WO2021001869A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2021001869A1
WO2021001869A1 PCT/JP2019/026031 JP2019026031W WO2021001869A1 WO 2021001869 A1 WO2021001869 A1 WO 2021001869A1 JP 2019026031 W JP2019026031 W JP 2019026031W WO 2021001869 A1 WO2021001869 A1 WO 2021001869A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
refrigerant
heat exchanger
air conditioner
compressor
Prior art date
Application number
PCT/JP2019/026031
Other languages
French (fr)
Japanese (ja)
Inventor
侑哉 森下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/026031 priority Critical patent/WO2021001869A1/en
Priority to CN201980097651.8A priority patent/CN114008393B/en
Priority to GB2115484.4A priority patent/GB2603246B/en
Publication of WO2021001869A1 publication Critical patent/WO2021001869A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle

Definitions

  • the present invention relates to an air conditioner provided with a repeater.
  • Patent Document 1 discloses an air conditioner including a repeater that relays between the outdoor unit and the indoor unit.
  • a decompression device is housed in the repeater.
  • a plurality of indoor units are connected to a repeater, and the plurality of indoor units can be independently switched between start and stop.
  • the amount of refrigerant circulating may be temporarily increased in order to maintain the operating capacity of the outdoor unit.
  • the refrigerant in order to maintain the amount of the refrigerant circulating in the indoor unit that is running, the refrigerant may be temporarily circulated in the indoor unit that is stopped.
  • the opening degree of the decompression device connected to the stopped indoor unit is connected to the operating indoor unit in order to suppress the temperature change in the space where the indoor unit is installed. It is adjusted to be smaller than the opening degree of the decompression device and to the minimum opening degree.
  • the opening degree of the decompression device is adjusted in this way, noise is generated when the refrigerant passes through the decompression device, which may reduce the quietness of the repeater.
  • the present invention solves the above-mentioned problems, and an object of the present invention is to provide an air conditioner capable of maintaining the quietness of a repeater.
  • the air conditioner of the present invention includes an outdoor unit having a heat source side heat exchanger, a compressor connected to the heat source side heat exchanger, a plurality of indoor units having a load side heat exchanger, and the heat source side. It has a first decompression device connected to a heat exchanger, includes a repeater connected to a part of the plurality of indoor units, and the repeater includes the compressor and the load side heat exchanger.
  • a first refrigerant pipe connected between the first refrigerant pipe, a second refrigerant pipe connected between the first decompression device and the heat source side heat exchanger, and a flow path switching provided in the first refrigerant pipe.
  • the repeater since the repeater has the flow path switching valve and the bypass pipe, the inside of the flow path switching valve is prevented from flowing into the indoor unit when the indoor unit is stopped.
  • the flow path can be switched to divert the refrigerant to the bypass pipe. That is, in the air conditioner of the present invention, when the indoor unit is stopped, the flow path can be switched so that the refrigerant does not pass through the first decompression device. Therefore, in the air conditioner of the present invention, since the repeater has the flow path switching valve and the bypass pipe, the noise of the first decompression device due to the passage of the refrigerant can be suppressed, so that the air can maintain the quietness of the repeater.
  • a harmonizer can be provided.
  • FIG. It is the schematic which shows an example of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a schematic refrigerant circuit diagram which shows a part of the air conditioner of FIG. It is a flowchart which shows the control process of the flow path switching valve and the 1st decompression device at the time of defrosting operation which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the control process of the flow path switching valve and the 1st pressure reducing device at the time of the oil recovery operation which concerns on Embodiment 2.
  • It is a schematic refrigerant circuit diagram which shows an example of the refrigerant circuit of the air conditioner which concerns on Embodiment 3.
  • FIG. 1 It is a flowchart which shows the control process of the flow path switching valve and the 1st decompression device at the time of the refrigerant leakage detection which concerns on Embodiment 3.
  • FIG. 1 It is a schematic refrigerant circuit diagram which shows an example of the refrigerant circuit of the air conditioner which concerns on Embodiment 4.
  • FIG. 1 It is a flowchart which shows the control process of the flow path switching valve and the first decompression device when the indoor unit is stopped which concerns on Embodiment 4.
  • FIG. It is a schematic refrigerant circuit diagram which shows an example of the refrigerant circuit of the air conditioner which concerns on Embodiment 5.
  • FIG. 5 is an enlarged view showing a state in which a flow path switching valve and a bypass pipe are arranged in a refrigerant circuit of the air conditioner according to the sixth embodiment.
  • FIG. 1 is a schematic view showing an example of an air conditioner 100 according to the first embodiment.
  • FIG. 2 is a schematic refrigerant circuit diagram showing a part of the air conditioner 100 of FIG.
  • the dimensional relationships and shapes of the constituent members may differ from the actual ones. Further, in the following drawings, the same members or parts or members or parts having the same functions are designated by the same reference numerals or omitted.
  • the air conditioner 100 includes an outdoor unit 10, a plurality of indoor units 20, and a repeater 30.
  • the outdoor unit 10 and the repeater 30 are connected by a refrigerant pipe.
  • a part of the plurality of indoor units 20 is connected to the outdoor unit 10 via the repeater 30, and the other part of the plurality of indoor units 20 is connected to the outdoor unit 10 without passing through the repeater 30.
  • the repeater 30 is connected to an indoor unit 20 provided in a space where quietness is required, for example, a space such as a president's room, a conference room, or an office room.
  • an indoor unit 20 such as an elevator hall or a storage room is directly connected to the outdoor unit 10 without going through a repeater 30.
  • the number of the outdoor unit 10 and the repeater 30 is limited to one in FIG. 1, a plurality of outdoor units 10 may be provided. Further, the number of indoor units 20 connected to the repeater 30 may be one.
  • the refrigerant pipe may be an existing refrigerant pipe in the property where the air conditioner 100 is installed, or may be a refrigerant pipe newly installed when the air conditioner 100 is installed.
  • the "cooling operation” refers to an operation mode of the air conditioner 100 that allows a low-temperature and low-pressure two-phase refrigerant to flow into the indoor unit 20.
  • the “heating operation” refers to an operation mode of the air conditioner 100 that allows a high-temperature and high-pressure vapor-phase refrigerant to flow into the indoor unit 20.
  • the outdoor unit 10 has a compressor 1, a refrigerant flow path switching device 2, and a heat source side heat exchanger 3.
  • the compressor 1 and the heat source side heat exchanger 3 are connected by a refrigerant pipe via a refrigerant flow path switching device 2.
  • the compressor 1 is a fluid machine that compresses the sucked low-pressure refrigerant and discharges it as a high-pressure refrigerant.
  • a variable-capacity compressor such as a reciprocating compressor, a rotary compressor, or a scroll compressor is used.
  • the refrigerant flow path switching device 2 uses an electric signal to switch the refrigerant flow path switching device 2 in response to the switching from the cooling operation of the air conditioning device 100 to the heating operation or the switching from the heating operation to the cooling operation of the air conditioning device 100. It is an electric device that can switch the internal refrigerant flow path.
  • FIG. 2 the refrigerant flow path inside the refrigerant flow path switching device 2 during the cooling operation is shown by a dotted line, and the refrigerant flow path inside the refrigerant flow path switching device 2 during the heating operation is shown by a solid line.
  • the refrigerant flow path switching device 2 for example, a four-way valve that applies the operation of a solenoid valve is used.
  • the refrigerant flow path switching device 2 may be a switching device in which a two-way valve or a three-way valve is combined. In the air conditioner 100, when only one of the cooling operation and the heating operation is performed, the refrigerant flow path switching device 2 can be omitted.
  • the heat source side heat exchanger 3 is a heat transfer device that transfers and exchanges heat energy between two fluids having different heat energies.
  • the heat source side heat exchanger 3 functions as a condenser during the cooling operation and as an evaporator during the heating operation.
  • an air-cooled heat exchanger such as a fin-and-tube heat exchanger or a plate fin heat exchanger, or a shell-and-tube heat exchanger, a plate heat exchanger, or a double-tube heat exchanger.
  • a water-cooled heat exchanger such as an exchanger is used.
  • the condenser may be referred to as a radiator.
  • the indoor unit 20 has a load side heat exchanger 4.
  • the load-side heat exchanger 4 is a heat transfer device that transfers and exchanges heat energy between two fluids having different heat energies, similarly to the heat source-side heat exchanger 3 described above.
  • the load side heat exchanger 4 functions as an evaporator during the cooling operation and as a condenser during the heating operation.
  • an air-cooled heat exchanger such as a fin-and-tube heat exchanger or a plate fin heat exchanger is used as the load side heat exchanger 4.
  • the repeater 30 is connected between the outdoor unit 10 and the indoor unit 20 by a refrigerant pipe.
  • the repeater 30 is one of the first refrigerant pipe 5a, which is one of the refrigerant pipes connecting the compressor 1 and the load side heat exchanger 4, and one of the refrigerant pipes connected to the heat source side heat exchanger 3. It has a second refrigerant pipe 5b, which is a part. Branch refrigerant pipes corresponding to the number of load side heat exchangers 4 of the indoor unit 20 are connected to the first refrigerant pipe 5a and the second refrigerant pipe 5b, respectively. Further, the repeater 30 has a first decompression device 6, a capillary tube 7, and a strainer 8.
  • the first decompression device 6 is an expansion device that expands and depressurizes a high-pressure liquid phase refrigerant.
  • an expander As the first decompression device 6, an expander, a temperature type automatic expansion valve, a linear electronic expansion valve, or the like is used.
  • the expander is a mechanical expansion valve that employs a diaphragm for the pressure receiving part.
  • the temperature type automatic expansion valve is an expansion device that adjusts the amount of refrigerant according to the degree of superheat of the gas phase refrigerant on the suction side of the compressor 1.
  • the linear electronic expansion valve is an expansion device whose opening degree can be adjusted in multiple stages or continuously, and is also abbreviated as LEV.
  • the first decompression device 6 is arranged in each of the branched refrigerant pipes connected to the second refrigerant pipe 5b.
  • the capillary tube 7 is a capillary refrigerant pipe which is composed of an elongated copper pipe and allows a required amount of refrigerant to pass through pipe resistance to reduce the pressure of the refrigerant.
  • the capillary tube 7 is connected in series with the first decompression device 6 to each of the branched refrigerant pipes connected to the second refrigerant pipe 5b.
  • the capillary tube 7 is arranged in the branched refrigerant pipe on the side of the indoor unit 20 with respect to the first decompression device 6. In the air conditioner 100, the capillary tube 7 assists the decompression function of the first decompression device 6, and can be omitted.
  • the strainer 8 is a filter for filtering out dust, impurities, etc. contained in a refrigerant such as sludge generated during the operation of the compressor 1.
  • the strainer 8 is provided to prevent clogging of the first decompression device 6 and the capillary tube 7.
  • the strainer 8 is provided in the second refrigerant pipe 5b and each of the branched refrigerant pipes connected to the second refrigerant pipe 5b so as to sandwich both sides of the refrigerant pipe in which the first decompression device 6 and the capillary tube 7 are arranged. It is provided in. For example, if the compressor 1 can suppress the generation of sludge, the strainer 8 can be omitted.
  • the air conditioner 100 may have a configuration other than that described above.
  • the air conditioner 100 may include equipment other than those described above, such as a supercooling heat exchanger, an accumulator, or an oil separator.
  • the indoor unit 20 may have a plurality of load side heat exchangers 4.
  • the compressor 1, the heat source side heat exchanger 3, the first decompression device 6, and the load side heat exchanger 4 are connected by piping to form a refrigerant circuit in which the refrigerant circulates.
  • a refrigerant circuit in which the refrigerant circulates.
  • the refrigerant flow path switching device 2 controls the path of the refrigerant flow path inside the refrigerant flow path switching device 2 as shown by the dotted line in FIG.
  • the high-temperature and high-pressure vapor-phase refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 3 via the refrigerant flow path inside the refrigerant flow path switching device 2.
  • the heat source side heat exchanger 3 functions as a condenser during the cooling operation.
  • the high-temperature and high-pressure gas-phase refrigerant that has flowed into the heat source-side heat exchanger 3 is heat-exchanged with a heat medium such as outside air at the heat-source-side heat exchanger 3 and flows out as a high-pressure liquid-phase refrigerant.
  • the high-pressure liquid-phase refrigerant flowing out of the heat source side heat exchanger 3 flows out from the outdoor unit 10 and flows into the repeater 30.
  • the high-pressure liquid-phase refrigerant that has flowed into the repeater 30 flows into the first decompression device 6 via the second refrigerant pipe 5b.
  • the high-pressure vapor-phase refrigerant flowing into the first decompression device 6 is expanded and decompressed by the first decompression device 6, and flows out from the first decompression device 6 as a low-temperature low-pressure two-phase refrigerant.
  • the low-temperature and low-pressure two-phase refrigerant flowing out of the first decompression device 6 flows out from the repeater 30 and flows into the indoor unit 20.
  • the low temperature and low pressure two-phase refrigerant that has flowed into the indoor unit 20 flows into the load side heat exchanger 4.
  • the load side heat exchanger 4 functions as an evaporator in the cooling operation.
  • the low-pressure two-phase refrigerant that has flowed into the load-side heat exchanger 4 is heat-exchanged with a heat medium such as indoor air at the load-side heat exchanger 4, and flows out as a low-pressure gas-phase refrigerant.
  • the refrigerant flowing out of the load side heat exchanger 4 may be a low-pressure, highly dry two-phase refrigerant.
  • the low-pressure vapor-phase refrigerant flowing out of the load-side heat exchanger 4 flows out from the indoor unit 20 and flows into the outdoor unit 10 via the first refrigerant pipe 5a of the repeater 30.
  • the low-pressure vapor-phase refrigerant that has flowed into the outdoor unit 10 is sucked into the compressor 1 via the refrigerant flow path inside the refrigerant flow path switching device 2.
  • the low-pressure vapor-phase refrigerant sucked into the compressor 1 is compressed by the compressor 1 and discharged from the compressor 1 as a high-temperature and high-pressure vapor-phase refrigerant.
  • the above cycle is repeated.
  • the refrigerant flow path switching device 2 controls the path of the refrigerant flow path inside the refrigerant flow path switching device 2 as shown by the solid line in FIG.
  • the high-temperature and high-pressure vapor-phase refrigerant discharged from the compressor 1 flows out from the outdoor unit 10 via the refrigerant flow path inside the refrigerant flow path switching device 2, and flows out to the first refrigerant pipe 5a of the repeater 30. It flows into the indoor unit 20 through the indoor unit 20.
  • the load side heat exchanger 4 functions as a condenser in the heating chamber operation.
  • the high-temperature, high-pressure gas-phase refrigerant that has flowed into the load-side heat exchanger 4 is heat-exchanged with a heat medium such as indoor air by the load-side heat exchanger 4, and flows out as a high-pressure liquid-phase refrigerant.
  • the high-pressure liquid-phase refrigerant that has flowed into the repeater 30 flows into the first decompression device 6.
  • the high-pressure liquid-phase refrigerant flowing into the first decompression device 6 is expanded and decompressed by the first decompression device 6, and flows out from the first decompression device 6 as a low-temperature low-pressure two-phase refrigerant.
  • the low-temperature and low-pressure two-phase refrigerant flowing out of the first decompression device 6 flows out from the repeater 30 via the second refrigerant pipe 5b and flows into the outdoor unit 10.
  • the low temperature and low pressure two-phase refrigerant that has flowed into the outdoor unit 10 flows into the heat source side heat exchanger 3.
  • the heat source side heat exchanger 3 functions as an evaporator during the heating operation.
  • the low-temperature, low-pressure two-phase refrigerant that has flowed into the heat source-side heat exchanger 3 is heat-exchanged with a heat medium such as outside air at the heat-source-side heat exchanger 3, and flows out as a low-pressure gas-phase refrigerant.
  • the refrigerant flowing out of the heat source side heat exchanger 3 may be a low-pressure, highly dry two-phase refrigerant.
  • the low-pressure vapor-phase refrigerant flowing out of the heat source side heat exchanger 3 is sucked into the compressor 1 via the refrigerant flow path inside the refrigerant flow path switching device 2.
  • the low-pressure vapor-phase refrigerant sucked into the compressor 1 is compressed by the compressor 1 and discharged from the compressor 1 as a high-temperature and high-pressure vapor-phase refrigerant.
  • the above cycle is repeated.
  • the repeater 30 includes a bypass circuit including a flow path switching valve 50 and a bypass pipe 52.
  • the flow path switching valve 50 is an electric device provided in the middle of the first refrigerant pipe 5a and switching between the refrigerant circuit and the bypass circuit by an electric signal.
  • the flow path switching valve 50 bypasses the first port 50a connected to the first refrigerant pipe 5a on the outdoor unit 10 side, the second port 50b connected to the first refrigerant pipe 5a on the indoor unit 20 side, and the bypass. It has a third port 50c connected to one end of the pipe 52.
  • the flow path switching valve 50 includes a first flow path that communicates between the first port 50a and the third port 50c, and a second flow path that communicates between the first port 50a and the second port 50b. Is provided as an internal flow path.
  • the first flow path is opened and the second flow path is closed, so that the refrigerant flow path between the first refrigerant pipe 5a on the outdoor unit 10 side and the bypass pipe 52 communicates with each other.
  • the first flow path is closed and the second flow path is opened, so that the first refrigerant pipe 5a on the outdoor unit 10 side and the first refrigerant pipe on the indoor unit 20 side are opened.
  • the refrigerant flow path with and from 5a communicates with each other.
  • a three-way valve that applies the operation of a solenoid valve is used.
  • the flow path switching valve 50 may be an electric device in which one port of the four-way valve is closed, or an electric device in which a two-way valve is combined.
  • bypass pipe 52 one end of the bypass pipe 52 is connected to the third port 50c of the flow path switching valve 50, and the other end of the bypass pipe 52 is connected to the second refrigerant pipe 5b.
  • the repeater 30 only has a small electric device such as the first decompression device 6, and the miniaturization of the repeater 30 is easier than that of the outdoor unit 10 or the indoor unit 20. Therefore, the length of the bypass pipe 52 can be shortened by reducing the distance between the first refrigerant pipe 5a and the second refrigerant pipe 5b housed inside the repeater 30.
  • the repeater 30 opens the first flow path of the flow path switching valve 50 when all the indoor units 20 are stopped, and the second flow. By closing the path, the refrigerant can be diverted to the bypass pipe 52. That is, according to this configuration, when all the indoor units 20 are stopped, the flow path can be switched so that the refrigerant does not pass through the first decompression device 6, and the noise of the first decompression device 6 due to the passage of the refrigerant. Therefore, it is possible to provide an air conditioner 100 capable of maintaining the quietness of the repeater 30.
  • the air conditioner 100 includes a control device 70, and the switching of the internal flow path of the flow path switching valve 50 is performed by the control device 70.
  • the control device 70 is configured as a microcomputer or a microcomputer processing unit equipped with dedicated hardware, a central processing unit, a memory, or the like.
  • the control device 70 is configured as, for example, an embedded control circuit board, and is housed in an electric component box of the outdoor unit 10.
  • the control device 70 is wired or wirelessly connected to the first temperature sensor 72a, the compressor 1, the refrigerant flow path switching device 2, the first depressurizing device 6, and the flow path switching valve 50. Further, in the air conditioner 100, the control device 70 may be provided only in any one of the outdoor unit 10, the indoor unit 20, and the repeater 30.
  • control device 70 may be provided in two or more of the outdoor unit 10, the indoor unit 20, and the repeater 30, and may be bidirectionally wired or wirelessly communicated with each other.
  • the communication line connected to the control device 70 by wire or wirelessly is not shown.
  • the control device 70 opens the internal flow path of one of the first flow path and the second flow path of the flow path switching valve 50 and closes the other flow path.
  • a control signal for switching the internal flow path of the 50 is transmitted to the flow path switching valve 50.
  • the control device 70 transmits a control signal for adjusting the opening degree of the first decompression device 6 to the first decompression device 6. It is assumed that the control device 70 includes all the electric circuits that adjust the opening degree of the first decompression device 6 and transmit a signal for switching the internal flow path of the flow path switching valve 50.
  • the control device 70 receives the temperature information detected by the first temperature sensor 72a.
  • the first temperature sensor 72a detects the temperature information of the refrigerant sucked into the compressor 1 during the cooling operation or the temperature information of the refrigerant discharged from the compressor 1 during the heating operation.
  • a sensor containing a semiconductor material such as a thermistor or a metal material such as a resistance temperature detector is used.
  • control device 70 is configured to control the frequency of the compressor 1, control the internal flow path of the refrigerant flow path switching device 2 when switching between the cooling operation and the heating operation, or start and stop the air conditioning device 100. it can.
  • FIG. 3 is a flowchart showing a control process of the flow path switching valve 50 and the first decompression device 6 during the defrosting operation according to the first embodiment.
  • the "defrosting operation” refers to an operation mode in which a high-temperature and high-pressure refrigerant is supplied to the heat source-side heat exchanger 3 in order to suppress frost formation on the heat-source-side heat exchanger 3, and mainly starts a heating operation. Performed before or during heating operation.
  • the defrosting operation is performed, for example, by switching the internal flow path of the refrigerant flow path switching device 2 to the internal flow path during the cooling operation during the heating operation.
  • the defrosting operation may be performed by supplying the high-temperature and high-pressure refrigerant from the compressor 1 to the heat source side heat exchanger 3 via the bypass circuit without switching the refrigerant flow path switching device 2.
  • the control process of FIG. 3 can be set to be performed at regular time intervals, for example, every 30 minutes.
  • the internal flow path of the flow path switching valve 50 is in a state where the first flow path is closed and the second flow path is open.
  • step S11 the control device 70 determines whether or not the air conditioner 100 performs the defrosting operation. Whether or not to perform the defrosting operation is determined based on, for example, the temperature of the heat source side heat exchanger 3. If it is determined that the defrosting operation is not performed, the control process ends.
  • step S12 the control device 70 opens the first flow path of the flow path switching valve 50 and closes the second flow path of the flow path switching valve 50. , The opening degree of the first decompression device 6 is controlled to be fully closed.
  • the flow of the refrigerant when the control process of step S12 is performed is indicated by an arrow. At this time, since the high-temperature vapor-phase refrigerant does not flow in the indoor unit 20 that has been normally operated, for example, a thermo operation that only blows air to the load side heat exchanger 4 is performed.
  • the high-pressure liquid refrigerant returns from the repeater 30 to the outdoor unit 10 via the bypass pipe 52, but since the refrigerant merges with the refrigerant returned from the other indoor unit 20, the compressor 1 is used. It is possible to adjust the low pressure gas phase refrigerant to be inhaled.
  • the amount of refrigerant discharged from the compressor 1 temporarily increases as compared with the heating operation, and the repeater to which the indoor unit 20 that is stopped is connected.
  • the amount of refrigerant flowing into 30 also increases.
  • the refrigerant discharged from the compressor 1 and flowing into the heat source side heat exchanger 3 is returned to the outdoor unit 10 via the bypass pipe 52, so that the refrigerant inflow amount increases. 1 It is not necessary to open the decompression device 6. Therefore, according to this control process, the noise of the first decompression device 6 due to the passage of the refrigerant can be suppressed, so that the air conditioner 100 capable of maintaining the quietness of the repeater 30 can be provided.
  • the control device 70 When a plurality of repeaters 30 are connected to the air conditioner 100, the control device 70 performs the control process in step S12 by the repeater 30 having the smallest total operating capacity of the connected indoor unit 20. Can be done. Further, the control device 70 determines whether or not the repeater 30 satisfies the stoptable condition during the control process of step S11 and step S12, and some of the repeaters 30 satisfying the stoptable condition. It can be configured to perform the control process of step S12. The stoptable condition may be determined, for example, based on the threshold value of the operating capacity of the indoor unit 20 connected to the repeater 30. For example, the control device 70 may be configured so that it can be determined that the stoptable condition is satisfied when all the indoor units 20 connected to the repeater 30 are stopped.
  • FIG. 4 is a flowchart showing a control process of the flow path switching valve 50 and the first pressure reducing device 6 during the oil recovery operation according to the second embodiment. Since the configuration of the air conditioner 100 is the same as that of the first embodiment, the description thereof will be omitted.
  • the "oil recovery operation” refers to an operation mode of the air conditioner 100 that recovers the lubricating oil discharged by the compressor 1 together with the refrigerant into the inside of the compressor 1.
  • the lubricating oil discharged together with the refrigerant from the compressor 1 is particularly heat exchange on the heat source side of the refrigerant pipes connecting the outdoor unit 10 and the repeater 30. It stays in the so-called liquid side pipe arranged between the vessel 3 and the first decompression device 6.
  • the oil recovery operation is performed by increasing the operating frequency of the compressor 1 as compared with the normal cooling operation in order to recover the lubricating oil accumulated outside the compressor 1.
  • the control process of FIG. 4 can be set to be performed when the vehicle is operated at a frequency lower than that of the normal operation for a long time, for example, 5 hours or more. Further, during the normal cooling operation before the control process, the internal flow path of the flow path switching valve 50 is in a state where the first flow path is closed and the second flow path is open.
  • step S21 the control device 70 determines whether or not the oil recovery operation is performed by the air conditioner 100. Whether or not to perform the oil recovery operation is determined by, for example, a predetermined criterion based on the entire load of the air conditioner 100 and the operation time under the load. If it is determined that the oil recovery operation is not performed, the control process ends.
  • step S22 the control device 70 opens the first flow path of the flow path switching valve 50 and closes the second flow path of the flow path switching valve 50. , The opening degree of the first decompression device 6 is controlled to be fully closed.
  • the flow of the refrigerant when the control process of step S22 is performed is in the direction of the arrow in FIG. 2 as in the first embodiment.
  • a thermo operation that only blows air to the load side heat exchanger 4 is performed.
  • the high-pressure liquid refrigerant returns from the repeater 30 to the outdoor unit 10 via the bypass pipe 52, but since the refrigerant merges with the refrigerant returned from the other indoor unit 20, the compressor 1 is used. It is possible to adjust the low pressure gas phase refrigerant to be inhaled.
  • the operating frequency of the compressor 1 is increased, so that the amount of refrigerant discharged from the compressor 1 temporarily increases as compared with the normal cooling operation.
  • the amount of refrigerant flowing into the repeater 30 to which the stopped indoor unit 20 is connected also increases.
  • the refrigerant discharged from the compressor 1 and flowing into the heat source side heat exchanger 3 is returned to the outdoor unit 10 via the bypass pipe 52, so that the refrigerant inflow amount increases. 1 It is not necessary to open the decompression device 6. Therefore, according to this control process, the noise of the first decompression device 6 due to the passage of the refrigerant can be suppressed, so that the air conditioner 100 capable of maintaining the quietness of the repeater 30 can be provided.
  • the control device 70 When a plurality of repeaters 30 are connected to the air conditioner 100, the control device 70 performs the control process in step S22 at the repeater 30 having the smallest total operating capacity of the connected indoor unit 20. Can be done. Further, the control device 70 determines whether or not the repeater 30 satisfies the stoptable condition during the control process of step S21 and step S22, and some of the repeaters 30 satisfying the stoptable condition. It can be configured to perform the control process of step S22. The stoptable condition may be determined, for example, based on the threshold value of the operating capacity of the indoor unit 20 connected to the repeater 30. For example, the control device 70 may be configured so that it can be determined that the stoptable condition is satisfied when all the indoor units 20 connected to the repeater 30 are stopped.
  • FIG. 5 is a schematic refrigerant circuit diagram showing an example of the refrigerant circuit of the air conditioner 100 according to the third embodiment.
  • the indoor unit 20 is provided with the refrigerant leakage detection device 74.
  • the control device 70 receives the refrigerant leakage detection information from the refrigerant leakage detection device 74.
  • the refrigerant leakage detection device 74 for example, a refrigerant leakage detection sensor is provided.
  • the refrigerant leak detection sensor for example, a gas sensor such as a semiconductor type gas sensor, a heat ray type semiconductor type gas sensor, or an infrared type gas sensor is used. Further, the refrigerant leakage detection sensor may be an oxygen concentration type gas sensor that detects a decrease in oxygen concentration, or may be a flammable gas detection type gas sensor that detects flammable gas.
  • the refrigerant leakage detection device 74 may be provided in an information input device for the indoor unit 20, for example, a remote controller.
  • the refrigerant leakage detection device 74 is not limited to the refrigerant leakage detection sensor, and may be, for example, indirectly detecting the leakage of the refrigerant from an abnormality in the temperature of the refrigerant pipe of the indoor unit 20. Since the other configurations of the air conditioner 100 are the same as those in the first and second embodiments, the description thereof will be omitted.
  • FIG. 6 is a flowchart showing a control process of the flow path switching valve 50 and the first decompression device 6 at the time of detecting the refrigerant leakage according to the third embodiment.
  • the control process of FIG. 6 can be set to be performed at regular intervals, for example, every 5 minutes. Further, in the normal cooling operation or heating operation before the control process, the internal flow path of the flow path switching valve 50 is in a state where the first flow path is closed and the second flow path is open. And.
  • step S31 the control device 70 determines whether or not the refrigerant leakage is detected in the indoor unit 20. If it is determined that no refrigerant leakage has been detected, the control process ends.
  • step S32 the control device 70 opens the first flow path of the flow path switching valve 50 and the second flow path switching valve 50. Control is performed so that the flow path is closed and the opening degree of the first decompression device 6 is fully closed.
  • the flow of the refrigerant when the control process of step S32 is performed is in the direction of the dotted arrow in FIG. 5 in the case of cooling operation, and in the direction of the solid arrow in FIG. 5 in the case of heating operation. Since the refrigerant returning from the repeater 30 to the outdoor unit 10 via the bypass pipe 52 merges with the refrigerant returned from the other indoor unit 20, the low-pressure vapor-phase refrigerant is sucked by the compressor 1. It is possible to adjust.
  • the refrigerant discharged from the compressor 1 is returned to the outdoor unit 10 via the bypass pipe 52 without flowing into the indoor unit 20, so that the refrigerant leakage from the indoor unit 20 can be suppressed. ..
  • FIG. 7 is a schematic refrigerant circuit diagram showing an example of the refrigerant circuit of the air conditioner 100 according to the fourth embodiment.
  • the indoor unit 20 is provided with the second temperature sensor 72b and the third temperature sensor 72c.
  • the second temperature sensor 72b is a sensor that measures the temperature of air after heat exchange by the heat source side heat exchanger 3, and functions as a room temperature sensor.
  • the third temperature sensor 72c is a sensor that measures the temperature of the high-pressure liquid refrigerant or the two-phase refrigerant during the heating operation, and functions as a supercooling temperature sensor.
  • the control device 70 receives the detection information of the refrigerant leakage from the second temperature sensor 72b and the third temperature sensor 72c.
  • the second temperature sensor 72b and the third temperature sensor 72c for example, a sensor containing a semiconductor material such as a thermistor or a metal material such as a resistance temperature detector is used. Since the other configurations of the air conditioner 100 are the same as those in the first and second embodiments, the description thereof will be omitted. Further, in the air conditioner 100, one of the second temperature sensor 72b and the third temperature sensor 72c may be omitted.
  • FIG. 8 is a flowchart showing a control process of the flow path switching valve 50 and the first decompression device 6 when the indoor unit 20 according to the fourth embodiment is stopped.
  • the control process of FIG. 8 can be set to be performed at regular intervals, for example, every 30 minutes during the heating operation of the air conditioner 100. Further, in the normal heating operation before the control process, the internal flow path of the flow path switching valve 50 is in a state where the first flow path is closed and the second flow path is open.
  • step S41 the control device 70 determines whether or not the refrigerant is retained in the indoor unit 20. For example, when the temperature detected by the second temperature sensor 72b continues at 30 ° C. for 3 minutes, it is determined that the refrigerant is retained in the heat source side heat exchanger 3 in the state of a two-phase refrigerant. Alternatively, when the temperature detected by the third temperature sensor 72c continues to be constant for 3 minutes after rising, it is determined that the refrigerant is retained in the heat source side heat exchanger 3 in the state of a two-phase refrigerant. Will be done. If it is determined that the refrigerant does not stay, the control process ends.
  • step S42 the control device 70 opens the first flow path of the flow path switching valve 50, and the flow path switching valve 50 is the first. 2
  • the flow path is closed, and the opening degree of the first decompression device 6 is controlled to be fully opened.
  • the flow of the refrigerant when the control process of step S42 is performed is in the direction of the arrow in FIG. Since the refrigerant returning from the repeater 30 to the outdoor unit 10 via the bypass pipe 52 merges with the refrigerant returned from the other indoor unit 20, the low-pressure vapor-phase refrigerant is sucked by the compressor 1. It is possible to adjust.
  • the refrigerant discharged from the compressor 1 is returned to the outdoor unit 10 via the bypass pipe 52 without flowing into the indoor unit 20. Therefore, according to this control process, it is possible to suppress the temperature rise in the air-conditioned space in which the stopped indoor unit 20 is installed. Further, the refrigerant staying in the indoor unit 20 can be returned to the outdoor unit 10 by being attracted by the flow of the refrigerant returned to the outdoor unit 10 via the bypass pipe 52. Therefore, it is possible to suppress a decrease in the amount of refrigerant in the indoor unit 20 due to the retention of the refrigerant in the indoor unit 20, and it is possible to secure the amount of refrigerant required when the heating operation of the indoor unit 20 is restarted.
  • FIG. 9 is a schematic refrigerant circuit diagram showing an example of the refrigerant circuit of the air conditioner 100 according to the fifth embodiment.
  • the bypass pipe 52 is provided with the second decompression device 54.
  • the second decompression device 54 is an expansion device that expands and depressurizes the high-pressure refrigerant.
  • a linear electronic expansion valve or the like is used as the second pressure reducing device 54. Since the other configurations of the air conditioner 100 are the same as those in the first and second embodiments, the description thereof will be omitted.
  • FIG. 10 is a flowchart showing a control process of the flow path switching valve 50, the first decompression device 6, and the second decompression device 54 during the heating operation of the air conditioner 100 according to the fifth embodiment.
  • the control process of FIG. 10 can be set to be performed at regular intervals, for example, every 30 minutes during the heating operation of the air conditioner 100. Further, in the normal heating operation before the control process, the internal flow path of the flow path switching valve 50 is in a state where the first flow path is closed and the second flow path is open.
  • step S51 the control device 70 determines whether or not the indoor unit 20 connected to the repeater 30 is stopped. If it is determined that the indoor unit 20 has not stopped, the control process ends.
  • step S52 the control device 70 opens the first flow path of the flow path switching valve 50, and the second flow of the flow path switching valve 50. Control is performed so that the road is closed and the opening degree of the first decompression device 6 is fully closed. Further, in step S53, the control device 70 adjusts the opening degree of the second decompression device 54 so that the high-pressure gas phase refrigerant flowing into the bypass pipe 52 flows out as the low-pressure gas phase refrigerant.
  • the refrigerant discharged from the compressor 1 is returned to the outdoor unit 10 via the bypass pipe 52 without flowing into the stopped indoor unit 20. Therefore, according to this control process, it is possible to suppress the temperature rise in the air-conditioned space in which the stopped indoor unit 20 is installed, and prevent the refrigerant from staying in the stopped indoor unit 20. Further, in the case of the fourth embodiment, the passing noise of the refrigerant may be intermittently generated in the first decompression device 6, but in the case of the fifth embodiment, since the first decompression device 6 is closed, the refrigerant Passing sound can be suppressed.
  • FIG. 11 is a schematic refrigerant circuit diagram showing an example of the refrigerant circuit of the air conditioner 100 according to the sixth embodiment.
  • the first refrigerant pipe 5a and the second refrigerant pipe 5b are provided with a branch pipe 90 having three openings.
  • FIG. 12 is an enlarged view of the branch pipe 90 of FIG. Of the three openings of the branch pipe 90 provided in the first refrigerant pipe 5a, two openings are connected to the first refrigerant pipe 5a by brazing or the like.
  • FIG. 13 is an enlarged view showing a state in which the flow path switching valve 50 and the bypass pipe 52 are arranged in the refrigerant circuit of the air conditioner 100 according to the sixth embodiment.
  • the branch pipe 90 provided in the first refrigerant pipe 5a can be removed by melting the brazing or the like, and the flow path switching valve 50 can be attached by brazing or the like.
  • the cap 92 of the branch pipe 90 provided in the second refrigerant pipe 5b is removed by melting the brazing or the like, and a bypass is provided between the branch pipe 90 and the flow path switching valve 50.
  • the pipe 52 can be attached by brazing or the like. Since the other configurations of the air conditioner 100 are the same as those in the first and second embodiments, the description thereof will be omitted.
  • the flow path switching valve 50 and the bypass pipe 52 can be detachably attached to the air conditioner 100. According to this configuration, when noise is generated in the repeater 30, the flow path switching valve 50 and the bypass pipe 52 can be attached later, so that the structure of the repeater 30 can be simplified and the material cost can be reduced. Is possible.
  • bypass pipe 52 may be a bypass pipe 52 provided with the second decompression device 54.
  • bypass pipe 52 not provided with the second decompression device 54 can be replaced with the bypass pipe 52 provided with the second decompression device 54, and vice versa.
  • 1 Compressor 2 Refrigerant flow path switching device, 3 Heat source side heat exchanger, 4 Load side heat exchanger, 5a 1st refrigerant piping, 5b 2nd refrigerant piping, 6 1st decompression device, 7 Capillary tube, 8 Strainer, 10 outdoor unit, 20 indoor unit, 30 repeater, 50 flow path switching valve, 50a 1st port, 50b 2nd port, 50c 3rd port, 52 bypass piping, 54 2nd decompression device, 70 control device, 72a 1st Temperature sensor, 72b 2nd temperature sensor, 72c 3rd temperature sensor, 74 Refrigerant leakage detection device, 90 branch pipe, 92 cap, 100 air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

This air conditioning device comprises a relay that has a first decompression device. The relay has a flow path switching valve that is provided to first refrigerant piping connected between a compressor and a load-side heat exchanger, and bypass piping that is connected to the flow path switching valve at one end, and at the other end is connected to second refrigerant piping connected between the first decompression device and a heat source-side heat exchanger. The flow path switching valve has, as internal flow paths, a first flow path communicating the first refrigerant piping and the bypass piping, and a second flow path communicating the compressor and the load-side heat exchanger via the first refrigerant piping, and switches the internal flow paths such that one internal flow path among the first flow path and the second flow path is open while the other internal flow path is closed.

Description

空気調和装置Air conditioner
 本発明は、中継機を備えた空気調和装置に関する。 The present invention relates to an air conditioner provided with a repeater.
 特許文献1では、室外機と室内機との間を中継する中継機を備えた空気調和装置が開示されている。特許文献1の空気調和装置では、中継機に減圧装置が収容されている。また、特許文献1の空気調和装置では、複数の室内機が中継機に接続されており、複数の室内機は、それぞれ独立して起動及び停止を切り替えることができる。 Patent Document 1 discloses an air conditioner including a repeater that relays between the outdoor unit and the indoor unit. In the air conditioner of Patent Document 1, a decompression device is housed in the repeater. Further, in the air conditioner of Patent Document 1, a plurality of indoor units are connected to a repeater, and the plurality of indoor units can be independently switched between start and stop.
特開2015-135196号公報JP-A-2015-135196
 空気調和装置では、室外機の運転能力を維持するために、冷媒の循環量を一時的に増加させる場合がある。このような場合、特許文献1の空気調和装置では、起動中の室内機を循環する冷媒の量を維持するために、停止中の室内機にも冷媒を一時的に循環させる場合がある。この場合、停止中の室内機では、室内機が設置された空間の温度変化を抑制するため、停止中の室内機に接続された減圧装置の開度は、運転中の室内機に接続された減圧装置の開度よりも小さく、かつ、最小限の開度に調整される。しかしながら、このように減圧装置の開度が調整される場合、冷媒が減圧装置を通過する際に騒音が発生するため、中継機の静音性が低下する可能性があった。 In the air conditioner, the amount of refrigerant circulating may be temporarily increased in order to maintain the operating capacity of the outdoor unit. In such a case, in the air conditioner of Patent Document 1, in order to maintain the amount of the refrigerant circulating in the indoor unit that is running, the refrigerant may be temporarily circulated in the indoor unit that is stopped. In this case, in the stopped indoor unit, the opening degree of the decompression device connected to the stopped indoor unit is connected to the operating indoor unit in order to suppress the temperature change in the space where the indoor unit is installed. It is adjusted to be smaller than the opening degree of the decompression device and to the minimum opening degree. However, when the opening degree of the decompression device is adjusted in this way, noise is generated when the refrigerant passes through the decompression device, which may reduce the quietness of the repeater.
 本発明は、上述の課題を解決するものであり、中継機の静音性を維持可能な空気調和装置を提供することを目的とする。 The present invention solves the above-mentioned problems, and an object of the present invention is to provide an air conditioner capable of maintaining the quietness of a repeater.
 本発明の空気調和装置は、熱源側熱交換器と、前記熱源側熱交換器に接続された圧縮機とを有する室外機と、負荷側熱交換器を有する複数の室内機と、前記熱源側熱交換器に接続された第1減圧装置を有し、前記複数の室内機のうちの一部と接続された中継機とを備え、前記中継機は、前記圧縮機と前記負荷側熱交換器との間に接続された第1冷媒配管と、前記第1減圧装置と前記熱源側熱交換器との間に接続された第2冷媒配管と、前記第1冷媒配管に設けられた流路切替弁と、一端が前記流路切替弁に接続され、他端が前記第2冷媒配管に接続されたバイパス配管とを有しており、前記流路切替弁は、前記圧縮機の側の前記第1冷媒配管と前記バイパス配管とを連通させる第1流路と、前記圧縮機の側の前記第1冷媒配管と前記負荷側熱交換器の側の前記第1冷媒配管とを連通させる第2流路とを内部流路として有しており、前記第1流路及び前記第2流路のうちのいずれか一方の内部流路を開放し、他の一方の内部流路を閉止するように、内部流路が切り替えられる。 The air conditioner of the present invention includes an outdoor unit having a heat source side heat exchanger, a compressor connected to the heat source side heat exchanger, a plurality of indoor units having a load side heat exchanger, and the heat source side. It has a first decompression device connected to a heat exchanger, includes a repeater connected to a part of the plurality of indoor units, and the repeater includes the compressor and the load side heat exchanger. A first refrigerant pipe connected between the first refrigerant pipe, a second refrigerant pipe connected between the first decompression device and the heat source side heat exchanger, and a flow path switching provided in the first refrigerant pipe. It has a valve and a bypass pipe having one end connected to the flow path switching valve and the other end connected to the second refrigerant pipe, and the flow path switching valve is the first on the side of the compressor. 1 The first flow path that communicates the refrigerant pipe and the bypass pipe, and the second flow that communicates the first refrigerant pipe on the compressor side and the first refrigerant pipe on the load side heat exchanger side. It has a path as an internal flow path, and one of the first flow path and the second flow path is opened and the other internal flow path is closed. The internal flow path is switched.
 本発明の空気調和装置では、中継機が流路切替弁とバイパス配管とを有することにより、室内機が停止中である場合に、室内機に冷媒が流入しないように、流路切替弁の内部流路を切り替えて、冷媒をバイパス配管に迂回させることができる。すなわち、本発明の空気調和装置では、室内機が停止中である場合に、冷媒が第1減圧装置を通過しないように流路の切り替えができる。したがって、本発明の空気調和装置では、中継機が流路切替弁とバイパス配管とを有することにより、冷媒通過による第1減圧装置の騒音を抑制できるため、中継機の静音性を維持可能な空気調和装置を提供できる。 In the air conditioner of the present invention, since the repeater has the flow path switching valve and the bypass pipe, the inside of the flow path switching valve is prevented from flowing into the indoor unit when the indoor unit is stopped. The flow path can be switched to divert the refrigerant to the bypass pipe. That is, in the air conditioner of the present invention, when the indoor unit is stopped, the flow path can be switched so that the refrigerant does not pass through the first decompression device. Therefore, in the air conditioner of the present invention, since the repeater has the flow path switching valve and the bypass pipe, the noise of the first decompression device due to the passage of the refrigerant can be suppressed, so that the air can maintain the quietness of the repeater. A harmonizer can be provided.
実施の形態1に係る空気調和装置の一例を示す概略図である。It is the schematic which shows an example of the air conditioner which concerns on Embodiment 1. FIG. 図1の空気調和装置の一部を示す概略的な冷媒回路図である。It is a schematic refrigerant circuit diagram which shows a part of the air conditioner of FIG. 実施の形態1に係る除霜運転時における流路切替弁及び第1減圧装置の制御処理を示すフローチャートである。It is a flowchart which shows the control process of the flow path switching valve and the 1st decompression device at the time of defrosting operation which concerns on Embodiment 1. FIG. 実施の形態2に係る油回収運転時における流路切替弁及び第1減圧装置の制御処理を示すフローチャートである。It is a flowchart which shows the control process of the flow path switching valve and the 1st pressure reducing device at the time of the oil recovery operation which concerns on Embodiment 2. 実施の形態3に係る空気調和装置の冷媒回路の一例を示す概略的な冷媒回路図である。It is a schematic refrigerant circuit diagram which shows an example of the refrigerant circuit of the air conditioner which concerns on Embodiment 3. FIG. 実施の形態3に係る冷媒漏洩検知時における流路切替弁及び第1減圧装置の制御処理を示すフローチャートである。It is a flowchart which shows the control process of the flow path switching valve and the 1st decompression device at the time of the refrigerant leakage detection which concerns on Embodiment 3. 実施の形態4に係る空気調和装置の冷媒回路の一例を示す概略的な冷媒回路図である。It is a schematic refrigerant circuit diagram which shows an example of the refrigerant circuit of the air conditioner which concerns on Embodiment 4. FIG. 実施の形態4に係る室内機の停止時における流路切替弁及び第1減圧装置の制御処理を示すフローチャートである。It is a flowchart which shows the control process of the flow path switching valve and the first decompression device when the indoor unit is stopped which concerns on Embodiment 4. FIG. 実施の形態5に係る空気調和装置の冷媒回路の一例を示す概略的な冷媒回路図である。It is a schematic refrigerant circuit diagram which shows an example of the refrigerant circuit of the air conditioner which concerns on Embodiment 5. FIG. 実施の形態5に係る空気調和装置の暖房運転時における流路切替弁、第1減圧装置、及び第2減圧装置の制御処理を示すフローチャートである。It is a flowchart which shows the control process of the flow path switching valve, the 1st decompression device, and the 2nd decompression device at the time of heating operation of the air conditioner which concerns on Embodiment 5. 実施の形態6に係る空気調和装置の冷媒回路の一例を示す概略的な冷媒回路図である。It is a schematic refrigerant circuit diagram which shows an example of the refrigerant circuit of the air conditioner which concerns on Embodiment 6. 図11の分岐管の拡大図である。It is an enlarged view of the branch pipe of FIG. 実施の形態6に係る空気調和装置の冷媒回路に流路切替弁とバイパス配管を配置した状態を示す拡大図である。FIG. 5 is an enlarged view showing a state in which a flow path switching valve and a bypass pipe are arranged in a refrigerant circuit of the air conditioner according to the sixth embodiment.
実施の形態1.
 実施の形態1に係る空気調和装置100について説明する。図1は、実施の形態1に係る空気調和装置100の一例を示す概略図である。図2は、図1の空気調和装置100の一部を示す概略的な冷媒回路図である。なお、以下の図面においては、各構成部材の寸法の関係及び形状は、実際のものとは異なる場合がある。また、以下の図面では、同一の部材若しくは部分又は同一の機能を有する部材若しくは部分には、同一の符号を付すか、又は符号を付すことを省略している。
Embodiment 1.
The air conditioner 100 according to the first embodiment will be described. FIG. 1 is a schematic view showing an example of an air conditioner 100 according to the first embodiment. FIG. 2 is a schematic refrigerant circuit diagram showing a part of the air conditioner 100 of FIG. In the drawings below, the dimensional relationships and shapes of the constituent members may differ from the actual ones. Further, in the following drawings, the same members or parts or members or parts having the same functions are designated by the same reference numerals or omitted.
 図1に示すように、空気調和装置100は、室外機10と、複数の室内機20と、中継機30とを備えている。室外機10と中継機30との間は、冷媒配管により接続されている。また、複数の室内機20の一部は、中継機30を介して室外機10と接続されており、複数の室内機20の他の一部は、中継機30を介さずに室外機10と直接接続されている。例を挙げると、中継機30は、静音性が求められる空間、例えば、社長室、会議室、又はオフィスルーム等の空間に設けられた室内機20に接続される。また、静音性が要求されない空間、例えば、エレベーターホール又は物置等の室内機20は、中継機30を介さずに室外機10と直接接続される。なお、図1では、室外機10及び中継機30は、1台のみとしているが、複数台設けた構成であってもよい。また、中継機30に接続される室内機20の台数は1台であってもよい。また、冷媒配管は、空気調和装置100が設置される物件に既設の冷媒配管であってもよいし、空気調和装置100の設置に際し、新たに取り付けられる冷媒配管であってもよい。 As shown in FIG. 1, the air conditioner 100 includes an outdoor unit 10, a plurality of indoor units 20, and a repeater 30. The outdoor unit 10 and the repeater 30 are connected by a refrigerant pipe. Further, a part of the plurality of indoor units 20 is connected to the outdoor unit 10 via the repeater 30, and the other part of the plurality of indoor units 20 is connected to the outdoor unit 10 without passing through the repeater 30. It is directly connected. For example, the repeater 30 is connected to an indoor unit 20 provided in a space where quietness is required, for example, a space such as a president's room, a conference room, or an office room. Further, a space where quietness is not required, for example, an indoor unit 20 such as an elevator hall or a storage room is directly connected to the outdoor unit 10 without going through a repeater 30. Although the number of the outdoor unit 10 and the repeater 30 is limited to one in FIG. 1, a plurality of outdoor units 10 may be provided. Further, the number of indoor units 20 connected to the repeater 30 may be one. Further, the refrigerant pipe may be an existing refrigerant pipe in the property where the air conditioner 100 is installed, or may be a refrigerant pipe newly installed when the air conditioner 100 is installed.
 なお、以降の説明においては、「冷房運転」とは、室内機20に低温低圧の二相冷媒を流入させる空気調和装置100の運転態様をいう。また、「暖房運転」とは、室内機20に高温高圧の気相冷媒を流入させる空気調和装置100の運転態様をいう。 In the following description, the "cooling operation" refers to an operation mode of the air conditioner 100 that allows a low-temperature and low-pressure two-phase refrigerant to flow into the indoor unit 20. Further, the “heating operation” refers to an operation mode of the air conditioner 100 that allows a high-temperature and high-pressure vapor-phase refrigerant to flow into the indoor unit 20.
 室外機10は、圧縮機1、冷媒流路切替装置2、及び熱源側熱交換器3を有している。室外機10では、圧縮機1及び熱源側熱交換器3は、冷媒流路切替装置2を介して冷媒配管により接続されている。 The outdoor unit 10 has a compressor 1, a refrigerant flow path switching device 2, and a heat source side heat exchanger 3. In the outdoor unit 10, the compressor 1 and the heat source side heat exchanger 3 are connected by a refrigerant pipe via a refrigerant flow path switching device 2.
 圧縮機1は、吸入した低圧の冷媒を圧縮し、高圧の冷媒として吐出する流体機械であり、例えば、レシプロ圧縮機、ロータリ圧縮機、スクロール圧縮機等の容量可変型圧縮機が用いられる。 The compressor 1 is a fluid machine that compresses the sucked low-pressure refrigerant and discharges it as a high-pressure refrigerant. For example, a variable-capacity compressor such as a reciprocating compressor, a rotary compressor, or a scroll compressor is used.
 冷媒流路切替装置2は、空気調和装置100の冷房運転から暖房運転への切り替え、又は空気調和装置100の暖房運転から冷房運転への切り替えに応じて、電気信号により冷媒流路切替装置2の内部の冷媒流路が切り替えられる電気機器である。図2では、冷房運転時の冷媒流路切替装置2の内部の冷媒流路が点線で示されており、暖房運転時の冷媒流路切替装置2の内部の冷媒流路が実線で示されている。冷媒流路切替装置2としては、例えば電磁弁の動作を応用した四方弁が用いられる。また、冷媒流路切替装置2は、二方弁又は三方弁を組み合わせた切替装置であってもよい。なお、空気調和装置100では、冷房運転及び暖房運転のいずれか一方のみを行う場合は、冷媒流路切替装置2を省略することができる。 The refrigerant flow path switching device 2 uses an electric signal to switch the refrigerant flow path switching device 2 in response to the switching from the cooling operation of the air conditioning device 100 to the heating operation or the switching from the heating operation to the cooling operation of the air conditioning device 100. It is an electric device that can switch the internal refrigerant flow path. In FIG. 2, the refrigerant flow path inside the refrigerant flow path switching device 2 during the cooling operation is shown by a dotted line, and the refrigerant flow path inside the refrigerant flow path switching device 2 during the heating operation is shown by a solid line. There is. As the refrigerant flow path switching device 2, for example, a four-way valve that applies the operation of a solenoid valve is used. Further, the refrigerant flow path switching device 2 may be a switching device in which a two-way valve or a three-way valve is combined. In the air conditioner 100, when only one of the cooling operation and the heating operation is performed, the refrigerant flow path switching device 2 can be omitted.
 熱源側熱交換器3は、保有する熱エネルギーの異なる2つの流体間で熱エネルギーの移動及び交換を行う熱伝達機器である。熱源側熱交換器3は、冷房運転時には凝縮器として機能し、暖房運転時に蒸発器として機能する。熱源側熱交換器3として、フィンアンドチューブ式熱交換器若しくはプレートフィン式熱交換器等の空冷式熱交換器、又はシェルアンドチューブ式熱交換器、プレート熱交換器、又は二重管式熱交換器等の水冷式熱交換器が用いられる。なお、空気調和装置100において、凝縮器は放熱器と称される場合がある。 The heat source side heat exchanger 3 is a heat transfer device that transfers and exchanges heat energy between two fluids having different heat energies. The heat source side heat exchanger 3 functions as a condenser during the cooling operation and as an evaporator during the heating operation. As the heat source side heat exchanger 3, an air-cooled heat exchanger such as a fin-and-tube heat exchanger or a plate fin heat exchanger, or a shell-and-tube heat exchanger, a plate heat exchanger, or a double-tube heat exchanger. A water-cooled heat exchanger such as an exchanger is used. In the air conditioner 100, the condenser may be referred to as a radiator.
 室内機20は、負荷側熱交換器4を有している。負荷側熱交換器4は、上述した熱源側熱交換器3と同様に、保有する熱エネルギーの異なる2つの流体間で熱エネルギーの移動及び交換を行う熱伝達機器である。負荷側熱交換器4は、冷房運転時には蒸発器として機能し、暖房運転時に凝縮器として機能する。負荷側熱交換器4としては、フィンアンドチューブ式熱交換器若しくはプレートフィン式熱交換器等の空冷式熱交換器が用いられる。 The indoor unit 20 has a load side heat exchanger 4. The load-side heat exchanger 4 is a heat transfer device that transfers and exchanges heat energy between two fluids having different heat energies, similarly to the heat source-side heat exchanger 3 described above. The load side heat exchanger 4 functions as an evaporator during the cooling operation and as a condenser during the heating operation. As the load side heat exchanger 4, an air-cooled heat exchanger such as a fin-and-tube heat exchanger or a plate fin heat exchanger is used.
 中継機30は、室外機10と室内機20との間に冷媒配管により接続されている。中継機30は、圧縮機1と負荷側熱交換器4との間を接続する冷媒配管の1つである、第1冷媒配管5aと、熱源側熱交換器3に接続される冷媒配管の一部である第2冷媒配管5bとを有している。第1冷媒配管5a及び第2冷媒配管5bには、室内機20の負荷側熱交換器4の台数に対応する分岐冷媒配管がぞれぞれに接続されている。また、中継機30は、第1減圧装置6と、キャピラリチューブ7と、ストレーナ8とを有している。 The repeater 30 is connected between the outdoor unit 10 and the indoor unit 20 by a refrigerant pipe. The repeater 30 is one of the first refrigerant pipe 5a, which is one of the refrigerant pipes connecting the compressor 1 and the load side heat exchanger 4, and one of the refrigerant pipes connected to the heat source side heat exchanger 3. It has a second refrigerant pipe 5b, which is a part. Branch refrigerant pipes corresponding to the number of load side heat exchangers 4 of the indoor unit 20 are connected to the first refrigerant pipe 5a and the second refrigerant pipe 5b, respectively. Further, the repeater 30 has a first decompression device 6, a capillary tube 7, and a strainer 8.
 第1減圧装置6は、高圧の液相冷媒を膨張及び減圧させる膨張装置である。第1減圧装置6としては、膨張機、温度式自動膨張弁、リニア電子膨張弁等が用いられる。膨張機は、受圧部にダイアフラムを採用した機械式膨張弁である。温度式自動膨張弁は、圧縮機1の吸入側における気相冷媒の過熱度によって冷媒量を調整する膨張装置である。リニア電子膨張弁は、多段階若しくは連続的に開度を調節可能な膨張装置であり、LEVとも略称される。第1減圧装置6は、第2冷媒配管5bに接続されたそれぞれの分岐冷媒配管に配置されている。 The first decompression device 6 is an expansion device that expands and depressurizes a high-pressure liquid phase refrigerant. As the first decompression device 6, an expander, a temperature type automatic expansion valve, a linear electronic expansion valve, or the like is used. The expander is a mechanical expansion valve that employs a diaphragm for the pressure receiving part. The temperature type automatic expansion valve is an expansion device that adjusts the amount of refrigerant according to the degree of superheat of the gas phase refrigerant on the suction side of the compressor 1. The linear electronic expansion valve is an expansion device whose opening degree can be adjusted in multiple stages or continuously, and is also abbreviated as LEV. The first decompression device 6 is arranged in each of the branched refrigerant pipes connected to the second refrigerant pipe 5b.
 キャピラリチューブ7は、細長の銅管で構成され、配管抵抗により所要の冷媒量を通過させ、冷媒を減圧する毛細管状の冷媒配管である。キャピラリチューブ7は、第2冷媒配管5bに接続されたそれぞれの分岐冷媒配管に、第1減圧装置6と直列に接続されている。キャピラリチューブ7は、第1減圧装置6よりも室内機20の側の分岐冷媒配管に配置されている。なお、空気調和装置100において、キャピラリチューブ7は、第1減圧装置6の減圧機能を補助するものであり、省略することができる。 The capillary tube 7 is a capillary refrigerant pipe which is composed of an elongated copper pipe and allows a required amount of refrigerant to pass through pipe resistance to reduce the pressure of the refrigerant. The capillary tube 7 is connected in series with the first decompression device 6 to each of the branched refrigerant pipes connected to the second refrigerant pipe 5b. The capillary tube 7 is arranged in the branched refrigerant pipe on the side of the indoor unit 20 with respect to the first decompression device 6. In the air conditioner 100, the capillary tube 7 assists the decompression function of the first decompression device 6, and can be omitted.
 ストレーナ8は、圧縮機1の運転中に発生するスラッジ等の冷媒に含まれる塵埃、又は不純物等を漉し取るための濾過器である。ストレーナ8は、第1減圧装置6及びキャピラリチューブ7の目詰まりを防止するために設けられている。ストレーナ8は、第2冷媒配管5bと、第2冷媒配管5bに接続されたそれぞれの分岐冷媒配管とに設けられ、第1減圧装置6及びキャピラリチューブ7が配置された冷媒配管の両側を挟むように設けられている。なお、例えば、圧縮機1がスラッジの発生を抑制できるものであれば、ストレーナ8は省略することができる。 The strainer 8 is a filter for filtering out dust, impurities, etc. contained in a refrigerant such as sludge generated during the operation of the compressor 1. The strainer 8 is provided to prevent clogging of the first decompression device 6 and the capillary tube 7. The strainer 8 is provided in the second refrigerant pipe 5b and each of the branched refrigerant pipes connected to the second refrigerant pipe 5b so as to sandwich both sides of the refrigerant pipe in which the first decompression device 6 and the capillary tube 7 are arranged. It is provided in. For example, if the compressor 1 can suppress the generation of sludge, the strainer 8 can be omitted.
 なお、空気調和装置100は、上述した以外の構成とすることができる。例えば、空気調和装置100は、上述した以外の機器、例えば、過冷却熱交換器、アキュムレータ、又は油分離器等を有していてもよい。また、室内機20は複数の負荷側熱交換器4を有していてもよい。 The air conditioner 100 may have a configuration other than that described above. For example, the air conditioner 100 may include equipment other than those described above, such as a supercooling heat exchanger, an accumulator, or an oil separator. Further, the indoor unit 20 may have a plurality of load side heat exchangers 4.
 空気調和装置100では、圧縮機1、熱源側熱交換器3、第1減圧装置6、及び負荷側熱交換器4が配管接続されることにより、冷媒が循環する冷媒回路が形成される。ここで、冷房運転時における空気調和装置100の冷媒回路の動作の概要について説明する。 In the air conditioner 100, the compressor 1, the heat source side heat exchanger 3, the first decompression device 6, and the load side heat exchanger 4 are connected by piping to form a refrigerant circuit in which the refrigerant circulates. Here, an outline of the operation of the refrigerant circuit of the air conditioner 100 during the cooling operation will be described.
 冷房運転時には、冷媒流路切替装置2では、図2の点線に示すように、冷媒流路切替装置2の内部の冷媒流路の経路制御が行われる。 During the cooling operation, the refrigerant flow path switching device 2 controls the path of the refrigerant flow path inside the refrigerant flow path switching device 2 as shown by the dotted line in FIG.
 室外機10において、圧縮機1から吐出された高温かつ高圧の気相冷媒は、冷媒流路切替装置2の内部の冷媒流路を介して熱源側熱交換器3に流入する。熱源側熱交換器3は、冷房運転時においては凝縮器として機能する。熱源側熱交換器3に流入した高温かつ高圧の気相冷媒は、熱源側熱交換器3で、外気等の熱媒体との間で熱交換され、高圧の液相冷媒として流出する。熱源側熱交換器3から流出した高圧の液相冷媒は、室外機10から流出して中継機30に流入する。 In the outdoor unit 10, the high-temperature and high-pressure vapor-phase refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 3 via the refrigerant flow path inside the refrigerant flow path switching device 2. The heat source side heat exchanger 3 functions as a condenser during the cooling operation. The high-temperature and high-pressure gas-phase refrigerant that has flowed into the heat source-side heat exchanger 3 is heat-exchanged with a heat medium such as outside air at the heat-source-side heat exchanger 3 and flows out as a high-pressure liquid-phase refrigerant. The high-pressure liquid-phase refrigerant flowing out of the heat source side heat exchanger 3 flows out from the outdoor unit 10 and flows into the repeater 30.
 中継機30に流入した高圧の液相冷媒は、第2冷媒配管5bを介して、第1減圧装置6に流入する。第1減圧装置6に流入した高圧の気相冷媒は、第1減圧装置6で膨張及び減圧され、低温低圧の二相冷媒として第1減圧装置6から流出する。第1減圧装置6から流出した低温低圧の二相冷媒は、中継機30から流出して室内機20に流入する。 The high-pressure liquid-phase refrigerant that has flowed into the repeater 30 flows into the first decompression device 6 via the second refrigerant pipe 5b. The high-pressure vapor-phase refrigerant flowing into the first decompression device 6 is expanded and decompressed by the first decompression device 6, and flows out from the first decompression device 6 as a low-temperature low-pressure two-phase refrigerant. The low-temperature and low-pressure two-phase refrigerant flowing out of the first decompression device 6 flows out from the repeater 30 and flows into the indoor unit 20.
 室内機20に流入した低温低圧の二相冷媒は、負荷側熱交換器4に流入する。負荷側熱交換器4は、冷房運転においては、蒸発器として機能する。負荷側熱交換器4に流入した低圧の二相冷媒は、負荷側熱交換器4で、室内空気等の熱媒体との間で熱交換され、低圧の気相冷媒として流出する。なお、負荷側熱交換器4から流出する冷媒は、低圧の乾き度の高い二相冷媒となる場合もある。負荷側熱交換器4から流出した低圧の気相冷媒は、室内機20から流出して、中継機30の第1冷媒配管5aを介して、室外機10に流入する。 The low temperature and low pressure two-phase refrigerant that has flowed into the indoor unit 20 flows into the load side heat exchanger 4. The load side heat exchanger 4 functions as an evaporator in the cooling operation. The low-pressure two-phase refrigerant that has flowed into the load-side heat exchanger 4 is heat-exchanged with a heat medium such as indoor air at the load-side heat exchanger 4, and flows out as a low-pressure gas-phase refrigerant. The refrigerant flowing out of the load side heat exchanger 4 may be a low-pressure, highly dry two-phase refrigerant. The low-pressure vapor-phase refrigerant flowing out of the load-side heat exchanger 4 flows out from the indoor unit 20 and flows into the outdoor unit 10 via the first refrigerant pipe 5a of the repeater 30.
 室外機10に流入した低圧の気相冷媒は、冷媒流路切替装置2の内部の冷媒流路を介して、圧縮機1に吸入される。圧縮機1に吸入された低圧の気相冷媒は、圧縮機1で圧縮され、高温かつ高圧の気相冷媒として圧縮機1から吐出される。空気調和装置100の冷房運転時には、以上のサイクルが繰り返される。 The low-pressure vapor-phase refrigerant that has flowed into the outdoor unit 10 is sucked into the compressor 1 via the refrigerant flow path inside the refrigerant flow path switching device 2. The low-pressure vapor-phase refrigerant sucked into the compressor 1 is compressed by the compressor 1 and discharged from the compressor 1 as a high-temperature and high-pressure vapor-phase refrigerant. During the cooling operation of the air conditioner 100, the above cycle is repeated.
 暖房運転時における空気調和装置100の冷媒回路の動作の概要について説明する。暖房運転時には、冷媒流路切替装置2では、図2の実線に示すように、冷媒流路切替装置2の内部の冷媒流路の経路制御が行われる。 The outline of the operation of the refrigerant circuit of the air conditioner 100 during the heating operation will be described. During the heating operation, the refrigerant flow path switching device 2 controls the path of the refrigerant flow path inside the refrigerant flow path switching device 2 as shown by the solid line in FIG.
 圧縮機1から吐出された高温かつ高圧の気相冷媒は、冷媒流路切替装置2の内部の冷媒流路を介して、室外機10から流出して、中継機30の第1冷媒配管5aを介して、室内機20に流入する。 The high-temperature and high-pressure vapor-phase refrigerant discharged from the compressor 1 flows out from the outdoor unit 10 via the refrigerant flow path inside the refrigerant flow path switching device 2, and flows out to the first refrigerant pipe 5a of the repeater 30. It flows into the indoor unit 20 through the indoor unit 20.
 室内機20に流入した高温かつ高圧の気相冷媒は、負荷側熱交換器4に流入する。負荷側熱交換器4は、暖房房運転においては、凝縮器として機能する。負荷側熱交換器4に流入した高温かつ高圧の気相冷媒は、負荷側熱交換器4で、室内空気等の熱媒体との間で熱交換され、高圧の液相冷媒として流出する。負荷側熱交換器4から流出した高圧の液相冷媒は、室内機20から流出して中継機30に流入する。 The high-temperature and high-pressure vapor-phase refrigerant that has flowed into the indoor unit 20 flows into the load-side heat exchanger 4. The load side heat exchanger 4 functions as a condenser in the heating chamber operation. The high-temperature, high-pressure gas-phase refrigerant that has flowed into the load-side heat exchanger 4 is heat-exchanged with a heat medium such as indoor air by the load-side heat exchanger 4, and flows out as a high-pressure liquid-phase refrigerant. The high-pressure liquid-phase refrigerant flowing out of the load-side heat exchanger 4 flows out of the indoor unit 20 and flows into the repeater 30.
 中継機30に流入した高圧の液相冷媒は、第1減圧装置6に流入する。第1減圧装置6に流入した高圧の液相冷媒は、第1減圧装置6で膨張及び減圧され、低温低圧の二相冷媒として第1減圧装置6から流出する。第1減圧装置6から流出した低温低圧の二相冷媒は、第2冷媒配管5bを介して、中継機30から流出して、室外機10に流入する。 The high-pressure liquid-phase refrigerant that has flowed into the repeater 30 flows into the first decompression device 6. The high-pressure liquid-phase refrigerant flowing into the first decompression device 6 is expanded and decompressed by the first decompression device 6, and flows out from the first decompression device 6 as a low-temperature low-pressure two-phase refrigerant. The low-temperature and low-pressure two-phase refrigerant flowing out of the first decompression device 6 flows out from the repeater 30 via the second refrigerant pipe 5b and flows into the outdoor unit 10.
 室外機10に流入した低温低圧の二相冷媒は、熱源側熱交換器3に流入する。熱源側熱交換器3は、暖房運転時においては蒸発器として機能する。熱源側熱交換器3に流入した低温低圧の二相冷媒は、熱源側熱交換器3で、外気等の熱媒体との間で熱交換され、低圧の気相冷媒として流出する。なお、熱源側熱交換器3から流出する冷媒は、低圧の乾き度の高い二相冷媒となる場合もある。 The low temperature and low pressure two-phase refrigerant that has flowed into the outdoor unit 10 flows into the heat source side heat exchanger 3. The heat source side heat exchanger 3 functions as an evaporator during the heating operation. The low-temperature, low-pressure two-phase refrigerant that has flowed into the heat source-side heat exchanger 3 is heat-exchanged with a heat medium such as outside air at the heat-source-side heat exchanger 3, and flows out as a low-pressure gas-phase refrigerant. The refrigerant flowing out of the heat source side heat exchanger 3 may be a low-pressure, highly dry two-phase refrigerant.
 熱源側熱交換器3から流出した低圧の気相冷媒は、冷媒流路切替装置2の内部の冷媒流路を介して、圧縮機1に吸入される。圧縮機1に吸入された低圧の気相冷媒は、圧縮機1で圧縮され、高温かつ高圧の気相冷媒として圧縮機1から吐出される。空気調和装置100の暖房運転時には、以上のサイクルが繰り返される。 The low-pressure vapor-phase refrigerant flowing out of the heat source side heat exchanger 3 is sucked into the compressor 1 via the refrigerant flow path inside the refrigerant flow path switching device 2. The low-pressure vapor-phase refrigerant sucked into the compressor 1 is compressed by the compressor 1 and discharged from the compressor 1 as a high-temperature and high-pressure vapor-phase refrigerant. During the heating operation of the air conditioner 100, the above cycle is repeated.
 次に、中継機30のバイパス回路について説明する。中継機30は、流路切替弁50と、バイパス配管52とによる、バイパス回路を備えている。 Next, the bypass circuit of the repeater 30 will be described. The repeater 30 includes a bypass circuit including a flow path switching valve 50 and a bypass pipe 52.
 流路切替弁50は、第1冷媒配管5aの途中に設けられ、冷媒回路とバイパス回路との切り替えを、電気信号により行う電気機器である。流路切替弁50は、室外機10の側で第1冷媒配管5aに接続された第1ポート50aと、室内機20の側で第1冷媒配管5aに接続された第2ポート50bと、バイパス配管52の一端に接続された第3ポート50cとを有している。また、流路切替弁50は、第1ポート50aと第3ポート50cとの間を連通する第1流路と、第1ポート50aと第2ポート50bとの間を連通する第2流路とを、内部流路として有している。流路切替弁50では、第1流路が開放され、第2流路が閉止されることにより、室外機10の側の第1冷媒配管5aとバイパス配管52との間の冷媒流路が連通する。また、流路切替弁50では、第1流路が閉止され、第2流路が開放されることにより、室外機10の側の第1冷媒配管5aと室内機20の側の第1冷媒配管5aとの間の冷媒流路が連通する。流路切替弁50としては、例えば電磁弁の動作を応用した三方弁が用いられる。また、流路切替弁50は、四方弁の1つのポートを閉止した電気機器であってもよいし、二方弁を組み合わせた電気機器であってもよい。 The flow path switching valve 50 is an electric device provided in the middle of the first refrigerant pipe 5a and switching between the refrigerant circuit and the bypass circuit by an electric signal. The flow path switching valve 50 bypasses the first port 50a connected to the first refrigerant pipe 5a on the outdoor unit 10 side, the second port 50b connected to the first refrigerant pipe 5a on the indoor unit 20 side, and the bypass. It has a third port 50c connected to one end of the pipe 52. Further, the flow path switching valve 50 includes a first flow path that communicates between the first port 50a and the third port 50c, and a second flow path that communicates between the first port 50a and the second port 50b. Is provided as an internal flow path. In the flow path switching valve 50, the first flow path is opened and the second flow path is closed, so that the refrigerant flow path between the first refrigerant pipe 5a on the outdoor unit 10 side and the bypass pipe 52 communicates with each other. To do. Further, in the flow path switching valve 50, the first flow path is closed and the second flow path is opened, so that the first refrigerant pipe 5a on the outdoor unit 10 side and the first refrigerant pipe on the indoor unit 20 side are opened. The refrigerant flow path with and from 5a communicates with each other. As the flow path switching valve 50, for example, a three-way valve that applies the operation of a solenoid valve is used. Further, the flow path switching valve 50 may be an electric device in which one port of the four-way valve is closed, or an electric device in which a two-way valve is combined.
 バイパス配管52は、バイパス配管52の一端が流路切替弁50の第3ポート50cに接続され、バイパス配管52の他端が第2冷媒配管5bに接続されている。中継機30は、第1減圧装置6等の小型の電気機器を有するのみであり、中継機30の小型化が、室外機10又は室内機20と比較すれば容易である。したがって、中継機30の内部に収容された第1冷媒配管5aと第2冷媒配管5bとの距離を近くすることで、バイパス配管52の長さを短く設計することができる。 In the bypass pipe 52, one end of the bypass pipe 52 is connected to the third port 50c of the flow path switching valve 50, and the other end of the bypass pipe 52 is connected to the second refrigerant pipe 5b. The repeater 30 only has a small electric device such as the first decompression device 6, and the miniaturization of the repeater 30 is easier than that of the outdoor unit 10 or the indoor unit 20. Therefore, the length of the bypass pipe 52 can be shortened by reducing the distance between the first refrigerant pipe 5a and the second refrigerant pipe 5b housed inside the repeater 30.
 中継機30は、流路切替弁50とバイパス配管52とを有することにより、全ての室内機20が停止中である場合に、流路切替弁50の第1流路を開放し、第2流路を閉止することにより、冷媒をバイパス配管52に迂回させることができる。すなわち、この構成によれば、全ての室内機20が停止中である場合に、冷媒が第1減圧装置6を通過しないように流路の切り替えができ、冷媒通過による第1減圧装置6の騒音を抑制できるため、中継機30の静音性を維持可能な空気調和装置100を提供できる。 By having the flow path switching valve 50 and the bypass pipe 52, the repeater 30 opens the first flow path of the flow path switching valve 50 when all the indoor units 20 are stopped, and the second flow. By closing the path, the refrigerant can be diverted to the bypass pipe 52. That is, according to this configuration, when all the indoor units 20 are stopped, the flow path can be switched so that the refrigerant does not pass through the first decompression device 6, and the noise of the first decompression device 6 due to the passage of the refrigerant. Therefore, it is possible to provide an air conditioner 100 capable of maintaining the quietness of the repeater 30.
 次に、流路切替弁50の制御処理について説明する。空気調和装置100は、制御装置70を備えており、流路切替弁50の内部流路の切り替えは、制御装置70によって行われる。 Next, the control process of the flow path switching valve 50 will be described. The air conditioner 100 includes a control device 70, and the switching of the internal flow path of the flow path switching valve 50 is performed by the control device 70.
 制御装置70は、専用のハードウェア、又は、中央演算装置若しくはメモリ等を備えたマイクロコンピュータ若しくはマイクロプロセッシングユニットとして構成される。制御装置70は、例えば埋込型の制御回路基板として構成され、室外機10の電気品箱に収納される。制御装置70は、第1温度センサ72a、圧縮機1、冷媒流路切替装置2、第1減圧装置6、及び流路切替弁50と有線又は無線接続されている。また、空気調和装置100において、制御装置70は、室外機10、室内機20、及び中継機30のうちのいずれか1つにのみ設けてもよい。また、空気調和装置100において、制御装置70は、室外機10、室内機20、及び中継機30のうちの2以上に設け、相互に双方向に有線又は無線通信するようにしてもよい。なお、図2を含む以下の図面では、制御装置70に有線又は無線接続された通信線は図示していない。 The control device 70 is configured as a microcomputer or a microcomputer processing unit equipped with dedicated hardware, a central processing unit, a memory, or the like. The control device 70 is configured as, for example, an embedded control circuit board, and is housed in an electric component box of the outdoor unit 10. The control device 70 is wired or wirelessly connected to the first temperature sensor 72a, the compressor 1, the refrigerant flow path switching device 2, the first depressurizing device 6, and the flow path switching valve 50. Further, in the air conditioner 100, the control device 70 may be provided only in any one of the outdoor unit 10, the indoor unit 20, and the repeater 30. Further, in the air conditioner 100, the control device 70 may be provided in two or more of the outdoor unit 10, the indoor unit 20, and the repeater 30, and may be bidirectionally wired or wirelessly communicated with each other. In the following drawings including FIG. 2, the communication line connected to the control device 70 by wire or wirelessly is not shown.
 制御装置70は、流路切替弁50の第1流路及び第2流路のうちのいずれか一方の内部流路を開放し、他の一方の流路を閉止するように、流路切替弁50の内部流路を切り替える制御信号を、流路切替弁50に送信する。また、制御装置70は、第1減圧装置6の開度を調整する制御信号を第1減圧装置6に送信する。なお、第1減圧装置6の開度を調整し、流路切替弁50の内部流路を切り替える信号を送信する電気回路は、全て制御装置70に含まれるものとする。 The control device 70 opens the internal flow path of one of the first flow path and the second flow path of the flow path switching valve 50 and closes the other flow path. A control signal for switching the internal flow path of the 50 is transmitted to the flow path switching valve 50. Further, the control device 70 transmits a control signal for adjusting the opening degree of the first decompression device 6 to the first decompression device 6. It is assumed that the control device 70 includes all the electric circuits that adjust the opening degree of the first decompression device 6 and transmit a signal for switching the internal flow path of the flow path switching valve 50.
 制御装置70は、第1温度センサ72aで検知した温度情報を受信する。第1温度センサ72aでは、冷房運転時において圧縮機1に吸入される冷媒の温度情報、又は暖房運転時において圧縮機1から吐出される冷媒の温度情報が検知される。第1温度センサ72aとしては、例えば、サーミスタ等の半導体材料、又は測温抵抗体等の金属材料等を含むセンサが用いられる。 The control device 70 receives the temperature information detected by the first temperature sensor 72a. The first temperature sensor 72a detects the temperature information of the refrigerant sucked into the compressor 1 during the cooling operation or the temperature information of the refrigerant discharged from the compressor 1 during the heating operation. As the first temperature sensor 72a, for example, a sensor containing a semiconductor material such as a thermistor or a metal material such as a resistance temperature detector is used.
 また、制御装置70は、圧縮機1の周波数制御、冷房運転と暖房運転の切り替え時における、冷媒流路切替装置2の内部流路制御、又は空気調和装置100の起動及び停止を行うように構成できる。 Further, the control device 70 is configured to control the frequency of the compressor 1, control the internal flow path of the refrigerant flow path switching device 2 when switching between the cooling operation and the heating operation, or start and stop the air conditioning device 100. it can.
 図3は、実施の形態1に係る除霜運転時における流路切替弁50及び第1減圧装置6の制御処理を示すフローチャートである。ここで、「除霜運転」とは、熱源側熱交換器3の着霜を抑制するために、熱源側熱交換器3に高温高圧の冷媒を供給する運転態様をいい、主に暖房運転開始前又は暖房運転中に行われる。除霜運転は、例えば、暖房運転中に、冷媒流路切替装置2の内部流路を冷房運転時の内部流路に切り替えることによって行われる。また、除霜運転は、冷媒流路切替装置2を切り替えずに圧縮機1から高温高圧の冷媒をバイパス回路を介して熱源側熱交換器3に供給することによって行ってもよい。また、図3の制御処理は、一定の時間おき、例えば30分おきに行うように設定できる。また、当該制御処理前の通常の暖房運転時においては、流路切替弁50の内部流路は、第1流路が閉止され、第2流路が開放された状態であるものとする。 FIG. 3 is a flowchart showing a control process of the flow path switching valve 50 and the first decompression device 6 during the defrosting operation according to the first embodiment. Here, the "defrosting operation" refers to an operation mode in which a high-temperature and high-pressure refrigerant is supplied to the heat source-side heat exchanger 3 in order to suppress frost formation on the heat-source-side heat exchanger 3, and mainly starts a heating operation. Performed before or during heating operation. The defrosting operation is performed, for example, by switching the internal flow path of the refrigerant flow path switching device 2 to the internal flow path during the cooling operation during the heating operation. Further, the defrosting operation may be performed by supplying the high-temperature and high-pressure refrigerant from the compressor 1 to the heat source side heat exchanger 3 via the bypass circuit without switching the refrigerant flow path switching device 2. Further, the control process of FIG. 3 can be set to be performed at regular time intervals, for example, every 30 minutes. Further, in the normal heating operation before the control process, the internal flow path of the flow path switching valve 50 is in a state where the first flow path is closed and the second flow path is open.
 ステップS11においては、制御装置70は、空気調和装置100で除霜運転を行うか否かを判定する。除霜運転を行うか否かは、例えば、熱源側熱交換器3の温度に基づいて判定される。除霜運転を行わないと判定された場合は、当該制御処理は終了する。 In step S11, the control device 70 determines whether or not the air conditioner 100 performs the defrosting operation. Whether or not to perform the defrosting operation is determined based on, for example, the temperature of the heat source side heat exchanger 3. If it is determined that the defrosting operation is not performed, the control process ends.
 ステップS11において除霜運転を行うと判定された場合、ステップS12において、制御装置70は、流路切替弁50の第1流路を開放し、流路切替弁50の第2流路を閉止し、第1減圧装置6の開度を全閉とする制御を行う。図2では、ステップS12の制御処理が行われた時の冷媒の流れが矢印で示されている。このとき、通常運転していた室内機20では、高温の気相冷媒が流れなくなるため、例えば、負荷側熱交換器4に送風のみを行うサーモ運転が行われる。なお、高圧の液冷媒がバイパス配管52を介して中継機30から室外機10に戻ることになるが、当該冷媒は、他の室内機20から戻ってきた冷媒と合流するため、圧縮機1で低圧の気相冷媒が吸入されるように調整することは可能である。 When it is determined in step S11 that the defrosting operation is performed, in step S12, the control device 70 opens the first flow path of the flow path switching valve 50 and closes the second flow path of the flow path switching valve 50. , The opening degree of the first decompression device 6 is controlled to be fully closed. In FIG. 2, the flow of the refrigerant when the control process of step S12 is performed is indicated by an arrow. At this time, since the high-temperature vapor-phase refrigerant does not flow in the indoor unit 20 that has been normally operated, for example, a thermo operation that only blows air to the load side heat exchanger 4 is performed. The high-pressure liquid refrigerant returns from the repeater 30 to the outdoor unit 10 via the bypass pipe 52, but since the refrigerant merges with the refrigerant returned from the other indoor unit 20, the compressor 1 is used. It is possible to adjust the low pressure gas phase refrigerant to be inhaled.
 空気調和装置100で除霜運転が行われる場合、暖房運転時と比較して、一時的に圧縮機1から吐出される冷媒量が増加し、停止している室内機20が接続された中継機30への冷媒流入量も増加する。しかしながら、この制御処理によれば、圧縮機1から吐出され、熱源側熱交換器3に流入した冷媒は、バイパス配管52を介して室外機10に戻されるため、冷媒流入量の増加に伴う第1減圧装置6の開放を要しない。したがって、この制御処理によれば、冷媒通過による第1減圧装置6の騒音を抑制できるため、中継機30の静音性を維持可能な空気調和装置100を提供できる。 When the defrosting operation is performed by the air conditioner 100, the amount of refrigerant discharged from the compressor 1 temporarily increases as compared with the heating operation, and the repeater to which the indoor unit 20 that is stopped is connected. The amount of refrigerant flowing into 30 also increases. However, according to this control process, the refrigerant discharged from the compressor 1 and flowing into the heat source side heat exchanger 3 is returned to the outdoor unit 10 via the bypass pipe 52, so that the refrigerant inflow amount increases. 1 It is not necessary to open the decompression device 6. Therefore, according to this control process, the noise of the first decompression device 6 due to the passage of the refrigerant can be suppressed, so that the air conditioner 100 capable of maintaining the quietness of the repeater 30 can be provided.
 また、この制御処理によれば、冷媒流入量の増加に伴う第1減圧装置6の開放を要しないため、停止している室内機20に冷媒が流れない。したがって、停止している室内機20が設置された空調空間の温度低下を防ぐことができるため、空調空間の快適性を維持することができる。 Further, according to this control process, since it is not necessary to open the first decompression device 6 due to the increase in the amount of refrigerant inflow, the refrigerant does not flow to the stopped indoor unit 20. Therefore, it is possible to prevent the temperature of the air-conditioned space in which the stopped indoor unit 20 is installed from dropping, so that the comfort of the air-conditioned space can be maintained.
 なお、空気調和装置100に複数の中継機30が接続されている場合、制御装置70は、接続されている室内機20の総運転容量が最も小さい中継機30で、ステップS12の制御処理を行うようにできる。また、制御装置70は、ステップS11とステップS12の制御処理の間に、中継機30が停止可能条件を満たしているか否かを判定し、停止可能条件を満たしている一部の中継機30でステップS12の制御処理を行うように構成できる。停止可能条件は、例えば、中継機30に接続されている室内機20の運転容量のしきい値に基づいて判定できるようにすればよい。例えば、制御装置70は、中継機30に接続された室内機20が全て停止している場合に、停止可能条件を満たしていると判定できるように構成すればよい。 When a plurality of repeaters 30 are connected to the air conditioner 100, the control device 70 performs the control process in step S12 by the repeater 30 having the smallest total operating capacity of the connected indoor unit 20. Can be done. Further, the control device 70 determines whether or not the repeater 30 satisfies the stoptable condition during the control process of step S11 and step S12, and some of the repeaters 30 satisfying the stoptable condition. It can be configured to perform the control process of step S12. The stoptable condition may be determined, for example, based on the threshold value of the operating capacity of the indoor unit 20 connected to the repeater 30. For example, the control device 70 may be configured so that it can be determined that the stoptable condition is satisfied when all the indoor units 20 connected to the repeater 30 are stopped.
実施の形態2.
 実施の形態2では、油回収運転時における流路切替弁50及び第1減圧装置6の制御処理について図4を用いて説明する。図4は、実施の形態2に係る油回収運転時における流路切替弁50及び第1減圧装置6の制御処理を示すフローチャートである。空気調和装置100の構成については、実施の形態1と同様であるため、説明は省略する。
Embodiment 2.
In the second embodiment, the control process of the flow path switching valve 50 and the first pressure reducing device 6 during the oil recovery operation will be described with reference to FIG. FIG. 4 is a flowchart showing a control process of the flow path switching valve 50 and the first pressure reducing device 6 during the oil recovery operation according to the second embodiment. Since the configuration of the air conditioner 100 is the same as that of the first embodiment, the description thereof will be omitted.
 ここで、「油回収運転」とは、圧縮機1が冷媒とともに吐出した潤滑油を、圧縮機1の内部に回収する空気調和装置100の運転態様をいう。冷房運転が、長時間かつ低負荷で行われた場合、圧縮機1から冷媒とともに吐出された潤滑油が、室外機10と中継機30とを接続する冷媒配管のうち、特に、熱源側熱交換器3と第1減圧装置6との間に配置されたいわゆる液側配管に滞留する。これは、液側配管を流れる液冷媒の流速が気相冷媒よりも遅く、液相冷媒に含まれる液体の潤滑油の方が、気相冷媒に含まれる気体の潤滑油よりも冷媒配管に析出しやすいからである。油回収運転は、圧縮機1の外部に滞留した潤滑油を回収するために、圧縮機1の運転周波数を通常の冷房運転時よりも増加させて行われる。なお、図4の制御処理は、通常運転より低い周波数で、長時間、例えば5時間以上運転した場合に行うように設定できる。また、当該制御処理前の通常の冷房運転時においては、流路切替弁50の内部流路は、第1流路が閉止され、第2流路が開放された状態であるものとする。 Here, the "oil recovery operation" refers to an operation mode of the air conditioner 100 that recovers the lubricating oil discharged by the compressor 1 together with the refrigerant into the inside of the compressor 1. When the cooling operation is performed for a long time and with a low load, the lubricating oil discharged together with the refrigerant from the compressor 1 is particularly heat exchange on the heat source side of the refrigerant pipes connecting the outdoor unit 10 and the repeater 30. It stays in the so-called liquid side pipe arranged between the vessel 3 and the first decompression device 6. This is because the flow velocity of the liquid refrigerant flowing through the liquid side piping is slower than that of the gas phase refrigerant, and the liquid lubricating oil contained in the liquid phase refrigerant precipitates in the refrigerant piping than the gaseous lubricating oil contained in the gas phase refrigerant. Because it is easy to do. The oil recovery operation is performed by increasing the operating frequency of the compressor 1 as compared with the normal cooling operation in order to recover the lubricating oil accumulated outside the compressor 1. The control process of FIG. 4 can be set to be performed when the vehicle is operated at a frequency lower than that of the normal operation for a long time, for example, 5 hours or more. Further, during the normal cooling operation before the control process, the internal flow path of the flow path switching valve 50 is in a state where the first flow path is closed and the second flow path is open.
 ステップS21においては、制御装置70は、空気調和装置100で油回収運転を行うか否かを判定する。油回収運転を行うか否かは、例えば、空気調和装置100の全体の負荷及び当該負荷での運転時間に基づいてあらかじめ定めた判定基準により判定される。油回収運転を行わないと判定された場合は、当該制御処理は終了する。 In step S21, the control device 70 determines whether or not the oil recovery operation is performed by the air conditioner 100. Whether or not to perform the oil recovery operation is determined by, for example, a predetermined criterion based on the entire load of the air conditioner 100 and the operation time under the load. If it is determined that the oil recovery operation is not performed, the control process ends.
 ステップS21において油回収運転を行うと判定された場合、ステップS22において、制御装置70は、流路切替弁50の第1流路を開放し、流路切替弁50の第2流路を閉止し、第1減圧装置6の開度を全閉とする制御を行う。ステップS22の制御処理が行われた時の冷媒の流れは、実施の形態1と同様に図2の矢印の方向となる。このとき、通常運転していた室内機20では、低温低圧の二相冷媒が流れなくなるため、例えば、負荷側熱交換器4に送風のみを行うサーモ運転が行われる。なお、高圧の液冷媒がバイパス配管52を介して中継機30から室外機10に戻ることになるが、当該冷媒は、他の室内機20から戻ってきた冷媒と合流するため、圧縮機1で低圧の気相冷媒が吸入されるように調整することは可能である。 When it is determined in step S21 that the oil recovery operation is performed, in step S22, the control device 70 opens the first flow path of the flow path switching valve 50 and closes the second flow path of the flow path switching valve 50. , The opening degree of the first decompression device 6 is controlled to be fully closed. The flow of the refrigerant when the control process of step S22 is performed is in the direction of the arrow in FIG. 2 as in the first embodiment. At this time, since the low-temperature and low-pressure two-phase refrigerant does not flow in the indoor unit 20 that has been normally operated, for example, a thermo operation that only blows air to the load side heat exchanger 4 is performed. The high-pressure liquid refrigerant returns from the repeater 30 to the outdoor unit 10 via the bypass pipe 52, but since the refrigerant merges with the refrigerant returned from the other indoor unit 20, the compressor 1 is used. It is possible to adjust the low pressure gas phase refrigerant to be inhaled.
 空気調和装置100で油回収運転が行われる場合、圧縮機1の運転周波数を増加させるため、通常の冷房運転時と比較して、一時的に圧縮機1から吐出される冷媒量が増加し、停止している室内機20が接続された中継機30への冷媒流入量も増加する。しかしながら、この制御処理によれば、圧縮機1から吐出され、熱源側熱交換器3に流入した冷媒は、バイパス配管52を介して室外機10に戻されるため、冷媒流入量の増加に伴う第1減圧装置6の開放を要しない。したがって、この制御処理によれば、冷媒通過による第1減圧装置6の騒音を抑制できるため、中継機30の静音性を維持可能な空気調和装置100を提供できる。 When the oil recovery operation is performed by the air conditioner 100, the operating frequency of the compressor 1 is increased, so that the amount of refrigerant discharged from the compressor 1 temporarily increases as compared with the normal cooling operation. The amount of refrigerant flowing into the repeater 30 to which the stopped indoor unit 20 is connected also increases. However, according to this control process, the refrigerant discharged from the compressor 1 and flowing into the heat source side heat exchanger 3 is returned to the outdoor unit 10 via the bypass pipe 52, so that the refrigerant inflow amount increases. 1 It is not necessary to open the decompression device 6. Therefore, according to this control process, the noise of the first decompression device 6 due to the passage of the refrigerant can be suppressed, so that the air conditioner 100 capable of maintaining the quietness of the repeater 30 can be provided.
 また、この制御処理によれば、冷媒流入量の増加に伴う第1減圧装置6の開放を要しないため、停止している室内機20に冷媒が流れない。したがって、停止している室内機20が設置された空調空間の温度低下を防ぐことができるため、空調空間の快適性を維持することができる。 Further, according to this control process, since it is not necessary to open the first decompression device 6 due to the increase in the amount of refrigerant inflow, the refrigerant does not flow to the stopped indoor unit 20. Therefore, it is possible to prevent the temperature of the air-conditioned space in which the stopped indoor unit 20 is installed from dropping, so that the comfort of the air-conditioned space can be maintained.
 なお、空気調和装置100に複数の中継機30が接続されている場合、制御装置70は、接続されている室内機20の総運転容量が最も小さい中継機30で、ステップS22の制御処理を行うようにできる。また、制御装置70は、ステップS21とステップS22の制御処理の間に、中継機30が停止可能条件を満たしているか否かを判定し、停止可能条件を満たしている一部の中継機30でステップS22の制御処理を行うように構成できる。停止可能条件は、例えば、中継機30に接続されている室内機20の運転容量のしきい値に基づいて判定できるようにすればよい。例えば、制御装置70は、中継機30に接続された室内機20が全て停止している場合に、停止可能条件を満たしていると判定できるように構成すればよい。 When a plurality of repeaters 30 are connected to the air conditioner 100, the control device 70 performs the control process in step S22 at the repeater 30 having the smallest total operating capacity of the connected indoor unit 20. Can be done. Further, the control device 70 determines whether or not the repeater 30 satisfies the stoptable condition during the control process of step S21 and step S22, and some of the repeaters 30 satisfying the stoptable condition. It can be configured to perform the control process of step S22. The stoptable condition may be determined, for example, based on the threshold value of the operating capacity of the indoor unit 20 connected to the repeater 30. For example, the control device 70 may be configured so that it can be determined that the stoptable condition is satisfied when all the indoor units 20 connected to the repeater 30 are stopped.
実施の形態3.
 実施の形態3に係る空気調和装置100の構成について図5を用いて説明する。図5は、実施の形態3に係る空気調和装置100の冷媒回路の一例を示す概略的な冷媒回路図である。実施の形態3に係る空気調和装置100では、室内機20に冷媒漏洩検知装置74が設けられている。制御装置70は、冷媒漏洩検知装置74から冷媒の漏洩の検知情報を受信する。冷媒漏洩検知装置74としては、例えば、冷媒漏洩検知センサが設けられている。冷媒漏洩検知センサとしては、例えば、半導体式ガスセンサ、熱線型半導体式ガスセンサ、又は赤外線方式ガスセンサ等のガスセンサが用いられる。また、冷媒漏洩検知センサは、酸素濃度の低下を検知する酸素濃度式のガスセンサであってもよいし、可燃性ガスを検知する可燃性ガス検知式のガスセンサであってもよい。なお、冷媒漏洩検知装置74は、室内機20への情報入力機器、例えば、リモートコントローラに設けてもよい。また、冷媒漏洩検知装置74は、冷媒漏洩検知センサに限られず、例えば、室内機20の冷媒配管の温度の異常から間接的に冷媒の漏洩を検知するものであってもよい。空気調和装置100のその他の構成については、実施の形態1及び実施の形態2と同様であるため、説明は省略する。
Embodiment 3.
The configuration of the air conditioner 100 according to the third embodiment will be described with reference to FIG. FIG. 5 is a schematic refrigerant circuit diagram showing an example of the refrigerant circuit of the air conditioner 100 according to the third embodiment. In the air conditioner 100 according to the third embodiment, the indoor unit 20 is provided with the refrigerant leakage detection device 74. The control device 70 receives the refrigerant leakage detection information from the refrigerant leakage detection device 74. As the refrigerant leakage detection device 74, for example, a refrigerant leakage detection sensor is provided. As the refrigerant leak detection sensor, for example, a gas sensor such as a semiconductor type gas sensor, a heat ray type semiconductor type gas sensor, or an infrared type gas sensor is used. Further, the refrigerant leakage detection sensor may be an oxygen concentration type gas sensor that detects a decrease in oxygen concentration, or may be a flammable gas detection type gas sensor that detects flammable gas. The refrigerant leakage detection device 74 may be provided in an information input device for the indoor unit 20, for example, a remote controller. Further, the refrigerant leakage detection device 74 is not limited to the refrigerant leakage detection sensor, and may be, for example, indirectly detecting the leakage of the refrigerant from an abnormality in the temperature of the refrigerant pipe of the indoor unit 20. Since the other configurations of the air conditioner 100 are the same as those in the first and second embodiments, the description thereof will be omitted.
 図6は、実施の形態3に係る冷媒漏洩検知時における流路切替弁50及び第1減圧装置6の制御処理を示すフローチャートである。図6の制御処理は、一定の時間おき、例えば5分おきに行うように設定できる。また、当該制御処理前の通常の冷房運転時又は暖房運転時においては、流路切替弁50の内部流路は、第1流路が閉止され、第2流路が開放された状態であるものとする。 FIG. 6 is a flowchart showing a control process of the flow path switching valve 50 and the first decompression device 6 at the time of detecting the refrigerant leakage according to the third embodiment. The control process of FIG. 6 can be set to be performed at regular intervals, for example, every 5 minutes. Further, in the normal cooling operation or heating operation before the control process, the internal flow path of the flow path switching valve 50 is in a state where the first flow path is closed and the second flow path is open. And.
 ステップS31においては、制御装置70は、室内機20において冷媒漏洩が検知されたか否かを判定する。冷媒漏洩が検知されていないと判定された場合は、当該制御処理は終了する。ステップS31において、室内機20において冷媒漏洩が検知されたと判定された場合、ステップS32において、制御装置70は、流路切替弁50の第1流路を開放し、流路切替弁50の第2流路を閉止し、第1減圧装置6の開度を全閉とする制御を行う。ステップS32の制御処理が行われた時の冷媒の流れは、冷房運転の場合は図5の点線の矢印の方向となり、暖房運転の場合は図5の実線の矢印の方向となる。なお、バイパス配管52を介して中継機30から室外機10に戻る冷媒は、他の室内機20から戻ってきた冷媒と合流するため、圧縮機1で低圧の気相冷媒が吸入されるように調整することは可能である。 In step S31, the control device 70 determines whether or not the refrigerant leakage is detected in the indoor unit 20. If it is determined that no refrigerant leakage has been detected, the control process ends. When it is determined in step S31 that the refrigerant leakage is detected in the indoor unit 20, in step S32, the control device 70 opens the first flow path of the flow path switching valve 50 and the second flow path switching valve 50. Control is performed so that the flow path is closed and the opening degree of the first decompression device 6 is fully closed. The flow of the refrigerant when the control process of step S32 is performed is in the direction of the dotted arrow in FIG. 5 in the case of cooling operation, and in the direction of the solid arrow in FIG. 5 in the case of heating operation. Since the refrigerant returning from the repeater 30 to the outdoor unit 10 via the bypass pipe 52 merges with the refrigerant returned from the other indoor unit 20, the low-pressure vapor-phase refrigerant is sucked by the compressor 1. It is possible to adjust.
 この制御処理によれば、圧縮機1から吐出された冷媒は、室内機20に流入することなく、バイパス配管52を介して室外機10に戻されるため、室内機20からの冷媒漏洩を抑制できる。 According to this control process, the refrigerant discharged from the compressor 1 is returned to the outdoor unit 10 via the bypass pipe 52 without flowing into the indoor unit 20, so that the refrigerant leakage from the indoor unit 20 can be suppressed. ..
実施の形態4.
 実施の形態4に係る空気調和装置100の構成について図7を用いて説明する。図7は、実施の形態4に係る空気調和装置100の冷媒回路の一例を示す概略的な冷媒回路図である。実施の形態4に係る空気調和装置100では、室内機20に第2温度センサ72b及び第3温度センサ72cが設けられている。第2温度センサ72bは、熱源側熱交換器3で熱交換された後の空気の温度を計測するセンサであり、室温センサとして機能する。第3温度センサ72cは、暖房運転時における高圧の液冷媒又は二相冷媒の温度を計測するセンサであり、過冷却温度センサとして機能する。制御装置70は、第2温度センサ72b及び第3温度センサ72cから冷媒の漏洩の検知情報を受信する。第2温度センサ72b及び第3温度センサ72cとしては、例えば、サーミスタ等の半導体材料、又は測温抵抗体等の金属材料等を含むセンサが用いられる。空気調和装置100のその他の構成については、実施の形態1及び実施の形態2と同様であるため、説明は省略する。また、空気調和装置100では、第2温度センサ72b及び第3温度センサ72cの一方を省略してもよい。
Embodiment 4.
The configuration of the air conditioner 100 according to the fourth embodiment will be described with reference to FIG. FIG. 7 is a schematic refrigerant circuit diagram showing an example of the refrigerant circuit of the air conditioner 100 according to the fourth embodiment. In the air conditioner 100 according to the fourth embodiment, the indoor unit 20 is provided with the second temperature sensor 72b and the third temperature sensor 72c. The second temperature sensor 72b is a sensor that measures the temperature of air after heat exchange by the heat source side heat exchanger 3, and functions as a room temperature sensor. The third temperature sensor 72c is a sensor that measures the temperature of the high-pressure liquid refrigerant or the two-phase refrigerant during the heating operation, and functions as a supercooling temperature sensor. The control device 70 receives the detection information of the refrigerant leakage from the second temperature sensor 72b and the third temperature sensor 72c. As the second temperature sensor 72b and the third temperature sensor 72c, for example, a sensor containing a semiconductor material such as a thermistor or a metal material such as a resistance temperature detector is used. Since the other configurations of the air conditioner 100 are the same as those in the first and second embodiments, the description thereof will be omitted. Further, in the air conditioner 100, one of the second temperature sensor 72b and the third temperature sensor 72c may be omitted.
 図8は、実施の形態4に係る室内機20の停止時における流路切替弁50及び第1減圧装置6の制御処理を示すフローチャートである。図8の制御処理は、空気調和装置100の暖房運転中に一定の時間おき、例えば30分おきに行うように設定できる。また、当該制御処理前の通常の暖房運転時においては、流路切替弁50の内部流路は、第1流路が閉止され、第2流路が開放された状態であるものとする。 FIG. 8 is a flowchart showing a control process of the flow path switching valve 50 and the first decompression device 6 when the indoor unit 20 according to the fourth embodiment is stopped. The control process of FIG. 8 can be set to be performed at regular intervals, for example, every 30 minutes during the heating operation of the air conditioner 100. Further, in the normal heating operation before the control process, the internal flow path of the flow path switching valve 50 is in a state where the first flow path is closed and the second flow path is open.
 ステップS41においては、制御装置70は、室内機20において冷媒が滞留しているか否かを判定する。例えば、第2温度センサ72bでの検知温度が30℃の状態が3分続いた場合に、冷媒が二相冷媒の状態で熱源側熱交換器3に滞留していると判断される。または、第3温度センサ72cでの検知温度が、上昇した後に一定となった状態が3分続いた場合に、冷媒が二相冷媒の状態で熱源側熱交換器3に滞留していると判断される。冷媒が滞留していないと判定された場合は、当該制御処理は終了する。 In step S41, the control device 70 determines whether or not the refrigerant is retained in the indoor unit 20. For example, when the temperature detected by the second temperature sensor 72b continues at 30 ° C. for 3 minutes, it is determined that the refrigerant is retained in the heat source side heat exchanger 3 in the state of a two-phase refrigerant. Alternatively, when the temperature detected by the third temperature sensor 72c continues to be constant for 3 minutes after rising, it is determined that the refrigerant is retained in the heat source side heat exchanger 3 in the state of a two-phase refrigerant. Will be done. If it is determined that the refrigerant does not stay, the control process ends.
 ステップS41において、室内機20において冷媒が滞留していると判定された場合、ステップS42において、制御装置70は、流路切替弁50の第1流路を開放し、流路切替弁50の第2流路を閉止し、第1減圧装置6の開度を全開とする制御を行う。ステップS42の制御処理が行われた時の冷媒の流れは、図7の矢印の方向となる。なお、バイパス配管52を介して中継機30から室外機10に戻る冷媒は、他の室内機20から戻ってきた冷媒と合流するため、圧縮機1で低圧の気相冷媒が吸入されるように調整することは可能である。 When it is determined in step S41 that the refrigerant is retained in the indoor unit 20, in step S42, the control device 70 opens the first flow path of the flow path switching valve 50, and the flow path switching valve 50 is the first. 2 The flow path is closed, and the opening degree of the first decompression device 6 is controlled to be fully opened. The flow of the refrigerant when the control process of step S42 is performed is in the direction of the arrow in FIG. Since the refrigerant returning from the repeater 30 to the outdoor unit 10 via the bypass pipe 52 merges with the refrigerant returned from the other indoor unit 20, the low-pressure vapor-phase refrigerant is sucked by the compressor 1. It is possible to adjust.
 この制御処理によれば、圧縮機1から吐出された冷媒は、室内機20に流入することなく、バイパス配管52を介して室外機10に戻される。したがって、この制御処理によれば、停止した室内機20が設置された空調空間における温度上昇を抑制することができる。また、バイパス配管52を介して室外機10に戻される冷媒の流れに誘引されて、室内機20に滞留した冷媒を室外機10の戻すことができる。したがって、室内機20における冷媒の滞留による、室内機20における冷媒量の低下を抑制でき、室内機20の暖房運転の再起動時に必要な冷媒量を確保できる。 According to this control process, the refrigerant discharged from the compressor 1 is returned to the outdoor unit 10 via the bypass pipe 52 without flowing into the indoor unit 20. Therefore, according to this control process, it is possible to suppress the temperature rise in the air-conditioned space in which the stopped indoor unit 20 is installed. Further, the refrigerant staying in the indoor unit 20 can be returned to the outdoor unit 10 by being attracted by the flow of the refrigerant returned to the outdoor unit 10 via the bypass pipe 52. Therefore, it is possible to suppress a decrease in the amount of refrigerant in the indoor unit 20 due to the retention of the refrigerant in the indoor unit 20, and it is possible to secure the amount of refrigerant required when the heating operation of the indoor unit 20 is restarted.
実施の形態5.
 実施の形態5に係る空気調和装置100の構成について図9を用いて説明する。図9は、実施の形態5に係る空気調和装置100の冷媒回路の一例を示す概略的な冷媒回路図である。実施の形態5に係る空気調和装置100では、バイパス配管52に第2減圧装置54が設けられている。第2減圧装置54は、高圧の冷媒を膨張及び減圧させる膨張装置である。第2減圧装置54としては、リニア電子膨張弁等が用いられる。空気調和装置100のその他の構成については、実施の形態1及び実施の形態2と同様であるため、説明は省略する。
Embodiment 5.
The configuration of the air conditioner 100 according to the fifth embodiment will be described with reference to FIG. FIG. 9 is a schematic refrigerant circuit diagram showing an example of the refrigerant circuit of the air conditioner 100 according to the fifth embodiment. In the air conditioner 100 according to the fifth embodiment, the bypass pipe 52 is provided with the second decompression device 54. The second decompression device 54 is an expansion device that expands and depressurizes the high-pressure refrigerant. As the second pressure reducing device 54, a linear electronic expansion valve or the like is used. Since the other configurations of the air conditioner 100 are the same as those in the first and second embodiments, the description thereof will be omitted.
 図10は、実施の形態5に係る空気調和装置100の暖房運転時における流路切替弁50、第1減圧装置6、及び第2減圧装置54の制御処理を示すフローチャートである。図10の制御処理は、空気調和装置100の暖房運転中に一定の時間おき、例えば30分おきに行うように設定できる。また、当該制御処理前の通常の暖房運転時においては、流路切替弁50の内部流路は、第1流路が閉止され、第2流路が開放された状態であるものとする。 FIG. 10 is a flowchart showing a control process of the flow path switching valve 50, the first decompression device 6, and the second decompression device 54 during the heating operation of the air conditioner 100 according to the fifth embodiment. The control process of FIG. 10 can be set to be performed at regular intervals, for example, every 30 minutes during the heating operation of the air conditioner 100. Further, in the normal heating operation before the control process, the internal flow path of the flow path switching valve 50 is in a state where the first flow path is closed and the second flow path is open.
 ステップS51においては、制御装置70は、中継機30に接続された室内機20が停止しているか否かを判定する。室内機20が停止していないと判定された場合は、当該制御処理は終了する。ステップS51において、室内機20が停止していると判定された場合、ステップS52において、制御装置70は、流路切替弁50の第1流路を開放し、流路切替弁50の第2流路を閉止し、第1減圧装置6の開度を全閉とする制御を行う。また、ステップS53において、制御装置70は、バイパス配管52に流入する高圧の気相冷媒が、低圧の気相冷媒として流出するように第2減圧装置54の開度を調整する。ステップS52及びステップS53の制御処理が行われた時の冷媒の流れは、図9の矢印の方向となる。なお、バイパス配管52を介して中継機30から室外機10に戻る冷媒は、他の室内機20から戻ってきた冷媒と合流するため、圧縮機1で低圧の気相冷媒が吸入されるように調整することは可能である。 In step S51, the control device 70 determines whether or not the indoor unit 20 connected to the repeater 30 is stopped. If it is determined that the indoor unit 20 has not stopped, the control process ends. When it is determined in step S51 that the indoor unit 20 is stopped, in step S52, the control device 70 opens the first flow path of the flow path switching valve 50, and the second flow of the flow path switching valve 50. Control is performed so that the road is closed and the opening degree of the first decompression device 6 is fully closed. Further, in step S53, the control device 70 adjusts the opening degree of the second decompression device 54 so that the high-pressure gas phase refrigerant flowing into the bypass pipe 52 flows out as the low-pressure gas phase refrigerant. The flow of the refrigerant when the control processing of steps S52 and S53 is performed is in the direction of the arrow in FIG. Since the refrigerant returning from the repeater 30 to the outdoor unit 10 via the bypass pipe 52 merges with the refrigerant returned from the other indoor unit 20, the low-pressure vapor-phase refrigerant is sucked by the compressor 1. It is possible to adjust.
 この制御処理によれば、圧縮機1から吐出された冷媒は、停止した室内機20に流入することなく、バイパス配管52を介して室外機10に戻される。したがって、この制御処理によれば、停止した室内機20が設置された空調空間における温度上昇を抑制し、停止した室内機20における冷媒の滞留を未然に防ぐことができる。また、実施の形態4の場合、第1減圧装置6において間欠的に冷媒の通過音が発生する場合があるが、実施の形態5の場合、第1減圧装置6を閉止しているため、冷媒の通過音を抑止できる。 According to this control process, the refrigerant discharged from the compressor 1 is returned to the outdoor unit 10 via the bypass pipe 52 without flowing into the stopped indoor unit 20. Therefore, according to this control process, it is possible to suppress the temperature rise in the air-conditioned space in which the stopped indoor unit 20 is installed, and prevent the refrigerant from staying in the stopped indoor unit 20. Further, in the case of the fourth embodiment, the passing noise of the refrigerant may be intermittently generated in the first decompression device 6, but in the case of the fifth embodiment, since the first decompression device 6 is closed, the refrigerant Passing sound can be suppressed.
実施の形態6.
 実施の形態6に係る空気調和装置100の構成について図11~図13を用いて説明する。図11は、実施の形態6に係る空気調和装置100の冷媒回路の一例を示す概略的な冷媒回路図である。実施の形態6に係る空気調和装置100では、第1冷媒配管5a及び第2冷媒配管5bに、3つの開口を有する分岐管90が設けられている。図12は、図11の分岐管90の拡大図である。第1冷媒配管5aに設けられた分岐管90の3つの開口のうち、2つの開口は第1冷媒配管5aにろう付け等により接続されている。分岐管90の残りの開口には、開口を閉止するためにキャップ92がろう付け等により取り付けられている。なお、第2冷媒配管5bに設けられた分岐管90についても同様に取り付けられている。図13は、実施の形態6に係る空気調和装置100の冷媒回路に流路切替弁50とバイパス配管52とを配置した状態を示す拡大図である。空気調和装置100では、第1冷媒配管5aに設けられた分岐管90をろう付け等を融解させることにより取り外し、流路切替弁50をろう付け等により取り付けることができる。また、空気調和装置100では、第2冷媒配管5bに設けられた分岐管90のキャップ92を、ろう付け等を融解させることにより取り外し、分岐管90と流路切替弁50との間に、バイパス配管52をろう付け等により取り付けることができる。空気調和装置100のその他の構成については、実施の形態1及び実施の形態2と同様であるため、説明は省略する。
Embodiment 6.
The configuration of the air conditioner 100 according to the sixth embodiment will be described with reference to FIGS. 11 to 13. FIG. 11 is a schematic refrigerant circuit diagram showing an example of the refrigerant circuit of the air conditioner 100 according to the sixth embodiment. In the air conditioner 100 according to the sixth embodiment, the first refrigerant pipe 5a and the second refrigerant pipe 5b are provided with a branch pipe 90 having three openings. FIG. 12 is an enlarged view of the branch pipe 90 of FIG. Of the three openings of the branch pipe 90 provided in the first refrigerant pipe 5a, two openings are connected to the first refrigerant pipe 5a by brazing or the like. A cap 92 is attached to the remaining opening of the branch pipe 90 by brazing or the like in order to close the opening. The branch pipe 90 provided in the second refrigerant pipe 5b is also attached in the same manner. FIG. 13 is an enlarged view showing a state in which the flow path switching valve 50 and the bypass pipe 52 are arranged in the refrigerant circuit of the air conditioner 100 according to the sixth embodiment. In the air conditioner 100, the branch pipe 90 provided in the first refrigerant pipe 5a can be removed by melting the brazing or the like, and the flow path switching valve 50 can be attached by brazing or the like. Further, in the air conditioner 100, the cap 92 of the branch pipe 90 provided in the second refrigerant pipe 5b is removed by melting the brazing or the like, and a bypass is provided between the branch pipe 90 and the flow path switching valve 50. The pipe 52 can be attached by brazing or the like. Since the other configurations of the air conditioner 100 are the same as those in the first and second embodiments, the description thereof will be omitted.
 以上に説明したとおり、流路切替弁50及びバイパス配管52は、着脱可能に空気調和装置100に取り付けることができる。この構成によれば、中継機30に騒音が生じる場合に、後付けで流路切替弁50及びバイパス配管52を取り付けることができるため、中継機30の構造を簡易にし、材料費の低減を図ることが可能となる。 As described above, the flow path switching valve 50 and the bypass pipe 52 can be detachably attached to the air conditioner 100. According to this configuration, when noise is generated in the repeater 30, the flow path switching valve 50 and the bypass pipe 52 can be attached later, so that the structure of the repeater 30 can be simplified and the material cost can be reduced. Is possible.
その他の実施の形態.
 本発明は、上述の実施の形態に限らず、本発明の要旨を逸脱しない範囲において種々の変形が可能である。例えば、上述の実施の形態6では、バイパス配管52は、第2減圧装置54が設けられたバイパス配管52であってもよい。また、第2減圧装置54が設けられていないバイパス配管52は、第2減圧装置54が設けられたバイパス配管52に取り替えることも、その逆も可能である。
Other embodiments.
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, in the sixth embodiment described above, the bypass pipe 52 may be a bypass pipe 52 provided with the second decompression device 54. Further, the bypass pipe 52 not provided with the second decompression device 54 can be replaced with the bypass pipe 52 provided with the second decompression device 54, and vice versa.
 また、上述の実施の形態は、それぞれ組み合わせることが可能である。 Further, the above-described embodiments can be combined with each other.
 1 圧縮機、2 冷媒流路切替装置、3 熱源側熱交換器、4 負荷側熱交換器、5a 第1冷媒配管、5b 第2冷媒配管、6 第1減圧装置、7 キャピラリチューブ、8 ストレーナ、10 室外機、20 室内機、30 中継機、50 流路切替弁、50a 第1ポート、50b 第2ポート、50c 第3ポート、52 バイパス配管、54 第2減圧装置、70 制御装置、72a 第1温度センサ、72b 第2温度センサ、72c 第3温度センサ、74 冷媒漏洩検知装置、90 分岐管、92 キャップ、100 空気調和装置。 1 Compressor, 2 Refrigerant flow path switching device, 3 Heat source side heat exchanger, 4 Load side heat exchanger, 5a 1st refrigerant piping, 5b 2nd refrigerant piping, 6 1st decompression device, 7 Capillary tube, 8 Strainer, 10 outdoor unit, 20 indoor unit, 30 repeater, 50 flow path switching valve, 50a 1st port, 50b 2nd port, 50c 3rd port, 52 bypass piping, 54 2nd decompression device, 70 control device, 72a 1st Temperature sensor, 72b 2nd temperature sensor, 72c 3rd temperature sensor, 74 Refrigerant leakage detection device, 90 branch pipe, 92 cap, 100 air conditioner.

Claims (8)

  1.  熱源側熱交換器と、前記熱源側熱交換器に接続された圧縮機とを有する室外機と、
     負荷側熱交換器を有する複数の室内機と、
     前記熱源側熱交換器に接続された第1減圧装置を有し、前記複数の室内機のうちの一部と接続された中継機と
    を備え、
     前記中継機は、
     前記圧縮機と前記負荷側熱交換器との間に接続された第1冷媒配管と、
     前記第1減圧装置と前記熱源側熱交換器との間に接続された第2冷媒配管と、
     前記第1冷媒配管に設けられた流路切替弁と、
     一端が前記流路切替弁に接続され、他端が前記第2冷媒配管に接続されたバイパス配管と
    を有しており、
     前記流路切替弁は、
     前記圧縮機の側の前記第1冷媒配管と前記バイパス配管とを連通させる第1流路と、
     前記圧縮機の側の前記第1冷媒配管と前記負荷側熱交換器の側の前記第1冷媒配管とを連通させる第2流路と
    を内部流路として有しており、
     前記第1流路及び前記第2流路のうちのいずれか一方の内部流路を開放し、他の一方の内部流路を閉止するように、内部流路が切り替えられる
    空気調和装置。
    An outdoor unit having a heat source side heat exchanger and a compressor connected to the heat source side heat exchanger.
    Multiple indoor units with load side heat exchangers
    It has a first decompression device connected to the heat source side heat exchanger, and includes a repeater connected to a part of the plurality of indoor units.
    The repeater
    A first refrigerant pipe connected between the compressor and the load side heat exchanger,
    A second refrigerant pipe connected between the first decompression device and the heat source side heat exchanger,
    The flow path switching valve provided in the first refrigerant pipe and
    One end is connected to the flow path switching valve, and the other end is a bypass pipe connected to the second refrigerant pipe.
    The flow path switching valve is
    A first flow path that communicates the first refrigerant pipe and the bypass pipe on the compressor side,
    An internal flow path includes a second flow path for communicating the first refrigerant pipe on the compressor side and the first refrigerant pipe on the load side heat exchanger side.
    An air conditioner in which the internal flow path is switched so as to open the internal flow path of either the first flow path or the second flow path and close the other internal flow path.
  2.  前記第1減圧装置の開度を調整し、前記流路切替弁の内部流路を切り替える制御装置をさらに備えた請求項1に記載の空気調和装置。 The air conditioner according to claim 1, further comprising a control device for adjusting the opening degree of the first decompression device and switching the internal flow path of the flow path switching valve.
  3.  前記制御装置は、
     前記熱源側熱交換器に高温高圧の冷媒を供給する除霜運転時において、
     前記第1流路を開放し、前記第2流路を閉止し、前記第1減圧装置の開度を全閉にする
    請求項2に記載の空気調和装置。
    The control device is
    During the defrosting operation in which the high-temperature and high-pressure refrigerant is supplied to the heat source side heat exchanger.
    The air conditioner according to claim 2, wherein the first flow path is opened, the second flow path is closed, and the opening degree of the first decompression device is fully closed.
  4.  前記圧縮機は、容量可変型圧縮機であり、
     前記制御装置は、
     前記圧縮機が冷媒とともに吐出した潤滑油を前記圧縮機の内部に回収する油回収運転時において、
     前記第1流路を開放し、前記第2流路を閉止し、前記第1減圧装置の開度を全閉にする
    請求項2又は3に記載の空気調和装置。
    The compressor is a variable capacity compressor, and is
    The control device is
    During the oil recovery operation in which the lubricating oil discharged by the compressor together with the refrigerant is recovered inside the compressor.
    The air conditioner according to claim 2 or 3, wherein the first flow path is opened, the second flow path is closed, and the opening degree of the first decompression device is fully closed.
  5.  前記室内機は、
     冷媒漏洩検知装置を有しており、
     前記制御装置は、
     前記冷媒漏洩検知装置において冷媒の漏洩が検知された場合に、
     前記第1流路を開放し、前記第2流路を閉止し、前記第1減圧装置の開度を全閉にする
    請求項2~4のいずれか一項に記載の空気調和装置。
    The indoor unit is
    It has a refrigerant leak detection device and
    The control device is
    When a refrigerant leak is detected by the refrigerant leak detection device,
    The air conditioner according to any one of claims 2 to 4, wherein the first flow path is opened, the second flow path is closed, and the opening degree of the first decompression device is fully closed.
  6.  前記制御装置は、
     前記熱源側熱交換器に高温高圧の冷媒を供給する暖房運転時において、
     前記中継機に接続された全ての前記室内機が停止し、前記室内機に冷媒が滞留している場合に、前記第1流路を開放し、前記第2流路を閉止し、前記第1減圧装置の開度を全開にする
    請求項2~5のいずれか一項に記載の空気調和装置。
    The control device is
    During the heating operation in which the high-temperature and high-pressure refrigerant is supplied to the heat source side heat exchanger.
    When all the indoor units connected to the repeater are stopped and the refrigerant is retained in the indoor unit, the first flow path is opened, the second flow path is closed, and the first flow path is closed. The air conditioner according to any one of claims 2 to 5, wherein the opening degree of the decompression device is fully opened.
  7.  前記中継機は、
     前記バイパス配管に設けられた第2減圧装置を有し、
     前記制御装置は、
     前記熱源側熱交換器に高温高圧の冷媒を供給する暖房運転時において、
     前記中継機に接続された前記室内機が停止したときに、前記第1流路を開放し、前記第2流路を閉止し、前記第1減圧装置の開度を全閉にし、
     前記バイパス配管から流出する冷媒が、前記バイパス配管に流入する冷媒よりも低圧になるように前記第2減圧装置の開度を調整する
    請求項2~6のいずれか一項に記載の空気調和装置。
    The repeater
    It has a second decompression device provided in the bypass pipe.
    The control device is
    During the heating operation in which the high-temperature and high-pressure refrigerant is supplied to the heat source side heat exchanger.
    When the indoor unit connected to the repeater is stopped, the first flow path is opened, the second flow path is closed, and the opening degree of the first decompression device is fully closed.
    The air conditioner according to any one of claims 2 to 6, wherein the opening degree of the second decompression device is adjusted so that the refrigerant flowing out of the bypass pipe has a lower pressure than the refrigerant flowing into the bypass pipe. ..
  8.  前記流路切替弁及び前記バイパス配管は、着脱可能である
    請求項1~7のいずれか一項に記載の空気調和装置。
    The air conditioner according to any one of claims 1 to 7, wherein the flow path switching valve and the bypass pipe are removable.
PCT/JP2019/026031 2019-07-01 2019-07-01 Air conditioning device WO2021001869A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/026031 WO2021001869A1 (en) 2019-07-01 2019-07-01 Air conditioning device
CN201980097651.8A CN114008393B (en) 2019-07-01 2019-07-01 air conditioner
GB2115484.4A GB2603246B (en) 2019-07-01 2019-07-01 Air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/026031 WO2021001869A1 (en) 2019-07-01 2019-07-01 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2021001869A1 true WO2021001869A1 (en) 2021-01-07

Family

ID=74100478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026031 WO2021001869A1 (en) 2019-07-01 2019-07-01 Air conditioning device

Country Status (3)

Country Link
CN (1) CN114008393B (en)
GB (1) GB2603246B (en)
WO (1) WO2021001869A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202571A1 (en) * 2021-03-26 2022-09-29 株式会社富士通ゼネラル Air conditioner
EP4083522A1 (en) * 2021-04-20 2022-11-02 Guangdong Giwee Technology Co., Ltd. Multi-outdoor unit parallel type non-reversing defrosting system and defrosting control method thereof
US20230085125A1 (en) * 2020-03-30 2023-03-16 Mitsubishi Electric Corporation Air-conditioning system
JP7305081B1 (en) * 2022-10-14 2023-07-07 三菱電機株式会社 air conditioner
WO2024079873A1 (en) * 2022-10-14 2024-04-18 三菱電機株式会社 Air conditioning device
WO2024134852A1 (en) * 2022-12-23 2024-06-27 三菱電機株式会社 Air conditioning device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434157A (en) * 1977-08-22 1979-03-13 Toshiba Corp Refrigerating cycle
JPS5837456U (en) * 1981-09-04 1983-03-11 松下冷機株式会社 Refrigeration equipment
JPS62280548A (en) * 1986-05-26 1987-12-05 ダイキン工業株式会社 Separate type air conditioner
JPH0238061U (en) * 1988-09-03 1990-03-13
US20100199712A1 (en) * 2007-09-26 2010-08-12 Alexander Lifson Refrigerant vapor compression system operating at or near zero load
JP2011257038A (en) * 2010-06-08 2011-12-22 Mitsubishi Electric Corp Air conditioner
WO2017191814A1 (en) * 2016-05-02 2017-11-09 東芝キヤリア株式会社 Refrigeration cycle device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2944507B2 (en) * 1991-01-10 1999-09-06 三菱電機株式会社 Air conditioner
JPH05187745A (en) * 1992-01-09 1993-07-27 Daikin Ind Ltd Operation control device for refrigerating plant
JPH08291950A (en) * 1994-12-28 1996-11-05 Yamaha Motor Co Ltd Air conditioner
JP2000205664A (en) * 1999-01-14 2000-07-28 Denso Corp Refrigerating cycle system
JP2009145032A (en) * 2007-11-21 2009-07-02 Panasonic Corp Refrigeration cycle apparatus and air conditioner equipped with the same
CN101975422B (en) * 2010-09-30 2013-10-09 广东美的电器股份有限公司 Warm/cool air-conditioner and defrosting method thereof
JP2017161182A (en) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 Heat pump device
WO2018042490A1 (en) * 2016-08-29 2018-03-08 三菱電機株式会社 Refrigeration cycle device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434157A (en) * 1977-08-22 1979-03-13 Toshiba Corp Refrigerating cycle
JPS5837456U (en) * 1981-09-04 1983-03-11 松下冷機株式会社 Refrigeration equipment
JPS62280548A (en) * 1986-05-26 1987-12-05 ダイキン工業株式会社 Separate type air conditioner
JPH0238061U (en) * 1988-09-03 1990-03-13
US20100199712A1 (en) * 2007-09-26 2010-08-12 Alexander Lifson Refrigerant vapor compression system operating at or near zero load
JP2011257038A (en) * 2010-06-08 2011-12-22 Mitsubishi Electric Corp Air conditioner
WO2017191814A1 (en) * 2016-05-02 2017-11-09 東芝キヤリア株式会社 Refrigeration cycle device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230085125A1 (en) * 2020-03-30 2023-03-16 Mitsubishi Electric Corporation Air-conditioning system
WO2022202571A1 (en) * 2021-03-26 2022-09-29 株式会社富士通ゼネラル Air conditioner
JP2022150997A (en) * 2021-03-26 2022-10-07 株式会社富士通ゼネラル air conditioner
JP7168022B2 (en) 2021-03-26 2022-11-09 株式会社富士通ゼネラル air conditioner
EP4083522A1 (en) * 2021-04-20 2022-11-02 Guangdong Giwee Technology Co., Ltd. Multi-outdoor unit parallel type non-reversing defrosting system and defrosting control method thereof
US11994324B2 (en) 2021-04-20 2024-05-28 Guangdong Giwee Technology Co. Ltd. Multi-outdoor unit parallel type non-reversing defrosting system and defrosting control method thereof
JP7305081B1 (en) * 2022-10-14 2023-07-07 三菱電機株式会社 air conditioner
WO2024079874A1 (en) * 2022-10-14 2024-04-18 三菱電機株式会社 Air conditioner
WO2024079873A1 (en) * 2022-10-14 2024-04-18 三菱電機株式会社 Air conditioning device
WO2024134852A1 (en) * 2022-12-23 2024-06-27 三菱電機株式会社 Air conditioning device

Also Published As

Publication number Publication date
CN114008393B (en) 2023-08-22
CN114008393A (en) 2022-02-01
GB202115484D0 (en) 2021-12-15
GB2603246A (en) 2022-08-03
GB2603246B (en) 2023-03-01

Similar Documents

Publication Publication Date Title
WO2021001869A1 (en) Air conditioning device
JP4475278B2 (en) Refrigeration apparatus and air conditioner
JP5484930B2 (en) Air conditioner
US8302413B2 (en) Air conditioner
JP6223469B2 (en) Air conditioner
US6883346B2 (en) Freezer
CN109937332B (en) Air conditioner
JP6880204B2 (en) Air conditioner
US20110154847A1 (en) Air conditioner
JP2008128498A (en) Multi-type air conditioner
JP3781046B2 (en) Air conditioner
US11725855B2 (en) Air conditioning apparatus
WO2015083529A1 (en) Air conditioner
JP2922002B2 (en) Air conditioner
JP6643630B2 (en) Air conditioner
JP5734205B2 (en) Air conditioner
JP2018013287A (en) Air conditioner and control method of air conditioner
WO2017010007A1 (en) Air conditioner
US20150168037A1 (en) Air-conditioning apparatus
CN115038916A (en) Air conditioner
KR101151529B1 (en) Refrigerant system
CN115956184A (en) Refrigeration cycle device
KR102688988B1 (en) An air conditioning apparatus
WO2020208736A1 (en) Refrigeration cycle device
JP2018096575A (en) Freezer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935878

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202115484

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20190701

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP