JPH0924291A - Control method for powder producing method utilizing partial classification ratio model and powder producing apparatus - Google Patents

Control method for powder producing method utilizing partial classification ratio model and powder producing apparatus

Info

Publication number
JPH0924291A
JPH0924291A JP17844395A JP17844395A JPH0924291A JP H0924291 A JPH0924291 A JP H0924291A JP 17844395 A JP17844395 A JP 17844395A JP 17844395 A JP17844395 A JP 17844395A JP H0924291 A JPH0924291 A JP H0924291A
Authority
JP
Japan
Prior art keywords
classification
ratio model
particle size
partial
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17844395A
Other languages
Japanese (ja)
Inventor
Yukio Inoguchi
幸男 井野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP17844395A priority Critical patent/JPH0924291A/en
Publication of JPH0924291A publication Critical patent/JPH0924291A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To compose a system by which the optimum operation of a process to pulverize powders and classify the resultant powder into a plurality of levels is carried out by producing production yield and a partial classification ratio model based on the particle size distribution before classification and the measured value of the particle size distribution of products, estimating the production yield and the particle size distribution of products by utilizing the partial classification ratio model, and control the variables of the process as to carry out the process in the optimum conditions. SOLUTION: This control method is to control the production of powders involving pulverization and classification processes: a partial classification ratio model is computed based on particle size distribution before and after classification, respectively, and optionally set parameters of the partial classification ratio model are changed. The parameters of the partial classification ratio model with which a desiring particle size distribution and yield ratio after classification can be achieved are determined and process variables are computed based on the determined parameters of the partial classification ratio model while utilizing database in which the parameters of the partial classification ratio model and the process variables are correlated mutually.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉体を粉砕して複数に
分級するシステムの制御方法及びそのための装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling a system for pulverizing powder and classifying it into a plurality of pieces, and an apparatus therefor.

【0002】[0002]

【従来の技術】従来より造粒・粉砕・分級等によりセメ
ント、肥料、小麦粉などの粉体を生産する方法(プロセ
ス)において、その粒度分布が運転管理の指標として用
いられている。そして所望の粒度分布になるように粉砕
工程、分級工程のプロセス変数(例えば、衝撃式粉砕機
の回転子の回転数、および、多産物同時分級機の気体流
量等の粉砕または分級時の条件)を操作することにより
制御をする。これは、原料の品質の変化や造粉・粉砕・
分級プロセスの粉体流量の変化、温度、湿度、プロセス
の経年変化などの影響により、製品の粒度分布が変化す
るためである。従来の自動制御や手動による制御におい
ては、例えば特開平6−95705号公報「造粒システ
ムの制御装置」にあるように、所望の粒度分布と実際に
得られた粒度分布とを比較してそれらの数値から直接プ
ロセス変数を操作するものであった。これらの方法では
実績、経験をもとに運転管理をするものがほとんどであ
った。
2. Description of the Related Art Conventionally, in a method (process) for producing powder such as cement, fertilizer and wheat flour by granulating, crushing and classifying, the particle size distribution has been used as an index for operation control. Then, process variables of the crushing process and the classification process so as to obtain a desired particle size distribution (for example, the number of revolutions of the rotor of the impact crusher and the conditions such as the gas flow rate of the multi-product simultaneous classifier at the time of crushing or classification). Control by operating. This is because of changes in the quality of raw materials,
This is because the particle size distribution of the product changes due to changes in the powder flow rate in the classification process, temperature, humidity, and changes over time in the process. In the conventional automatic control or manual control, a desired particle size distribution is compared with an actually obtained particle size distribution, as described in, for example, Japanese Patent Application Laid-Open No. 6-95705 "Control device for granulation system". The process variable was directly manipulated from the numerical value of. Most of these methods manage operation based on experience and experience.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、例えば
近年の静電荷像現像用トナーなどのように製品の粒度分
布に対する要求が高くなっており、従来の経験に頼った
プロセス変数の操作には問題が発生するようになった。
例えば、プロセス変数の操作で粒度分布を所望の粒度分
布にする場合には、同じ効果を与えるプロセス変数の操
作が複数あり、どのプロセス変数を用いて達成するのが
最適であるのかが分からなかった。すなわち、粉砕工程
と分級工程がある場合に、平均粒径を大きくするには、
粉砕工程でより粗く粉砕する方法、分級工程で小さい粒
径を製品から除去する方法、および分級工程で大きい粒
径を製品に加える方法の3通りが考えられる。しかし、
この3つの方法では分級工程に供給する粉体量に対する
製品として得られる粉体量の割合(収率、歩留まり)が
全然異なる。その上、通常の粉体生産工程では、粉砕工
程ではある広がりをもった分布としてしか得られず、ま
た分級工程においても分級点と言われる粒径を境に鋭利
に分離されずに、ある広がりをもって分級される。ま
た、粉砕工程と分級工程のプロセス変数は互いに複雑に
絡み合って、製品の粒度分布や収率に影響を与えてい
る。そのため製品の粒度分布を所望の粒度分布にするた
めにその差を直接プロセス変数で制御する方法は、プロ
セス変数の粒度分布に対する影響が互いに直交していな
いので、品種の異なる製品を制御する場合にうまくいく
とは限らない。つまり、運転管理をするのにはそれだけ
実績、経験を解析する必要があり、しかも全く新しい製
品の品種に対しては勘と経験でプロセス変数の設定値を
決める必要があった。これらの要因により、製品の粒度
分布や分級工程での歩留まりに対するプロセス変数の操
作の影響を予測し、制御することは極めて困難であっ
た。
However, there is a growing demand for the particle size distribution of products such as toner for developing electrostatic images in recent years, and there is a problem in operating process variables based on conventional experience. It started to occur.
For example, when making the particle size distribution a desired particle size distribution by manipulating process variables, there are multiple manipulating process variables that give the same effect, and it was not clear which process variable was optimal to achieve. . That is, in order to increase the average particle size when there are a crushing step and a classification step,
Three methods are conceivable: a method of coarsely crushing in the crushing step, a method of removing small particle sizes from the product in the classifying step, and a method of adding large particle size to the product in the classifying step. But,
In these three methods, the ratio of the amount of powder obtained as a product to the amount of powder supplied to the classification step (yield, yield) is completely different. In addition, in the usual powder production process, only a distribution with a certain spread is obtained in the pulverization process, and in the classification process as well, it is not sharply separated by the particle size called the classification point, and a certain spread is obtained. Be classified with. In addition, the process variables of the crushing process and the classification process are intricately entangled with each other, affecting the particle size distribution and yield of the product. Therefore, the method of controlling the difference directly with the process variable in order to make the particle size distribution of the product into a desired particle size distribution is the case that the influence of the process variable on the particle size distribution is not orthogonal to each other. It doesn't always work. In other words, in order to perform operation management, it was necessary to analyze the actual results and experience, and it was necessary to determine the set value of the process variable based on intuition and experience for a completely new product type. Due to these factors, it has been extremely difficult to predict and control the influence of the operation of process variables on the particle size distribution of products and the yield in the classification process.

【0004】[0004]

【課題を解決するための手段】本発明は、上記実情を鑑
みてなされたものであり、分級工程の分級前と分級後の
粒度分布の数値から、ある粒径に応じた分級前後の製品
化される割合(部分分級割合)を計算し、この部分分級
割合をプロセスの性能を示す部分分級割合モデルと定義
し、プロセス変数の操作による部分分級割合モデルの変
化をデータベースとして持ち、総合的にプロセス変数の
操作による粒度分布の変化や分級工程での歩留まりを予
測しながら制御することを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and based on the numerical values of the particle size distribution before and after classification in the classification step, commercialization before and after classification according to a certain particle size The ratio (partial classification ratio) is calculated, and this partial classification ratio is defined as the partial classification ratio model that shows the performance of the process. The changes in the partial classification ratio model due to the operation of process variables are stored as a database, and the total process It is characterized by controlling while predicting the change in particle size distribution due to the operation of variables and the yield in the classification process.

【0005】すなわち、本発明の要旨は、粉砕および分
級工程を有する粉体生産方法の制御方法であって、分級
前後のそれぞれの粒度分布から部分分級割合モデルを求
め、任意に設定された部分分級割合モデル内パラメータ
を変化させて、所望の分級後の粒度分布および収率が達
成される部分分級割合モデル内パラメータを決定し、部
分分級割合モデル内パラメータとプロセス変数とを対応
させるデータベースを介することにより、決定された部
分分級割合モデル内パラメータからプロセス変数を求め
ることを特徴とする粉体生産方法の制御方法、並びに、
That is, the gist of the present invention is a control method of a powder production method having a pulverizing and classifying step, wherein a partial classification ratio model is obtained from the particle size distributions before and after classification, and the partial classification set arbitrarily. By changing the parameters in the proportion model to determine the parameters in the partial classification proportion model that achieve the desired particle size distribution and yield after classification, and through a database that associates the parameters in the partial classification proportion model with the process variables. According to the control method of the powder production method, which is characterized by obtaining a process variable from the parameters in the partial classification ratio model determined by the method, and

【0006】粉砕部、分級部、分級前後のそれぞれの粒
度分布を測定する測定部、および、分級前後のそれぞれ
の粒度分布から部分分級割合モデルを求め、任意に設定
された部分分級割合モデル内パラメータを変化させて、
所望の分級後の粒度分布および収率が達成される部分分
級割合モデル内パラメータを決定し、部分分級割合モデ
ル内パラメータとプロセス変数とを対応させるデータベ
ースを介することにより、決定された部分分級割合モデ
ル内パラメータからプロセス変数を求める演算部を有す
ることを特徴とする粉体の生産装置に存する。
A partial classification ratio model is obtained from the crushing part, the classification part, a measuring part for measuring the particle size distribution before and after the classification, and the particle size distribution before and after the classification, and the parameters in the partial classification ratio model are set arbitrarily. By changing
By determining the parameters in the partial classification ratio model that achieve the desired particle size distribution and yield after classification, and determining the parameters in the partial classification ratio model and the process variables, the determined partial classification ratio model is determined. The present invention resides in a powder production apparatus having a calculation unit for obtaining a process variable from an internal parameter.

【0007】このような構成により、プロセス変数の影
響が部分分級割合モデルの中で互いに独立のパラメータ
(部分分級割合モデル内パラメータ)として認識され、
それらの独立のパラメータにより製品の粒度分布や収率
などの分級結果を再計算できるので、不変的な制御方法
を構成することができる。従って、プロセス変数の部分
分級割合モデル内パラメータに対する影響は、その装置
特有のものと考えられるので、製品の品種には依存され
ない、その装置の不変的な知識を積み重ねることができ
る。
With such a configuration, the influence of the process variable is recognized as parameters independent of each other in the partial classification ratio model (parameters in the partial classification ratio model),
Since the classification results such as the particle size distribution and yield of the product can be recalculated by using these independent parameters, an invariant control method can be constructed. Therefore, since the influence of the process variables on the parameters in the partial classification ratio model is considered to be peculiar to the device, it is possible to accumulate the invariant knowledge of the device, which is not dependent on the product type.

【0008】[0008]

【作用】本発明における制御装置においては、粉砕工程
のあとの分級工程に入る前に測定される分級前粒度分布
データと制御の対象となる分級後粒度分布データが入力
される。分級前粒度分布データと分級後粒度分布データ
から部分分級割合を計算して部分分級割合モデルが作成
され、分級前粒度分布データと分級後粒度分布データが
部分分級割合モデルによって整合されるとともに、分級
工程における製品の歩留まりが求められる。その部分分
級割合モデル内パラメータとプロセス変数との関係を表
したデータベースを介することによって、現状から所望
の粒度分布と歩留まりが達成されるプロセス変数が求め
られ、そのプロセス変数の操作量が出力され、プロセス
変数の操作量が提示されたときには操作後の粒度分布を
出力する。
In the control device according to the present invention, the particle size distribution data before classification, which is measured before the classification process after the crushing process, and the particle size distribution data after classification, which is the object of control, are input. A partial classification ratio model is created by calculating the partial classification ratio from the pre-classification particle size distribution data and the post-classification particle size distribution data, and the pre-classification particle size distribution data and the post-classification particle size distribution data are matched by the partial classification ratio model and the classification is performed. Product yield in the process is required. Through the database representing the relationship between the partial classification ratio model parameter and the process variable, the process variable that achieves the desired particle size distribution and yield from the current state is obtained, and the manipulated variable of the process variable is output. When the manipulated variable of the process variable is presented, the particle size distribution after the manipulation is output.

【0009】[0009]

【実施例】本発明において、粉砕機としては、ジェット
ミル、回転式衝撃粉砕機など、分級機としては、気流式
分級機などの公知の粉砕機、分級機すべてが使用可能で
ある。図1は本発明の制御装置を使用する一例として衝
撃式粉砕機と多産物同時分級機を用いたものの説明図で
ある。衝撃式粉砕機のプロセス変数はその回転子の回転
数、多産物同時分級機では微粉導出口への気体流量、粗
粉導出口への気体流量を用いる。衝撃式粉砕機では回転
子と固定子とのすきまで粉砕されるので、「回転子の回
転数」を上げることにより粉砕された粉体はより細かく
なる。多産物同時分級機では気流により微粉、中粉、粗
粉に分級され、製品となるのは中粉である。また構造
上、微粉と粗粉がいれ混じるような干渉はないと仮定で
きる。したがって「微粉導出口への気体流量」を上げる
ことにより、粉体の流れを中粉から微粉へ動かすので、
中粉の割合を下げて微粉の割合を上げる。同時に「粗粉
導出口への気体流量」を上げることにより、粉体の流れ
を中粉から粗粉へ動かすので、中粉の割合を下げて粗粉
の割合を上げる。ここでは部分分級割合モデル内パラメ
ータとして「粉砕品の平均粒径」「微粉−中粉間の体積
50%分級点」「中粉−粗粉間の体積50%分級点」を
設定し、それぞれを組み合わせて制御をおこなう。図2
は粉砕後、つまり分級前の体積粒度分布と分級後の中
粉、つまり製品の体積粒度分布と、部分分級割合モデル
の数値分布を示し、部分分級割合モデル内パラメータに
ついての説明である。分布グラフの横軸のチャンネルは
粒径の大きさを示し、慣例では粒径のLOGスケールを
用いることが多い。今回用いる粒度分布測定機は16チ
ャンネルしか発生しないが、適当なスムージングをする
ことにより図2に示すように滑らかな曲線にすることが
できる。具体的には各チャンネルをより細分化し数値を
仮定し、各チャンネル内の体積を保存しつつ滑らかにな
るように移動平均をかけることを繰り返すことにより滑
らかな曲線を実現できる。図2に示すようにxは粒径を
代表するチャンネルを示し、分級前の体積粒度分布B
(x)、製品の体積粒度分布M(x)、部分分級割合モ
デルの数値分布F(x)とする。これらはそれぞれ以下
のような性質を持つ。
EXAMPLES In the present invention, a jet mill, a rotary impact crusher or the like can be used as the crusher, and a known crusher or classifier such as an airflow classifier can be used as the classifier. FIG. 1 is an explanatory view of one using an impact type crusher and a multi-product simultaneous classifier as an example of using the control device of the present invention. As the process variable of the impact type crusher, the rotation speed of the rotor is used, and in the multi-product simultaneous classification machine, the gas flow rate to the fine powder outlet and the gas flow rate to the coarse powder outlet are used. In the impact type crusher, even the clearance between the rotor and the stator is crushed, so that the crushed powder becomes finer by increasing the "rotor speed". The multi-product simultaneous classifier classifies the powder into fine powder, medium powder, and coarse powder by the air flow, and the product is the medium powder. Also, it can be assumed that there is no interference such that fine powder and coarse powder are mixed in due to the structure. Therefore, by increasing the "gas flow rate to the fine powder outlet", the flow of powder is moved from medium powder to fine powder.
Lower the proportion of medium powder and increase the proportion of fine powder. At the same time, the flow rate of the powder is moved from the intermediate powder to the coarse powder by increasing the “flow rate of gas to the coarse powder outlet”, so that the ratio of the intermediate powder is decreased and the ratio of the coarse powder is increased. Here, "average particle size of pulverized product", "volume 50% classification point between fine powder and medium powder" and "volume 50% classification point between medium powder and coarse powder" are set as parameters in the partial classification ratio model, and Control in combination. FIG.
Shows the volume particle size distribution of the powder after pulverization, that is, before classification and the intermediate powder after classification, that is, the volume particle size distribution of the product, and the numerical distribution of the partial classification ratio model, and is an explanation of the parameters within the partial classification ratio model. The channel on the horizontal axis of the distribution graph indicates the size of the particle size, and by convention, the LOG scale of the particle size is often used. Although the particle size distribution measuring instrument used this time generates only 16 channels, it is possible to form a smooth curve as shown in FIG. 2 by performing appropriate smoothing. Specifically, a smooth curve can be realized by further subdividing each channel, assuming a numerical value, and repeating the moving average so as to be smooth while preserving the volume in each channel. As shown in FIG. 2, x represents a channel representing the particle size, and the volume particle size distribution B before classification is
(X), the volume particle size distribution M (x) of the product, and the numerical distribution F (x) of the partial classification ratio model. Each of these has the following properties.

【0010】[0010]

【数1】正規化より ∫B(x)dx=100%(積分
範囲は全区間) 正規化より ∫M(x)dx=100%(積分範囲は全
区間) 微粉と粗粉がいれ混じることがないことより、 max(F(x))=1 また、部分分級割合モデルの質量保存則より min(F(x))=0 上記より、部分分級割合モデルは以下の式となる。 M(x)×a=F(x)×B(x) a:製品の収率
[Equation 1] From normalization ∫B (x) dx = 100% (integration range is the whole section) From normalization ∫M (x) dx = 100% (integration range is the whole section) Fine powder and coarse powder are mixed in From the above, max (F (x)) = 1 Further, from the mass conservation law of the partial classification ratio model min (F (x)) = 0 From the above, the partial classification ratio model is as follows. M (x) × a = F (x) × B (x) a: Product yield

【0011】上記の関係を用いることにより、測定され
たB(x)、M(x)からaとF(x)を求めることが
できる。より具体的には同じxでM(x)をB(x)で
割ることで求められる山形の関数G(x)の最大値をh
とすると、hの逆数は製品の収率aであり、G(x)を
hで割り最大値を1.0と規格化することでF(x)が
求められる。部分分級割合モデル内パラメータの「粉砕
品の平均粒径」「微粉−中粉の体積50%分級点」「中
粉−粗粉の体積50%」を動かして部分分級割合モデル
の形状を変え、B′(x)とF′(x)を計算する(図
1における分級結果予測部)。より具体的にはF(x)
の1.0を境に左右の0.0から1.0への変化と1.
0から0.0への変化をそれぞれFR(x)、FL
(x)以下のように定義する。
By using the above relationship, a and F (x) can be obtained from the measured B (x) and M (x). More specifically, the maximum value of the mountain-shaped function G (x) obtained by dividing M (x) by B (x) by the same x is h.
Then, the reciprocal of h is the product yield a, and F (x) is obtained by dividing G (x) by h and normalizing the maximum value to 1.0. Change the shape of the partial classification ratio model by moving the "average particle size of pulverized product", "fine powder-volume 50% classification point of medium powder""medium powder-volume 50% of coarse powder" of the parameters in the partial classification ratio model, B '(x) and F' (x) are calculated (classification result prediction unit in FIG. 1). More specifically, F (x)
Change from 0.0 to 1.0 on the left and right with 1.0 as the boundary and 1.
The change from 0 to 0.0 is FR (x), FL respectively
(X) It is defined as follows.

【0012】[0012]

【数2】F(x)=FR(x)×FL(x)(2) F (x) = FR (x) × FL (x)

【0013】部分分級割合モデル内パラメータの関係は
いろいろ考えられるがここでは単純に以下のように仮定
する。
Various relationships among the parameters in the partial classification ratio model can be considered, but here it is simply assumed as follows.

【0014】[0014]

【数3】 F′(x)=FR(x+y1)×FL(x+y2) y1:微粉−中粉の体積50%分級点変化量 y2:中粉−粗粉の体積50%分級点変化量F ′ (x) = FR (x + y1) × FL (x + y2) y1: Fine powder-medium powder volume 50% classification point change amount y2: Medium powder-coarse powder volume 50% classification point change amount

【0015】衝撃式粉砕機の部分分級割合モデル内パラ
メータもいろいろ考えられるがここでは単純に以下のよ
うに仮定する。
Various parameters in the partial classification ratio model of the impact type crusher can be considered, but here it is simply assumed as follows.

【0016】[0016]

【数4】B′(x)=B(x+y3) y3:粉砕品の平均粒径変化量## EQU4 ## B '(x) = B (x + y3) y3: change in average particle size of crushed product

【0017】そして部分分級モデルの式を用いて製品の
粒度分布M′(x)と製品の収率a′を計算し、最適に
なる(所望の)部分分級割合モデル内パラメータを決定
する。具体的には以下のような式で計算される。
Then, the particle size distribution M '(x) of the product and the yield a'of the product are calculated using the formula of the partial classification model, and the optimum (desired) partial classification ratio model internal parameter is determined. Specifically, it is calculated by the following formula.

【0018】[0018]

【数5】N(x)=B′(x)×F′(x) a′=∫N(x)dx(積分区間は全区間) M′(x)=N(x)/a′## EQU5 ## N (x) = B '(x) × F' (x) a '= ∫N (x) dx (the integration interval is the entire interval) M' (x) = N (x) / a '

【0019】それぞれの部分分級割合モデル内パラメー
タは、データベースを介してプロセス変数に対応してい
る。データベースにおける部分分級割合モデル内パラメ
ータとプロセス変数との関連付けの最も簡単な例とし
て、y1、y2、y3にゲイン関数をかけてそれぞれ
「微粉導出口の気体流量」「粗粉導出口の気体流量」
「回転子の回転数」に速度型でフィードバックすれば実
現できる。もちろん、部分分級割合モデル内パラメータ
とプロセス変数の関連付けについては上記以外の方法も
考えられる。
Each partial classification ratio model internal parameter corresponds to a process variable via a database. As the simplest example of associating the parameters in the partial classification ratio model with the process variables in the database, y1, y2, and y3 are multiplied by a gain function to obtain a “fine powder outlet gas flow rate” and a “coarse powder outlet gas flow rate”, respectively.
This can be achieved by feeding back the "rotor speed" in a speed type. Of course, methods other than the above can be considered for associating the parameters in the partial classification ratio model with the process variables.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、分
級前の粒度分布と製品の粒度分布の測定値から部分分級
割合モデルを作成し、部分分級割合モデルを用いて製品
の歩留まりと製品の粒度分布を予測、最適化することに
より、粉体の品種に影響されない不変的な制御方法を構
築することができる。
As described above, according to the present invention, a partial classification ratio model is created from the measured value of the particle size distribution before classification and the particle size distribution of the product, and the product yield and the product are calculated using the partial classification ratio model. By predicting and optimizing the particle size distribution of, it is possible to construct an invariant control method that is not affected by the type of powder.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する衝撃式粉砕機と多産物同時分
級機の制御システムを示す図。
FIG. 1 is a diagram showing a control system of an impact type crusher and a multi-product simultaneous classifier for carrying out the present invention.

【図2】部分分級割合モデルおよび部分分級割合モデル
内パラメータの説明図。 横軸 粒径 縦軸 体積割合
FIG. 2 is an explanatory diagram of a partial classification ratio model and parameters in the partial classification ratio model. Horizontal axis Particle size Vertical axis Volume ratio

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粉砕および分級工程を有する粉体生産方
法の制御方法であって、分級前後のそれぞれの粒度分布
から部分分級割合モデルを求め、任意に設定された部分
分級割合モデル内パラメータを変化させて、所望の分級
後の粒度分布および収率が達成される部分分級割合モデ
ル内パラメータを決定し、部分分級割合モデル内パラメ
ータとプロセス変数とを対応させるデータベースを介す
ることにより、決定された部分分級割合モデル内パラメ
ータからプロセス変数を求めることを特徴とする粒体生
産方法の制御方法。
1. A method for controlling a powder production method comprising a pulverization and classification step, wherein a partial classification ratio model is obtained from particle size distributions before and after classification, and a parameter in the partial classification ratio model set arbitrarily is changed. Then, the parameters within the partial classification ratio model that achieve the desired particle size distribution and yield after classification are determined, and the determined partial parameters are passed through the database that associates the parameters within the partial classification ratio model with the process variables. A method for controlling a particle production method, characterized in that a process variable is obtained from a parameter in a classification ratio model.
【請求項2】 粉砕部、分級部、分級前後のそれぞれの
粒度分布を測定する測定部、および、分級前後のそれぞ
れの粒度分布から部分分級割合モデルを求め、任意に設
定された部分分級割合モデル内パラメータを変化させ
て、所望の分級後の粒度分布および収率が達成される部
分分級割合モデル内パラメータを決定し、部分分級割合
モデル内パラメータとプロセス変数とを対応させるデー
タベースを介することにより、決定された部分分級割合
モデル内パラメータからプロセス変数を求める演算部を
有することを特徴とする粉体生産装置。
2. A partial classification ratio model obtained by obtaining a partial classification ratio model from the crushing part, the classification part, a measurement part for measuring the particle size distribution before and after classification, and the particle size distribution before and after classification. By changing the internal parameter to determine the partial classification ratio model internal parameter that achieves the desired particle size distribution and yield after classification, and through the database that associates the partial classification ratio model internal parameter with the process variable, A powder production apparatus comprising a calculation unit for obtaining a process variable from the determined parameters in the partial classification ratio model.
JP17844395A 1995-07-14 1995-07-14 Control method for powder producing method utilizing partial classification ratio model and powder producing apparatus Pending JPH0924291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17844395A JPH0924291A (en) 1995-07-14 1995-07-14 Control method for powder producing method utilizing partial classification ratio model and powder producing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17844395A JPH0924291A (en) 1995-07-14 1995-07-14 Control method for powder producing method utilizing partial classification ratio model and powder producing apparatus

Publications (1)

Publication Number Publication Date
JPH0924291A true JPH0924291A (en) 1997-01-28

Family

ID=16048618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17844395A Pending JPH0924291A (en) 1995-07-14 1995-07-14 Control method for powder producing method utilizing partial classification ratio model and powder producing apparatus

Country Status (1)

Country Link
JP (1) JPH0924291A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102233298A (en) * 2010-04-30 2011-11-09 长江水利委员会长江科学院 Method and device of precise control of particle size for micron mill
CN102989573A (en) * 2010-04-30 2013-03-27 长江水利委员会长江科学院 Control method for precise particle diameter control device of micro pulverizer
JPWO2021001897A1 (en) * 2019-07-01 2021-01-07

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102233298A (en) * 2010-04-30 2011-11-09 长江水利委员会长江科学院 Method and device of precise control of particle size for micron mill
CN102989573A (en) * 2010-04-30 2013-03-27 长江水利委员会长江科学院 Control method for precise particle diameter control device of micro pulverizer
JPWO2021001897A1 (en) * 2019-07-01 2021-01-07
WO2021001897A1 (en) * 2019-07-01 2021-01-07 ホソカワミクロン株式会社 Learning model generation method, computer program, learning model, control device, and control method

Similar Documents

Publication Publication Date Title
DE4325187A1 (en) Roll mill control for crushing of cement, clinker or granulate metal - determining new values for operating parameters, using changes or ratios of values in characteristic model and selecting new values to optimise operating conditions
Benzer et al. Modelling cement grinding circuits
CN111047104B (en) Energy consumption optimization method of grinding system
EP0265910B1 (en) Process for producing toner powder
KR101145524B1 (en) Pulverizing and coarse powder classifying apparatus and fine powder classifying apparatus
Rajamani et al. Optimal control of a ball mill grinding circuit—I. Grinding circuit modeling and dynamic simulation
CN111701698A (en) Cement mill system and automatic optimization control system and method thereof
Bengtsson et al. Size and shape simulation in a tertiary crushing stage, a multi objective perspective
JPH0924291A (en) Control method for powder producing method utilizing partial classification ratio model and powder producing apparatus
JP3382620B2 (en) Control method of closed-circuit dry mill
CN109507971A (en) A kind of Machine-made Sand quality intelligent monitoring system and monitoring method
CN114377842B (en) Material fineness adjusting method and device, computer equipment and storage medium
CN114246356B (en) Design method, system, medium and device of cigarette leaf group formula
JP3572521B2 (en) Method and apparatus for operating a crushed stone plant
CN110090727B (en) Method, device, equipment and medium for processing operation data in ore grinding production
US6768972B1 (en) Method and device for reducing a number of measured values of a technical system
JPH10296117A (en) Sand making method and sand making device
Costea et al. Approach of PID controller tuning for ball mill
KR960013918B1 (en) Method and device for controlling a roller mill
JP2833089B2 (en) Method for producing developer for electrostatic charge image and crushing apparatus therefor
Kazarinov et al. Decision making process for operational neurocontrol of mixture grinding in cement production with controversial setting
US20230415166A1 (en) Quality monitoring and controls for a comminution system using imaging of material in a discharge stage
WO2024011936A1 (en) Process parameter optimization method and apparatus
CN116757452B (en) Intelligent scheduling management system for cable production and processing
CN117390500B (en) Grinding and screening method and device for barite ore