WO2021001897A1 - Learning model generation method, computer program, learning model, control device, and control method - Google Patents

Learning model generation method, computer program, learning model, control device, and control method Download PDF

Info

Publication number
WO2021001897A1
WO2021001897A1 PCT/JP2019/026150 JP2019026150W WO2021001897A1 WO 2021001897 A1 WO2021001897 A1 WO 2021001897A1 JP 2019026150 W JP2019026150 W JP 2019026150W WO 2021001897 A1 WO2021001897 A1 WO 2021001897A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
learning model
data
raw material
treatment
Prior art date
Application number
PCT/JP2019/026150
Other languages
French (fr)
Japanese (ja)
Inventor
智浩 北村
Original Assignee
ホソカワミクロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホソカワミクロン株式会社 filed Critical ホソカワミクロン株式会社
Priority to PCT/JP2019/026150 priority Critical patent/WO2021001897A1/en
Priority to JP2021529575A priority patent/JP7311598B2/en
Publication of WO2021001897A1 publication Critical patent/WO2021001897A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to a learning model generation method, a computer program, a learning model, a control device, and a control method.
  • the powder treatment process is composed of a combination of various processes such as storage, supply, transportation, pulverization, classification, mixing, drying, granulation, compounding, and spheroidization (see, for example, Patent Document 1).
  • various processes such as storage, supply, transportation, pulverization, classification, mixing, drying, granulation, compounding, and spheroidization (see, for example, Patent Document 1).
  • storage, supply, transportation, pulverization, classification, mixing, drying, granulation, compounding, and spheroidization see, for example, Patent Document 1.
  • the powder handled in the powder processing process exhibits a wide variety of properties depending on the type, size, shape, etc. of the powder. Therefore, there is a problem that the operating conditions set in the powder processing apparatus often depend on the experience and intuition of field engineers.
  • the present invention provides a learning model generation method, a computer program, a learning model, a control device, and a control method capable of determining control parameters related to a powder processing apparatus without depending on the experience and intuition of a field engineer. The purpose.
  • the method for generating a learning model according to one aspect of the present invention is a powder that uses a computer to perform powder treatment including any one of drying treatment, mixing treatment, compounding treatment, surface treatment, and granulation treatment.
  • the processing device measurement data indicating the operating state of the powder processing device and powder data related to the powder obtained from the powder processing device are acquired, and the acquired measurement data and powder data are used as teacher data.
  • a learning model configured to output the calculation result for the control parameter for the powder processing apparatus is generated.
  • control parameters related to the powder processing apparatus can be determined without depending on the experience and intuition of field engineers.
  • FIG. It is a schematic diagram which shows the whole structure of the powder processing system which concerns on Embodiment 1.
  • FIG. It is a schematic cross-sectional view which shows the structure of the powder processing apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the internal structure of the control device which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the internal structure of a terminal device.
  • FIG. It is a schematic diagram which shows the structural example of the learning model in Embodiment 1.
  • FIG. It is a conceptual diagram which shows an example of the data which a control device collects. It is a flowchart explaining the generation procedure of the learning model by a control device. It is a flowchart explaining the control procedure by a control device.
  • FIG. 1 is a schematic view showing the overall configuration of the powder processing system 1 according to the first embodiment.
  • the powder processing system 1 according to the first embodiment includes, for example, a raw material supply machine 2, a hot air generator 3, a powder processing device 4A, a cyclone 5, a dust collector 6, a blower 7, a product tank 8, a dust collecting tank 9, and a control.
  • a device 100 (see FIG. 3) is provided.
  • the raw material supply machine 2 is a device for supplying the powder raw material to the powder processing device 4A.
  • the powder raw material supplied by the raw material feeder 2 to the powder processing apparatus 4A is a raw material for producing powder of an inorganic material, an organic material, or a metallic material, and is, for example, a powder coating material, a battery material, or a magnetic material. , Toner materials, dyes, resins, waxes, polymers, pharmaceuticals, catalysts, metal powders, silica, solder, cement, foods, etc.
  • the raw material supply machine 2 is connected to the powder processing device 4A via the raw material supply path TP1.
  • a screw feeder 21 (see FIG. 2) for transporting the powder raw material is provided in the raw material supply path TP1.
  • the screw feeder 21 is preferable when the powder raw material is a solid and the powder raw material is continuously charged at a constant speed.
  • a double damper, a rotary valve, or the like may be used instead of the screw feeder 21.
  • the hot air generated by the hot air generator 3 may be introduced into the raw material supply path TP1 and the powder raw material may be supplied to the powder processing apparatus 4A together with the hot air.
  • the raw material feeder 2 performs weight control using a weight sensor S1 (see FIG.
  • the supply amount of the powder raw material may be adjusted so as to be. Further, the raw material supply machine 2 supplies the powder raw material per unit time (that is, the supply speed) based on the output of the built-in timer (not shown) and the supply amount of the powder raw material measured by the weight sensor S1. May be measured.
  • the weight sensor S1 may be provided not only in the raw material supply machine 2, but also in the powder processing device 4A, the cyclone 5, and the dust collector 6.
  • the hot air generator 3 is a device for generating hot air to be introduced into the powder processing device 4A, and includes a heat source such as a heating heater, a blower, and a control device for controlling the temperature and flow rate of the hot air.
  • the hot air generator 3 is not limited to the above configuration, and a known configuration may be used. For example, a part of the hot air introduced into the powder processing apparatus 4A may be recovered and circulated between the hot air generator 3 and the powder processing apparatus 4A.
  • the hot air generator 3 is connected to the powder processing device 4A via the gas introduction path TP2.
  • the hot air generated by the hot air generator 3 is introduced into the powder processing apparatus 4A as a heat medium via the gas introduction path TP2.
  • the temperature of the hot air generated by the hot air generator 3 is appropriately set according to the powder processed by the powder processing apparatus 4A. For example, hot air of about 200 ° C. to 600 ° C. may be generated in order to dry the powder in the powder processing apparatus 4A.
  • the powder processing device 4A is a device that performs a drying process.
  • the powder processing apparatus 4A is an air flow dryer, and for example, a dry meister (registered trademark) manufactured by Hosokawa Micron Co., Ltd. is used.
  • the powder processing apparatus 4A has a pulverizing function for pulverizing the powder raw material supplied into the apparatus and a classification function for classifying the powder obtained by pulverizing the powder raw material.
  • the internal configuration of the powder processing apparatus 4A will be specifically described with reference to FIG.
  • the powder processed by the powder processing apparatus 4A is transported to the cyclone 5 via the powder transport path TP3.
  • the particle size sensor S2 is installed in the middle of the powder transport path TP3 from the powder processing device 4A to the cyclone 5, and the particle size of the powder passing through the powder processing device 4A by the particle size sensor S2. Is measured at regular or regular timings (for example, every 5 seconds).
  • the powder collected by the cyclone 5 is taken out to the product tank 8 and collected as a product.
  • the particle size sensor S2 is a device that measures the particle size distribution using, for example, a laser diffraction / scattering method, and outputs values of D10, D50, and D90.
  • D10, D50, and D90 represent particle diameters corresponding to cumulative 10%, 50%, and 90% from the small diameter side of the cumulative volume distribution in the particle size distribution, respectively.
  • the cumulative volume distribution is a distribution representing the relationship between the particle size ( ⁇ m) of the powder and the integration frequency (volume%) from the small diameter side.
  • D50 is also generally referred to as an average particle diameter (median diameter).
  • a mode diameter representing the particle diameter having the largest appearance ratio in the frequency distribution of the particle diameter may be used, and various arithmetic average values (number average, length average, area average, volume average, etc.) may be used. ) May be used.
  • the particle size sensor S2 is installed in the powder transport path TP3, but the raw material supply machine 2, the path from the cyclone 5 to the product tank 8, and the dust collector 6 to the dust collector tank 9 are reached. It may be installed on a route or the like.
  • a dust collector 6 is connected to the cyclone 5 via a dust collection path TP4.
  • the dust collector 6 includes a bug filter for collecting fine powder or the like that has passed through the cyclone 5.
  • the gas that has passed through the bug filter of the dust collector 6 flows to the blower 7 through the exhaust air passage TP5 and is discharged from the discharge port of the blower 7.
  • the fine powder or the like collected by the bug filter of the dust collector 6 is taken out to the dust collection tank 9 and collected.
  • a blower 7 is connected to the dust collector 6 via an exhaust air passage TP5.
  • the gas flow from the powder processing apparatus 4A to the cyclone 5 that is, the gas flow for extracting the powder from the powder processing apparatus 4A
  • the gas flow from the cyclone 5 to the dust collector 6 Form a flow.
  • a flow rate sensor S3 (see FIG. 3) is installed in the middle of the exhaust air passage TP5 from the dust collector 6 to the blower 7, and the discharge / suction flow rate when taking out the powder from the powder processing device 4A is measured. Measure at regular or regular timing (for example, every 5 seconds).
  • the flow rate sensor S3 is installed in the raw material supply path TP1, the gas introduction path TP2, the powder transport path TP3, the dust collection path TP4, the discharge port of the blower 7, and the like. You may.
  • the control device 100 is a device that controls the operation of the powder processing device 4A, and is configured so that necessary data can be exchanged between various devices and various sensors constituting the powder processing system 1.
  • the control device 100 directly controls the operation of the powder processing device 4A by transmitting a control command for the powder processing device 4A to the powder processing device 4A. Further, the control device 100 transmits a control command to at least one of the raw material supply machine 2, the hot air generator 3, the cyclone 5, the dust collector 6, and the blower 7 connected to the powder processing device 4A to obtain powder.
  • the operation of the processing device 4A may be indirectly controlled.
  • the powder processing system 1 including the raw material supply machine 2, the hot air generator 3, the powder processing device 4A, the cyclone 5, the dust collector 6, and the blower 7 has been described, but is connected to the powder processing device 4A.
  • the equipment to be used is not limited to the above, and it is possible to construct the powder processing system 1 by combining various equipment.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the powder processing apparatus 4A according to the first embodiment.
  • the powder processing apparatus 4A includes a cylindrical casing 410 that performs a drying process inside the powder processing apparatus 4A.
  • the casing 410 is provided with a raw material input port 411, a gas introduction port 412, a crushing rotor 413, a guide ring 414, a classification rotor 415, a powder outlet 416, and the like.
  • the material of the casing 410 a known material conventionally used for the casing of the powder processing apparatus may be used. Specifically, iron-based steel materials such as SS400, S25C, S45C, SPHC (Steel Plate Hot Commercial), stainless steel materials such as SUS304 and SUS316, iron casting materials such as FC20 and FC40, and stainless casting materials such as SCS13 and 14 Metal, ceramics, glass, etc. may be used. Further, aluminum, other wood, or synthetic resin may be used as long as an abrasion resistant material is attached to the inner wall surface.
  • iron-based steel materials such as SS400, S25C, S45C, SPHC (Steel Plate Hot Commercial)
  • stainless steel materials such as SUS304 and SUS316
  • iron casting materials such as FC20 and FC40
  • stainless casting materials such as SCS13 and 14 Metal, ceramics, glass, etc.
  • aluminum, other wood, or synthetic resin may be used as long as an abrasion resistant material is attached to the inner wall surface.
  • the inner surface of the casing 410 is subjected to plating treatment such as hard chrome plating treatment, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition under vacuum, carbon vapor deposition of diamond structure, etc. Abrasion resistant treatment may be applied. Further, in order to prevent turbulence of the air flow due to adhesion or fixation of the treated powder or blockage in the casing 410, the inner surface of the casing 410 is buffed, electropolished, coated with PTFE (Polytetrafluoroethylene), plated with nickel or the like. Treatment may be applied.
  • plating treatment such as hard chrome plating treatment, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition under vacuum, carbon vapor deposition of diamond structure, etc. Abrasion resistant treatment may be applied.
  • the inner surface of the casing 410 is buffed, electropolished, coated with PTFE (Polytetrafluoroethylene),
  • the casing 410 is provided with a raw material input port 411 for charging the powder raw material supplied from the raw material supply machine 2 into the casing 410.
  • the raw material input port 411 is preferably provided at a position above the rotary disk 413A of the crushing rotor 413.
  • the powder raw material supplied from the raw material supply machine 2 is conveyed by the screw feeder 21 in the raw material supply path TP1 and is charged into the casing 410 from the raw material input port 411.
  • the casing 410 is provided with a gas introduction port 412 for introducing hot air (gas) from the hot air generator 3 into the casing 410.
  • the gas introduction port 412 is connected to the hot air generator 3 via the gas introduction path TP2.
  • the position of the gas introduction port 412 is not particularly limited, but it is preferably provided at a position lower than the crushing rotor 413 so that the gas is introduced into the casing 410 via the rotating crushing rotor 413.
  • the gas is introduced from the direction intersecting the rotation direction of the crushing rotor 413, but the gas may be introduced along the rotation direction of the crushing rotor 413.
  • the gas introduced from the gas introduction port 412 forms an air flow that circulates while swirling inside the casing 410, and reaches the cyclone 5 and the dust collector 6 from the powder outlet 416 via the classification rotor 415 from the inside of the casing 410.
  • the air flow in the casing 410 may be formed by suction by the blower 7 connected via the cyclone 5 and the dust collector 6, or may be formed by blowing (pressurizing) from the gas introduction port 412 side.
  • the type of gas introduced into the casing 410 may be appropriately determined according to the target processed product. For example, air may be used, or an inert gas such as nitrogen or argon may be used to prevent oxidation.
  • a temperature sensor S4, a moisture sensor S5, and a pressure sensor S6 may be provided at one or a plurality of locations in the casing 410 to sequentially observe the temperature, moisture, pressure, and the like.
  • the flow rate sensor S3, the temperature sensor S4, the moisture sensor S5, and the pressure sensor S6 may be provided in each device or a path between the devices constituting the powder processing system 1.
  • the temperature sensor S4 is often provided in the gas introduction path TP2, and the moisture sensor S5 is often provided in the powder transport path TP3. Further, it may be separately provided in the casing 410.
  • the hot air from the hot air generator 3 is introduced into the casing 410, but using a cold air generator (not shown in the figure), the temperature is about ⁇ 20 ° C. to 5 ° C. in the casing 410.
  • the cold air (refrigerant) may be introduced.
  • the gas introduced into the casing 410 is preferably a dehumidified gas in order to prevent dew condensation.
  • cold air adjusted to 0 to 15 ° C. may be used.
  • a jacket portion may be provided around the casing 410.
  • the jacket portion adjusts the internal temperature of the casing 410 by circulating and supplying a heat medium or a refrigerant from a tank provided separately.
  • the crushing rotor 413 is a rotor including a rotary disk 413A and a plurality of hammers 413B protruding upward from the upper peripheral edge of the rotary disk 413A, and the rotation speed is adjusted to a desired speed by the power of the crushing motor 413M (see FIG. 3). It is configured to rotate.
  • the crushing motor 413M is one of the driving units included in the powder processing system 1.
  • the rotation speed of the crushing motor 413M is measured by the rotation speed sensor S7 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals).
  • a plurality of hammers 413B of the crushing rotor 413 are arranged at equal intervals in the circumferential direction on the upper peripheral edge of the rotary disk 413A.
  • the shape, size, number, and material of the hammer 413B are appropriately designed according to the required particle size, circularity, and the like of the product powder.
  • FIG. 2 shows a rod-shaped hammer 413B, it may be a rectangular parallelepiped hammer or a trapezoidal hammer in a plan view. Further, instead of the hammer 413B, a blade-like structure may be used.
  • the crushing rotor 413 is rotated by the power of the crushing motor 413M to generate a swirling airflow in the casing 410, and the powder raw material introduced into the casing 410 is impacted, compressed, and ground by the action of the hammer 413B.
  • the powder raw material is crushed by giving mechanical energy such as shearing.
  • the crushing rotor 413 is an example of a rotating body that agitates the powder raw material.
  • the material of the crushing rotor 413 a known material conventionally used for the crushing rotor of the powder processing apparatus may be used.
  • SS400, S25C, S45C, SUS304, SUS316, SUS630 and the like can be used.
  • a cemented carbide tip may be attached so that the hammer 413B can withstand an impact force, or a composite of a metal such as ceramics or cermet having wear resistance and toughness and ceramics may be used.
  • the surface of the crushing rotor 413 is subjected to plating treatment such as hard chrome plating, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition under vacuum, and carbon vapor deposition of diamond structure in order to improve the durability of the device.
  • plating treatment such as hard chrome plating, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition under vacuum, and carbon vapor deposition of diamond structure in order to improve the durability of the device.
  • Abrasion resistant treatment such as SUS630 and quench hardening treatment of SUS630 may be performed.
  • the surface of the crushing rotor 413 may be buffed, electrolytically polished, coated with PTFE, or plated with nickel or the like.
  • the configuration of the hammer 413B protruding upward from the upper peripheral edge portion of the rotating disk 413A has been described, but a hammer protruding downward from the lower surface peripheral edge portion of the rotating disk 413A may be used.
  • the hammer protruding downward in this way does not directly pulverize the powder raw materials in the casing 410, but can form a strong swirling airflow in the casing 410, so that the powder raw materials collide with each other.
  • the powder raw material can be indirectly crushed.
  • a crushing liner may be provided on the inner peripheral surface of the casing 410 at a position facing the hammer 413B.
  • the crushing liner is a tubular member having a central axis along the rotation axis direction of the crushing rotor 413, and even if the inner peripheral surface of the tubular member is provided with a triangular, corrugated, or wedge-shaped groove. Good.
  • the guide ring 414 is a cylindrical member for generating a swirling air flow in the casing 410 and guiding the powder processed in the casing 410 to the classification rotor 415.
  • the guide ring 414 is arranged coaxially with the crushing rotor 413 above the crushing rotor 413 and fixed inside the casing 410.
  • the method for fixing the guide ring 414 is not particularly limited, but it is necessary to fix the guide ring 414 without rotating inside the casing 410 during the operation of the powder processing apparatus 4A. This is to control the flow state of the powder to be processed to an appropriate state inside the casing 410.
  • the guide ring 414 whose inner diameter does not change in the vertical direction is shown, but the inner diameter may be continuously increased (or decreased) from the upper side to the lower side.
  • the powder produced by crushing the powder raw material is efficiently dried by violently contacting the hot air flowing from the lower part of the casing 410.
  • the dried and pulverized powder is guided by an air flow to the classification rotor 415 provided on the upper part of the casing 410.
  • the classification rotor 415 is a rotor provided with a plurality of classification blades 415A arranged radially, and is configured to rotate at a desired rotation speed by the power of the classification motor 415M (see FIG. 3).
  • the classification motor 415M is one of the drive units included in the powder processing system 1.
  • the rotation speed of the classification motor 415M is measured by the rotation speed sensor S8 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals).
  • the classification rotor 415 is provided above the crushing rotor 413, and only the powder having a particle size smaller than a predetermined particle size is passed through the powder processed in the casing 410 by centrifugal force due to high-speed rotation. Only the body is guided to the powder outlet 416.
  • the material of the classification rotor 415 a known material conventionally used for the classification rotor of the powder processing apparatus may be used.
  • SS400, S25C, S45C, SUS304, SUS316, titanium, titanium alloy, aluminum alloy and the like can be used.
  • the surface of the classification rotor 415 is specially subjected to heat hardening treatment such as carburizing and quenching, tungsten carbide spraying material treatment, plating treatment such as hard chrome plating, and heat curing treatment after spraying in order to improve the durability of the device.
  • Abrasion resistant treatments such as thermal spray material treatment, metal vapor deposition performed under vacuum, and carbon vapor deposition of a diamond structure may be performed.
  • the surface of the classification rotor 415 may be buffed, electrolytically polished, coated with PTFE, or plated with nickel or the like.
  • the particle size of the powder passing through the classification rotor 415 can be set by controlling the rotation speed of the classification rotor 415 and the like. That is, by controlling the rotation speed of the classification rotor 415, powder having a particle size smaller than a predetermined particle size can be taken out from the casing 410. On the other hand, the powder that cannot pass through the classification rotor 415 circulates in the casing 410 and is repeatedly processed.
  • the powder that has passed through the classification rotor 415 and is guided to the powder outlet 416 is taken out to the outside by the flow of gas produced by the blower 7, and is guided to the cyclone 5 and the dust collector 6 in the subsequent stage.
  • FIG. 3 is a block diagram showing an internal configuration of the control device 100 according to the first embodiment.
  • the control device 100 is composed of a general-purpose or dedicated computer, and includes a control unit 101, a storage unit 102, an input unit 103, an output unit 104, a communication unit 105, an operation unit 106, and a display unit 107.
  • the control unit 101 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the ROM included in the control unit 101 stores a control program or the like that controls the operation of each hardware unit included in the control device 100.
  • the CPU in the control unit 101 executes a control program stored in the ROM and various computer programs stored in the storage unit 102, which will be described later, to control the operation of each hardware unit, thereby as a control device according to the present invention.
  • the RAM included in the control unit 101 temporarily stores data and the like used during execution of the calculation.
  • the control unit 101 is configured to include a CPU, ROM, and RAM, but is a GPU (Graphics Processing Unit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), quantum processor, volatile or non-volatile memory. It may be one or more arithmetic circuits or control circuits including the above. Further, the control unit 101 may have functions such as a clock for outputting date and time information, a timer for measuring the elapsed time from giving the measurement start instruction to giving the measurement end instruction, and a counter for counting the number.
  • a clock for outputting date and time information
  • a timer for measuring the elapsed time from giving the measurement start instruction to giving the measurement end instruction
  • a counter for counting the number.
  • the storage unit 102 includes a storage device that uses a hard disk, a flash memory, or the like.
  • the storage unit 102 stores a computer program executed by the control unit 101, various data acquired from the outside, various data generated inside the device, and the like.
  • the computer program stored in the storage unit 102 includes a control program PG1 for controlling the operation of the device to be controlled, a particle size of the powder processed by the powder processing device 4A, and control parameters related to the powder processing device 4A.
  • a learning program PG2 and the like for learning the relationship with.
  • the computer program including the control program PG1 and the learning program PG2 may be provided by the non-temporary recording medium M1 in which the computer program is readablely recorded.
  • the recording medium M1 is, for example, a portable memory such as a CD-ROM, a USB memory, a compact flash (registered trademark), an SD (Secure Digital) card, or a micro SD card.
  • the control unit 101 reads various programs from the recording medium M1 using a reading device (not shown in the figure), and stores the read various programs in the storage unit 102.
  • the control device 100 shifts to the learning phase.
  • the learning phase is carried out, for example, when the control device 100 is introduced. Further, the learning phase may be executed when a user's instruction is received through the operation unit 106 or at a regular timing.
  • the control unit 101 acquires the data of the wet content of the powder obtained from the powder processing apparatus 4A as the powder data, and the powder processing apparatus as the measurement data indicating the operating state of the powder processing apparatus 4A.
  • Data such as temperature and flow rate of heat medium supplied to 4A, supply amount or supply speed of powder raw material, rotation speed of crushing rotor 413, rotation speed of classification rotor 415, pressure in casing 410, processing time of drying process, etc.
  • the moisture content of the powder is measured by the moisture content sensor S5.
  • the temperature and flow rate of the heat medium are measured by the temperature sensor S4 and the flow rate sensor S3.
  • the supply amount or supply speed of the powder raw material is calculated based on the weight measured by the weight sensor S1.
  • the rotation speed of the crushing rotor 413 is measured by the rotation speed sensor S7.
  • the rotation speed of the classification rotor 415 is measured by the rotation speed sensor S8.
  • the processing time of the drying process is measured by the built-in timer of the control unit 101.
  • the processing time of the drying process corresponds to the operating time of the powder processing apparatus 4A in the batch processing, and corresponds to the residence time of the powder in the casing 410 in the continuous processing. These data may be collected in advance or after the transition to the learning phase.
  • the control unit 101 uses the collected powder data and measurement data as teacher data to learn the relationship between the moisture content of the powder obtained from the powder processing device 4A and the control parameters related to the powder processing device 4A. , Generate a learning model 210.
  • the control parameters related to the powder processing apparatus 4A are the temperature and flow rate of the heat medium supplied to the powder processing apparatus 4A, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, and the rotation of the classification rotor 415. Includes speed, pressure in casing 410, and processing time for drying.
  • the learning model 210 generated in the learning phase is stored in the storage unit 102.
  • the learning model 210 is defined by its definition information.
  • the definition information of the learning model 210 includes, for example, the structural information of the learning model 210, parameters such as weights and biases between nodes.
  • control device 100 shifts to the operation phase when the control unit 101 executes the control program PG1.
  • the operation phase is carried out after the learning model 210 is executed.
  • the control device 100 controls the operation of the device including the powder processing device 4A.
  • the control unit 101 receives the target value for the powder desired by the user.
  • the target value is the moisture content of the powder.
  • the control unit 101 inputs the received target value into the learning model 210, executes an operation using the learning model 210, and thereby supplies the temperature and flow rate of the heat medium supplied to the powder processing apparatus 4A and the powder raw material.
  • the calculation result regarding the control parameters including the quantity or the supply speed, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the processing time of the drying process is acquired.
  • the control unit 101 controls the operation of the device to be controlled based on the calculation result obtained from the learning model 210.
  • the input unit 103 includes a connection interface for connecting various devices and sensors.
  • the device connected to the input unit 103 includes a raw material supply machine 2, a hot air generator 3, a powder processing device 4A, a cyclone 5, a dust collector 6, and a blower 7.
  • the connection interface included in the input unit 103 may be a wired interface or a wireless interface. Data output from the raw material supply machine 2, the hot air generator 3, the powder processing device 4A, the cyclone 5, the dust collector 6, and the blower 7 is input to the input unit 103.
  • the sensors connected to the input unit 103 include a weight sensor S1, a particle size sensor S2, a flow rate sensor S3, a temperature sensor S4, a moisture sensor S5, a pressure sensor S6, a rotation speed sensor S7 for the crushing rotor 413, and a classification.
  • the rotation speed sensor S8 for the rotor 415 is included.
  • the measurement data output from these sensors is input to the input unit 103.
  • the sensor connected to the input unit 103 is not limited to the above sensor, and may include a dust concentration sensor for measuring the dust concentration, a sound pressure / frequency sensor for measuring the sound pressure or the frequency, and the like. Good. Furthermore, in order to measure the composition, physical properties, shape, etc.
  • BET Brunauer-Emmett-Teller
  • NIR NearInfrared
  • XRD X-ray Diffraction
  • TG-DTA Thermogravimetry-Differential Thermal Analysis
  • MS Mass Spectrometry
  • SEM Sccanning Electron Microscope
  • FE-SEM Field Emission-SEM
  • TEM Transmission Electron Microscope
  • control device 100 is configured to acquire data from various devices and sensors through the input unit 103, but when these devices and sensors are provided with a communication interface, the data may be acquired through the communication unit 105 described later. ..
  • the output unit 104 includes a connection interface for connecting the device to be controlled.
  • the device connected to the output unit 104 includes a raw material supply machine 2, a hot air generator 3, a powder processing device 4A, a cyclone 5, a dust collector 6, and a blower 7.
  • the connection interface included in the output unit 104 may be a wired interface or a wireless interface.
  • the control unit 101 controls the operation of the device to be controlled by outputting a control command through the output unit 104. For example, when controlling the rotation speed of the crushing rotor 413, the control unit 101 generates a control command for the crushing motor 413M, which is a driving unit of the crushing rotor 413, and outputs the control command to the powder processing apparatus 4A through the output unit 104.
  • Control the rotation speed of the crushing rotor 413 Control the rotation speed of the crushing rotor 413.
  • the control unit 101 generates a control command for the classification motor 415M which is a drive unit of the classification rotor 415 and outputs the control command to the powder processing device 4A through the output unit 104.
  • the rotation speed of the classification rotor 415 is controlled.
  • the control unit 101 when controlling the discharge / suction flow rate from the casing 410 included in the powder processing apparatus 4A, the control unit 101 generates a control command for the blower 7 and outputs the control command to the blower 7 through the output unit 104, whereby the casing 410. Controls the discharge / suction flow rate from.
  • the communication unit 105 includes a communication interface for transmitting and receiving various communication data.
  • the communication interface included in the communication unit 105 is, for example, a communication interface conforming to the communication standard of LAN (Local Area Network) used in WiFi (registered trademark) and Ethernet (registered trademark).
  • a communication interface conforming to a communication standard such as Bluetooth (registered trademark), ZigBee (registered trademark), 3G, 4G, 5G, LTE (Long Term Evolution) may be used.
  • the communication unit 105 communicates with, for example, the terminal device 500 used by the user of the powder processing system 1.
  • the communication unit 105 may receive the operation data or the setting data transmitted from the terminal device 500 in order to accept the remote operation of the powder processing system 1.
  • the control unit 101 executes a process according to the received operation data or the setting data. For example, when the user receives the desired moisture data, the control unit 101 may execute a calculation using the learning model 210 to acquire control parameters related to the powder processing apparatus 4A. Further, the control unit 101 may generate screen data of the user interface screen to be displayed on the terminal device 500, and may transmit the generated screen data to the terminal device 500 through the communication unit 105.
  • the operation unit 106 is provided with an input interface such as a keyboard and a mouse, and accepts various operations and various settings.
  • the control unit 101 performs appropriate processing based on various operations and various settings received through the operation unit 106, and stores the setting information in the storage unit 102 as necessary.
  • the control device 100 is provided with the operation unit 106, but the operation unit 106 is not indispensable, and the operation is received through a computer (for example, the terminal device 500) connected to the outside. You may.
  • the display unit 107 includes a display panel such as a liquid crystal panel or an organic EL (Electro-Luminescence) panel, and displays information to be notified to the user.
  • the display unit 107 may display, for example, the measurement data of the various sensors S1 to S6 received through the communication unit 105, or may display information based on various operations and various settings received through the operation unit 106. Further, the display unit 107 may display the calculation result by the learning model 210.
  • the control device 100 is configured to include the display unit 107, but the display unit 107 is not essential and outputs information to be notified to the user to an external computer (for example, the terminal device 500). , The information may be displayed on the output destination computer.
  • control device 100 has been described as a single computer, but it does not have to be a single computer, and may be composed of a plurality of computers or a plurality of virtual computers.
  • FIG. 4 is a block diagram showing the internal configuration of the terminal device 500.
  • the terminal device 500 is a computer such as a personal computer, a smartphone, or a tablet terminal, and includes a control unit 501, a storage unit 502, a communication unit 503, an operation unit 504, and a display unit 505.
  • the control unit 501 includes, for example, a CPU, a ROM, a RAM, and the like.
  • the ROM included in the control unit 501 stores a control program or the like that controls the operation of each hardware unit included in the terminal device 500.
  • the CPU in the control unit 501 executes a control program stored in the ROM and various computer programs stored in the storage unit 502 described later, and controls the operation of each hardware unit.
  • the control unit 501 may have functions such as a clock for outputting date and time information, a timer for measuring the elapsed time from giving the measurement start instruction to giving the measurement end instruction, and a counter for counting the number. Data and the like used during execution of the calculation are temporarily stored in the RAM included in the control unit 501.
  • the storage unit 502 includes a storage device that uses a hard disk, a flash memory, or the like.
  • the storage unit 502 stores a computer program executed by the control unit 501, various data acquired from the outside, various data generated inside the device, and the like.
  • the computer program stored in the storage unit 502 may include an application program for accessing the control device 100 from the terminal device 500.
  • the communication unit 503 includes a communication interface for transmitting and receiving various data.
  • the communication interface included in the communication unit 503 is, for example, a communication interface conforming to the LAN communication standard used in WiFi (registered trademark) and Ethernet (registered trademark).
  • a communication interface conforming to communication standards such as Bluetooth (registered trademark), ZigBee (registered trademark), 3G, 4G, 5G, and LTE may be used.
  • the communication unit 503 communicates with, for example, the control device 100 of the powder processing system 1.
  • the data received by the terminal device 500 through the communication unit 503 includes screen data for displaying the interface screen of the control device 100 on the display unit 505, data indicating the setting state and operating state of the device including the powder processing device 4A, and the like.
  • the data indicating the set state includes the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the drying process. Contains the setting values related to the processing time of.
  • the data showing the operating state includes the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the drying process. Measurement data such as processing time is included.
  • the data received by the communication unit 503 is output to the control unit 501.
  • the data transmitted by the terminal device 500 through the communication unit 503 includes operation data, setting data, and the like when the powder processing system 1 is remotely controlled.
  • the operation unit 504 is equipped with an input interface such as a keyboard and a mouse, and accepts various operations and various settings.
  • the control unit 501 performs appropriate processing based on various operations and various settings received through the operation unit 504, and stores the setting information in the storage unit 502 as necessary.
  • the display unit 505 includes a display panel such as a liquid crystal panel or an organic EL panel, and displays information to be notified to the user.
  • the display unit 505 displays the interface screen of the control device 100, for example, based on the screen data received by the communication unit 503. Further, the display unit 505 displays the set state and the operating state of the device including the powder processing device 4A based on the data indicating the setting state and the operating state of the device including the powder processing device 4A received by the communication unit 503. You may.
  • FIG. 5 is a schematic diagram showing a configuration example of the learning model 210 according to the first embodiment.
  • the learning model 210 is, for example, a learning model for machine learning including deep learning, and is composed of a neural network.
  • the learning model 210 includes an input layer 211, intermediate layers 212A and 212B, and an output layer 213.
  • two intermediate layers 212A and 212B are described, but the number of intermediate layers is not limited to two and may be three or more.
  • the input layer 211, the intermediate layers 212A, 212B, and the output layer 213 have one or more nodes, and the nodes of each layer are coupled to the nodes existing in the previous and next layers in one direction with a desired weight and bias. Has been done.
  • the same number of data as the number of nodes included in the input layer 211 is input to the input layer 211 of the learning model 210.
  • the data input to the node of the input layer 211 is the target value data for the powder desired by the user.
  • the target value for the powder is the moisture content of the powder obtained from the powder processing apparatus 4A.
  • the target value data to be input to the input layer 211 of the learning model 210 does not have to be limited to scalar data, and may be data having some structure such as vector data and image data.
  • the target value data input to the learning model 210 is output to the node included in the first intermediate layer 212A through the nodes constituting the input layer 211.
  • the data input to the first intermediate layer 212A is output to the nodes included in the next intermediate layer 212B through the nodes constituting the intermediate layer 212A.
  • the output is calculated using the activation function including the weights and biases set between the nodes.
  • the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 213 is obtained. Parameters such as weights and biases that connect the nodes are learned by a predetermined learning algorithm.
  • a learning algorithm for learning various parameters for example, a learning algorithm for deep learning is used.
  • powder data moisture data related to the powder obtained from the powder processing apparatus 4A, temperature and flow rate of the heat medium, supply amount or supply speed of the powder raw material, and rotation speed of the crushing rotor 413.
  • the rotation speed of the classification rotor 415, the pressure in the casing 410, and the measurement data including the processing time of the drying process are used as training data, and various parameters including weights and biases between nodes are learned by a predetermined learning algorithm. Can be done.
  • the output layer 213 outputs the calculation result for the control parameter for the powder processing apparatus 4A.
  • the control parameters are the temperature and flow rate of the heat medium supplied to the powder processing apparatus 4A, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the inside of the casing 410. Includes pressure as well as processing time for drying.
  • the calculation result for example, the probability indicating the quality of the combination of the plurality of control parameters described above may be output.
  • the output layer 213 is composed of n nodes from the first node to the nth node, and from the first node, the temperature of the heat medium is HT1, the flow rate of the heat medium is HF1, and the supply amount of the powder raw material.
  • SA1 the rotation speed of the crushing rotor 413 is CV1
  • the rotation speed of the classification rotor 415 is CC1
  • the pressure in the casing 410 is CP1
  • the probability P1 that the processing time of the drying process is DT1 is output, and heat is output from the second node.
  • the medium temperature is HT2
  • the heat medium flow rate is HF2
  • the powder raw material supply amount is SA2
  • the rotation speed of the crushing rotor 413 is CV2
  • the rotation speed of the classification rotor 415 is CC2
  • the pressure inside the casing 410 is CP2, and the drying process.
  • the probability Pn that the rotation speed of the classification rotor 415 is CCn, the pressure in the casing 410 is CPn, and the processing time of the drying process is DTn may be output.
  • the number of nodes constituting the output layer 213 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
  • the control device 100 includes powder data related to the powder obtained from the powder processing device 4A (data on the wet content of the powder in the first embodiment), the temperature of the heat medium supplied to the powder processing device 4A, and Measurement data including flow rate, supply amount or supply speed of powder raw material, rotation speed of crushing rotor 413, rotation speed of classification rotor 415, pressure in casing 410, and processing time of drying process are collected, and these data are collected. Is used as the teacher data to generate the learning model 210 as described above.
  • FIG. 6 is a conceptual diagram showing an example of data collected by the control device 100.
  • the control unit 101 of the control device 100 acquires measurement data indicating the operating state of the powder processing device 4A and powder data related to the powder obtained from the powder processing device 4A through the input unit 103. Specifically, the control unit 101 measures the temperature of the heat medium (° C.) measured by the temperature sensor S4, the flow rate of the heat medium (m 3 / min) measured by the flow sensor S3, and the weight sensor S1. Supply amount of powder raw material calculated based on weight (kg / h), rotation speed (rpm) of crushing rotor 413 measured by rotation speed sensor S7, rotation speed of classification rotor 415 measured by rotation speed sensor S8.
  • the control unit 101 acquires the moisture content (%) of the powder measured by the moisture content sensor S5 as powder data.
  • the control unit 101 stores the acquired measurement data and powder data in the storage unit 102 together with the time stamp. Note that FIG. 6 shows an example in which the data collected at 5-second intervals is stored in the storage unit 102, but the time interval for collecting data is not limited to 5 seconds and may be set arbitrarily.
  • the control unit 101 uses the collected data as teacher data to learn the relationship between the moisture content of the powder obtained from the powder processing apparatus 4A and the control parameters related to the powder processing apparatus 4A, as described above. Generate the training model 210.
  • FIG. 7 is a flowchart illustrating a procedure for generating the learning model 210 by the control device 100.
  • the control unit 101 of the control device 100 collects measurement data indicating the operating state of the powder processing device 4A and powder data related to the powder obtained from the powder processing device 4A (step S101).
  • the measurement data collected in step S101 includes the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the pressure in the casing 410.
  • the powder data collected in step S101 includes data indicating the moisture content of the powder obtained from the powder processing apparatus 4A.
  • the collected measurement data and powder data are stored in the storage unit 102 together with the time stamp.
  • the control unit 101 After collecting the measurement data and the particle size data, the control unit 101 selects a set of teacher data from the data stored in the storage unit 102 (step S102). That is, the control unit 101 determines the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the processing time of the drying process. Only one set of the measured value and the wet content value of the powder obtained at that time is selected from the storage unit 102.
  • the control unit 101 inputs the wet content value included in the selected teacher data into the learning model 210 (step S103), and executes the calculation by the learning model 210 (step S104). That is, the control unit 101 inputs the moisture value to the nodes constituting the input layer 211 of the learning model 210, performs calculations using the weights and biases between the nodes in the intermediate layers 212A and 212B, and outputs the calculation results. The process of outputting from the node of layer 213 is performed. In the initial stage before the start of learning, it is assumed that the definition information describing the learning model 210 is given an initial value.
  • control unit 101 evaluates the calculation result obtained in step S104 (step S105), and determines whether or not the learning is completed (step S106). Specifically, the control unit 101 can evaluate the calculation result by using an error function (also referred to as an objective function, a loss function, or a cost function) based on the calculation result obtained in step S104 and the teacher data.
  • the control unit 101 is in the process of optimizing (minimizing or maximizing) the error function by a gradient descent method such as the steepest descent method, and when the error function is below the threshold value (or above the threshold value), the learning is completed. to decide. In order to avoid the problem of overfitting, techniques such as cross-validation and early stopping may be adopted to end learning at an appropriate timing.
  • control unit 101 updates the weights and biases between the nodes of the learning model 210 (step S107), returns the process to step S102, and another teacher. Continue learning with the data.
  • the control unit 101 may update the weights and biases between the nodes by using an error backpropagation method that sequentially updates the weights and biases between the nodes from the output layer 213 of the learning model 210 toward the input layer 211. it can.
  • control unit 101 stores the learned learning model 210 in the storage unit 102 (step S108), and ends the process according to this flowchart.
  • the control device 100 obtains the measurement data indicating the operating state of the powder processing device 4A and the powder data related to the powder obtained from the powder processing device 4A. collect.
  • the control device 100 determines the temperature and flow rate of the heat medium according to the input of the target value (moisture value in the first embodiment) for the powder desired by the user.
  • Learning model 210 that outputs calculation results related to control parameters that control the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the processing time of the drying process. Can be generated.
  • control device 100 is configured to generate the learning model 210, but even if an external server (not shown) for generating the learning model 210 is provided and the learning model 210 is generated by the external server. Good.
  • the control device 100 may acquire the learning model 210 from the external server by communication or the like, and store the acquired learning model 210 in the storage unit 102.
  • FIG. 8 is a flowchart illustrating a control procedure by the control device 100.
  • the control unit 101 of the control device 100 receives an input of a target value (moisture content value in the first embodiment) for the powder desired by the user through the operation unit 106 (step S121).
  • a target value moisture content value in the first embodiment
  • control unit 101 inputs the received target value data to the input layer 211 of the learning model 210, and executes the calculation by the learning model 210 (step S122). At this time, the control unit 101 gives the received target value data to the node of the input layer 211.
  • the data given to the node of the input layer 211 is output to the node of the adjacent intermediate layer 212A.
  • intermediate layer 212A an operation using an activation function including weights and biases between nodes is performed, and the operation result is output to the intermediate layer 212B in the subsequent stage.
  • an operation using an activation function including weights and biases between nodes is further performed, and the operation result is output to each node of the output layer 213.
  • Each node of the output layer 213 outputs the calculation result regarding the control parameter of the powder processing apparatus 4A.
  • each node of the output layer 213 has the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the pressure in the casing 410. And output the calculation result regarding the control parameter that controls the processing time of the drying process.
  • the control unit 101 acquires the calculation result from the learning model 210 (step S123) and determines the control parameters used for control (step S124).
  • the temperature of the heat medium is HTi
  • the flow rate of the heat medium is HFi
  • the supply amount of the powder raw material is SAi
  • the rotation speed of the crushing rotor 413 is CVi.
  • the pressure in the casing 410 is CPi
  • the processing time of the drying process is DTi.
  • the control parameters used for control are determined by specifying the combination of the rotation speed of the rotor 415, the pressure in the casing 410, and the processing time of the drying process.
  • control unit 101 executes control based on the control parameters determined in step S124 (step S125). That is, the control unit 101 generates and generates a control command for controlling the operation of the hot air generator 3 so that the temperature and the flow rate of the heat medium introduced into the casing 410 become the values determined in step S124, respectively.
  • the control command is output to the hot air generator 3 through the output unit 104.
  • the control unit 101 has values determined in step S124 for each of the supply amount of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the processing time of the drying process.
  • a control command for controlling the operation of the raw material supply machine 2, the crushing rotor 413, the classification rotor 415, the blower 7, and the powder processing device 4A is generated, and the generated control command is output to each device through the output unit 104.
  • the control device 100 receives the target value for the powder desired by the user, and thus receives the temperature and flow rate of the heat medium, the supply amount or the supply speed of the powder raw material, and the crushing rotor.
  • the control parameters that control the rotation speed of the 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the processing time of the drying process can be determined. That is, in the present embodiment, the control parameters related to the powder processing apparatus 4A can be determined without depending on the experience and intuition of the field engineer.
  • the control device 100 executes control based on the determined control parameters so that the powder having the target value can be obtained.
  • a configuration for acquiring calculation results related to control parameters using a machine learning learning model 210 configured by a neural network has been described, but the learning model 210 is limited to a model obtained by using a specific method. Not done.
  • a learning model by a perceptron, a convolutional neural network, a recurrent neural network, a residual network, a self-organizing map, or the like may be used.
  • a regression analysis method including linear regression, logistic regression, support vector machine, etc., and a method using a search tree such as a decision tree, a regression tree, a random forest, and a gradient boosting tree.
  • Bayesian estimation method including simple bays, AR (Auto Regressive), MA (Moving Average), ARIMA (Auto Regressive Integrated Moving Average), time series prediction method including state space model, clustering method including K neighborhood method, etc.
  • learning models learned by methods using ensemble learning including boosting, bagging, etc., hierarchical clustering, non-hierarchical clustering, clustering methods including topic models, association analysis, emphasis filtering, etc. There may be.
  • a learning model may be constructed using multivariate analysis including PLS (Partial Least Squares) regression, multiple regression analysis, principal component analysis, factor analysis, cluster analysis and the like.
  • the learning model 210 is generated by using the measurement data including the supply speed, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the processing time of the drying process as the teacher data. ..
  • the learning model 210 may be generated by using the powder data (moisture data) and a part of the selected measurement data as the teacher data.
  • control device 100 further includes, as measurement data, at least one of the discharge / suction flow rate or temperature when the powder is taken out from the casing 410, and the drive power or drive current of the powder processing device 4A. May be used to generate the learning model 210.
  • control device 100 may generate the learning model 210 by using the teacher data including the yield per unit time (that is, the processing capacity) as the powder data.
  • the control device 100 uses the powder data including the moisture content of the powder obtained from the powder processing device 4A and the yield per unit time and the above-mentioned measurement data as the teacher data, and the powder desired by the user.
  • the learning model 210 configured to output the calculation result for the control parameters for the powder processing apparatus 4A may be generated.
  • control device 100 may generate a learning model 210 by using it for teacher data including raw material data.
  • the raw material data used for the teacher data includes at least one of the moisture content, temperature, bulk density (or true density), and particle size of the powder raw material.
  • the control device 100 uses the acquired powder data, raw material data, and measurement data as teacher data, and outputs the calculation result of the control parameters for the powder processing device 4A in response to the input of the powder data and the raw material data.
  • the learning model 210 configured in the above may be generated.
  • control device 100 may generate the learning model 210 by using the teacher data including at least one of the product data, the exhaust gas data, and the environmental data.
  • the product data used for the teacher data includes at least one of the temperature, bulk density (or true density), and particle size of the product powder.
  • the exhaust gas data includes at least one of the flow rate and moisture of the gas discharged through the blower 7.
  • Environmental data includes at least one of the temperature and humidity of the environment in which the powder treatment is performed.
  • the control device 100 uses the acquired powder data, product data, exhaust gas data, environmental data, and measurement data as teacher data, and receives input of the powder data and at least one of product data, exhaust gas data, and environmental data.
  • the learning model 210 configured to output the calculation result of the control parameter for the powder processing apparatus 4A may be generated.
  • the direct heating type powder processing apparatus 4A for introducing hot air into the casing 410 to dry the powder has been described, but the powder processing apparatus 4A includes an indirect heating medium dryer and a medium. It may be a dryer such as a stirring type air flow dryer or a stirring type freeze dryer.
  • a dryer such as a stirring type air flow dryer or a stirring type freeze dryer.
  • the indirect heating medium dryer for example, a solid air (registered trademark), a torus disk, and a micron thermoprocessor (registered trademark) manufactured by Hosokawa Micron Co., Ltd. can be used.
  • the medium stirring type airflow dryer for example, Zelvis (registered trademark) manufactured by Hosokawa Micron Co., Ltd. can be used.
  • the stirring type freeze dryer Active Freeze Dryer (registered trademark) manufactured by Hosokawa Micron Co., Ltd. can be used. Since these dryers are provided with a paddle, a screw, a rotor, etc. as a rotating body for stirring the powder raw material to be processed, among the control parameters obtained by the calculation using the learning model 210, the crushing rotor 413 Instead of the rotation speed of the above and the rotation speed of the classification rotor 415, the rotation speed of the rotating body may be used.
  • the powder processing system 1 includes a powder processing device 4B that performs a mixing process instead of the powder processing device 4A that performs a drying process.
  • FIG. 9 is a schematic view showing the configuration of the powder processing apparatus 4B according to the second embodiment.
  • the powder processing apparatus 4B includes an inverted conical casing 420 that performs a mixing process inside the powder processing apparatus 4B.
  • the casing 420 is provided with raw material input ports 421A and 421B, a swing arm 422, a screw 423, a powder outlet 424, and the like.
  • the raw material input ports 421A and 421B are provided on the upper part of the casing 420.
  • Raw material supply machines 2 for supplying different types of powder raw materials are connected to the raw material input ports 421A and 421B.
  • the different types of powder raw materials supplied from the raw material supply machine 2 are conveyed by the screw feeder 21 in the raw material supply path TP1 and are charged into the casing 420 from the raw material input ports 421A and 421B.
  • the screw 423 provided inside the casing 420 is configured to rotate (rotate) around a long axis along the inner peripheral surface of the casing 420 by driving the screw motor 423M.
  • the upper end of the screw 423 is connected to one end of the swing arm 422.
  • the swing arm 422 is configured to rotate in a horizontal plane about the other end of the swing arm 422 by driving the swing motor 422M.
  • the screw 423 is configured to rotate (revolve) along the inner peripheral surface of the casing 420 as the swing arm 422 rotates.
  • the powder raw material in the vicinity of the screw 423 moves upward while being agitated, and the portion away from the screw 423 moves downward due to gravity.
  • the swing arm 422 rotates and the screw 423 revolves along the inner peripheral surface of the casing 420, so that the entire powder raw material in the casing 420 moves significantly.
  • the powder processing apparatus 4B revolves while rotating the screw 423 to agitate the powder raw material charged in the casing 420.
  • a plurality of types of powder raw materials can be quickly mixed with almost no segregation phenomenon.
  • the powder mixed by the action of the screw 423 is taken out to the outside of the powder processing apparatus 4B through the powder outlet 424 provided in the lower part of the casing 420.
  • the powder processing apparatus 4B may be provided with a jacket portion for adjusting the internal temperature of the casing 420.
  • the jacket portion adjusts the internal temperature of the casing 420 by a fluid (heat medium or refrigerant) supplied from a tank provided separately.
  • the control device 100 acquires measurement data indicating the operating state of the powder processing device 4B and powder data related to the powder obtained from the powder processing device 4B through the input unit 103.
  • the measurement data acquired by the control device 100 is the supply amount (or supply speed) of the powder raw material to be supplied to the powder processing device 4B, the rotation speed of the screw 423 for stirring the powder raw material, and the powder processing device 4B. Includes the supply amount (or supply speed) of the fluid (heat medium or refrigerant) to be supplied, and the processing time of the mixing process.
  • the powder data is data on the mixing degree of the powder obtained from the powder processing apparatus 4B.
  • the mixing degree is an index value indicating the degree of mixing of two or more kinds of powders, and can be measured by using, for example, a color difference meter, an absorbance meter, an NIR, a PH meter, image analysis, chromatography, or the like.
  • the control device 100 uses the acquired measurement data and powder data as teacher data to generate a learning model 220 (see FIG. 10). Since the procedure for generating the learning model 220 is the same as that in the first embodiment, the description thereof will be omitted.
  • the learning model 220 is configured to output the calculation result of the control parameters for the powder processing apparatus 4B when the target value (mixing degree) for the powder desired by the user is input.
  • the control parameters for the powder processing apparatus 4B are the supply amount (or supply speed) of the powder raw material, the rotation speed of the screw 423, the supply amount (or supply speed) of the fluid supplied to the powder processing apparatus 4B, and. Includes processing time for mixed processing.
  • FIG. 10 is a schematic diagram showing a configuration example of the learning model 220 in the second embodiment. Similar to the learning model 210 described in the first embodiment, the learning model 220 includes an input layer 221 having one or more nodes, an intermediate layer 222A, 222B, and an output layer 223, respectively.
  • the number of intermediate layers is not limited to two, and may be three or more.
  • the learning model 220 is configured to output the calculation result of the control parameters for the powder processing apparatus 4B in response to the input of the target value (mixing degree in the second embodiment) for the powder desired by the user. ..
  • the control device 100 When the control device 100 performs an operation using the learning model 220, the control device 100 inputs a target value (mixture degree) desired by the user into the learning model 220.
  • the target value data input to the learning model 220 is output to the node included in the first intermediate layer 222A through the nodes constituting the input layer 221.
  • the data input to the first intermediate layer 222A is output to the node included in the next intermediate layer 222B through the nodes constituting the intermediate layer 222A.
  • the output is calculated using the activation function including the weights and biases set between the nodes.
  • the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 223 is obtained.
  • the output layer 223 outputs the calculation result of the control parameters for the powder processing apparatus 4B.
  • the probability indicating the quality of the combination of the plurality of control parameters described above may be output.
  • the output layer 223 is composed of n nodes from the first node to the nth node, and the supply amount of the powder raw material is SA1 from the first node, the rotation speed of the screw 423 is SV1, and the fluid The probability P1 that the supply amount is FA1 and the processing time of the mixing process is MT1 is output, and ..., The supply amount of the powder raw material is SAN, the rotation speed of the screw 423 is SVn, and the fluid supply amount is FAn from the nth node. , The probability Pn that the processing time of the mixing process is MTn may be output.
  • the number of nodes constituting the output layer 223 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
  • the control unit 101 of the control device 100 has the highest probability of being output from the output layer 223 (in the present embodiment, the supply amount of the powder raw material, the rotation speed of the screw 423, and the powder processing device 4B).
  • the control parameters used for control are determined by specifying the supply amount of the fluid to be supplied to the vehicle and the processing time of the mixing process). Based on the determined control parameters, the control unit 101 generates control commands for controlling the operations of the raw material supply machine 2, the screw motor 423M, the heat medium or refrigerant supply source, and the powder processing device 4B, and each of them is generated through the output unit 104. Output to the device.
  • the supply amount (or the powder raw material) of the powder raw material is supplied according to the input of the target value (mixing degree) for the powder desired by the user.
  • a learning model 220 that outputs calculation results related to control parameters for controlling the supply speed), the rotation speed of the screw 423, the supply amount (or supply speed) of the fluid supplied to the powder processing apparatus 4B, and the processing time of the mixing process. To generate.
  • the control device 100 can control the operation of the powder processing system 1 based on the calculation result of the learning model 220 so that the powder having a desired mixing degree can be obtained.
  • control device 100 generates a learning model 220 by using the teacher data including at least one of the humidity in the casing 420 and the drive power or the drive current of the powder processing device 4B as the measurement data. May be good.
  • control device 100 may generate the learning model 220 by using the teacher data including the concentration of the powder obtained from the powder processing device 4B and the moisture content as the powder data.
  • the control device 100 uses the powder data including the mixing degree, concentration and moisture of the powder obtained from the powder processing device 4B and the above-mentioned measurement data as the teacher data, and the powder desired by the user.
  • the learning model 220 configured to output the calculation result for the control parameters for the powder processing apparatus 4B may be generated.
  • control device 100 may generate the learning model 220 by using the teacher data including the raw material data.
  • the raw material data used for the teacher data includes at least one of the mixing ratio, mixing degree, particle size, bulk density (or true density), and fluidity of the powder raw material.
  • the control device 100 uses the acquired powder data, raw material data, and measurement data as teacher data, and outputs the calculation result of the control parameters for the powder processing device 4B in response to the input of the powder data and the raw material data.
  • the learning model 220 configured in may be generated.
  • control device 100 may generate the learning model 220 by using the product data and the teacher data including at least one of the environmental data.
  • the product data used for the teacher data includes at least one of the temperature of the product powder and the bulk density (or true density).
  • Environmental data includes at least one of the temperature and humidity of the environment in which the powder treatment is performed.
  • the control device 100 uses the acquired powder data, product data, environmental data, and measurement data as teacher data, and receives the input of the powder data and at least one of the product data and the environmental data to the powder processing device 4B.
  • the learning model 220 configured to output the calculation result for the control parameter may be generated.
  • the powder processing apparatus 4B is a mixer that mixes powder by rotating a rotating body (screw 423).
  • a mixer for example, Nautamixer (registered trademark), Bitemix, and Cyclomix (registered trademark) manufactured by Hosokawa Micron Co., Ltd. can be used.
  • the mixer that mixes the powder by rotating the rotating body
  • a mixer that mixes by wind power mixing may be used instead of the rotation speed of the rotating body.
  • the flow rate (flow velocity) of the fluid introduced into the casing 420 may be a control parameter determined by the learning model 220.
  • the powder treatment system 1 according to the third embodiment includes a powder treatment device 4C that performs a composite treatment instead of the powder treatment device 4A that performs the drying treatment.
  • FIG. 11 is a schematic view showing the configuration of the powder processing apparatus 4C according to the third embodiment.
  • the powder processing apparatus 4C includes a horizontal cylindrical casing 430 that performs compounding processing inside the powder processing apparatus 4C.
  • the casing 430 is provided with a raw material input port 431, a paddle 432, a powder outlet 433, and the like.
  • the raw material input port 431 is provided above the casing 430.
  • a raw material supply machine 2 for supplying a powder raw material to be processed is connected to the raw material input port 431.
  • the different types of powder raw materials supplied from the raw material supply machine 2 are conveyed by the screw feeder 21 in the raw material supply path TP1 and are charged into the casing 430 from the raw material input port 431.
  • the powder raw material may be mixed in advance or may be separately supplied to the powder processing apparatus 4C.
  • the paddle 432 provided inside the casing 430 is configured to rotate at a peripheral speed of, for example, 40 m / s or more by driving the paddle motor 432M.
  • the shape and arrangement of the paddle 432 is designed so that the impact force, compressive force, and shear force act uniformly on the individual powder particles.
  • the powder processing apparatus 4C drives the paddle motor 432M and rotates the paddle 432 to apply impact force, compressive force, and shear force to the powder raw material put into the casing 430, and fine particles (child particles). Is dispersed and immobilized on particles (mother particles) of a larger size.
  • the powder complexed by the action of the paddle 432 is taken out to the outside of the powder processing apparatus 4C through the powder outlet 433 provided in the lower part of the casing 430.
  • the powder processing apparatus 4C may include a jacket portion for adjusting the internal temperature of the casing 430.
  • the jacket portion adjusts the internal temperature of the casing 430 by a fluid (heat medium or refrigerant) supplied from a tank provided separately.
  • the control device 100 acquires measurement data indicating the operating state of the powder processing device 4C and powder data related to the powder obtained from the powder processing device 4C through the input unit 103.
  • the measurement data acquired by the control device 100 includes the supply amount (or supply speed) of the powder raw material to be supplied to the powder processing device 4C, the rotation speed of the paddle 432, the load power of the powder processing device 4C, and the compounding process. Includes processing time.
  • the powder data is data on the degree of compounding of the powder obtained from the powder processing apparatus 4C.
  • the degree of compositing is an index showing the degree of integration of a plurality of types of powder, and can be measured using BET, NIR, XRD, TG-DTA, MS, SEM, FE-SEM, TEM, or the like. Is.
  • the degree of compounding may be an index represented by a numerical value or an index represented by an image (image data).
  • the control device 100 uses the acquired measurement data and powder data as teacher data to generate a learning model 230 (see FIG. 12). Since the procedure for generating the learning model 230 is the same as that in the first embodiment, the description thereof will be omitted.
  • the learning model 230 is configured to output the calculation result of the control parameters for the powder processing apparatus 4C when the target value (composite degree) for the powder desired by the user is input.
  • the control parameters for the powder processing apparatus 4C include the supply amount (or supply rate) of the powder raw material, the rotation speed of the paddle 432, the load power of the powder processing apparatus 4C, and the processing time of the compounding process.
  • FIG. 12 is a schematic diagram showing a configuration example of the learning model 230 according to the third embodiment. Similar to the learning model 210 described in the first embodiment, the learning model 230 includes an input layer 231 having one or a plurality of nodes, intermediate layers 232A and 232B, and an output layer 233, respectively. The number of intermediate layers is not limited to two, and may be three or more.
  • the learning model 230 is configured to output the calculation result of the control parameters for the powder processing apparatus 4C in response to the input of the target value (composite degree in the third embodiment) for the powder desired by the user. To.
  • the control device 100 When the control device 100 performs an operation using the learning model 230, the control device 100 inputs a target value (complexity degree) desired by the user into the learning model 230.
  • the target value data input to the learning model 230 is output to the node included in the first intermediate layer 232A through the nodes constituting the input layer 231.
  • the data input to the first intermediate layer 232A is output to the node included in the next intermediate layer 232B through the nodes constituting the intermediate layer 232A.
  • the output is calculated using the activation function including the weights and biases set between the nodes.
  • the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 233 is obtained.
  • the output layer 233 outputs the calculation result of the control parameters for the powder processing apparatus 4C.
  • the probability indicating the quality of the combination of the plurality of control parameters described above may be output.
  • the output layer 233 is composed of n nodes from the first node to the nth node, and from the first node, the supply amount of the powder raw material is SA1, the rotation speed of the paddle 432 is PV1, and the load power.
  • Outputs LP1 and the probability P1 that the processing time of the compounding process is CT1. From the nth node, the supply amount of the powder raw material is SAn, the rotation speed of the paddle 432 is PVn, the load power is LPn, and the compounding process is performed.
  • the probability Pn that the processing time of the processing is CTn may be output.
  • the number of nodes constituting the output layer 233 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
  • the control unit 101 of the control device 100 has the highest probability of being output from the output layer 233 (in the present embodiment, the supply amount of the powder raw material, the rotation speed of the paddle 432, the load power, and the composite.
  • the control parameters used for control are determined by specifying the combination of processing times of the chemical processing.
  • the control unit 101 generates a control command for controlling the operation of the raw material supply machine 2, the paddle motor 432M, and the powder processing device 4C based on the determined control parameters, and outputs the control command to each device through the output unit 104.
  • the supply amount of the powder raw material is obtained according to the input of the target value (composite degree) for the powder desired by the user.
  • the control device 100 can control the operation of the powder processing system 1 based on the calculation result of the learning model 230 so that the powder having a desired degree of compounding can be obtained.
  • the learning model 230 is generated by using the rotation speed of the paddle 432 for stirring the body material and the measurement data including the processing time of the compounding process as the teacher data.
  • the learning model 230 may be generated by using the powder data (data of the degree of compounding) and a part of the selected measurement data as the teacher data.
  • control device 100 further includes at least one of the humidity and pressure in the casing 430, the temperature and flow rate of the refrigerant introduced in the casing 430, and the drive power or drive current of the powder processing device 4C as measurement data.
  • the data may be used to generate the training model 230.
  • control device 100 may generate the learning model 230 by using the teacher data including the conductivity, thermal conductivity, and transmittance of the powder obtained from the powder processing device 4C as the powder data. Good. In this case, the control device 100 uses the powder data including the compositeness, conductivity, thermal conductivity, and permeability of the powder obtained from the powder processing device 4C and the above-mentioned measurement data as the teacher data. , A learning model configured to output the calculation results for the control parameters for the powder processing apparatus 4C when the compositeness, conductivity, thermal conductivity, and transmittance of the powder desired by the user are input. 230 may be generated.
  • control device 100 may generate the learning model 230 by using the teacher data including the raw material data.
  • the raw material data used for the teacher data is at least the data obtained from the mixing ratio of the powder raw material, the bulk density (or true density), BET, NIR, XRD, TG-DTA, MS, SEM, FE-SEM, TEM, and the like. Includes one.
  • the control device 100 uses the acquired powder data, raw material data, and measurement data as teacher data, and outputs the calculation result of the control parameters for the powder processing device 4C in response to the input of the powder data and the raw material data.
  • the learning model 230 configured in may be generated.
  • control device 100 may generate the learning model 230 by using the product data and the teacher data including at least one of the environmental data.
  • the product data used for the teacher data includes at least one of the bulk density (or true density) and the particle size of the product powder.
  • Environmental data includes at least one of the temperature and humidity of the environment in which the powder treatment is performed.
  • the control device 100 uses the acquired powder data, product data, environmental data, and measurement data as teacher data, and receives the input of the powder data and at least one of the product data and the environmental data to the powder processing device 4C.
  • the learning model 230 configured to output the calculation result for the control parameter may be generated.
  • the powder processing apparatus 4C is a composite processing apparatus that composites powder by rotating the paddle 432.
  • a composite processing apparatus for example, Nobilta (registered trademark), Nanocura (registered trademark), and Mechanofusion (registered trademark) manufactured by Hosokawa Micron Co., Ltd. can be used.
  • the compounding is performed using the powder processing apparatus 4C, but the mixing treatment may be performed with the target value as the mixing degree, and the target value may be spherical with the target value as the circularity for a single raw material. Surface treatment such as chemical conversion may be performed.
  • the powder processing system 1 includes a powder processing device 4D that performs surface treatment instead of the powder processing device 4A that performs drying treatment.
  • FIG. 13 is a schematic view showing the configuration of the powder processing apparatus 4D according to the fourth embodiment.
  • the powder processing apparatus 4D includes a cylindrical casing 440 that performs surface treatment inside the powder processing apparatus 4D.
  • the casing 440 is provided with a raw material input port 441, a gas introduction port 442, a crushing rotor 443, a classification rotor 444, a powder outlet 445, a fine powder outlet 446, and the like.
  • the raw material input port 441 is provided above the crushing rotor 443.
  • a raw material supply machine 2 for supplying powder raw materials is connected to the raw material input port 441.
  • the powder raw material supplied from the raw material supply machine 2 is conveyed by the screw feeder 21 in the raw material supply path TP1 and is charged into the casing 440 from the raw material input port 441.
  • the casing 440 is provided with a gas introduction port 442.
  • the position of the gas introduction port 442 is not particularly limited, but it is preferably provided at a position below the crushing rotor 443 so that the gas is introduced into the casing 440 via the rotating crushing rotor 443.
  • the crushing rotor 443 is a rotor including a rotary disk 443A and a plurality of hammers 443B protruding upward from the upper peripheral edge of the rotary disk 443A, and the rotation speed is adjusted to a desired speed by the power of a crushing motor 413M (see FIG. 3). It is configured to rotate.
  • the crushing motor 413M is one of the driving units included in the powder processing system 1.
  • the rotation speed of the crushing motor 413M is measured by the rotation speed sensor S7 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals).
  • the crushing rotor 443 is rotated by the power of the crushing motor 413M to generate a swirling airflow in the casing 440, and the powder raw material introduced into the casing 440 is impacted, compressed, and ground by the action of the hammer 443B.
  • Surface treatment is applied to the powder raw material by applying mechanical energy such as shearing.
  • the crushing rotor 443 is an example of a rotating body that agitates the powder raw material.
  • the powder produced by surface-treating the powder raw material is guided to the classification rotor 444 provided in the upper part of the casing 440 by the air flow flowing in from the lower part of the casing 440.
  • the classification rotor 444 is a rotor provided with a plurality of classification blades 444A arranged radially, and is configured to rotate at a desired rotation speed by the power of the classification motor 415M (see FIG. 3).
  • the classification motor 415M is one of the drive units included in the powder processing system 1.
  • the rotation speed of the classification motor 415M is measured by the rotation speed sensor S8 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals).
  • the classification rotor 444 is provided above the crushing rotor 443, and the powder processed in the casing 440 is passed through only the powder having a particle size smaller than the predetermined particle size by the centrifugal force due to the high-speed rotation. Only the body is guided to the fine powder outlet 446. On the other hand, the powder to which the classification rotor 444 is not added is guided to the powder outlet 445 and taken out as a product powder to the outside of the powder processing apparatus 4D.
  • the powder processing apparatus 4D may be provided with a jacket portion for adjusting the internal temperature of the casing 440.
  • the jacket portion adjusts the internal temperature of the casing 440 by a fluid (heat medium or refrigerant) supplied from a tank provided separately.
  • the control device 100 acquires measurement data indicating the operating state of the powder processing device 4D and powder data related to the powder obtained from the powder processing device 4D through the input unit 103.
  • the measurement data acquired by the control device 100 includes the supply amount (or supply speed) of the powder raw material supplied to the powder processing device 4D, the rotation speed of the crushing rotor 443, the rotation speed of the classification rotor 444, and the surface treatment processing time. And the load power of the powder processing apparatus 4D.
  • the powder data is data on the circularity of the powder obtained from the powder processing apparatus 4D.
  • the circularity is an index representing the shape of powder (particles) obtained from the powder processing apparatus 4D, and is measured by, for example, a particle shape analyzer or image analysis.
  • the control device 100 uses the acquired measurement data and powder data as teacher data to generate a learning model 240 (see FIG. 14). Since the procedure for generating the learning model 240 is the same as that in the first embodiment, the description thereof will be omitted.
  • the learning model 240 is configured to output the calculation result of the control parameters for the powder processing apparatus 4D when the target value (mixing degree) for the powder desired by the user is input.
  • the control parameters for the powder processing apparatus 4D are the supply amount (or supply speed) of the powder raw material, the rotation speed of the crushing rotor 443, the rotation speed of the classification rotor 444, the surface treatment processing time, and the powder processing apparatus. Includes 4D load power.
  • FIG. 14 is a schematic diagram showing a configuration example of the learning model 240 in the fourth embodiment. Similar to the learning model 210 described in the first embodiment, the learning model 240 includes an input layer 241 having one or a plurality of nodes, intermediate layers 242A and 242B, and an output layer 243, respectively. The number of intermediate layers is not limited to two, and may be three or more.
  • the learning model 240 is configured to output the calculation result of the control parameter for the powder processing apparatus 4D in response to the input of the target value (circularity in the fourth embodiment) for the powder desired by the user. ..
  • the control device 100 When the control device 100 performs an calculation using the learning model 240, the control device 100 inputs a target value (circularity) desired by the user into the learning model 240.
  • the target value data input to the learning model 240 is output to the node included in the first intermediate layer 242A through the nodes constituting the input layer 241.
  • the data input to the first intermediate layer 242A is output to the node included in the next intermediate layer 242B through the nodes constituting the intermediate layer 242A.
  • the output is calculated using the activation function including the weights and biases set between the nodes.
  • the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 243 is obtained.
  • the output layer 243 outputs the calculation result for the control parameters for the powder processing apparatus 4D.
  • the probability indicating the quality of the combination of the plurality of control parameters described above may be output.
  • the output layer 243 is composed of n nodes from the first node to the nth node, and from the first node, the supply amount of the powder raw material is SA1, the rotation speed of the crushing rotor 443 is CV1, and the classification is performed.
  • the rotation speed of the rotor 444 is CC1, the load power is LP1, the probability P1 of the surface treatment processing time ST1 is output, ...,
  • the supply amount of the powder raw material is SAN, and the rotation speed of the crushing rotor 443 is from the nth node.
  • the rotation speed of the classification rotor 444 is CCn
  • the load power is LPn
  • the probability Pn of the surface treatment processing time STn may be output.
  • the number of nodes constituting the output layer 243 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
  • the control unit 101 of the control device 100 has the highest probability of being output from the output layer 243 (in the present embodiment, the supply amount of the powder raw material, the rotation speed of the crushing rotor 443, and the classification rotor 444.
  • the control parameters used for control are determined by specifying the combination of rotation speed, load power, and surface treatment time).
  • the control unit 101 generates a control command for controlling the operation of the raw material supply machine 2, the crushing motor 413M, and the powder processing device 4D based on the determined control parameters, and outputs the control command to each device through the output unit 104.
  • the supply amount (or the powder raw material) of the powder raw material is supplied according to the input of the target value (circularity) for the powder desired by the user.
  • the learning model 240 the supply amount (or supply speed) of the powder raw material, the rotation speed of the crushing rotor 443, the rotation speed of the classification rotor 444, the load power of the powder processing apparatus 4D, and the surface treatment treatment.
  • the calculation result regarding the control parameter for controlling the time is obtained.
  • the control device 100 can control the operation of the powder processing system 1 based on the calculation result of the learning model 240 so that the powder having a desired circularity can be obtained.
  • the powder data (circularity data) of the powder obtained from the powder processing apparatus 4D the supply amount (or supply speed) of the powder raw material to be supplied to the powder processing apparatus 4D, and the crushing rotor.
  • the learning model 240 is generated by using the measurement data including the rotation speed of 443, the rotation speed of the classification rotor 444, the load power of the powder processing apparatus 4D, and the processing time of the surface treatment as the teacher data.
  • the powder data (circularity data) and a part of the selected measurement data may be used as the teacher data to generate the learning model 240.
  • control device 100 uses the measurement data as the drive power or drive current of the powder processing device 4D, the flow rate of the fluid (gas or liquid) to be introduced into the casing 440, the flow velocity or temperature, the temperature inside the casing 440, and the powder.
  • the learning model 240 may be generated using teacher data further including at least one of the flow rate or temperature of the refrigerant (or heat medium) supplied to the processing apparatus 4D.
  • control device 100 generates a learning model 240 by using the teacher data including the fluidity of the powder obtained from the powder processing device 4D and the bulk density (or true density) as the powder data. May be good. Fluidity and bulk density are measured using a known powder tester. The control device 100 uses the powder data including the fluidity and bulk density (or true density) of the powder obtained from the powder processing device 4D and the above-mentioned measurement data as the teacher data, and the powder desired by the user. When the roundness, fluidity, and bulk density (or true density) of the body are input, the learning model 240 configured to output the calculation result for the control parameters for the powder processing apparatus 4D may be generated. .. Further, in addition to the above-mentioned fluidity and bulk density, measurement data including any one of the BET value, the powder temperature, and the particle size may be used.
  • control device 100 may generate the learning model 240 by using the teacher data including the raw material data.
  • the raw material data used for the teacher data includes at least one of the BET value, particle size, circularity, bulk density, and fluidity of the powder raw material.
  • the control device 100 uses the acquired powder data, raw material data, and measurement data as teacher data, and outputs the calculation result of the control parameters for the powder processing device 4D in response to the input of the powder data and the raw material data.
  • the learning model 240 configured in may be generated.
  • control device 100 may generate the learning model 240 by using the teacher data including at least one of the product data and the environmental data.
  • the product data used for the teacher data may include the moisture content of the product powder.
  • Environmental data includes at least one of the temperature and humidity of the environment in which the powder treatment is performed.
  • the control device 100 uses the acquired powder data, product data, environmental data, and measurement data as teacher data, and receives the input of the powder data and at least one of the product data and the environmental data to the powder processing device 4D.
  • the learning model 240 configured to output the calculation result for the control parameter may be generated.
  • the powder treatment device 4D is a surface treatment device that performs surface treatment by rotating the crushing rotor 443 and the classification rotor 444.
  • a surface treatment apparatus for example, Faculty (registered trademark) manufactured by Hosokawa Micron Co., Ltd. can be used.
  • the blower 7 is used to form a flow of gas for extracting the powder from the powder processing apparatus 4D, but a pump may be used instead of the blower 7.
  • the configuration is such that the gas is introduced into the powder processing apparatus 4D, but the configuration in which the liquid is introduced may be used instead of the configuration in which the gas is introduced.
  • the powder treatment system 1 includes a powder treatment device 4E that performs a granulation treatment instead of the powder treatment device 4A that performs the drying treatment.
  • FIG. 15 is a schematic view showing the configuration of the powder processing apparatus 4E according to the fifth embodiment.
  • the powder processing apparatus 4E includes a cylindrical casing 450 that performs granulation processing inside the powder processing apparatus 4E.
  • the casing 450 is provided with a raw material input port 451, an additive input port 452, a rotor 453, a flexible wall 454, a powder outlet 455, and the like.
  • the raw material input port 451 is provided above the casing 450.
  • a raw material supply machine 2 for supplying a powder raw material to be processed is connected to the raw material input port 451.
  • the powder raw material supplied from the raw material supply machine 2 is conveyed by the screw feeder 21 in the raw material supply path TP1 and is charged into the casing 450 from the raw material input port 451.
  • the additive input port 452 is provided on the upper part of the casing 450 so as to face the raw material input port 451.
  • the additive charged into the casing 450 through the additive charging port 452 is a liquid such as water or oil.
  • the additive inlet 452 includes a nozzle (not shown) for spraying the additive.
  • the powder processing apparatus 4E uniformly humidifies the inside of the casing 450 by spraying droplets from the additive input port 452. Humidification progresses, and the powder that has become more than the water content at which granulation begins repeats cohesive growth so as to wrap the sprayed droplets, and grows into porous granulated particles.
  • the rotor 453 provided inside the casing 450 is configured to rotate around an axis in the vertical direction by driving the rotor motor 453M.
  • the rotor 453 is provided with a knife blade 453A, and by giving the powder raw material three types of movements of swirling, rotating, and consolidation by gravity, homogeneous mixing, humidification, and granulation are performed.
  • a flexible wall 454 is provided on the inner peripheral surface of the casing 450.
  • the outer peripheral surface of the flexible wall 454 is surrounded by a roller gauge 454B to which a large number of rollers 454A are attached.
  • the flexible wall 454 has a function of being deformed by the vertical movement of the roller gauge 454B and removing agglomerates adhering to the inner wall by humidification.
  • the powder (granulated particles) produced in the casing 450 is taken out to the outside of the powder processing apparatus 4E through the powder outlet 455 provided in the lower part of the casing 450.
  • the control device 100 acquires measurement data indicating the operating state of the powder processing device 4E and powder data related to the powder obtained from the powder processing device 4E through the input unit 103.
  • the measurement data acquired by the control device 100 includes the supply amount (or supply speed) of the powder raw material to be supplied to the powder processing device 4E, the rotation speed of the rotor 453, the pressure in the casing 450, and the addition to be charged into the casing 450. Includes the amount of agent input.
  • the powder data is data on the particle size and shape of the powder obtained from the powder processing apparatus 4E.
  • the shape of the powder is data obtained by a particle shape analyzer or image analysis.
  • the control device 100 uses the acquired measurement data and powder data as teacher data to generate a learning model 250 (see FIG. 16). Since the procedure for generating the learning model 250 is the same as that in the first embodiment, the description thereof will be omitted.
  • the learning model 250 is configured to output the calculation result of the control parameters for the powder processing apparatus 4E when the target values (particle diameter and shape) for the powder desired by the user are input.
  • the control parameters for the powder processing apparatus 4E include the supply amount (or supply speed) of the powder raw material, the rotation speed of the rotor 453, the pressure in the processing chamber, and the input amount of the additive.
  • FIG. 16 is a schematic diagram showing a configuration example of the learning model 250 in the fifth embodiment. Similar to the learning model 210 described in the first embodiment, the learning model 250 includes an input layer 251 having one or a plurality of nodes, intermediate layers 252A and 252B, and an output layer 253, respectively.
  • the number of intermediate layers is not limited to two, and may be three or more.
  • the learning model 250 is configured to output the calculation result of the control parameter for the powder processing apparatus 4E in response to the input of the target value (particle diameter and shape in the fifth embodiment) for the powder desired by the user. Will be done.
  • the control device 100 When the control device 100 performs the calculation using the learning model 250, the control device 100 inputs the target values (particle diameter and shape) desired by the user into the learning model 250.
  • the target value data input to the learning model 250 is output to the node included in the first intermediate layer 252A through the nodes constituting the input layer 251.
  • the data input to the first intermediate layer 252A is output to the node included in the next intermediate layer 252B through the nodes constituting the intermediate layer 252A.
  • the output is calculated using the activation function including the weights and biases set between the nodes.
  • the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 253 is obtained.
  • the output layer 253 outputs the calculation result for the control parameters for the powder processing apparatus 4E.
  • the probability indicating the quality of the combination of the plurality of control parameters described above may be output.
  • the output layer 253 is composed of n nodes from the first node to the nth node, from the first node, the supply amount of the powder raw material is SA1, the rotation speed of the rotor 453 is RV1, and the casing 450.
  • the probability P1 that the pressure inside is CP1 and the input amount of the additive is AA1 is output, ...
  • the supply amount of the powder raw material is SAN, the rotation speed of the rotor 453 is RVn, and the pressure inside the casing 450 from the nth node. May output CPn and the probability Pn such that the amount of the additive added is AAn.
  • the number of nodes constituting the output layer 253 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
  • the control unit 101 of the control device 100 has the highest probability of being output from the output layer 253 (in the present embodiment, the supply amount of the powder raw material, the rotation speed of the rotor 453, and the pressure in the casing 450). , And the combination of the input amount of the additive), the control parameter used for the control is determined.
  • the control unit 101 generates a control command for controlling the operation of the raw material supply machine 2, the rotor motor 453M, the nozzle, and the like based on the determined control parameters, and outputs the control command to each device through the output unit 104.
  • the powder raw material is supplied according to the input of the target values (particle size and shape) for the powder desired by the user.
  • a learning model 250 is generated that outputs calculation results regarding control parameters for controlling the amount, the rotation speed of the rotor 453, the pressure in the casing 450, and the input amount of the additive. Further, by using the learning model 250, calculation results regarding control parameters for controlling the supply amount of the powder raw material, the rotation speed of the rotor 453, the pressure in the casing 450, and the input amount of the additive can be obtained.
  • the control device 100 can control the operation of the powder processing system 1 based on the calculation result of the learning model 250 so that the powder having a desired particle size and shape can be obtained.
  • the learning model 250 is generated by using the measurement data including the rotation speed of the rotor 453 for stirring the powder raw material, the pressure in the casing 450, and the amount of the additive to be charged into the casing 450 as the teacher data. It was configured.
  • the learning model 250 may be generated by using the powder data (particle size and shape data) and a part of the selected measurement data as the teacher data.
  • control device 100 may generate the learning model 250 by using the teacher data including at least one of the humidity in the casing 450, the drive power of the powder processing device 4E, or the drive current as the measurement data. ..
  • control device 100 generates a learning model 250 as powder data by using the teacher data further including the fluidity, bulk density, hardness, water absorption amount or oil absorption amount of the powder obtained from the powder processing device 4E. You may.
  • the control device 100 uses the powder data including the fluidity, bulk density, hardness, water absorption amount or oil absorption amount of the powder obtained from the powder processing device 4E and the above-mentioned measurement data as the teacher data.
  • the learning model 250 configured to output the calculation result for the control parameters for the powder processing apparatus 4E is provided. It should be generated.
  • control device 100 may generate the learning model 250 by using the teacher data including the raw material data.
  • the raw material data used for the teacher data includes at least one of the BET value, particle size, fluidity, and bulk density of the powder raw material.
  • the control device 100 uses the acquired powder data, raw material data, and measurement data as teacher data, and outputs the calculation result of the control parameters for the powder processing device 4E in response to the input of the powder data and the raw material data.
  • the learning model 250 configured in the above may be generated.
  • control device 100 may generate the learning model 250 by using the product data and the teacher data including at least one of the environmental data.
  • the product data used for the teacher data includes the moisture content of the product powder.
  • Environmental data includes at least one of the temperature and humidity of the environment in which the powder treatment is performed.
  • the control device 100 uses the acquired powder data, product data, environmental data, and measurement data as teacher data, and receives the input of the powder data and at least one of the product data and the environmental data to the powder processing device 4E.
  • a learning model 250 configured to output the calculation results for the control parameters may be generated.
  • the powder processing device 4E is a granulation processing device that granulates by adding an additive and rotating the rotor 453.
  • a granulation processing apparatus for example, a flexomix manufactured by Hosokawa Micron Co., Ltd. can be used. It can also be applied to a fluidized bed type granulation processing apparatus that performs the same processing.
  • Agromaster registered trademark manufactured by Hosokawa Micron Co., Ltd. can be used.
  • FIG. 17 is a flowchart illustrating a re-learning procedure of the learning model 210.
  • the control unit 101 of the control device 100 receives the input of the target value (moisture content) for the powder desired by the user, and learns the received moisture content data.
  • the model 210 By inputting to the model 210, the calculation result related to the control parameter is acquired.
  • the control unit 101 controls the operation of each device constituting the powder processing system 1 based on the calculation result acquired from the learning model 210.
  • the control unit 101 determines the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the drying process.
  • the measurement data including the processing time and the powder data (moisture data) of the powder obtained from the powder processing apparatus 4A may be collected.
  • the collected measurement data and powder data are stored in the storage unit 102 together with the time stamp.
  • the control unit 101 compares the actually measured value indicated by the powder data with the target value input by the user at an appropriate timing after the start of the operation phase (step S601).
  • the control unit 101 determines whether or not to execute re-learning based on the comparison result (step S602).
  • control unit 101 determines that re-learning is not executed (S602: NO), and ends the process according to this flowchart.
  • control unit 101 determines that re-learning is executed (S602: YES).
  • control unit 101 When it is determined to execute re-learning, the control unit 101 reads the data collected after the start of operation from the storage unit 102 (step S603) and selects the teacher data (step S604).
  • the re-learning procedure after step S603 may be executed at a timing when the powder processing system 1 is not operating.
  • the control unit 101 inputs the wet content data included in the selected teacher data into the learning model 210 (step S605), and executes the calculation by the learning model 210 (step S606). That is, the control unit 101 inputs moisture data to the nodes constituting the input layer 211 of the learning model 210, performs calculations using weights and biases between the nodes in the intermediate layers 212A and 212B, and outputs the calculation results. The process of outputting from the node of layer 213 is performed.
  • control unit 101 evaluates the calculation result obtained by the calculation in step S606 (step S607), and determines whether or not the learning is completed (step S608). Specifically, the control unit 101 can evaluate the calculation result by using an error function (also referred to as an objective function, a loss function, or a cost function) based on the calculation result obtained in step S606 and the teacher data.
  • an error function also referred to as an objective function, a loss function, or a cost function
  • control unit 101 updates the weights and biases between the nodes of the learning model 210 (step S609), returns the process to step S604, and another teacher. Continue learning with the data.
  • the control unit 101 may update the weights and biases between the nodes by using an error backpropagation method that sequentially updates the weights and biases between the nodes from the output layer 213 of the learning model 210 toward the input layer 211. it can.
  • control unit 101 stores the learned learning model 210 in the storage unit 102 (step S610), and ends the process according to this flowchart.
  • control device 100 since the control device 100 according to the present embodiment relearns the learning model 210 as necessary, the accuracy of powder processing by the powder processing system 1 even after the start of the operation phase. Can be enhanced.
  • the learning models 220 to 250 described in the second to fifth embodiments can be re-learned by the same procedure. ..
  • FIG. 18 is a flowchart illustrating a control parameter adjustment procedure.
  • the control unit 101 of the control device 100 receives the input of the target value (moisture content) for the powder desired by the user, and learns the data of the received target value. By inputting to the model 210, the calculation result related to the control parameter is acquired.
  • the control unit 101 controls the operation of each device constituting the powder processing system 1 based on the calculation result acquired from the learning model 210.
  • the control unit 101 determines the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the drying process.
  • the measurement data including the processing time and the powder data (moisture data) of the powder obtained from the powder processing apparatus 4A may be collected.
  • the collected measurement data and powder data are stored in the storage unit 102 together with the time stamp.
  • the control unit 101 compares the actually measured value indicated by the powder data with the target value input by the user at an appropriate timing after the start of the operation phase (step S701). The control unit 101 determines whether or not to adjust the control parameter based on the comparison result (step S702).
  • control unit 101 determines that the control parameter is not adjusted (S702: NO), and ends the process according to this flowchart.
  • control unit 101 determines that the control parameter is adjusted (S702: YES).
  • control unit 101 adjusts the control parameter according to the comparison result in step S702 (step S703), and operates the device including the powder processing device 4A based on the adjusted control parameter.
  • Control step S704.
  • the control unit 101 may control the operation of the hot air generator 3 so that the temperature of the heat medium becomes higher (lower).
  • the control unit 101 may control the operation of the crushing motor 413M so that the rotation speed of the crushing rotor 413 becomes high (low).
  • control unit 101 may control the operation of the classification motor 415M so that the rotation speed of the classification rotor 415 becomes high (low).
  • control unit 101 may control the operation of the blower 7 so that the pressure in the casing 410 becomes low (high). Further, the control unit 101 may control the operation of the raw material supply machine 2 so that the supply amount (or supply speed) of the powder raw material is low (high). Further, the control unit 101 may control the operation of the powder processing apparatus 4A so that the processing time of the drying process becomes longer (shorter).
  • the control parameter is adjusted so that the deviation becomes small. be able to.
  • FIG. 19 is a flowchart illustrating a procedure of processing executed by the terminal device 500 and the control device 100.
  • the control unit 501 of the terminal device 500 accesses the control device 100 through the communication unit 503 (step S801).
  • control unit 101 of the control device 100 receives access from the terminal device 500 when the powder processing device 4A is not operating, for example, the screen of the target value input screen for receiving the target value of the powder desired by the user. Data is generated (step S802), and the generated screen data is transmitted from the communication unit 105 to the terminal device 500 (step S803).
  • the control unit 101 may execute the processes after step S803 described below.
  • the control unit 501 of the terminal device 500 receives the screen data of the target value input screen transmitted from the control device 100 from the communication unit 503 (step S804).
  • the control unit 501 displays the target value input screen on the display unit 505 based on the received screen data (step S805), and accepts the input of the target value for the powder desired by the user (step S806).
  • the target value received in step S806 is, for example, the moisture content of the powder.
  • FIG. 20 is a schematic diagram showing an example of a target value input screen.
  • the target value input screen shown as an example in FIG. 20 shows a state in which "moisture content" is set in the item of "target value 1" and a target value for moisture content is set in the item below it.
  • this target value input screen for example, data on the yield of powder desired by the user per unit time may be accepted. Further, raw material data, product data, exhaust gas data, environmental data, etc. to be given to the learning model 210 may be accepted.
  • the control unit 501 transmits the data of the target value received in step S806 to the control device 100 (step S807).
  • the control unit 101 of the control device 100 receives the target value data transmitted from the terminal device 500 from the communication unit 105 (step S808).
  • the control unit 101 inputs the received target value data into the learning model 210, and executes the calculation by the learning model 210 (step S809).
  • the control unit 101 acquires the calculation result from the learning model 210 (step S810), and determines the control parameter based on the calculation result (step S811).
  • the control unit 101 controls the operation of the powder processing system 1 including the powder processing apparatus 4A based on the determined control parameters (step S812).
  • the control unit 101 determines the moisture content of the powder obtained from the powder processing device 4A, the temperature and flow rate of the heat medium, the supply amount (or supply speed) of the powder raw material, and the crushing rotor 413. Measurement data on the rotation speed of the above, the rotation speed of the classification rotor 415, the pressure in the casing 143, the processing time in the powder processing apparatus 4A, and the like are acquired from the input unit 103 at any time.
  • the control unit 101 generates screen data of the monitoring screen including at least one of the above measurement data and an overall view of the powder processing system 1 at an appropriate timing (step S813).
  • the control unit 101 transmits the generated screen data from the communication unit 105 to the terminal device 500 (step S814).
  • the control unit 501 of the terminal device 500 receives the screen data transmitted from the control device 100 from the communication unit 503 (step S815).
  • the control unit 501 displays the monitoring screen on the display unit 505 based on the received screen data (step S816).
  • FIG. 21 is a schematic diagram showing an example of the monitoring screen.
  • the example shown in FIG. 21 shows a state in which a monitoring screen including measurement data obtained from the powder processing apparatus 4A and an overall view of the powder processing system 1 is displayed on the display unit 505.
  • a target value input by the user, a control value set based on the calculation result of the learning model 210, and the like may be displayed on the monitoring screen.
  • the powder processing system 1 can be remotely controlled by using the terminal device 500, and the operating status of the powder processing system 1 can be monitored by the terminal device 500.
  • FIG. 22 is a flowchart illustrating a procedure of processing executed by the terminal device 500 and the control device 100.
  • the control unit 501 of the terminal device 500 accesses the control device 100 through the communication unit 503 (step S901).
  • control unit 101 of the control device 100 When the control unit 101 of the control device 100 receives access from the terminal device 500 when the powder processing device 4A is not operating, the control unit 101 generates screen data of a processing type selection screen for selecting the powder processing type. (Step S902), the generated screen data is transmitted from the communication unit 105 to the terminal device 500 (step S903).
  • the control unit 101 may execute the processes after step S803 of the flowchart shown in FIG.
  • the control unit 501 of the terminal device 500 receives the screen data of the processing type selection screen transmitted from the control device 100 from the communication unit 503 (step S904).
  • the control unit 501 displays the processing type selection screen on the display unit 505 based on the received screen data (step S905), and accepts the type selection (step S906).
  • FIG. 23 is a schematic diagram showing an example of the processing type selection screen.
  • a radio button arranged as a component of the user interface is used to select the type of powder processing desired by the user from among drying processing, mixing processing, compounding processing, surface treatment, and granulation processing. Is configured to accept.
  • the control unit 501 transmits the selection result from the communication unit 503 to the control device 100 (step S907).
  • the control unit 101 of the control device 100 receives the selection result transmitted from the terminal device 500 from the communication unit 503 (step S908). After receiving the selection result, the control unit 101 executes the processes after step S802 of the flowchart shown in FIG. That is, the control unit 101 inputs the input of the target value to the corresponding learning model 210 (or learning models 220 to 250) according to the type of the powder processing selected by the user. , The process of acquiring the calculation result, the process of controlling the operation of the powder processing system 1 based on the acquired calculation result, and the like may be executed.
  • any of the learning models 210 to 250 is selected according to the type of powder processing selected by the user, and the selected learning model 210 (or learning models 220 to 250) is selected.
  • the operation of the powder processing system 1 can be controlled by using the calculation result of.
  • the control device 100 collects measurement data indicating the operating state of the powder processing device 4A and powder data of the powder obtained from the powder processing device 4A for each type of powder raw material.
  • FIG. 24 is a conceptual diagram showing an example of collecting data according to the tenth embodiment.
  • the control unit 101 of the control device 100 acquires measurement data indicating the operating state of the powder processing device 4A and powder data related to the powder obtained from the powder processing device 4A through the input unit 103.
  • the measurement data and powder data acquired by the control unit 101 are the same as those in the first embodiment.
  • the control unit 101 stores the acquired measurement data and powder data in the storage unit 102 together with the time stamp and information on the type of the powder raw material.
  • the information regarding the type of the powder raw material may be character information indicating the type name of the powder raw material, or may be an arbitrary identifier that can specify the type of the powder raw material.
  • Information on the type of powder raw material may be received through the operation unit 106 before data collection or after data collection.
  • the control unit 101 uses the collected data as teacher data to learn the relationship between the moisture content of the powder obtained from the powder processing apparatus 4A and the control parameters related to the powder processing apparatus 4A, as described above. Generate the training model 210.
  • the example of FIG. 24 shows a state in which data is collected for each type of powder raw material such as magnesium hydroxide, lithium cobalt oxide, and calcium phosphate and stored in the storage unit 102.
  • the control unit 101 uses the data collected for each type of powder raw material as the teacher data to generate the learning model 210.
  • FIG. 25 is a flowchart illustrating a procedure for generating the learning model 210 according to the tenth embodiment.
  • the control unit 101 of the control device 100 receives information regarding the type of the powder raw material prior to the generation of the learning model 210 (step S1001). For example, the control unit 101 displays a screen for inquiring the user about the type of the powder raw material on the display unit 107, and can receive information on the type of the powder raw material through the displayed screen. Further, the control unit 101 may receive information on the type of the powder raw material by transmitting an inquiry about the type of the powder raw material from the communication unit 105 to the terminal device 500 and receiving a reply from the terminal device 500. ..
  • control unit 101 reads the data stored in association with the type received in step S1001 from the storage unit 102 (step S1002).
  • the control unit 101 selects the data to be used for the teacher data from the read data (step S1003). That is, from the read data, the control unit 101 determines the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the pressure in the casing 410. Select only one set of the measured value of the processing time of the drying process and the value of the wet content of the powder obtained at that time.
  • control unit 101 inputs the wet content data included in the selected teacher data into the learning model 210 (step S1004), and executes the calculation by the learning model 210 (step S1005). That is, the control unit 101 inputs the moisture value to the nodes constituting the input layer 211 of the learning model 210, performs calculations using the weights and biases between the nodes in the intermediate layers 212A and 212B, and outputs the calculation results. The process of outputting from the node of layer 213 is performed. In the initial stage before the start of learning, it is assumed that the definition information describing the learning model 210 is given an initial value.
  • the control unit 101 evaluates the calculation result obtained in step S1005 (step S1006), and determines whether or not the learning is completed (step S1007). Specifically, the control unit 101 can evaluate the calculation result by using an error function (also referred to as an objective function, a loss function, or a cost function) based on the calculation result obtained in step S1005 and the teacher data. ..
  • an error function also referred to as an objective function, a loss function, or a cost function
  • the control unit 101 determines that the learning is completed. to decide. In order to avoid the problem of overfitting, techniques such as cross-validation and early stopping may be adopted to end learning at an appropriate timing.
  • control unit 101 updates the weights and biases between the nodes of the learning model 210 (step S1008), returns the process to step S1003, and another teacher. Continue learning with the data.
  • the control unit 101 may update the weights and biases between the nodes by using an error backpropagation method that sequentially updates the weights and biases between the nodes from the output layer 213 of the learning model 210 toward the input layer 211. it can.
  • control unit 101 stores the learned learning model 210 in the storage unit 102 in association with the information regarding the type of the powder raw material (step S1009), and this flowchart. Ends the processing by.
  • control device 100 can generate the learning model 210 according to the type of the powder raw material.
  • the learning model 210 in the tenth embodiment is the same as that in the first embodiment, but instead of the learning model 210, the learning models 220 to 250 described in the second to fifth embodiments are generated for each type of powder raw material. You may.
  • control device 100 is configured to generate the learning model 210, but even if an external server (not shown) for generating the learning model 210 is provided and the learning model 210 is generated by the external server. Good.
  • the control device 100 may acquire the learning model 210 from the external server by communication or the like, and store the acquired learning model 210 in the storage unit 102.
  • FIG. 26 is a flowchart illustrating a control procedure by the control device 100.
  • the control unit 101 of the control device 100 receives information on the type of powder raw material and a target value (moisture content) of the powder desired by the user through the operation unit 106 (step S1221).
  • control unit 101 reads the learning model 210 according to the type of the received powder raw material from the storage unit 102 (step S1222).
  • the control unit 101 inputs the received moisture data to the input layer 211 of the learning model 210 read in step S1222, and executes the calculation by the learning model 210 (step S1223).
  • the control unit 101 gives the received moisture data to the node of the input layer 211, and executes the calculation by the intermediate layers 212A and 212B.
  • the output layer 213 of the learning model 210 is used for the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the drying process. Outputs the calculation result related to the control parameters that control the processing time.
  • control unit 101 acquires the calculation result from the learning model 210 (step S1224) and determines the control parameters used for control (step S1225). Based on the probability of being output as a calculation result, the control unit 101 includes the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the inside of the casing 410. The combination of pressure and processing time for drying processing may be determined.
  • control unit 101 executes control based on the control parameters determined in step S1225 (step S1226). That is, the control unit 101 generates and generates a control command for controlling the operation of the hot air generator 3 so that the temperature and the flow rate of the heat medium introduced into the casing 410 become the values determined in step S1225, respectively.
  • the control command is output to the hot air generator 3 through the output unit 104.
  • the control unit 101 has values determined in step S1225 for each of the supply amount of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the processing time of the drying process.
  • a control command for controlling the operation of the raw material supply machine 2, the crushing rotor 413, the classification rotor 415, the blower 7, and the powder processing device 4A is generated, and the generated control command is output to each device through the output unit 104.
  • control device 100 can determine the control parameters by using the learning model 210 according to the type of the powder raw material.
  • the control device 100 can perform control based on the determined control parameters so that a powder having a desired particle size can be obtained.
  • control parameters are determined using the learning model 210 generated for each type of powder raw material.
  • learning models 220 to 250 described in the second to fifth embodiments are used as powder.
  • the control parameters may be determined by using the generated learning models 220 to 250, which are generated for each type of body material.
  • control device 100 can determine the control parameters by using the learning model 210 according to the type of the powder raw material.
  • the control device 100 can perform control based on the determined control parameters so that a powder having a desired moisture content is obtained.
  • the powder processing system 1 includes one powder processing device 4A to 4E, respectively, but the powder processing system 1 includes a plurality of powder processing devices 4A to 4E. It may be constructed by combining.
  • Rotation speed sensor 100 ... Control device, 101 ... Control unit, 102 ... Storage unit, 103 ... Input unit, 104 ... Output unit, 105 ... Communication unit, 106 ... Operation unit, 107 ... Display unit, 413M ... Grinding motor, 415M ... Classification motor, 500 ... Terminal device, 501 ... Control unit, 502 ... Storage unit, 503 ... Communication unit, 504 ... Operation unit, 505 ... Display unit

Abstract

Provided are a learning model generation method, a computer program, a learning model, a control device, and a control method. By using a computer, with respect to a powder treatment device which performs powder treatment including any one among dry treatment, mixing treatment, composite treatment, surface treatment, and granulation treatment, a learning model is generated which is configured to output a calculation result for a control parameter with respect to the powder treatment device, when measurement data indicating an operation state of the powder treatment device and powder data pertaining to powder obtained from the powder treatment device are acquired, the acquired measurement data and powder data are used as teacher data, and a target value for the powder, which is desired by a user, is input.

Description

学習モデルの生成方法、コンピュータプログラム、学習モデル、制御装置、及び制御方法Learning model generation method, computer program, learning model, control device, and control method
 本発明は、学習モデルの生成方法、コンピュータプログラム、学習モデル、制御装置、及び制御方法に関する。 The present invention relates to a learning model generation method, a computer program, a learning model, a control device, and a control method.
 粉体処理プロセスは、貯蔵、供給、輸送、粉砕、分級、混合、乾燥、造粒、複合化、球形化など種々のプロセスの組み合わせにより構成される(例えば、特許文献1を参照)。ユーザが望む品質を持った製品又は中間体を安定的に得るためには、粉体処理装置の操作条件を適切に設定する必要がある。 The powder treatment process is composed of a combination of various processes such as storage, supply, transportation, pulverization, classification, mixing, drying, granulation, compounding, and spheroidization (see, for example, Patent Document 1). In order to stably obtain a product or intermediate having the quality desired by the user, it is necessary to appropriately set the operating conditions of the powder processing apparatus.
特開2008-194592号公報Japanese Unexamined Patent Publication No. 2008-194592
 しかしながら、粉体処理プロセスにおいて取り扱う粉体は、粉体の種類、サイズ、形状等に応じて千差万別の性質を示す。このため、粉体処理装置に設定される操作条件は、現場技術者の経験や勘に依存している要素が多いという問題点を有している。 However, the powder handled in the powder processing process exhibits a wide variety of properties depending on the type, size, shape, etc. of the powder. Therefore, there is a problem that the operating conditions set in the powder processing apparatus often depend on the experience and intuition of field engineers.
 本発明は、現場技術者の経験や勘に依存することなく、粉体処理装置に関する制御パラメータを決定できる学習モデルの生成方法、コンピュータプログラム、学習モデル、制御装置、及び制御方法を提供することを目的とする。 The present invention provides a learning model generation method, a computer program, a learning model, a control device, and a control method capable of determining control parameters related to a powder processing apparatus without depending on the experience and intuition of a field engineer. The purpose.
 本発明の一態様に係る学習モデルの生成方法は、コンピュータを用いて、乾燥処理、混合処理、複合化処理、表面処理、及び造粒処理の何れか1つを含む粉体処理を行う粉体処理装置に関して、前記粉体処理装置の動作状態を示す計測データと、前記粉体処理装置から得られる粉体に関する粉体データとを取得し、取得した計測データと粉体データとを教師データに用いて、ユーザが所望する粉体についての目標値が入力された場合、前記粉体処理装置に対する制御パラメータについての演算結果を出力するよう構成された学習モデルを生成する。 The method for generating a learning model according to one aspect of the present invention is a powder that uses a computer to perform powder treatment including any one of drying treatment, mixing treatment, compounding treatment, surface treatment, and granulation treatment. Regarding the processing device, measurement data indicating the operating state of the powder processing device and powder data related to the powder obtained from the powder processing device are acquired, and the acquired measurement data and powder data are used as teacher data. When a target value for the powder desired by the user is input, a learning model configured to output the calculation result for the control parameter for the powder processing apparatus is generated.
 本願によれば、現場技術者の経験や勘に依存することなく、粉体処理装置に関する制御パラメータを決定できる。 According to the present application, control parameters related to the powder processing apparatus can be determined without depending on the experience and intuition of field engineers.
実施の形態1に係る粉体処理システムの全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the powder processing system which concerns on Embodiment 1. FIG. 実施の形態1に係る粉体処理装置の構成を示す模式的断面図である。It is a schematic cross-sectional view which shows the structure of the powder processing apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る制御装置の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the control device which concerns on Embodiment 1. FIG. 端末装置の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of a terminal device. 実施の形態1における学習モデルの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the learning model in Embodiment 1. FIG. 制御装置が収集するデータの一例を示す概念図である。It is a conceptual diagram which shows an example of the data which a control device collects. 制御装置による学習モデルの生成手順を説明するフローチャートである。It is a flowchart explaining the generation procedure of the learning model by a control device. 制御装置による制御手順を説明するフローチャートである。It is a flowchart explaining the control procedure by a control device. 実施の形態2に係る粉体処理装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the powder processing apparatus which concerns on Embodiment 2. 実施の形態2における学習モデルの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the learning model in Embodiment 2. 実施の形態3に係る粉体処理装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the powder processing apparatus which concerns on Embodiment 3. 実施の形態3における学習モデルの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the learning model in Embodiment 3. 実施の形態4に係る粉体処理装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the powder processing apparatus which concerns on Embodiment 4. 実施の形態4における学習モデルの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the learning model in Embodiment 4. 実施の形態5に係る粉体処理装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the powder processing apparatus which concerns on Embodiment 5. 実施の形態5における学習モデルの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the learning model in Embodiment 5. 学習モデルの再学習手順を説明するフローチャートである。It is a flowchart explaining the re-learning procedure of a learning model. 制御パラメータの調整手順を説明するフローチャートである。It is a flowchart explaining the adjustment procedure of a control parameter. 端末装置及び制御装置が実行する処理の手順を説明するフローチャートである。It is a flowchart explaining the procedure of the process executed by a terminal device and a control device. 目標値入力画面の一例を示す模式図である。It is a schematic diagram which shows an example of the target value input screen. モニタリング画面の一例を示す模式図である。It is a schematic diagram which shows an example of a monitoring screen. 端末装置及び制御装置が実行する処理の手順を説明するフローチャートである。It is a flowchart explaining the procedure of the process executed by a terminal device and a control device. 処理種別選択画面の一例を示す模式図である。It is a schematic diagram which shows an example of the processing type selection screen. 実施の形態10におけるデータの収集例を示す概念図である。It is a conceptual diagram which shows the example of collecting data in Embodiment 10. 実施の形態10に係る学習モデルの生成手順を説明するフローチャートである。It is a flowchart explaining the generation procedure of the learning model which concerns on Embodiment 10. 制御装置による制御手順を説明するフローチャートである。It is a flowchart explaining the control procedure by a control device.
 以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
 (実施の形態1)
 図1は実施の形態1に係る粉体処理システム1の全体構成を示す模式図である。実施の形態1に係る粉体処理システム1は、例えば、原料供給機2、熱風発生機3、粉体処理装置4A、サイクロン5、集塵機6、ブロワ7、製品タンク8、集塵タンク9及び制御装置100(図3を参照)を備える。
Hereinafter, the present invention will be specifically described with reference to the drawings showing the embodiments thereof.
(Embodiment 1)
FIG. 1 is a schematic view showing the overall configuration of the powder processing system 1 according to the first embodiment. The powder processing system 1 according to the first embodiment includes, for example, a raw material supply machine 2, a hot air generator 3, a powder processing device 4A, a cyclone 5, a dust collector 6, a blower 7, a product tank 8, a dust collecting tank 9, and a control. A device 100 (see FIG. 3) is provided.
 原料供給機2は、粉体原料を粉体処理装置4Aへ供給するための装置である。原料供給機2が粉体処理装置4Aへ供給する粉体原料は、無機材料、有機材料、又は金属材料の粉体を製造するための原料であり、例えば、粉体塗料、電池材料、磁性材料、トナー材料、染料、樹脂、ワックス、ポリマ、医薬品、触媒、金属粉、シリカ、はんだ、セメント、食品などを含む。 The raw material supply machine 2 is a device for supplying the powder raw material to the powder processing device 4A. The powder raw material supplied by the raw material feeder 2 to the powder processing apparatus 4A is a raw material for producing powder of an inorganic material, an organic material, or a metallic material, and is, for example, a powder coating material, a battery material, or a magnetic material. , Toner materials, dyes, resins, waxes, polymers, pharmaceuticals, catalysts, metal powders, silica, solder, cement, foods, etc.
 原料供給機2は、原料供給路TP1を介して粉体処理装置4Aに接続されている。原料供給路TP1内には、粉体原料を搬送するためのスクリューフィーダ21(図2を参照)が設けられている。スクリューフィーダ21は、粉体原料が固体の場合であって、粉体原料を一定速度で連続的に投入する場合に好ましい。スクリューフィーダ21に代えて、ダブルダンパーやロータリーバルブ等を用いてもよい。また、熱風発生機3が発生させる熱風を原料供給路TP1に導入し、熱風と共に粉体原料を粉体処理装置4Aに供給してもよい。更に、原料供給機2は、ロードセルなどの重量センサS1(図3を参照)を用いて重量管理を行い、粉体処理装置4Aにおいて連続処理を行う場合であっても、装置内滞留量が一定となるように粉体原料の供給量を調節してもよい。また、原料供給機2は、内蔵タイマ(不図示)の出力と、重量センサS1により計測される粉体原料の供給量とに基づき、単位時間あたりの粉体原料の供給量(すなわち供給速度)を計測してもよい。重量センサS1は、原料供給機2だけでなく、粉体処理装置4A、サイクロン5、及び集塵機6に設けられてもよい。 The raw material supply machine 2 is connected to the powder processing device 4A via the raw material supply path TP1. A screw feeder 21 (see FIG. 2) for transporting the powder raw material is provided in the raw material supply path TP1. The screw feeder 21 is preferable when the powder raw material is a solid and the powder raw material is continuously charged at a constant speed. A double damper, a rotary valve, or the like may be used instead of the screw feeder 21. Further, the hot air generated by the hot air generator 3 may be introduced into the raw material supply path TP1 and the powder raw material may be supplied to the powder processing apparatus 4A together with the hot air. Further, the raw material feeder 2 performs weight control using a weight sensor S1 (see FIG. 3) such as a load cell, and the amount of retention in the device is constant even when continuous processing is performed in the powder processing device 4A. The supply amount of the powder raw material may be adjusted so as to be. Further, the raw material supply machine 2 supplies the powder raw material per unit time (that is, the supply speed) based on the output of the built-in timer (not shown) and the supply amount of the powder raw material measured by the weight sensor S1. May be measured. The weight sensor S1 may be provided not only in the raw material supply machine 2, but also in the powder processing device 4A, the cyclone 5, and the dust collector 6.
 熱風発生機3は、粉体処理装置4Aに導入する熱風を発生させるための装置であり、加熱ヒータなどの熱源、送風機、及び熱風の温度及び流量を制御する制御装置などを備える。熱風発生機3は、上記の構成に限らず、公知の構成を用いればよい。例えば、粉体処理装置4Aに導入した熱風の一部を回収し、熱風発生機3と粉体処理装置4Aとの間で循環させてもよい。 The hot air generator 3 is a device for generating hot air to be introduced into the powder processing device 4A, and includes a heat source such as a heating heater, a blower, and a control device for controlling the temperature and flow rate of the hot air. The hot air generator 3 is not limited to the above configuration, and a known configuration may be used. For example, a part of the hot air introduced into the powder processing apparatus 4A may be recovered and circulated between the hot air generator 3 and the powder processing apparatus 4A.
 熱風発生機3は、気体導入路TP2を介して粉体処理装置4Aに接続されている。熱風発生機3が発生させた熱風は、気体導入路TP2を介し、熱媒として粉体処理装置4Aに導入される。熱風発生機3が発生させる熱風の温度は、粉体処理装置4Aで処理される粉体に応じて適宜設定される。例えば、粉体処理装置4Aにおいて粉体を乾燥させるために200℃~600℃程度の熱風を発生させてもよい。 The hot air generator 3 is connected to the powder processing device 4A via the gas introduction path TP2. The hot air generated by the hot air generator 3 is introduced into the powder processing apparatus 4A as a heat medium via the gas introduction path TP2. The temperature of the hot air generated by the hot air generator 3 is appropriately set according to the powder processed by the powder processing apparatus 4A. For example, hot air of about 200 ° C. to 600 ° C. may be generated in order to dry the powder in the powder processing apparatus 4A.
 実施の形態1に係る粉体処理装置4Aは乾燥処理を行う装置である。粉体処理装置4Aは、気流乾燥機であり、例えばホソカワミクロン株式会社製のドライマイスタ(登録商標)が用いられる。粉体処理装置4Aは、装置内に供給された粉体原料を粉砕する粉砕機能、及び粉体原料を粉砕して得られる粉体を分級する分級機能を有する。粉体処理装置4Aの内部構成については図2を用いて具体的に詳述する。 The powder processing device 4A according to the first embodiment is a device that performs a drying process. The powder processing apparatus 4A is an air flow dryer, and for example, a dry meister (registered trademark) manufactured by Hosokawa Micron Co., Ltd. is used. The powder processing apparatus 4A has a pulverizing function for pulverizing the powder raw material supplied into the apparatus and a classification function for classifying the powder obtained by pulverizing the powder raw material. The internal configuration of the powder processing apparatus 4A will be specifically described with reference to FIG.
 粉体処理装置4Aにて処理された粉体は、粉体輸送路TP3を介してサイクロン5に輸送される。本実施の形態では、粉体処理装置4Aからサイクロン5に至る粉体輸送路TP3の中途に粒子径センサS2を設置し、粒子径センサS2により粉体処理装置4Aを通過する粉体の粒子径を常時若しくは定期的なタイミング(例えば5秒間隔)にて計測する。サイクロン5により収集される粉体は製品タンク8に取り出され、製品として回収される。 The powder processed by the powder processing apparatus 4A is transported to the cyclone 5 via the powder transport path TP3. In the present embodiment, the particle size sensor S2 is installed in the middle of the powder transport path TP3 from the powder processing device 4A to the cyclone 5, and the particle size of the powder passing through the powder processing device 4A by the particle size sensor S2. Is measured at regular or regular timings (for example, every 5 seconds). The powder collected by the cyclone 5 is taken out to the product tank 8 and collected as a product.
 粒子径センサS2は、例えばレーザ回折・散乱法を用いて粒度分布を測定する装置であり、D10,D50,D90の値を出力する。ここで、D10,D50,D90は、それぞれ粒度分布における累積体積分布の小径側から累積10%、50%、90%に相当する粒子径を表す。累積体積分布とは、粉末の粒子径(μm)と、小径側からの積算頻度(体積%)との関係を表す分布である。D50は、一般には平均粒子径(メジアン径)ともいわれる。D10,D50,D90に代えて、粒子径の頻度分布において出現比率が最も大きい粒子径を表すモード径を用いてもよく、各種算術平均値(個数平均、長さ平均、面積平均、体積平均など)を用いてもよい。
 なお、本実施の形態では、粉体輸送路TP3に粒子径センサS2を設置する構成としたが、原料供給機2、サイクロン5から製品タンク8に至る経路、集塵機6から集塵タンク9に至る経路等に設置されてもよい。
The particle size sensor S2 is a device that measures the particle size distribution using, for example, a laser diffraction / scattering method, and outputs values of D10, D50, and D90. Here, D10, D50, and D90 represent particle diameters corresponding to cumulative 10%, 50%, and 90% from the small diameter side of the cumulative volume distribution in the particle size distribution, respectively. The cumulative volume distribution is a distribution representing the relationship between the particle size (μm) of the powder and the integration frequency (volume%) from the small diameter side. D50 is also generally referred to as an average particle diameter (median diameter). Instead of D10, D50, D90, a mode diameter representing the particle diameter having the largest appearance ratio in the frequency distribution of the particle diameter may be used, and various arithmetic average values (number average, length average, area average, volume average, etc.) may be used. ) May be used.
In the present embodiment, the particle size sensor S2 is installed in the powder transport path TP3, but the raw material supply machine 2, the path from the cyclone 5 to the product tank 8, and the dust collector 6 to the dust collector tank 9 are reached. It may be installed on a route or the like.
 サイクロン5には、集塵経路TP4を介して集塵機6が接続されている。集塵機6は、サイクロン5を通過した微粉等を捕集するためのバグフィルタを備える。集塵機6のバグフィルタを通過した気体は、排風路TP5を通じてブロワ7へ流れ、ブロワ7の排出口から排出される。一方、集塵機6のバグフィルタにより捕集された微粉等は集塵タンク9に取り出され、回収される。 A dust collector 6 is connected to the cyclone 5 via a dust collection path TP4. The dust collector 6 includes a bug filter for collecting fine powder or the like that has passed through the cyclone 5. The gas that has passed through the bug filter of the dust collector 6 flows to the blower 7 through the exhaust air passage TP5 and is discharged from the discharge port of the blower 7. On the other hand, the fine powder or the like collected by the bug filter of the dust collector 6 is taken out to the dust collection tank 9 and collected.
 集塵機6には、排風路TP5を介してブロワ7が接続されている。このブロワ7を駆動することにより、粉体処理装置4Aからサイクロン5への気体の流れ(すなわち、粉体処理装置4Aから粉体を取り出す気体の流れ)、及びサイクロン5から集塵機6への気体の流れを形成する。本実施の形態では、集塵機6からブロワ7に至る排風路TP5の中途に流量センサS3(図3を参照)を設置し、粉体処理装置4Aから粉体を取り出す際の吐出・吸引流量を常時若しくは定期的なタイミング(例えば5秒間隔)にて計測する。排風路TP5に流量センサS3を設置する構成に代えて、原料供給路TP1、気体導入路TP2、粉体輸送路TP3、集塵経路TP4、ブロワ7の排出口等に流量センサS3を設置してもよい。 A blower 7 is connected to the dust collector 6 via an exhaust air passage TP5. By driving the blower 7, the gas flow from the powder processing apparatus 4A to the cyclone 5 (that is, the gas flow for extracting the powder from the powder processing apparatus 4A) and the gas flow from the cyclone 5 to the dust collector 6 Form a flow. In the present embodiment, a flow rate sensor S3 (see FIG. 3) is installed in the middle of the exhaust air passage TP5 from the dust collector 6 to the blower 7, and the discharge / suction flow rate when taking out the powder from the powder processing device 4A is measured. Measure at regular or regular timing (for example, every 5 seconds). Instead of installing the flow rate sensor S3 in the exhaust air passage TP5, the flow rate sensor S3 is installed in the raw material supply path TP1, the gas introduction path TP2, the powder transport path TP3, the dust collection path TP4, the discharge port of the blower 7, and the like. You may.
 制御装置100は、粉体処理装置4Aに関する動作を制御する装置であり、粉体処理システム1を構成する各種装置及び各種センサとの間で必要なデータを授受できるように構成されている。制御装置100は、粉体処理装置4Aに対する制御指令を粉体処理装置4Aへ送信することによって、粉体処理装置4Aの動作を直接的に制御する。また、制御装置100は、粉体処理装置4Aに接続された原料供給機2、熱風発生機3、サイクロン5、集塵機6、及びブロワ7の少なくとも1つに対する制御指令を送信することによって、粉体処理装置4Aの動作を間接的に制御してもよい。 The control device 100 is a device that controls the operation of the powder processing device 4A, and is configured so that necessary data can be exchanged between various devices and various sensors constituting the powder processing system 1. The control device 100 directly controls the operation of the powder processing device 4A by transmitting a control command for the powder processing device 4A to the powder processing device 4A. Further, the control device 100 transmits a control command to at least one of the raw material supply machine 2, the hot air generator 3, the cyclone 5, the dust collector 6, and the blower 7 connected to the powder processing device 4A to obtain powder. The operation of the processing device 4A may be indirectly controlled.
 図1の例では、原料供給機2、熱風発生機3、粉体処理装置4A、サイクロン5、集塵機6、及びブロワ7を備える粉体処理システム1について説明したが、粉体処理装置4Aに接続される機器は、上記のものに限定されず、各種機器を組み合わせて粉体処理システム1を構築することが可能である。 In the example of FIG. 1, the powder processing system 1 including the raw material supply machine 2, the hot air generator 3, the powder processing device 4A, the cyclone 5, the dust collector 6, and the blower 7 has been described, but is connected to the powder processing device 4A. The equipment to be used is not limited to the above, and it is possible to construct the powder processing system 1 by combining various equipment.
 図2は実施の形態1に係る粉体処理装置4Aの構成を示す模式的断面図である。粉体処理装置4Aは、その内部において乾燥処理を行う円筒形状のケーシング410を備える。このケーシング410には、原料投入口411、気体導入口412、粉砕ロータ413、ガイドリング414、分級ロータ415、粉体取出口416等が設けられている。 FIG. 2 is a schematic cross-sectional view showing the configuration of the powder processing apparatus 4A according to the first embodiment. The powder processing apparatus 4A includes a cylindrical casing 410 that performs a drying process inside the powder processing apparatus 4A. The casing 410 is provided with a raw material input port 411, a gas introduction port 412, a crushing rotor 413, a guide ring 414, a classification rotor 415, a powder outlet 416, and the like.
 ケーシング410の素材は、従来から粉体処理装置のケーシングに用いられている公知の材料を用いればよい。具体的には、SS400、S25C、S45C、SPHC(Steel Plate Hot Commercial)などの鉄系鋼材、SUS304、SUS316などのステンレス鋼材、FC20、FC40などの鉄鋳物材、SCS13、14などのステンレス鋳物材などの金属、あるいは、セラミックス、ガラスなどを用いればよい。また、内壁面に耐磨耗材を貼り付けるなどすれば、アルミニウム、その他木材や合成樹脂であってもよい。 As the material of the casing 410, a known material conventionally used for the casing of the powder processing apparatus may be used. Specifically, iron-based steel materials such as SS400, S25C, S45C, SPHC (Steel Plate Hot Commercial), stainless steel materials such as SUS304 and SUS316, iron casting materials such as FC20 and FC40, and stainless casting materials such as SCS13 and 14 Metal, ceramics, glass, etc. may be used. Further, aluminum, other wood, or synthetic resin may be used as long as an abrasion resistant material is attached to the inner wall surface.
 ケーシング410の内面は、装置の耐久性向上のために、ハードクロムメッキ処理などのメッキ処理、タングステンカーバイド溶射などの耐磨耗溶射材処理、真空下で行う金属蒸着、ダイヤモンド構造の炭素蒸着などの耐磨耗処理が施されていてもよい。また、処理粉体の付着又は固着による気流の乱れ、または、ケーシング410内の閉塞を防ぐために、ケーシング410の内面には、バフ研磨、電解研磨、PTFE(Polytetrafluoroethylene)などのコーティング、ニッケルなどのメッキ処理が施されてもよい。 In order to improve the durability of the equipment, the inner surface of the casing 410 is subjected to plating treatment such as hard chrome plating treatment, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition under vacuum, carbon vapor deposition of diamond structure, etc. Abrasion resistant treatment may be applied. Further, in order to prevent turbulence of the air flow due to adhesion or fixation of the treated powder or blockage in the casing 410, the inner surface of the casing 410 is buffed, electropolished, coated with PTFE (Polytetrafluoroethylene), plated with nickel or the like. Treatment may be applied.
 ケーシング410には、原料供給機2から供給される粉体原料をケーシング410内に投入するための原料投入口411が設けられている。この原料投入口411は、粉砕ロータ413の回転円盤413Aよりも上方の位置に設けられることが好ましい。原料供給機2から供給される粉体原料は、原料供給路TP1内のスクリューフィーダ21によって搬送され、原料投入口411よりケーシング410内に投入される。 The casing 410 is provided with a raw material input port 411 for charging the powder raw material supplied from the raw material supply machine 2 into the casing 410. The raw material input port 411 is preferably provided at a position above the rotary disk 413A of the crushing rotor 413. The powder raw material supplied from the raw material supply machine 2 is conveyed by the screw feeder 21 in the raw material supply path TP1 and is charged into the casing 410 from the raw material input port 411.
 ケーシング410には、熱風発生機3による熱風(気体)をケーシング410内に導入するための気体導入口412が設けられている。気体導入口412は、気体導入路TP2を介して熱風発生機3に接続されている。この気体導入口412の位置は特に限定されないが、回転する粉砕ロータ413を介してケーシング410内に気体が導入されるように、粉砕ロータ413よりも下方の位置に設けられることが好ましい。本実施の形態では、粉砕ロータ413の回転方向と交差する方向から気体を導入する構成としたが、粉砕ロータ413の回転方向に沿って気体を導入する構成としてもよい。 The casing 410 is provided with a gas introduction port 412 for introducing hot air (gas) from the hot air generator 3 into the casing 410. The gas introduction port 412 is connected to the hot air generator 3 via the gas introduction path TP2. The position of the gas introduction port 412 is not particularly limited, but it is preferably provided at a position lower than the crushing rotor 413 so that the gas is introduced into the casing 410 via the rotating crushing rotor 413. In the present embodiment, the gas is introduced from the direction intersecting the rotation direction of the crushing rotor 413, but the gas may be introduced along the rotation direction of the crushing rotor 413.
 気体導入口412から導入された気体は、ケーシング410内部を旋回しつつ循環する気流を形成すると共に、ケーシング410の内部から分級ロータ415を経て、粉体取出口416からサイクロン5及び集塵機6に到達する。ケーシング410内の気流は、サイクロン5及び集塵機6を介して接続されているブロワ7による吸引によって形成されてもよく、気体導入口412側からの吹き込み(加圧)によって形成されてもよい。ケーシング410内に導入される気体の種類は、目的とする処理品に応じて適宜決めればよい。例えば、空気を用いてもよく、酸化防止のために、窒素、アルゴンなどの不活性ガスを用いてもよい。 The gas introduced from the gas introduction port 412 forms an air flow that circulates while swirling inside the casing 410, and reaches the cyclone 5 and the dust collector 6 from the powder outlet 416 via the classification rotor 415 from the inside of the casing 410. To do. The air flow in the casing 410 may be formed by suction by the blower 7 connected via the cyclone 5 and the dust collector 6, or may be formed by blowing (pressurizing) from the gas introduction port 412 side. The type of gas introduced into the casing 410 may be appropriately determined according to the target processed product. For example, air may be used, or an inert gas such as nitrogen or argon may be used to prevent oxidation.
 ここで、粉体処理の処理条件によっては、粉体に軟化現象が生じ、粉体同士が融着して粒子径にばらつきが生じたり、収率が低下したりする場合がある。そこで、ケーシング410内の1又は複数箇所に温度センサS4、湿分センサS5、圧力センサS6(図3を参照)を設け、温度、湿分、圧力等を逐次的に観測してもよい。また、流量センサS3、温度センサS4、湿分センサS5、圧力センサS6を、粉体処理システム1を構成する各装置又は装置間の経路に設けてもよい。通常、温度センサS4は気体導入路TP2、湿分センサS5は粉体輸送路TP3に設けることが多い。また、ケーシング410内に別途設けてもよい。 Here, depending on the treatment conditions of the powder treatment, a softening phenomenon may occur in the powder, the powders may be fused to each other, the particle size may vary, or the yield may decrease. Therefore, a temperature sensor S4, a moisture sensor S5, and a pressure sensor S6 (see FIG. 3) may be provided at one or a plurality of locations in the casing 410 to sequentially observe the temperature, moisture, pressure, and the like. Further, the flow rate sensor S3, the temperature sensor S4, the moisture sensor S5, and the pressure sensor S6 may be provided in each device or a path between the devices constituting the powder processing system 1. Usually, the temperature sensor S4 is often provided in the gas introduction path TP2, and the moisture sensor S5 is often provided in the powder transport path TP3. Further, it may be separately provided in the casing 410.
 また、本実施の形態では、ケーシング410内に熱風発生機3からの熱風を導入する構成としたが、図に示していない冷風発生機を用いて、ケーシング410内に-20℃~5℃程度の冷風(冷媒)を導入する構成としてもよい。この場合、結露防止のために、ケーシング410内に導入される気体は除湿された気体であることが好ましい。その他に、熱によって風味がなくなったり、変質し易い食品等を処理する場合には、0~15℃に調節された冷風空気を用いてもよい。 Further, in the present embodiment, the hot air from the hot air generator 3 is introduced into the casing 410, but using a cold air generator (not shown in the figure), the temperature is about −20 ° C. to 5 ° C. in the casing 410. The cold air (refrigerant) may be introduced. In this case, the gas introduced into the casing 410 is preferably a dehumidified gas in order to prevent dew condensation. In addition, when processing foods that lose their flavor due to heat or are easily deteriorated, cold air adjusted to 0 to 15 ° C. may be used.
 更に、ケーシング410の内部温度を調節するために、ケーシング410の周囲にジャケット部を設けてもよい。ジャケット部は、別に設けたタンクから熱媒または冷媒を循環供給することによって、ケーシング410の内部温度を調節する。 Further, in order to adjust the internal temperature of the casing 410, a jacket portion may be provided around the casing 410. The jacket portion adjusts the internal temperature of the casing 410 by circulating and supplying a heat medium or a refrigerant from a tank provided separately.
 粉砕ロータ413は、回転円盤413Aと、回転円盤413Aの上面周縁部から上向きに突出する複数のハンマ413Bとを備えるロータであり、粉砕モータ413M(図3を参照)の動力によって所望の回転速度にて回転するように構成されている。ここで、粉砕モータ413Mは、粉体処理システム1が備える駆動部の1つである。粉砕モータ413Mの回転速度は、回転速度センサS7(図3を参照)によって常時若しくは定期的なタイミング(例えば5秒間隔)にて計測される。粉砕ロータ413のハンマ413Bは、回転円盤413Aの上面周縁部にて周方向に等間隔に複数配置される。なお、ハンマ413Bの形状、寸法、個数、及び素材は、要求される製品粉体の粒子径や円形度等に応じて適宜設計される。例えば、図2では、棒状のハンマ413Bを示しているが、直方体状のハンマであってもよく、平面視において台形状のハンマであってもよい。また、ハンマ413Bに代えて、刃物状の構造物を用いてもよい。 The crushing rotor 413 is a rotor including a rotary disk 413A and a plurality of hammers 413B protruding upward from the upper peripheral edge of the rotary disk 413A, and the rotation speed is adjusted to a desired speed by the power of the crushing motor 413M (see FIG. 3). It is configured to rotate. Here, the crushing motor 413M is one of the driving units included in the powder processing system 1. The rotation speed of the crushing motor 413M is measured by the rotation speed sensor S7 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals). A plurality of hammers 413B of the crushing rotor 413 are arranged at equal intervals in the circumferential direction on the upper peripheral edge of the rotary disk 413A. The shape, size, number, and material of the hammer 413B are appropriately designed according to the required particle size, circularity, and the like of the product powder. For example, although FIG. 2 shows a rod-shaped hammer 413B, it may be a rectangular parallelepiped hammer or a trapezoidal hammer in a plan view. Further, instead of the hammer 413B, a blade-like structure may be used.
 粉砕ロータ413は、粉砕モータ413Mの動力によって回転し、ケーシング410内に旋回する気流を発生させると共に、ハンマ413Bの作用により、ケーシング410内に導入された粉体原料に衝撃、圧縮、摩砕、剪断等の機械エネルギを与え、粉体原料を粉砕する。粉砕ロータ413は、粉体原料を攪拌する回転体の一例である。 The crushing rotor 413 is rotated by the power of the crushing motor 413M to generate a swirling airflow in the casing 410, and the powder raw material introduced into the casing 410 is impacted, compressed, and ground by the action of the hammer 413B. The powder raw material is crushed by giving mechanical energy such as shearing. The crushing rotor 413 is an example of a rotating body that agitates the powder raw material.
 粉砕ロータ413の素材は、従来から粉体処理装置の粉砕ロータに用いられている公知の材料を用いればよい。例えば、SS400、S25C、S45C、SUS304、SUS316、SUS630などを用いることができる。また、ハンマ413Bについては、衝撃力に耐え得るように、超硬合金のチップを付けたり、磨耗性及び強靭性を備えたセラミックスやサーメットなどの金属とセラミックスとの複合物を用いてもよい。 As the material of the crushing rotor 413, a known material conventionally used for the crushing rotor of the powder processing apparatus may be used. For example, SS400, S25C, S45C, SUS304, SUS316, SUS630 and the like can be used. Further, for the hammer 413B, a cemented carbide tip may be attached so that the hammer 413B can withstand an impact force, or a composite of a metal such as ceramics or cermet having wear resistance and toughness and ceramics may be used.
 更に、粉砕ロータ413の表面は、装置の耐久性向上のために、ハードクロムメッキなどのメッキ処理、タングステンカーバイド溶射などの耐磨耗溶射材処理、真空下で行う金属蒸着、ダイヤモンド構造の炭素蒸着などの耐磨耗処理、SUS630の焼き入れ硬化処理などが施されていてもよい。また、粉砕ロータ413の表面には、バフ研磨、電解研磨、PTFEなどのコーティング、ニッケルなどのメッキ処理が施されていてもよい。 Further, the surface of the crushing rotor 413 is subjected to plating treatment such as hard chrome plating, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition under vacuum, and carbon vapor deposition of diamond structure in order to improve the durability of the device. Abrasion resistant treatment such as SUS630 and quench hardening treatment of SUS630 may be performed. Further, the surface of the crushing rotor 413 may be buffed, electrolytically polished, coated with PTFE, or plated with nickel or the like.
 本実施の形態では、回転円盤413Aの上面周縁部から上向きに突出したハンマ413Bの構成について説明したが、回転円盤413Aの下面周縁部から下向きに突出したハンマを用いてもよい。このように下向きに突出したハンマは、ケーシング410内の粉体原料を直接的に粉砕するものではないが、ケーシング410内に強い旋回気流を形成することができるため、粉体原料同士を衝突させて間接的に粉体原料を粉砕することができる。 In the present embodiment, the configuration of the hammer 413B protruding upward from the upper peripheral edge portion of the rotating disk 413A has been described, but a hammer protruding downward from the lower surface peripheral edge portion of the rotating disk 413A may be used. The hammer protruding downward in this way does not directly pulverize the powder raw materials in the casing 410, but can form a strong swirling airflow in the casing 410, so that the powder raw materials collide with each other. The powder raw material can be indirectly crushed.
 また、ケーシング410の内周面であって、ハンマ413Bと対向する位置には粉砕ライナが設けられてもよい。粉砕ライナは、粉砕ロータ413の回転軸方向に沿った中心軸を有する筒状の部材であり、この筒状の部材の内周面には、三角形、波形、くさび形の溝が設けられてもよい。 Further, a crushing liner may be provided on the inner peripheral surface of the casing 410 at a position facing the hammer 413B. The crushing liner is a tubular member having a central axis along the rotation axis direction of the crushing rotor 413, and even if the inner peripheral surface of the tubular member is provided with a triangular, corrugated, or wedge-shaped groove. Good.
 ガイドリング414は、ケーシング410内に旋回する気流を発生させ、ケーシング410内で処理される粉体を分級ロータ415へ導くための円筒状の部材である。ガイドリング414は、粉砕ロータ413の上方にて粉砕ロータ413と同軸に配され、ケーシング410の内部に固定される。ガイドリング414の固定方法は特に限定されるものではないが、粉体処理装置4Aの動作中はケーシング410内部にて回転することなく固定される必要がある。これは、ケーシング410内部で、処理対象の粉体の流動状態を適切な状態に制御するためである。図2では、内径が上下方向で変化しないガイドリング414を示したが、上側から下側に向かって連続的に内径が大きくなるもの(若しくは小さくなるもの)であってもよい。 The guide ring 414 is a cylindrical member for generating a swirling air flow in the casing 410 and guiding the powder processed in the casing 410 to the classification rotor 415. The guide ring 414 is arranged coaxially with the crushing rotor 413 above the crushing rotor 413 and fixed inside the casing 410. The method for fixing the guide ring 414 is not particularly limited, but it is necessary to fix the guide ring 414 without rotating inside the casing 410 during the operation of the powder processing apparatus 4A. This is to control the flow state of the powder to be processed to an appropriate state inside the casing 410. In FIG. 2, the guide ring 414 whose inner diameter does not change in the vertical direction is shown, but the inner diameter may be continuously increased (or decreased) from the upper side to the lower side.
 粉体原料を粉砕することによって製造される粉体は、ケーシング410の下部から流入する熱風と激しく接触することによって効率的に乾燥される。乾燥粉砕された粉体は、気流によってケーシング410の上部に設けられた分級ロータ415へ導かれる。 The powder produced by crushing the powder raw material is efficiently dried by violently contacting the hot air flowing from the lower part of the casing 410. The dried and pulverized powder is guided by an air flow to the classification rotor 415 provided on the upper part of the casing 410.
 分級ロータ415は、放射状に配される複数の分級羽根415Aを備えたロータであり、分級モータ415M(図3を参照)の動力によって所望の回転速度にて回転するように構成されている。ここで、分級モータ415Mは、粉体処理システム1が備える駆動部の1つである。分級モータ415Mの回転速度は、回転速度センサS8(図3を参照)によって常時若しくは定期的なタイミング(例えば5秒間隔)にて計測される。分級ロータ415は、粉砕ロータ413の上方に設けられており、高速回転による遠心力により、ケーシング410内で処理された粉体のうち所定粒子径未満の粉体のみを通過させ、通過させた粉体のみを粉体取出口416へ導く。 The classification rotor 415 is a rotor provided with a plurality of classification blades 415A arranged radially, and is configured to rotate at a desired rotation speed by the power of the classification motor 415M (see FIG. 3). Here, the classification motor 415M is one of the drive units included in the powder processing system 1. The rotation speed of the classification motor 415M is measured by the rotation speed sensor S8 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals). The classification rotor 415 is provided above the crushing rotor 413, and only the powder having a particle size smaller than a predetermined particle size is passed through the powder processed in the casing 410 by centrifugal force due to high-speed rotation. Only the body is guided to the powder outlet 416.
 分級ロータ415の素材は、従来から粉体処理装置の分級ロータに用いられている公知の材料を用いればよい。例えば、SS400、S25C、S45C、SUS304、SUS316、チタン、チタン合金、アルミ合金などを用いることができる。また、分級ロータ415の表面は、装置の耐久性向上のために、浸炭焼入れなどの熱硬化処理、タングステンカーバイド溶射材処理、ハードクロムメッキなどのメッキ処理、溶射後に熱硬化処理を施すための特殊溶射材処理、真空下で行う金属蒸着、ダイヤモンド構造の炭素蒸着などの耐磨耗処理が施されていてもよい。 As the material of the classification rotor 415, a known material conventionally used for the classification rotor of the powder processing apparatus may be used. For example, SS400, S25C, S45C, SUS304, SUS316, titanium, titanium alloy, aluminum alloy and the like can be used. In addition, the surface of the classification rotor 415 is specially subjected to heat hardening treatment such as carburizing and quenching, tungsten carbide spraying material treatment, plating treatment such as hard chrome plating, and heat curing treatment after spraying in order to improve the durability of the device. Abrasion resistant treatments such as thermal spray material treatment, metal vapor deposition performed under vacuum, and carbon vapor deposition of a diamond structure may be performed.
 また、分級ロータ415への粉体の付着や固着を防止するため、分級ロータ415の表面には、バフ研磨、電解研磨、PTFEなどのコーティング、ニッケルなどのメッキ処理が施されていてもよい。 Further, in order to prevent the powder from adhering or sticking to the classification rotor 415, the surface of the classification rotor 415 may be buffed, electrolytically polished, coated with PTFE, or plated with nickel or the like.
 ここで、分級ロータ415を通過する粉体の粒子径は、分級ロータ415の回転速度等を制御することによって設定することができる。すなわち、分級ロータ415の回転速度を制御することによって、ケーシング410内から所定粒子径未満の粉体を取り出すことができる。一方、分級ロータ415を通過できない粉体は、ケーシング410内を循環し、繰り返し処理される。 Here, the particle size of the powder passing through the classification rotor 415 can be set by controlling the rotation speed of the classification rotor 415 and the like. That is, by controlling the rotation speed of the classification rotor 415, powder having a particle size smaller than a predetermined particle size can be taken out from the casing 410. On the other hand, the powder that cannot pass through the classification rotor 415 circulates in the casing 410 and is repeatedly processed.
 分級ロータ415を通過し、粉体取出口416に導かれた粉体は、ブロワ7によって作り出される気体の流れによって外部に取り出され、後段のサイクロン5及び集塵機6へ導かれる。 The powder that has passed through the classification rotor 415 and is guided to the powder outlet 416 is taken out to the outside by the flow of gas produced by the blower 7, and is guided to the cyclone 5 and the dust collector 6 in the subsequent stage.
 以下、粉体処理システム1における制御系の構成について説明する。
 図3は実施の形態1に係る制御装置100の内部構成を示すブロック図である。制御装置100は、汎用又は専用のコンピュータにより構成されており、制御部101、記憶部102、入力部103、出力部104、通信部105、操作部106、及び表示部107を備える。
Hereinafter, the configuration of the control system in the powder processing system 1 will be described.
FIG. 3 is a block diagram showing an internal configuration of the control device 100 according to the first embodiment. The control device 100 is composed of a general-purpose or dedicated computer, and includes a control unit 101, a storage unit 102, an input unit 103, an output unit 104, a communication unit 105, an operation unit 106, and a display unit 107.
 制御部101は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを備える。制御部101が備えるROMには、制御装置100が備えるハードウェア各部の動作を制御する制御プログラム等が記憶される。制御部101内のCPUは、ROMに記憶された制御プログラムや後述する記憶部102に記憶された各種コンピュータプログラムを実行し、ハードウェア各部の動作を制御することによって、本発明に係る制御装置としての機能を実現する。制御部101が備えるRAMには、演算の実行中に利用されるデータ等が一時的に記憶される。 The control unit 101 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The ROM included in the control unit 101 stores a control program or the like that controls the operation of each hardware unit included in the control device 100. The CPU in the control unit 101 executes a control program stored in the ROM and various computer programs stored in the storage unit 102, which will be described later, to control the operation of each hardware unit, thereby as a control device according to the present invention. To realize the function of. The RAM included in the control unit 101 temporarily stores data and the like used during execution of the calculation.
 制御部101は、CPU、ROM、及びRAMを備える構成としたが、GPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)、DSP(Digital Signal Processor)、量子プロセッサ、揮発性又は不揮発性のメモリ等を備える1又は複数の演算回路又は制御回路であってもよい。また、制御部101は、日時情報を出力するクロック、計測開始指示を与えてから計測終了指示を与えるまでの経過時間を計測するタイマ、数をカウントするカウンタ等の機能を備えていてもよい。 The control unit 101 is configured to include a CPU, ROM, and RAM, but is a GPU (Graphics Processing Unit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), quantum processor, volatile or non-volatile memory. It may be one or more arithmetic circuits or control circuits including the above. Further, the control unit 101 may have functions such as a clock for outputting date and time information, a timer for measuring the elapsed time from giving the measurement start instruction to giving the measurement end instruction, and a counter for counting the number.
 記憶部102は、ハードディスク、フラッシュメモリなどを用いた記憶装置を備える。記憶部102には、制御部101によって実行されるコンピュータプログラム、外部から取得した各種データ、装置内部で生成した各種データ等が記憶される。 The storage unit 102 includes a storage device that uses a hard disk, a flash memory, or the like. The storage unit 102 stores a computer program executed by the control unit 101, various data acquired from the outside, various data generated inside the device, and the like.
 記憶部102に記憶されるコンピュータプログラムは、制御対象の装置の動作を制御するための制御プログラムPG1、粉体処理装置4Aにより処理される粉体の粒子径と、粉体処理装置4Aに関する制御パラメータとの関係を学習させるための学習プログラムPG2等を含む。 The computer program stored in the storage unit 102 includes a control program PG1 for controlling the operation of the device to be controlled, a particle size of the powder processed by the powder processing device 4A, and control parameters related to the powder processing device 4A. Includes a learning program PG2 and the like for learning the relationship with.
 制御プログラムPG1及び学習プログラムPG2を含むコンピュータプログラムは、コンピュータプログラムを読み取り可能に記録した非一時的な記録媒体M1により提供されてもよい。記録媒体M1は、例えば、CD-ROM、USBメモリ、コンパクトフラッシュ(登録商標)、SD(Secure Digital)カード、マイクロSDカード、などの可搬型メモリである。制御部101は、図に示していない読取装置を用いて、記録媒体M1から各種プログラムを読み取り、読み取った各種プログラムを記憶部102に記憶させる。 The computer program including the control program PG1 and the learning program PG2 may be provided by the non-temporary recording medium M1 in which the computer program is readablely recorded. The recording medium M1 is, for example, a portable memory such as a CD-ROM, a USB memory, a compact flash (registered trademark), an SD (Secure Digital) card, or a micro SD card. The control unit 101 reads various programs from the recording medium M1 using a reading device (not shown in the figure), and stores the read various programs in the storage unit 102.
 本実施の形態では、制御部101が学習プログラムPG2を実行することにより、制御装置100は学習フェーズに移行する。学習フェーズは、例えば制御装置100の導入時に実施される。また、学習フェーズは、操作部106を通じてユーザの指示を受付けた場合、若しくは定期的なタイミングで実施されるものであってもよい。 In the present embodiment, when the control unit 101 executes the learning program PG2, the control device 100 shifts to the learning phase. The learning phase is carried out, for example, when the control device 100 is introduced. Further, the learning phase may be executed when a user's instruction is received through the operation unit 106 or at a regular timing.
 学習フェーズにおいて、制御部101は、粉体データとして粉体処理装置4Aから得られる粉体の湿分のデータを取得し、粉体処理装置4Aの動作状態を示す計測データとして、粉体処理装置4Aに供給される熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、乾燥処理の処理時間等のデータを取得する。ここで、粉体の湿分は湿分センサS5により計測される。熱媒の温度及び流量は温度センサS4及び流量センサS3により計測される。粉体原料の供給量又は供給速度は、重量センサS1により計測される重量に基づき算出される。粉砕ロータ413の回転速度は回転速度センサS7により計測される。分級ロータ415の回転速度は回転速度センサS8により計測される。乾燥処理の処理時間は、制御部101の内蔵タイマにより計測される。なお、乾燥処理の処理時間は、バッチ処理では粉体処理装置4Aの運転時間に対応し、連続処理ではケーシング410内の粉体の滞留時間に対応する。これらのデータは、事前に収集されていてもよく、学習フェーズへの移行後に収集されてもよい。 In the learning phase, the control unit 101 acquires the data of the wet content of the powder obtained from the powder processing apparatus 4A as the powder data, and the powder processing apparatus as the measurement data indicating the operating state of the powder processing apparatus 4A. Data such as temperature and flow rate of heat medium supplied to 4A, supply amount or supply speed of powder raw material, rotation speed of crushing rotor 413, rotation speed of classification rotor 415, pressure in casing 410, processing time of drying process, etc. To get. Here, the moisture content of the powder is measured by the moisture content sensor S5. The temperature and flow rate of the heat medium are measured by the temperature sensor S4 and the flow rate sensor S3. The supply amount or supply speed of the powder raw material is calculated based on the weight measured by the weight sensor S1. The rotation speed of the crushing rotor 413 is measured by the rotation speed sensor S7. The rotation speed of the classification rotor 415 is measured by the rotation speed sensor S8. The processing time of the drying process is measured by the built-in timer of the control unit 101. The processing time of the drying process corresponds to the operating time of the powder processing apparatus 4A in the batch processing, and corresponds to the residence time of the powder in the casing 410 in the continuous processing. These data may be collected in advance or after the transition to the learning phase.
 制御部101は、収集した粉体データ及び計測データを教師データに用いて、粉体処理装置4Aから得られる粉体の湿分と粉体処理装置4Aに関する制御パラメータとの関係を学習することにより、学習モデル210を生成する。ここで、粉体処理装置4Aに関する制御パラメータは、粉体処理装置4Aに供給する熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、並びに、乾燥処理の処理時間を含む。 The control unit 101 uses the collected powder data and measurement data as teacher data to learn the relationship between the moisture content of the powder obtained from the powder processing device 4A and the control parameters related to the powder processing device 4A. , Generate a learning model 210. Here, the control parameters related to the powder processing apparatus 4A are the temperature and flow rate of the heat medium supplied to the powder processing apparatus 4A, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, and the rotation of the classification rotor 415. Includes speed, pressure in casing 410, and processing time for drying.
 学習フェーズにおいて生成された学習モデル210は記憶部102に記憶される。学習モデル210は、その定義情報によって定義される。学習モデル210の定義情報は、例えば、学習モデル210の構造情報、ノード間の重み及びバイアスなどのパラメータを含む。 The learning model 210 generated in the learning phase is stored in the storage unit 102. The learning model 210 is defined by its definition information. The definition information of the learning model 210 includes, for example, the structural information of the learning model 210, parameters such as weights and biases between nodes.
 また、本実施の形態では、制御部101が制御プログラムPG1を実行することにより、制御装置100は運用フェーズに移行する。運用フェーズは、学習モデル210の実行後に実施される。 Further, in the present embodiment, the control device 100 shifts to the operation phase when the control unit 101 executes the control program PG1. The operation phase is carried out after the learning model 210 is executed.
 運用フェーズにおいて、制御装置100は、粉体処理装置4Aを含む装置の動作を制御する。このとき、制御部101は、ユーザが所望する粉体についての目標値を受付ける。実施の形態1において、目標値は粉体の湿分である。制御部101は、受付けた目標値を学習モデル210に入力し、学習モデル210を用いた演算を実行することにより、粉体処理装置4Aに供給する熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、並びに、乾燥処理の処理時間を含む制御パラメータに関する演算結果を取得する。制御部101は、学習モデル210から得られる演算結果に基づき、制御対象の装置の動作を制御する。 In the operation phase, the control device 100 controls the operation of the device including the powder processing device 4A. At this time, the control unit 101 receives the target value for the powder desired by the user. In the first embodiment, the target value is the moisture content of the powder. The control unit 101 inputs the received target value into the learning model 210, executes an operation using the learning model 210, and thereby supplies the temperature and flow rate of the heat medium supplied to the powder processing apparatus 4A and the powder raw material. The calculation result regarding the control parameters including the quantity or the supply speed, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the processing time of the drying process is acquired. The control unit 101 controls the operation of the device to be controlled based on the calculation result obtained from the learning model 210.
 入力部103は、各種装置及びセンサを接続するための接続インタフェースを備える。入力部103に接続される装置は、原料供給機2、熱風発生機3、粉体処理装置4A、サイクロン5、集塵機6、及びブロワ7を含む。入力部103が備える接続インタフェースは、有線のインタフェースであってもよく、無線のインタフェースであってもよい。入力部103には、原料供給機2、熱風発生機3、粉体処理装置4A、サイクロン5、集塵機6、及びブロワ7から出力されるデータが入力される。 The input unit 103 includes a connection interface for connecting various devices and sensors. The device connected to the input unit 103 includes a raw material supply machine 2, a hot air generator 3, a powder processing device 4A, a cyclone 5, a dust collector 6, and a blower 7. The connection interface included in the input unit 103 may be a wired interface or a wireless interface. Data output from the raw material supply machine 2, the hot air generator 3, the powder processing device 4A, the cyclone 5, the dust collector 6, and the blower 7 is input to the input unit 103.
 また、入力部103に接続されるセンサは、重量センサS1、粒子径センサS2、流量センサS3、温度センサS4、湿分センサS5、圧力センサS6、粉砕ロータ413用の回転速度センサS7、及び分級ロータ415用の回転速度センサS8を含む。入力部103には、これらのセンサから出力される計測データが入力される。 The sensors connected to the input unit 103 include a weight sensor S1, a particle size sensor S2, a flow rate sensor S3, a temperature sensor S4, a moisture sensor S5, a pressure sensor S6, a rotation speed sensor S7 for the crushing rotor 413, and a classification. The rotation speed sensor S8 for the rotor 415 is included. The measurement data output from these sensors is input to the input unit 103.
 なお、入力部103に接続されるセンサは、上記のセンサに限定されるものではなく、含塵濃度を計測する含塵濃度センサ、音圧若しくは周波数を計測する音圧・周波数センサ等を含んでもよい。更に、粉体の組成、物性、形状などを計測するために、BET(Brunauer - Emmett - Teller)値、NIR(Near Infrared)、XRD(X-ray Diffraction)、TG-DTA(Thermogravimetry - Differential Thermal Analysis)、MS(Mass Spectrometry)、SEM(Scanning Electron Microscope)、FE-SEM(Field Emission - SEM)、TEM(Transmission Electron Microscope)などのデータを出力する計測装置が入力部103に接続されてもよい。 The sensor connected to the input unit 103 is not limited to the above sensor, and may include a dust concentration sensor for measuring the dust concentration, a sound pressure / frequency sensor for measuring the sound pressure or the frequency, and the like. Good. Furthermore, in order to measure the composition, physical properties, shape, etc. of the powder, BET (Brunauer-Emmett-Teller) value, NIR (NearInfrared), XRD (X-ray Diffraction), TG-DTA (Thermogravimetry-Differential Thermal Analysis) ), MS (Mass Spectrometry), SEM (Scanning Electron Microscope), FE-SEM (Field Emission-SEM), TEM (Transmission Electron Microscope), and other measuring devices that output data may be connected to the input unit 103.
 また、制御装置100は、入力部103を通じて各種装置及びセンサからデータを取得する構成としたが、これらの装置及びセンサが通信インタフェースを備える場合、後述する通信部105を通じてデータを取得してもよい。 Further, the control device 100 is configured to acquire data from various devices and sensors through the input unit 103, but when these devices and sensors are provided with a communication interface, the data may be acquired through the communication unit 105 described later. ..
 出力部104は、制御対象の装置を接続する接続インタフェースを備える。出力部104に接続される装置は、原料供給機2、熱風発生機3、粉体処理装置4A、サイクロン5、集塵機6、及びブロワ7を含む。出力部104が備える接続インタフェースは、有線のインタフェースであってもよく、無線のインタフェースであってもよい。制御部101は、出力部104を通じて制御指令を出力することにより、制御対象の装置の動作を制御する。例えば、粉砕ロータ413の回転速度を制御する場合、制御部101は、粉砕ロータ413の駆動部である粉砕モータ413Mに対する制御指令を生成し、出力部104を通じて粉体処理装置4Aへ出力することにより、粉砕ロータ413の回転速度を制御する。分級ロータ415の回転速度を制御する場合も同様であり、制御部101は、分級ロータ415の駆動部である分級モータ415Mに対する制御指令を生成し、出力部104を通じて粉体処理装置4Aへ出力することにより、分級ロータ415の回転速度を制御する。また、粉体処理装置4Aが備えるケーシング410からの吐出・吸引流量を制御する場合、制御部101は、ブロワ7に対する制御指令を生成し、出力部104を通じてブロワ7へ出力することにより、ケーシング410からの吐出・吸引流量を制御する。 The output unit 104 includes a connection interface for connecting the device to be controlled. The device connected to the output unit 104 includes a raw material supply machine 2, a hot air generator 3, a powder processing device 4A, a cyclone 5, a dust collector 6, and a blower 7. The connection interface included in the output unit 104 may be a wired interface or a wireless interface. The control unit 101 controls the operation of the device to be controlled by outputting a control command through the output unit 104. For example, when controlling the rotation speed of the crushing rotor 413, the control unit 101 generates a control command for the crushing motor 413M, which is a driving unit of the crushing rotor 413, and outputs the control command to the powder processing apparatus 4A through the output unit 104. , Control the rotation speed of the crushing rotor 413. The same applies to the case of controlling the rotation speed of the classification rotor 415, and the control unit 101 generates a control command for the classification motor 415M which is a drive unit of the classification rotor 415 and outputs the control command to the powder processing device 4A through the output unit 104. Thereby, the rotation speed of the classification rotor 415 is controlled. Further, when controlling the discharge / suction flow rate from the casing 410 included in the powder processing apparatus 4A, the control unit 101 generates a control command for the blower 7 and outputs the control command to the blower 7 through the output unit 104, whereby the casing 410. Controls the discharge / suction flow rate from.
 通信部105は、各種の通信データを送受信する通信インタフェースを備える。通信部105が備える通信インタフェースは、例えば、WiFi(登録商標)やイーサネット(登録商標)で用いられるLAN(Local Area Network)の通信規格に準じた通信インタフェースである。代替的に、Bluetooth(登録商標) 、ZigBee(登録商標)、3G、4G、5G、LTE(Long Term Evolution)等の通信規格に準じた通信インタフェースであってもよい。 The communication unit 105 includes a communication interface for transmitting and receiving various communication data. The communication interface included in the communication unit 105 is, for example, a communication interface conforming to the communication standard of LAN (Local Area Network) used in WiFi (registered trademark) and Ethernet (registered trademark). Alternatively, a communication interface conforming to a communication standard such as Bluetooth (registered trademark), ZigBee (registered trademark), 3G, 4G, 5G, LTE (Long Term Evolution) may be used.
 通信部105は、例えば、粉体処理システム1のユーザが使用する端末装置500と通信を行う。通信部105は、粉体処理システム1の遠隔操作を受付けるために、端末装置500から送信される操作データ又は設定データを受信してもよい。制御部101は、通信部105を通じて、端末装置500から送信される操作データ又は設定データを受信した場合、受信した操作データ又は設定データに応じた処理を実行する。例えば、ユーザが所望する湿分のデータを受信した場合、制御部101は、学習モデル210を用いた演算を実行し、粉体処理装置4Aに関する制御パラメータを取得する処理を行ってもよい。また、制御部101は、端末装置500に表示させるユーザインタフェース画面の画面データを生成し、生成した画面データを通信部105を通じて端末装置500へ送信してもよい。 The communication unit 105 communicates with, for example, the terminal device 500 used by the user of the powder processing system 1. The communication unit 105 may receive the operation data or the setting data transmitted from the terminal device 500 in order to accept the remote operation of the powder processing system 1. When the control unit 101 receives the operation data or the setting data transmitted from the terminal device 500 through the communication unit 105, the control unit 101 executes a process according to the received operation data or the setting data. For example, when the user receives the desired moisture data, the control unit 101 may execute a calculation using the learning model 210 to acquire control parameters related to the powder processing apparatus 4A. Further, the control unit 101 may generate screen data of the user interface screen to be displayed on the terminal device 500, and may transmit the generated screen data to the terminal device 500 through the communication unit 105.
 操作部106は、キーボードやマウスなどの入力インタフェースを備えており、各種操作及び各種設定を受付ける。制御部101は、操作部106を通じて受付けた各種操作及び各種設定に基づき、適宜の処理を行い、必要に応じて設定情報を記憶部102に記憶させる。なお、本実施の形態では、制御装置100が操作部106を備える構成としたが、操作部106は必須ではなく、外部に接続されたコンピュータ(例えば、端末装置500)を通じて操作を受付ける構成であってもよい。 The operation unit 106 is provided with an input interface such as a keyboard and a mouse, and accepts various operations and various settings. The control unit 101 performs appropriate processing based on various operations and various settings received through the operation unit 106, and stores the setting information in the storage unit 102 as necessary. In the present embodiment, the control device 100 is provided with the operation unit 106, but the operation unit 106 is not indispensable, and the operation is received through a computer (for example, the terminal device 500) connected to the outside. You may.
 表示部107は、液晶パネル又は有機EL(Electro-Luminescence)パネル等の表示パネルを備えており、ユーザに対して報知すべき情報を表示する。表示部107は、例えば、通信部105を通じて受信した各種センサS1~S6の計測データを表示してもよく、操作部106を通じて受付けた各種操作及び各種設定に基づく情報を表示してもよい。また、表示部107は、学習モデル210による演算結果を表示してもよい。なお、本実施の形態では、制御装置100が表示部107を備える構成としたが、表示部107は必須ではなく、ユーザに報知すべき情報を外部のコンピュータ(例えば、端末装置500)へ出力し、出力先のコンピュータに情報を表示させてもよい。 The display unit 107 includes a display panel such as a liquid crystal panel or an organic EL (Electro-Luminescence) panel, and displays information to be notified to the user. The display unit 107 may display, for example, the measurement data of the various sensors S1 to S6 received through the communication unit 105, or may display information based on various operations and various settings received through the operation unit 106. Further, the display unit 107 may display the calculation result by the learning model 210. In the present embodiment, the control device 100 is configured to include the display unit 107, but the display unit 107 is not essential and outputs information to be notified to the user to an external computer (for example, the terminal device 500). , The information may be displayed on the output destination computer.
 本実施の形態では、制御装置100を単一のコンピュータとして説明したが、単一のコンピュータである必要はなく、複数のコンピュータにより構成されてもよく、複数の仮想コンピュータにより構成されてもよい。 In the present embodiment, the control device 100 has been described as a single computer, but it does not have to be a single computer, and may be composed of a plurality of computers or a plurality of virtual computers.
 図4は端末装置500の内部構成を示すブロック図である。端末装置500は、パーソナルコンピュータ、スマートフォン、タブレット端末などのコンピュータであり、制御部501、記憶部502、通信部503、操作部504、及び表示部505を備える。 FIG. 4 is a block diagram showing the internal configuration of the terminal device 500. The terminal device 500 is a computer such as a personal computer, a smartphone, or a tablet terminal, and includes a control unit 501, a storage unit 502, a communication unit 503, an operation unit 504, and a display unit 505.
 制御部501は、例えば、CPU、ROM、RAMなどを備える。制御部501が備えるROMには、端末装置500が備えるハードウェア各部の動作を制御する制御プログラム等が記憶される。制御部501内のCPUは、ROMに記憶された制御プログラムや後述する記憶部502に記憶された各種コンピュータプログラムを実行し、ハードウェア各部の動作を制御する。また、制御部501は、日時情報を出力するクロック、計測開始指示を与えてから計測終了指示を与えるまでの経過時間を計測するタイマ、数をカウントするカウンタ等の機能を備えてもよい。制御部501が備えるRAMには、演算の実行中に利用されるデータ等が一時的に記憶される。 The control unit 501 includes, for example, a CPU, a ROM, a RAM, and the like. The ROM included in the control unit 501 stores a control program or the like that controls the operation of each hardware unit included in the terminal device 500. The CPU in the control unit 501 executes a control program stored in the ROM and various computer programs stored in the storage unit 502 described later, and controls the operation of each hardware unit. Further, the control unit 501 may have functions such as a clock for outputting date and time information, a timer for measuring the elapsed time from giving the measurement start instruction to giving the measurement end instruction, and a counter for counting the number. Data and the like used during execution of the calculation are temporarily stored in the RAM included in the control unit 501.
 記憶部502は、ハードディスク、フラッシュメモリなどを用いた記憶装置を備える。記憶部502には、制御部501によって実行されるコンピュータプログラム、外部から取得した各種データ、装置内部で生成した各種データ等が記憶される。記憶部502に記憶されるコンピュータプログラムは、端末装置500から制御装置100にアクセスするためのアプリケーションプログラムを含んでもよい。 The storage unit 502 includes a storage device that uses a hard disk, a flash memory, or the like. The storage unit 502 stores a computer program executed by the control unit 501, various data acquired from the outside, various data generated inside the device, and the like. The computer program stored in the storage unit 502 may include an application program for accessing the control device 100 from the terminal device 500.
 通信部503は、各種データを送受信する通信インタフェースを備える。通信部503が備える通信インタフェースは、例えば、WiFi(登録商標)やイーサネット(登録商標)で用いられるLANの通信規格に準じた通信インタフェースである。代替的に、Bluetooth(登録商標) 、ZigBee(登録商標)、3G、4G、5G、LTE等の通信規格に準じた通信インタフェースであってもよい。 The communication unit 503 includes a communication interface for transmitting and receiving various data. The communication interface included in the communication unit 503 is, for example, a communication interface conforming to the LAN communication standard used in WiFi (registered trademark) and Ethernet (registered trademark). Alternatively, a communication interface conforming to communication standards such as Bluetooth (registered trademark), ZigBee (registered trademark), 3G, 4G, 5G, and LTE may be used.
 通信部503は、例えば、粉体処理システム1の制御装置100と通信を行う。端末装置500が通信部503を通じて受信するデータは、制御装置100のインタフェース画面を表示部505に表示させるための画面データ、粉体処理装置4Aを含む装置の設定状態及び動作状態を示すデータ等を含む。ここで、設定状態を示すデータには、熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、乾燥処理の処理時間等に関する設定値が含まれる。また、動作状態を示すデータには、熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、乾燥処理の処理時間等の計測データが含まれる。通信部503にて受信したデータは制御部501へ出力される。端末装置500が通信部503を通じて送信するデータは、粉体処理システム1を遠隔操作する際の操作データ又は設定データ等を含む。 The communication unit 503 communicates with, for example, the control device 100 of the powder processing system 1. The data received by the terminal device 500 through the communication unit 503 includes screen data for displaying the interface screen of the control device 100 on the display unit 505, data indicating the setting state and operating state of the device including the powder processing device 4A, and the like. Including. Here, the data indicating the set state includes the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the drying process. Contains the setting values related to the processing time of. In addition, the data showing the operating state includes the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the drying process. Measurement data such as processing time is included. The data received by the communication unit 503 is output to the control unit 501. The data transmitted by the terminal device 500 through the communication unit 503 includes operation data, setting data, and the like when the powder processing system 1 is remotely controlled.
 操作部504は、キーボードやマウスなどの入力インタフェースを備えており、各種操作及び各種設定を受付ける。制御部501は、操作部504を通じて受付けた各種操作及び各種設定に基づき、適宜の処理を行い、必要に応じて設定情報を記憶部502に記憶させる。 The operation unit 504 is equipped with an input interface such as a keyboard and a mouse, and accepts various operations and various settings. The control unit 501 performs appropriate processing based on various operations and various settings received through the operation unit 504, and stores the setting information in the storage unit 502 as necessary.
 表示部505は、液晶パネル又は有機ELパネル等の表示パネルを備えており、ユーザに対して報知すべき情報を表示する。表示部505は、例えば、通信部503にて受信した画面データに基づき、制御装置100のインタフェース画面を表示する。また、表示部505は、通信部503にて受信した粉体処理装置4Aを含む装置の設定状態及び動作状態を示すデータに基づき、粉体処理装置4Aを含む装置の設定状態及び動作状態を表示してもよい。 The display unit 505 includes a display panel such as a liquid crystal panel or an organic EL panel, and displays information to be notified to the user. The display unit 505 displays the interface screen of the control device 100, for example, based on the screen data received by the communication unit 503. Further, the display unit 505 displays the set state and the operating state of the device including the powder processing device 4A based on the data indicating the setting state and the operating state of the device including the powder processing device 4A received by the communication unit 503. You may.
 以下、制御装置100において用いられる学習モデル210について説明する。
 図5は実施の形態1における学習モデル210の構成例を示す模式図である。学習モデル210は、例えば、深層学習を含む機械学習の学習モデルであり、ニューラルネットワークによって構成されている。学習モデル210は、入力層211、中間層212A,212B、及び出力層213を備える。図5の例では、2つの中間層212A,212Bを記載しているが、中間層の数は2つに限定されず、3つ以上であってもよい。
Hereinafter, the learning model 210 used in the control device 100 will be described.
FIG. 5 is a schematic diagram showing a configuration example of the learning model 210 according to the first embodiment. The learning model 210 is, for example, a learning model for machine learning including deep learning, and is composed of a neural network. The learning model 210 includes an input layer 211, intermediate layers 212A and 212B, and an output layer 213. In the example of FIG. 5, two intermediate layers 212A and 212B are described, but the number of intermediate layers is not limited to two and may be three or more.
 入力層211、中間層212A,212B、及び出力層213には、1つまたは複数のノードが存在し、各層のノードは、前後の層に存在するノードと一方向に所望の重みおよびバイアスで結合されている。学習モデル210の入力層211には、入力層211が備えるノードの数と同数のデータが入力される。本実施の形態において、入力層211のノードに入力されるデータは、ユーザが所望する粉体についての目標値のデータである。実施の形態1において、粉体についての目標値は、粉体処理装置4Aから得られる粉体の湿分である。学習モデル210の入力層211に入力する目標値のデータは、スカラーに限定する必要はなく、ベクトルデータ、画像データ等の何らかの構造を有するデータであってもよい。 The input layer 211, the intermediate layers 212A, 212B, and the output layer 213 have one or more nodes, and the nodes of each layer are coupled to the nodes existing in the previous and next layers in one direction with a desired weight and bias. Has been done. The same number of data as the number of nodes included in the input layer 211 is input to the input layer 211 of the learning model 210. In the present embodiment, the data input to the node of the input layer 211 is the target value data for the powder desired by the user. In the first embodiment, the target value for the powder is the moisture content of the powder obtained from the powder processing apparatus 4A. The target value data to be input to the input layer 211 of the learning model 210 does not have to be limited to scalar data, and may be data having some structure such as vector data and image data.
 学習モデル210に入力された目標値のデータは、入力層211を構成するノードを通じて、最初の中間層212Aが備えるノードへ出力される。最初の中間層212Aに入力されたデータは、中間層212Aを構成するノードを通じて、次の中間層212Bが備えるノードへ出力される。このとき、ノード間において設定されている重み及びバイアスを含む活性化関数を用いて出力が算出される。以下同様にして、ノード間において設定されている重み及びバイアスを含む活性化関数を用いた演算を実行し、出力層213による演算結果が得られるまで次々と後の層に伝達される。ノード間を結合する重み、バイアス等のパラメータは、所定の学習アルゴリズムによって学習される。各種パラメータを学習する学習アルゴリズムには、例えば深層学習の学習アルゴリズムが用いられる。本実施の形態では、粉体処理装置4Aから得られる粉体に関する粉体データ(湿分データ)と、熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、並びに、乾燥処理の処理時間を含む計測データとを教師データとして、所定の学習アルゴリズムによってノード間の重み及びバイアスを含む各種パラメータを学習することができる。 The target value data input to the learning model 210 is output to the node included in the first intermediate layer 212A through the nodes constituting the input layer 211. The data input to the first intermediate layer 212A is output to the nodes included in the next intermediate layer 212B through the nodes constituting the intermediate layer 212A. At this time, the output is calculated using the activation function including the weights and biases set between the nodes. Hereinafter, in the same manner, the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 213 is obtained. Parameters such as weights and biases that connect the nodes are learned by a predetermined learning algorithm. As a learning algorithm for learning various parameters, for example, a learning algorithm for deep learning is used. In the present embodiment, powder data (moisture data) related to the powder obtained from the powder processing apparatus 4A, temperature and flow rate of the heat medium, supply amount or supply speed of the powder raw material, and rotation speed of the crushing rotor 413. , The rotation speed of the classification rotor 415, the pressure in the casing 410, and the measurement data including the processing time of the drying process are used as training data, and various parameters including weights and biases between nodes are learned by a predetermined learning algorithm. Can be done.
 出力層213は、粉体処理装置4Aに対する制御パラメータについての演算結果を出力する。ここで、制御パラメータは、粉体処理装置4Aに供給する熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、並びに、乾燥処理の処理時間を含む。演算結果として、例えば、上述した複数の制御パラメータの組み合わせの良否を示す確率を出力してもよい。具体的には、出力層213を第1ノードから第nノードまでのn個のノードにより構成し、第1ノードから、熱媒の温度がHT1、熱媒の流量HF1、粉体原料の供給量がSA1、粉砕ロータ413の回転速度がCV1、分級ロータ415の回転速度がCC1、ケーシング410内の圧力がCP1、乾燥処理の処理時間がDT1である確率P1を出力し、第2ノードから、熱媒の温度がHT2、熱媒の流量がHF2、粉体原料の供給量がSA2、粉砕ロータ413の回転速度がCV2、分級ロータ415の回転速度がCC2、ケーシング410内の圧力がCP2、乾燥処理の処理時間がDT2である確率P2を出力し、…、第nノードから、熱媒の温度がHTn、熱媒の流量HFn、粉体原料の供給量がSAn、粉砕ロータ413の回転速度がCVn、分級ロータ415の回転速度がCCn、ケーシング410内の圧力がCPn、乾燥処理の処理時間がDTnである確率Pnを出力してもよい。出力層213を構成するノードの数や各ノードに割り当てる演算結果は、上述の例に限定されるものではなく、適宜設計することが可能である。 The output layer 213 outputs the calculation result for the control parameter for the powder processing apparatus 4A. Here, the control parameters are the temperature and flow rate of the heat medium supplied to the powder processing apparatus 4A, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the inside of the casing 410. Includes pressure as well as processing time for drying. As the calculation result, for example, the probability indicating the quality of the combination of the plurality of control parameters described above may be output. Specifically, the output layer 213 is composed of n nodes from the first node to the nth node, and from the first node, the temperature of the heat medium is HT1, the flow rate of the heat medium is HF1, and the supply amount of the powder raw material. SA1, the rotation speed of the crushing rotor 413 is CV1, the rotation speed of the classification rotor 415 is CC1, the pressure in the casing 410 is CP1, and the probability P1 that the processing time of the drying process is DT1 is output, and heat is output from the second node. The medium temperature is HT2, the heat medium flow rate is HF2, the powder raw material supply amount is SA2, the rotation speed of the crushing rotor 413 is CV2, the rotation speed of the classification rotor 415 is CC2, the pressure inside the casing 410 is CP2, and the drying process. Outputs the probability P2 that the processing time is DT2, and ..., From the nth node, the temperature of the heat medium is HTn, the flow rate of the heat medium is HFn, the supply amount of the powder raw material is SAN, and the rotation speed of the crushing rotor 413 is CVn. , The probability Pn that the rotation speed of the classification rotor 415 is CCn, the pressure in the casing 410 is CPn, and the processing time of the drying process is DTn may be output. The number of nodes constituting the output layer 213 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
 制御装置100は、粉体処理装置4Aから得られる粉体に関する粉体データ(実施の形態1では、粉体の湿分のデータ)と、粉体処理装置4Aに供給される熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、及び乾燥処理の処理時間を含む計測データとを収集し、これらのデータを教師データに用いて、上述したような学習モデル210を生成する。 The control device 100 includes powder data related to the powder obtained from the powder processing device 4A (data on the wet content of the powder in the first embodiment), the temperature of the heat medium supplied to the powder processing device 4A, and Measurement data including flow rate, supply amount or supply speed of powder raw material, rotation speed of crushing rotor 413, rotation speed of classification rotor 415, pressure in casing 410, and processing time of drying process are collected, and these data are collected. Is used as the teacher data to generate the learning model 210 as described above.
 図6は制御装置100が収集するデータの一例を示す概念図である。制御装置100の制御部101は、入力部103を通じて、粉体処理装置4Aの動作状態を示す計測データと、粉体処理装置4Aから得られる粉体に関する粉体データとを取得する。具体的には、制御部101は、温度センサS4により計測される熱媒の温度(℃)、流量センサS3により計測される熱媒の流量(m3 /min)、重量センサS1により計測される重量に基づき計算される粉体原料の供給量(kg/h)、回転速度センサS7により計測される粉砕ロータ413の回転速度(rpm)、回転速度センサS8により計測される分級ロータ415の回転速度(rpm)、圧力センサS6により計測されるケーシング410内の圧力(atm)、制御部101の内蔵タイマにより計測される乾燥処理の処理時間(min)等を計測データとして取得する。また、制御部101は、湿分センサS5により計測される粉体の湿分(%)を粉体データとして取得する。制御部101は、取得した計測データ及び粉体データをタイムスタンプと共に記憶部102に記憶させる。なお、図6は、5秒間隔で収集したデータを記憶部102に記憶させた例を示しているが、データを収集する時間間隔は5秒に限らず、任意に設定すればよい。 FIG. 6 is a conceptual diagram showing an example of data collected by the control device 100. The control unit 101 of the control device 100 acquires measurement data indicating the operating state of the powder processing device 4A and powder data related to the powder obtained from the powder processing device 4A through the input unit 103. Specifically, the control unit 101 measures the temperature of the heat medium (° C.) measured by the temperature sensor S4, the flow rate of the heat medium (m 3 / min) measured by the flow sensor S3, and the weight sensor S1. Supply amount of powder raw material calculated based on weight (kg / h), rotation speed (rpm) of crushing rotor 413 measured by rotation speed sensor S7, rotation speed of classification rotor 415 measured by rotation speed sensor S8. (Rotation), the pressure (atm) in the casing 410 measured by the pressure sensor S6, the processing time (min) of the drying process measured by the built-in timer of the control unit 101, and the like are acquired as measurement data. Further, the control unit 101 acquires the moisture content (%) of the powder measured by the moisture content sensor S5 as powder data. The control unit 101 stores the acquired measurement data and powder data in the storage unit 102 together with the time stamp. Note that FIG. 6 shows an example in which the data collected at 5-second intervals is stored in the storage unit 102, but the time interval for collecting data is not limited to 5 seconds and may be set arbitrarily.
 制御部101は、収集した上記データを教師データに用いて、粉体処理装置4Aから得られる粉体の湿分と、粉体処理装置4Aに関する制御パラメータとの関係を学習し、上述したような学習モデル210を生成する。 The control unit 101 uses the collected data as teacher data to learn the relationship between the moisture content of the powder obtained from the powder processing apparatus 4A and the control parameters related to the powder processing apparatus 4A, as described above. Generate the training model 210.
 以下、学習フェーズにおける制御装置100の動作について説明する。
 図7は制御装置100による学習モデル210の生成手順を説明するフローチャートである。制御装置100の制御部101は、粉体処理装置4Aの動作状態を示す計測データと、粉体処理装置4Aから得られる粉体に関する粉体データとを収集する(ステップS101)。ステップS101において収集する計測データは、上述したように、熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、及び乾燥処理の処理時間を含む。また、ステップS101において収集する粉体データは、粉体処理装置4Aから得られる粉体の湿分を示すデータを含む。収集した計測データ及び粉体データは、タイムスタンプと共に、記憶部102に記憶される。
Hereinafter, the operation of the control device 100 in the learning phase will be described.
FIG. 7 is a flowchart illustrating a procedure for generating the learning model 210 by the control device 100. The control unit 101 of the control device 100 collects measurement data indicating the operating state of the powder processing device 4A and powder data related to the powder obtained from the powder processing device 4A (step S101). As described above, the measurement data collected in step S101 includes the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the pressure in the casing 410. , And the processing time of the drying process. Further, the powder data collected in step S101 includes data indicating the moisture content of the powder obtained from the powder processing apparatus 4A. The collected measurement data and powder data are stored in the storage unit 102 together with the time stamp.
 計測データ及び粒子径データの収集後、制御部101は、記憶部102に記憶されているデータから、一組の教師データを選択する(ステップS102)。すなわち、制御部101は、熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、乾燥処理の処理時間の計測値と、そのときに得られた粉体の湿分の値とを記憶部102から一組だけ選択する。 After collecting the measurement data and the particle size data, the control unit 101 selects a set of teacher data from the data stored in the storage unit 102 (step S102). That is, the control unit 101 determines the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the processing time of the drying process. Only one set of the measured value and the wet content value of the powder obtained at that time is selected from the storage unit 102.
 制御部101は、選択した教師データに含まれる湿分の値を学習モデル210へ入力し(ステップS103)、学習モデル210による演算を実行する(ステップS104)。すなわち、制御部101は、学習モデル210の入力層211を構成するノードに湿分の値を入力し、中間層212A,212Bにおいてノード間の重み及びバイアスを用いた演算を行い、演算結果を出力層213のノードから出力する処理を行う。なお、学習が開始される前の初期段階では、学習モデル210を記述する定義情報には初期値が与えられているものとする。 The control unit 101 inputs the wet content value included in the selected teacher data into the learning model 210 (step S103), and executes the calculation by the learning model 210 (step S104). That is, the control unit 101 inputs the moisture value to the nodes constituting the input layer 211 of the learning model 210, performs calculations using the weights and biases between the nodes in the intermediate layers 212A and 212B, and outputs the calculation results. The process of outputting from the node of layer 213 is performed. In the initial stage before the start of learning, it is assumed that the definition information describing the learning model 210 is given an initial value.
 次いで、制御部101は、ステップS104で得られた演算結果を評価し(ステップS105)、学習が完了したか否かを判断する(ステップS106)。具体的には、制御部101は、ステップS104で得られる演算結果と教師データとに基づく誤差関数(目的関数、損失関数、コスト関数ともいう)を用いて、演算結果を評価することができる。制御部101は、最急降下法などの勾配降下法により誤差関数を最適化(最小化又は最大化)する課程で、誤差関数が閾値以下(又は閾値以上)となった場合、学習が完了したと判断する。なお、過学習の問題を避けるために、交差検定、早期打ち切りなどの手法を取り入れ、適切なタイミングにて学習を終了させてもよい。 Next, the control unit 101 evaluates the calculation result obtained in step S104 (step S105), and determines whether or not the learning is completed (step S106). Specifically, the control unit 101 can evaluate the calculation result by using an error function (also referred to as an objective function, a loss function, or a cost function) based on the calculation result obtained in step S104 and the teacher data. The control unit 101 is in the process of optimizing (minimizing or maximizing) the error function by a gradient descent method such as the steepest descent method, and when the error function is below the threshold value (or above the threshold value), the learning is completed. to decide. In order to avoid the problem of overfitting, techniques such as cross-validation and early stopping may be adopted to end learning at an appropriate timing.
 学習が完了していないと判断した場合(S106:NO)、制御部101は、学習モデル210のノード間の重み及びバイアスを更新して(ステップS107)、処理をステップS102へ戻し、別の教師データを用いた学習を継続する。制御部101は、学習モデル210の出力層213から入力層211に向かって、ノード間の重み及びバイアスを順次更新する誤差逆伝播法を用いて、各ノード間の重み及びバイアスを更新することができる。 When it is determined that the learning is not completed (S106: NO), the control unit 101 updates the weights and biases between the nodes of the learning model 210 (step S107), returns the process to step S102, and another teacher. Continue learning with the data. The control unit 101 may update the weights and biases between the nodes by using an error backpropagation method that sequentially updates the weights and biases between the nodes from the output layer 213 of the learning model 210 toward the input layer 211. it can.
 学習が完了したと判断した場合(S106:YES)、制御部101は、学習済みの学習モデル210として記憶部102に記憶させ(ステップS108)、本フローチャートによる処理を終了する。 When it is determined that the learning is completed (S106: YES), the control unit 101 stores the learned learning model 210 in the storage unit 102 (step S108), and ends the process according to this flowchart.
 以上のように、本実施の形態に係る制御装置100は、学習フェーズにおいて、粉体処理装置4Aの動作状態を示す計測データと、粉体処理装置4Aから得られる粉体に関する粉体データとを収集する。制御装置100は、収集したデータを教師データとして用いることにより、ユーザが所望する粉体についての目標値(実施の形態1では湿分の値)の入力に応じて、熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、及び乾燥処理の処理時間を制御する制御パラメータに関する演算結果を出力する学習モデル210を生成できる。 As described above, in the learning phase, the control device 100 according to the present embodiment obtains the measurement data indicating the operating state of the powder processing device 4A and the powder data related to the powder obtained from the powder processing device 4A. collect. By using the collected data as teacher data, the control device 100 determines the temperature and flow rate of the heat medium according to the input of the target value (moisture value in the first embodiment) for the powder desired by the user. Learning model 210 that outputs calculation results related to control parameters that control the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the processing time of the drying process. Can be generated.
 なお、本実施の形態では、制御装置100において学習モデル210を生成する構成としたが、学習モデル210を生成する外部サーバ(不図示)を設け、外部サーバにて学習モデル210を生成してもよい。この場合、制御装置100は、通信等により、外部サーバから学習モデル210を取得し、取得した学習モデル210を記憶部102に記憶させればよい。 In the present embodiment, the control device 100 is configured to generate the learning model 210, but even if an external server (not shown) for generating the learning model 210 is provided and the learning model 210 is generated by the external server. Good. In this case, the control device 100 may acquire the learning model 210 from the external server by communication or the like, and store the acquired learning model 210 in the storage unit 102.
 次に、運用フェーズにおける制御装置100の動作を説明する。なお、運用フェーズにおいては、学習モデル210は学習済みであるとする。 Next, the operation of the control device 100 in the operation phase will be described. In the operation phase, it is assumed that the learning model 210 has already been learned.
 図8は制御装置100による制御手順を説明するフローチャートである。制御装置100の制御部101は、操作部106を通じて、ユーザが所望する粉体についての目標値(実施の形態1では湿分の値)の入力を受付ける(ステップS121)。 FIG. 8 is a flowchart illustrating a control procedure by the control device 100. The control unit 101 of the control device 100 receives an input of a target value (moisture content value in the first embodiment) for the powder desired by the user through the operation unit 106 (step S121).
 次いで、制御部101は、受付けた目標値のデータを学習モデル210の入力層211へ入力し、学習モデル210による演算を実行する(ステップS122)。このとき、制御部101は、受付けた目標値のデータを入力層211のノードに与える。入力層211のノードに与えられたデータは、隣接する中間層212Aのノードへ出力される。中間層212Aではノード間の重み及びバイアスを含む活性化関数を用いた演算が行われ、演算結果は後段の中間層212Bへ出力される。中間層212Bにおいて、更に、ノード間の重み及びバイアスを含む活性化関数を用いた演算が行われ、演算結果は出力層213の各ノードへ出力される。出力層213の各ノードは、粉体処理装置4Aの制御パラメータに関する演算結果を出力する。具体的には、出力層213の各ノードは、熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、及び乾燥処理の処理時間を制御する制御パラメータに関する演算結果を出力する。 Next, the control unit 101 inputs the received target value data to the input layer 211 of the learning model 210, and executes the calculation by the learning model 210 (step S122). At this time, the control unit 101 gives the received target value data to the node of the input layer 211. The data given to the node of the input layer 211 is output to the node of the adjacent intermediate layer 212A. In the intermediate layer 212A, an operation using an activation function including weights and biases between nodes is performed, and the operation result is output to the intermediate layer 212B in the subsequent stage. In the intermediate layer 212B, an operation using an activation function including weights and biases between nodes is further performed, and the operation result is output to each node of the output layer 213. Each node of the output layer 213 outputs the calculation result regarding the control parameter of the powder processing apparatus 4A. Specifically, each node of the output layer 213 has the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the pressure in the casing 410. And output the calculation result regarding the control parameter that controls the processing time of the drying process.
 次いで、制御部101は、学習モデル210から演算結果を取得し(ステップS123)、制御に用いる制御パラメータを決定する(ステップS124)。学習モデル210の出力層213は、例えば、制御パラメータに関する演算結果として、熱媒の温度がHTi、熱媒の流量がHFi、粉体原料の供給量がSAi、粉砕ロータ413の回転速度がCVi、分級ロータ415の回転速度がCCi、ケーシング410内の圧力がCPi、乾燥処理の処理時間がDTiである確率Pi(i=1~n)を各ノードから出力する。制御部101は、これらの確率Pi(i=1~n)のうち、最も高い確率に対応した熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、乾燥処理の処理時間の組み合わせを特定することにより、制御に用いる制御パラメータを決定する。 Next, the control unit 101 acquires the calculation result from the learning model 210 (step S123) and determines the control parameters used for control (step S124). In the output layer 213 of the learning model 210, for example, as a result of calculation regarding control parameters, the temperature of the heat medium is HTi, the flow rate of the heat medium is HFi, the supply amount of the powder raw material is SAi, and the rotation speed of the crushing rotor 413 is CVi. Each node outputs the probability Pi (i = 1 to n) that the rotation speed of the classification rotor 415 is CCi, the pressure in the casing 410 is CPi, and the processing time of the drying process is DTi. The control unit 101 has the temperature and flow rate of the heat medium corresponding to the highest probability among these probabilities Pi (i = 1 to n), the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, and the classification. The control parameters used for control are determined by specifying the combination of the rotation speed of the rotor 415, the pressure in the casing 410, and the processing time of the drying process.
 次いで、制御部101は、ステップS124において決定した制御パラメータに基づき、制御を実行する(ステップS125)。すなわち、制御部101は、ケーシング410内に導入される熱媒の温度及び流量がそれぞれステップS124で決定した値となるように、熱風発生機3の動作を制御する制御指令を生成し、生成した制御指令を出力部104を通じて熱風発生機3へ出力する。同様に、制御部101は、粉体原料の供給量、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、乾燥処理の処理時間がそれぞれステップS124で決定した値となるように、原料供給機2、粉砕ロータ413、分級ロータ415、ブロワ7、粉体処理装置4Aの動作を制御する制御指令を生成し、生成した制御指令を出力部104を通じて各装置へ出力する。 Next, the control unit 101 executes control based on the control parameters determined in step S124 (step S125). That is, the control unit 101 generates and generates a control command for controlling the operation of the hot air generator 3 so that the temperature and the flow rate of the heat medium introduced into the casing 410 become the values determined in step S124, respectively. The control command is output to the hot air generator 3 through the output unit 104. Similarly, the control unit 101 has values determined in step S124 for each of the supply amount of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the processing time of the drying process. As described above, a control command for controlling the operation of the raw material supply machine 2, the crushing rotor 413, the classification rotor 415, the blower 7, and the powder processing device 4A is generated, and the generated control command is output to each device through the output unit 104.
 以上のように、本実施の形態に係る制御装置100は、ユーザが所望する粉体についての目標値を受付けることにより、熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、及び乾燥処理の処理時間を制御する制御パラメータを決定できる。すなわち、本実施の形態では、現場技術者の経験や勘に依存することなく、粉体処理装置4Aに関する制御パラメータを決定できる。制御装置100は、目標値を有する粉体が得られるように、決定した制御パラメータに基づく制御を実行する。 As described above, the control device 100 according to the present embodiment receives the target value for the powder desired by the user, and thus receives the temperature and flow rate of the heat medium, the supply amount or the supply speed of the powder raw material, and the crushing rotor. The control parameters that control the rotation speed of the 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the processing time of the drying process can be determined. That is, in the present embodiment, the control parameters related to the powder processing apparatus 4A can be determined without depending on the experience and intuition of the field engineer. The control device 100 executes control based on the determined control parameters so that the powder having the target value can be obtained.
 本実施の形態では、ニューラルネットワークによって構成される機械学習の学習モデル210を用いて制御パラメータに関する演算結果を取得する構成について説明したが、学習モデル210は特定の手法を用いて得られるモデルに限定されない。例えば、深層学習によるニューラルネットワークに代えて、パーセプトロン、畳み込みニューラルネットワーク、再帰型ニューラルネットワーク、残差ネットワーク、自己組織化マップ等による学習モデルであってもよい。 In the present embodiment, a configuration for acquiring calculation results related to control parameters using a machine learning learning model 210 configured by a neural network has been described, but the learning model 210 is limited to a model obtained by using a specific method. Not done. For example, instead of the neural network by deep learning, a learning model by a perceptron, a convolutional neural network, a recurrent neural network, a residual network, a self-organizing map, or the like may be used.
 また、上記のニューラルネットワークによる学習モデルに代えて、線形回帰、ロジスティック回帰、サポートベクターマシン等を含む回帰分析手法、決定木、回帰木、ランダムフォレスト、勾配ブースティング木等の探索木を用いた手法、単純ベイズ等を含むベイズ推定法、AR(Auto Regressive)、MA(Moving Average)、ARIMA(Auto Regressive Integrated Moving Average)、状態空間モデル等を含む時系列予測手法、K近傍法等を含むクラスタリング手法、ブースティング、バギング等を含むアンサンブル学習を用いた手法、階層型クラスタリング、非階層型クラスタリング、トピックモデル等を含むクラスタリング手法、アソシエーション分析、強調フィルタリング等を含むその他の手法により学習された学習モデルであってもよい。
 更に、PLS(Partial Least Squares)回帰、重回帰分析、主成分分析、因子分析、クラスター分析等を含む多変量分析を用いて学習モデルを構築してもよい。
In addition, instead of the above neural network learning model, a regression analysis method including linear regression, logistic regression, support vector machine, etc., and a method using a search tree such as a decision tree, a regression tree, a random forest, and a gradient boosting tree. , Bayesian estimation method including simple bays, AR (Auto Regressive), MA (Moving Average), ARIMA (Auto Regressive Integrated Moving Average), time series prediction method including state space model, clustering method including K neighborhood method, etc. With learning models learned by methods using ensemble learning including boosting, bagging, etc., hierarchical clustering, non-hierarchical clustering, clustering methods including topic models, association analysis, emphasis filtering, etc. There may be.
Further, a learning model may be constructed using multivariate analysis including PLS (Partial Least Squares) regression, multiple regression analysis, principal component analysis, factor analysis, cluster analysis and the like.
 本実施の形態では、粉体処理装置4Aから得られる粉体の粉体データ(湿分のデータ)と、粉体処理装置4Aに導入する熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、及び乾燥処理の処理時間を含む計測データとを教師データに用いて、学習モデル210を生成する構成とした。代替的に、上記粉体データ(湿分のデータ)と、選択した一部の計測データとを教師データに用いて、学習モデル210を生成する構成としてもよい。 In the present embodiment, the powder powder data (moisture content data) of the powder obtained from the powder processing apparatus 4A, the temperature and flow rate of the heat medium to be introduced into the powder processing apparatus 4A, the supply amount of the powder raw material, or The learning model 210 is generated by using the measurement data including the supply speed, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the processing time of the drying process as the teacher data. .. Alternatively, the learning model 210 may be generated by using the powder data (moisture data) and a part of the selected measurement data as the teacher data.
 また、制御装置100は、計測データとして、ケーシング410内から粉体を取り出す際の吐出・吸引流量若しくは温度、及び、粉体処理装置4Aの駆動電力若しくは駆動電流の少なくとも1つを更に含む教師データを用いて、学習モデル210を生成してもよい。 Further, the control device 100 further includes, as measurement data, at least one of the discharge / suction flow rate or temperature when the powder is taken out from the casing 410, and the drive power or drive current of the powder processing device 4A. May be used to generate the learning model 210.
 更に、制御装置100は、粉体データとして、単位時間あたりの収量(すなわち処理能力)を更に含む教師データを用いて、学習モデル210を生成してもよい。この場合、制御装置100は、粉体処理装置4Aから得られる粉体の湿分及び単位時間あたりの収量を含む粉体データと上述の計測データとを教師データに用いて、ユーザが所望する粉体の湿分及び単位時間あたりの収量が入力された場合、粉体処理装置4Aに対する制御パラメータについての演算結果を出力するように構成された学習モデル210を生成すればよい。 Further, the control device 100 may generate the learning model 210 by using the teacher data including the yield per unit time (that is, the processing capacity) as the powder data. In this case, the control device 100 uses the powder data including the moisture content of the powder obtained from the powder processing device 4A and the yield per unit time and the above-mentioned measurement data as the teacher data, and the powder desired by the user. When the moisture content of the body and the yield per unit time are input, the learning model 210 configured to output the calculation result for the control parameters for the powder processing apparatus 4A may be generated.
 更に、制御装置100は、原料データを更に含む教師データに用いて、学習モデル210を生成してもよい。教師データに用いる原料データは、粉体原料の湿分、温度、かさ密度(若しくは真密度)、及び粒子径の少なくとも1つを含む。制御装置100は、取得した粉体データ、原料データ、及び計測データを教師データとし、粉体データ及び原料データの入力に応じて、粉体処理装置4Aに対する制御パラメータについての演算結果を出力するように構成された学習モデル210を生成すればよい。 Further, the control device 100 may generate a learning model 210 by using it for teacher data including raw material data. The raw material data used for the teacher data includes at least one of the moisture content, temperature, bulk density (or true density), and particle size of the powder raw material. The control device 100 uses the acquired powder data, raw material data, and measurement data as teacher data, and outputs the calculation result of the control parameters for the powder processing device 4A in response to the input of the powder data and the raw material data. The learning model 210 configured in the above may be generated.
 更に、制御装置100は、製品データ、排ガスデータ、及び環境データの少なくとも1つを更に含む教師データを用いて、学習モデル210を生成してもよい。教師データに用いる製品データは、製品粉体の温度、かさ密度(若しくは真密度)、及び粒子径の少なくとも1つを含む。排ガスデータは、ブロワ7を通じて排出される気体の流量及び湿分の少なくとも1つを含む。環境データは、粉体処理を実行する環境の温度及び湿度の少なくとも1つを含む。制御装置100は、取得した粉体データ、製品データ、排ガスデータ、環境データ、計測データを教師データとし、粉体データと、製品データ、排ガスデータ、環境データの少なくとも1つとの入力に応じて、粉体処理装置4Aに対する制御パラメータについての演算結果を出力するように構成された学習モデル210を生成すればよい。 Further, the control device 100 may generate the learning model 210 by using the teacher data including at least one of the product data, the exhaust gas data, and the environmental data. The product data used for the teacher data includes at least one of the temperature, bulk density (or true density), and particle size of the product powder. The exhaust gas data includes at least one of the flow rate and moisture of the gas discharged through the blower 7. Environmental data includes at least one of the temperature and humidity of the environment in which the powder treatment is performed. The control device 100 uses the acquired powder data, product data, exhaust gas data, environmental data, and measurement data as teacher data, and receives input of the powder data and at least one of product data, exhaust gas data, and environmental data. The learning model 210 configured to output the calculation result of the control parameter for the powder processing apparatus 4A may be generated.
 また、本実施の形態では、ケーシング410内に熱風を導入して粉体を乾燥させる直接加熱式の粉体処理装置4Aについて説明したが、粉体処理装置4Aは、間接加熱媒体乾燥機、媒体攪拌型気流乾燥機、攪拌型凍結乾燥機などの乾燥機であってもよい。間接加熱媒体乾燥機として、例えば、ホソカワミクロン株式会社製のソリッドエアー(登録商標)、トーラスディスク、及びミクロン サーモプロセッサ(登録商標)を用いることができる。また、媒体攪拌型気流乾燥機として、例えば、ホソカワミクロン株式会社製のゼルビス(登録商標)を用いることができる。攪拌型凍結乾燥機として、ホソカワミクロン株式会社製のアクティブフリーズドライヤ(登録商標)を用いることができる。これらの乾燥機は、処理対象の粉体原料を攪拌するための回転体として、パドル、スクリュー、ロータ等を備えているので、学習モデル210を用いた演算で求める制御パラメータのうち、粉砕ロータ413の回転速度及び分級ロータ415の回転速度に代えて、上記回転体の回転速度を用いればよい。 Further, in the present embodiment, the direct heating type powder processing apparatus 4A for introducing hot air into the casing 410 to dry the powder has been described, but the powder processing apparatus 4A includes an indirect heating medium dryer and a medium. It may be a dryer such as a stirring type air flow dryer or a stirring type freeze dryer. As the indirect heating medium dryer, for example, a solid air (registered trademark), a torus disk, and a micron thermoprocessor (registered trademark) manufactured by Hosokawa Micron Co., Ltd. can be used. Further, as the medium stirring type airflow dryer, for example, Zelvis (registered trademark) manufactured by Hosokawa Micron Co., Ltd. can be used. As the stirring type freeze dryer, Active Freeze Dryer (registered trademark) manufactured by Hosokawa Micron Co., Ltd. can be used. Since these dryers are provided with a paddle, a screw, a rotor, etc. as a rotating body for stirring the powder raw material to be processed, among the control parameters obtained by the calculation using the learning model 210, the crushing rotor 413 Instead of the rotation speed of the above and the rotation speed of the classification rotor 415, the rotation speed of the rotating body may be used.
(実施の形態2)
 実施の形態2では、混合処理についての適用例を説明する。実施の形態2に係る粉体処理システム1は、乾燥処理を行う粉体処理装置4Aに代えて、混合処理を行う粉体処理装置4Bを備える。
(Embodiment 2)
In the second embodiment, an application example of the mixing process will be described. The powder processing system 1 according to the second embodiment includes a powder processing device 4B that performs a mixing process instead of the powder processing device 4A that performs a drying process.
 図9は実施の形態2に係る粉体処理装置4Bの構成を示す模式図である。粉体処理装置4Bは、その内部において混合処理を行う逆円錐型のケーシング420を備える。このケーシング420には、原料投入口421A,421B、スイングアーム422、スクリュー423、粉体取出口424等が設けられている。 FIG. 9 is a schematic view showing the configuration of the powder processing apparatus 4B according to the second embodiment. The powder processing apparatus 4B includes an inverted conical casing 420 that performs a mixing process inside the powder processing apparatus 4B. The casing 420 is provided with raw material input ports 421A and 421B, a swing arm 422, a screw 423, a powder outlet 424, and the like.
 原料投入口421A,421Bはケーシング420の上部に設けられている。原料投入口421A,421Bには、それぞれ異なる種類の粉体原料を供給する原料供給機2が接続される。原料供給機2から供給される異なる種類の粉体原料は、原料供給路TP1内のスクリューフィーダ21によって搬送され、原料投入口421A,421Bよりケーシング420内に投入される。 The raw material input ports 421A and 421B are provided on the upper part of the casing 420. Raw material supply machines 2 for supplying different types of powder raw materials are connected to the raw material input ports 421A and 421B. The different types of powder raw materials supplied from the raw material supply machine 2 are conveyed by the screw feeder 21 in the raw material supply path TP1 and are charged into the casing 420 from the raw material input ports 421A and 421B.
 ケーシング420の内部に設けられているスクリュー423は、スクリューモータ423Mの駆動により、ケーシング420の内周面に沿う長軸の回りに回転(自転)するように構成されている。スクリュー423の上端はスイングアーム422の一端に連結されている。このスイングアーム422は、スイングモータ422Mの駆動により、スイングアーム422の他端を中心として水平面内で回転するように構成されている。スクリュー423は、スイングアーム422の回転に伴い、ケーシング420の内周面に沿って回転(公転)するように構成されている。 The screw 423 provided inside the casing 420 is configured to rotate (rotate) around a long axis along the inner peripheral surface of the casing 420 by driving the screw motor 423M. The upper end of the screw 423 is connected to one end of the swing arm 422. The swing arm 422 is configured to rotate in a horizontal plane about the other end of the swing arm 422 by driving the swing motor 422M. The screw 423 is configured to rotate (revolve) along the inner peripheral surface of the casing 420 as the swing arm 422 rotates.
 スクリュー423が自転することによって、スクリュー423の近傍の粉体原料は攪拌されながら上昇運動し、スクリュー423から離れた部分では重力により下降運動する。同時に、スイングアーム422が回転し、スクリュー423がケーシング420の内周面に沿って公転することにより、ケーシング420内の粉体原料全体は大きく移動する。このように、粉体処理装置4Bは、スクリュー423を自転させつつ公転させることによって、ケーシング420内に投入された粉体原料を攪拌する。このとき、偏析現象がほとんど発生することなく、速やかに複数種の粉体原料を混合させることができる。 As the screw 423 rotates, the powder raw material in the vicinity of the screw 423 moves upward while being agitated, and the portion away from the screw 423 moves downward due to gravity. At the same time, the swing arm 422 rotates and the screw 423 revolves along the inner peripheral surface of the casing 420, so that the entire powder raw material in the casing 420 moves significantly. In this way, the powder processing apparatus 4B revolves while rotating the screw 423 to agitate the powder raw material charged in the casing 420. At this time, a plurality of types of powder raw materials can be quickly mixed with almost no segregation phenomenon.
 スクリュー423の作用によって混合された粉体は、ケーシング420の下部に設けられた粉体取出口424を通じて、粉体処理装置4Bの外部へ取り出される。 The powder mixed by the action of the screw 423 is taken out to the outside of the powder processing apparatus 4B through the powder outlet 424 provided in the lower part of the casing 420.
 なお、粉体処理装置4Bは、ケーシング420の内部温度を調節するためにジャケット部を備えていてもよい。ジャケット部は、別に設けたタンクから供給される流体(熱媒又は冷媒)によって、ケーシング420の内部温度を調節する。 The powder processing apparatus 4B may be provided with a jacket portion for adjusting the internal temperature of the casing 420. The jacket portion adjusts the internal temperature of the casing 420 by a fluid (heat medium or refrigerant) supplied from a tank provided separately.
 実施の形態2に係る制御装置100は、入力部103を通じて、粉体処理装置4Bの動作状態を示す計測データと、粉体処理装置4Bから得られる粉体に関する粉体データとを取得する。制御装置100が取得する計測データは、粉体処理装置4Bに供給する粉体原料の供給量(又は供給速度)、粉体原料を攪拌するためのスクリュー423の回転速度、粉体処理装置4Bに供給する流体(熱媒又は冷媒)の供給量(又は供給速度)、並びに混合処理の処理時間を含む。粉体データは、粉体処理装置4Bから得られる粉体の混合度のデータである。混合度は、2種類以上の粉体の混ざり具合を表す指標値であり、例えば、色差計、吸光度計、NIR、PH計、画像解析、クロマトグラフィ等を用いて計測することが可能である。 The control device 100 according to the second embodiment acquires measurement data indicating the operating state of the powder processing device 4B and powder data related to the powder obtained from the powder processing device 4B through the input unit 103. The measurement data acquired by the control device 100 is the supply amount (or supply speed) of the powder raw material to be supplied to the powder processing device 4B, the rotation speed of the screw 423 for stirring the powder raw material, and the powder processing device 4B. Includes the supply amount (or supply speed) of the fluid (heat medium or refrigerant) to be supplied, and the processing time of the mixing process. The powder data is data on the mixing degree of the powder obtained from the powder processing apparatus 4B. The mixing degree is an index value indicating the degree of mixing of two or more kinds of powders, and can be measured by using, for example, a color difference meter, an absorbance meter, an NIR, a PH meter, image analysis, chromatography, or the like.
 制御装置100は、取得した計測データと粉体データとを教師データに用いて、学習モデル220(図10を参照)を生成する。学習モデル220の生成手順は、実施の形態1と同様であるため、その説明を省略することとする。 The control device 100 uses the acquired measurement data and powder data as teacher data to generate a learning model 220 (see FIG. 10). Since the procedure for generating the learning model 220 is the same as that in the first embodiment, the description thereof will be omitted.
 学習モデル220は、ユーザが所望する粉体についての目標値(混合度)が入力された場合、粉体処理装置4Bに対する制御パラメータについての演算結果を出力するよう構成される。ここで、粉体処理装置4Bに対する制御パラメータは、粉体原料の供給量(又は供給速度)、スクリュー423の回転速度、粉体処理装置4Bに供給する流体の供給量(又は供給速度)、及び混合処理の処理時間を含む。 The learning model 220 is configured to output the calculation result of the control parameters for the powder processing apparatus 4B when the target value (mixing degree) for the powder desired by the user is input. Here, the control parameters for the powder processing apparatus 4B are the supply amount (or supply speed) of the powder raw material, the rotation speed of the screw 423, the supply amount (or supply speed) of the fluid supplied to the powder processing apparatus 4B, and. Includes processing time for mixed processing.
 図10は実施の形態2における学習モデル220の構成例を示す模式図である。学習モデル220は、実施の形態1において説明した学習モデル210と同様に、それぞれが1又は複数のノードを備えた入力層221、中間層222A,222B、及び出力層223を備える。中間層の数は2つに限定されず、3つ以上であってもよい。 FIG. 10 is a schematic diagram showing a configuration example of the learning model 220 in the second embodiment. Similar to the learning model 210 described in the first embodiment, the learning model 220 includes an input layer 221 having one or more nodes, an intermediate layer 222A, 222B, and an output layer 223, respectively. The number of intermediate layers is not limited to two, and may be three or more.
 学習モデル220は、ユーザが所望する粉体についての目標値(実施の形態2では混合度)の入力に対して、粉体処理装置4Bに対する制御パラメータについての演算結果を出力するように構成される。 The learning model 220 is configured to output the calculation result of the control parameters for the powder processing apparatus 4B in response to the input of the target value (mixing degree in the second embodiment) for the powder desired by the user. ..
 制御装置100は、学習モデル220を用いた演算を行う場合、ユーザが所望する目標値(混合度)を学習モデル220に入力する。学習モデル220に入力された目標値のデータは、入力層221を構成するノードを通じて、最初の中間層222Aが備えるノードへ出力される。最初の中間層222Aに入力されたデータは、中間層222Aを構成するノードを通じて、次の中間層222Bが備えるノードへ出力される。このとき、ノード間において設定されている重み及びバイアスを含む活性化関数を用いて出力が算出される。以下同様にして、ノード間において設定されている重み及びバイアスを含む活性化関数を用いた演算を実行し、出力層223による演算結果が得られるまで次々と後の層に伝達される。 When the control device 100 performs an operation using the learning model 220, the control device 100 inputs a target value (mixture degree) desired by the user into the learning model 220. The target value data input to the learning model 220 is output to the node included in the first intermediate layer 222A through the nodes constituting the input layer 221. The data input to the first intermediate layer 222A is output to the node included in the next intermediate layer 222B through the nodes constituting the intermediate layer 222A. At this time, the output is calculated using the activation function including the weights and biases set between the nodes. Hereinafter, in the same manner, the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 223 is obtained.
 出力層223は、粉体処理装置4Bに対する制御パラメータについての演算結果を出力する。演算結果として、例えば、上述した複数の制御パラメータの組み合わせの良否を示す確率を出力してもよい。具体的には、出力層223を第1ノードから第nノードまでのn個のノードにより構成し、第1ノードから、粉体原料の供給量がSA1、スクリュー423の回転速度がSV1、流体の供給量がFA1、混合処理の処理時間がMT1である確率P1を出力し、…、第nノードから、粉体原料の供給量がSAn、スクリュー423の回転速度がSVn、流体の供給量がFAn、混合処理の処理時間がMTnである確率Pnを出力してもよい。出力層223を構成するノードの数や各ノードに割り当てる演算結果は、上述の例に限定されるものではなく、適宜設計することが可能である。 The output layer 223 outputs the calculation result of the control parameters for the powder processing apparatus 4B. As the calculation result, for example, the probability indicating the quality of the combination of the plurality of control parameters described above may be output. Specifically, the output layer 223 is composed of n nodes from the first node to the nth node, and the supply amount of the powder raw material is SA1 from the first node, the rotation speed of the screw 423 is SV1, and the fluid The probability P1 that the supply amount is FA1 and the processing time of the mixing process is MT1 is output, and ..., The supply amount of the powder raw material is SAN, the rotation speed of the screw 423 is SVn, and the fluid supply amount is FAn from the nth node. , The probability Pn that the processing time of the mixing process is MTn may be output. The number of nodes constituting the output layer 223 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
 制御装置100の制御部101は、出力層223から出力される確率のうち、確率が最も高い組み合わせ(本実施の形態では、粉体原料の供給量、スクリュー423の回転速度、粉体処理装置4Bに供給する流体の供給量、及び混合処理の処理時間の組み合わせ)を特定することにより、制御に用いる制御パラメータを決定する。制御部101は、決定した制御パラメータに基づき、原料供給機2、スクリューモータ423M、熱媒又は冷媒の供給源、粉体処理装置4Bの動作を制御する制御指令を生成し、出力部104を通じて各装置へ出力する。 The control unit 101 of the control device 100 has the highest probability of being output from the output layer 223 (in the present embodiment, the supply amount of the powder raw material, the rotation speed of the screw 423, and the powder processing device 4B). The control parameters used for control are determined by specifying the supply amount of the fluid to be supplied to the vehicle and the processing time of the mixing process). Based on the determined control parameters, the control unit 101 generates control commands for controlling the operations of the raw material supply machine 2, the screw motor 423M, the heat medium or refrigerant supply source, and the powder processing device 4B, and each of them is generated through the output unit 104. Output to the device.
 以上のように、実施の形態2では、混合処理を行う粉体処理装置4Bに関して、ユーザが所望する粉体についての目標値(混合度)の入力に応じて、粉体原料の供給量(又は供給速度)、スクリュー423の回転速度、粉体処理装置4Bに供給する流体の供給量(又は供給速度)、及び混合処理の処理時間を制御するための制御パラメータに関する演算結果を出力する学習モデル220を生成する。また、学習モデル220を用いることにより、粉体原料の供給量(又は供給速度)、スクリュー423の回転速度、粉体処理装置4Bに供給する流体の供給量(又は供給速度)、及び混合処理の処理時間を制御するための制御パラメータに関する演算結果が得られる。制御装置100は、所望の混合度を有する粉体が得られるように、学習モデル220の演算結果に基づき、粉体処理システム1の動作を制御することができる。 As described above, in the second embodiment, with respect to the powder processing apparatus 4B that performs the mixing treatment, the supply amount (or the powder raw material) of the powder raw material is supplied according to the input of the target value (mixing degree) for the powder desired by the user. A learning model 220 that outputs calculation results related to control parameters for controlling the supply speed), the rotation speed of the screw 423, the supply amount (or supply speed) of the fluid supplied to the powder processing apparatus 4B, and the processing time of the mixing process. To generate. Further, by using the learning model 220, the supply amount (or supply speed) of the powder raw material, the rotation speed of the screw 423, the supply amount (or supply speed) of the fluid supplied to the powder processing apparatus 4B, and the mixing process The calculation result regarding the control parameter for controlling the processing time is obtained. The control device 100 can control the operation of the powder processing system 1 based on the calculation result of the learning model 220 so that the powder having a desired mixing degree can be obtained.
 本実施の形態では、粉体処理装置4Bから得られる粉体の粉体データ(混合度のデータ)と、粉体処理装置4Bに供給する粉体原料の供給量(又は供給速度)、粉体原料を攪拌するためのスクリュー423の回転速度、粉体処理装置4Bに供給する流体の供給量(又は供給速度)、並びに混合処理の処理時間を含む計測データとを教師データに用いて、学習モデル220を生成する構成とした。代替的に、上記粉体データ(湿分のデータ)と、選択した一部の計測データとを教師データに用いて、学習モデル220を生成する構成としてもよい。 In the present embodiment, the powder data (mixing degree data) of the powder obtained from the powder processing apparatus 4B, the supply amount (or supply rate) of the powder raw material to be supplied to the powder processing apparatus 4B, and the powder A learning model using the rotation speed of the screw 423 for stirring the raw material, the supply amount (or supply speed) of the fluid supplied to the powder processing apparatus 4B, and the measurement data including the processing time of the mixing process as the teacher data. It was configured to generate 220. Alternatively, the powder data (moisture data) and a part of the selected measurement data may be used as the teacher data to generate the learning model 220.
 また、制御装置100は、計測データとして、ケーシング420内の湿度、及び、粉体処理装置4Bの駆動電力若しくは駆動電流の少なくとも1つを更に含む教師データを用いて、学習モデル220を生成してもよい。 Further, the control device 100 generates a learning model 220 by using the teacher data including at least one of the humidity in the casing 420 and the drive power or the drive current of the powder processing device 4B as the measurement data. May be good.
 更に、制御装置100は、粉体データとして、粉体処理装置4Bから得られる粉体の濃度、及び湿分を更に含む教師データを用いて、学習モデル220を生成してもよい。この場合、制御装置100は、粉体処理装置4Bから得られる粉体の混合度、濃度及び湿分を含む粉体データと上述の計測データとを教師データに用いて、ユーザが所望する粉体の混合度、濃度、及び湿分が入力された場合、粉体処理装置4Bに対する制御パラメータについての演算結果を出力するように構成された学習モデル220を生成すればよい。 Further, the control device 100 may generate the learning model 220 by using the teacher data including the concentration of the powder obtained from the powder processing device 4B and the moisture content as the powder data. In this case, the control device 100 uses the powder data including the mixing degree, concentration and moisture of the powder obtained from the powder processing device 4B and the above-mentioned measurement data as the teacher data, and the powder desired by the user. When the mixing degree, concentration, and moisture content of the above are input, the learning model 220 configured to output the calculation result for the control parameters for the powder processing apparatus 4B may be generated.
 更に、制御装置100は、原料データを更に含む教師データに用いて、学習モデル220を生成してもよい。教師データに用いる原料データは、粉体原料の混合比率、混合度、粒子径、かさ密度(若しくは真密度)、及び流動性の少なくとも1つを含む。制御装置100は、取得した粉体データ、原料データ、及び計測データを教師データとし、粉体データ及び原料データの入力に応じて、粉体処理装置4Bに対する制御パラメータについての演算結果を出力するように構成された学習モデル220を生成すればよい。 Further, the control device 100 may generate the learning model 220 by using the teacher data including the raw material data. The raw material data used for the teacher data includes at least one of the mixing ratio, mixing degree, particle size, bulk density (or true density), and fluidity of the powder raw material. The control device 100 uses the acquired powder data, raw material data, and measurement data as teacher data, and outputs the calculation result of the control parameters for the powder processing device 4B in response to the input of the powder data and the raw material data. The learning model 220 configured in may be generated.
 更に、制御装置100は、製品データ、及び環境データの少なくとも1つを更に含む教師データを用いて、学習モデル220を生成してもよい。教師データに用いる製品データは、製品粉体の温度、及びかさ密度(若しくは真密度)の少なくとも1つを含む。環境データは、粉体処理を実行する環境の温度及び湿度の少なくとも1つを含む。制御装置100は、取得した粉体データ、製品データ、環境データ、計測データを教師データとし、粉体データと、製品データ、環境データの少なくとも1つとの入力に応じて、粉体処理装置4Bに対する制御パラメータについての演算結果を出力するように構成された学習モデル220を生成すればよい。 Further, the control device 100 may generate the learning model 220 by using the product data and the teacher data including at least one of the environmental data. The product data used for the teacher data includes at least one of the temperature of the product powder and the bulk density (or true density). Environmental data includes at least one of the temperature and humidity of the environment in which the powder treatment is performed. The control device 100 uses the acquired powder data, product data, environmental data, and measurement data as teacher data, and receives the input of the powder data and at least one of the product data and the environmental data to the powder processing device 4B. The learning model 220 configured to output the calculation result for the control parameter may be generated.
 本実施の形態では、粉体処理装置4Bを、回転体(スクリュー423)の回転により粉体を混合する混合機とした。このような混合機として、例えば、ホソカワミクロン株式会社製のナウタミキサ(登録商標)、バイトミックス、サイクロミックス(登録商標)を用いることができる。 In the present embodiment, the powder processing apparatus 4B is a mixer that mixes powder by rotating a rotating body (screw 423). As such a mixer, for example, Nautamixer (registered trademark), Bitemix, and Cyclomix (registered trademark) manufactured by Hosokawa Micron Co., Ltd. can be used.
 また、回転体の回転により粉体を混合する混合機に代えて、風力混合により混合する混合機を用いてもよい。この場合、回転体の回転速度に代えて、ケーシング420内に導入する流体の流量(流速)を学習モデル220により決定する制御パラメータとすればよい。 Further, instead of the mixer that mixes the powder by rotating the rotating body, a mixer that mixes by wind power mixing may be used. In this case, instead of the rotation speed of the rotating body, the flow rate (flow velocity) of the fluid introduced into the casing 420 may be a control parameter determined by the learning model 220.
(実施の形態3)
 実施の形態3では、複合化処理についての適用例を説明する。実施の形態3に係る粉体処理システム1は、乾燥処理を行う粉体処理装置4Aに代えて、複合化処理を行う粉体処理装置4Cを備える。
(Embodiment 3)
In the third embodiment, an application example of the compounding process will be described. The powder treatment system 1 according to the third embodiment includes a powder treatment device 4C that performs a composite treatment instead of the powder treatment device 4A that performs the drying treatment.
 図11は実施の形態3に係る粉体処理装置4Cの構成を示す模式図である。粉体処理装置4Cは、その内部において複合化処理を行う水平円筒状のケーシング430を備える。このケーシング430には、原料投入口431、パドル432、粉体取出口433等が設けられている。 FIG. 11 is a schematic view showing the configuration of the powder processing apparatus 4C according to the third embodiment. The powder processing apparatus 4C includes a horizontal cylindrical casing 430 that performs compounding processing inside the powder processing apparatus 4C. The casing 430 is provided with a raw material input port 431, a paddle 432, a powder outlet 433, and the like.
 原料投入口431はケーシング430の上部に設けられている。原料投入口431には、処理対象の粉体原料を供給する原料供給機2が接続される。原料供給機2から供給される異なる種類の粉体原料は、原料供給路TP1内のスクリューフィーダ21によって搬送され、原料投入口431よりケーシング430内に投入される。なお、粉体原料は予め混合されたものを用いてもよく、粉体処理装置4Cに別々に供給してもよい。 The raw material input port 431 is provided above the casing 430. A raw material supply machine 2 for supplying a powder raw material to be processed is connected to the raw material input port 431. The different types of powder raw materials supplied from the raw material supply machine 2 are conveyed by the screw feeder 21 in the raw material supply path TP1 and are charged into the casing 430 from the raw material input port 431. The powder raw material may be mixed in advance or may be separately supplied to the powder processing apparatus 4C.
 ケーシング430の内部に設けられているパドル432は、パドルモータ432Mの駆動により、例えば周速40m/s以上の速度で回転するように構成されている。パドル432の形状及び配列は、衝撃力・圧縮力・剪断力が個々の粉体粒子に均一に作用するように設計されている。粉体処理装置4Cは、パドルモータ432Mを駆動し、パドル432を回転させることによって、ケーシング430内に投入された粉体原料に衝撃力・圧縮力・剪断力を作用させ、微粒子(子粒子)をそれより大きなサイズの粒子(母粒子)上に分散、固定化する複合化処理を行う。 The paddle 432 provided inside the casing 430 is configured to rotate at a peripheral speed of, for example, 40 m / s or more by driving the paddle motor 432M. The shape and arrangement of the paddle 432 is designed so that the impact force, compressive force, and shear force act uniformly on the individual powder particles. The powder processing apparatus 4C drives the paddle motor 432M and rotates the paddle 432 to apply impact force, compressive force, and shear force to the powder raw material put into the casing 430, and fine particles (child particles). Is dispersed and immobilized on particles (mother particles) of a larger size.
 パドル432の作用によって複合化された粉体は、ケーシング430の下部に設けられた粉体取出口433を通じて、粉体処理装置4Cの外部へ取り出される。 The powder complexed by the action of the paddle 432 is taken out to the outside of the powder processing apparatus 4C through the powder outlet 433 provided in the lower part of the casing 430.
 粉体処理装置4Cは、ケーシング430の内部温度を調節するためにジャケット部を備えていてもよい。ジャケット部は、別に設けたタンクから供給される流体(熱媒又は冷媒)によって、ケーシング430の内部温度を調節する。 The powder processing apparatus 4C may include a jacket portion for adjusting the internal temperature of the casing 430. The jacket portion adjusts the internal temperature of the casing 430 by a fluid (heat medium or refrigerant) supplied from a tank provided separately.
 実施の形態3に係る制御装置100は、入力部103を通じて、粉体処理装置4Cの動作状態を示す計測データと、粉体処理装置4Cから得られる粉体に関する粉体データとを取得する。制御装置100が取得する計測データは、粉体処理装置4Cに供給する粉体原料の供給量(又は供給速度)、パドル432の回転速度、粉体処理装置4Cの負荷動力、並びに複合化処理の処理時間を含む。粉体データは、粉体処理装置4Cから得られる粉体の複合化度のデータである。複合化度は、複数種の粉体が一体化した度合いを表す指標であり、BET、NIR、XRD、TG-DTA、MS、SEM、FE-SEM、及びTEM等を用いて計測することが可能である。複合化度は、数値により表される指標であってもよく、イメージ(画像データ)により表される指標であってもよい。 The control device 100 according to the third embodiment acquires measurement data indicating the operating state of the powder processing device 4C and powder data related to the powder obtained from the powder processing device 4C through the input unit 103. The measurement data acquired by the control device 100 includes the supply amount (or supply speed) of the powder raw material to be supplied to the powder processing device 4C, the rotation speed of the paddle 432, the load power of the powder processing device 4C, and the compounding process. Includes processing time. The powder data is data on the degree of compounding of the powder obtained from the powder processing apparatus 4C. The degree of compositing is an index showing the degree of integration of a plurality of types of powder, and can be measured using BET, NIR, XRD, TG-DTA, MS, SEM, FE-SEM, TEM, or the like. Is. The degree of compounding may be an index represented by a numerical value or an index represented by an image (image data).
 制御装置100は、取得した計測データと粉体データとを教師データに用いて、学習モデル230(図12を参照)を生成する。学習モデル230の生成手順は、実施の形態1と同様であるため、その説明を省略することとする。 The control device 100 uses the acquired measurement data and powder data as teacher data to generate a learning model 230 (see FIG. 12). Since the procedure for generating the learning model 230 is the same as that in the first embodiment, the description thereof will be omitted.
 学習モデル230は、ユーザが所望する粉体についての目標値(複合化度)が入力された場合、粉体処理装置4Cに対する制御パラメータについての演算結果を出力するよう構成される。ここで、粉体処理装置4Cに対する制御パラメータは、粉体原料の供給量(又は供給速度)、パドル432の回転速度、粉体処理装置4Cの負荷動力、及び複合化処理の処理時間を含む。 The learning model 230 is configured to output the calculation result of the control parameters for the powder processing apparatus 4C when the target value (composite degree) for the powder desired by the user is input. Here, the control parameters for the powder processing apparatus 4C include the supply amount (or supply rate) of the powder raw material, the rotation speed of the paddle 432, the load power of the powder processing apparatus 4C, and the processing time of the compounding process.
 図12は実施の形態3における学習モデル230の構成例を示す模式図である。学習モデル230は、実施の形態1において説明した学習モデル210と同様に、それぞれが1又は複数のノードを備えた入力層231、中間層232A,232B、及び出力層233を備える。中間層の数は2つに限定されず、3つ以上であってもよい。 FIG. 12 is a schematic diagram showing a configuration example of the learning model 230 according to the third embodiment. Similar to the learning model 210 described in the first embodiment, the learning model 230 includes an input layer 231 having one or a plurality of nodes, intermediate layers 232A and 232B, and an output layer 233, respectively. The number of intermediate layers is not limited to two, and may be three or more.
 学習モデル230は、ユーザが所望する粉体についての目標値(実施の形態3では複合化度)の入力に対して、粉体処理装置4Cに対する制御パラメータについての演算結果を出力するように構成される。 The learning model 230 is configured to output the calculation result of the control parameters for the powder processing apparatus 4C in response to the input of the target value (composite degree in the third embodiment) for the powder desired by the user. To.
 制御装置100は、学習モデル230を用いた演算を行う場合、ユーザが所望する目標値(複合化度)を学習モデル230に入力する。学習モデル230に入力された目標値のデータは、入力層231を構成するノードを通じて、最初の中間層232Aが備えるノードへ出力される。最初の中間層232Aに入力されたデータは、中間層232Aを構成するノードを通じて、次の中間層232Bが備えるノードへ出力される。このとき、ノード間において設定されている重み及びバイアスを含む活性化関数を用いて出力が算出される。以下同様にして、ノード間において設定されている重み及びバイアスを含む活性化関数を用いた演算を実行し、出力層233による演算結果が得られるまで次々と後の層に伝達される。 When the control device 100 performs an operation using the learning model 230, the control device 100 inputs a target value (complexity degree) desired by the user into the learning model 230. The target value data input to the learning model 230 is output to the node included in the first intermediate layer 232A through the nodes constituting the input layer 231. The data input to the first intermediate layer 232A is output to the node included in the next intermediate layer 232B through the nodes constituting the intermediate layer 232A. At this time, the output is calculated using the activation function including the weights and biases set between the nodes. Hereinafter, in the same manner, the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 233 is obtained.
 出力層233は、粉体処理装置4Cに対する制御パラメータについての演算結果を出力する。演算結果として、例えば、上述した複数の制御パラメータの組み合わせの良否を示す確率を出力してもよい。具体的には、出力層233を第1ノードから第nノードまでのn個のノードにより構成し、第1ノードから、粉体原料の供給量がSA1、パドル432の回転速度がPV1、負荷動力がLP1、複合化処理の処理時間がCT1である確率P1を出力し、…、第nノードから、粉体原料の供給量がSAn、パドル432の回転速度がPVn、負荷動力がLPn、複合化処理の処理時間がCTnである確率Pnを出力してもよい。出力層233を構成するノードの数や各ノードに割り当てる演算結果は、上述の例に限定されるものではなく、適宜設計することが可能である。 The output layer 233 outputs the calculation result of the control parameters for the powder processing apparatus 4C. As the calculation result, for example, the probability indicating the quality of the combination of the plurality of control parameters described above may be output. Specifically, the output layer 233 is composed of n nodes from the first node to the nth node, and from the first node, the supply amount of the powder raw material is SA1, the rotation speed of the paddle 432 is PV1, and the load power. Outputs LP1 and the probability P1 that the processing time of the compounding process is CT1. From the nth node, the supply amount of the powder raw material is SAn, the rotation speed of the paddle 432 is PVn, the load power is LPn, and the compounding process is performed. The probability Pn that the processing time of the processing is CTn may be output. The number of nodes constituting the output layer 233 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
 制御装置100の制御部101は、出力層233から出力される確率のうち、確率が最も高い組み合わせ(本実施の形態では、粉体原料の供給量、パドル432の回転速度、負荷動力、及び複合化処理の処理時間の組み合わせ)を特定することにより、制御に用いる制御パラメータを決定する。制御部101は、決定した制御パラメータに基づき、原料供給機2、パドルモータ432M、粉体処理装置4Cの動作を制御する制御指令を生成し、出力部104を通じて各装置へ出力する。 The control unit 101 of the control device 100 has the highest probability of being output from the output layer 233 (in the present embodiment, the supply amount of the powder raw material, the rotation speed of the paddle 432, the load power, and the composite. The control parameters used for control are determined by specifying the combination of processing times of the chemical processing. The control unit 101 generates a control command for controlling the operation of the raw material supply machine 2, the paddle motor 432M, and the powder processing device 4C based on the determined control parameters, and outputs the control command to each device through the output unit 104.
 以上のように、実施の形態3では、複合化処理を行う粉体処理装置4Cに関して、ユーザが所望する粉体についての目標値(複合化度)の入力に応じて、粉体原料の供給量、パドル432の回転速度、負荷動力、及び混合処理の処理時間を制御するための制御パラメータに関する演算結果を出力する学習モデル230を生成する。また、学習モデル230を用いることにより、粉体原料の供給量、パドル432の回転速度、及び複合化処理の処理時間を制御するための制御パラメータに関する演算結果が得られる。制御装置100は、所望の複合化度を有する粉体が得られるように、学習モデル230の演算結果に基づき、粉体処理システム1の動作を制御することができる。 As described above, in the third embodiment, with respect to the powder processing apparatus 4C that performs the compounding process, the supply amount of the powder raw material is obtained according to the input of the target value (composite degree) for the powder desired by the user. , Generates a learning model 230 that outputs calculation results for control parameters for controlling the rotational speed of the paddle 432, the load power, and the processing time of the mixing process. Further, by using the learning model 230, calculation results regarding the supply amount of the powder raw material, the rotation speed of the paddle 432, and the control parameters for controlling the processing time of the compounding process can be obtained. The control device 100 can control the operation of the powder processing system 1 based on the calculation result of the learning model 230 so that the powder having a desired degree of compounding can be obtained.
 本実施の形態では、粉体処理装置4Cから得られる粉体の粉体データ(複合化度のデータ)と、粉体処理装置4Cに供給する粉体原料の供給量(又は供給速度)、粉体原料を攪拌するためのパドル432の回転速度、並びに複合化処理の処理時間を含む計測データとを教師データに用いて、学習モデル230を生成する構成とした。代替的に、上記粉体データ(複合化度のデータ)と、選択した一部の計測データとを教師データに用いて、学習モデル230を生成する構成としてもよい。 In the present embodiment, the powder data (data of the degree of compositing) of the powder obtained from the powder processing device 4C, the supply amount (or supply rate) of the powder raw material to be supplied to the powder processing device 4C, and the powder. The learning model 230 is generated by using the rotation speed of the paddle 432 for stirring the body material and the measurement data including the processing time of the compounding process as the teacher data. Alternatively, the learning model 230 may be generated by using the powder data (data of the degree of compounding) and a part of the selected measurement data as the teacher data.
 また、制御装置100は、計測データとして、ケーシング430内の湿度及び圧力、ケーシング430内に導入する冷媒の温度及び流量、粉体処理装置4Cの駆動電力若しくは駆動電流の少なくとも1つを更に含む教師データを用いて、学習モデル230を生成してもよい。 Further, the control device 100 further includes at least one of the humidity and pressure in the casing 430, the temperature and flow rate of the refrigerant introduced in the casing 430, and the drive power or drive current of the powder processing device 4C as measurement data. The data may be used to generate the training model 230.
 更に、制御装置100は、粉体データとして、粉体処理装置4Cから得られる粉体の導電率、熱伝導度、及び透過率を更に含む教師データを用いて、学習モデル230を生成してもよい。この場合、制御装置100は、粉体処理装置4Cから得られる粉体の複合化度、導電率、熱伝導度、及び透過率を含む粉体データと上述の計測データとを教師データに用いて、ユーザが所望する粉体の複合化度、導電率、熱伝導度、及び透過率が入力された場合、粉体処理装置4Cに対する制御パラメータについての演算結果を出力するように構成された学習モデル230を生成すればよい。 Further, the control device 100 may generate the learning model 230 by using the teacher data including the conductivity, thermal conductivity, and transmittance of the powder obtained from the powder processing device 4C as the powder data. Good. In this case, the control device 100 uses the powder data including the compositeness, conductivity, thermal conductivity, and permeability of the powder obtained from the powder processing device 4C and the above-mentioned measurement data as the teacher data. , A learning model configured to output the calculation results for the control parameters for the powder processing apparatus 4C when the compositeness, conductivity, thermal conductivity, and transmittance of the powder desired by the user are input. 230 may be generated.
 更に、制御装置100は、原料データを更に含む教師データに用いて、学習モデル230を生成してもよい。教師データに用いる原料データは、粉体原料の混合比率、かさ密度(若しくは真密度)、BET、NIR、XRD、TG-DTA、MS、SEM、FE-SEM、及びTEM等から得られるデータの少なくとも1つを含む。制御装置100は、取得した粉体データ、原料データ、及び計測データを教師データとし、粉体データ及び原料データの入力に応じて、粉体処理装置4Cに対する制御パラメータについての演算結果を出力するように構成された学習モデル230を生成すればよい。 Further, the control device 100 may generate the learning model 230 by using the teacher data including the raw material data. The raw material data used for the teacher data is at least the data obtained from the mixing ratio of the powder raw material, the bulk density (or true density), BET, NIR, XRD, TG-DTA, MS, SEM, FE-SEM, TEM, and the like. Includes one. The control device 100 uses the acquired powder data, raw material data, and measurement data as teacher data, and outputs the calculation result of the control parameters for the powder processing device 4C in response to the input of the powder data and the raw material data. The learning model 230 configured in may be generated.
 更に、制御装置100は、製品データ、及び環境データの少なくとも1つを更に含む教師データを用いて、学習モデル230を生成してもよい。教師データに用いる製品データは、製品粉体のかさ密度(若しくは真密度)及び粒子径の少なくとも1つを含む。環境データは、粉体処理を実行する環境の温度及び湿度の少なくとも1つを含む。制御装置100は、取得した粉体データ、製品データ、環境データ、計測データを教師データとし、粉体データと、製品データ及び環境データの少なくとも1つとの入力に応じて、粉体処理装置4Cに対する制御パラメータについての演算結果を出力するように構成された学習モデル230を生成すればよい。 Further, the control device 100 may generate the learning model 230 by using the product data and the teacher data including at least one of the environmental data. The product data used for the teacher data includes at least one of the bulk density (or true density) and the particle size of the product powder. Environmental data includes at least one of the temperature and humidity of the environment in which the powder treatment is performed. The control device 100 uses the acquired powder data, product data, environmental data, and measurement data as teacher data, and receives the input of the powder data and at least one of the product data and the environmental data to the powder processing device 4C. The learning model 230 configured to output the calculation result for the control parameter may be generated.
 本実施の形態では、粉体処理装置4Cを、パドル432の回転により粉体を複合化する複合化処理装置とした。このような複合化処理装置として、例えば、ホソカワミクロン株式会社製のノビルタ(登録商標)、ナノキュラ(登録商標)、メカノフュージョン(登録商標)を用いることができる。
 なお、本実施の形態では、粉体処理装置4Cを用いて複合化を行ったが、目標値を混合度として混合処理を行ってもよく、単一原料に対し、目標値を円形度として球形化などの表面処理を行ってもよい。
In the present embodiment, the powder processing apparatus 4C is a composite processing apparatus that composites powder by rotating the paddle 432. As such a composite processing apparatus, for example, Nobilta (registered trademark), Nanocura (registered trademark), and Mechanofusion (registered trademark) manufactured by Hosokawa Micron Co., Ltd. can be used.
In the present embodiment, the compounding is performed using the powder processing apparatus 4C, but the mixing treatment may be performed with the target value as the mixing degree, and the target value may be spherical with the target value as the circularity for a single raw material. Surface treatment such as chemical conversion may be performed.
(実施の形態4)
 実施の形態4では、表面処理についての適用例を説明する。実施の形態4に係る粉体処理システム1は、乾燥処理を行う粉体処理装置4Aに代えて、表面処理を行う粉体処理装置4Dを備える。
(Embodiment 4)
In the fourth embodiment, an application example of the surface treatment will be described. The powder processing system 1 according to the fourth embodiment includes a powder processing device 4D that performs surface treatment instead of the powder processing device 4A that performs drying treatment.
 図13は実施の形態4に係る粉体処理装置4Dの構成を示す模式図である。粉体処理装置4Dは、その内部において表面処理を行う円筒形状のケーシング440を備える。このケーシング440には、原料投入口441、気体導入口442、粉砕ロータ443、分級ロータ444、粉体取出口445、微粉取出口446等が設けられている。 FIG. 13 is a schematic view showing the configuration of the powder processing apparatus 4D according to the fourth embodiment. The powder processing apparatus 4D includes a cylindrical casing 440 that performs surface treatment inside the powder processing apparatus 4D. The casing 440 is provided with a raw material input port 441, a gas introduction port 442, a crushing rotor 443, a classification rotor 444, a powder outlet 445, a fine powder outlet 446, and the like.
 原料投入口441は粉砕ロータ443よりも上側に設けられている。原料投入口441には粉体原料を供給する原料供給機2が接続される。原料供給機2から供給される粉体原料は、原料供給路TP1内のスクリューフィーダ21によって搬送され、原料投入口441よりケーシング440内に投入される。 The raw material input port 441 is provided above the crushing rotor 443. A raw material supply machine 2 for supplying powder raw materials is connected to the raw material input port 441. The powder raw material supplied from the raw material supply machine 2 is conveyed by the screw feeder 21 in the raw material supply path TP1 and is charged into the casing 440 from the raw material input port 441.
 ケーシング440には、気体導入口442が設けられている。この気体導入口442の位置は特に限定されないが、回転する粉砕ロータ443を介してケーシング440内に気体が導入されるように、粉砕ロータ443よりも下方の位置に設けられることが好ましい。 The casing 440 is provided with a gas introduction port 442. The position of the gas introduction port 442 is not particularly limited, but it is preferably provided at a position below the crushing rotor 443 so that the gas is introduced into the casing 440 via the rotating crushing rotor 443.
 粉砕ロータ443は、回転円盤443Aと、回転円盤443Aの上面周縁部から上向きに突出する複数のハンマ443Bとを備えるロータであり、粉砕モータ413M(図3を参照)の動力によって所望の回転速度にて回転するように構成されている。ここで、粉砕モータ413Mは、粉体処理システム1が備える駆動部の1つである。粉砕モータ413Mの回転速度は、回転速度センサS7(図3を参照)によって常時若しくは定期的なタイミング(例えば5秒間隔)にて計測される。 The crushing rotor 443 is a rotor including a rotary disk 443A and a plurality of hammers 443B protruding upward from the upper peripheral edge of the rotary disk 443A, and the rotation speed is adjusted to a desired speed by the power of a crushing motor 413M (see FIG. 3). It is configured to rotate. Here, the crushing motor 413M is one of the driving units included in the powder processing system 1. The rotation speed of the crushing motor 413M is measured by the rotation speed sensor S7 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals).
 粉砕ロータ443は、粉砕モータ413Mの動力によって回転し、ケーシング440内に旋回する気流を発生させると共に、ハンマ443Bの作用により、ケーシング440内に導入された粉体原料に衝撃、圧縮、摩砕、剪断等の機械エネルギを与え、粉体原料に表面処理を施す。粉砕ロータ443は、粉体原料を攪拌する回転体の一例である。粉体原料に表面処理を施して製造される粉体は、ケーシング440の下部から流入する気流によって、ケーシング440の上部に設けられた分級ロータ444へ導かれる。 The crushing rotor 443 is rotated by the power of the crushing motor 413M to generate a swirling airflow in the casing 440, and the powder raw material introduced into the casing 440 is impacted, compressed, and ground by the action of the hammer 443B. Surface treatment is applied to the powder raw material by applying mechanical energy such as shearing. The crushing rotor 443 is an example of a rotating body that agitates the powder raw material. The powder produced by surface-treating the powder raw material is guided to the classification rotor 444 provided in the upper part of the casing 440 by the air flow flowing in from the lower part of the casing 440.
 分級ロータ444は、放射状に配される複数の分級羽根444Aを備えたロータであり、分級モータ415M(図3を参照)の動力によって所望の回転速度にて回転するように構成されている。ここで、分級モータ415Mは、粉体処理システム1が備える駆動部の1つである。分級モータ415Mの回転速度は、回転速度センサS8(図3を参照)によって常時若しくは定期的なタイミング(例えば5秒間隔)にて計測される。分級ロータ444は、粉砕ロータ443の上方に設けられており、高速回転による遠心力により、ケーシング440内で処理された粉体のうち所定粒子径未満の粉体のみを通過させ、通過させた粉体のみを微粉取出口446へ導く。一方、分級ロータ444を追加しなかった粉体は、粉体取出口445へ導かれ、製品粉体として粉体処理装置4Dの外部へ取り出される。 The classification rotor 444 is a rotor provided with a plurality of classification blades 444A arranged radially, and is configured to rotate at a desired rotation speed by the power of the classification motor 415M (see FIG. 3). Here, the classification motor 415M is one of the drive units included in the powder processing system 1. The rotation speed of the classification motor 415M is measured by the rotation speed sensor S8 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals). The classification rotor 444 is provided above the crushing rotor 443, and the powder processed in the casing 440 is passed through only the powder having a particle size smaller than the predetermined particle size by the centrifugal force due to the high-speed rotation. Only the body is guided to the fine powder outlet 446. On the other hand, the powder to which the classification rotor 444 is not added is guided to the powder outlet 445 and taken out as a product powder to the outside of the powder processing apparatus 4D.
 なお、粉体処理装置4Dは、ケーシング440の内部温度を調節するためにジャケット部を備えていてもよい。ジャケット部は、別に設けたタンクから供給される流体(熱媒又は冷媒)によって、ケーシング440の内部温度を調節する。 The powder processing apparatus 4D may be provided with a jacket portion for adjusting the internal temperature of the casing 440. The jacket portion adjusts the internal temperature of the casing 440 by a fluid (heat medium or refrigerant) supplied from a tank provided separately.
 実施の形態4に係る制御装置100は、入力部103を通じて、粉体処理装置4Dの動作状態を示す計測データと、粉体処理装置4Dから得られる粉体に関する粉体データとを取得する。制御装置100が取得する計測データは、粉体処理装置4Dに供給する粉体原料の供給量(又は供給速度)、粉砕ロータ443の回転速度、分級ロータ444の回転速度、表面処理の処理時間、及び粉体処理装置4Dの負荷動力を含む。粉体データは、粉体処理装置4Dから得られる粉体の円形度のデータである。円形度は、粉体処理装置4Dより得られる粉体(粒子)の形状を表す指標であり、例えば粒子形状分析装置や画像解析によって計測される。 The control device 100 according to the fourth embodiment acquires measurement data indicating the operating state of the powder processing device 4D and powder data related to the powder obtained from the powder processing device 4D through the input unit 103. The measurement data acquired by the control device 100 includes the supply amount (or supply speed) of the powder raw material supplied to the powder processing device 4D, the rotation speed of the crushing rotor 443, the rotation speed of the classification rotor 444, and the surface treatment processing time. And the load power of the powder processing apparatus 4D. The powder data is data on the circularity of the powder obtained from the powder processing apparatus 4D. The circularity is an index representing the shape of powder (particles) obtained from the powder processing apparatus 4D, and is measured by, for example, a particle shape analyzer or image analysis.
 制御装置100は、取得した計測データと粉体データとを教師データに用いて、学習モデル240(図14を参照)を生成する。学習モデル240の生成手順は、実施の形態1と同様であるため、その説明を省略することとする。 The control device 100 uses the acquired measurement data and powder data as teacher data to generate a learning model 240 (see FIG. 14). Since the procedure for generating the learning model 240 is the same as that in the first embodiment, the description thereof will be omitted.
 学習モデル240は、ユーザが所望する粉体についての目標値(混合度)が入力された場合、粉体処理装置4Dに対する制御パラメータについての演算結果を出力するよう構成される。ここで、粉体処理装置4Dに対する制御パラメータは、粉体原料の供給量(又は供給速度)、粉砕ロータ443の回転速度、分級ロータ444の回転速度、表面処理の処理時間、及び粉体処理装置4Dの負荷動力を含む。 The learning model 240 is configured to output the calculation result of the control parameters for the powder processing apparatus 4D when the target value (mixing degree) for the powder desired by the user is input. Here, the control parameters for the powder processing apparatus 4D are the supply amount (or supply speed) of the powder raw material, the rotation speed of the crushing rotor 443, the rotation speed of the classification rotor 444, the surface treatment processing time, and the powder processing apparatus. Includes 4D load power.
 図14は実施の形態4における学習モデル240の構成例を示す模式図である。学習モデル240は、実施の形態1において説明した学習モデル210と同様に、それぞれが1又は複数のノードを備えた入力層241、中間層242A,242B、及び出力層243を備える。中間層の数は2つに限定されず、3つ以上であってもよい。 FIG. 14 is a schematic diagram showing a configuration example of the learning model 240 in the fourth embodiment. Similar to the learning model 210 described in the first embodiment, the learning model 240 includes an input layer 241 having one or a plurality of nodes, intermediate layers 242A and 242B, and an output layer 243, respectively. The number of intermediate layers is not limited to two, and may be three or more.
 学習モデル240は、ユーザが所望する粉体についての目標値(実施の形態4では円形度)の入力に対して、粉体処理装置4Dに対する制御パラメータについての演算結果を出力するように構成される。 The learning model 240 is configured to output the calculation result of the control parameter for the powder processing apparatus 4D in response to the input of the target value (circularity in the fourth embodiment) for the powder desired by the user. ..
 制御装置100は、学習モデル240を用いた演算を行う場合、ユーザが所望する目標値(円形度)を学習モデル240に入力する。学習モデル240に入力された目標値のデータは、入力層241を構成するノードを通じて、最初の中間層242Aが備えるノードへ出力される。最初の中間層242Aに入力されたデータは、中間層242Aを構成するノードを通じて、次の中間層242Bが備えるノードへ出力される。このとき、ノード間において設定されている重み及びバイアスを含む活性化関数を用いて出力が算出される。以下同様にして、ノード間において設定されている重み及びバイアスを含む活性化関数を用いた演算を実行し、出力層243による演算結果が得られるまで次々と後の層に伝達される。 When the control device 100 performs an calculation using the learning model 240, the control device 100 inputs a target value (circularity) desired by the user into the learning model 240. The target value data input to the learning model 240 is output to the node included in the first intermediate layer 242A through the nodes constituting the input layer 241. The data input to the first intermediate layer 242A is output to the node included in the next intermediate layer 242B through the nodes constituting the intermediate layer 242A. At this time, the output is calculated using the activation function including the weights and biases set between the nodes. Hereinafter, in the same manner, the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 243 is obtained.
 出力層243は、粉体処理装置4Dに対する制御パラメータについての演算結果を出力する。演算結果として、例えば、上述した複数の制御パラメータの組み合わせの良否を示す確率を出力してもよい。具体的には、出力層243を第1ノードから第nノードまでのn個のノードにより構成し、第1ノードから、粉体原料の供給量がSA1、粉砕ロータ443の回転速度がCV1、分級ロータ444の回転速度がCC1、負荷動力がLP1、表面処理の処理時間ST1である確率P1を出力し、…、第nノードから、粉体原料の供給量がSAn、粉砕ロータ443の回転速度がCVn、分級ロータ444の回転速度がCCn、負荷動力がLPn、表面処理の処理時間STnである確率Pnを出力してもよい。出力層243を構成するノードの数や各ノードに割り当てる演算結果は、上述の例に限定されるものではなく、適宜設計することが可能である。 The output layer 243 outputs the calculation result for the control parameters for the powder processing apparatus 4D. As the calculation result, for example, the probability indicating the quality of the combination of the plurality of control parameters described above may be output. Specifically, the output layer 243 is composed of n nodes from the first node to the nth node, and from the first node, the supply amount of the powder raw material is SA1, the rotation speed of the crushing rotor 443 is CV1, and the classification is performed. The rotation speed of the rotor 444 is CC1, the load power is LP1, the probability P1 of the surface treatment processing time ST1 is output, ..., The supply amount of the powder raw material is SAN, and the rotation speed of the crushing rotor 443 is from the nth node. CVn, the rotation speed of the classification rotor 444 is CCn, the load power is LPn, and the probability Pn of the surface treatment processing time STn may be output. The number of nodes constituting the output layer 243 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
 制御装置100の制御部101は、出力層243から出力される確率のうち、確率が最も高い組み合わせ(本実施の形態では、粉体原料の供給量、粉砕ロータ443の回転速度、分級ロータ444の回転速度、負荷動力、及び表面処理の処理時間の組み合わせ)を特定することにより、制御に用いる制御パラメータを決定する。制御部101は、決定した制御パラメータに基づき、原料供給機2、粉砕モータ413M、及び粉体処理装置4Dの動作を制御する制御指令を生成し、出力部104を通じて各装置へ出力する。 The control unit 101 of the control device 100 has the highest probability of being output from the output layer 243 (in the present embodiment, the supply amount of the powder raw material, the rotation speed of the crushing rotor 443, and the classification rotor 444. The control parameters used for control are determined by specifying the combination of rotation speed, load power, and surface treatment time). The control unit 101 generates a control command for controlling the operation of the raw material supply machine 2, the crushing motor 413M, and the powder processing device 4D based on the determined control parameters, and outputs the control command to each device through the output unit 104.
 以上のように、実施の形態4では、表面処理を行う粉体処理装置4Dに関して、ユーザが所望する粉体についての目標値(円形度)の入力に応じて、粉体原料の供給量(又は供給速度)、粉砕ロータ443の回転速度、分級ロータ444の回転速度、粉体処理装置4Dの負荷動力、及び表面処理の処理時間を制御するための制御パラメータに関する演算結果を出力する学習モデル240を生成する。また、学習モデル240を用いることにより、粉体原料の供給量(又は供給速度)、粉砕ロータ443の回転速度、分級ロータ444の回転速度、粉体処理装置4Dの負荷動力、及び表面処理の処理時間を制御するための制御パラメータに関する演算結果が得られる。制御装置100は、所望の円形度を有する粉体が得られるように、学習モデル240の演算結果に基づき、粉体処理システム1の動作を制御することができる。 As described above, in the fourth embodiment, with respect to the powder processing apparatus 4D that performs the surface treatment, the supply amount (or the powder raw material) of the powder raw material is supplied according to the input of the target value (circularity) for the powder desired by the user. (Supply speed), rotation speed of crushing rotor 443, rotation speed of classification rotor 444, load power of powder processing apparatus 4D, and learning model 240 that outputs calculation results regarding control parameters for controlling the processing time of surface treatment. Generate. Further, by using the learning model 240, the supply amount (or supply speed) of the powder raw material, the rotation speed of the crushing rotor 443, the rotation speed of the classification rotor 444, the load power of the powder processing apparatus 4D, and the surface treatment treatment. The calculation result regarding the control parameter for controlling the time is obtained. The control device 100 can control the operation of the powder processing system 1 based on the calculation result of the learning model 240 so that the powder having a desired circularity can be obtained.
 本実施の形態では、粉体処理装置4Dから得られる粉体の粉体データ(円形度のデータ)と、粉体処理装置4Dに供給する粉体原料の供給量(又は供給速度)、粉砕ロータ443の回転速度、分級ロータ444の回転速度、粉体処理装置4Dの負荷動力、及び表面処理の処理時間を含む計測データとを教師データに用いて、学習モデル240を生成する構成とした。代替的に、上記粉体データ(円形度のデータ)と、選択した一部の計測データとを教師データに用いて、学習モデル240を生成する構成としてもよい。 In the present embodiment, the powder data (circularity data) of the powder obtained from the powder processing apparatus 4D, the supply amount (or supply speed) of the powder raw material to be supplied to the powder processing apparatus 4D, and the crushing rotor. The learning model 240 is generated by using the measurement data including the rotation speed of 443, the rotation speed of the classification rotor 444, the load power of the powder processing apparatus 4D, and the processing time of the surface treatment as the teacher data. Alternatively, the powder data (circularity data) and a part of the selected measurement data may be used as the teacher data to generate the learning model 240.
 また、制御装置100は、計測データとして、粉体処理装置4Dの駆動電力又は駆動電流、ケーシング440内に導入する流体(気体又は液体)の流量、流速又は温度、ケーシング440内の温度、粉体処理装置4Dに供給する冷媒(又は熱媒)の流量又は温度の少なくとも1つを更に含む教師データを用いて、学習モデル240を生成してもよい。 Further, the control device 100 uses the measurement data as the drive power or drive current of the powder processing device 4D, the flow rate of the fluid (gas or liquid) to be introduced into the casing 440, the flow velocity or temperature, the temperature inside the casing 440, and the powder. The learning model 240 may be generated using teacher data further including at least one of the flow rate or temperature of the refrigerant (or heat medium) supplied to the processing apparatus 4D.
 更に、制御装置100は、粉体データとして、粉体処理装置4Dから得られる粉体の流動性、及びかさ密度(若しくは真密度)を更に含む教師データを用いて、学習モデル240を生成してもよい。流動性及びかさ密度は公知のパウダテスタを用いて計測される。制御装置100は、粉体処理装置4Dから得られる粉体の流動性、及びかさ密度(若しくは真密度)を含む粉体データと上述の計測データとを教師データに用いて、ユーザが所望する粉体の円形度、流動性、及びかさ密度(若しくは真密度)が入力された場合、粉体処理装置4Dに対する制御パラメータについての演算結果を出力するように構成された学習モデル240を生成すればよい。更に、上記の流動性、及びかさ密度に加え、BET値、粉体の温度、粒子径の何れか1つを含む計測データを用いてもよい。 Further, the control device 100 generates a learning model 240 by using the teacher data including the fluidity of the powder obtained from the powder processing device 4D and the bulk density (or true density) as the powder data. May be good. Fluidity and bulk density are measured using a known powder tester. The control device 100 uses the powder data including the fluidity and bulk density (or true density) of the powder obtained from the powder processing device 4D and the above-mentioned measurement data as the teacher data, and the powder desired by the user. When the roundness, fluidity, and bulk density (or true density) of the body are input, the learning model 240 configured to output the calculation result for the control parameters for the powder processing apparatus 4D may be generated. .. Further, in addition to the above-mentioned fluidity and bulk density, measurement data including any one of the BET value, the powder temperature, and the particle size may be used.
 更に、制御装置100は、原料データを更に含む教師データに用いて、学習モデル240を生成してもよい。教師データに用いる原料データは、粉体原料のBET値、粒子径、円形度、かさ密度、及び流動性の少なくとも1つを含む。制御装置100は、取得した粉体データ、原料データ、及び計測データを教師データとし、粉体データ及び原料データの入力に応じて、粉体処理装置4Dに対する制御パラメータについての演算結果を出力するように構成された学習モデル240を生成すればよい。 Further, the control device 100 may generate the learning model 240 by using the teacher data including the raw material data. The raw material data used for the teacher data includes at least one of the BET value, particle size, circularity, bulk density, and fluidity of the powder raw material. The control device 100 uses the acquired powder data, raw material data, and measurement data as teacher data, and outputs the calculation result of the control parameters for the powder processing device 4D in response to the input of the powder data and the raw material data. The learning model 240 configured in may be generated.
 更に、制御装置100は、製品データ、及び環境データの少なくとも1つを更に含む教師データを用いて、学習モデル240を生成してもよい。教師データに用いる製品データは、製品粉体の湿分を含んでもよい。環境データは、粉体処理を実行する環境の温度及び湿度の少なくとも1つを含む。制御装置100は、取得した粉体データ、製品データ、環境データ、計測データを教師データとし、粉体データと、製品データ、環境データの少なくとも1つとの入力に応じて、粉体処理装置4Dに対する制御パラメータについての演算結果を出力するように構成された学習モデル240を生成すればよい。 Further, the control device 100 may generate the learning model 240 by using the teacher data including at least one of the product data and the environmental data. The product data used for the teacher data may include the moisture content of the product powder. Environmental data includes at least one of the temperature and humidity of the environment in which the powder treatment is performed. The control device 100 uses the acquired powder data, product data, environmental data, and measurement data as teacher data, and receives the input of the powder data and at least one of the product data and the environmental data to the powder processing device 4D. The learning model 240 configured to output the calculation result for the control parameter may be generated.
 本実施の形態では、粉体処理装置4Dを、粉砕ロータ443及び分級ロータ444の回転により表面処理を行う表面処理装置とした。このような表面処理装置として、例えば、ホソカワミクロン株式会社製のファカルティ(登録商標)を用いることができる。
 また、本実施の形態では、ブロワ7を用いて、粉体処理装置4Dから粉体を取り出す気体の流れを形成する構成としたが、ブロワ7に代えてポンプを用いてもよい。
 更に、本実施の形態では、粉体処理装置4Dに気体を導入する構成としたが、気体を導入する構成に代えて、液体を導入する構成としてもよい。
In the present embodiment, the powder treatment device 4D is a surface treatment device that performs surface treatment by rotating the crushing rotor 443 and the classification rotor 444. As such a surface treatment apparatus, for example, Faculty (registered trademark) manufactured by Hosokawa Micron Co., Ltd. can be used.
Further, in the present embodiment, the blower 7 is used to form a flow of gas for extracting the powder from the powder processing apparatus 4D, but a pump may be used instead of the blower 7.
Further, in the present embodiment, the configuration is such that the gas is introduced into the powder processing apparatus 4D, but the configuration in which the liquid is introduced may be used instead of the configuration in which the gas is introduced.
(実施の形態5)
 実施の形態5では、造粒処理についての適用例を説明する。実施の形態5に係る粉体処理システム1は、乾燥処理を行う粉体処理装置4Aに代えて、造粒処理を行う粉体処理装置4Eを備える。
(Embodiment 5)
In the fifth embodiment, an application example for the granulation treatment will be described. The powder treatment system 1 according to the fifth embodiment includes a powder treatment device 4E that performs a granulation treatment instead of the powder treatment device 4A that performs the drying treatment.
 図15は実施の形態5に係る粉体処理装置4Eの構成を示す模式図である。粉体処理装置4Eは、その内部において造粒処理を行う円筒形状のケーシング450を備える。このケーシング450には、原料投入口451、添加剤投入口452、ロータ453、フレキシブルウォール454、粉体取出口455等が設けられている。 FIG. 15 is a schematic view showing the configuration of the powder processing apparatus 4E according to the fifth embodiment. The powder processing apparatus 4E includes a cylindrical casing 450 that performs granulation processing inside the powder processing apparatus 4E. The casing 450 is provided with a raw material input port 451, an additive input port 452, a rotor 453, a flexible wall 454, a powder outlet 455, and the like.
 原料投入口451はケーシング450の上部に設けられている。原料投入口451には、処理対象の粉体原料を供給する原料供給機2が接続される。原料供給機2から供給される粉体原料は、原料供給路TP1内のスクリューフィーダ21によって搬送され、原料投入口451よりケーシング450内に投入される。 The raw material input port 451 is provided above the casing 450. A raw material supply machine 2 for supplying a powder raw material to be processed is connected to the raw material input port 451. The powder raw material supplied from the raw material supply machine 2 is conveyed by the screw feeder 21 in the raw material supply path TP1 and is charged into the casing 450 from the raw material input port 451.
 添加剤投入口452は原料投入口451と対向するようにケーシング450の上部に設けられている。添加剤投入口452を通じてケーシング450内に投入される添加剤は、水、油などの液体である。添加剤投入口452は、添加剤を噴霧するためのノズル(不図示)を備える。粉体処理装置4Eは、添加剤投入口452から液滴を噴霧することにより、ケーシング450内を均質に加湿する。加湿が進み、造粒が始まる水分以上になった粉体は、噴霧した液滴を包み込むように凝集成長を繰り返し、多孔状の造粒粒子へと成長する。 The additive input port 452 is provided on the upper part of the casing 450 so as to face the raw material input port 451. The additive charged into the casing 450 through the additive charging port 452 is a liquid such as water or oil. The additive inlet 452 includes a nozzle (not shown) for spraying the additive. The powder processing apparatus 4E uniformly humidifies the inside of the casing 450 by spraying droplets from the additive input port 452. Humidification progresses, and the powder that has become more than the water content at which granulation begins repeats cohesive growth so as to wrap the sprayed droplets, and grows into porous granulated particles.
 ケーシング450の内部の設けられているロータ453は、ロータモータ453Mの駆動により上下方向の軸の回りに回転するように構成されている。ロータ453は、ナイフブレード453Aを備えており、粉体原料に旋回、回転、重力による圧密の3種類の動きを与えることで、均質な混合、加湿、造粒を行う。 The rotor 453 provided inside the casing 450 is configured to rotate around an axis in the vertical direction by driving the rotor motor 453M. The rotor 453 is provided with a knife blade 453A, and by giving the powder raw material three types of movements of swirling, rotating, and consolidation by gravity, homogeneous mixing, humidification, and granulation are performed.
 また、ケーシング450の内周面にはフレキシブルウォール454が設けられている。フレキシブルウォール454の外周面は、ローラ454Aが多数付設されたローラゲージ454Bによって囲まれている。フレキシブルウォール454は、ローラゲージ454Bが上下運動することによって変形し、加湿によって内壁に付着した凝集物を剥離する機能を有する。 Further, a flexible wall 454 is provided on the inner peripheral surface of the casing 450. The outer peripheral surface of the flexible wall 454 is surrounded by a roller gauge 454B to which a large number of rollers 454A are attached. The flexible wall 454 has a function of being deformed by the vertical movement of the roller gauge 454B and removing agglomerates adhering to the inner wall by humidification.
 ケーシング450内で製造された粉体(造粒粒子)は、ケーシング450の下部に設けられた粉体取出口455を通じて、粉体処理装置4Eの外部へ取り出される。 The powder (granulated particles) produced in the casing 450 is taken out to the outside of the powder processing apparatus 4E through the powder outlet 455 provided in the lower part of the casing 450.
 実施の形態5に係る制御装置100は、入力部103を通じて、粉体処理装置4Eの動作状態を示す計測データと、粉体処理装置4Eから得られる粉体に関する粉体データとを取得する。制御装置100が取得する計測データは、粉体処理装置4Eに供給する粉体原料の供給量(又は供給速度)、ロータ453の回転速度、ケーシング450内の圧力、並びにケーシング450内に投入する添加剤の投入量を含む。粉体データは、粉体処理装置4Eから得られる粉体の粒子径及び形状のデータである。粉体の形状は、粒子形状分析装置又は画像解析によって得られるデータである。 The control device 100 according to the fifth embodiment acquires measurement data indicating the operating state of the powder processing device 4E and powder data related to the powder obtained from the powder processing device 4E through the input unit 103. The measurement data acquired by the control device 100 includes the supply amount (or supply speed) of the powder raw material to be supplied to the powder processing device 4E, the rotation speed of the rotor 453, the pressure in the casing 450, and the addition to be charged into the casing 450. Includes the amount of agent input. The powder data is data on the particle size and shape of the powder obtained from the powder processing apparatus 4E. The shape of the powder is data obtained by a particle shape analyzer or image analysis.
 制御装置100は、取得した計測データと粉体データとを教師データに用いて、学習モデル250(図16を参照)を生成する。学習モデル250の生成手順は、実施の形態1と同様であるため、その説明を省略することとする。 The control device 100 uses the acquired measurement data and powder data as teacher data to generate a learning model 250 (see FIG. 16). Since the procedure for generating the learning model 250 is the same as that in the first embodiment, the description thereof will be omitted.
 学習モデル250は、ユーザが所望する粉体についての目標値(粒子径及び形状)が入力された場合、粉体処理装置4Eに対する制御パラメータについての演算結果を出力するよう構成される。ここで、粉体処理装置4Eに対する制御パラメータは、粉体原料の供給量(又は供給速度)、ロータ453の回転速度、処理室内の圧力、及び添加剤の投入量を含む。 The learning model 250 is configured to output the calculation result of the control parameters for the powder processing apparatus 4E when the target values (particle diameter and shape) for the powder desired by the user are input. Here, the control parameters for the powder processing apparatus 4E include the supply amount (or supply speed) of the powder raw material, the rotation speed of the rotor 453, the pressure in the processing chamber, and the input amount of the additive.
 図16は実施の形態5における学習モデル250の構成例を示す模式図である。学習モデル250は、実施の形態1において説明した学習モデル210と同様に、それぞれが1又は複数のノードを備えた入力層251、中間層252A,252B、及び出力層253を備える。中間層の数は2つに限定されず、3つ以上であってもよい。 FIG. 16 is a schematic diagram showing a configuration example of the learning model 250 in the fifth embodiment. Similar to the learning model 210 described in the first embodiment, the learning model 250 includes an input layer 251 having one or a plurality of nodes, intermediate layers 252A and 252B, and an output layer 253, respectively. The number of intermediate layers is not limited to two, and may be three or more.
 学習モデル250は、ユーザが所望する粉体についての目標値(実施の形態5では粒子径及び形状)の入力に対して、粉体処理装置4Eに対する制御パラメータについての演算結果を出力するように構成される。 The learning model 250 is configured to output the calculation result of the control parameter for the powder processing apparatus 4E in response to the input of the target value (particle diameter and shape in the fifth embodiment) for the powder desired by the user. Will be done.
 制御装置100は、学習モデル250を用いた演算を行う場合、ユーザが所望する目標値(粒子径及び形状)を学習モデル250に入力する。学習モデル250に入力された目標値のデータは、入力層251を構成するノードを通じて、最初の中間層252Aが備えるノードへ出力される。最初の中間層252Aに入力されたデータは、中間層252Aを構成するノードを通じて、次の中間層252Bが備えるノードへ出力される。このとき、ノード間において設定されている重み及びバイアスを含む活性化関数を用いて出力が算出される。以下同様にして、ノード間において設定されている重み及びバイアスを含む活性化関数を用いた演算を実行し、出力層253による演算結果が得られるまで次々と後の層に伝達される。 When the control device 100 performs the calculation using the learning model 250, the control device 100 inputs the target values (particle diameter and shape) desired by the user into the learning model 250. The target value data input to the learning model 250 is output to the node included in the first intermediate layer 252A through the nodes constituting the input layer 251. The data input to the first intermediate layer 252A is output to the node included in the next intermediate layer 252B through the nodes constituting the intermediate layer 252A. At this time, the output is calculated using the activation function including the weights and biases set between the nodes. Hereinafter, in the same manner, the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 253 is obtained.
 出力層253は、粉体処理装置4Eに対する制御パラメータについての演算結果を出力する。演算結果として、例えば、上述した複数の制御パラメータの組み合わせの良否を示す確率を出力してもよい。具体的には、出力層253を第1ノードから第nノードまでのn個のノードにより構成し、第1ノードから、粉体原料の供給量がSA1、ロータ453の回転速度がRV1、ケーシング450内の圧力がCP1、添加剤の投入量がAA1である確率P1を出力し、…、第nノードから、粉体原料の供給量がSAn、ロータ453の回転速度がRVn、ケーシング450内の圧力がCPn、添加剤の投入量がAAnである確率Pnである確率Pnを出力してもよい。出力層253を構成するノードの数や各ノードに割り当てる演算結果は、上述の例に限定されるものではなく、適宜設計することが可能である。 The output layer 253 outputs the calculation result for the control parameters for the powder processing apparatus 4E. As the calculation result, for example, the probability indicating the quality of the combination of the plurality of control parameters described above may be output. Specifically, the output layer 253 is composed of n nodes from the first node to the nth node, from the first node, the supply amount of the powder raw material is SA1, the rotation speed of the rotor 453 is RV1, and the casing 450. The probability P1 that the pressure inside is CP1 and the input amount of the additive is AA1 is output, ..., The supply amount of the powder raw material is SAN, the rotation speed of the rotor 453 is RVn, and the pressure inside the casing 450 from the nth node. May output CPn and the probability Pn such that the amount of the additive added is AAn. The number of nodes constituting the output layer 253 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
 制御装置100の制御部101は、出力層253から出力される確率のうち、確率が最も高い組み合わせ(本実施の形態では、粉体原料の供給量、ロータ453の回転速度、ケーシング450内の圧力、及び添加剤の投入量の組み合わせ)を特定することにより、制御に用いる制御パラメータを決定する。制御部101は、決定した制御パラメータに基づき、原料供給機2、ロータモータ453M、ノズル等の動作を制御する制御指令を生成し、出力部104を通じて各装置へ出力する。 The control unit 101 of the control device 100 has the highest probability of being output from the output layer 253 (in the present embodiment, the supply amount of the powder raw material, the rotation speed of the rotor 453, and the pressure in the casing 450). , And the combination of the input amount of the additive), the control parameter used for the control is determined. The control unit 101 generates a control command for controlling the operation of the raw material supply machine 2, the rotor motor 453M, the nozzle, and the like based on the determined control parameters, and outputs the control command to each device through the output unit 104.
 以上のように、実施の形態5では、造粒処理を行う粉体処理装置4Eに関して、ユーザが所望する粉体についての目標値(粒子径及び形状)の入力に応じて、粉体原料の供給量、ロータ453の回転速度、ケーシング450内の圧力、及び添加剤の投入量を制御するための制御パラメータに関する演算結果を出力する学習モデル250を生成する。また、学習モデル250を用いることにより、粉体原料の供給量、ロータ453の回転速度、ケーシング450内の圧力、及び添加剤の投入量を制御するための制御パラメータに関する演算結果が得られる。制御装置100は、所望の粒子径及び形状を有する粉体が得られるように、学習モデル250の演算結果に基づき、粉体処理システム1の動作を制御することができる。 As described above, in the fifth embodiment, with respect to the powder processing apparatus 4E that performs the granulation treatment, the powder raw material is supplied according to the input of the target values (particle size and shape) for the powder desired by the user. A learning model 250 is generated that outputs calculation results regarding control parameters for controlling the amount, the rotation speed of the rotor 453, the pressure in the casing 450, and the input amount of the additive. Further, by using the learning model 250, calculation results regarding control parameters for controlling the supply amount of the powder raw material, the rotation speed of the rotor 453, the pressure in the casing 450, and the input amount of the additive can be obtained. The control device 100 can control the operation of the powder processing system 1 based on the calculation result of the learning model 250 so that the powder having a desired particle size and shape can be obtained.
 本実施の形態では、粉体処理装置4Eから得られる粉体の粉体データ(粒子径及び形状のデータ)と、粉体処理装置4Eに供給する粉体原料の供給量(又は供給速度)、粉体原料を攪拌するためのロータ453の回転速度、ケーシング450内の圧力、及びケーシング450内に投入する添加剤の投入量を含む計測データとを教師データに用いて、学習モデル250を生成する構成とした。代替的に、上記粉体データ(粒子径及び形状のデータ)と、選択した一部の計測データとを教師データに用いて、学習モデル250を生成する構成としてもよい。 In the present embodiment, the powder powder data (particle size and shape data) of the powder obtained from the powder processing apparatus 4E, the supply amount (or supply rate) of the powder raw material to be supplied to the powder processing apparatus 4E, The learning model 250 is generated by using the measurement data including the rotation speed of the rotor 453 for stirring the powder raw material, the pressure in the casing 450, and the amount of the additive to be charged into the casing 450 as the teacher data. It was configured. Alternatively, the learning model 250 may be generated by using the powder data (particle size and shape data) and a part of the selected measurement data as the teacher data.
 また、制御装置100は、計測データとして、ケーシング450内の湿度、粉体処理装置4Eの駆動電力若しくは駆動電流の少なくとも1つを更に含む教師データを用いて、学習モデル250を生成してもよい。 Further, the control device 100 may generate the learning model 250 by using the teacher data including at least one of the humidity in the casing 450, the drive power of the powder processing device 4E, or the drive current as the measurement data. ..
 更に、制御装置100は、粉体データとして、粉体処理装置4Eから得られる粉体の流動性、かさ密度、硬度、吸水量若しくは吸油量を更に含む教師データを用いて、学習モデル250を生成してもよい。この場合、制御装置100は、粉体処理装置4Eから得られる粉体の流動性、かさ密度、硬度、吸水量若しくは吸油量を含む粉体データと上述の計測データとを教師データに用いて、ユーザが所望する粉体の流動性、かさ密度、硬度、吸水量若しくは吸油量が入力された場合、粉体処理装置4Eに対する制御パラメータについての演算結果を出力するように構成された学習モデル250を生成すればよい。 Further, the control device 100 generates a learning model 250 as powder data by using the teacher data further including the fluidity, bulk density, hardness, water absorption amount or oil absorption amount of the powder obtained from the powder processing device 4E. You may. In this case, the control device 100 uses the powder data including the fluidity, bulk density, hardness, water absorption amount or oil absorption amount of the powder obtained from the powder processing device 4E and the above-mentioned measurement data as the teacher data. When the fluidity, bulk density, hardness, water absorption amount or oil absorption amount of the powder desired by the user is input, the learning model 250 configured to output the calculation result for the control parameters for the powder processing apparatus 4E is provided. It should be generated.
 更に、制御装置100は、原料データを更に含む教師データに用いて、学習モデル250を生成してもよい。教師データに用いる原料データは、粉体原料のBET値、粒子径、流動性、かさ密度の少なくとも1つを含む。制御装置100は、取得した粉体データ、原料データ、及び計測データを教師データとし、粉体データ及び原料データの入力に応じて、粉体処理装置4Eに対する制御パラメータについての演算結果を出力するように構成された学習モデル250を生成すればよい。 Further, the control device 100 may generate the learning model 250 by using the teacher data including the raw material data. The raw material data used for the teacher data includes at least one of the BET value, particle size, fluidity, and bulk density of the powder raw material. The control device 100 uses the acquired powder data, raw material data, and measurement data as teacher data, and outputs the calculation result of the control parameters for the powder processing device 4E in response to the input of the powder data and the raw material data. The learning model 250 configured in the above may be generated.
 更に、制御装置100は、製品データ、及び環境データの少なくとも1つを更に含む教師データを用いて、学習モデル250を生成してもよい。教師データに用いる製品データは、製品粉体の湿分を含む。環境データは、粉体処理を実行する環境の温度及び湿度の少なくとも1つを含む。制御装置100は、取得した粉体データ、製品データ、環境データ、計測データを教師データとし、粉体データと、製品データ及び環境データの少なくとも1つとの入力に応じて、粉体処理装置4Eに対する制御パラメータについての演算結果を出力するように構成された学習モデル250を生成すればよい。 Further, the control device 100 may generate the learning model 250 by using the product data and the teacher data including at least one of the environmental data. The product data used for the teacher data includes the moisture content of the product powder. Environmental data includes at least one of the temperature and humidity of the environment in which the powder treatment is performed. The control device 100 uses the acquired powder data, product data, environmental data, and measurement data as teacher data, and receives the input of the powder data and at least one of the product data and the environmental data to the powder processing device 4E. A learning model 250 configured to output the calculation results for the control parameters may be generated.
 本実施の形態では、粉体処理装置4Eを、添加剤の投入と、ロータ453の回転とにより造粒する造粒処理装置とした。このような造粒処理装置として、例えば、ホソカワミクロン株式会社製のフレキソミックスを用いることができる。また、同様の処理を行う流動層式の造粒処理装置にも適用可能である。このような造粒処理装置として、ホソカワミクロン株式会社製のアグロマスタ(登録商標)を用いることができる。 In the present embodiment, the powder processing device 4E is a granulation processing device that granulates by adding an additive and rotating the rotor 453. As such a granulation processing apparatus, for example, a flexomix manufactured by Hosokawa Micron Co., Ltd. can be used. It can also be applied to a fluidized bed type granulation processing apparatus that performs the same processing. As such a granulation processing apparatus, Agromaster (registered trademark) manufactured by Hosokawa Micron Co., Ltd. can be used.
(実施の形態6)
 実施の形態6では、実施の形態1で説明した学習モデル210の再学習手順について説明する。
 なお、粉体処理システム1の全体構成、及び粉体処理システム1における各装置の構成については実施の形態1と同様であるため、その説明を省略することとする。
(Embodiment 6)
In the sixth embodiment, the re-learning procedure of the learning model 210 described in the first embodiment will be described.
Since the overall configuration of the powder processing system 1 and the configuration of each device in the powder processing system 1 are the same as those in the first embodiment, the description thereof will be omitted.
 図17は学習モデル210の再学習手順を説明するフローチャートである。実施の形態1において説明したように、運用フェーズにおいて、制御装置100の制御部101は、ユーザが所望する粉体についての目標値(湿分)の入力を受付け、受付けた湿分のデータを学習モデル210へ入力することにより、制御パラメータに関する演算結果を取得する。制御部101は、学習モデル210から取得した演算結果に基づき、粉体処理システム1を構成する各装置の動作を制御する。制御部101は、運用フェーズにおいて、熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、及び乾燥処理の処理時間を含む計測データと、粉体処理装置4Aから得られる粉体の粉体データ(湿分のデータ)とを収集してもよい。収集した計測データ及び粉体データは、タイムスタンプと共に、記憶部102に記憶される。 FIG. 17 is a flowchart illustrating a re-learning procedure of the learning model 210. As described in the first embodiment, in the operation phase, the control unit 101 of the control device 100 receives the input of the target value (moisture content) for the powder desired by the user, and learns the received moisture content data. By inputting to the model 210, the calculation result related to the control parameter is acquired. The control unit 101 controls the operation of each device constituting the powder processing system 1 based on the calculation result acquired from the learning model 210. In the operation phase, the control unit 101 determines the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the drying process. The measurement data including the processing time and the powder data (moisture data) of the powder obtained from the powder processing apparatus 4A may be collected. The collected measurement data and powder data are stored in the storage unit 102 together with the time stamp.
 制御部101は、運用フェーズ開始後の適宜のタイミングにて、粉体データが示す実測値と、ユーザによって入力された目標値とを比較する(ステップS601)。制御部101は、比較結果に基づき、再学習を実行するか否かを判断する(ステップS602)。 The control unit 101 compares the actually measured value indicated by the powder data with the target value input by the user at an appropriate timing after the start of the operation phase (step S601). The control unit 101 determines whether or not to execute re-learning based on the comparison result (step S602).
 実測値が目標値に近い場合(例えば、両者の差が10%未満である場合)、制御部101は、再学習を実行しないと判断し(S602:NO)、本フローチャートによる処理を終了する。 When the measured value is close to the target value (for example, when the difference between the two is less than 10%), the control unit 101 determines that re-learning is not executed (S602: NO), and ends the process according to this flowchart.
 一方、実測値が目標値に近くない場合(例えば、両者の差が10%以上である場合)、制御部101は、再学習を実行すると判断する(S602:YES)。 On the other hand, when the measured value is not close to the target value (for example, when the difference between the two is 10% or more), the control unit 101 determines that re-learning is executed (S602: YES).
 再学習を実行すると判断した場合、制御部101は、運用開始後に収集したデータを記憶部102から読み出し(ステップS603)、教師データを選択する(ステップS604)。なお、ステップS603以降の再学習手順は、粉体処理システム1が稼働していないタイミングにて実行すればよい。 When it is determined to execute re-learning, the control unit 101 reads the data collected after the start of operation from the storage unit 102 (step S603) and selects the teacher data (step S604). The re-learning procedure after step S603 may be executed at a timing when the powder processing system 1 is not operating.
 制御部101は、選択した教師データに含まれる湿分のデータを学習モデル210へ入力し(ステップS605)、学習モデル210による演算を実行する(ステップS606)。すなわち、制御部101は、学習モデル210の入力層211を構成するノードに湿分のデータを入力し、中間層212A,212Bにおいてノード間の重み及びバイアスを用いた演算を行い、演算結果を出力層213のノードから出力する処理を行う。 The control unit 101 inputs the wet content data included in the selected teacher data into the learning model 210 (step S605), and executes the calculation by the learning model 210 (step S606). That is, the control unit 101 inputs moisture data to the nodes constituting the input layer 211 of the learning model 210, performs calculations using weights and biases between the nodes in the intermediate layers 212A and 212B, and outputs the calculation results. The process of outputting from the node of layer 213 is performed.
 次いで、制御部101は、ステップS606の演算により得られる演算結果を評価し(ステップS607)、学習が完了したか否かを判断する(ステップS608)。具体的には、制御部101は、ステップS606で得られる演算結果と教師データとに基づく誤差関数(目的関数、損失関数、コスト関数ともいう)を用いて、演算結果を評価することができる。 Next, the control unit 101 evaluates the calculation result obtained by the calculation in step S606 (step S607), and determines whether or not the learning is completed (step S608). Specifically, the control unit 101 can evaluate the calculation result by using an error function (also referred to as an objective function, a loss function, or a cost function) based on the calculation result obtained in step S606 and the teacher data.
 学習が完了していないと判断した場合(S608:NO)、制御部101は、学習モデル210のノード間の重み及びバイアスを更新して(ステップS609)、処理をステップS604へ戻し、別の教師データを用いた学習を継続する。制御部101は、学習モデル210の出力層213から入力層211に向かって、ノード間の重み及びバイアスを順次更新する誤差逆伝播法を用いて、各ノード間の重み及びバイアスを更新することができる。 When it is determined that the learning is not completed (S608: NO), the control unit 101 updates the weights and biases between the nodes of the learning model 210 (step S609), returns the process to step S604, and another teacher. Continue learning with the data. The control unit 101 may update the weights and biases between the nodes by using an error backpropagation method that sequentially updates the weights and biases between the nodes from the output layer 213 of the learning model 210 toward the input layer 211. it can.
 学習が完了したと判断した場合(S608:YES)、制御部101は、学習済みの学習モデル210として記憶部102に記憶させ(ステップS610)、本フローチャートによる処理を終了する。 When it is determined that the learning is completed (S608: YES), the control unit 101 stores the learned learning model 210 in the storage unit 102 (step S610), and ends the process according to this flowchart.
 以上のように、本実施の形態に係る制御装置100は、学習モデル210の再学習を必要に応じて実行するので、運用フェーズの開始後においても、粉体処理システム1による粉体処理の精度を高めることができる。 As described above, since the control device 100 according to the present embodiment relearns the learning model 210 as necessary, the accuracy of powder processing by the powder processing system 1 even after the start of the operation phase. Can be enhanced.
 なお、実施の形態6では、学習モデル210の再学習手順について説明したが、実施の形態2~5において説明した学習モデル220~250についても、同様の手順にて再学習することが可能である。 Although the re-learning procedure of the learning model 210 has been described in the sixth embodiment, the learning models 220 to 250 described in the second to fifth embodiments can be re-learned by the same procedure. ..
(実施の形態7)
 実施の形態7では、粉体処理装置4Aにおける制御パラメータの調整手順について説明する。
 なお、粉体処理システム1の全体構成、及び粉体処理システム1における各装置の構成については実施の形態1と同様であるため、その説明を省略することとする。
(Embodiment 7)
In the seventh embodiment, the procedure for adjusting the control parameters in the powder processing apparatus 4A will be described.
Since the overall configuration of the powder processing system 1 and the configuration of each device in the powder processing system 1 are the same as those in the first embodiment, the description thereof will be omitted.
 図18は制御パラメータの調整手順を説明するフローチャートである。実施の形態1において説明したように、運用フェーズにおいて、制御装置100の制御部101は、ユーザが所望する粉体についての目標値(湿分)の入力を受付け、受付けた目標値のデータを学習モデル210へ入力することにより、制御パラメータに関する演算結果を取得する。制御部101は、学習モデル210から取得した演算結果に基づき、粉体処理システム1を構成する各装置の動作を制御する。制御部101は、運用フェーズにおいて、熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、及び乾燥処理の処理時間を含む計測データと、粉体処理装置4Aから得られる粉体の粉体データ(湿分のデータ)とを収集してもよい。収集した計測データ及び粉体データは、タイムスタンプと共に、記憶部102に記憶される。 FIG. 18 is a flowchart illustrating a control parameter adjustment procedure. As described in the first embodiment, in the operation phase, the control unit 101 of the control device 100 receives the input of the target value (moisture content) for the powder desired by the user, and learns the data of the received target value. By inputting to the model 210, the calculation result related to the control parameter is acquired. The control unit 101 controls the operation of each device constituting the powder processing system 1 based on the calculation result acquired from the learning model 210. In the operation phase, the control unit 101 determines the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the drying process. The measurement data including the processing time and the powder data (moisture data) of the powder obtained from the powder processing apparatus 4A may be collected. The collected measurement data and powder data are stored in the storage unit 102 together with the time stamp.
 制御部101は、運用フェーズ開始後の適宜のタイミングにて、粉体データが示す実測値と、ユーザによって入力された目標値とを比較する(ステップS701)。制御部101は、比較結果に基づき、制御パラメータを調整するか否かを判断する(ステップS702)。 The control unit 101 compares the actually measured value indicated by the powder data with the target value input by the user at an appropriate timing after the start of the operation phase (step S701). The control unit 101 determines whether or not to adjust the control parameter based on the comparison result (step S702).
 実測値が目標値に近い場合(例えば、両者の差が10%未満である場合)、制御部101は、制御パラメータを調整しないと判断し(S702:NO)、本フローチャートによる処理を終了する。 When the measured value is close to the target value (for example, when the difference between the two is less than 10%), the control unit 101 determines that the control parameter is not adjusted (S702: NO), and ends the process according to this flowchart.
 一方、実測値が目標値に近くない場合(例えば、両者の差が10%以上である場合)、制御部101は、制御パラメータを調整すると判断する(S702:YES)。 On the other hand, when the measured value is not close to the target value (for example, when the difference between the two is 10% or more), the control unit 101 determines that the control parameter is adjusted (S702: YES).
 制御パラメータを調整すると判断した場合、制御部101は、ステップS702の比較結果に応じて制御パラメータを調整し(ステップS703)、調整後の制御パラメータに基づき粉体処理装置4Aを含む装置の動作を制御する(ステップS704)。例えば、湿分の実測値が目標値より低い(高い)場合、制御部101は、熱媒の温度が高く(低く)なるように熱風発生機3の動作を制御してもよい。また、制御部101は、粉砕ロータ413の回転速度が高く(低く)なるように、粉砕モータ413Mの動作を制御してもよい。更に、制御部101は、分級ロータ415の回転速度が高く(低く)なるように分級モータ415Mの動作を制御してもよい。更に、制御部101は、ケーシング410内の圧力が低く(高く)なるように、ブロワ7の動作を制御してもよい。更に、制御部101は、粉体原料の供給量(又は供給速度)が低く(高く)なるように、原料供給機2の動作を制御してもよい。更に、制御部101は、乾燥処理の処理時間が長く(短く)なるように、粉体処理装置4Aの動作を制御してもよい。 When it is determined that the control parameter is to be adjusted, the control unit 101 adjusts the control parameter according to the comparison result in step S702 (step S703), and operates the device including the powder processing device 4A based on the adjusted control parameter. Control (step S704). For example, when the measured value of the moisture content is lower (higher) than the target value, the control unit 101 may control the operation of the hot air generator 3 so that the temperature of the heat medium becomes higher (lower). Further, the control unit 101 may control the operation of the crushing motor 413M so that the rotation speed of the crushing rotor 413 becomes high (low). Further, the control unit 101 may control the operation of the classification motor 415M so that the rotation speed of the classification rotor 415 becomes high (low). Further, the control unit 101 may control the operation of the blower 7 so that the pressure in the casing 410 becomes low (high). Further, the control unit 101 may control the operation of the raw material supply machine 2 so that the supply amount (or supply speed) of the powder raw material is low (high). Further, the control unit 101 may control the operation of the powder processing apparatus 4A so that the processing time of the drying process becomes longer (shorter).
 以上のように、本実施の形態では、粉体処理システム1の稼働中に実測値と目標値との間に一定以上の乖離が生じた場合、その乖離が小さくなるように制御パラメータを調整することができる。 As described above, in the present embodiment, when a deviation of a certain value or more occurs between the measured value and the target value during the operation of the powder processing system 1, the control parameter is adjusted so that the deviation becomes small. be able to.
 実施の形態7では、粉体処理装置4Aに対する適用例を説明したが、粉体処理装置4B~4Eについて同様の手法を適用できることは勿論のことである。 In the seventh embodiment, an application example to the powder processing apparatus 4A has been described, but it goes without saying that the same method can be applied to the powder processing apparatus 4B to 4E.
(実施の形態8)
 実施の形態8では、端末装置500から粉体処理システム1の動作を制御する構成について説明する。
 なお、粉体処理システム1の全体構成、及び粉体処理システム1における各装置の構成については実施の形態1と同様であるため、その説明を省略することとする。
(Embodiment 8)
In the eighth embodiment, a configuration for controlling the operation of the powder processing system 1 from the terminal device 500 will be described.
Since the overall configuration of the powder processing system 1 and the configuration of each device in the powder processing system 1 are the same as those in the first embodiment, the description thereof will be omitted.
 図19は端末装置500及び制御装置100が実行する処理の手順を説明するフローチャートである。端末装置500の制御部501は、通信部503を通じて、制御装置100にアクセスする(ステップS801)。 FIG. 19 is a flowchart illustrating a procedure of processing executed by the terminal device 500 and the control device 100. The control unit 501 of the terminal device 500 accesses the control device 100 through the communication unit 503 (step S801).
 制御装置100の制御部101は、粉体処理装置4Aが稼働していないときに端末装置500からアクセスを受付けた場合、例えば、ユーザが所望する粉体の目標値を受付ける目標値入力画面の画面データを生成し(ステップS802)、生成した画面データを通信部105より端末装置500へ送信する(ステップS803)。なお、粉体処理装置4Aが稼働しているときに端末装置500からアクセスを受付けた場合、制御部101は、以下で説明するステップS803以降の処理を実行すればよい。 When the control unit 101 of the control device 100 receives access from the terminal device 500 when the powder processing device 4A is not operating, for example, the screen of the target value input screen for receiving the target value of the powder desired by the user. Data is generated (step S802), and the generated screen data is transmitted from the communication unit 105 to the terminal device 500 (step S803). When an access is received from the terminal device 500 while the powder processing device 4A is operating, the control unit 101 may execute the processes after step S803 described below.
 端末装置500の制御部501は、制御装置100から送信される目標値入力画面の画面データを通信部503より受信する(ステップS804)。制御部501は、受信した画面データに基づき目標値入力画面を表示部505に表示し(ステップS805)、ユーザが所望する粉体についての目標値の入力を受付ける(ステップS806)。ステップS806で受付ける目標値は例えば粉体の湿分である。 The control unit 501 of the terminal device 500 receives the screen data of the target value input screen transmitted from the control device 100 from the communication unit 503 (step S804). The control unit 501 displays the target value input screen on the display unit 505 based on the received screen data (step S805), and accepts the input of the target value for the powder desired by the user (step S806). The target value received in step S806 is, for example, the moisture content of the powder.
 図20は目標値入力画面の一例を示す模式図である。図20に一例として示す目標値入力画面は、「目標値1」の項目において「湿分」が設定され、その下の項目において、湿分に対する目標値が設定された状態を示している。この目標値入力画面において、例えばユーザが所望する粉体の単位時間あたりの収量のデータを受け付けてもよい。更に、学習モデル210に与える原料データ、製品データ、排ガスデータ、環境データ等を受け付けてもよい。制御部501は、ステップS806において受付けた目標値のデータを制御装置100へ送信する(ステップS807)。 FIG. 20 is a schematic diagram showing an example of a target value input screen. The target value input screen shown as an example in FIG. 20 shows a state in which "moisture content" is set in the item of "target value 1" and a target value for moisture content is set in the item below it. In this target value input screen, for example, data on the yield of powder desired by the user per unit time may be accepted. Further, raw material data, product data, exhaust gas data, environmental data, etc. to be given to the learning model 210 may be accepted. The control unit 501 transmits the data of the target value received in step S806 to the control device 100 (step S807).
 制御装置100の制御部101は、端末装置500から送信される目標値のデータを通信部105より受信する(ステップS808)。制御部101は、受信した目標値のデータを学習モデル210に入力し、学習モデル210による演算を実行する(ステップS809)。次いで、制御部101は、学習モデル210から演算結果を取得し(ステップS810)、演算結果に基づき制御パラメータを決定する(ステップS811)。制御部101は、決定した制御パラメータに基づき、粉体処理装置4Aを含む粉体処理システム1の動作を制御する(ステップS812)。 The control unit 101 of the control device 100 receives the target value data transmitted from the terminal device 500 from the communication unit 105 (step S808). The control unit 101 inputs the received target value data into the learning model 210, and executes the calculation by the learning model 210 (step S809). Next, the control unit 101 acquires the calculation result from the learning model 210 (step S810), and determines the control parameter based on the calculation result (step S811). The control unit 101 controls the operation of the powder processing system 1 including the powder processing apparatus 4A based on the determined control parameters (step S812).
 粉体処理システム1の稼働中、制御部101は、粉体処理装置4Aから得られる粉体の湿分、熱媒の温度及び流量、粉体原料の供給量(又は供給速度)、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング143内の圧力、粉体処理装置4Aにおける処理時間等についての計測データを入力部103より随時取得する。制御部101は、適宜のタイミングにて、上記計測データの少なくとも1つと、粉体処理システム1の全体図とを含むモニタリング画面の画面データを生成する(ステップS813)。制御部101は、生成した画面データを通信部105より端末装置500へ送信する(ステップS814)。 During the operation of the powder processing system 1, the control unit 101 determines the moisture content of the powder obtained from the powder processing device 4A, the temperature and flow rate of the heat medium, the supply amount (or supply speed) of the powder raw material, and the crushing rotor 413. Measurement data on the rotation speed of the above, the rotation speed of the classification rotor 415, the pressure in the casing 143, the processing time in the powder processing apparatus 4A, and the like are acquired from the input unit 103 at any time. The control unit 101 generates screen data of the monitoring screen including at least one of the above measurement data and an overall view of the powder processing system 1 at an appropriate timing (step S813). The control unit 101 transmits the generated screen data from the communication unit 105 to the terminal device 500 (step S814).
 端末装置500の制御部501は、制御装置100から送信される画面データを通信部503より受信する(ステップS815)。制御部501は、受信した画面データに基づき、モニタリング画面を表示部505に表示する(ステップS816)。 The control unit 501 of the terminal device 500 receives the screen data transmitted from the control device 100 from the communication unit 503 (step S815). The control unit 501 displays the monitoring screen on the display unit 505 based on the received screen data (step S816).
 図21はモニタリング画面の一例を示す模式図である。図21に示した例は、粉体処理装置4Aから得られる計測データと、粉体処理システム1の全体図とを含むモニタリング画面を表示部505に表示した状態を示している。計測データに代えて、若しくは、粒子径の計測データと共に、ユーザにより入力された目標値、学習モデル210の演算結果に基づき設定された制御値などをモニタリング画面に表示してもよい。 FIG. 21 is a schematic diagram showing an example of the monitoring screen. The example shown in FIG. 21 shows a state in which a monitoring screen including measurement data obtained from the powder processing apparatus 4A and an overall view of the powder processing system 1 is displayed on the display unit 505. Instead of the measurement data, or together with the measurement data of the particle size, a target value input by the user, a control value set based on the calculation result of the learning model 210, and the like may be displayed on the monitoring screen.
 以上のように、本実施の形態では、端末装置500を用いて粉体処理システム1を遠隔操作できると共に、粉体処理システム1の稼働状況を端末装置500にて監視することができる。 As described above, in the present embodiment, the powder processing system 1 can be remotely controlled by using the terminal device 500, and the operating status of the powder processing system 1 can be monitored by the terminal device 500.
 実施の形態8では、粉体処理装置4Aに対する適用例を説明したが、粉体処理装置4B~4Eについて同様の手法を適用できることは勿論のことである。 In the eighth embodiment, an application example to the powder processing apparatus 4A has been described, but it goes without saying that the same method can be applied to the powder processing apparatus 4B to 4E.
(実施の形態9)
 実施の形態9では、端末装置500において粉体処理の種別を選択する構成について説明する。
 なお、粉体処理システム1の全体構成、及び粉体処理システム1における各装置の構成については実施の形態1と同様であるが、制御装置100の記憶部102には、実施の形態1~5において説明した学習モデル210~250が記憶されており、制御装置100は、学習モデル210~250を用いた演算結果に基づき、粉体処理装置4A~4Eの動作を制御するものとする。
(Embodiment 9)
In the ninth embodiment, a configuration for selecting the type of powder treatment in the terminal device 500 will be described.
The overall configuration of the powder processing system 1 and the configuration of each device in the powder processing system 1 are the same as those in the first embodiment, but the storage unit 102 of the control device 100 has the first to fifth embodiments. The learning models 210 to 250 described in the above are stored, and the control device 100 controls the operations of the powder processing devices 4A to 4E based on the calculation results using the learning models 210 to 250.
 図22は端末装置500及び制御装置100が実行する処理の手順を説明するフローチャートである。端末装置500の制御部501は、通信部503を通じて、制御装置100にアクセスする(ステップS901)。 FIG. 22 is a flowchart illustrating a procedure of processing executed by the terminal device 500 and the control device 100. The control unit 501 of the terminal device 500 accesses the control device 100 through the communication unit 503 (step S901).
 制御装置100の制御部101は、粉体処理装置4Aが稼働していないときに端末装置500からアクセスを受付けた場合、粉体処理の種別を選択するための処理種別選択画面の画面データを生成し(ステップS902)、生成した画面データを通信部105より端末装置500へ送信する(ステップS903)。なお、粉体処理装置4Aが稼働しているときに端末装置500からアクセスを受付けた場合、制御部101は、図19に示すフローチャートのステップS803以降の処理を実行すればよい。 When the control unit 101 of the control device 100 receives access from the terminal device 500 when the powder processing device 4A is not operating, the control unit 101 generates screen data of a processing type selection screen for selecting the powder processing type. (Step S902), the generated screen data is transmitted from the communication unit 105 to the terminal device 500 (step S903). When the access is received from the terminal device 500 while the powder processing device 4A is operating, the control unit 101 may execute the processes after step S803 of the flowchart shown in FIG.
 端末装置500の制御部501は、制御装置100から送信される処理種別選択画面の画面データを通信部503より受信する(ステップS904)。制御部501は、受信した画面データに基づき処理種別選択画面を表示部505に表示し(ステップS905)、種別選択を受付ける(ステップS906)。図23は処理種別選択画面の一例を示す模式図である。この処理種別選択画面は、ユーザインタフェースのコンポーネントとして配置されるラジオボタンにより、乾燥処理、混合処理、複合化処理、表面処理、及び造粒処理の中から、ユーザが希望する粉体処理の種別選択を受付けるように構成されている。制御部501は、種別選択を受付けた場合、選択結果を通信部503より制御装置100へ送信する(ステップS907)。 The control unit 501 of the terminal device 500 receives the screen data of the processing type selection screen transmitted from the control device 100 from the communication unit 503 (step S904). The control unit 501 displays the processing type selection screen on the display unit 505 based on the received screen data (step S905), and accepts the type selection (step S906). FIG. 23 is a schematic diagram showing an example of the processing type selection screen. On this processing type selection screen, a radio button arranged as a component of the user interface is used to select the type of powder processing desired by the user from among drying processing, mixing processing, compounding processing, surface treatment, and granulation processing. Is configured to accept. When the control unit 501 accepts the type selection, the control unit 501 transmits the selection result from the communication unit 503 to the control device 100 (step S907).
 制御装置100の制御部101は、端末装置500から送信される選択結果を通信部503より受信する(ステップS908)。選択結果を受信した後、制御部101は、図19に示すフローチャートのステップS802以降の処理を実行する。すなわち、制御部101は、ユーザにより選択された粉体処理の種別に応じて、目標値の入力を受付ける処理、受付けた目標値を対応する学習モデル210(又は学習モデル220~250)に入力し、演算結果を取得する処理、取得した演算結果に基づき粉体処理システム1の動作を制御する処理等を実行すればよい。 The control unit 101 of the control device 100 receives the selection result transmitted from the terminal device 500 from the communication unit 503 (step S908). After receiving the selection result, the control unit 101 executes the processes after step S802 of the flowchart shown in FIG. That is, the control unit 101 inputs the input of the target value to the corresponding learning model 210 (or learning models 220 to 250) according to the type of the powder processing selected by the user. , The process of acquiring the calculation result, the process of controlling the operation of the powder processing system 1 based on the acquired calculation result, and the like may be executed.
 以上のように、実施の形態9では、ユーザにより選択された粉体処理の種別に応じて、学習モデル210~250の何れかを選択し、選択した学習モデル210(又は学習モデル220~250)の演算結果を利用して、粉体処理システム1の動作を制御することができる。 As described above, in the ninth embodiment, any of the learning models 210 to 250 is selected according to the type of powder processing selected by the user, and the selected learning model 210 (or learning models 220 to 250) is selected. The operation of the powder processing system 1 can be controlled by using the calculation result of.
(実施の形態10)
 実施の形態10では、粉体原料の種別に応じて学習モデル210を生成する構成について説明する。
 なお、粉体処理システム1の全体構成、及び粉体処理システム1における各装置の構成については実施の形態1と同様であるため、その説明を省略することとする。
(Embodiment 10)
In the tenth embodiment, a configuration for generating the learning model 210 according to the type of the powder raw material will be described.
Since the overall configuration of the powder processing system 1 and the configuration of each device in the powder processing system 1 are the same as those in the first embodiment, the description thereof will be omitted.
 実施の形態10に係る制御装置100は、粉体原料の種別毎に、粉体処理装置4Aの動作状態を示す計測データと、粉体処理装置4Aから得られる粉体の粉体データとを収集する。図24は実施の形態10におけるデータの収集例を示す概念図である。制御装置100の制御部101は、入力部103を通じて、粉体処理装置4Aの動作状態を示す計測データと、粉体処理装置4Aから得られる粉体に関する粉体データとを取得する。制御部101が取得する計測データ及び粉体データは実施の形態1と同様である。制御部101は、取得した計測データ及び粉体データをタイムスタンプや粉体原料の種別に関する情報と共に記憶部102に記憶させる。ここで、粉体原料の種別に関する情報とは、粉体原料の種別名を示す文字情報であってもよく、粉体原料の種別を特定できる任意の識別子であってもよい。粉体原料の種別に関する情報は、データの収集前若しくはデータの収集後に操作部106を通じて受付ければよい。 The control device 100 according to the tenth embodiment collects measurement data indicating the operating state of the powder processing device 4A and powder data of the powder obtained from the powder processing device 4A for each type of powder raw material. To do. FIG. 24 is a conceptual diagram showing an example of collecting data according to the tenth embodiment. The control unit 101 of the control device 100 acquires measurement data indicating the operating state of the powder processing device 4A and powder data related to the powder obtained from the powder processing device 4A through the input unit 103. The measurement data and powder data acquired by the control unit 101 are the same as those in the first embodiment. The control unit 101 stores the acquired measurement data and powder data in the storage unit 102 together with the time stamp and information on the type of the powder raw material. Here, the information regarding the type of the powder raw material may be character information indicating the type name of the powder raw material, or may be an arbitrary identifier that can specify the type of the powder raw material. Information on the type of powder raw material may be received through the operation unit 106 before data collection or after data collection.
 制御部101は、収集した上記データを教師データに用いて、粉体処理装置4Aから得られる粉体の湿分と、粉体処理装置4Aに関する制御パラメータとの関係を学習し、上述したような学習モデル210を生成する。図24の例は、水酸化マグネシウム、コバルト酸リチウム、リン酸カルシウムといった粉体原料の種別毎にデータを収集し、記憶部102に記憶させた状態を示している。 The control unit 101 uses the collected data as teacher data to learn the relationship between the moisture content of the powder obtained from the powder processing apparatus 4A and the control parameters related to the powder processing apparatus 4A, as described above. Generate the training model 210. The example of FIG. 24 shows a state in which data is collected for each type of powder raw material such as magnesium hydroxide, lithium cobalt oxide, and calcium phosphate and stored in the storage unit 102.
 制御部101は、粉体原料の種別毎に収集したデータを教師データに用いて、学習モデル210を生成する。 The control unit 101 uses the data collected for each type of powder raw material as the teacher data to generate the learning model 210.
 図25は実施の形態10に係る学習モデル210の生成手順を説明するフローチャートである。制御装置100の制御部101は、学習モデル210の生成に先立ち、粉体原料の種別に関する情報を受付ける(ステップS1001)。制御部101は、例えば、粉体原料の種別をユーザに問い合わせる画面を表示部107に表示させ、表示させた画面を通じて、粉体原料の種別に関する情報を受付けることができる。また、制御部101は、粉体原料の種別に関する問い合わせを通信部105より端末装置500へ送信し、端末装置500からの返信を受信することにより、粉体原料の種別に関する情報を受付けてもよい。 FIG. 25 is a flowchart illustrating a procedure for generating the learning model 210 according to the tenth embodiment. The control unit 101 of the control device 100 receives information regarding the type of the powder raw material prior to the generation of the learning model 210 (step S1001). For example, the control unit 101 displays a screen for inquiring the user about the type of the powder raw material on the display unit 107, and can receive information on the type of the powder raw material through the displayed screen. Further, the control unit 101 may receive information on the type of the powder raw material by transmitting an inquiry about the type of the powder raw material from the communication unit 105 to the terminal device 500 and receiving a reply from the terminal device 500. ..
 次いで、制御部101は、ステップS1001で受付けた種別に関連付けて記憶されているデータを記憶部102から読込む(ステップS1002)。制御部101は、読込んだデータから、教師データに用いるデータを選択する(ステップS1003)。すなわち、制御部101は、読込んだデータから、熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、乾燥処理の処理時間の計測値と、そのときに得られた粉体の湿分の値とを一組だけ選択する。 Next, the control unit 101 reads the data stored in association with the type received in step S1001 from the storage unit 102 (step S1002). The control unit 101 selects the data to be used for the teacher data from the read data (step S1003). That is, from the read data, the control unit 101 determines the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the pressure in the casing 410. Select only one set of the measured value of the processing time of the drying process and the value of the wet content of the powder obtained at that time.
 次いで、制御部101は、選択した教師データに含まれる湿分のデータを学習モデル210へ入力し(ステップS1004)、学習モデル210による演算を実行する(ステップS1005)。すなわち、制御部101は、学習モデル210の入力層211を構成するノードに湿分の値を入力し、中間層212A,212Bにおいてノード間の重み及びバイアスを用いた演算を行い、演算結果を出力層213のノードから出力する処理を行う。なお、学習が開始される前の初期段階では、学習モデル210を記述する定義情報には初期値が与えられているものとする。 Next, the control unit 101 inputs the wet content data included in the selected teacher data into the learning model 210 (step S1004), and executes the calculation by the learning model 210 (step S1005). That is, the control unit 101 inputs the moisture value to the nodes constituting the input layer 211 of the learning model 210, performs calculations using the weights and biases between the nodes in the intermediate layers 212A and 212B, and outputs the calculation results. The process of outputting from the node of layer 213 is performed. In the initial stage before the start of learning, it is assumed that the definition information describing the learning model 210 is given an initial value.
 次いで、制御部101は、ステップS1005で得られた演算結果を評価し(ステップS1006)、学習が完了したか否かを判断する(ステップS1007)。具体的には、制御部101は、ステップS1005で得られた演算結果と教師データとに基づく誤差関数(目的関数、損失関数、コスト関数ともいう)を用いて、演算結果を評価することができる。制御部101は、最急降下法などの勾配降下法により誤差関数を最適化(最小化又は最大化)する過程で、誤差関数が閾値以下(又は閾値以上)となった場合、学習が完了したと判断する。なお、過学習の問題を避けるために、交差検定、早期打ち切りなどの手法を取り入れ、適切なタイミングにて学習を終了させてもよい。 Next, the control unit 101 evaluates the calculation result obtained in step S1005 (step S1006), and determines whether or not the learning is completed (step S1007). Specifically, the control unit 101 can evaluate the calculation result by using an error function (also referred to as an objective function, a loss function, or a cost function) based on the calculation result obtained in step S1005 and the teacher data. .. When the error function becomes less than or equal to the threshold value (or more than the threshold value) in the process of optimizing (minimizing or maximizing) the error function by the gradient descent method such as the steepest descent method, the control unit 101 determines that the learning is completed. to decide. In order to avoid the problem of overfitting, techniques such as cross-validation and early stopping may be adopted to end learning at an appropriate timing.
 学習が完了していないと判断した場合(S1007:NO)、制御部101は、学習モデル210のノード間の重み及びバイアスを更新して(ステップS1008)、処理をステップS1003へ戻し、別の教師データを用いた学習を継続する。制御部101は、学習モデル210の出力層213から入力層211に向かって、ノード間の重み及びバイアスを順次更新する誤差逆伝播法を用いて、各ノード間の重み及びバイアスを更新することができる。 When it is determined that the learning is not completed (S1007: NO), the control unit 101 updates the weights and biases between the nodes of the learning model 210 (step S1008), returns the process to step S1003, and another teacher. Continue learning with the data. The control unit 101 may update the weights and biases between the nodes by using an error backpropagation method that sequentially updates the weights and biases between the nodes from the output layer 213 of the learning model 210 toward the input layer 211. it can.
 学習が完了したと判断した場合(S1007:YES)、制御部101は、粉体原料の種別に関する情報に関連付けて、学習済みの学習モデル210を記憶部102に記憶させ(ステップS1009)、本フローチャートによる処理を終了する。 When it is determined that the learning is completed (S1007: YES), the control unit 101 stores the learned learning model 210 in the storage unit 102 in association with the information regarding the type of the powder raw material (step S1009), and this flowchart. Ends the processing by.
 以上のように、実施の形態10に係る制御装置100は、粉体原料の種別に応じた学習モデル210を生成できる。実施の形態10における学習モデル210は、実施の形態1と同様であるが、学習モデル210に代えて、実施の形態2~5において説明した学習モデル220~250を粉体原料の種別毎に生成してもよい。 As described above, the control device 100 according to the tenth embodiment can generate the learning model 210 according to the type of the powder raw material. The learning model 210 in the tenth embodiment is the same as that in the first embodiment, but instead of the learning model 210, the learning models 220 to 250 described in the second to fifth embodiments are generated for each type of powder raw material. You may.
 なお、本実施の形態では、制御装置100において学習モデル210を生成する構成としたが、学習モデル210を生成する外部サーバ(不図示)を設け、外部サーバにて学習モデル210を生成してもよい。この場合、制御装置100は、通信等により、外部サーバから学習モデル210を取得し、取得した学習モデル210を記憶部102に記憶させればよい。 In the present embodiment, the control device 100 is configured to generate the learning model 210, but even if an external server (not shown) for generating the learning model 210 is provided and the learning model 210 is generated by the external server. Good. In this case, the control device 100 may acquire the learning model 210 from the external server by communication or the like, and store the acquired learning model 210 in the storage unit 102.
 図26は制御装置100による制御手順を説明するフローチャートである。制御装置100の制御部101は、操作部106を通じて、粉体原料の種別に関する情報、及びユーザが所望する粉体の目標値(湿分)を受付ける(ステップS1221)。 FIG. 26 is a flowchart illustrating a control procedure by the control device 100. The control unit 101 of the control device 100 receives information on the type of powder raw material and a target value (moisture content) of the powder desired by the user through the operation unit 106 (step S1221).
 次いで、制御部101は、受付けた粉体原料の種別に応じた学習モデル210を記憶部102から読み込む(ステップS1222)。制御部101は、受付けた湿分のデータをステップS1222で読み込んだ学習モデル210の入力層211へ入力し、学習モデル210による演算を実行する(ステップS1223)。このとき、制御部101は、受付けた湿分のデータを入力層211のノードに与え、中間層212A,212Bによる演算を実行する。学習モデル210の出力層213は、熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、及び乾燥処理の処理時間を制御する制御パラメータに関する演算結果を出力する。 Next, the control unit 101 reads the learning model 210 according to the type of the received powder raw material from the storage unit 102 (step S1222). The control unit 101 inputs the received moisture data to the input layer 211 of the learning model 210 read in step S1222, and executes the calculation by the learning model 210 (step S1223). At this time, the control unit 101 gives the received moisture data to the node of the input layer 211, and executes the calculation by the intermediate layers 212A and 212B. The output layer 213 of the learning model 210 is used for the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the drying process. Outputs the calculation result related to the control parameters that control the processing time.
 次いで、制御部101は、学習モデル210から演算結果を取得し(ステップS1224)、制御に用いる制御パラメータを決定する(ステップS1225)。制御部101は、演算結果として出力される確率に基づき、熱媒の温度及び流量、粉体原料の供給量又は供給速度、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、乾燥処理の処理時間の組み合わせを決定すればよい。 Next, the control unit 101 acquires the calculation result from the learning model 210 (step S1224) and determines the control parameters used for control (step S1225). Based on the probability of being output as a calculation result, the control unit 101 includes the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the inside of the casing 410. The combination of pressure and processing time for drying processing may be determined.
 次いで、制御部101は、ステップS1225において決定した制御パラメータに基づき、制御を実行する(ステップS1226)。すなわち、制御部101は、ケーシング410内に導入される熱媒の温度及び流量がそれぞれステップS1225で決定した値となるように、熱風発生機3の動作を制御する制御指令を生成し、生成した制御指令を出力部104を通じて熱風発生機3へ出力する。同様に、制御部101は、粉体原料の供給量、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410内の圧力、乾燥処理の処理時間がそれぞれステップS1225で決定した値となるように、原料供給機2、粉砕ロータ413、分級ロータ415、ブロワ7、粉体処理装置4Aの動作を制御する制御指令を生成し、生成した制御指令を出力部104を通じて各装置へ出力する。 Next, the control unit 101 executes control based on the control parameters determined in step S1225 (step S1226). That is, the control unit 101 generates and generates a control command for controlling the operation of the hot air generator 3 so that the temperature and the flow rate of the heat medium introduced into the casing 410 become the values determined in step S1225, respectively. The control command is output to the hot air generator 3 through the output unit 104. Similarly, the control unit 101 has values determined in step S1225 for each of the supply amount of the powder raw material, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the pressure in the casing 410, and the processing time of the drying process. As described above, a control command for controlling the operation of the raw material supply machine 2, the crushing rotor 413, the classification rotor 415, the blower 7, and the powder processing device 4A is generated, and the generated control command is output to each device through the output unit 104.
 以上のように、本実施の形態に係る制御装置100は、粉体原料の種別に応じた学習モデル210を用いて、制御パラメータを決定することができる。制御装置100は、所望の粒子径を有する粉体が得られるように、決定した制御パラメータに基づく制御を実行することができる。 As described above, the control device 100 according to the present embodiment can determine the control parameters by using the learning model 210 according to the type of the powder raw material. The control device 100 can perform control based on the determined control parameters so that a powder having a desired particle size can be obtained.
 なお、本実施の形態では、粉体原料の種別毎に生成した学習モデル210を用いて、制御パラメータを決定する構成としたが、実施の形態2~5において説明した学習モデル220~250を粉体原料の種別毎に生成し、生成した学習モデル220~250を用いて、制御パラメータを決定する構成としてもよい。 In the present embodiment, the control parameters are determined using the learning model 210 generated for each type of powder raw material. However, the learning models 220 to 250 described in the second to fifth embodiments are used as powder. The control parameters may be determined by using the generated learning models 220 to 250, which are generated for each type of body material.
 以上のように、本実施の形態に係る制御装置100は、粉体原料の種別に応じた学習モデル210を用いて、制御パラメータを決定することができる。制御装置100は、所望の湿分を有する粉体が得られるように、決定した制御パラメータに基づく制御を実行することができる。 As described above, the control device 100 according to the present embodiment can determine the control parameters by using the learning model 210 according to the type of the powder raw material. The control device 100 can perform control based on the determined control parameters so that a powder having a desired moisture content is obtained.
 今回開示された実施形態は、全ての点において例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is indicated by the scope of claims, not the meaning described above, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 例えば、実施の形態1~5では、粉体処理システム1がそれぞれ粉体処理装置4A~4Eを1つずつ含む構成としたが、粉体処理システム1は、複数の粉体処理装置4A~4Eを組み合わせて構築されるものであってもよい。 For example, in the first to fifth embodiments, the powder processing system 1 includes one powder processing device 4A to 4E, respectively, but the powder processing system 1 includes a plurality of powder processing devices 4A to 4E. It may be constructed by combining.
 1…粉体処理システム、2…原料供給機、3…熱風発生機、4A~4E…粉体処理装置、5…サイクロン、6…集塵機、7…ブロワ、8…製品タンク、9…集塵タンク、410…ケーシング、411…原料投入口、412…気体導入口、413…粉砕ロータ、414…ガイドリング、415…分級ロータ、416…粉体取出口、S1…重量センサ、S2…粒子径センサ、S3…流量センサ、S4…温度センサ、S5…湿分センサ、S6…圧力センサ、S7…回転速度センサ、S8…回転速度センサ、100…制御装置、101…制御部、102…記憶部、103…入力部、104…出力部、105…通信部、106…操作部、107…表示部、413M…粉砕モータ、415M…分級モータ、500…端末装置、501…制御部、502…記憶部、503…通信部、504…操作部、505…表示部 1 ... Powder processing system, 2 ... Raw material supply machine, 3 ... Hot air generator, 4A-4E ... Powder processing device, 5 ... Cyclone, 6 ... Dust collector, 7 ... Blower, 8 ... Product tank, 9 ... Dust collection tank , 410 ... Casing, 411 ... Raw material input port, 412 ... Gas introduction port, 413 ... Crushing rotor, 414 ... Guide ring, 415 ... Classification rotor, 416 ... Powder outlet, S1 ... Weight sensor, S2 ... Particle size sensor, S3 ... Flow sensor, S4 ... Temperature sensor, S5 ... Moisture sensor, S6 ... Pressure sensor, S7 ... Rotation speed sensor, S8 ... Rotation speed sensor, 100 ... Control device, 101 ... Control unit, 102 ... Storage unit, 103 ... Input unit, 104 ... Output unit, 105 ... Communication unit, 106 ... Operation unit, 107 ... Display unit, 413M ... Grinding motor, 415M ... Classification motor, 500 ... Terminal device, 501 ... Control unit, 502 ... Storage unit, 503 ... Communication unit, 504 ... Operation unit, 505 ... Display unit

Claims (33)

  1.  コンピュータを用いて、
     乾燥処理、混合処理、複合化処理、表面処理、及び造粒処理の何れか1つを含む粉体処理を行う粉体処理装置に関して、前記粉体処理装置の動作状態を示す計測データと、前記粉体処理装置から得られる粉体に関する粉体データとを取得し、
     取得した計測データと粉体データとを教師データに用いて、ユーザが所望する粉体についての目標値が入力された場合、前記粉体処理装置に対する制御パラメータについての演算結果を出力するよう構成された学習モデルを生成する
     学習モデルの生成方法。
    Using a computer
    With respect to a powder processing apparatus that performs powder treatment including any one of drying treatment, mixing treatment, compounding treatment, surface treatment, and granulation treatment, measurement data showing an operating state of the powder treatment device and the above-mentioned Obtain powder data related to powder obtained from powder processing equipment,
    Using the acquired measurement data and powder data as teacher data, when a target value for the powder desired by the user is input, it is configured to output the calculation result for the control parameters for the powder processing apparatus. How to generate a learning model.
  2.  前記目標値は、ユーザが所望する粉体の湿分であり、
     前記乾燥処理により得られる粉体について計測された湿分を含む粉体データを教師データに用いて、前記学習モデルを生成する
     請求項1に記載の学習モデルの生成方法。
    The target value is the moisture content of the powder desired by the user.
    The method for generating a learning model according to claim 1, wherein the learning model is generated by using the powder data containing the wet content measured for the powder obtained by the drying treatment as the teacher data.
  3.  前記目標値は、ユーザが所望する粉体の単位時間あたりの収量を更に含み、
     前記乾燥処理により得られる粉体について計測された単位時間あたりの収量を含む粉体データを教師データに用いて、前記学習モデルを生成する
     請求項2に記載の学習モデルの生成方法。
    The target value further includes the yield of the powder desired by the user per unit time.
    The method for generating a learning model according to claim 2, wherein the learning model is generated by using the powder data including the yield per unit time measured for the powder obtained by the drying treatment as the teacher data.
  4.  前記計測データは、熱媒の温度及び流量、粉体原料の供給量又は供給速度、前記粉体原料を攪拌するための回転体の回転速度、前記粉体原料を処理する処理室内の圧力、並びに、前記乾燥処理の処理時間を含み、
     前記目標値が入力された場合、前記熱媒の温度及び流量、前記粉体原料の供給量又は供給速度、前記回転体の回転速度、前記処理室内の圧力、並びに、前記乾燥処理の処理時間を含む制御パラメータについての演算結果を出力するよう構成された学習モデルを生成する
     請求項2又は請求項3に記載の学習モデルの生成方法。
    The measurement data includes the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the rotating body for stirring the powder raw material, the pressure in the processing chamber for processing the powder raw material, and the pressure in the processing chamber. , Including the processing time of the drying process
    When the target value is input, the temperature and flow rate of the heat medium, the supply amount or supply speed of the powder raw material, the rotation speed of the rotating body, the pressure in the processing chamber, and the processing time of the drying treatment are displayed. The method for generating a learning model according to claim 2 or 3, wherein a learning model configured to output a calculation result for the including control parameters is generated.
  5.  前記計測データは、前記粉体を分級するための回転体の回転速度を更に含み、
     前記目標値が入力された場合、前記粉体を分級するための回転体の回転速度を更に含む制御パラメータについての演算結果を出力するよう構成された学習モデルを生成する
     請求項4に記載の学習モデルの生成方法。
    The measurement data further includes the rotation speed of the rotating body for classifying the powder.
    The learning according to claim 4, wherein when the target value is input, a learning model configured to output a calculation result for a control parameter including a rotation speed of a rotating body for classifying the powder is generated. How to generate a model.
  6.  前記目標値は、ユーザが所望する粉体の混合度であり、
     前記混合処理によって得られる粉体の混合度を含む粉体データを教師データに用いて、前記学習モデルを生成する
     請求項1に記載の学習モデルの生成方法。
    The target value is the mixing degree of the powder desired by the user.
    The method for generating a learning model according to claim 1, wherein the learning model is generated by using the powder data including the mixing degree of the powder obtained by the mixing process as the teacher data.
  7.  前記目標値は、ユーザが所望する粉体の濃度又は湿分を更に含み、
     前記混合処理により得られる粉体について計測された濃度又は湿分を含む粉体データを教師データに用いて、前記学習モデルを生成する
     請求項6に記載の学習モデルの生成方法。
    The target value further includes the concentration or moisture content of the powder desired by the user.
    The method for generating a learning model according to claim 6, wherein the learning model is generated by using the powder data including the concentration or the moisture measured for the powder obtained by the mixing treatment as the teacher data.
  8.  前記計測データは、粉体原料の供給量又は供給速度、前記粉体原料を攪拌するための回転体の回転速度、前記粉体処理装置に供給する流体の供給量又は供給速度、流量又は圧力、並びに、前記混合処理の処理時間を含み、
     前記目標値が入力された場合、前記粉体原料の供給量又は供給速度、前記回転体の回転速度、前記流体の供給量又は供給速度、並びに、前記混合処理の処理時間を含む制御パラメータについての演算結果を出力するよう構成された学習モデルを生成する
     請求項6又は請求項7に記載の学習モデルの生成方法。
    The measurement data includes the supply amount or supply speed of the powder raw material, the rotation speed of the rotating body for stirring the powder raw material, the supply amount or supply speed of the fluid supplied to the powder processing apparatus, the flow rate or the pressure. In addition, the processing time of the mixing process is included.
    When the target value is input, the control parameters including the supply amount or supply speed of the powder raw material, the rotation speed of the rotating body, the supply amount or supply speed of the fluid, and the processing time of the mixing process. The method for generating a learning model according to claim 6 or 7, wherein a learning model configured to output a calculation result is generated.
  9.  前記目標値は、ユーザが所望する粉体の複合化度であり、
     前記複合化処理により得られる粉体について計測された複合化度を含む粉体データを教師データに用いて、前記学習モデルを生成する
     請求項1に記載の学習モデルの生成方法。
    The target value is the degree of compounding of the powder desired by the user.
    The method for generating a learning model according to claim 1, wherein the learning model is generated by using the powder data including the degree of compounding measured for the powder obtained by the compounding process as the teacher data.
  10.  前記目標値は、ユーザが所望する粉体の導電率、熱伝導率又は透過率を更に含み、
     前記複合化処理により得られる粉体について計測された導電率、熱伝導率又は透過率を含む粉体データを教師データに用いて、前記学習モデルを生成する
     請求項9に記載の学習モデルの生成方法。
    The target value further includes the conductivity, thermal conductivity or transmittance of the powder desired by the user.
    The generation of the learning model according to claim 9, wherein the learning model is generated by using the powder data including the conductivity, thermal conductivity or transmittance measured for the powder obtained by the compounding treatment as the teacher data. Method.
  11.  前記計測データは、粉体原料の供給量又は供給速度、前記粉体原料を攪拌するための回転体の回転速度、前記複合化処理の処理時間、並びに、前記粉体処理装置の負荷動力を含み、
     前記目標値が入力された場合、前記粉体原料の供給量又は供給速度、前記回転体の回転速度、前記複合化処理の処理時間、並びに、前記粉体処理装置の負荷動力を含む制御パラメータについての演算結果を出力するように構成された学習モデルを生成する
     請求項9又は請求項10に記載の学習モデルの生成方法。
    The measurement data includes the supply amount or supply speed of the powder raw material, the rotation speed of the rotating body for stirring the powder raw material, the processing time of the compounding process, and the load power of the powder processing device. ,
    When the target value is input, control parameters including the supply amount or supply speed of the powder raw material, the rotation speed of the rotating body, the processing time of the compounding process, and the load power of the powder processing apparatus. The method for generating a learning model according to claim 9 or 10, wherein a learning model configured to output the calculation result of the above is generated.
  12.  前記目標値は、ユーザが所望する粉体の円形度であり、
     前記表面処理により得られる粉体について計測された円形度を含む粉体データを教師データに用いて、前記学習モデルを生成する
     請求項1に記載の学習モデルの生成方法。
    The target value is the circularity of the powder desired by the user.
    The method for generating a learning model according to claim 1, wherein the learning model is generated by using the powder data including the circularity measured for the powder obtained by the surface treatment as the teacher data.
  13.  前記目標値は、ユーザが所望する粉体の密度又は流動性を更に含み、
     前記表面処理により得られる粉体について計測された密度又は流動性を含む粉体データを教師データに用いて、前記学習モデルを生成する
     請求項12に記載の学習モデルの生成方法。
    The target value further includes the density or fluidity of the powder desired by the user.
    The method for generating a learning model according to claim 12, wherein the learning model is generated by using the powder data including the density or fluidity measured for the powder obtained by the surface treatment as the teacher data.
  14.  前記計測データは、粉体原料の供給量又は供給速度、前記粉体原料を攪拌するための回転体の回転速度、前記粉体を分級するための回転体の回転速度、前記表面処理の処理時間、並びに、前記粉体処理装置の負荷動力を含み、
     前記目標値が入力された場合、前記粉体原料の供給量又は供給速度、攪拌用及び分級用の前記回転体の回転速度、前記表面処理の処理時間、並びに、前記粉体処理装置の負荷動力を含む制御パラメータについての演算結果を出力するように構成された学習モデルを生成する
     請求項12又は請求項13に記載の学習モデルの生成方法。
    The measurement data includes the supply amount or supply speed of the powder raw material, the rotation speed of the rotating body for stirring the powder raw material, the rotation speed of the rotating body for classifying the powder, and the processing time of the surface treatment. , And the load power of the powder processing apparatus.
    When the target value is input, the supply amount or supply speed of the powder raw material, the rotation speed of the rotating body for stirring and classification, the treatment time of the surface treatment, and the load power of the powder treatment apparatus. The method for generating a learning model according to claim 12 or 13, wherein a learning model configured to output a calculation result for a control parameter including the above is generated.
  15.  前記粉体処理装置を含む系内に流れる流体は、気体又は液体である
     請求項12から請求項14の何れか1つに記載の学習モデルの生成方法。
    The method for generating a learning model according to any one of claims 12 to 14, wherein the fluid flowing in the system including the powder processing apparatus is a gas or a liquid.
  16.  前記目標値は、ユーザが所望する粉体の粒子径及び形状を含み、
     前記造粒処理により得られる粉体について計測された粒子径及び形状を含む粉体データを教師データに用いて、前記学習モデルを生成する
     請求項1に記載の学習モデルの生成方法。
    The target value includes the particle size and shape of the powder desired by the user.
    The method for generating a learning model according to claim 1, wherein the learning model is generated by using powder data including the particle diameter and shape measured for the powder obtained by the granulation treatment as teacher data.
  17.  前記目標値は、ユーザが所望する粉体の密度、流動性、硬度、吸水量、又は吸油量を更に含み、
     前記造粒処理により得られる粉体について計測された密度、流動性、硬度、吸水量、又は吸油量を含む粉体データを教師データに用いて、前記学習モデルを生成する
     請求項16に記載の学習モデルの生成方法。
    The target value further includes the density, fluidity, hardness, water absorption amount, or oil absorption amount of the powder desired by the user.
    The 16th claim, wherein the learning model is generated by using the powder data including the density, fluidity, hardness, water absorption amount, or oil absorption amount measured for the powder obtained by the granulation treatment as the teacher data. How to generate a training model.
  18.  前記計測データは、粉体原料の供給量又は供給速度、前記粉体原料を攪拌するための回転体の回転速度、前記粉体原料を処理する処理室内の圧力、並びに、前記処理室に投入する添加剤の投入量を含み、
     前記目標値が入力された場合、前記粉体原料の供給量又は供給速度、前記回転体の回転速度、前記処理室内の圧力、並びに、前記処理室に投入する添加剤の投入量を含む制御パラメータについての演算結果を出力するように構成された学習モデルを生成する
     請求項16又は請求項17に記載の学習モデルの生成方法。
    The measurement data is input to the supply amount or supply speed of the powder raw material, the rotation speed of the rotating body for stirring the powder raw material, the pressure in the processing chamber for processing the powder raw material, and the processing chamber. Including the input amount of additives,
    When the target value is input, control parameters including the supply amount or supply speed of the powder raw material, the rotation speed of the rotating body, the pressure in the processing chamber, and the input amount of the additive to be charged into the processing chamber. The method for generating a learning model according to claim 16 or 17, wherein a learning model configured to output the calculation result of the above is generated.
  19.  前記計測データは、前記粉体処理装置の駆動電力若しくは駆動電流、前記粉体処理装置に供給する冷媒の流量若しくは温度、前記粉体処理装置の処理室から粉体を取り出す際の吐出・吸引流量若しくは温度、及び、前記処理室内の温度、湿度若しくは圧力の少なくとも1つを更に含み、
     前記目標値が入力された場合、前記粉体処理装置の駆動電力若しくは駆動電流、前記冷媒の流量若しくは温度、前記吐出・吸引流量若しくは温度、又は、前記処理室内の温度、湿度若しくは圧力の少なくとも1つを更に含む制御パラメータについての演算結果を出力するよう構成された学習モデルを生成する
     請求項1から請求項18の何れか1つに記載の学習モデルの生成方法。
    The measurement data includes the driving power or driving current of the powder processing apparatus, the flow rate or temperature of the refrigerant supplied to the powder processing apparatus, and the discharge / suction flow rate when the powder is taken out from the processing chamber of the powder processing apparatus. Alternatively, the temperature and at least one of the temperature, humidity or pressure in the processing chamber are further included.
    When the target value is input, at least one of the driving power or driving current of the powder processing apparatus, the flow rate or temperature of the refrigerant, the discharge / suction flow rate or temperature, or the temperature, humidity or pressure in the processing chamber. The method for generating a learning model according to any one of claims 1 to 18, wherein a learning model configured to output a calculation result for a control parameter including one is generated.
  20.  前記教師データは、前記粉体処理に用いた粉体原料の原料データを更に含み、
     前記原料データを更に含む教師データを用いて、前記目標値と、前記粉体処理装置に供給する粉体原料の原料データとが入力された場合、前記制御パラメータについての演算結果を出力するよう構成された学習モデルを生成する
     請求項1から請求項19の何れか1つに記載の学習モデルの生成方法。
    The teacher data further includes raw material data of the powder raw material used in the powder processing.
    When the target value and the raw material data of the powder raw material to be supplied to the powder processing apparatus are input by using the teacher data including the raw material data, the calculation result for the control parameter is output. The method for generating a learning model according to any one of claims 1 to 19, wherein the learning model is generated.
  21.  前記原料データは、前記粉体原料の湿分、温度、密度、粒子径、円形度、混合度、流動性、BET(Brunauer - Emmett - Teller)値、NIR(Near Infrared)、XRD(X-ray Diffraction)、TG-DTA(Thermogravimetry - Differential Thermal Analysis)、MS(Mass Spectrometry)、SEM(Scanning Electron Microscope)、FE-SEM(Field Emission - SEM)、及びTEM(Transmission Electron Microscope)のデータの少なくとも1つを含む
     請求項20に記載の学習モデルの生成方法。
    The raw material data includes moisture, temperature, density, particle size, circularity, mixing degree, fluidity, BET (Brunauer --Emmett --Teller) value, NIR (Near Infrared), and XRD (X-ray) of the powder raw material. At least one of Diffraction), TG-DTA (Thermogravimetry-Differential Thermal Analysis), MS (Mass Spectrometry), SEM (Scanning Electron Microscope), FE-SEM (Field Emission-SEM), and TEM (Transmission Electron Microscope) data. 20. The method of generating a learning model according to claim 20.
  22.  前記教師データは、前記粉体処理を実行する際の環境データを更に含み、
     前記環境データを更に含む教師データを用いて、前記目標値と、前記粉体処理を実行する際の環境データとが入力された場合、前記制御パラメータについての演算結果を出力するよう構成された学習モデルを生成する
     請求項1から請求項21の何れか1つに記載の学習モデルの生成方法。
    The teacher data further includes environmental data when performing the powder processing.
    Learning configured to output the calculation result for the control parameter when the target value and the environment data for executing the powder processing are input by using the teacher data including the environment data. The method for generating a learning model according to any one of claims 1 to 21.
  23.  教師データに用いる計測データと粉体データとを再取得し、
     再取得した前記計測データと前記粉体データとを教師データに用いて、前記学習モデルを再学習する
     請求項1から請求項22の何れか1つに記載の学習モデルの生成方法。
    Re-acquire the measurement data and powder data used for the teacher data,
    The method for generating a learning model according to any one of claims 1 to 22, wherein the re-acquired measurement data and the powder data are used as teacher data to relearn the learning model.
  24.  コンピュータに、
     乾燥処理、混合処理、複合化処理、表面処理、及び造粒処理の何れか1つを含む粉体処理を行う粉体処理装置に関して、前記粉体処理装置の動作状態を示す計測データと、前記粉体処理装置から得られる粉体に関する粉体データとを取得し、
     取得した計測データと粉体データとを教師データに用いて、ユーザが所望する粉体についての目標値が入力された場合、前記粉体処理装置に対する制御パラメータについての演算結果を出力するよう構成された学習モデルを生成する
     処理を実行させるためのコンピュータプログラム。
    On the computer
    With respect to a powder processing apparatus that performs powder treatment including any one of drying treatment, mixing treatment, compounding treatment, surface treatment, and granulation treatment, measurement data showing an operating state of the powder treatment device and the above-mentioned Obtain powder data related to powder obtained from powder processing equipment,
    Using the acquired measurement data and powder data as training data, when a target value for the powder desired by the user is input, it is configured to output the calculation result for the control parameters for the powder processing apparatus. A computer program for executing the process of generating a learning model.
  25.  ユーザが所望する粉体についての目標値が入力される入力層、
     乾燥処理、混合処理、複合化処理、表面処理、及び造粒処理の何れか1つを含む粉体処理を行う粉体処理装置に対する制御パラメータについての演算結果を出力する出力層、及び
     前記粉体処理装置から得られる粉体に関する粉体データと、前記粉体処理装置の動作状態を示す計測データとを教師データに用いて、前記入力層に入力される目標値と、前記出力層が出力する演算結果との関係を学習してある中間層
     を備え、
     前記入力層にユーザが所望する粉体についての目標値が入力された場合、前記中間層にて演算し、前記制御パラメータについての演算結果を出力するようコンピュータを機能させる
     学習モデル。
    Input layer, where the target value for the powder desired by the user is input
    An output layer that outputs calculation results for control parameters for a powder processing apparatus that performs powder processing including any one of drying treatment, mixing treatment, compounding treatment, surface treatment, and granulation treatment, and the powder. Using the powder data related to the powder obtained from the processing apparatus and the measurement data indicating the operating state of the powder processing apparatus as the teacher data, the target value input to the input layer and the output layer output. It has an intermediate layer that has learned the relationship with the calculation result.
    A learning model in which, when a target value for a powder desired by a user is input to the input layer, a calculation is performed in the intermediate layer and the computer functions to output a calculation result for the control parameter.
  26.  ユーザが所望する粉体についての目標値を受付ける受付部と、
     乾燥処理、混合処理、複合化処理、表面処理、及び造粒処理の何れか1つを含む粉体処理を行う粉体処理装置から得られる粉体に関する粉体データと、前記粉体処理装置の動作状態を示す計測データとを教師データに用いて学習してあり、前記受付部にて受付けた目標値を入力した場合、前記粉体処理装置に対する制御パラメータについての演算結果を出力するように構成された学習モデルと、
     前記受付部にて受付けた目標値を前記学習モデルへ入力し、前記学習モデルによる演算を実行する演算処理部と、
     前記学習モデルによる演算結果に基づき、前記粉体処理装置に関する動作を制御する制御部と
     を備える制御装置。
    A reception unit that accepts target values for the powder desired by the user,
    Powder data related to powder obtained from a powder treatment apparatus that performs powder treatment including any one of drying treatment, mixing treatment, compounding treatment, surface treatment, and granulation treatment, and the powder treatment apparatus. It is configured to output the calculation result of the control parameters for the powder processing device when the target value received by the reception unit is input after learning using the measurement data indicating the operating state as the teacher data. With the learning model
    An arithmetic processing unit that inputs the target value received by the reception unit into the learning model and executes an operation by the learning model.
    A control device including a control unit that controls operations related to the powder processing device based on the calculation result of the learning model.
  27.  前記粉体処理装置が実行する粉体処理の種別毎に前記学習モデルを備え、
     前記受付部は、粉体処理の種別に対する選択を受付け、
     前記演算処理部は、前記受付部により受付けた粉体処理の種別に対応した学習モデルを選択し、選択した学習モデルへ前記目標値を入力することによって前記学習モデルによる演算を実行する
     請求項26に記載の制御装置。
    The learning model is provided for each type of powder processing executed by the powder processing apparatus.
    The reception section accepts selections for the type of powder processing,
    The calculation processing unit selects a learning model corresponding to the type of powder processing received by the reception unit, and executes the calculation by the learning model by inputting the target value into the selected learning model. The control device described in.
  28.  粉体原料の種別毎に前記学習モデルを備え、
     前記受付部は、粉体原料の種別に対する選択を受付け、
     前記演算処理部は、前記受付部により受付けた粉体原料の種別に対応した学習モデルを選択し、選択した学習モデルへ前記目標値を入力することによって前記学習モデルによる演算を実行する
     請求項26に記載の制御装置。
    The learning model is provided for each type of powder raw material.
    The reception section accepts selections for the type of powder raw material,
    The calculation processing unit selects a learning model corresponding to the type of powder raw material received by the reception unit, and inputs the target value to the selected learning model to execute the calculation by the learning model. The control device described in.
  29.  前記目標値と前記粉体データと比較結果に応じて前記制御パラメータを調整する調整部を備え、
     前記調整部は、調整後の制御パラメータに基づき、前記粉体処理装置に関する動作を制御する
     請求項26から請求項28の何れか1つに記載の制御装置。
    It is provided with an adjustment unit that adjusts the control parameters according to the target value, the powder data, and the comparison result.
    The control device according to any one of claims 26 to 28, wherein the adjusting unit controls the operation of the powder processing device based on the adjusted control parameters.
  30.  前記目標値、前記粉体データ、前記計測データ、前記粉体処理装置の運転履歴、及び前記粉体処理装置を含む装置構成図の少なくとも1つを表示するための画面データを生成する生成部と、
     生成した画面データを出力する出力部と
     を備える請求項26から請求項29の何れか1つに記載の制御装置。
    A generator that generates screen data for displaying at least one of the target value, the powder data, the measurement data, the operation history of the powder processing apparatus, and the apparatus configuration diagram including the powder processing apparatus. ,
    The control device according to any one of claims 26 to 29, further comprising an output unit for outputting the generated screen data.
  31.  前記制御部は、前記粉体処理装置、並びに、前記粉体処理装置に接続される原料供給機、熱風発生機、サイクロン、集塵機、ブロワ、及びポンプの少なくとも1つの動作を制御する
     請求項26から請求項30の何れか1つに記載の制御装置。
    From claim 26, the control unit controls at least one operation of the powder processing apparatus and a raw material feeder, a hot air generator, a cyclone, a dust collector, a blower, and a pump connected to the powder processing apparatus. The control device according to any one of claims 30.
  32.  ユーザが所望する粉体についての目標値を受付け、
     受付けた目標値を、乾燥処理、混合処理、複合化処理、表面処理、及び造粒処理の何れか1つを含む粉体処理を行う粉体処理装置から得られる粉体に関する粉体データと、前記粉体処理装置の動作状態を示す計測データとを教師データに用いて学習してあり、前記目標値の入力に応じて、前記粉体処理装置に対する制御パラメータについての演算結果を出力するように構成された学習モデルへ入力し、
     前記学習モデルによる演算を実行し、
     前記学習モデルによる演算結果に基づき、前記粉体処理装置に関する動作を制御する
     制御方法。
    Accepting the target value for the powder desired by the user,
    Powder data related to powder obtained from a powder processing apparatus that performs powder processing including any one of drying treatment, mixing treatment, compounding treatment, surface treatment, and granulation treatment, and the received target value. The measurement data indicating the operating state of the powder processing apparatus is learned as the teacher data, and the calculation result of the control parameters for the powder processing apparatus is output in response to the input of the target value. Fill in the configured learning model and
    Execute the calculation by the learning model
    A control method for controlling the operation of the powder processing apparatus based on the calculation result of the learning model.
  33.  コンピュータに、
     ユーザが所望する粉体についての目標値を受付け、
     受付けた目標値を、乾燥処理、混合処理、複合化処理、表面処理、及び造粒処理の何れか1つを含む粉体処理を行う粉体処理装置から得られる粉体に関する粉体データと、前記粉体処理装置の動作状態を示す計測データとを教師データに用いて学習してあり、前記目標値の入力に応じて、前記粉体処理装置に対する制御パラメータについての演算結果を出力するように構成された学習モデルへ入力し、
     前記学習モデルによる演算を実行し、
     前記学習モデルによる演算結果に基づき、前記粉体処理装置に関する動作を制御する
     処理を実行させるためのコンピュータプログラム。
    On the computer
    Accepting the target value for the powder desired by the user,
    Powder data related to powder obtained from a powder processing apparatus that performs powder processing including any one of drying treatment, mixing treatment, compounding treatment, surface treatment, and granulation treatment, and the received target value. The measurement data indicating the operating state of the powder processing apparatus is learned as the teacher data, and the calculation result of the control parameters for the powder processing apparatus is output in response to the input of the target value. Fill in the configured learning model and
    Execute the calculation by the learning model
    A computer program for executing a process for controlling the operation of the powder processing apparatus based on the calculation result of the learning model.
PCT/JP2019/026150 2019-07-01 2019-07-01 Learning model generation method, computer program, learning model, control device, and control method WO2021001897A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/026150 WO2021001897A1 (en) 2019-07-01 2019-07-01 Learning model generation method, computer program, learning model, control device, and control method
JP2021529575A JP7311598B2 (en) 2019-07-01 2019-07-01 LEARNING MODEL GENERATION METHOD, COMPUTER PROGRAM, LEARNING MODEL, CONTROL DEVICE, AND CONTROL METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/026150 WO2021001897A1 (en) 2019-07-01 2019-07-01 Learning model generation method, computer program, learning model, control device, and control method

Publications (1)

Publication Number Publication Date
WO2021001897A1 true WO2021001897A1 (en) 2021-01-07

Family

ID=74100530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026150 WO2021001897A1 (en) 2019-07-01 2019-07-01 Learning model generation method, computer program, learning model, control device, and control method

Country Status (2)

Country Link
JP (1) JP7311598B2 (en)
WO (1) WO2021001897A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7408211B2 (en) 2018-08-24 2024-01-05 サイティバ・スウェーデン・アクチボラグ Surveillance systems and methods for biopharmaceutical products

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0924291A (en) * 1995-07-14 1997-01-28 Mitsubishi Chem Corp Control method for powder producing method utilizing partial classification ratio model and powder producing apparatus
JPH11104511A (en) * 1997-09-30 1999-04-20 Kawasaki Heavy Ind Ltd Crushing and pulverizing treatment system
JP2001157851A (en) * 1999-12-02 2001-06-12 Mitsubishi Heavy Ind Ltd Method and apparatus for automatic estimation of coal grindability
JP2002233787A (en) * 2001-12-20 2002-08-20 Hosokawa Micron Corp Apparatus and method for treating powder
JP2003200079A (en) * 2001-12-28 2003-07-15 Kawasaki Heavy Ind Ltd Method and apparatus for operating stone crushing plant
JP2010084976A (en) * 2008-09-30 2010-04-15 Mitsubishi Heavy Ind Ltd Device and method for drying wet powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4142318B2 (en) * 2002-03-20 2008-09-03 株式会社ホソカワ粉体技術研究所 Method for producing drug-containing composite particles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0924291A (en) * 1995-07-14 1997-01-28 Mitsubishi Chem Corp Control method for powder producing method utilizing partial classification ratio model and powder producing apparatus
JPH11104511A (en) * 1997-09-30 1999-04-20 Kawasaki Heavy Ind Ltd Crushing and pulverizing treatment system
JP2001157851A (en) * 1999-12-02 2001-06-12 Mitsubishi Heavy Ind Ltd Method and apparatus for automatic estimation of coal grindability
JP2002233787A (en) * 2001-12-20 2002-08-20 Hosokawa Micron Corp Apparatus and method for treating powder
JP2003200079A (en) * 2001-12-28 2003-07-15 Kawasaki Heavy Ind Ltd Method and apparatus for operating stone crushing plant
JP2010084976A (en) * 2008-09-30 2010-04-15 Mitsubishi Heavy Ind Ltd Device and method for drying wet powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7408211B2 (en) 2018-08-24 2024-01-05 サイティバ・スウェーデン・アクチボラグ Surveillance systems and methods for biopharmaceutical products

Also Published As

Publication number Publication date
JP7311598B2 (en) 2023-07-19
JPWO2021001897A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
CN103384563B (en) Heat treatment apparatus and method for manufacturing toner
Tang et al. Experimental analysis of wet mill load based on vibration signals of laboratory-scale ball mill shell
Chandratilleke et al. Effects of blade rake angle and gap on particle mixing in a cylindrical mixer
Hou et al. Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm
Watano Direct control of wet granulation processes by image processing system
Cleary et al. Assessing mixing characteristics of particle-mixing and granulation devices
CN103331194B (en) Method of processing nepheline syenite powder to produce an ultra-fine grain size product
WO2021001897A1 (en) Learning model generation method, computer program, learning model, control device, and control method
WO2020245915A1 (en) Learning model generation method, computer program, learning model, control device, and control method
JP4662462B2 (en) Toner manufacturing apparatus and manufacturing method
CN111047104B (en) Energy consumption optimization method of grinding system
CN110090728A (en) For controlling the method, device and equipment of feeding capacity in cement slurry Vertical Mill
CN103293912B (en) Powder filled system and powder filled method
Li et al. A combined data-driven and discrete modelling approach to predict particle flow in rotating drums
Zuo et al. Numerical study of the mixing process of binary-density particles in a bladed mixer
Metzger et al. Use of the attainable region analysis to optimize particle breakage in a ball mill
WO2020245914A1 (en) Computer program, server device, display system, and display method
JP2013147266A (en) Powder filling apparatus, powder filling system, and powder filling method
WO2021001898A1 (en) Diagnosis device, diagnosis method, and computer program for powder treatment system
JP2012206111A (en) Sieving device, sieving system, and sieving method
JP7311571B2 (en) Diagnostic device, diagnostic method, and computer program for powder processing system
JP6308847B2 (en) Granulator
Li et al. Numerical investigation of flow similarity of rice grains in friction rice mill and establishment of scale-up rule
Jin et al. Current Progress of Experimental and Simulation Work of Mixing Processes in Particulate Systems
Zhao et al. Parameter optimization of the spiral fertiliser discharger for mango orchards based on the discrete element method and genetic algorithm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529575

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936337

Country of ref document: EP

Kind code of ref document: A1