WO2021002135A1 - データ送信装置、データ送信システム、及び、データ送信方法 - Google Patents

データ送信装置、データ送信システム、及び、データ送信方法 Download PDF

Info

Publication number
WO2021002135A1
WO2021002135A1 PCT/JP2020/021708 JP2020021708W WO2021002135A1 WO 2021002135 A1 WO2021002135 A1 WO 2021002135A1 JP 2020021708 W JP2020021708 W JP 2020021708W WO 2021002135 A1 WO2021002135 A1 WO 2021002135A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
image frame
amount
multiplexed
per unit
Prior art date
Application number
PCT/JP2020/021708
Other languages
English (en)
French (fr)
Inventor
大志 河津
浅野 弘明
智広 森川
宜史 河口
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021002135A1 publication Critical patent/WO2021002135A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • H04N21/2365Multiplexing of several video streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/24Monitoring of processes or resources, e.g. monitoring of server load, available bandwidth, upstream requests
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • This disclosure relates to a data transmission device, a data transmission system, and a data transmission method.
  • Patent Document 1 discloses a technique for improving an error correction capability by setting a large amount of data in a processing unit for error correction coding.
  • error correction coding can compensate for data lost during wireless communication
  • data loss may occur due to other factors as well. For example, data loss may occur when the bit rate of stream data exceeds the maximum communication speed of wireless communication.
  • the amount of data in the processing unit of error correction coding is set large as shown in Patent Document 1, the error correction capability is improved, but the processing of error correction coding is performed until the amount of data in the processing unit is accumulated. Since it cannot be started, the start of sending stream data is delayed.
  • the non-limiting embodiment of the present disclosure contributes to the provision of a technique for suppressing the loss of stream data in wireless communication and reducing the delay in starting transmission of stream data.
  • the amount of data per unit time of at least one of the receiving unit that receives the first image frame and the second image frame and the first image frame and the second image frame If it is less than a predetermined first threshold value, the first image frame and the second image frame are multiplexed to generate multiplexed data, and a unit of both the first image frame and the second image frame.
  • the amount of data per hour is equal to or greater than a predetermined first threshold value, the timing of multiplexing the second image frame is delayed to generate multiplexed data, and a certain amount of the multiplexed data is accumulated.
  • a control unit that performs error correction coding processing on the accumulated data to generate stream data, and a transmission unit that transmits the stream data are provided.
  • the figure which shows the configuration example of the data transmission system which concerns on one Embodiment The figure which shows the structural example of the data transmission apparatus which concerns on one Embodiment
  • the figure which shows the configuration example of the terminal which concerns on one Embodiment The figure for demonstrating the example in the case of multiplexing the reference image frame received from each camera device as it is.
  • FIG. 1 shows a configuration example of a data transmission system.
  • the data transmission system 1 includes a plurality of camera devices 10, a data transmission device 100, and a wireless communication device 20.
  • the plurality of camera devices 10 are connected to the data transmission device 100 through the communication network N1.
  • the communication network N1 is, for example, a wired LAN (Local Area Network) configured based on the Ethernet standard, or a wireless LAN configured based on a standard such as IEEE802.11a / b / g / n / ac / ad. is there.
  • the data transmission device 100 connects to the wireless communication device 20 through the communication network N2.
  • the communication network N2 is, for example, a wired LAN such as an Ethernet standard or a wireless LAN configured based on a standard such as IEEE802.11a / b / g / n / ac / ad.
  • the communication network N1 and the communication network N2 are not limited to LANs, and may be a wider area network such as a WAN (Wide Area Network) straddling a plurality of LANs.
  • WAN Wide Area Network
  • the camera device 10 generates moving image data composed of a plurality of image frames from the captured image, and streams the generated moving image data through the communication network N1. For example, the camera device 10 sequentially transmits image frames constituting moving image data.
  • the camera device 10 is, for example, a 4K remote video camera.
  • the video data is, for example, H. It is constructed based on the 264 codec.
  • the moving image data is composed of a plurality of image frames.
  • the image frame is classified into a reference image frame (for example, an I picture frame) and a difference image frame with respect to the reference image frame (for example, a P picture frame and / or a B picture frame).
  • the amount of data in the reference image frame is larger than that in the difference image frame.
  • a unit group composed of a reference image frame and a difference image frame with respect to the reference image frame is called a GOP (Group Of Picture).
  • the codec of the moving image data may be a codec that uses a combination of a reference image frame and a difference image frame. Not limited to 264. For example, MPEG-1, MPEG-2, MPEG-4, H.M. 261 and H. 263 or H. It may be 265 mag.
  • the data transmission device 100 receives moving image data from each camera device 10. For example, the data transmission device 100 sequentially receives image frames constituting moving image data from each camera device 10. The data transmission device 100 time-multiplexes the image frames received from each camera device 10 to generate one multiplexed data. When the multiplexed data is accumulated for the processing unit of the error correction coding, the data transmission device 100 performs the error correction coding process on the accumulated data and generates the stream data. The data transmission device 100 transmits stream data to the wireless communication device 20. The details of the data transmission device 100 will be described later.
  • the wireless communication device 20 constitutes, for example, a wireless LAN (communication network N2) based on a standard such as IEEE802.11a / b / g / n / ac / ad.
  • the wireless communication device 20 receives stream data from the data transmission device 100.
  • the wireless communication device 20 transmits stream data to each terminal 200 by multicast through the communication network N2.
  • the wireless communication device 20 may be read as other terms such as an access point, a wireless router, and a wireless base station.
  • the terminal 200 receives the stream data transmitted by multicast from the wireless communication device 20 through the communication network N2.
  • the terminal 200 performs error correction / decoding processing on the received stream data and extracts the multiplexed data.
  • the terminal 200 extracts one moving image data from the multiplexed data.
  • the terminal 200 reproduces the extracted moving image data and displays it on the screen.
  • the terminal 200 may be, for example, a PC, a mobile phone, a tablet terminal, a television terminal, or the like.
  • a plurality of moving image data may be extracted from the multiplexed data.
  • FIG. 2 shows a configuration example of the data transmission device 100.
  • the data transmission device 100 includes a reception unit 101, a control unit 102, and a transmission unit 103.
  • the control unit 102 includes a delay multiplexing determination unit 111, a multiplexing unit 112, a rate detection unit 113, a data addition unit 114, and an error correction coding unit 115.
  • the receiving unit 101 sequentially receives the moving image data (image frame) from each camera device 10, and transmits each received moving image data (image frame) to the multiplexing unit 112.
  • the delay multiplexing determination unit 111 multiplexes at least one image frame in the time multiplexing of the plurality of image frames in the multiplexing unit 112 based on the amount of data of each image frame transmitted from the receiving unit 101 to the multiplexing unit 112. Determine whether to delay the timing. For example, when the delay multiplexing determination unit 111 transmits the first image frame and the second image frame having a data amount equal to or more than a predetermined first threshold value from the receiving unit 101 to the multiplexing unit 112, the second image frame is second. It is determined that the multiple timing of the image frame is delayed.
  • the delay multiplexing determination unit 111 determines that the multiplexing timing of at least one image frame is delayed, the delay multiplexing determination unit 111 transmits an instruction for delaying the multiplex timing (hereinafter referred to as "delayed multiplexing instruction") to the multiplexing unit.
  • delayed multiplexing instruction an instruction for delaying the multiplex timing
  • the multiplexing unit 112 time-multiplexes the image frames received from the receiving unit 101 from each camera device 10 to generate one multiplexed data. At this time, when the multiplexing unit 112 receives the delay multiplexing instruction from the delay multiplexing determination unit 111, the multiplexing unit 112 delays the multiplexing timing of at least one image frame (for example, the second image frame). The multiplexing unit 112 transmits the generated multiplexing data to the data addition unit 114. The details of the multiplexing unit 112 will be described later.
  • the rate detection unit 113 detects the data amount of the multiplexed data and transmits the detected data amount of the multiplexed data to the data addition unit 114. For example, the rate detection unit 113 detects the amount of multiplexed data per unit time (for example, bit rate) and transmits it to the data addition unit 114.
  • the data addition unit 114 determines the amount of dummy data to be added to the multiplexed data based on the amount of the multiplexed data received from the rate detection unit 113. The data addition unit 114 adds dummy data of the determined data amount to the multiplexing data received from the multiplexing unit 112. The data addition unit 114 transmits the multiplexed data with dummy data to the error correction coding unit 115. The details of the data addition unit 114 will be described later.
  • the error correction coding unit 115 performs error correction coding processing on the multiplexed data with dummy data received from the data addition unit 114, and generates stream data. For example, when the multiplexing data with dummy data is accumulated for the processing unit of the error correction coding, the error correction coding unit 115 processes the error correction coding for the accumulated data (data block). To generate stream data.
  • the error correction coding process is, for example, a process based on AL (Application Layer) -FEC using LDPC (Low-Density Parity-Check). In this case, in the error correction coding process, redundant data for error correction is added to the data block. That is, the bit rate of the stream data is higher than the bit rate of the multiplexed data.
  • the error correction coding unit 115 transmits the stream data to the transmission unit 103.
  • the size of the processing unit of error correction coding (that is, the size of the data block) may be arbitrarily set according to the required error correction capability.
  • the transmission unit 103 transmits the stream data received from the error correction coding unit 115 to the wireless communication device 20.
  • FIG. 3 shows a configuration example of the terminal 200.
  • the terminal 200 has a receiving unit 201 and a control unit 202.
  • the control unit 202 includes an error correction / decoding unit 211, a demultiplexing unit 212, a moving image data selection unit 213, and a reproduction unit 214.
  • the receiving unit 201 receives stream data from the wireless communication device 20 through the communication network N2.
  • the receiving unit 201 transmits the received stream data to the error correction decoding unit 211.
  • the error correction / decoding unit 211 performs an error correction / decoding process on the stream data received from the reception unit 201, and extracts the error-corrected multiplexed data.
  • the error correction / decoding process may be an AL-FEC-based process using an LDPC, similar to the error correction coding process described above.
  • the error correction decoding unit 211 transmits the extracted multiplexing data to the demultiplexing unit 212.
  • the demultiplexing unit 212 extracts a plurality of moving image data from the multiplexing data received from the error correction decoding unit 211.
  • the demultiplexing unit 212 transmits the extracted plurality of moving image data to the moving image data selection unit 213.
  • the video data selection unit 213 selects one of a plurality of video data received from the demultiplexing unit 212, for example, based on an instruction from the user of the terminal 200.
  • the moving image data selection unit 213 transmits one selected moving image data to the reproduction unit 214.
  • the playback unit 214 reproduces the video data received from the video data selection unit 213.
  • the moving image data is H.
  • the 264 codec H. Decoding processing based on the 264 codec is performed.
  • the reproduction unit 214 displays the reproduced moving image data on the screen of the terminal 200, for example.
  • FIG. 4 shows an example in which the reference image frames received from each camera device 10 are multiplexed as they are.
  • FIG. 5 shows an example in which a part of the reference image frame received from each camera device 10 is delayed and multiplexed.
  • the horizontal axis indicates the time
  • the vertical axis indicates the amount of data
  • the black bar graph indicates the amount of data per unit time of the reference image frame
  • the white bar graph indicates the difference image frame.
  • the amount of data per unit time is, for example, a bit rate.
  • the amount of data per unit time of the reference image frame is larger than that of the difference image frame. Therefore, as shown in FIG. 4, when the reference image frames are received from each camera device 10 at the same timing, if the plurality of reference image frames are multiplexed as they are to generate the multiplexed data, the unit time of the multiplexed data is increased. The amount of data in is very large. Then, as described above, redundant data is added to the multiplexed data in the error correction coding unit 115, so that the amount of stream data per unit time becomes even larger.
  • the amount of data per unit time (for example, bit rate) of stream data exceeds the amount of data that can be transmitted per unit time (for example, bit rate) of the wireless communication device 20, a loss (lost) occurs in the wireless communication of stream data. It is not preferable because it is obtained.
  • the amount of data that can be transmitted per unit time of the wireless communication device 20 may be referred to as the maximum communication speed.
  • the delay multiplexing determination unit 111 causes the multiplexing unit 112 to execute the multiplex delay process for avoiding that the amount of the multiplexed data per unit time becomes very large. Is determined.
  • the delay multiplex determination unit 111 makes the following determinations (A1), (A2), or (A3).
  • (A1) In the delay multiplexing determination unit 111, two image frames (first image frame and second image frame) of the plurality of image frames transmitted from the receiving unit 101 to the multiplexing unit 112 are respectively.
  • a multiplex delay instruction is transmitted to the multiplexing unit 112.
  • the multiplexing unit 112 receives the multiplex delay instruction, the multiplexing unit 112 delays the multiplexing timing of either one of the first image frame and the second image frame (for example, the second image frame).
  • the multiplexing unit 112 delays the multiplexing timing of either one of the first image frame and the second image frame (for example, the second image frame).
  • the delay multiplexing determination unit 111 transmits a multiplex delay instruction to the multiplexing unit 112 when two or more reference image frames are transmitted from the receiving unit 101 to the multiplexing unit 112 at the same timing. ..
  • the multiplexing unit 112 receives the multiple delay instruction, the multiplexing unit 112 multiplexes one reference image frame among the two or more reference image frames received from the receiving unit 101, and delays the multiplexing timing of the other reference image frames. Let me. As a result, it is possible to prevent two or more reference image data from being multiplexed on one multiplexed data (one multiplexing timing). Therefore, it is possible to avoid that the amount of the multiplexed data per unit time becomes very large. Note that "receiving two or more image frames at the same timing" does not mean receiving two or more image frames at the same time, but means receiving two or more image frames within the same period. is there.
  • (A3) In the delay multiplexing determination unit 111, when two or more reference image frames are transmitted from the receiving unit 101 to the multiplexing unit 112 at the same timing and the reference image frames are tentatively multiplexed, per unit time.
  • target data amount the amount of data per unit time of a predetermined target
  • multiple delay instructions are totally input to the multiplexing unit 112.
  • the multiplexing unit 112 receives the multiple delay instruction, the multiplexing unit 112 delays the multiplexing timing of the number of reference image frames that exceeds the target data amount among the plurality of reference image frames received from the receiving unit 101. As a result, it is possible to prevent the amount of multiplexed data per unit time from exceeding the target amount of data.
  • the method of delaying the multiplex timing of the reference image frame may be either (B1) or (B2) below.
  • (B1) Delay of multiple timing For moving image data including a reference image frame selected as a target, the multiple timing of image frames after the reference image frame is delayed.
  • (B2) Delay of multiple timing The multiple timing of the reference image frame selected as the target is delayed, and the multiple timing of other image frames is maintained.
  • the order of the image frames may be changed in the moving image data including the reference image frame.
  • RTP Real-time Transport Protocol
  • the terminal 200 can know the order of the image frames, so that the moving image data can be reproduced normally.
  • the delay multiplexing instruction may include the maximum time during which the multiplexing unit 112 can delay the multiplexing timing. This maximum time may be less than or equal to the transmission interval of the reference image frame or less than or equal to the GOP period. As a result, it is possible to prevent the moving image data to be delayed by multiple timings from being delayed more than expected.
  • the trigger for delaying the multiple timing is not limited to the reference image frame.
  • an image frame in which the amount of data per unit time is equal to or greater than a predetermined first threshold value may be used as a trigger for delaying the multiple timing.
  • any of the reference image frame and the difference image frame may be used as long as the amount of data per unit time is equal to or greater than the first threshold value.
  • the delay multiplex determination unit 111 sets the first threshold value to a value smaller than the amount of data per unit time of the reference image frame and larger than the amount of data per unit time of the difference image frame.
  • the received image frame is a reference image frame or a difference image frame.
  • the data amount of the reference image frame is statistically larger than the data amount of the difference image frame, but the data amount of the reference image frame may be smaller than the data amount of the difference image frame depending on the shooting conditions and the like. There can also be. Therefore, when the first threshold value is set to a value smaller than the amount of data per unit time of the reference image frame and larger than the amount of data per unit time of the difference image frame, the reference image frame and the difference image instead of the amount of data per unit time of the frame, the average value of the amount of past data may be used.
  • FIG. 6 shows an example in which dummy data is added to the multiplexed data.
  • the bar graph with a horizontal line pattern shows the amount of dummy data per unit time.
  • the error correction coding unit 115 performs error correction coding processing on the data block of the processing unit. If the size of the data block is set large, the error correction capability is improved, but the time until the data for the data block is accumulated becomes long. Therefore, the delay in starting the transmission of stream data becomes large. Further, even in the receiving terminal 200, the decoding of the error correction code cannot be started until the data of the processing unit is accumulated, which is one of the causes of further delay in obtaining the decoding result, and the transmission delay of the entire system. Leads to. On the contrary, if the size of the data block is set small, the error correction capability is reduced, but the time until the data for the data block is accumulated is shortened. Therefore, the delay in starting the transmission of stream data becomes small.
  • the data addition unit 114 dummy the multiplexed data so that the data amount per unit time of the multiplexed data does not exceed the target data amount, which is an example of the second threshold value, and is as close as possible to the target data amount.
  • Add data For example, the data addition unit 114 calculates the data amount of dummy data that can be added within a range that does not exceed the target data amount from the data amount per unit time of the multiplexed data received from the rate detection unit 113. Then, the data addition unit 114 adds dummy data of the calculated data amount to the multiplexed data.
  • the amount of data per unit time of the multiplexed data transmitted from the data addition unit 114 becomes large, so even if the size of the data block in the error correction coding unit 115 is set large, the data block amount can be set in a short time. Data is accumulated. As a result, both high error correction capability and low delay of stream data can be achieved at the same time. Further, by limiting the data amount of the dummy data to a range not exceeding the target data amount, it is possible to prevent the bit rate of the stream data from exceeding the maximum communication speed of the wireless communication device 20.
  • the maximum communication speed may be read as the upper limit of the communication band.
  • the method of calculating the amount of dummy data is not limited to the above.
  • the amount of dummy data may be calculated as follows.
  • the transmission unit 103 monitors the amount of stream data transmitted to the wireless communication device 20 per unit time, and feeds back the monitored data amount per unit time to the data addition unit 114.
  • the data addition unit 114 is a unit when the multiplexed data is converted into stream data based on the amount of data per unit time of the fed-back stream data and the amount of data per unit time of the past multiplexed data. Predict the fluctuation value of the amount of data per hour.
  • the data addition unit 114 calculates the amount of dummy data that can be added within the range in which the amount of stream data per unit time does not exceed the maximum communication speed of the wireless communication device 20 based on the predicted fluctuation value. To do. Existing techniques may be applied to predict fluctuations. For example, the available bandwidth may be estimated based on the communication state information (delay time (RTT) and packet loss rate) according to TFRC (TCP-Friendly Rate Control) defined in RFC5348 and / or RFC3448. Alternatively, the available bandwidth may be estimated based on the ICMP RTT.
  • RTT delay time
  • TFRC TCP-Friendly Rate Control
  • the data addition unit 114 may add dummy data by a method different from the above.
  • the data addition unit 114 may add dummy data of a predetermined amount of data to the multiplexed data.
  • the transmission data generation unit does not have to have the rate detection unit 113.
  • the data addition unit 114 may add data for a service different from the stream distribution of the moving image data instead of the dummy data.
  • the data addition unit 114 may add data for displaying character information, link information, / or advertisement information and the like on the terminal 200 instead of the dummy data.
  • FIG. 7 shows an example in which each camera device 10 avoids transmitting a reference image frame at the same timing.
  • the bar graph of the dotted line frame shown in FIG. 7 shows the image frame before the shift.
  • each camera device 10 transmits an image frame in synchronization with the clock 11.
  • one camera device 10 delays the synchronization between the image frame and the clock by a small amount (for example, one to several clocks). Let me.
  • the multiplexing unit 112 of the data transmission device 100 from receiving two reference image frames at the same timing. That is, it is possible to avoid that the amount of the multiplexed data per unit time becomes very large (for example, it becomes the first threshold value or more).
  • the data transmission device 100 does not have to have the delay multiplexing determination unit 111. That is, the multiplexing unit 112 does not have to perform the delay multiplexing process described above.
  • the camera device 10 that delays the synchronization between the image frame and the clock may store setting information indicating the amount of delay.
  • FIG. 8 shows an example in which the error correction coding unit 115 adds redundant data to the multiplexed data.
  • the shaded bar graph shows the amount of redundant data per unit time.
  • the data transmission device 100 does not have to have the rate detection unit 113 and the data addition unit 114. Then, the error correction coding unit 115 adds redundant data to the multiplexed data received from the multiplexing unit 112 so that the size of the data block in the error correction coding process is satisfied. Redundant data may be added within a range in which the stream data does not exceed the maximum communication speed of the wireless communication device 20. As a result, even if the amount of the multiplexed data received from the multiplexing unit 112 per unit time is low, the error correction coding unit 115 does not wait until the data for the data block is accumulated, and immediately makes an error. The process of correction coding can be executed.
  • the delay in starting the transmission of stream data can be shortened.
  • the error correction capability changes according to the amount of data per unit time of the multiplexed data. ..
  • FIG. 9 shows an example in which the amount of stream data per unit time is leveled in the wireless communication device 20.
  • the wireless communication device 20 may receive stream data having a very large amount of data per unit time, as shown in the upper part of FIG.
  • the wireless communication device 20 adjusts the stream data so that the amount of data per unit time (for example, bit rate) becomes equal to or less than the maximum communication speed.
  • the wireless communication device 20 divides a part of the stream data of a portion where the amount of data per unit time is very large (for example, equal to or higher than the third threshold value), and divides the stream data. Data is transmitted sequentially. As a result, it is possible to avoid the loss of stream data due to the amount of stream data per unit time (for example, bit rate) exceeding the maximum communication speed of the wireless communication device 20.
  • the configuration of the data transmission device 100 described above is an example.
  • the data transmission device 100 does not have to have the rate detection unit 113 and the data addition unit 114.
  • the data transmission device 100 does not have the delay multiplexing determination unit 111, and the multiplexing unit 112 does not have to perform the delay multiplexing processing described above.
  • the data transmission device 100 includes a reception unit 101, a control unit 102, and a transmission unit 103.
  • the receiving unit 101 receives the first image frame that constitutes the first moving image data and the second image frame that constitutes the second moving image data.
  • the control unit 102 multiplexes the first image frame and the second image frame when the amount of data per unit time of at least one of the first image frame and the second image frame is less than a predetermined first threshold value. When the amount of data per unit time of both the first image frame and the second image frame is equal to or more than a predetermined first threshold value, the timing of multiplexing the second image frame is delayed.
  • the transmission unit 103 transmits stream data. With this configuration, it is possible to prevent the amount of data of a part of the stream data per unit time from exceeding the amount of data that can be transmitted per unit time (maximum communication speed) in wireless communication. Therefore, it is possible to prevent the loss of stream data in wireless communication.
  • the control unit 102 When the amount of data per unit time of the multiplexed data is less than a predetermined second threshold value, the control unit 102 adds dummy data to the multiplexed data and accumulates a certain amount of multiplexed data with the dummy data. If so, the error correction coding process may be performed on the stored data. With this configuration, data for processing units of error correction coding can be accumulated in a short time. Therefore, the delay in starting the transmission of stream data can be reduced.
  • the control unit 102 may add the dummy data to the multiplexed data within a range in which the amount of the multiplexed data with the dummy data per unit time does not exceed the second threshold value.
  • the control unit 102 may increase the amount of redundant data for error correction in the error correction coding process.
  • the error correction coding process can be started without waiting for the accumulation of data for the error correction coding processing unit. Therefore, the delay in starting the transmission of stream data can be reduced.
  • the first threshold value may be a value smaller than the amount of data per unit time of the reference image frame in the moving image data and larger than the amount of data per unit time of the difference image frame in the moving image data.
  • the data transmission system 1 includes a first camera device 10, a second camera device 10, a data transmission device 100, and a wireless communication device 20.
  • the first camera device 10 transmits the first image frame constituting the first moving image data.
  • the second camera device 10 transmits a second image frame constituting the second moving image data.
  • the data transmission device 100 receives the first image frame and the second image frame, multiplexes the first image frame and the second image frame to generate multiplexed data, and a certain amount of the multiplexed data is accumulated.
  • the accumulated data is subjected to error correction coding processing to generate stream data, and the stream data is transmitted.
  • the wireless communication device 20 transmits stream data to the terminal 200 by wireless communication.
  • the second camera device 10 uses a second image frame in which the amount of data per unit time is equal to or greater than a predetermined first threshold value, and a first image frame in which the amount of data per unit time is equal to or greater than the first threshold value. Send at a different timing. With this configuration, it is possible to prevent the amount of data of a part of the stream data per unit time from exceeding the amount of data that can be transmitted per unit time (maximum communication speed) in wireless communication. Therefore, it is possible to prevent the loss of stream data in wireless communication.
  • the wireless communication device 20 may transmit stream data to the terminal 200 by multicast. As a result, stream data can be transmitted to a plurality of terminals 200 at the same time, so that transmission delay can be less likely to occur even if the number of terminals 200 increases. When the number of terminals 200 is small, or when the quality of stream data is controlled by receiving feedback from the terminals 200, the wireless communication device 20 may transmit the stream data by unicast.
  • the data transmission device 100 executes the following processing. That is, the data transmission device 100 receives the first image frame and the second image frame, and the amount of data per unit time of at least one of the first image frame and the second image frame is less than a predetermined first threshold value.
  • the first image frame and the second image frame are multiplexed to generate the multiplexed data, and the amount of data per unit time of both the first image frame and the second image frame is a predetermined first.
  • the multiplexing timing of the second image frame is delayed to generate the multiplexed data, and when a certain amount of the multiplexed data is accumulated, the error correction coding process is performed on the accumulated data.
  • FIG. 10 is a diagram showing a hardware configuration of a computer that realizes the functions of each device by a program.
  • the computer 2100 includes an input device 2101 such as a keyboard, a mouse, a touch pen and / or a touch pad, an output device 2102 such as a display or a speaker, a CPU (Central Processing Unit) 2103, a GPU (Graphics Processing Unit) 2104, and a ROM (Read Only).
  • an input device 2101 such as a keyboard, a mouse, a touch pen and / or a touch pad
  • an output device 2102 such as a display or a speaker
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • ROM Read Only
  • RAM RandomAccessMemory
  • hard disk device or storage device 2107 such as SSD (SolidStateDrive)
  • recording medium such as DVD-ROM (DigitalVersatileDiskReadOnlyMemory) or USB (UniversalSerialBus) memory
  • a reading device 2108 for reading information from the computer and a transmitting / receiving device 2109 for communicating via a network are provided, and each unit is connected by a bus 2110.
  • the reading device 2108 reads the program from the recording medium on which the program for realizing the function of each of the above devices is recorded, and stores the program in the storage device 2107.
  • the transmission / reception device 2109 communicates with the server device connected to the network, and stores the program downloaded from the server device for realizing the function of each device in the storage device 2107.
  • the CPU 2103 copies the program stored in the storage device 2107 to the RAM 2106, and sequentially reads and executes the instructions included in the program from the RAM 2106, thereby realizing the functions of the above devices.
  • the reception unit 101 and the transmission unit 103 are realized by the transmission / reception device 2109, and the control unit 102 is realized by the CPU 2103.
  • the receiving unit 201 is realized by the transmission / reception device 2109, and the control unit 202 is realized by the CPU 2103.
  • This disclosure can be realized by software, hardware, or software linked with hardware.
  • Each functional block used in the description of the above embodiment is partially or wholly realized as an LSI which is an integrated circuit, and each process described in the above embodiment is partially or wholly. It may be controlled by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of one chip so as to include a part or all of functional blocks.
  • the LSI may include data input and output.
  • LSIs may be referred to as ICs, system LSIs, super LSIs, and ultra LSIs depending on the degree of integration.
  • the method of making an integrated circuit is not limited to LSI, and may be realized by a dedicated circuit, a general-purpose processor, or a dedicated processor. Further, an FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
  • FPGA Field Programmable Gate Array
  • the present disclosure may be realized as digital processing or analog processing.
  • Non-limiting examples of communication devices include telephones (mobile phones, smartphones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital stills / video cameras, etc.). ), Digital players (digital audio / video players, etc.), wearable devices (wearable cameras, smart watches, tracking devices, etc.), game consoles, digital book readers, telehealth telemedicines (remote health) Care / medicine prescription) devices, vehicles with communication functions or mobile transportation (automobiles, airplanes, ships, etc.), and combinations of the above-mentioned various devices can be mentioned.
  • communication devices include telephones (mobile phones, smartphones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital stills / video cameras, etc.). ), Digital players (digital audio / video players, etc.), wearable devices (wearable cameras, smart watches, tracking devices, etc.), game consoles, digital book readers, telehealth telemedicines (
  • Communication devices are not limited to those that are portable or mobile, but are not portable or fixed, any type of device, device, system, such as a smart home device (home appliances, lighting equipment, smart meters or It also includes measuring instruments, control panels, etc.), vending machines, and any other "Things” that can exist on the IoT (Internet of Things) network.
  • a smart home device home appliances, lighting equipment, smart meters or It also includes measuring instruments, control panels, etc.
  • vending machines and any other "Things” that can exist on the IoT (Internet of Things) network.
  • Communication includes data communication using a combination of these, in addition to data communication using a cellular system, wireless LAN system, communication satellite system, etc.
  • the communication device also includes devices such as controllers and sensors that are connected or connected to communication devices that perform the communication functions described in the present disclosure.
  • devices such as controllers and sensors that are connected or connected to communication devices that perform the communication functions described in the present disclosure.
  • controllers and sensors that generate control and data signals used by communication devices that perform the communication functions of the communication device.
  • Communication devices also include infrastructure equipment that communicates with or controls these non-limiting devices, such as base stations, access points, and any other device, device, or system. ..
  • One aspect of the present disclosure is useful for a system for transmitting video data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Studio Devices (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

データ送信装置は、第1画像フレーム及び第2画像フレームを受信する受信部(101)と、第1画像フレーム及び第2画像フレームの少なくとも一方の単位時間当たりのデータ量が、予め定められた第1閾値未満である場合、第1画像フレーム及び第2画像フレームを多重して多重化データを生成し、第1画像フレーム及び第2画像フレームの両方の単位時間当たりのデータ量が、予め定められた第1閾値以上である場合、第2画像フレームの多重のタイミングを遅延させて多重化データを生成し、多重化データが一定量蓄積された場合、当該蓄積されたデータに対して誤り訂正符号化の処理を行ってストリームデータを生成する制御部(102)と、ストリームデータを送信する送信部(103)とを備える。

Description

データ送信装置、データ送信システム、及び、データ送信方法
 本開示は、データ送信装置、データ送信システム、及び、データ送信方法に関する。
 サーバが、無線通信を通じて動画データをストリーミング配信し、端末が、サーバからストリーミング配信された動画データを、ほぼリアルタイムに受信及び再生するシステムが知られている。無線通信の途中に生じ得るデータ誤りを端末が訂正できるように、サーバは、ストリームデータに対してFEC(Forward Error Correction)のような誤り訂正符号化の処理を行う。特許文献1には、誤り訂正符号化の処理単位のデータ量を大きく設定することにより、誤り訂正能力を向上させる技術が開示されている。
特開2007-324699号公報
 誤り訂正符号化は、無線通信の途中で欠落したデータを補償できるものの、他の要因によってもデータの欠落は生じ得る。例えば、ストリームデータのビットレートが、無線通信の最大通信速度を超える場合もデータの欠落が生じ得る。一方、特許文献1に示すように誤り訂正符号化の処理単位のデータ量を大きく設定した場合、誤り訂正能力は向上するものの、処理単位のデータ量が蓄積されるまで誤り訂正符号化の処理を開始できないため、ストリームデータの送信開始が遅延してしまう。
 本開示の非限定的な実施例は、無線通信におけるストリームデータの欠落を抑止し、また、ストリームデータの送信開始の遅延を低減する技術の提供に資する。
 本開示の一態様に係るデータ送信装置は、第1画像フレーム及び第2画像フレームを受信する受信部と、前記第1画像フレーム及び前記第2画像フレームの少なくとも一方の単位時間当たりのデータ量が、予め定められた第1閾値未満である場合、前記第1画像フレーム及び前記第2画像フレームを多重して多重化データを生成し、前記第1画像フレーム及び前記第2画像フレームの両方の単位時間当たりのデータ量が、予め定められた第1閾値以上である場合、前記第2画像フレームの多重のタイミングを遅延させて多重化データを生成し、前記多重化データが一定量蓄積された場合、当該蓄積されたデータに対して誤り訂正符号化の処理を行ってストリームデータを生成する制御部と、前記ストリームデータを送信する送信部と、を備える。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示によれば、ストリームデータの欠落を抑制し、また、ストリームデータ送信開始の遅延を低減できる。
 本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
一実施の形態に係るデータ送信システムの構成例を示す図 一実施の形態に係るデータ送信装置の構成例を示す図 一実施の形態に係る端末の構成例を示す図 各カメラ装置から受信した基準画像フレームをそのまま多重する場合の例を説明するための図 一実施の形態に係る各カメラ装置から受信した基準画像フレームの一部を遅延多重する場合の例を説明するための図 一実施の形態に係る多重化データに対してダミーデータを付加した例を説明するための図 一実施の形態に係る各カメラ装置が同じタイミングで基準画像フレームを送信することを回避する例を説明するための図 一実施の形態に係る誤り訂正符号化部において多重化データに冗長データを付加する例を説明するための図 一実施の形態に係る無線通信装置においてストリームデータのビットレートを平準化させる例を説明するための図 本開示の実施の形態に係るハードウェアの構成例を示す図
 以下、図面を適宜参照して、本発明の実施の形態について、詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。
(一実施の形態)
<システム構成>
 図1は、データ送信システムの構成例を示す。データ送信システム1は、複数のカメラ装置10、データ送信装置100、及び、無線通信装置20を有する。
 複数のカメラ装置10は、通信ネットワークN1を通じて、データ送信装置100に接続する。通信ネットワークN1は、例えば、Ethernet規格に基づいて構成される有線LAN(Local Area Network)、又は、IEEE802.11a/b/g/n/ac/ad等の規格に基づいて構成される無線LANである。データ送信装置100は、通信ネットワークN2を通じて、無線通信装置20に接続する。通信ネットワークN2は、例えば、Ethernet規格等の有線LAN、又は、IEEE802.11a/b/g/n/ac/ad等の規格に基づいて構成される無線LANである。また、通信ネットワークN1および通信ネットワークN2は、LANに限られるものではなく、複数のLANを跨いだWAN(Wide Area Network)等のより広域のネットワークであっても構わない。
 カメラ装置10は、撮影した画像から、複数の画像フレームによって構成される動画データを生成し、その生成した動画データを、通信ネットワークN1を通じて、ストリーミング送信する。例えば、カメラ装置10は、動画データを構成する画像フレームを順次送信する。カメラ装置10は、例えば、4Kリモートビデオカメラである。
 動画データは、例えば、H.264コーデックに基づいて構成される。この場合、動画データは、複数の画像フレームから構成される。画像フレームは、基準画像フレーム(例えばIピクチャフレーム)と、基準画像フレームに対する差分画像フレーム(例えばPピクチャフレーム及び/又はBピクチャフレーム)とに分類される。基準画像フレームのデータ量は、差分画像フレームよりも大きい。基準画像フレームとその基準画像フレームに対する差分画像フレームとによって構成される単位グループは、GOP(Group Of Picture)と呼ばれる。なお、動画データのコーデックは、基準画像フレームと差分画像フレームとの組み合わせを用いるコーデックであればよく、H.264に限られない。例えば、MPEG-1、MPEG-2、MPEG-4、H.261、H.263、又は、H.265等であってもよい。
 データ送信装置100は、各カメラ装置10から、動画データを受信する。例えば、データ送信装置100は、各カメラ装置10から、動画データを構成する画像フレームを順次受信する。データ送信装置100は、各カメラ装置10から受信した画像フレームを時間多重して、1つの多重化データを生成する。データ送信装置100は、多重化データが誤り訂正符号化の処理単位分蓄積された場合、その蓄積されたデータに対して誤り訂正符号化の処理を行い、ストリームデータを生成する。データ送信装置100は、ストリームデータを、無線通信装置20へ送信する。なお、データ送信装置100の詳細については後述する。
 無線通信装置20は、例えば、IEEE802.11a/b/g/n/ac/ad等の規格に基づく無線LAN(通信ネットワークN2)を構成する。無線通信装置20は、データ送信装置100から、ストリームデータを受信する。無線通信装置20は、通信ネットワークN2を通じて、ストリームデータを、マルチキャストにて各端末200へ送信する。無線通信装置20は、アクセスポイント、無線ルータ、及び、無線基地局といった他の用語に読み替えられてもよい。
 端末200は、通信ネットワークN2を通じて、無線通信装置20からマルチキャストにて送信されたストリームデータを受信する。端末200は、受信したストリームデータに対して誤り訂正復号の処理を行い、多重化データを抽出する。端末200は、多重化データから1つの動画データを抽出する。端末200は、抽出した動画データを再生し、画面に表示する。端末200は、例えば、PC、携帯電話、タブレット端末、テレビ端末等であってよい。なお、端末200が複数の画面でストリームデータを再生する機能を持つ場合には、多重化データから複数の動画データを抽出してもよい。
<データ送信装置の構成>
 図2は、データ送信装置100の構成例を示す。データ送信装置100は、受信部101、制御部102、及び、送信部103を有する。制御部102は、遅延多重判定部111、多重化部112、レート検出部113、データ付加部114、及び、誤り訂正符号化部115を有する。
 受信部101は、各カメラ装置10から動画データ(画像フレーム)を順次受信し、受信した各動画データ(画像フレーム)を多重化部112へ送信する。
 遅延多重判定部111は、受信部101から多重化部112へ送信される各画像フレームのデータ量に基づいて、多重化部112における複数の画像フレームの時間多重において、少なくとも1つの画像フレームの多重タイミングを遅延させるか否かを判定する。例えば、遅延多重判定部111は、受信部101から多重化部112に対して、予め定められた第1閾値以上のデータ量の第1画像フレーム及び第2画像フレームが送信された場合、第2画像フレームの多重タイミングを遅延させると判定する。遅延多重判定部111は、少なくとも1つの画像フレームの多重タイミングを遅延させると判定した場合、多重タイミングの遅延の指示(以下「遅延多重指示」という)を、多重化部へ送信する。なお、遅延多重判定部111の詳細については後述する。
 多重化部112は、受信部101から受信した、各カメラ装置10からの画像フレームを時間多重し、1つの多重化データを生成する。このとき、多重化部112は、遅延多重判定部111から遅延多重指示を受信した場合、少なくとも1つの画像フレーム(例えば第2画像フレーム)の多重タイミングを遅延させる。多重化部112は、生成した多重化データを、データ付加部114へ送信する。なお、多重化部112の詳細については後述する。
 レート検出部113は、多重化データのデータ量を検出し、その検出した多重化データのデータ量をデータ付加部114へ送信する。例えば、レート検出部113は、多重化データの単位時間当たりのデータ量(例えばビットレート)を検出し、データ付加部114へ送信する。
 データ付加部114は、レート検出部113から受信した多重化データのデータ量に基づいて、多重化データに付加するダミーデータのデータ量を決定する。データ付加部114は、多重化部112から受信した多重化データに、その決定したデータ量のダミーデータを付加する。データ付加部114は、ダミーデータ付きの多重化データを、誤り訂正符号化部115へ送信する。なお、データ付加部114の詳細については後述する。
 誤り訂正符号化部115は、データ付加部114から受信したダミーデータ付きの多重化データに対して誤り訂正符号化の処理を行い、ストリームデータを生成する。例えば、誤り訂正符号化部115は、ダミーデータ付きの多重化データが、誤り訂正符号化の処理単位分蓄積された場合、その蓄積されたデータ(データブロック)に対して誤り訂正符号化の処理を行い、ストリームデータを生成する。誤り訂正符号化の処理は、例えば、LDPC(Low-Density Parity-Check)を用いたAL(Application Layer)-FECに基づく処理である。この場合、誤り訂正符号化の処理において、データブロックに対して誤り訂正用の冗長データが付加される。つまり、ストリームデータのビットレートは、多重化データのビットレートよりも大きい。誤り訂正符号化部115は、ストリームデータを送信部103へ送信する。なお、誤り訂正符号化の処理単位のサイズ(つまりデータブロックのサイズ)は、求められる誤り訂正能力に応じて任意に設定されてもよい。
 送信部103は、誤り訂正符号化部115から受信したストリームデータを、無線通信装置20へ送信する。
<端末の構成>
 図3は、端末200の構成例を示す。端末200は、受信部201、及び、制御部202を有する。制御部202は、誤り訂正復号部211、逆多重化部212、動画データ選択部213、及び、再生部214を有する。
 受信部201は、通信ネットワークN2を通じて、無線通信装置20から、ストリームデータを受信する。受信部201は、受信したストリームデータを誤り訂正復号部211へ送信する。
 誤り訂正復号部211は、受信部201から受信したストリームデータに対して誤り訂正復号の処理を行い、誤り訂正された多重化データを抽出する。誤り訂正復号の処理は、上述した誤り訂正符号化の処理と同様、LDPCを用いたAL-FECに基づく処理であってよい。誤り訂正復号部211は、抽出した多重化データを逆多重化部212へ送信する。
 逆多重化部212は、誤り訂正復号部211から受信した多重化データから複数の動画データを抽出する。逆多重化部212は、抽出した複数の動画データを動画データ選択部213へ送信する。
 動画データ選択部213は、例えば、端末200のユーザからの指示に基づいて、逆多重化部212から受信した複数の動画データのうちの1つを選択する。動画データ選択部213は、選択した1つの動画データを再生部214へ送信する。
 再生部214は、動画データ選択部213から受信した動画データを再生する。例えば、動画データがH.264コーデックの場合、H.264コーデックに基づくデコード処理を行う。再生部214は、再生した動画データを、例えば、端末200の画面に表示する。
<遅延多重判定部及び多重化部の詳細>
 図4及び図5を参照して、遅延多重判定部111及び多重化部112の詳細について説明する。図4は、各カメラ装置10から受信した基準画像フレームをそのまま多重する場合の例を示す。図5は、各カメラ装置10から受信した基準画像フレームの一部を遅延多重する場合の例を示す。なお、図4及び図5に示すグラフにおいて、横軸は時間を示し、縦軸はデータ量を示し、黒色の棒グラフは基準画像フレームの単位時間当たりデータ量を示し、白色の棒グラフは差分画像フレームの単位時間当たりデータ量を示す。これは、他の図面においても同様である。単位時間当たりのデータ量は、例えば、ビットレートである。
 上述したように、基準画像フレームの単位時間当たりのデータ量は、差分画像フレームよりも大きい。よって、図4に示すように、各カメラ装置10から同じタイミングで基準画像フレームを受信した場合、それら複数の基準画像フレームをそのまま多重して多重化データを生成すると、多重化データの単位時間当たりのデータ量が非常に大きくなってしまう。そして、この多重化データには、上述した通り、誤り訂正符号化部115において冗長データが付加されるので、ストリームデータの単位時間当たりのデータ量はさらに大きくなってしまう。ストリームデータの単位時間当たりのデータ量(例えばビットレート)が無線通信装置20の単位時間当たりに送信可能なデータ量(例えばビットレート)を超える場合、ストリームデータの無線通信において欠落(ロスト)が生じ得るため、好ましくない。なお、本説明では、無線通信装置20の単位時間当たりに送信可能なデータ量を、最大通信速度と表記する場合がある。
 そこで、遅延多重判定部111は、図5に示すように、多重化データの単位時間当たりのデータ量が非常に大きくなることを回避するための多重遅延処理を多重化部112に実行させるか否かを判定する。例えば、遅延多重判定部111は、次の(A1)、(A2)又は(A3)の判定を行う。
 (A1)遅延多重判定部111は、受信部101から多重化部112に対して送信された複数の画像フレームのうち、2つの画像フレーム(第1画像フレーム及び第2画像フレーム)が、それぞれ、単位時間当たりのデータ量が所定の第1閾値以上である場合、多重化部112に対して多重遅延指示を送信する。多重化部112は、この多重遅延指示を受信した場合、第1画像フレーム及び第2画像フレームのうちの何れか一方(例えば第2画像フレーム)の多重タイミングを遅延させる。これにより、1つの多重化データ(1回の多重タイミング)に、単位時間当たりのデータ量が第1閾値以上の画像フレームが2つ以上多重されることを回避できる。よって、多重化データの単位時間当たりのデータ量が非常に大きくなることを回避できる。
 (A2)遅延多重判定部111は、受信部101から多重化部112に対して同じタイミングに2つ以上の基準画像フレームが送信された場合、多重化部112に対して多重遅延指示を送信する。多重化部112は、この多重遅延指示を受信した場合、受信部101から受信した2つ以上の基準画像フレームのうち、1つの基準画像フレームを多重し、他の基準画像フレームの多重タイミングを遅延させる。これにより、1つの多重化データ(1回の多重タイミング)に、2以上の基準画像データが多重されることを回避できる。よって、多重化データの単位時間当たりのデータ量が非常に大きくなることを回避できる。なお、「同じタイミングに2つ以上の画像フレームを受信する」とは、同時刻に2つ以上の画像フレームを受信する意味ではなく、同じ期間内に2つ以上の画像フレームを受信する意味である。
 (A3)遅延多重判定部111は、受信部101から多重化部112に対して同じタイミングに2つ以上の基準画像フレームが送信され、かつ、それら基準画像フレームを仮に多重した場合の単位時間当たりのデータ量が所定の目標の単位時間当たりのデータ量(以下「目標データ量」という)以上となる場合、多重化部112に対して多重遅延指示を総インする。多重化部112は、この多重遅延指示を受信した場合、受信部101から受信した複数の基準画像フレームのうち、目標データ量を超過する分の数の基準画像フレームの多重タイミングを遅延させる。これにより、多重化データの単位時間当たりのデータ量が目標データ量以上となることを回避できる。
 基準画像フレームの多重のタイミングを遅延させる方法は、次の(B1)又は(B2)の何れでもよい。
 (B1)多重タイミングの遅延対象に選択された基準画像フレームを含む動画データについて、当該基準画像フレーム以降の画像フレームの多重タイミングを遅延させる。
 (B2)多重タイミングの遅延対象に選択された基準画像フレームの多重タイミングを遅延させ、他の画像フレームの多重タイミングを維持する。この場合、当該基準画像フレームを含む動画データにおいて、画像フレームの順序が入れ替わる可能性がある。しかし、例えば、RTP(Real-time Transport Protocol)を用いることにより、端末200は、画像フレームの順序が判るので、正常に動画データを再生できる。
 なお、遅延多重指示には、多重化部112が多重タイミングを遅延させることができる最大時間が含まれてよい。この最大時間は、基準画像フレームの送信間隔以下、或いは、GOP期間以下であってよい。これにより、多重タイミングの遅延対象の動画データが想定以上に遅延することを防止できる。
 また、上述では、基準画像フレームを、多重タイミングを遅延させるトリガーとした場合の例を説明したが、多重タイミングを遅延させるトリガーは、基準画像フレームに限られない。例えば、単位時間当たりのデータ量が予め定められた第1閾値以上の画像フレームを、多重タイミングを遅延させるトリガーとしてもよい。この場合は、単位時間当たりのデータ量が第1閾値以上の画像フレームであれば、基準画像フレーム及び差分画像フレームの何れであってもよい。また、遅延多重判定部111は、第1閾値を、基準画像フレームの単位時間当たりのデータ量よりも小さく、かつ、差分画像フレームの単位時間当たりのデータ量よりも大きい値に設定することにより、受信した画像フレームが、基準画像フレーム又は差分画像フレームの何れであるかを判定してもよい。なお、基準画像フレームのデータ量は、統計的には差分画像フレームのデータ量よりも大きくなるが、撮影条件等によっては、基準画像フレームのデータ量が差分画像フレームのデータ量よりも小さくなることもあり得る。そのため、第1閾値を、基準画像フレームの単位時間当たりのデータ量よりも小さく、かつ、差分画像フレームの単位時間当たりのデータ量よりも大きい値に設定する場合には、基準画像フレーム及び差分画像フレームの単位時間当たりのデータ量に代えて、過去のデータ量の平均値等を使用してもよい。
<データ付加部の詳細>
 図6を参照して、データ付加部114の詳細について説明する。図6は、多重化データに対してダミーデータを付加した例を示す。図6において、横線模様の棒グラフは、ダミーデータの単位時間当たりのデータ量を示す。
 上述したように、誤り訂正符号化部115は、処理単位のデータブロックに対して、誤り訂正符号化の処理を行う。データブロックのサイズを大きく設定すると、誤り訂正能力は向上するものの、データブロック分のデータが蓄積されるまでの時間が長くなる。よって、ストリームデータの送信開始の遅延が大きくなる。また、受信側の端末200においても処理単位のデータが蓄積されるまで誤り訂正符号の復号を開始できないため、復号結果を得るまでの時間がさらに遅延する原因の1つとなり、システム全体の伝送遅延につながる。反対に、データブロックのサイズを小さく設定すると、誤り訂正能力は低下するものの、データブロック分のデータが蓄積されるまでの時間が短くなる。よって、ストリームデータの送信開始の遅延は小さくなる。
 そこで、データ付加部114は、多重化データの単位時間当たりのデータ量が、第2閾値の一例である目標データ量を超えない範囲で、目標データ量にできるだけ近づくように、多重化データにダミーデータを付加する。例えば、データ付加部114は、レート検出部113から受信した多重化データの単位時間当たりのデータ量から、目標データ量を超えない範囲で付加可能なダミーデータのデータ量を算出する。そして、データ付加部114は、多重化データに、その算出したデータ量のダミーデータを付加する。これにより、データ付加部114から送信される多重化データの単位時間当たりのデータ量が大きくなるので、誤り訂正符号化部115におけるデータブロックのサイズを大きく設定しても、短時間でデータブロック分のデータが蓄積される。これにより、高い誤り訂正能力と、ストリームデータの低遅延とを両立できる。また、ダミーデータのデータ量を、目標データ量を超えない範囲に制限することにより、ストリームデータのビットレートが無線通信装置20の最大通信速度を超えることを抑止できる。なお、最大通信速度は、通信帯域上限と読み替えられてもよい。
 なお、ダミーデータのデータ量の算出方法は、上述に限られない。例えば、ダミーデータのデータ量は、次のように算出されてもよい。送信部103は、無線通信装置20へ送信するストリームデータの単位時間当たりのデータ量を監視して、監視した単位時間当たりのデータ量をデータ付加部114へフィードバックする。データ付加部114は、そのフィードバックされたストリームデータの単位時間当たりのデータ量と、過去の多重化データの単位時間当たりのデータ量とに基づき、多重化データがストリームデータに変換される際の単位時間当たりのデータ量の変動値を予測する。そして、データ付加部114は、その予測した変動値に基づいて、ストリームデータの単位時間当たりのデータ量が無線通信装置20の最大通信速度を超えない範囲で付加可能なダミーデータのデータ量を算出する。変動値の予測には、既存の技術が適用されてよい。例えば、RFC5348及び/又はRFC3448に規定されたTFRC(TCP-Friendly Rate Control)にしたがって、通信状態情報(遅延時間(RTT)及びパケットロス率)に基づいて可用帯域の推定が行われてもよい。或いは、ICMPのRTTに基づいて可用帯域の推定が行われてもよい。
 なお、データ付加部114は、上述とは異なる方法でダミーデータを付加してもよい。例えば、データ付加部114は、所定のデータ量のダミーデータを多重化データに付加してもよい。この場合、送信データ生成部は、レート検出部113を有さなくてもよい。
 また、データ付加部114は、ダミーデータに代えて、動画データのストリーム配信と異なるサービス用のデータを付加してもよい。例えば、データ付加部114は、ダミーデータに代えて、文字情報、リンク情報及び/又は広告情報等を端末200に表示させるためのデータを付加してよい。
<変形例1>
 図7を参照して、本実施の形態の変形例1について説明する。図7は、各カメラ装置10が、同じタイミングで基準画像フレームを送信することを回避する例を示す。なお、図7に示す点線枠の棒グラフは、シフト前の画像フレームを示す。
 変形例1では、図7に示すように、各カメラ装置10は、画像フレームをクロック11に同期させて送信する。ここで、或る2つのカメラ装置10が、同じタイミングのクロックで基準画像フレームを送信する場合、一方のカメラ装置10は、画像フレームとクロックとの同期を少し(例えば1から数クロック分)遅延させる。これにより、データ送信装置100の多重化部112において、同じタイミングで2つの基準画像フレームが受信されることを回避できる。すなわち、多重化データの単位時間当たりのデータ量が非常に大きくなること(例えば第1閾値以上となること)を回避できる。なお、この場合、データ送信装置100は、遅延多重判定部111を有しなくてもよい。すなわち、多重化部112は、上述した遅延多重処理を行わなくてもよい。また、画像フレームとクロックとの同期を遅延させるカメラ装置10には、遅延量を示す設定情報が格納されてもよい。
<変形例2>
 図8を参照して、本実施の形態の変形例2について説明する。図8は、誤り訂正符号化部115において多重化データに冗長データを付加する例を示す。図8において、斜線模様の棒グラフは、冗長データの単位時間当たりのデータ量を示す。
 変形例2では、データ送信装置100は、レート検出部113及びデータ付加部114を有しなくてよい。そして、誤り訂正符号化部115は、多重化部112から受信した多重化データに対して、誤り訂正符号化の処理におけるデータブロックのサイズが満たされるように、冗長データを付加する。冗長データは、ストリームデータが無線通信装置20の最大通信速度を超えない範囲で付加されてよい。これにより、誤り訂正符号化部115は、多重化部112から受信した多重化データの単位時間当たりのデータ量が低い場合でも、データブロック分のデータが蓄積されるまで待機すること無く、直ちに誤り訂正符号化の処理を実行できる。よって、ストリームデータの送信開始の遅延を短縮できる。ただし、この場合、冗長データの単位時間当たりのデータ量が多重化データの単位時間当たりのデータ量によって変化するため、誤り訂正能力は、多重化データの単位時間当たりのデータ量に応じて変化する。
<変形例3>
 図9を参照して、本実施の形態の変形例3について説明する。図9は、無線通信装置20においてストリームデータの単位時間当たりのデータ量を平準化させる例を示す。
 変形例3では、データ送信装置100は、遅延多重判定部111を有さず、多重化部112において上述した遅延多重処理を行わなくてもよい。この場合、無線通信装置20は、図9の上段に示すような、一部の単位時間当たりのデータ量が非常に大きいストリームデータを受信する可能性がある。無線通信装置20は、このようなストリームデータを受信した場合、単位時間当たりのデータ量(例えばビットレート)が最大通信速度以下になるようにストリームデータを調整する。例えば、図9の下段に示すように、無線通信装置20は、一部の単位時間当たりのデータ量が非常に大きい(例えば第3閾値以上である)部分のストリームデータを分割し、その分割したデータを順次送信する。これにより、ストリームデータの単位時間当たりのデータ量(例えばビットレート)が無線通信装置20の最大通信速度を超えることによるストリームデータの欠落を回避できる。
<その他の変形例>
 上述したデータ送信装置100の構成は一例である。例えば、データ送信装置100は、レート検出部113及びデータ付加部114を有しなくてよい。或いは、データ送信装置100は、遅延多重判定部111を有さず、多重化部112において上述した遅延多重処理を行わなくてもよい。
(本開示のまとめ)
 本開示の一態様に係るデータ送信装置100は、受信部101、制御部102、及び、送信部103を備える。受信部101は、第1動画データを構成する第1画像フレーム及び第2動画データを構成する第2画像フレームを受信する。制御部102は、第1画像フレーム及び第2画像フレームの少なくとも一方の単位時間当たりのデータ量が、予め定められた第1閾値未満である場合、第1画像フレーム及び第2画像フレームを多重して多重化データを生成し、第1画像フレーム及び第2画像フレームの両方の単位時間当たりのデータ量が、予め定められた第1閾値以上である場合、第2画像フレームの多重のタイミングを遅延させて多重化データを生成し、多重化データが一定量蓄積された場合、当該蓄積されたデータに対して誤り訂正符号化の処理を行ってストリームデータを生成する。送信部103は、ストリームデータを送信する。この構成により、ストリームデータの一部の単位時間当たりのデータ量が無線通信において単位時間当たりに送信可能なデータ量(最大通信速度)を超えることを抑止できる。よって、無線通信におけるストリームデータの欠落を抑止できる。
 制御部102は、多重化データの単位時間当たりのデータ量が予め定めされた第2閾値未満の場合、多重化データに対してダミーデータを付加し、ダミーデータ付きの多重化データが一定量蓄積された場合、当該蓄積されたデータに対して前記誤り訂正符号化の処理を行ってよい。この構成により、短時間で誤り訂正符号化の処理単位分のデータが蓄積される。よって、ストリームデータの送信開始の遅延を低減できる。
 制御部102は、ダミーデータ付きの多重化データの単位時間当たりのデータ量が第2閾値を超えない範囲で、多重化データに対して前記ダミーデータを付加してよい。この構成により、ダミーデータを付加した場合のストリームデータの単位時間当たりのデータ量が無線通信の最大通信速度を超えることを抑止できる。よって、無線通信におけるストリームデータの欠落を抑止できる。
 制御部102は、多重化データの単位時間当たりのデータ量が予め定められた第2閾値未満の場合、誤り訂正符号化の処理において、誤り訂正用の冗長データのデータ量を増やしてよい。この構成により、誤り訂正符号化の処理単位分のデータの蓄積を待つこと無く、誤り訂正符号化の処理を開始できる。よって、ストリームデータの送信開始の遅延を低減できる。
 第1閾値は、動画データにおける基準画像フレームの単位時間当たりのデータ量よりも小さく、かつ、動画データにおける差分画像フレームの単位時間当たりのデータ量よりも大きい値であってよい。
 本開示の一態様に係るデータ送信システム1は、第1カメラ装置10、第2カメラ装置10、データ送信装置100、及び、無線通信装置20を備える。第1カメラ装置10は、第1動画データを構成する第1画像フレームを送信する。第2カメラ装置10は、第2動画データを構成する第2画像フレームを送信する。データ送信装置100は、第1画像フレーム及び第2画像フレームを受信し、第1画像フレーム及び第2画像フレームを多重して多重化データを生成し、多重化データが一定量蓄積された場合、当該蓄積されたデータに対して誤り訂正符号化の処理を行ってストリームデータを生成し、ストリームデータを送信する。無線通信装置20は、ストリームデータを無線通信によって端末200へ送信する。ここで、第2カメラ装置10は、単位時間当たりのデータ量が予め定められた第1閾値以上である第2画像フレームを、単位時間当たりのデータ量が第1閾値以上である第1画像フレームと異なるタイミングで送信する。この構成により、ストリームデータの一部の単位時間当たりのデータ量が無線通信において単位時間当たりに送信可能なデータ量(最大通信速度)を超えることを抑止できる。よって、無線通信におけるストリームデータの欠落を抑止できる。
 無線通信装置20は、ストリームデータをマルチキャストによって端末200へ送信してもよい。これにより、同時に複数の端末200に対してストリームデータを送信することができるため、端末200の数が増加しても伝送遅延を発生しにくくすることができる。なお、端末200の数が少ない場合や、端末200からのフィードバックを受けてストリームデータの品質の制御等を行う場合、無線通信装置20は、ストリームデータをユニキャストで送信してもよい。
 本開示の一態様に係るデータ送信装置100は、次の処理を実行する。すなわち、データ送信装置100は、第1画像フレーム及び第2画像フレームを受信し、第1画像フレーム及び第2画像フレームの少なくとも一方の単位時間当たりのデータ量が、予め定められた第1閾値未満である場合、第1画像フレーム及び第2画像フレームを多重して多重化データを生成し、第1画像フレーム及び第2画像フレームの両方の単位時間当たりのデータ量が、予め定められた第1閾値以上である場合、第2画像フレームの多重のタイミングを遅延させて多重化データを生成し、多重化データが一定量蓄積された場合、当該蓄積されたデータに対して誤り訂正符号化の処理を行ってストリームデータを生成し、ストリームデータを送信する。この方法により、ストリームデータの一部の単位時間当たりのデータ量が無線通信において単位時間当たりに送信可能なデータ量(最大通信速度)を超えることを抑止できる。よって、無線通信におけるストリームデータの欠落を抑止できる。
 以上、本開示に係る実施形態について図面を参照して詳述してきたが、上述したデータ送信装置100、及び、端末200の機能は、コンピュータプログラムにより実現され得る。
 図10は、各装置の機能をプログラムにより実現するコンピュータのハードウェア構成を示す図である。このコンピュータ2100は、キーボード、マウス、タッチペン及び/又はタッチパッドなどの入力装置2101、ディスプレイ又はスピーカーなどの出力装置2102、CPU(Central Processing Unit)2103、GPU(Graphics Processing Unit)2104、ROM(Read Only Memory)2105、RAM(Random Access Memory)2106、ハードディスク装置又はSSD(Solid State Drive)などの記憶装置2107、DVD-ROM(Digital Versatile Disk Read Only Memory)又はUSB(Universal Serial Bus)メモリなどの記録媒体から情報を読み取る読取装置2108、ネットワークを介して通信を行う送受信装置2109を備え、各部はバス2110により接続される。
 そして、読取装置2108は、上記各装置の機能を実現するためのプログラムを記録した記録媒体からそのプログラムを読み取り、記憶装置2107に記憶させる。あるいは、送受信装置2109が、ネットワークに接続されたサーバ装置と通信を行い、サーバ装置からダウンロードした上記各装置の機能を実現するためのプログラムを記憶装置2107に記憶させる。
 そして、CPU2103が、記憶装置2107に記憶されたプログラムをRAM2106にコピーし、そのプログラムに含まれる命令をRAM2106から順次読み出して実行することにより、上記各装置の機能が実現される。
 例えば、図2に示すデータ送信装置100において、受信部101及び送信部103は送受信装置2109によって実現され、制御部102はCPU2103によって実現される。例えば、図3に示す端末200において、受信部201は送受信装置2109によって実現され、制御部202はCPU2103によって実現される。
 本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。
 上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 2019年7月3日出願の特願2019-124562の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の一態様は、動画データを送信するためのシステムに有用である。
 1 データ送信システム
 10 カメラ装置
 20 無線通信装置
 100 データ送信装置
 101 受信部
 102 制御部
 103 送信部
 111 遅延多重判定部
 112 多重化部
 113 レート検出部
 114 データ付加部
 115 誤り訂正符号化部
 200 端末
 201 受信部
 202 制御部
 211 誤り訂正復号部
 212 逆多重化部
 213 動画データ選択部
 214 再生部

Claims (9)

  1.  第1画像フレーム及び第2画像フレームを受信する受信部と、
     前記第1画像フレーム及び前記第2画像フレームの少なくとも一方の単位時間当たりのデータ量が、予め定められた第1閾値未満である場合、前記第1画像フレーム及び前記第2画像フレームを多重して多重化データを生成し、前記第1画像フレーム及び前記第2画像フレームの両方の単位時間当たりのデータ量が、予め定められた第1閾値以上である場合、前記第2画像フレームの多重のタイミングを遅延させて多重化データを生成し、前記多重化データが一定量蓄積された場合、当該蓄積されたデータに対して誤り訂正符号化の処理を行ってストリームデータを生成する制御部と、
     前記ストリームデータを送信する送信部と、
     を備える、データ送信装置。
  2.  前記制御部は、
     前記多重化データの単位時間当たりのデータ量が予め定めされた第2閾値未満の場合、前記多重化データに対してダミーデータを付加し、
     前記ダミーデータ付きの多重化データが一定量蓄積された場合、当該蓄積されたデータに対して前記誤り訂正符号化の処理を行う、
     請求項1に記載のデータ送信装置。
  3.  前記制御部は、前記ダミーデータ付きの多重化データの単位時間当たりのデータ量が前記第2閾値を超えない範囲で、前記多重化データに対して前記ダミーデータを付加する、
     請求項2に記載のデータ送信装置。
  4.  前記制御部は、前記ストリームデータの送信と異なるサービスのデータを送信する場合、前記多重化データに対して、前記ダミーデータに代えて、前記サービスのデータを付加する、
     請求項2に記載のデータ送信装置。
  5.  前記制御部は、前記多重化データの単位時間当たりのデータ量が予め定められた第2閾値未満の場合、前記誤り訂正符号化の処理において、誤り訂正用の冗長データのデータ量を、前記多重化データの単位時間当たりのデータ量が予め定められた第2閾値以上の場合と比べて増やす、
     請求項1に記載のデータ送信装置。
  6.  前記第1閾値は、動画データにおける基準の画像フレームの単位時間当たりのデータ量よりも小さく、かつ、前記動画データにおける前記基準の画像フレームに対する差分の画像フレームの単位時間当たりのデータ量よりも大きい値である、
     請求項1に記載のデータ送信装置。
  7.  第1画像フレームを送信する第1カメラ装置と、
     第2画像フレームを送信する第2カメラ装置と、
     前記第1画像フレーム及び前記第2画像フレームを受信し、前記第1画像フレーム及び前記第2画像フレームを多重して多重化データを生成し、前記多重化データが一定量蓄積された場合、当該蓄積されたデータに対して誤り訂正符号化の処理を行ってストリームデータを生成し、前記ストリームデータを送信するデータ送信装置と、
     前記ストリームデータを無線通信によって端末へ送信する無線通信装置と、を備え、
     前記第2カメラ装置は、単位時間当たりのデータ量が予め定められた第1閾値以上である第2画像フレームを、単位時間当たりのデータ量が前記第1閾値以上である第1画像フレームと異なるタイミングで送信する、
     データ送信システム。
  8.  前記無線通信装置は、前記ストリームデータをマルチキャストによって前記端末へ送信する、
     請求項7に記載のデータ送信システム。
  9.  データ送信装置が、
     第1画像フレーム及び第2画像フレームを受信し、
     前記第1画像フレーム及び前記第2画像フレームの少なくとも一方の単位時間当たりのデータ量が、予め定められた第1閾値未満である場合、前記第1画像フレーム及び前記第2画像フレームを多重して多重化データを生成し、前記第1画像フレーム及び前記第2画像フレームの両方の単位時間当たりのデータ量が、予め定められた第1閾値以上である場合、前記第2画像フレームの多重のタイミングを遅延させて多重化データを生成し、前記多重化データが一定量蓄積された場合、当該蓄積されたデータに対して誤り訂正符号化の処理を行ってストリームデータを生成し、
     前記ストリームデータを送信する、
     データ送信方法。
PCT/JP2020/021708 2019-07-03 2020-06-02 データ送信装置、データ送信システム、及び、データ送信方法 WO2021002135A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-124562 2019-07-03
JP2019124562A JP2021013049A (ja) 2019-07-03 2019-07-03 データ送信装置、データ送信システム、及び、データ送信方法

Publications (1)

Publication Number Publication Date
WO2021002135A1 true WO2021002135A1 (ja) 2021-01-07

Family

ID=74100570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021708 WO2021002135A1 (ja) 2019-07-03 2020-06-02 データ送信装置、データ送信システム、及び、データ送信方法

Country Status (2)

Country Link
JP (1) JP2021013049A (ja)
WO (1) WO2021002135A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347927A (ja) * 2004-06-01 2005-12-15 Nippon Telegr & Teleph Corp <Ntt> 映像送信方法、映像送信装置、映像送信用プログラム及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体、並びに、映像受信方法、映像受信装置、映像受信用プログラム及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2013258456A (ja) * 2012-06-11 2013-12-26 Nippon Telegr & Teleph Corp <Ntt> 処理リソース平準化装置及び処理リソース平準化方法
JP2018152656A (ja) * 2017-03-10 2018-09-27 三菱電機株式会社 伝送装置、映像配信装置、映像符号化装置及び伝送方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347927A (ja) * 2004-06-01 2005-12-15 Nippon Telegr & Teleph Corp <Ntt> 映像送信方法、映像送信装置、映像送信用プログラム及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体、並びに、映像受信方法、映像受信装置、映像受信用プログラム及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2013258456A (ja) * 2012-06-11 2013-12-26 Nippon Telegr & Teleph Corp <Ntt> 処理リソース平準化装置及び処理リソース平準化方法
JP2018152656A (ja) * 2017-03-10 2018-09-27 三菱電機株式会社 伝送装置、映像配信装置、映像符号化装置及び伝送方法

Also Published As

Publication number Publication date
JP2021013049A (ja) 2021-02-04

Similar Documents

Publication Publication Date Title
CN106664458B (zh) 用于发射视频数据的方法、源装置以及存储媒体
US11095701B2 (en) Method and apparatus for providing adaptive streaming service
US10856018B2 (en) Clock synchronization techniques including modification of sample rate conversion
US9621949B2 (en) Method and apparatus for reducing latency in multi-media system
JP2016537914A (ja) オーディオ/ビデオストリーミングのためのレイテンシバッファリングの動的および自動制御
CN104618195A (zh) 带宽估测方法和装置
KR20150131175A (ko) Http를 통한 동적 적응형 스트리밍에서 미디어 세그먼트들의 손실 존재시의 회복력
JP2012523789A (ja) 信頼性の高いリアルタイム送信のための、画像及びビデオのデュアルモード圧縮
CN107438990B (zh) 用于递送定时信息的方法和设备
US20230096562A1 (en) Method and system for transmitting and reproducing video of dynamic bitrate with a plurality of channels
US20090296828A1 (en) Using program clock references to assist in transport of video stream to wireless device
CN108881931A (zh) 一种数据缓冲方法及网络设备
JP2018507662A (ja) 低遅延生放送コンテンツ提供のためのプログラムを記録した記録媒体及び装置
KR101787424B1 (ko) 패킷화된 통신 네트워크를 통해 통신되는 스트리밍 콘텐츠를 위한 클럭 복원 메커니즘
US20140099040A1 (en) Image processing device and image processing method
KR20150026405A (ko) 음성 패킷 송수신 방법 및 이를 구현하는 전자 장치
WO2021002135A1 (ja) データ送信装置、データ送信システム、及び、データ送信方法
WO2017160404A1 (en) User input based adaptive streaming
CN104427383A (zh) 一种信息处理方法以及电子设备
JP4909590B2 (ja) メディア信号の受信装置、送信装置及び送受信システム
JP2007027813A (ja) 通信システム
KR20170050698A (ko) 인코딩 방법 및 디코딩 방법, 그리고 이를 위한 장치
JP2009077108A (ja) 受信装置、受信方法およびコンピュータプログラム
JP2008140368A (ja) 表示用にネットワークを介して通信されるコンテンツを処理するためのマルチグラフィックスプロセッサシステム及び方法
US11374839B1 (en) Optimizing media streaming by a bitrate-controlling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20834368

Country of ref document: EP

Kind code of ref document: A1