を分散媒により希釈してスラリー状にすることが好ましい。分散媒としては、水、および極性有機溶剤などの有機溶剤から選択される1種または2種以上を使用することができる。極性有機溶剤としては、特に限定されないが、たとえばアルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、非プロトン極性溶媒等が好ましい。アルコール類としては、たとえばメタノール、エタノール、イソプロパノール、n-ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、たとえばエチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、たとえばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、たとえば酢酸エチル、酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリジノン(NMP)等が挙げられる。
 解繊処理時の微細繊維状セルロースの固形分濃度は適宜設定できる。また、繊維を分散媒に分散させて得たスラリー中には、例えば水素結合性のある尿素などのイオン性置換基導入繊維以外の固形分が含まれていてもよい。
(比率)
 第1のセルロース繊維と第2のセルロース繊維の質量比率(第1のセルロース繊維:第2のセルロース繊維)は、30:70~90:10であることが好ましく、40:60~90:10であることがより好ましく、60:40~90:10であることがさらに好ましく、70:30~90:10であることが特に好ましい。ここで、シート中の第1のセルロース繊維は、たとえば走査電子顕微鏡(日立ハイテクノロジーズ社製、S-3600N)にて観察することが可能である。また、第2のセルロース繊維は、たとえば高分解能電界放出型走査電子顕微鏡(日立製作所製、S-5200)にて観察することが可能である。このような観察により、各繊維の体積比率から質量比率を算出してもよい。但し、後述するようなシートの製造工程における、各セルロース繊維の混合比は、シートにおける第1のセルロース繊維と第2のセルロース繊維の比率と同等である。
(その他の繊維)
 本実施形態のシートは第1のセルロース繊維と第2のセルロース繊維以外に、その他のセルロース繊維を含んでいてもよい。その他のセルロース繊維としては、たとえば第1のセルロース繊維を叩解して繊維幅を1μmより大きく10μm未満とした、高叩解パルプを挙げることができる。ここで、その他の繊維の繊維幅とは、セルロース繊維の幹繊維における繊維幅である。たとえば、その他の繊維がフィブリル化セルロース繊維である場合には、フィブリル化して分枝化した繊維の繊維幅ではなく、幹繊維の繊維幅をその他の繊維の繊維幅という。
 その他のセルロース繊維の叩解は、たとえば解繊処理装置を用いて行うことができる。解繊処理装置としては特に限定されない。例えば、高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、クレアミックス、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナーが挙げられる。また、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、ビーター等、湿式粉砕する装置等を適宜使用することができる。
(水溶性高分子/低分子化合物)
 本実施形態のシートは、水溶性高分子をさらに含んでいてもよい。水溶性高分子としては、たとえばカルボキシビニルポリマー、ポリビニルアルコール、メタクリル酸アルキル・アクリル酸コポリマー、ポリビニルピロリドン、ポリアクリル酸ナトリウム、ポリエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレンオキサイド、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、イソプレングリコール、ヘキシレングリコール、1,3-ブチレングリコール、およびポリアクリルアミドなどに例示される合成水溶性高分子;キサンタンガム、グアーガム、タマリンドガム、カラギーナン、ローカストビーンガム、クインスシード、アルギン酸、プルラン、カラギーナン、およびペクチンなどに例示される増粘多糖類;カルボキシメチルセルロース、メチルセルロース、およびヒロドキシエチルセルロースなどに例示されるセルロース誘導体;カチオン化デンプン、生デンプン、酸化デンプン、エーテル化デンプン、エステル化デンプン、およびアミロースなどに例示されるデンプン類;ポリグリセリンなどに例示されるグリセリン類;ヒアルロン酸、ヒアルロン酸の金属塩等を挙げることができる。これらの中でも、水溶性高分子はポリビニルアルコールであることが好ましい。
 また、本実施形態のシートは、水溶性高分子の代わりに親水性の低分子化合物を含んでいてもよい。親水性の低分子化合物としては、グリセリン、ジグリセリン、エリトリトール、キシリトール、ソルビトール、ガラクチトール、マンニトールなどを挙げることができるが、特に限定されない。
 シート中における水溶性高分子又は親水性低分子化合物の含有量は、セルロース繊維100質量部に対して、0.1質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、1.0質量部以上であることがさらに好ましく、5.0質量部以上であることが特に好ましい。また、水溶性高分子の含有量は、セルロース繊維100質量部に対して、100質量部以下であることが好ましく、50質量部以下であることがより好ましく、30質量部以下であることがさらに好ましく、20質量部以下であることが特に好ましい。水溶性高分子又は親水性低分子化合物の含有量を上述の範囲とすることにより、シートの強度をより効果的に向上させることができる。
(紙力増強剤)
 本実施形態のシートは、紙力増強剤をさらに含むものであることが好ましい。これにより、シートの強度をさらに向上させることが可能となる。紙力増強剤としては、乾燥紙力剤及び湿潤紙力剤を挙げることができる。乾燥紙力剤としては、例えば、カチオン化澱粉、ポリアクリルアミド(PAM)、カルボキシメチルセルロース(CMC)、アクリル樹脂等を挙げることができる。湿潤紙力剤としては、ポリアミドエピハロヒドリン、尿素、メラミン、熱架橋性ポリアクリルアミド等を挙げることができる。中でも、本実施形態のシートは、ポリアミンポリアミドエピハロヒドリンを含有することが好ましい。
 ポリアミンポリアミドエピハロヒドリンは、脂肪族二塩基性カルボン酸又はその誘導体と、ポリアルキレンポリアミンを加熱縮合させてポリアミドポリアミンを合成し、次いで該ポリアミドポリアミンとエピハロヒドリンを反応させることで得られるカチオン性熱硬化性樹脂である。なお、ポリアミンポリアミドエピハロヒドリンは水性樹脂であるから、シート形成用スラリーにはポリアミンポリアミドエピハロヒドリンを水溶液として添加することもできる。
 ポリアミンポリアミドエピハロヒドリンとしては、例えば、ポリアミンポリアミドエピクロロヒドリン、ポリアミンポリアミドエピブロモヒドリン、ポリアミンポリアミドエピヨードヒドリン等を挙げることができる。
 シート中における紙力増強剤の含有量は、セルロース繊維100質量部に対して、0.05質量部以上であることが好ましく、0.1質量部以上であることがより好ましく、0.5質量部以上であることがさらに好ましく、2.0質量部以上であることが特に好ましい。また、紙力増強剤の含有量は、セルロース繊維100質量部に対して、100質量部以下であることが好ましく、50質量部以下であることがより好ましく、30質量部以下であることがさらに好ましく、15質量部以下であることが一層好ましく、7.0質量部以下であることが特に好ましい。紙力増強剤の含有量を上述の範囲とすることにより、シートの強度をより効果的に向上させることができる。
(任意成分)
 本実施形態のシートには、上述した成分以外の任意成分が含まれていてもよい。任意成分としては、たとえば、防腐剤、消泡剤、潤滑剤、紫外線吸収剤、染料、顔料、安定剤、界面活性剤、サイズ剤、凝結剤、歩留まり向上剤、嵩高剤、濾水性向上剤、pH調整剤、蛍光増白剤、ピッチコントロール剤、スライムコントロール剤、消泡剤、保水剤、分散剤等を挙げることができる。
 シート中に含まれる上記任意成分の含有量は、シートの全質量に対して、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがさらに好ましく、20質量%以下であることが一層好ましく、10質量%以下であることがより一層好ましく、5質量%以下であることが特に好ましい。
(シートの製造方法)
 本実施形態のシートの製造方法は、繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維と、を含むスラリーからシートを形成する工程を含む。なお、本発明のシートが、繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維の両方が含まれる第1層と、繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維の両方が含まれる第2層とを有する複層シートである場合、繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維とを含むスラリーから第1層(もしくは第2層)を形成した後に、該層上に繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維とを含むスラリーを塗工して第2層(もしくは第1層)を形成する工程を設けてもよい。また、繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維と、を含むスラリーから第1層と第2層をそれぞれ形成した後に、これらの層を重ね合わせることで第1層と第2層を有する複層シートを形成してもよい。
 シートの製造工程においては、シートを形成する工程において、シートの一方の面のJIS P 8155:2010に準じて測定した平滑度が10秒以下となり、シートの他方の面のJIS P 8155:2010に準じて測定した平滑度が100秒以上となる工程や条件が採用される。例えば、第1のセルロース繊維と第2のセルロース繊維を含むスラリーを抄紙し、シートを形成した後にシートの一方の面のみにカレンダー処理を施す方法や、シートの一方の面のみに微細凹凸構造を形成する方法、第1のセルロース繊維と第2のセルロース繊維を含むスラリーを基板上に塗工する方法等を適宜選択することで、シートの両面の平滑度を所望の条件とすることができる。
 第1のセルロース繊維と第2のセルロース繊維を分散させたスラリー中に含まれる固形分濃度は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、スラリー中に含まれる固形分濃度は、0.01質量%以上であることが好ましい。
 ここで、第1のセルロース繊維の保水度は、220%以上であることが好ましく、230%以上であることがより好ましく、240%以上であることがさらに好ましい。また、第1のセルロース繊維の保水度は、600%以下であることが好ましい。なお、第1のセルロース繊維の保水度は、J.TAPPI-26に準拠して測定した値である。本実施形態のシートの製造工程では、保水度が220%以上の第1のセルロース繊維を用いることにより、繊維が均一に分散したスラリーを得ることができる。また、保水度が220%以上の第1のセルロース繊維を用いることにより、セルロース繊維濃度が高いスラリーにおいても、セルロース繊維が凝集することを抑制できる。
<抄紙工程>
 第1のセルロース繊維と第2のセルロース繊維を含むスラリーを抄紙する場合、抄紙機によりスラリーを抄紙する。抄紙工程で用いられる抄紙機としては、特に限定されないが、たとえば長網式、円網式、傾斜式等の連続抄紙機、またはこれらを組み合わせた多層抄き合わせ抄紙機等が挙げられる。抄紙工程では、手抄き等の公知の抄紙方法を採用してもよい。
 抄紙工程は、スラリーをワイヤーにより濾過、脱水して湿紙状態のシートを得た後、このシートをプレス、乾燥することにより行われる。スラリーを濾過、脱水する際に用いられる濾布としては、特に限定されないが、たとえば繊維状セルロースは通過せず、かつ濾過速度が遅くなりすぎないものであることがより好ましい。このような濾布としては、特に限定されないが、たとえば有機ポリマーからなるシート、織物、多孔膜が好ましい。有機ポリマーとしては特に限定されないが、たとえばポリエチレンテレフタレートやポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)等のような非セルロース系の有機ポリマーが好ましい。本実施形態においては、たとえば孔径0.1μm以上20μm以下であるポリテトラフルオロエチレンの多孔膜や、孔径0.1μm以上20μm以下であるポリエチレンテレフタレートやポリエチレンの織物等が挙げられる。
 シート化工程において、スラリーからシートを製造する方法は、たとえばセルロース繊維を含むスラリーを無端ベルトの上面に吐出し、吐出されたスラリーから分散媒を搾水してウェブを生成する搾水セクションと、ウェブを乾燥させてシートを生成する乾燥セクションとを備える製造装置を用いて行うことができる。搾水セクションから乾燥セクションにかけて無端ベルトが配設され、搾水セクションで生成されたウェブが無端ベルトに載置されたまま乾燥セクションに搬送される。
 抄紙工程において用いられる脱水方法としては、特に限定されないが、たとえば紙の製造で通常に使用している脱水方法が挙げられる。これらの中でも、長網、円網、傾斜ワイヤーなどで脱水した後、さらにロールプレスで脱水する方法が好ましい。また、抄紙工程において用いられる乾燥方法としては、特に限定されないが、たとえば紙の製造で用いられている方法が挙げられる。これらの中でも、シリンダードライヤー、ヤンキードライヤー、熱風乾燥、近赤外線ヒーター、赤外線ヒーターなどを用いた乾燥方法がより好ましい。
 このような抄紙工程の後には、得られたシートの一方の面にカレンダー処理を施してもよい。また、一方の面を再湿潤液により再湿潤させ、キャストドラムに圧着するリウェットキャスト処理を施してもよい。これらにより、シートの一方の面のみの平滑度を100以上としてもよい。また、抄紙工程の後には、得られたシートの一方の面に微細凹凸構造を形成する工程を設けてもよい。例えば、サンドブラスト処理や、微細凹凸構造を有するローラー等を用いた転写処理工程等を設けることで、シートの一方の面のみの平滑度を10以下としてもよい。
<塗工工程>
 第1のセルロース繊維と第2のセルロース繊維を含むスラリーを基材上に塗工する工程(塗工工程)では、たとえば繊維状セルロースを含むスラリー(塗工液)を基材上に塗工し、これを乾燥して形成されたシートを基材から剥離することによりシートを得ることができる。また、塗工装置と長尺の基材を用いることで、シートを連続的に生産することができる。
 塗工工程で用いる基材の材質は、特に限定されないが、スラリーに対する濡れ性が高いものの方が乾燥時のシートの収縮等を抑制することができて良いが、乾燥後に形成されたシートが容易に剥離できるものを選択することが好ましい。中でも樹脂製のフィルムや板または金属製のフィルムや板が好ましいが、特に限定されない。たとえばポリプロピレン、アクリル、ポリエチレンテレフタレート、塩化ビニル、ポリスチレン、ポリカーボネート、ポリ塩化ビニリデン等の樹脂のフィルムや板、アルミ、亜鉛、銅、鉄板の金属のフィルムや板、および、それらの表面を酸化処理したもの、ステンレスのフィルムや板、真ちゅうのフィルムや板等を用いることができる。
 塗工工程において、スラリーの粘度が低く、基材上で展開してしまう場合には、所定の厚みおよび坪量のシートを得るため、基材上に堰止用の枠を固定して使用してもよい。堰止用の枠としては、特に限定されないが、たとえば乾燥後に付着するシートの端部が容易に剥離できるものを選択することが好ましい。このような観点から、樹脂板または金属板を成形したものがより好ましい。本実施形態においては、たとえばポリプロピレン板、アクリル板、ポリエチレンテレフタレート板、塩化ビニル板、ポリスチレン板、ポリカーボネート板、ポリ塩化ビニリデン板等の樹脂板や、アルミ板、亜鉛板、銅板、鉄板等の金属板、およびこれらの表面を酸化処理したもの、ステンレス板、真ちゅう板等を成形したものを用いることができる。
 スラリーを基材に塗工する塗工機としては、特に限定されないが、たとえばロールコーター、グラビアコーター、ダイコーター、カーテンコーター、エアドクターコーター等を使用することができる。シートの厚みをより均一にできることから、ダイコーター、カーテンコーター、スプレーコーターが特に好ましい。
 スラリーを基材へ塗工する際のスラリー温度および雰囲気温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましく、15℃以上50℃以下であることがさらに好ましく、20℃以上40℃以下であることが特に好ましい。塗工温度が上記下限値以上であれば、スラリーをより容易に塗工できる。塗工温度が上記上限値以下であれば、塗工中の分散媒の揮発を抑制できる。
 塗工工程においては、シートの仕上がり坪量が好ましくは5g/m以上500g/m以下となるように、より好ましくは10g/m以上300g/m以下となるように、スラリーを基材に塗工することが好ましい。なお、塗工工程は、例えば坪量が30g/m以下といった薄膜シートを製造することも可能である。
 塗工工程は、上述のとおり、基材上に塗工したスラリーを乾燥させる工程を含む。スラリーを乾燥させる工程は、特に限定されないが、たとえば非接触の乾燥方法、もしくはシートを拘束しながら乾燥する方法、またはこれらの組み合わせにより行われる。
 非接触の乾燥方法としては、特に限定されないが、たとえば熱風、赤外線、遠赤外線もしくは近赤外線により加熱して乾燥する方法(加熱乾燥法)、または真空にして乾燥する方法(真空乾燥法)を適用することができる。加熱乾燥法と真空乾燥法を組み合わせてもよいが、通常は、加熱乾燥法が適用される。赤外線、遠赤外線または近赤外線による乾燥は、特に限定されないが、たとえば赤外線装置、遠赤外線装置または近赤外線装置を用いて行うことができる。
 加熱乾燥法における加熱温度は、特に限定されないが、たとえば20℃以上150℃以下とすることが好ましく、25℃以上105℃以下とすることがより好ましい。加熱温度を上記下限値以上とすれば、分散媒を速やかに揮発させることができる。また、加熱温度を上記上限値以下であれば、加熱に要するコストの抑制およびセルロース繊維の熱による変色の抑制を実現できる。
(用途)
 本実施形態のシートの用途は特に限定されない。例えば、シートは、包装紙、トレーシングペーパー、クッキングシート、薬包紙、電池用セパレータ、フィルター、全熱交換用ライナー、振動板、プレス成形用部材、フレキシブル基板、樹脂複合材、強化繊維プラスチック積層体等の用途に適している。
(積層体)
 本実施形態のシートは、樹脂との密着性が良好であるため、樹脂層との積層体を形成する用途に好ましく用いられる。すなわち、本発明は、上述したシートの少なくとも一方の面上に樹脂層を有する積層体に関するものであってもよい。
 積層体に含まれ得る樹脂層は、天然樹脂や合成樹脂を主成分とする層である。ここで、主成分とは、樹脂層の全質量に対して、50質量%以上含まれている成分を指す。樹脂の含有量は、樹脂層の全質量に対して、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましい。なお、樹脂の含有量は、100質量%とすることもでき、95質量%以下であってもよい。
 天然樹脂としては、例えば、ロジン、ロジンエステル、水添ロジンエステル等のロジン系樹脂を挙げることができる。
 合成樹脂としては、例えば、ポリカーボネート樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリエチレンナフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ポリスチレン樹脂、ポリウレタン樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、エチレン-酢酸ビニル(EVA)樹脂及びアクリル樹脂から選択される少なくとも1種であることが好ましい。中でも、合成樹脂は、ポリカーボネート樹脂、PET樹脂、ABS樹脂、EVA樹脂及びアクリル樹脂から選択される少なくとも1種であることが好ましく、ポリカーボネート樹脂及びアクリル樹脂から選択される少なくとも1種であることがより好ましく、ポリカーボネート樹脂であることがより好ましい。なお、アクリル樹脂は、ポリアクリロニトリル及びポリ(メタ)アクリレートから選択される少なくともいずれか1種であることが好ましい。
 樹脂層を構成するポリカーボネート樹脂としては、例えば、芳香族ポリカーボネート系樹脂、脂肪族ポリカーボネート系樹脂が挙げられる。これらの具体的なポリカーボネート系樹脂は公知であり、例えば特開2010-023275号公報に記載されたポリカーボネート系樹脂が挙げられる。
 樹脂層を構成する樹脂は1種を単独で用いてもよく、複数の樹脂成分が共重合又は、グラフト重合してなる共重合体を用いてもよい。また、複数の樹脂成分を物理的なプロセスで混合したブレンド材料として用いてもよい。
 なお、シートと樹脂層の間には、接着層もしくは樹脂塗工層が設けられていてもよく、また接着層や樹脂塗工層が設けられておらず、シートと樹脂層が直接密着をしていてもよい。
 シートと樹脂層の間に接着層が設けられる場合は、接着層を構成する接着剤として、例えば、アクリル樹脂を挙げることができる。また、アクリル樹脂以外の接着剤としては、例えば、塩化ビニル樹脂、(メタ)アクリル酸エステル樹脂、スチレン/アクリル酸エステル共重合体樹脂、酢酸ビニル樹脂、酢酸ビニル/(メタ)アクリル酸エステル共重合体樹脂、ウレタン樹脂、シリコーン樹脂、エポキシ樹脂、エチレン/酢酸ビニル共重合体樹脂、ポリエステル系樹脂、ポリビニルアルコール樹脂、エチレンビニルアルコール共重合体樹脂や、スチレンブタジエンゴム(SBR)、ニトリルブタジエンゴム(NBR)等のゴム系エマルジョンなどが挙げられる。
 シートと樹脂層の間に樹脂塗工層が設けられる場合は、樹脂塗工層を構成する成分としては、例えば、ポリカーボネート樹脂、ポリエステル系樹脂、ウレタン系樹脂、アクリル系樹脂、オレフィン系樹脂、フッ素系樹脂、塩化ビニル系樹脂、スチレン系樹脂、エポキシ系樹脂、シリコーン系樹脂、あるいは有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした樹脂等を挙げることができる。また、このような樹脂を塗工する際には、樹脂塗工液中に必要に応じて密着助剤を含有させてもよい。密着助剤としては、例えば、イソシアネート基、カルボジイミド基、エポキシ基、オキサゾリン基、アミノ基及びシラノール基から選択される少なくとも1種を含む化合物や、有機ケイ素化合物が挙げられる。中でも、密着助剤はイソシアネート基を含む化合物(イソシアネート化合物)及び有機ケイ素化合物から選択される少なくとも1種であることが好ましい。有機ケイ素化合物としては、例えば、シランカップリング剤縮合物や、シランカップリング剤を挙げることができる。なお、このような密着助剤は、積層体に含まれ得る樹脂層に含まれていてもよい。
 シートと樹脂層の間に接着層や樹脂塗工層が設けられていない場合は、樹脂層の表面に親水化処理等の表面処理を行ってもよい。また、樹脂層の表面には、親水化処理以外の表面処理を施してもよく、このような処理方法としては、コロナ処理、プラズマ放電処理、UV照射処理、電子線照射処理、火炎処理等を挙げることができる。
 積層体には、無機層が含まれていてもよい。このような無機層は、繊維シート上に積層されるものであってもよく、樹脂層上に積層されるものであってもよい。
 無機層を構成する物質としては、特に限定されないが、例えばアルミニウム、ケイ素、マグネシウム、亜鉛、錫、ニッケル、チタン;これらの酸化物、炭化物、窒化物、酸化炭化物、酸化窒化物、もしくは酸化炭化窒化物;又はこれらの混合物が挙げられる。高い防湿性が安定に維持できるとの観点からは、酸化ケイ素、窒化ケイ素、酸化炭化ケイ素、酸化窒化ケイ素、酸化炭化窒化ケイ素、酸化アルミニウム、窒化アルミニウム、酸化炭化アルミニウム、酸化窒化アルミニウム、又はこれらの混合物が好ましい。
 無機層の形成方法は、特に限定されない。一般に、薄膜を形成する方法は大別して、化学的気相成長法(Chemical Vapor Deposition、CVD)と物理成膜法(Physical Vapor Deposition、PVD)とがあるが、いずれの方法を採用してもよい。CVD法としては、具体的には、プラズマを利用したプラズマCVD、加熱触媒体を用いて材料ガスを接触熱分解する触媒化学気相成長法(Cat-CVD)等が挙げられる。PVD法としては、具体的には、真空蒸着、イオンプレーティング、スパッタリング等が挙げられる。
 また、無機層の形成方法としては、原子層堆積法(Atomic Layer Deposition、ALD)を採用することもできる。ALD法は、形成しようとする膜を構成する各元素の原料ガスを、層を形成する面に交互に供給することにより、原子層単位で薄膜を形成する方法である。成膜速度が遅いという欠点はあるが、プラズマCVD法以上に、複雑な形状の面でもきれいに覆うことができ、欠陥の少ない薄膜を成膜することが可能であるという利点がある。また、ALD法には、膜厚をナノオーダーで制御することができ、広い面を覆うことが比較的容易である等の利点がある。さらにALD法は、プラズマを用いることにより、反応速度の向上、低温プロセス化、未反応ガスの減少が期待できる。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
(実施例1)
<第1のセルロース繊維(1)の作製>
[リン酸化パルプの作製]
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。この原料パルプに対してリン酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で200秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプを得た。
[洗浄処理]
 次いで、得られたリン酸化パルプに対して洗浄処理を行った。洗浄処理は、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
[中和処理]
 次いで、洗浄後のリン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水して、中和処理が施されたリン酸化パルプを得た。
[洗浄処理]
 次いで、中和処理後のリン酸化パルプに対して、上記洗浄処理を行った。これにより得られたリン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基に基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。また、得られたリン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。後述する測定方法で測定されるリン酸基量(第1解離酸量)は、1.45mmol/gだった。また、後述する測定方法で測定される繊維幅は30μmであった。得られたリン酸化パルプにイオン交換水を添加し、固形分濃度が2質量%の第1のセルロース繊維(1)を含む、第1のセルロース繊維分散液(1)を得た。
<第2のセルロース繊維(1)の作製>
[微細化]
 上記方法にて得られた第1のセルロース繊維分散液(1)を、湿式微粒化装置((株)スギノマシン製、スターバースト)で200MPaの圧力にて2回処理し、第2のセルロース繊維(1)を含む、第2のセルロース繊維分散液(1)を得た。X線回折により、この第2のセルロース繊維(1)がセルロースI型結晶を維持していることが確認された。後述する測定方法で測定されるリン酸基量(第1解離酸量)は、1.45mmol/gだった。また、後述する測定方法で測定される繊維幅は3~5nmであった。
<シート化>
 第1のセルロース繊維(1)が75質量部、第2のセルロース繊維(1)が25質量部、ポリビニルアルコール(PVA)が10質量部、ポリアミンポリアミド・エピクロロヒドリン(PAE)が5質量部となるように、第1のセルロース繊維分散液(1)と、第2のセルロース繊維分散液(1)と、ポリビニルアルコール溶液(日本合成化学工業製、ゴーセネックス Z-200)と、ポリアミンポリアミド・エピクロロヒドリン溶液(荒川化学工業製、アラフィックス 255)を混合して塗工液1を得た。塗工液1の固形分濃度は0.5質量%に調製した。
 次いで、得られるシート(上記塗工液の固形分から構成される層)の坪量が25g/mになるように塗工液1を計量して、市販のアクリル板に塗工し、50℃の恒温乾燥機にて乾燥した。なお、所定の坪量となるようアクリル板上には堰止用の金枠(内寸が180mm×180mm、高さ5cmの金枠)を配置した。次いで、上記アクリル板から乾燥後のシートを剥離し、第1のセルロース繊維(1)と第2のセルロース繊維(1)を含有するシートを得た。なお、アクリル板に接触していた面を平滑面、アクリル板への接触面とは反対側の面(非接触面)を粗面として、後述する方法で平滑度を測定した。
<積層体の製造>
 上記で得られたシートを、カッターで裁断し、寸法100mm×100mmの断片を作製した。シート断片の粗面に、同じ寸法に裁断した下記に記載する市販の樹脂板それぞれを重ね合わせた。次いで、重ね合わせたシート断片と樹脂板を、厚み2mm、寸法200mm×200mmのステンレス板で挟み、常温に設定したミニテストプレス(東洋精機工業社製、MP-WCH)に挿入した。上記ミニテストプレスを3MPaのプレス圧力下、3分かけて所定の温度(下記に記載のプレス温度)まで昇温し、この状態で5分間保持した後、5分かけて30℃まで冷却した。上記の手順により、樹脂板とシートで構成された積層体を得た。
 ・ABS樹脂板      …厚み:1.5mm、プレス温度:150℃
 ・EVA樹脂シート    …厚み:0.8mm、プレス温度:150℃
 ・アクリル板       …厚み:2.0mm、プレス温度:150℃
 ・ポリカーボネート樹脂板 …厚み:2.0mm、プレス温度:150℃
 ・PET樹脂板      …厚み:0.5mm、プレス温度:180℃
(実施例2)
 シート化工程において、シートの坪量が100g/mになるように塗工液1を計量した以外は、実施例1と同様にしてシートを得た。また、得られたシートから実施例1と同様にして積層体を得た。
(実施例3)
 シート化工程において、シートの坪量が180g/mになるように塗工液1を計量した以外は、実施例1と同様にしてシートを得た。また、得られたシートから実施例1と同様にして積層体を得た。
(実施例4)
<第1のセルロース繊維(2)の作製>
[TEMPO酸化パルプの作製]
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(未乾燥)を使用した。この原料パルプに対してアルカリTEMPO酸化処理を次のようにして行った。まず、乾燥質量100質量部相当の上記原料パルプと、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)1.6質量部と、臭化ナトリウム10質量部を、水10000質量部に分散させた。次いで、13質量%の次亜塩素酸ナトリウム水溶液を、1.0gのパルプに対して3.8mmolになるように加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10以上10.5以下に保ち、pHに変化が見られなくなった時点で反応終了と見なし、パルプ中のセルロースにカルボキシ基が導入されたTEMPO酸化パルプを得た。
[洗浄処理]
 次いで、得られたTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、TEMPO酸化後のパルプスラリーを脱水し、脱水シートを得た後、5,000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。また、得られたTEMPO酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。これにより得られたTEMPO酸化パルプについて、後述する測定方法で測定されるカルボキシ基量は、1.30mmol/gだった。また、後述する測定方法で測定される繊維幅は30μmであった。得られたTEMPO酸化パルプにイオン交換水を添加し、固形分濃度が2質量%の第1のセルロース繊維(2)を含む、第1のセルロース繊維分散液(2)を得た。
<第2のセルロース繊維(2)の作製>
[微細化]
 上記方法にて得られた第1のセルロース繊維分散液(2)を用いた以外は、第2のセルロース繊維(1)と同様にして、第2のセルロース繊維(2)を含む、第2のセルロース繊維分散液(2)を得た。X線回折により、この第2のセルロース繊維(2)がセルロースI型結晶を維持していることが確認された。後述する測定方法で測定されるカルボキシ基量は、1.30mmol/gだった。また、後述する測定方法で測定される繊維幅は3~5nmであった。
<シート化及び積層体の製造>
 シート化工程において、第1のセルロース繊維(1)に代えて第1のセルロース繊維(2)を、第2のセルロース繊維(1)に代えて第2のセルロース繊維(2)を用いた以外は、実施例1と同様にしてシートを得た。また、得られたシートから実施例1と同様にして積層体を得た。
(実施例5)
<第1のセルロース繊維(3)の作製>
[亜リン酸化パルプの作製]
 リン酸二水素アンモニウムの代わりに亜リン酸(ホスホン酸)33質量部を用いた以外は、実施例1と同様に操作を行い、パルプ中のセルロースに亜リン酸基を導入した、亜リン酸化パルプを得た。
 これにより得られた亜リン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、パルプに亜リン酸基(ホスホン酸基)が付加されていることが確認された。また、得られた亜リン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。なお、得られた亜リン酸化パルプについて、後述する測定方法で測定される亜リン酸基量(第1解離酸量)は1.51mmol/gだった。なお、総解離酸量は、1.54mmol/gであった。また、後述する測定方法で測定される繊維幅は30μmであった。得られた亜リン酸化パルプにイオン交換水を添加し、固形分濃度が2質量%の第1のセルロース繊維(3)を含む、第1のセルロース繊維分散液(3)を得た。
<第2のセルロース繊維(3)の作製>
[微細化]
 上記方法にて得られた第1のセルロース繊維分散液(3)を用いた以外は、実施例1と同様にして、第2のセルロース繊維(3)を含む、第2のセルロース繊維分散液(3)を得た。X線回折により、この第2のセルロース繊維(2)がセルロースI型結晶を維持していることが確認された。後述する測定方法で測定される亜リン酸基量(第1解離酸量)は1.51mmol/gだった。なお、総解離酸量は、1.54mol/gであった。また、後述する測定方法で測定される繊維幅は3~5nmであった。
<シート化及び積層体の製造>
 シート化工程において、第1のセルロース繊維(1)に代えて第1のセルロース繊維(3)を、第2のセルロース繊維(1)に代えて第2のセルロース繊維(3)を用いた以外は、実施例1と同様にしてシートを得た。また、得られたシートから実施例1と同様にして積層体を得た。
(実施例6)
<第2のセルロース繊維(4)の作製>
 針葉樹晒クラフトパルプ(NBKP)をダブルディスクリファイナーにて変則フリーネスが100mlになるまで叩解し、固形分濃度が2質量%のパルプ分散液を得た。パルプ分散液を固形分濃度が0.2質量%になるようにイオン交換水で希釈し、NiroSoavi社製高圧ホモジナイザー「Panda Plus2000」により処理圧力120MPaで3回の微細化処理を行い、第2のセルロース繊維(4)を含む、第2のセルロース繊維分散液(4)を得た。得られた第2のセルロース繊維(4)の繊維幅は130nmであり、カルボキシ基量は、0.03mmol/gだった。
<シート化及び積層体の製造>
 シート化工程において、第2のセルロース繊維(1)に代えて第2のセルロース繊維(4)を使用した以外は、実施例1と同様にしてシートを得た。また、得られたシートから実施例1と同様にして積層体を得た。
(実施例7)
<第1のセルロース繊維(4)の作製>
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。パルプにイオン交換水を添加し、固形分濃度が2質量%の第1のセルロース繊維(4)を含む、第1のセルロース繊維分散液(4)を得た。第1のセルロース繊維(4)の繊維幅は29μmであり、カルボキシ基量は、0.03mmol/gだった。
<シート化及び積層体の製造>
 シート化工程において、第1のセルロース繊維(1)に代えて第1のセルロース繊維(4)を使用した以外は、実施例1と同様にしてシートを得た。また、得られたシートから実施例1と同様にして積層体を得た。
(実施例8)
<シート化>
 実施例1と同様にして、第1のセルロース繊維(1)と第2のセルロース繊維(1)を含有するシートを得た。
<樹脂塗工>
 溶媒溶解性を高めた特殊ポリカーボネート樹脂(三菱ガス化学社製、ユピゼータ2136)15質量部、トルエン57質量部、メチルエチルケトン28質量部を混合し、樹脂組成物を得た。次いで上記樹脂組成物に密着助剤としてイソシアネート化合物(旭化成ケミカルズ社製、デュラネートTPA-100)を2.25質量部添加して混合し、上記で得られたシートの粗面に、バーコーターにて塗布した。さらに100℃で1時間加熱して硬化させ、樹脂層を形成した。上記の手順により、繊維層(セルロース繊維含有層)の粗面に樹脂層が塗工された樹脂塗工シートを得た。
<積層体の製造>
 得られた樹脂塗工シートから実施例1と同様にして積層体を得た。
(実施例9)
<シート化>
 第1のセルロース繊維(1)が75質量部、第2のセルロース繊維(1)が25質量部、ポリビニルアルコールが10質量部、ポリアミンポリアミド・エピクロロヒドリンが5質量部となるように、第1のセルロース繊維分散液(1)と、第2のセルロース繊維分散液(1)と、ポリビニルアルコール溶液(日本合成化学工業製、ゴーセネックス Z-200)と、ポリアミンポリアミド・エピクロロヒドリン溶液(荒川化学工業製、アラフィックス 255)を混合して塗工液1を得た。塗工液1の固形分濃度は0.5質量%に調製した。
 次いで、得られるシートの坪量が100g/mになるように塗工液1を計量して、市販のアクリル板に塗工し、50℃の恒温乾燥機にて乾燥した。次いで、乾燥したシート上に、再度、得られるシートの坪量が100g/mになるように塗工液1を計量して塗工し、50℃の恒温乾燥機にて乾燥した。このようにして、シートの合計の坪量が200g/mになるシートを作製した。次いで、上記アクリル板から乾燥後のシートを剥離し、第1のセルロース繊維(1)と第2のセルロース繊維(1)を含有するシートを得た。なお、アクリル板に接触していた面を平滑面、アクリル板への接触面とは反対側の面(非接触面)を粗面として、後述する方法で平滑度を測定した。また、得られたシートから実施例1と同様にして積層体を得た。
(比較例1)
 シート化工程において、第2のセルロース繊維(1)が100質量部、ポリビニルアルコールが10質量部、ポリアミンポリアミド・エピクロロヒドリンが5質量部となるように配合した以外は、実施例1と同様にしてシートを得た。比較例1のシートでは、セルロース繊維として、第2のセルロース繊維(1)のみを含む。また、得られたシートから実施例1と同様にして積層体を得た。
(比較例2)
 シート化工程において、シートの坪量が100g/mになるようにした以外は、比較例1と同様にしてシートを得た。また、得られたシートから実施例1と同様にして積層体を得た。
(比較例3)
 シート化工程において、シートの坪量が180g/mになるようにした以外は、比較例1と同様にしてシートを得た。また、得られたシートから実施例1と同様にして積層体を得た。
<測定方法>
(リンオキソ酸基量の測定)
 第2のセルロース繊維(1)及び(3)のイオン性基量は、対象となる微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した微細繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
 イオン交換樹脂による処理は、上記微細繊維状セルロース含有スラリーに、体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ(株)、コンディショニング済を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の微細繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を5秒に10μLずつ加えながら、スラリーが示すpHの値の変化を計測することにより行った。なお、滴定開始の15分前から窒素ガスをスラリーに吹き込みながら滴定を行った。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ観測される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ(図1)。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中の第1解離酸量と等しくなる。また、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。なお、滴定開始から第1終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値をリンオキソ酸基量(第1解離酸量)(mmol/g)とした。
 なお、第1のセルロース繊維(1)及び(3)については、第1のセルロース繊維(1)及び(3)にイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製し、このスラリーを、湿式微粒化装置((株)スギノマシン製、スターバースト)で200MPaの圧力にて2回処理して得られた分散液に対して、上述した方法と同様にアルカリを用いた滴定を行った。
(カルボキシ基量の測定)
 第2のセルロース繊維(2)及び(4)の微細繊維状セルロースのカルボキシ基量は、中和滴定法により測定した。対象となる微細繊維状セルロース分散液にイオン交換水を添加して、含有量を0.2質量%とし、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。イオン交換樹脂による処理は、0.2質量%の微細繊維状セルロース含有分散液に体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ(株)製、コンディショニング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有分散液に、0.1Nの水酸化ナトリウム水溶液を加えながら、スラリーが示すpHの値の変化を計測することにより行った。水酸化ナトリウム水溶液を加えながらpHの変化を観察すると、図2に示されるような滴定曲線が得られる。図2に示されるように、この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が一つ観測される。この増分の極大点を第1終点と呼ぶ。ここで、図2における滴定開始から第1終点までの領域を第1領域と呼ぶ。第1領域で必要としたアルカリ量が、滴定に使用したスラリー中のカルボキシ基量と等しくなる。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の微細繊維状セルロース含有分散液中の固形分(g)で除すことで、カルボキシ基の導入量(mmol/g)を算出した。
 なお、上述のカルボキシ基導入量(mmol/g)は、カルボキシ基の対イオンが水素イオン(H)であるときの繊維状セルロースの質量1gあたりの置換基量(以降、カルボキシ基量(酸型)と呼ぶ)を示している。
 なお、第1のセルロース繊維(2)については、第1のセルロース繊維(2)にイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製し、このスラリーを、湿式微粒化装置((株)スギノマシン製、スターバースト)で200MPaの圧力にて2回処理して得られた分散液に対して、上述した方法と同様にアルカリを用いた滴定を行った。
<第1のセルロース繊維の繊維幅の測定>
 第1のセルロース繊維の繊維幅は、カヤーニオートメーション社のカヤーニ繊維長測定器(FS-200形)を用いて測定することにより求めた。
<第2のセルロース繊維の繊維幅の測定>
 第2のセルロース繊維の繊維幅を下記の方法で測定した。湿式微粒化装置にて処理をして得られた上記微細繊維状セルロース分散液の上澄み液を、微細繊維状セルロースの濃度が0.01質量%以上0.1質量%以下となるように水で希釈し、親水化処理したカーボングリッド膜に滴下した。これを乾燥した後、酢酸ウラニルで染色し、透過型電子顕微鏡(日本電子社製、JEOL-2000EX)により観察した。
(坪量)
 JIS P 8124:2011に準拠してシートの坪量を測定した。
(紙厚)
 JIS P 8118:2014に準拠してシートの厚みを測定した。
(密度)
 JIS P 8124:2011に準拠してシートの坪量を測定し、JIS P 8118:2014に準拠してシートの厚みを測定し、これらの値からシートの密度を算出した。
(平滑度)
 JIS P 8155:2010に準拠してシートの両表面の平滑度をそれぞれ測定した。平滑面の平滑度/粗面の平滑度の値が10以上の場合を表裏差有、10未満の場合を表裏差無とした。ただし、平滑度の値が0秒の場合は、平滑度1秒として平滑面の平滑度/粗面の平滑度の値を計算した。
(透気度)
 J.TAPPI-5の王研式透気度法に準拠してシートの透気度を測定した。
(ヘーズ及び全光線透過率)
 JIS K 7136:2000に準拠し、ヘーズメータ(村上色彩技術研究所社製、HM-150 )を用いてシートのヘーズを測定した。また、JIS K 7361:2000に準拠し、ヘーズメータ(村上色彩技術研究所社製、HM-150)を用いてシートの全光線透過率を測定した。
(樹脂密着性)
 実施例及び比較例で得た樹脂板と繊維シートの積層体の密着性を、以下の手順で評価した。樹脂層と繊維シートの積層体を、曲げ試験機(テンシロンRTC-1250A)の三点曲げ治具上に静置した。三点曲げ冶具のスパン長を300mm、試験速度を5mm/分に設定し、曲げ応力を付与した。曲げ破壊に至った後に樹脂層と繊維シートの積層体を観察し、以下の基準に従って評価を行った。
 ○:層間に剥離が認められず、積層構成を維持している。
 ×:層間の少なくとも一部に剥離が認められ、層が分離しており、積層構成が維持されていない。
(シート外観)
 作製したシート(サイズ縦18cm、横18cm)20枚(総面積0.648m分)、における撚れ個数を目視にて確認した。1mあたりの撚れの個数に換算した。なお、「撚れ」とは、図3の点線枠内に示されるようなシート表面に確認される白い塊部分のことをいう。
(保水度)
 J.TAPPI-26に準拠して第1のセルロース繊維の保水度を測定した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例で得られたシートは樹脂との密着性が良好であった。一方、比較例で得られたシートにおいては樹脂との密着性が劣っていた。
 なお、第1のセルロース繊維としてイオン性置換基を有するセルロース繊維を用いた実施例では、シート中の撚れの発生も抑制されていた。

Claims (14)

  1.  繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維とを含むシートであって、
     前記シートの一方の面のJIS P 8155:2010に準じて測定した平滑度が10秒以下であり、前記シートの他方の面のJIS P 8155:2010に準じて測定した平滑度が100秒以上である、シート。
  2.  前記シートは単層シートである、請求項1に記載のシート。
  3.  前記第1のセルロース繊維は、イオン性置換基を有する請求項1又は2に記載のシート。
  4.  前記第2のセルロース繊維は、イオン性置換基を有する請求項1~3のいずれか1項に記載のシート。
  5.  前記第1のセルロース繊維の含有量が、セルロース繊維の全質量に対して10質量%以上である請求項1~4のいずれか1項に記載のシート。
  6.  前記第1のセルロース繊維の含有量が、セルロース繊維の全質量に対して70質量%以上である請求項1~5のいずれか1項に記載のシート。
  7.  ヘーズが20%以上である請求項1~6のいずれか1項に記載のシート。
  8.  全光線透過率が70%以上である請求項1~7のいずれか1項に記載のシート。
  9.  透気度が10000秒以上である請求項1~8のいずれか1項に記載のシート。
  10.  前記第1のセルロース繊維のイオン性置換基の導入量は0.3mmol/g以上である請求項3~9のいずれか1項に記載のシート。
  11.  前記第1のセルロース繊維の保水度が220%以上である請求項1~10のいずれか1項に記載のシート。
  12.  請求項1~11のいずれか1項に記載のシートを2層以上含む、複層シート。
  13.  請求項1~12のいずれか1項に記載のシートの少なくとも一方の面上に樹脂層を有する、積層体。
  14.  前記シートと前記樹脂層の間にさらに接着層を有する請求項13に記載の積層体。
PCT/JP2020/025046 2019-07-01 2020-06-25 シート及び積層体 WO2021002273A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021529989A JP7452542B2 (ja) 2019-07-01 2020-06-25 シート及び積層体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019122734 2019-07-01
JP2019-122734 2019-07-01

Publications (1)

Publication Number Publication Date
WO2021002273A1 true WO2021002273A1 (ja) 2021-01-07

Family

ID=74100253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025046 WO2021002273A1 (ja) 2019-07-01 2020-06-25 シート及び積層体

Country Status (2)

Country Link
JP (1) JP7452542B2 (ja)
WO (1) WO2021002273A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016210830A (ja) * 2015-04-30 2016-12-15 国立大学法人 東京大学 セルロースフィルム、及びその製造方法
JP2017128033A (ja) * 2016-01-20 2017-07-27 王子ホールディングス株式会社 積層体及び積層体の製造方法
WO2018062502A1 (ja) * 2016-09-30 2018-04-05 王子ホールディングス株式会社 パルプ、スラリー、シート、積層体及びパルプの製造方法
JP2019031770A (ja) * 2017-08-09 2019-02-28 王子ホールディングス株式会社 シート
JP2019090158A (ja) * 2019-03-08 2019-06-13 王子ホールディングス株式会社 セルロースシート
JP2019214806A (ja) * 2018-06-12 2019-12-19 王子ホールディングス株式会社 シート及びシートの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016210830A (ja) * 2015-04-30 2016-12-15 国立大学法人 東京大学 セルロースフィルム、及びその製造方法
JP2017128033A (ja) * 2016-01-20 2017-07-27 王子ホールディングス株式会社 積層体及び積層体の製造方法
WO2018062502A1 (ja) * 2016-09-30 2018-04-05 王子ホールディングス株式会社 パルプ、スラリー、シート、積層体及びパルプの製造方法
JP2019031770A (ja) * 2017-08-09 2019-02-28 王子ホールディングス株式会社 シート
JP2019214806A (ja) * 2018-06-12 2019-12-19 王子ホールディングス株式会社 シート及びシートの製造方法
JP2019090158A (ja) * 2019-03-08 2019-06-13 王子ホールディングス株式会社 セルロースシート

Also Published As

Publication number Publication date
JPWO2021002273A1 (ja) 2021-01-07
JP7452542B2 (ja) 2024-03-19

Similar Documents

Publication Publication Date Title
JP7006278B2 (ja) シート
JP6822420B2 (ja) 樹脂複合体及び樹脂複合体の製造方法
US11591481B2 (en) Cellulose fiber-containing composition, production method thereof, and film
JP2019031770A (ja) シート
JP7346873B2 (ja) シートの製造方法
KR102494816B1 (ko) 시트
JP2020172738A (ja) シート及びシートの製造方法
WO2021002273A1 (ja) シート及び積層体
WO2021107079A1 (ja) 積層体の製造方法
JP7119609B2 (ja) シート及びシートの製造方法
JP6607327B1 (ja) シート
JP7346874B2 (ja) 微細繊維状セルロース含有分散液の製造方法及び微細繊維状セルロース含有シートの製造方法
JP7065797B2 (ja) 繊維状セルロース含有組成物、その製造方法、及び膜
JP2020172035A (ja) 積層体
JP2020152926A (ja) 繊維状セルロース及び繊維状セルロースの製造方法
JP6741106B1 (ja) シート及びシートの製造方法
JP7480744B2 (ja) パルプ繊維含有プレシート
JP7480743B2 (ja) 炭素繊維含有プレシート
JP2022103718A (ja) シート及び積層体
JP7346870B2 (ja) シートの製造方法及びシート
JP6828759B2 (ja) シート及び積層体
WO2019203239A1 (ja) シート及び積層体
JP2022157194A (ja) 繊維状セルロース、分散液及びシート
JP2020164726A (ja) シート
JP2022164312A (ja) シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834177

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20834177

Country of ref document: EP

Kind code of ref document: A1