WO2021001604A1 - Mecanisme gravitationnel, machine et procede de mise en œuvre - Google Patents

Mecanisme gravitationnel, machine et procede de mise en œuvre Download PDF

Info

Publication number
WO2021001604A1
WO2021001604A1 PCT/FR2019/051635 FR2019051635W WO2021001604A1 WO 2021001604 A1 WO2021001604 A1 WO 2021001604A1 FR 2019051635 W FR2019051635 W FR 2019051635W WO 2021001604 A1 WO2021001604 A1 WO 2021001604A1
Authority
WO
WIPO (PCT)
Prior art keywords
balance
eccentric elements
base
eccentric
pivot axis
Prior art date
Application number
PCT/FR2019/051635
Other languages
English (en)
Inventor
Maurice Granger
Original Assignee
Maurice Granger
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maurice Granger filed Critical Maurice Granger
Priority to PCT/FR2019/051635 priority Critical patent/WO2021001604A1/fr
Priority to PCT/FR2019/052644 priority patent/WO2021001605A1/fr
Priority to PCT/FR2020/050904 priority patent/WO2021001608A1/fr
Priority to TW109121317A priority patent/TW202111207A/zh
Priority to ARP200101835A priority patent/AR119304A1/es
Publication of WO2021001604A1 publication Critical patent/WO2021001604A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/10Alleged perpetua mobilia

Definitions

  • the present invention relates to a mechanism for recovering energy, for any conceivable application.
  • the invention also relates to a machine, for the production of energy or any other application, comprising at least one such mechanism.
  • the machine can be an engine, generator or mixer.
  • the invention relates in particular to an energy production machine, preferably comprising several mechanisms coupled in parallel and / or in series.
  • the invention relates to a method of implementing such a mechanism.
  • the Applicant has developed several energy recovery mechanisms, such as the balanced mechanism described in application WO2017064379, and the simultaneous cross-centrifugation mechanism described in application WO2018069586.
  • the aim of the present invention is to provide a new mechanism for recovering energy.
  • the invention relates to a mechanism, comprising:
  • first eccentric element movable in rotation around a first axis, having a center of gravity and generating a first moment of gravity force around the first axis
  • second eccentric element movable in rotation around a second axis, having a center of gravity and generating a second moment of gravity force around the second axis
  • a counterweight system mounted on the balance, on a second side of the pivot axis opposite the first side;
  • the axes of the eccentric elements are parallel to the pivot axis.
  • the balance When the mechanism is at rest, the balance is in stable equilibrium with respect to the base.
  • the eccentric elements When the mechanism is in operation, the eccentric elements are mobile according to the synchronized counter-rotating rotation movement, while the balance wheel is mobile according to an oscillatory movement relative to the base.
  • the invention makes it possible to generate energy, thanks to the centrifugal forces resulting from the synchronized counter-rotating movement of the eccentric elements.
  • the centrifugal forces generated by the eccentric elements provide the energy necessary for their rotation drive. The more the centrifugal forces increase, the more this rotation is facilitated.
  • the oscillatory movement of the balance makes it possible to improve the functioning of the mechanism according to the invention, in comparison with a mechanism comprising eccentric elements mounted on a fixed base. This is because the oscillatory movement reduces the transmission of centrifugal forces to the fixed base. Such forces, which are exerted alternately up and down, are liable to tear the mechanism from its anchorage. The oscillatory movement greatly reduces the risk of tearing.
  • the oscillatory movement of the balance has an amplitude of a few degrees, for example ⁇ 10 degrees, preferably ⁇ 5 degrees, on either side of a defined reference plane when the mechanism is at rest.
  • the moments of force of gravity of the eccentric elements have the same value and opposite directions, variable according to their angular position around the axes.
  • the eccentric elements are movable passing through: a high position in which the eccentric elements are parallel to each other and oriented upwards, a lateral position in which the eccentric elements are in opposition in the horizontal reference plane and have a maximum span, a low position in which the eccentric elements are mutually parallel and oriented downwards, and a central position in which the eccentric elements intersect in the horizontal reference plane and have a minimum span.
  • the distance between the centers of gravity is greater than the center distance between the axes.
  • the distance between the centers of gravity is at least three times greater than the center distance between the axes.
  • the axes of the eccentric elements are located on either side of a plane integral with the balance and including the pivot axis.
  • the balance is made up of several parallel plates.
  • the balance consists of two supports positioned respectively on the first side and on the second side of the pivot axis; and two connecting rods positioned respectively above and below the pivot axis, hinged on the base and hinged on the supports.
  • the counterweight system includes a mass and an oblong hole to adjust the position of the mass on the balance.
  • the counterweight system located on the second side comprises two eccentric elements synchronized with the two eccentric elements located on the first side.
  • the mechanism includes a damper system designed to dampen the oscillatory movement of the balance.
  • the shock absorber system receives the energy from the descent of the balance, then returns this energy upwards during the ascent.
  • the shock absorber system includes an oscillating counterweight located in the lower central part of the balance.
  • the counterweight receives the energy from the descent of the balance, then returns that energy upwards on the ascent.
  • the shock absorber system includes a connecting rod articulated between the base and the balance.
  • the damping system comprises, on at least one of the sides of the balance: a reservoir receiving a fluid, and a float connected to the balance and at least partially positioned in the tank. The reservoir filled with fluid receives the energy from the descent of the balance and the float, then returns this energy upwards on the ascent.
  • the shock absorber system includes reservoirs and floats arranged on both sides of the balance, each reservoir filled with fluid receiving the energy from the descent of the balance and the float, then returning this energy upwards on the ascent, in a counter-rotating manner.
  • the two tanks are connected by a pipe to keep the fluids at the same level.
  • the eccentric elements have the same mass and the same dimensions.
  • the first and / or second eccentric element has a generally increasing section away from the axis of rotation.
  • the eccentric elements each have a circular section and the same diameter. In the central position, the eccentric elements intersect by being aligned and centered on a median axis between the axes of rotation.
  • the first and / or second eccentric element is in one piece.
  • the first and / or second eccentric element is coupled to a flywheel.
  • the flywheel is integral with the first and / or second eccentric element.
  • the flywheel is separate from the first and / or second eccentric element, and mounted on the same axis.
  • the first and / or second eccentric element comprises a body mounted in a pivot connection on the axis and an adjustable head in position along the body.
  • the synchronization system comprises two toothed wheels meshing with each other, each integral in rotation with one of the eccentric elements.
  • the toothed wheels are distinct from the eccentric elements.
  • the starting system comprises a crank, an engine and / or a motor generator.
  • the energy recovery system includes a generator or a motor generator.
  • the mechanism includes ground anchoring means.
  • the anchoring means include a concrete slab.
  • the base of the mechanism is placed in a trench.
  • the anchoring means include a concrete dome.
  • the concrete dome is placed in support on the base of the mechanism.
  • the base of the mechanism is placed to rest on the retaining walls.
  • the balance is mobile in a pit bordered by the retaining walls.
  • the mechanism rests on a plate surmounting an energy converter system.
  • the base of the mechanism is installed on a plate above an energy converter system.
  • the energy converter system is equipped with hydraulic cylinders, flywheels and / or piezoelectric elements.
  • the subject of the invention is also a machine, comprising at least one mechanism as mentioned above.
  • the machine comprises at least one pair of mechanisms coupled in parallel or in series, including a first mechanism and a second mechanism.
  • the moving parts of the first mechanism rotate in the same direction with respect to the corresponding moving parts of the second mechanism.
  • the first mechanism is in the high position when the second mechanism is in the low position.
  • the first mechanism is in the lateral position when the second mechanism is in the central position.
  • the mechanisms are mechanically coupled by chains, with a first chain mounted around the first axes supporting the first eccentric elements and a second chain mounted around the second axes supporting the second eccentric elements.
  • the mechanisms are mechanically coupled by toothed wheels, with a first toothed wheel mounted around the first axis supporting the first eccentric elements and a toothed wheel mounted around the second axis supporting the second eccentric elements, the toothed wheels being located between the mechanisms.
  • the mechanisms are mechanically coupled by a coupling device between two support shafts of the eccentric elements, the device being located between the mechanisms.
  • the starting system includes an engine, while the energy recovery system includes a generator.
  • the motor and generator are located between the mechanisms.
  • the moving parts of one mechanism are counter-rotating with respect to the corresponding moving parts of the other mechanism.
  • the machine rests on a plate surmounting an energy converter system.
  • the machine is a machine for producing energy, for example a motor or a generator.
  • the machine can be a mixer, or any other type of machine that can be envisaged.
  • the subject of the invention is also a method of implementing a mechanism as mentioned above, characterized in that the method comprises:
  • a starting step consisting in impelling the eccentric elements a synchronized counter-rotating rotation movement
  • Figure 1 is a front view of a mechanism comprising a balance and two eccentric elements, which are shown in the lateral position;
  • Figure 2 is a view on a larger scale of an eccentric element
  • FIG. 3 is a top view of the mechanism, according to arrow III in Figure 1;
  • FIG. 4 is a top view similar to FIG. 3, with the eccentric elements shown in the tightened lateral position;
  • FIGS. 5 to 12 schematically represent different stages of operation of the mechanism of FIGS. 1 to 4;
  • Figure 13 is a front view similar to Figure 1, of a mechanism according to the invention.
  • FIG. 14 is a view similar to FIG. 13, of a variant comprising a damping device with fluid reservoir
  • FIG. 15 is a view similar to FIG. 14, of another variant comprising a damping device with fluid reservoir
  • Figure 16 is a view similar to Figure 13, of a mechanism according to a second embodiment of the invention.
  • FIGS 17 and 18 show, in front views, two variants of transmission devices provided to equip the mechanism according to the invention.
  • Figures 19 and 20 show, in front views, two variants of eccentric elements provided to equip the mechanism according to the invention.
  • Figure 21 is a view similar to Figure 13, of a mechanism according to a third embodiment of the invention.
  • Figure 22 is a front view similar to Figure 1, of a machine comprising a pair of superimposed and synchronized mechanisms.
  • Mechanism 1 comprises a base 2, two eccentric elements 10 and 20, a synchronization system 7, a starting system 8 and an energy recovery system 9.
  • the eccentric elements 10 and 20 are movable in rotation around axes A1 and A2 integral with the base 2.
  • the axes A1 and A2 are parallel, arranged in the same horizontal plane PO integral with the base 2, and separated by a center distance EA .
  • the base 2 comprises feet 3 resting on the ground and a base 4 mounted on the feet 3.
  • the feet 3 are firmly anchored in the ground, by any suitable means.
  • the base 4 comprises four metal plates, namely two side plates 41 and two central plates 42.
  • the plates 41 and 42 are connected by reinforcements not shown.
  • the synchronization system 7 comprises different elements 1 1, 12, 21 and 22 coupled to each other.
  • a first support shaft 1 1 is pivotally mounted on the base 4, centered on the first axis A1 and integral with the first eccentric element 10.
  • the shaft 1 1 is supported by a side plate 41 and the two central plates 42.
  • a first toothed wheel 12 is integral with the first support shaft 11.
  • a second support shaft 21 is pivotally mounted on the base 4, centered on the second axis A2 and integral with the second eccentric element 20.
  • the shaft 21 is supported by the other side plate 41 and the two central plates 42.
  • a second wheel toothed 22 is integral with the second support shaft 21.
  • the shafts 1 1 and 21 are supported by bearings, for example ball bearings, not shown for the purpose of simplification.
  • the bearings are mounted in the plates 41 and 42.
  • the wheels 12 and 22 have the same diameter and the same number of teeth.
  • the wheels 12 and 22 are positioned between the two central plates 42 and mesh with each other.
  • a synchronized movement can be transmitted between the shafts 1 1 and 21.
  • the shafts 11 and 21 rotate at the same speed, but in opposite directions of rotation R1 and R2.
  • the synchronization system 7 makes it possible to drive the first eccentric element 10 and the second eccentric element 20 according to a counter-rotating synchronized rotation R1 / R2 movement.
  • the rotational speed R1 / R2 may be of the order of 500 revolutions per minute.
  • the eccentric elements 10 and 20 have particular shapes, designed to generate centrifugal forces.
  • the elements 10 and 20 each weigh 50 kg and are supported by shafts 1 1 and 20 of steel 40 mm in diameter.
  • Element 10 has a center of gravity G1 eccentric with respect to axis A1 and is movable in rotation R1 about this axis A1. Element 10 generates a moment M1 of force of gravity P1 around axis A1.
  • the element 20 has a center of gravity G2 eccentric with respect to the axis A2 and is movable in rotation R2 about this axis A2. Element 20 generates a moment M2 of force of gravity P2 around axis A2.
  • the centers of gravity G1 and G2 are separated by a variable DG distance.
  • the energy generated by centrifugation within the mechanism 1 is recoverable by coupling an energy recovery system 9 to the synchronization system 7.
  • the system 9 comprises a generator 91, a toothed wheel 92 fixed to the shaft 11, and a toothed chain 93 connecting the wheel 92 to the generator 91.
  • the generator 91 is shown fixed to a plate 41 for the purpose of simplification, but can be positioned in any other suitable location.
  • the chain 93 is represented by a dotted line for the sake of simplicity.
  • the method of implementing the mechanism 1 comprises a starting step, an operating phase, and if necessary, during the operating phase, restarting steps.
  • the starting step consists in impelling the counter-rotating synchronized R1 / R2 rotation movement to the eccentric elements 10 and 20. Different starting means are described below.
  • the eccentric elements 10 and 20 are movable in counter-rotating synchronized rotation R1 / R2.
  • the energy recovery system 9 coupled to the synchronization system 7 recovers the energy generated by the R1 / R2 rotation of the elements 10 and 20 and the centrifugal forces within the mechanism 1.
  • the restart steps consist in giving a new impetus to the eccentric elements 10 and 20 in their counter-rotating synchronized rotational movement R1 / R2.
  • the restart steps are necessary when the starting system 8 comprises only a crank 80.
  • the starting step can be performed by gravity, releasing the eccentric elements 10 and 20 arranged in the high position H1.
  • the starting system 8 may include a locking device, which can be actuated between a configuration for locking the eccentric elements 10 and 20 in the high position H1, and a configuration for releasing the eccentric elements 10 and 20.
  • the locking device comprises a tilting hook mounted on the base 2 and a fastening member integral with the element 10 or 20.
  • the hook comprises a housing in which the member is housed when elements 10 and 20 are in the high position H1.
  • the tilting of the hook between the blocking and release configurations can be controlled by any suitable means, not shown for the purpose of simplification.
  • the hook is raised to release the member from the housing, then allowing R1 / R2 rotation of the elements 10 and 20.
  • the hook is lowered to wedging the member in the housing when the elements 10 and 20 go to the high position H 1, thus stopping their rotation R1 / R2.
  • the starting system 8 comprises a crank 80 coupled to the synchronization system 7.
  • this crank 80 is mounted on the shaft 21.
  • the crank 80 can in particular be used when the elements 10 and 20 start in the low position H2.
  • the starting system 8 comprises the generator 91 or a motor-generator belonging to the system 9, and which is coupled to the synchronization system 7 via the chain 93 and the wheel 92 mounted on the shaft 11. .
  • the starting system 8 comprises a drive motor separate from the generator 91 or from the motor-generator.
  • the starting step by simply pushing on one of the eccentric elements 10 and 20.
  • the starting system 8 comprises the elements 10. and 20 themselves.
  • the starting system 8 comprises the crank 80 and a motor
  • the energy recovery system 9 comprises the generator 91.
  • the crank 80 With the crank 80, the motor and the generator 91 are simultaneously driven.
  • the generator 91 produces the current to turn the motor, which in turn drives the mechanism 1.
  • the speed of the eccentric elements 10 and 20 generates enough kinetic energy to allow the crank 80 to be released.
  • a "small" mechanism 1 comprising two eccentric elements 10 and 20 of 50 kg which cross in the low position H2, at a speed of about 500 revolutions / minute, makes it possible to achieve a power of about 3 kW. More powerful mechanisms 1 can be realized by increasing the dimensions of elements 10 and 20, and of all the other parts.
  • the elements 10 and 20 are initially in the high position H1.
  • Figures 6 to 8 show the descent of elements 10 and 20, passing through a lateral position C1, called the maximum separation position, in which the elements 10 and 20 have a maximum span E1.
  • Figure 9 shows the elements 10 and 20 in the low position H2.
  • Figures 10 to 12 show the rise of elements 10 and 20, passing through a central position C2, called the minimum spacing position, in which elements 10 and 20 have a minimum span E2.
  • Element 10 is subjected to a force of gravity P1 exerted at its center of gravity G1.
  • the element 20 is subjected to a force of gravity P2 acting at its center of gravity G2.
  • the moments M1 and M2 have the same value and have opposite directions. This value and these directions are variable as a function of the angular position of the elements 10 and 20 around the axes A1 and A2.
  • the gravity generating the forces of gravity P1 / P2 drives the elements 10 and 20 downwards accelerating them, then the centrifugal forces drives the elements 10 and 20 upwards, opposing the forces of gravity P1 / P2.
  • Figures 3 and 4 show particular constructions, making it possible to maximize the centrifugal forces within the mechanism 1.
  • the distance DG between the centers of gravity G1 and G2 is preferably greater than the center distance EA between the axes A1 and A2.
  • the center of gravity G1 passes on the other side of the axis A2, while the center of gravity G2 passes on the other side of the axis A1.
  • the distance DG between the centers of gravity G1 and G2 is preferably at least two times greater, more preferably at least three times greater, than the center distance EA between the axes A1 and A2.
  • the centering of gravity G1 and G2 are relatively far from the axes A1 and A2, so that the moments M1 and M2 are relatively large.
  • Figures 2, 19 and 20 are shown different variants of elements 10 designed to equip the mechanism 1. Similar constructions can be applied to the element 20.
  • the element 10 has a generally increasing cross section as it moves away from the axis A1, so as to move the center of gravity G1 away from the axis A1, and thus increase the centrifugal energy generated during of rotation R1.
  • element 10 has an elongated oval shape.
  • the element 10 has a portion 10A of cylindrical shape constituting a flywheel, and a portion 10B of elongated oval shape.
  • Items 10 and 20 can have other shapes.
  • elements 10 and 20 can be shaped like wind turbine blades. A machine with counter-rotating blades can thus be constructed.
  • Figure 13 shows a mechanism 1 according to the invention.
  • the mechanism 1 comprises a base 2, a balance 5, two eccentric elements 10 and 20, a counterweight system 6, a synchronization system 7, a starting system 8 and an energy recovery system 9.
  • the balance 5 is movable around a pivot axis A0 relative to the base 2.
  • the two eccentric elements 10 and 20 are pivotally mounted on the balance 5, on a first side 51 of the pivot axis A0.
  • the axes A1 and A2 of the eccentric elements 10 and 20 are parallel to the pivot axis A0. More precisely, the axes A0, A1 and A2 are all three located in a plane P5 integral with the balance 5.
  • the plane P5 also includes a center of gravity A4 between the axes A1 and A2.
  • the counterweight system 6 is mounted on the balance 5, on a second side 52 of the pivot axis A0 opposite to the first side 51.
  • the system 6 comprises a mass 61 and an oblong hole 62 for adjusting the position of the mass 61 on the balance 5.
  • the center of gravity of the mass 61 is positioned in the plane P5.
  • System 6 constitutes a balancing counterweight, arranged opposite elements 10 and 20, and designed to balance the balance 5.
  • the system 9 comprises a generator 91, a toothed wheel 92 centered on the pivot axis A0, a toothed chain 93 connecting the wheel 92 to the generator 91, a toothed wheel 94 centered on the axis A1 and integral with the shaft 11 , and a notched chain 95 connecting the wheels 92 and 94.
  • the generator 91 is shown attached to the top of the base 2, but can be positioned in any other suitable location.
  • the axes AO, A1 and A2 are located in a horizontal reference plane PO fixed with respect to the base 2.
  • the plane P5 is confused with the PO plan.
  • the eccentric elements 10 and 20 are mobile according to the counter-rotating synchronized rotational movement R1 / R2, while the balance 5 is mobile according to an oscillatory movement B1 / B2 relative to the base 2.
  • the movement oscillatory B1 / B2 is a pivoting movement around the pivot axis A0, with side 51 alternately tilting up B1 while side 52 tilting down, then side 51 tilting down B2 while side 52 swings up.
  • the P5 plane tilts relative to the PO plane, pivoting around the pivot axis A0.
  • the oscillatory movement B1 / B2 of the balance 5 makes it possible to improve the operation of the mechanism 1 according to the invention, in comparison with a mechanism 1 comprising eccentric elements 10 and 20 mounted directly on a fixed base 2.
  • the oscillatory movement B1 / B2 reduces the transmission of centrifugal forces to the fixed base 2. Such forces, which are exerted alternately up and down, are liable to tear the mechanism 1 from its anchorage.
  • the B1 / B2 oscillating movement greatly reduces the risk of tearing.
  • the mechanism 1 can be equipped with an oscillating counterweight 160, located in the lower central part of the balance 5.
  • the counterweight 160 comprises a mass 161 and a support 162 connecting the mass 161 to the balance 5.
  • the center of gravity of mass 161 is positioned in the same vertical plane as the pivot axis A0.
  • the weight of mass 161 is equal to the weight of mass 61 and elements 10 and 20.
  • the oscillating counterweight 160 constitutes a damping system, designed to dampen the oscillatory movement B1 / B2 of the balance 5.
  • the counterweight 160 further reduces the risk of tearing.
  • the mechanism 1 can be shaped differently from Figure 13 without departing from the scope of the invention, as defined by the claims.
  • the counterweight system 6 located on side 52 can comprise two eccentric elements 10 and 20 synchronized with the two eccentric elements 10 and 20 located on side 51.
  • the technical characteristics of the various embodiments and variants mentioned above can be, in whole or for some of them, combined with each other.
  • the mechanism 1 can be adapted in terms of cost, functionality and performance.
  • FIG. 14 shows a variant of the mechanism 1 of FIG. 13, comprising a damping system 100 arranged on the side 51 of the balance 5.
  • the system 100 includes a reservoir 101 receiving a fluid 102, for example water, oil, gas or air.
  • the system 100 also includes a float 103 and a link 104 designed to connect the float 103 to the balance 5.
  • the float 103 comprises a fluid that is lighter than the fluid 102, for example air or gas.
  • the rod 104 is articulated at its lower end on the float 103 and at its upper end on the rocker 5. The float 103 is placed in the reservoir 101, bathing in the fluid 102.
  • the system 100 makes it possible to damp the oscillatory movement B1 / B2, and thus limit its amplitude on either side of the reference plane PO. Thus, System 100 further reduces the risk of tearing.
  • the system 100 is a good shock absorber, it receives the descent energy from the balance 5 and the float 103, then sends all of this energy upwards on the ascent. It fully participates in the production of energy. It is silent and anti-vibration.
  • Figure 15 shows a variant of the mechanism 1 of Figure 14, where the damper system 100 comprises a reservoir 101 arranged on the side 51 and a reservoir 101 arranged on the side 52.
  • the two reservoirs 101 are connected by a pipe 108 in order to maintaining fluids 102 at the same level.
  • Each reservoir 101 filled with fluid 102 receives the energy from the descent of the balance 5 and the float 103, then returns this energy entirely upwards on the ascent, in a counter-rotating manner.
  • FIG. 16 shows a mechanism 1 according to a second embodiment of the invention.
  • the eccentric elements 10 and 20 located on the side 51 are of the type with simultaneous crossed centrifugation, according to the teachings of application WO2018069586.
  • the axes A1 and A2 are located respectively above and below the plane P5 integral with the balance 5.
  • the plane P5 comprises the pivot axis A0, as well as a center of gravity A4 between the axes A1 and A2.
  • FIGS 17 and 18 show two variants of transmission devices provided to equip the mechanism according to the invention.
  • Device 96 of Figure 17 is intended to replace wheels 92 and 94 as well as chain 95 of Figure 13.
  • Device 96 includes a plate 960 and three sprockets 961, 962 and 963 meshing with each other. Wheel 961 is mounted on shaft 11 and centered on axis A1, while wheel 963 is centered on axis A0.
  • Device 97 of Figure 18 is similar to device 96, but has four toothed wheels meshing with each other.
  • Figure 21 shows a mechanism 1 according to a third embodiment of the invention.
  • the balance 5 consists of two supports 53 and 54, as well as two connecting rods 55 and 56.
  • the supports 53 and 54 are positioned respectively on the first side 51 and on the second side 52 of the pivot axis A0.
  • Each support 53 and 54 consists of several parallel plates.
  • the connecting rods 55 and 56 are positioned respectively above and below the pivot axis A0.
  • the connecting rods 55 and 56 articulated on the base 2 at their center and articulated on the supports 53 and 54 at their opposite ends.
  • the support 53 supports the eccentric elements 10 and 20, while the support 54 supports the balancing counterweight system 6.
  • Figure 22 shows a machine comprising a pair of mechanisms 1, arranged in parallel one above the other. In other words, the mechanisms 1 are coupled vertically.
  • the base 2 not shown for the sake of simplification, is common to the two superimposed mechanisms 1. Likewise, the starting system 8 and the energy recovery system 9 are common to both mechanisms 1.
  • the machine comprises a synchronization system 70, making it possible to mechanically couple the two mechanisms 1.
  • the system 70 comprises a central block 71 mounted to pivot relative to the base 2 about a central axis A7, aligned with the axes A0 of the two mechanisms. 1.
  • the system 70 also comprises two connecting rods 72, each articulated between the block 71 and the balance 5 of a mechanism 1.
  • the machine can be configured differently from FIG. 22 without departing from the scope of the invention, as defined by the claims.
  • the machine can include both juxtaposed and superimposed mechanisms 1, arranged in parallel.
  • the machine may include mechanisms 1 arranged in series, one after the other.
  • the machine (comprising a single mechanism or several synchronized mechanisms) can be installed on a plate surmounting an energy converter system.
  • This system can be equipped with hydraulic cylinders, flywheels and / or piezoelectric elements.
  • the machine can be adapted in terms of cost, functionality and performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Transmission Devices (AREA)

Abstract

La présente demande concerne un mécanisme (1), comprenant : une base (2); un balancier (5); mobile autour d'un axe pivot (AO) par rapport à la base (2) deux éléments excentriques (10; 20) montés pivotants sur le balancier (5), sur un premier côté (51) de l'axe pivot (AO), incluant un premier élément excentrique (10) mobile en rotation (RI) autour d'un premier axe (Al) et un second élément excentrique (20) mobile en rotation (R2) autour d'un second axe (A2); un système de contrepoids (6) monté sur le balancier (5), sur un deuxième côté (52) de l'axe pivot (AO) opposé au premier côté (51); un système de synchronisation (7); un système de démarrage (8); et un système de récupération d'énergie (9). Les axes (A1; A2) des éléments excentriques (10; 20) sont parallèles à l'axe pivot (AO). Lorsque le mécanisme (1) est au repos, le balancier (5) est en équilibre stable par rapport à la base (2). Lorsque le mécanisme (1) est en fonctionnement, les éléments excentriques (10; 20) sont mobiles selon le mouvement de rotation (R1; R2) synchronisée contra rotative, tandis que le balancier (5) est mobile selon un mouvement oscillatoire (B1; B2) par rapport à la base (2).

Description

MECANISME GRAVITATIONNEL, MACHINE ET PROCEDE DE MISE EN ŒUVRE
DOMAINE TECHNIQUE
La présente invention concerne un mécanisme permettant de récupérer de l’énergie, pour toute application envisageable.
L’invention concerne également une machine, pour la production d’énergie ou toute autre application, comprenant au moins un tel mécanisme. Par exemple, la machine peut être un moteur, un générateur ou un mélangeur. L’invention concerne en particulier une machine de production d’énergie, comprenant de préférence plusieurs mécanismes couplés en parallèle et/ou en série.
L’invention concerne enfin un procédé de mise en oeuvre d’un tel mécanisme.
ART ANTERIEUR
Dans le domaine mécanique, il existe de nombreux mécanismes de transmission de mouvement, tels que des trains épicycloïdaux ou des vilebrequins, adaptés pour équiper des machines pour la production d’énergie ou toute autre application. Toutefois, les rendements obtenus avec les mécanismes connus ne sont pas entièrement satisfaisants.
Le Demandeur a mis au point plusieurs mécanismes à récupération d’énergie, tel que le mécanisme équilibré décrit dans la demande WO2017064379, et le mécanisme à centrifugation croisées simultanées décrit dans la demande WO2018069586.
EXPOSE DE L’INVENTION
Le but de la présente invention est de proposer un nouveau mécanisme permettant de récupérer de l’énergie.
A cet effet, l’invention a pour objet un mécanisme, comprenant :
une base ;
un balancier mobile autour d’un axe pivot par rapport à la base;
deux éléments excentriques montés pivotants sur le balancier sur un premier côté de l’axe pivot, incluant :
- un premier élément excentrique mobile en rotation autour d’un premier axe, présentant un centre de gravité et générant un premier moment de force de pesanteur autour du premier axe, et - un second élément excentrique mobile en rotation autour d’un second axe, présentant un centre de gravité et générant un second moment de force de pesanteur autour du second axe ;
un système de contrepoids monté sur le balancier, sur un deuxième côté de l’axe pivot opposé au premier côté ;
un système de synchronisation des éléments excentriques selon un mouvement de rotation synchronisée contrarotative ;
un système de démarrage du mouvement de rotation ; et
un système de récupération d’énergie couplé au système de synchronisation.
Les axes des éléments excentriques sont parallèles à l’axe pivot.
Lorsque le mécanisme est au repos, le balancier est en équilibre stable par rapport à la base. Lorsque le mécanisme est en fonctionnement, les éléments excentriques sont mobiles selon le mouvement de rotation synchronisée contrarotative, tandis que le balancier est mobile selon un mouvement oscillatoire par rapport à la base.
Ainsi, l’invention permet de générer de l’énergie, grâce aux forces de centrifugation résultant du mouvement de rotation synchronisée contrarotative des éléments excentriques.
Les forces centrifuges générées par les éléments excentriques apportent l’énergie nécessaire pour leur entraînement en rotation. Plus les forces centrifuges augmentent, plus cette rotation est facilitée.
Le mouvement oscillatoire du balancier permet d’améliorer le fonctionnement du mécanisme selon l’invention, en comparaison avec un mécanisme comprenant des éléments excentriques montés sur une base fixe. En effet, le mouvement oscillatoire réduit la transmission de forces centrifuges à la base fixe. De telles forces, qui s’exercent en alternance vers le haut et le bas, sont susceptibles d’arracher le mécanisme à son ancrage. Le mouvement oscillatoire réduit fortement le risque d’arrachement.
Selon d’autres caractéristiques avantageuses de l’invention, prises isolément ou en combinaison :
- Le mouvement oscillatoire du balancier a une amplitude de quelques degrés, par exemple ± 10 degrés, de préférence ± 5 degrés, de part et d’autre d’un plan de référence défini lorsque le mécanisme est au repos.
- Lorsque le mécanisme est au repos, l’axe pivot et un centre de gravité localisé entre les axes des éléments excentriques sont tous deux situés dans un plan de référence horizontal fixe par rapport à la base. - L’axe pivot et les axes des éléments excentriques sont tous trois situés dans un plan solidaire du balancier.
- Les moments de force de pesanteur des éléments excentriques ont une même valeur et des sens contraires, variables selon leur position angulaire autour des axes. Les éléments excentriques sont mobiles en passant par : une position haute dans laquelle les éléments excentriques sont parallèles entre eux et orientés vers le haut, une position latérale dans laquelle les éléments excentriques sont en opposition dans le plan de référence horizontal et présentent une envergure maximale, une position basse dans laquelle les éléments excentriques sont parallèles entre eux et orientés vers le bas, et une position centrale dans laquelle les éléments excentriques se croisent dans le plan de référence horizontal et présentent une envergure minimale.
- Dans la position latérale, la distance entre les centres de gravité est supérieure à l’entraxe entre les axes.
- Dans la position centrale, la distance entre les centres de gravité est au moins trois fois supérieure à l’entraxe entre les axes.
- Les axes des éléments excentriques sont situés de part et d’autre d’un plan solidaire du balancier et comprenant l’axe pivot.
- Le balancier est constitué de plusieurs plaques parallèles.
- Le balancier est constitué de deux supports positionnés respectivement du premier côté et du deuxième côté de l’axe pivot ; et deux bielles positionnés respectivement au-dessus et au-dessous de l’axe pivot, articulées sur la base et articulées sur les supports.
- Le système de contrepoids comprend une masse et un trou oblong pour régler la position de la masse sur le balancier.
- Le système de contrepoids situé du deuxième côté comprend deux éléments excentriques synchronisés avec les deux éléments excentriques situés du premier côté.
- Le mécanisme comprend un système amortisseur conçu pour amortir le mouvement oscillatoire du balancier.
- Le système amortisseur reçoit l’énergie de descente du balancier, puis renvoie cette énergie vers le haut à la remontée.
- Le système amortisseur comprend un contrepoids d'oscillations situé en partie centrale basse du balancier. Le contrepoids reçoit l’énergie de descente du balancier, puis renvoie cette énergie vers le haut à la remontée.
- Le système amortisseur comprend une bielle articulée entre la base et le balancier. - Le système amortisseur comprend, sur au moins l’un des côtés du balancier : un réservoir recevant un fluide, et un flotteur connecté au balancier et au moins partiellement positionné dans le réservoir. Le réservoir rempli de fluide reçoit l’énergie de descente du balancier et du flotteur, puis renvoie cette énergie vers le haut à la remontée.
- Le système amortisseur comprend des réservoirs et flotteurs agencés sur les deux côtés du balancier, chaque réservoir rempli de fluide recevant l’énergie de descente du balancier et du flotteur, puis renvoyant cette énergie vers le haut à la remontée, de manière contrarotative.
- Les deux réservoirs sont reliés par un tuyau pour maintenir les fluides au même niveau.
- Les éléments excentriques ont une même masse et des mêmes dimensions.
- Le premier et/ou second élément excentrique a une section globalement croissante en s’éloignant de l’axe de rotation.
- Les éléments excentriques ont chacun une section circulaire et un même diamètre. Dans la position centrale, les éléments excentriques se croisent en étant alignés et centrés sur un axe médian entre les axes de rotation.
- Le premier et/ou second élément excentrique est monobloc.
- Le premier et/ou second élément excentrique est couplé à un volant d’inertie.
- Le volant d’inertie est solidaire du premier et/ou second élément excentrique.
- Le volant d’inertie est distinct du premier et/ou second élément excentrique, et monté sur le même axe.
- Le premier et/ou second élément excentrique comprend un corps monté en liaison pivot sur l’axe et une tête réglable en position le long du corps.
- Le système de synchronisation comprend deux roues dentées engrenant l’une avec l’autre, chacune solidaire en rotation d’un des éléments excentriques.
- Les roues dentées sont distinctes des éléments excentriques.
- Le système de démarrage comprend une manivelle, un moteur et/ou un moto- générateur.
- Le système de récupération d’énergie comprend une génératrice ou un moto- générateur.
- Le mécanisme comprend des moyens d’ancrage au sol.
- Les moyens d’ancrage comprennent une dalle de béton.
- La base du mécanisme est disposée dans une tranchée.
- Les moyens d’ancrage comprennent un dôme de béton.
- Le dôme de béton est disposé en appui sur la base du mécanisme.
- La base du mécanisme est disposée en appui sur des parois de soutènement. - Le balancier est mobile dans une fosse bordée par les parois de soutènement.
- Le mécanisme repose sur un plateau surmontant un système convertisseur d’énergie.
- La base du mécanisme est installée sur un plateau surmontant un système convertisseur d’énergie.
- Le système convertisseur d’énergie est équipé de vérins hydrauliques, de volants d’inertie et/ou d’éléments piézoélectriques.
L’invention a également pour objet une machine, comprenant au moins un mécanisme tel que mentionné ci-dessus.
Selon d’autres caractéristiques avantageuses de la machine selon l’invention, prises isolément ou en combinaison :
- La machine comprend au moins une paire de mécanismes couplés en parallèle ou en série, incluant un premier mécanisme et un second mécanisme.
- Au sein de la paire de mécanismes, les pièces en mouvement du premier mécanisme tournent dans un même sens par rapport aux pièces en mouvement correspondantes du second mécanisme.
- Le premier mécanisme est en position haute lorsque le second mécanisme est en position basse. Le premier mécanisme est en position latérale lorsque le second mécanisme est en position centrale.
- Les mécanismes sont superposés.
- Les mécanismes sont couplés mécaniquement par des chaînes, avec une première chaîne montée autour des premiers axes supportant les premiers éléments excentriques et une deuxième chaîne montée autour des seconds axes supportant les seconds éléments excentriques.
- Les mécanismes sont juxtaposés.
- Les mécanismes sont couplés mécaniquement par des roues dentées, avec une première roue dentée montée autour du premier axe supportant les premiers éléments excentriques et une roue dentée montée autour du second axe supportant les seconds éléments excentriques, les roues dentées étant situées entre les mécanismes.
- Les mécanismes sont couplés mécaniquement par un dispositif d’accouplement entre deux arbres supports des éléments excentriques, le dispositif étant situé entre les mécanismes. - Le système de démarrage comprend un moteur, tandis que le système de récupération d’énergie comprend une génératrice. Le moteur et la génératrice sont situés entre les mécanismes.
- Au sein de la paire de mécanismes, les pièces en mouvement d’un premier mécanisme sont contrarotatives par rapport aux pièces en mouvement correspondantes de l’autre mécanisme.
- La machine repose sur un plateau surmontant un système convertisseur d’énergie.
- La machine est une machine de production d’énergie, par exemple un moteur ou un générateur. En alternative, la machine peut être un mélangeur, ou tout autre type de machine envisageable.
L’invention a également pour objet un procédé de mise en oeuvre d’un mécanisme tel que mentionné ci-dessus, caractérisé en ce que le procédé comprend :
- une étape de démarrage, consistant à impulser aux éléments excentriques un mouvement de rotation synchronisée contrarotative ;
- une phase de fonctionnement, durant laquelle les éléments excentriques sont mobiles en rotation synchronisée contrarotative, tandis que le balancier est mobile selon un mouvement oscillatoire par rapport à la base.
BREVE DESCRIPTION DES DESSINS
L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple non limitatif et faite en référence aux dessins annexés sur lesquels :
la figure 1 est une vue de face d’un mécanisme comprenant un balancier et deux éléments excentriques, lesquels sont représentés en position latérale ;
la figure 2 est une vue à plus grande échelle d’un élément excentrique ;
la figure 3 est une vue de dessus du mécanisme, selon la flèche III à la figure 1 ; la figure 4 est une vue de dessus analogue à la figure 3, avec les éléments excentriques représentés en position latérale resserrée ;
les figures 5 à 12 représentent schématiquement différentes étapes de fonctionnement du mécanisme des figures 1 à 4 ;
la figure 13 est une vue de face analogue à la figure 1 , d’un mécanisme conforme à l’invention ;
la figure 14 est une vue analogue à la figure 13, d’une variante comprenant un dispositif amortisseur avec réservoir de fluide ; la figure 15 est une vue analogue à la figure 14, d’une autre variante comprenant un dispositif amortisseur avec réservoir de fluide ;
la figure 16 est une vue analogue à la figure 13, d’un mécanisme conforme à un deuxième mode de réalisation de l’invention ;
les figures 17 et 18 montrent, en vues de face, deux variantes de dispositifs de transmission prévus pour équiper le mécanisme selon l’invention ;
les figures 19 et 20 montrent, en vues de face, deux variantes d’éléments excentriques prévus pour équiper le mécanisme selon l’invention ;
la figure 21 est une vue analogue à la figure 13, d’un mécanisme conforme à un troisième mode de réalisation de l’invention ;
la figure 22 est une vue de face analogue à la figure 1 , d’une machine comprenant une paire de mécanismes superposés et synchronisés.
EXPOSE DETAILLE DE L’INVENTION
Sur les figures 1 à 4 est représenté un mécanisme 1 à éléments excentriques 10 et 20.
Le mécanisme 1 comprend une base 2, deux éléments excentriques 10 et 20, un système de synchronisation 7, un système de démarrage 8 et un système de récupération d’énergie 9.
Les éléments excentriques 10 et 20 sont mobiles en rotation autour d’axes A1 et A2 solidaires de la base 2. Les axes A1 et A2 sont parallèles, disposés dans un même plan horizontal PO solidaire de la base 2, et séparés par un entraxe EA.
La base 2 comprend des pieds 3 reposant au sol et un socle 4 montés sur les pieds 3. Les pieds 3 sont ancrés fermement dans le sol, par tous moyens adaptés. Le socle 4 comprend quatre plaques métalliques, à savoir deux plaques latérales 41 et deux plaques centrales 42. Les plaques 41 et 42 sont connectées par des renforts non représentés.
Le système de synchronisation 7 comprend différents éléments 1 1 , 12, 21 et 22 couplés les uns aux autres.
Un premier arbre support 1 1 est monté pivotant sur le socle 4, centré sur le premier axe A1 et solidaire du premier élément excentrique 10. L’arbre 1 1 est supporté par une plaque latérale 41 et les deux plaques centrales 42. Une première roue dentée 12 est solidaires du premier arbre support 11.
Un second arbre support 21 est monté pivotant sur le socle 4, centré sur le second axe A2 et solidaire du second élément excentrique 20. L’arbre 21 est supporté par l’autre plaque latérale 41 et les deux plaques centrales 42. Une seconde roue dentée 22 est solidaires du second arbre support 21.
Les arbres 1 1 et 21 sont supportés par des paliers, par exemple des roulements à billes, non représentés dans un but de simplification. Les paliers sont montés dans les plaques 41 et 42.
Les roues 12 et 22 ont un même diamètre et un même nombre de dents. Les roues 12 et 22 sont positionnées entre les deux plaques centrales 42 et engrènent l’une avec l’autre.
Grâce au système de synchronisation 7, un mouvement synchronisé peut être transmis entre les arbres 1 1 et 21. En pratique, les arbres 11 et 21 tournent à la même vitesse, mais dans des sens de rotation R1 et R2 contraires.
Ainsi, le système de synchronisation 7 permet d’entraîner le premier élément excentrique 10 et le second élément excentrique 20 selon un mouvement de rotation R1 / R2 synchronisée contrarotative.
A titre d’exemple, lorsque le mécanisme 1 est en fonctionnement, la vitesse de rotation R1 / R2 peut être de l’ordre de 500 tours par minute.
Les éléments excentriques 10 et 20 présentent des formes particulières, pensées pour générer des forces centrifuges. A titre d’exemple, les éléments 10 et 20 pèsent chacun 50 kg et sont supportés par des arbres 1 1 et 20 en acier de 40 mm de diamètre.
L’élément 10 a un centre de gravité G1 excentré par rapport à l’axe A1 et est mobile en rotation R1 autour de cet axe A1. L’élément 10 génère un moment M1 de force de pesanteur P1 autour de l’axe A1.
L’élément 20 a un centre de gravité G2 excentré par rapport à l’axe A2 et est mobile en rotation R2 autour de cet axe A2. L’élément 20 génère un moment M2 de force de pesanteur P2 autour de l’axe A2.
Les centres de gravité G1 et G2 sont séparés par une distance DG variable.
Le mouvement de rotation R1 / R2 des éléments 10 et 20 est décrit plus en détail ci-après, en référence aux figures 5 à 12.
L’énergie générée par centrifugation au sein du mécanisme 1 est récupérable en couplant un système de récupération d’énergie 9 au système de synchronisation 7. Le système 9 comprend une génératrice 91 , une roue dentée 92 fixée sur l’arbre 11 , et une chaîne crantée 93 reliant la roue 92 à la génératrice 91. La génératrice 91 est représentée fixée sur une plaque 41 dans un but de simplification, mais peut être positionnée en tout autre endroit adapté. La chaîne 93 est représentée par un trait en pointillés dans un but de simplification.
Le procédé de mise en oeuvre du mécanisme 1 comprend une étape de démarrage, une phase de fonctionnement, et si besoin, durant la phase de fonctionnement, des étapes de relance.
L’étape de démarrage consiste à impulser le mouvement de rotation R1 / R2 synchronisée contrarotative aux éléments excentriques 10 et 20. Différents moyens de démarrage sont décrits plus loin.
Durant la phase de fonctionnement, les éléments excentriques 10 et 20 sont mobiles en rotation R1 / R2 synchronisée contrarotative. Le système de récupération d’énergie 9 couplé au système de synchronisation 7 récupère l’énergie générée par la rotation R1 / R2 des éléments 10 et 20 et les forces centrifuges au sein du mécanisme 1.
Les étapes de relance consistent à impulser un nouvel élan aux éléments excentriques 10 et 20 dans leur mouvement de rotation R1 / R2 synchronisée contrarotative. Par exemple, les étapes de relance sont nécessaires lorsque le système de démarrage 8 comprend uniquement une manivelle 80.
L’étape de démarrage peut être réalisée par gravité, en libérant les éléments excentriques 10 et 20 disposés en position haute H1.
A cet effet, le système de démarrage 8 peut comprendre un dispositif de verrouillage, actionnable entre une configuration de blocage des éléments excentriques 10 et 20 en position haute H1 , et une configuration de libération des éléments excentriques 10 et 20.
A titre d’exemple non limitatif, le dispositif de verrouillage comprend un crochet basculant monté sur la base 2 et un organe d’accroche solidaire de l’élément 10 ou 20. Le crochet comporte un logement dans lequel vient se loger l’organe lorsque les éléments 10 et 20 sont en position haute H1. Le basculement du crochet entre les configurations de blocage et de libération peut être piloté par tous moyens adaptés, non représentés dans un but de simplification. Le crochet est relevé pour libérer l’organe hors du logement, autorisant alors la rotation R1 / R2 des éléments 10 et 20. Le crochet est abaissé pour coincer l’organe dans le logement lorsque les éléments 10 et 20 passent en position haute H 1 , arrêtant ainsi leur rotation R1 / R2.
Selon une variante, le système de démarrage 8 comprend une manivelle 80 couplée au système de synchronisation 7.
Sur l’exemple des figures 3 et 4, cette manivelle 80 est montée sur l’arbre 21. La manivelle 80 peut notamment être utilisée lorsque les éléments 10 et 20 démarrent en position basse H2.
Selon une autre variante, le système de démarrage 8 comprend la génératrice 91 ou un moto-générateur appartenant au système 9, et qui est couplé(e) au système de synchronisation 7 via la chaîne 93 et la roue 92 montée sur l’arbre 11.
Selon une autre variante, le système de démarrage 8 comprend un moteur d’entraînement distinct de la génératrice 91 ou du moto-générateur.
Selon d’autres variantes de réalisation particulières du mécanisme 1 , il peut être envisagé de réaliser l’étape de démarrage par simple poussée sur l’un des éléments excentriques 10 et 20. Dans ce cas, le système de démarrage 8 comprend les éléments 10 et 20 eux-mêmes.
Selon un mode de réalisation particulier, le système de démarrage 8 comprend la manivelle 80 et un moteur, tandis que le système de récupération d’énergie 9 comprend la génératrice 91. Avec la manivelle 80, on entraîne simultanément le moteur et la génératrice 91. La génératrice 91 produit le courant pour faire tourner le moteur, qui à son tour entraîne le mécanisme 1. En quelques secondes, la vitesse des éléments excentriques 10 et 20 génère suffisamment d’énergie cinétique pour permettre de relâcher la manivelle 80.
A titre d’exemple, un "petit" mécanisme 1 comprenant deux éléments excentriques 10 et 20 de 50 kgs qui se croisent en position basse H2, à la vitesse d’environ 500 tours/minute, permet d’atteindre une puissance d’environ 3 kW. Des mécanismes 1 plus puissants peuvent être réaliser en augmentant les dimensions des éléments 10 et 20, et de toutes les autres pièces.
En pratique, cinq tours de manivelle 80 suffisent pour faire tourner le mécanisme 1 pendant 300 tours à vide (sans génératrice 91 , ni moteur). Sur les figures 5 à 12 sont représentées différentes étapes de fonctionnement du mécanisme 1 des figures 1 à 4.
Dans cet exemple, comme montré à la figure 5, les éléments 10 et 20 sont initialement en position haute H1. Les figures 6 à 8 montrent la descente des éléments 10 et 20, en passant par une position latérale C1 , dite position d’écartement maximal, dans laquelle les éléments 10 et 20 présentent une envergure maximale E1. La figure 9 montre les éléments 10 et 20 en position basse H2. Les figures 10 à 12 montrent la remontée des éléments 10 et 20, en passant par une position centrale C2, dite position d’écartement minimale, dans laquelle les éléments 10 et 20 présentent une envergure minimale E2.
Les éléments 10 et 20 se croisent en position C2.
L'élément 10 est soumis à une force de pesanteur P1 s’exerçant au niveau de son centre de gravité G1. L'élément 20 est soumis à une force de pesanteur P2 s’exerçant niveau de son centre de gravité G2.
Dans le cadre de l’invention, les moments M1 et M2 ont une même valeur et des sens contraires. Cette valeur et ces sens sont variables en fonction de la position angulaire des éléments 10 et 20 autour des axes A1 et A2.
Durant le fonctionnement du mécanisme 1 , une énergie centrifuge maximale est générée lors de la descente des éléments 10 et 20. Lorsque les moments M1 / M2 sont dans le même sens que les rotations R1 / R2, alors ces moments M1 / M2 font accélérer les rotations R1 / R2.
La gravité générant les forces de pesanteur P1 / P2 entraîne les éléments 10 et 20 vers le bas en les accélérant, puis les forces centrifuges entraîne les éléments 10 et 20 vers le haut en s’opposant aux forces de pesanteur P1 / P2.
Les figures 3 et 4 montrent des constructions particulières, permettant de maximiser les forces centrifuges au sein du mécanisme 1.
Dans la position latérale C1 , la distance DG entre les centres de gravité G1 et G2 est de préférence supérieure à l’entraxe EA entre les axes A1 et A2. Autrement dit, le centre de gravité G1 passe de l’autre côté de l’axe A2, tandis que le centre de gravité G2 passe de l’autre côté de l’axe A1.
Dans la position centrale C2 de croisement, la distance DG entre les centres de gravité G1 et G2 est de préférence au moins deux fois supérieure, encore de préférence au moins trois fois supérieure, à l’entraxe EA entre les axes A1 et A2. Autrement dit, les centrages de gravité G1 et G2 sont relativement éloignés des axes A1 et A2, de sorte que les moments M1 et M2 sont relativement importants. Sur les figures 2, 19 et 20 sont représentées différentes variantes d’éléments 10 conçues pour équiper le mécanisme 1. Des constructions similaires peuvent s’appliquer à l’élément 20.
Sur la figures 2, l’élément 10 a une section globalement croissante en s’éloignant de l’axe A1 , de manière à éloigner le centre de gravité G1 par rapport à l’axe A1 , et ainsi augmenter l’énergie centrifuge générée lors de la rotation R1.
Sur la figure 19, l’élément 10 présente une forme ovale allongée.
Sur la figure 20, l’élément 10 présente une partie 10A de forme cylindrique constituant un volant d’inertie, et une partie 10B de forme ovale allongée.
Ces formes offrent un bon compromis entre résistance mécanique, fonctionnalité en mouvement et performance pour l’énergie centrifuge.
Les éléments 10 et 20 peuvent présenter d’autres formes.
Par exemple, les éléments 10 et 20 peuvent être conformés comme des pâles d’éolienne. Une machine avec pâles contrarotatives peut ainsi être construite.
La figure 13 montre un mécanisme 1 conforme à l’invention.
Le mécanisme 1 comprend une base 2, un balancier 5, deux éléments excentriques 10 et 20, un système de contrepoids 6, un système de synchronisation 7, un système de démarrage 8 et un système de récupération d’énergie 9.
Le balancier 5 est mobile autour d’un axe pivot A0 par rapport à la base 2. Les deux éléments excentriques 10 et 20 sont montés pivotants sur le balancier 5, sur un premier côté 51 de l’axe pivot A0. Les axes A1 et A2 des éléments excentriques 10 et 20 sont parallèles à l’axe pivot A0. Plus précisément, les axes A0, A1 et A2 sont tous trois situés dans un plan P5 solidaire du balancier 5. Le plan P5 comprend également un centre de gravité A4 entre les axes A1 et A2.
Le système de contrepoids 6 est monté sur le balancier 5, sur un deuxième côté 52 de l’axe pivot A0 opposé au premier côté 51. Le système 6 comprend une masse 61 et un trou oblong 62 pour régler la position de la masse 61 sur le balancier 5. De préférence, le centre de gravité de la masse 61 est positionné dans le plan P5. Le système 6 constitue un contrepoids d’équilibre, disposé à l’opposé des éléments 10 et 20, et conçu pour équilibrer le balancier 5.
Le système 9 comprend une génératrice 91 , une roue dentée 92 centrée sur l’axe pivot A0, une chaîne crantée 93 reliant la roue 92 à la génératrice 91 , une roue dentée 94 centrée sur l’axe A1 et solidaire de l’arbre 11 , et une chaîne crantée 95 reliant les roues 92 et 94. La génératrice 91 est représentée fixée en haut de la base 2, mais peut être positionnée en tout autre endroit adapté. Lorsque le mécanisme 1 est au repos, le balancier 5 est en équilibre stable par rapport à la base 2. Les axes AO, A1 et A2 sont situés dans un plan de référence horizontal PO fixe par rapport à la base 2. Le plan P5 est confondu avec le plan PO.
Lorsque le mécanisme 1 est en fonctionnement, les éléments excentriques 10 et 20 sont mobiles selon le mouvement de rotation R1 / R2 synchronisée contrarotative, tandis que le balancier 5 est mobile selon un mouvement oscillatoire B1 / B2 par rapport à la base 2. Le mouvement oscillatoire B1 / B2 est un mouvement de pivotement autour de l’axe pivot A0, avec alternativement le côté 51 qui bascule vers le haut B1 tandis que le côté 52 bascule vers le bas, puis le côté 51 qui bascule vers le bas B2 tandis que le côté 52 bascule vers le haut. Le plan P5 bascule par rapport au plan PO, en pivotant autour de l’axe pivot A0.
Le mouvement oscillatoire B1 / B2 du balancier 5 permet d’améliorer le fonctionnement du mécanisme 1 selon l’invention, en comparaison avec un mécanisme 1 comprenant des éléments excentriques 10 et 20 montés directement sur une base fixe 2. En effet, le mouvement oscillatoire B1 / B2 réduit la transmission de forces centrifuges à la base fixe 2. De telles forces, qui s’exercent en alternance vers le haut et le bas, sont susceptibles d’arracher le mécanisme 1 à son ancrage. Le mouvement oscillatoire B1 / B2 réduit fortement le risque d’arrachement.
Avantageusement, le mécanisme 1 peut être équipé d’un contrepoids d’oscillations 160, situé en partie centrale basse du balancier 5. Le contrepoids 160 comprend une masse 161 et un support 162 reliant la masse 161 au balancier 5. Lorsque le mécanisme 1 est au repos, le centre de gravité de la masse 161 est positionné dans un même plan vertical que l’axe pivot A0. De préférence, le poids de la masse 161 est égal au poids de la masse 61 et des éléments 10 et 20.
Le contrepoids d’oscillations 160 constitue un système amortisseur, conçu pour amortir le mouvement oscillatoire B1 / B2 du balancier 5. Le contrepoids 160 réduit encore le risque d’arrachement.
Le mécanisme 1 peut être conformé différemment de la figure 13 sans sortir du cadre de l’invention, telle que définie par les revendications.
Par exemple, en variante non représentée, le système de contrepoids 6 situé du côté 52 peut comprendre deux éléments excentriques 10 et 20 synchronisés avec les deux éléments excentriques 10 et 20 situés du côté 51. En outre, les caractéristiques techniques des différents modes de réalisation et variantes mentionnés ci-dessus peuvent être, en totalité ou pour certaines d’entre elles, combinées entre elles.
Ainsi, le mécanisme 1 peut être adapté en termes de coût, de fonctionnalités et de performance.
La figure 14 montre une variante du mécanisme 1 de la figure 13, comprenant un système amortisseur 100 agencé sur le côté 51 du balancier 5.
Le système 100 comprend un réservoir 101 recevant un fluide 102, par exemple de l’eau, de l’huile, du gaz ou de l’air. Le système 100 comprend également un flotteur 103 et une biellette 104 conçue pour connecter le flotteur 103 au balancier 5. Le flotteur 103 comprend un fluide plus léger que le fluide 102, par exemple de l’air ou du gaz. La biellette 104 est articulée à son extrémité inférieure sur le flotteur 103 et à son extrémité supérieure sur le balancier 5. Le flotteur 103 est disposé dans le réservoir 101 , en baignant dans le fluide 102.
Le système 100 permet d’amortir le mouvement oscillatoire B1 / B2, et ainsi limiter son amplitude de part et d’autre du plan de référence PO. Ainsi, le système 100 réduit encore le risque d’arrachement.
Le système 100 est un bon amortisseur, il reçoit l’énergie de descente du balancier 5 et du flotteur 103, puis renvoie intégralement cette énergie vers le haut à la remontée. Il participe pleinement à la production d’énergie. Il est silencieux et antivibratoire.
La figure 15 montre une variante du mécanisme 1 de la figure 14, où le système amortisseur 100 comprend un réservoir 101 agencé sur le côté 51 et un réservoir 101 agencé sur le côté 52. Les deux réservoirs 101 sont reliés par un tuyau 108 afin de maintenir les fluides 102 au même niveau.
Chaque réservoir 101 rempli de fluide 102 reçoit l’énergie de descente du balancier 5 et du flotteur 103, puis renvoie intégralement cette énergie vers le haut à la remontée, de manière contrarotative.
La figure 16 montre un mécanisme 1 conforme à un deuxième mode de réalisation de l’invention. Les éléments excentriques 10 et 20 situés du côté 51 sont du type à centrifugation croisées simultanées, selon les enseignements de la demande WO2018069586. Les axes A1 et A2 sont situés respectivement au-dessus et au-dessous du plan P5 solidaire du balancier 5. Le plan P5 comprend l’axe pivot A0, ainsi qu’un centre de gravité A4 entre les axes A1 et A2.
Les figures 17 et 18 montrent deux variantes de dispositifs de transmission prévus pour équiper le mécanisme selon l’invention.
Le dispositif 96 de la figure 17 est prévu pour remplacer les roues 92 et 94 ainsi que la chaîne 95 de la figure 13. Le dispositif 96 comprend une plaque 960 et trois roues dentées 961 , 962 et 963 engrenant les unes avec les autres. La roue 961 est montée sur l’arbre 11 et centrée sur l’axe A1 , tandis que la roue 963 est centrée sur l’axe A0.
Le dispositif 97 de la figure 18 est similaire au dispositif 96, mais comporte quatre roues dentées engrenant les unes avec les autres.
La figure 21 montre un mécanisme 1 conforme à un troisième mode de réalisation de l’invention.
Le balancier 5 est constitué de deux supports 53 et 54, ainsi que deux bielles 55 et 56. Les supports 53 et 54 sont positionnés respectivement du premier côté 51 et du deuxième côté 52 de l’axe pivot A0. Chaque support 53 et 54 est constitué de plusieurs plaques parallèles. Les bielles 55 et 56 sont positionnés respectivement au-dessus et au- dessous de l’axe pivot A0. Les bielles 55 et 56 articulées sur la base 2 en leur centre et articulées sur les supports 53 et 54 à leurs extrémités opposées.
Le support 53 supporte les éléments excentriques 10 et 20, tandis que le support 54 support le système de contrepoids 6 d’équilibre.
La figure 22 montre une machine comprenant une paire de mécanismes 1 , disposés en parallèle l’un au-dessus de l’autre. Autrement dit, les mécanismes 1 sont couplés verticalement.
La base 2, non représentée dans un but de simplification, est commune aux deux mécanismes 1 superposés. De même, le système de démarrage 8 et le système de récupération d’énergie 9 sont communs aux deux mécanismes 1.
La machine comprend un système de synchronisation 70, permettant de coupler mécaniquement les deux mécanismes 1. Le système 70 comprend un bloc central 71 monté pivotant par rapport à la base 2 autour d’un axe central A7, aligné avec les axes A0 des deux mécanismes 1. Le système 70 comprend également deux bielles 72, articulés chacune entre le bloc 71 et le balancier 5 d’un mécanisme 1. La machine peut être conformée différemment de la figure 22 sans sortir du cadre de l’invention, telle que définie par les revendications.
Par exemple, la machine peut comporter à la fois des mécanismes 1 juxtaposés et superposés, disposés en parallèle. En alternative, la machine peut comporter des mécanismes 1 disposés en série, à la suite les uns des autres.
En variante non représentée, la machine (comprenant un unique mécanisme ou plusieurs mécanismes synchronisés) peut être installée sur un plateau surmontant un système convertisseur d’énergie. Ce système peut être équipé de vérins hydrauliques, de volants d’inertie et/ou d’éléments piézoélectriques.
En outre, les caractéristiques techniques des différents modes de réalisation et variantes mentionnés ci-dessus peuvent être, en totalité ou pour certaines d’entre elles, combinées entre elles.
Ainsi, la machine peut être adaptée en termes de coût, de fonctionnalités et de performance.

Claims

REVENDICATIONS
1. Mécanisme (1 ), comprenant :
- une base (2) ;
- un balancier (5) mobile autour d’un axe pivot (AO) par rapport à la base (2) ;
- deux éléments excentriques (10 ; 20) montés pivotants sur le balancier (5), sur un premier côté (51 ) de l’axe pivot (A0), incluant :
- un premier élément excentrique (10) mobile en rotation (R1 ) autour d’un premier axe (A1 ), présentant un centre de gravité (G1 ) et générant un premier moment (M1 ) de force de pesanteur (P1 ) autour du premier axe (A1 ), et
- un second élément excentrique (20) mobile en rotation (R2) autour d’un second axe (A2), présentant un centre de gravité (G2) et générant un second moment (M2) de force de pesanteur (P2) autour du second axe (A2) ;
- un système de contrepoids (6) monté sur le balancier (5), sur un deuxième côté (52) de l’axe pivot (A0) opposé au premier côté (51 ) ;
- un système de synchronisation (7) des éléments excentriques (10 ; 20) selon un mouvement de rotation (R1 ; R2) synchronisée contrarotative ;
- un système de démarrage (8) du mouvement de rotation (R1 ; R2) ; et
- un système de récupération d’énergie (9) couplé au système de synchronisation (7) ;
dans lequel :
- les axes (A1 ; A2) des éléments excentriques (10 ; 20) sont parallèles à l’axe pivot (A0) ;
- lorsque le mécanisme (1) est au repos, le balancier (5) est en équilibre stable par rapport à la base (2) ; et
- lorsque le mécanisme (1 ) est en fonctionnement, les éléments excentriques (10 ; 20) sont mobiles selon le mouvement de rotation (R1 ; R2) synchronisée contrarotative, tandis que le balancier (5) est mobile selon un mouvement oscillatoire (B1 ; B2) par rapport à la base (2).
2. Mécanisme (1 ) selon la revendication 1 , caractérisé en ce que lorsque le mécanisme (1 ) est au repos, l’axe pivot (A0) et un centre de gravité (A4) localisé entre les axes (A1 ; A2) des éléments excentriques (10 ; 20) sont tous deux situés dans un plan de référence horizontal (PO) fixe par rapport à la base (2).
3. Mécanisme (1 ) selon l’une quelconque des revendications 1 ou 2, caractérisé en ce que l’axe pivot (A0) et les axes (A1 ; A2) des éléments excentriques (10 ; 20) sont tous trois situés dans un plan (P5) solidaire du balancier (5).
4. Mécanisme (1 ) selon l’une quelconque des revendications 1 à 3, caractérisé en ce que les moments (M1 ; M2) de force de pesanteur (P1 ; P2) des éléments excentriques (10 ; 20) ont une même valeur et des sens contraires, variables selon leur position angulaire autour des axes (A1 ; A2) ;
et en ce que les éléments excentriques (10 ; 20) sont mobiles en passant par :
- une position haute (H1 ) dans laquelle les éléments excentriques (10 ; 20) sont parallèles entre eux et orientés vers le haut,
- une position latérale (C1 ) dans laquelle les éléments excentriques (10 ; 20) sont en opposition dans le plan de référence horizontal (PO) et présentent une envergure maximale (E1 ),
- une position basse (H2) dans laquelle les éléments excentriques (10 ; 20) sont parallèles entre eux et orientés vers le bas, et
- une position centrale (C2) dans laquelle les éléments excentriques (10 ; 20) se croisent dans le plan de référence horizontal (PO) et présentent une envergure minimale (E2).
5. Mécanisme (1 ) selon l’une quelconque des revendications 1 ou 2, caractérisé en ce que les axes (A1 ; A2) des éléments excentriques (10 ; 20) sont situés de part et d’autre d’un plan (P5) solidaire du balancier (5) et comprenant l’axe pivot (A0).
6. Mécanisme (1 ) selon l’une quelconque des revendications 1 à 5, caractérisé en ce que le balancier (5) est constitué de plusieurs plaques parallèles.
7. Mécanisme (1 ) selon l’une quelconque des revendications 1 à 5, caractérisé en ce que le balancier (5) est constitué de :
deux supports (53, 54) positionnés respectivement du premier côté (51 ) et du deuxième côté (52) de l’axe pivot (A0) ; et
deux bielles (55, 56) positionnés respectivement au-dessus et au-dessous de l’axe pivot (A0), articulées sur la base (2) et articulées sur les supports (53, 54).
8. Mécanisme (1 ) selon l’une quelconque des revendications 1 à 7, caractérisé en ce que le système de contrepoids (6) comprend une masse (61 ) et un trou oblong (62) pour régler la position de la masse (61 ) sur le balancier (5).
9. Mécanisme (1 ) selon l’une quelconque des revendications 1 à 8, caractérisé en ce que le mécanisme (1 ) comprend un système amortisseur (100 ; 160) conçu pour amortir le mouvement oscillatoire (B1 ; B2) du balancier (5).
10. Mécanisme (1 ) selon la revendication 9, caractérisé en ce que le système amortisseur (160) comprend un contrepoids (160) situé en partie centrale basse du balancier (5).
11. Mécanisme (1 ) selon la revendication 9, caractérisé en ce que le système amortisseur (100) comprend, sur au moins l’un des côtés (51 , 52) du balancier (5): un réservoir (101 ) recevant un fluide (102), et
un flotteur (103) connecté au balancier (5) et au moins partiellement positionné dans le réservoir (101 ).
12. Mécanisme (1 ) selon la revendication 11 , caractérisé en ce que le système amortisseur (100) comprend des réservoirs (101 ) et flotteurs (103) agencés sur les deux côtés (51 , 52) du balancier (5), chaque réservoir (101 ) rempli de fluide (102) recevant l’énergie de descente du balancier (5) et du flotteur (103), puis renvoyant cette énergie vers le haut à la remontée, de manière contrarotative.
13. Mécanisme (1 ) selon l’une quelconque des revendications 1 à 12, caractérisé en ce que la base (2) du mécanisme (1 ) est installée sur un plateau surmontant un système convertisseur d’énergie.
14. Machine, caractérisée en ce qu’elle comprend au moins un mécanisme (1 ) selon l’une quelconque des revendications précédentes 1 à 13.
15. Machine selon la revendication 14, caractérisée en ce qu’elle comprend au moins une paire de mécanismes (1 ) couplés en parallèle ou en série, incluant un premier mécanisme et un second mécanisme.
16. Procédé de mise en oeuvre d’un mécanisme (1 ) selon l’une quelconque des revendications 1 à 13, caractérisé en ce que le procédé comprend :
- une étape de démarrage, consistant à impulser aux éléments excentriques (10 ; 20) un mouvement de rotation (R1 ; R2) synchronisée contrarotative ; - une phase de fonctionnement, durant laquelle les éléments excentriques (10 ;
20) sont mobiles en rotation (R1 ; R2) synchronisée contrarotative, tandis que le balancier (5) est mobile selon un mouvement oscillatoire (B1 ; B2) par rapport à la base (2).
PCT/FR2019/051635 2019-07-02 2019-07-02 Mecanisme gravitationnel, machine et procede de mise en œuvre WO2021001604A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/FR2019/051635 WO2021001604A1 (fr) 2019-07-02 2019-07-02 Mecanisme gravitationnel, machine et procede de mise en œuvre
PCT/FR2019/052644 WO2021001605A1 (fr) 2019-07-02 2019-11-07 Mecanisme gravitationnel, machine et procede de mise en oeuvre
PCT/FR2020/050904 WO2021001608A1 (fr) 2019-07-02 2020-05-28 Mecanisme gravitationnel, machine et procede de mise en œuvre
TW109121317A TW202111207A (zh) 2019-07-02 2020-06-23 重力機構、機器及實行方法
ARP200101835A AR119304A1 (es) 2019-07-02 2020-06-29 Mecanismo gravitacional, máquina y método de implementación

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2019/051635 WO2021001604A1 (fr) 2019-07-02 2019-07-02 Mecanisme gravitationnel, machine et procede de mise en œuvre

Publications (1)

Publication Number Publication Date
WO2021001604A1 true WO2021001604A1 (fr) 2021-01-07

Family

ID=67660397

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/FR2019/051635 WO2021001604A1 (fr) 2019-07-02 2019-07-02 Mecanisme gravitationnel, machine et procede de mise en œuvre
PCT/FR2019/052644 WO2021001605A1 (fr) 2019-07-02 2019-11-07 Mecanisme gravitationnel, machine et procede de mise en oeuvre

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/052644 WO2021001605A1 (fr) 2019-07-02 2019-11-07 Mecanisme gravitationnel, machine et procede de mise en oeuvre

Country Status (2)

Country Link
AR (1) AR119304A1 (fr)
WO (2) WO2021001604A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR610944A (fr) * 1925-12-19 1926-09-16 Perfectionnements apportés aux systèmes moteurs en tous genres
US20090318256A1 (en) * 2006-09-29 2009-12-24 Geoffrey William Good Leviny Force Amplification Method and Apparatus by the Harnessing of Centrifugal Force
US20160333864A1 (en) * 2015-05-11 2016-11-17 Jerry Lee Hendricks Power amplification and production device
WO2017064379A1 (fr) 2015-12-30 2017-04-20 Maurice Granger Mecanisme equilibre pour economie d'energie, machine tournante et procede de mise en oeuvre
WO2018069586A1 (fr) 2017-03-28 2018-04-19 Maurice Granger Mecanisme oscillatoire a centrifugations croisees simultanees, machine et procede de mise en oeuvre

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR610944A (fr) * 1925-12-19 1926-09-16 Perfectionnements apportés aux systèmes moteurs en tous genres
US20090318256A1 (en) * 2006-09-29 2009-12-24 Geoffrey William Good Leviny Force Amplification Method and Apparatus by the Harnessing of Centrifugal Force
US20160333864A1 (en) * 2015-05-11 2016-11-17 Jerry Lee Hendricks Power amplification and production device
WO2017064379A1 (fr) 2015-12-30 2017-04-20 Maurice Granger Mecanisme equilibre pour economie d'energie, machine tournante et procede de mise en oeuvre
WO2018069586A1 (fr) 2017-03-28 2018-04-19 Maurice Granger Mecanisme oscillatoire a centrifugations croisees simultanees, machine et procede de mise en oeuvre

Also Published As

Publication number Publication date
WO2021001605A1 (fr) 2021-01-07
AR119304A1 (es) 2021-12-09

Similar Documents

Publication Publication Date Title
WO2021001608A1 (fr) Mecanisme gravitationnel, machine et procede de mise en œuvre
EP3331654B1 (fr) Mecanisme oscillatoire a centrifugations croisees simultanees, machine et procede de mise en oeuvre
EP3177831B1 (fr) Mecanisme equilibre pour economie d'energie, machine tournante et procede de mise en oeuvre
FR2895368A1 (fr) Atterrisseur de giravion a patins et giravion comportant un tel atterrisseur
EP2655877B1 (fr) Éolienne en offshore flottant comportant un système de stabilisation actif en inclinaison de la nacelle
CA2785494C (fr) Systeme pendulaire de transport en milieu aquatique d'un ouvrage civil
FR3011044A1 (fr) Dispositif de rotation gravitaire
WO2021001604A1 (fr) Mecanisme gravitationnel, machine et procede de mise en œuvre
EP2147779B1 (fr) Presse vibrante pour la production d'éléments de construction et procédé de production d'éléments de construction
EP2565439A1 (fr) Systeme de generation d'energie a partir du mouvement des vagues marines
FR2956130A1 (fr) Eolienne montee sur un massif d'ancrage.
FR3021291A1 (fr) Centrale houlomotrice equipee de plusieurs unites houlomotrices alignees
FR3085728A1 (fr) Dispositif pour convertir de l'energie a partir de masses rotatives
BE630659A (fr)
EP4296540A2 (fr) Système polyvalent équipé d'une paire de mécanismes à éléments excentrés mobiles en rotation
BE1020912A5 (fr) Dispositif d'assistance au basculement de cellules faisant partie d'un filtre rotatif.
FR2935345A1 (fr) Installation portuaire pour le parcage des navires au port
FR2486165A1 (fr) Machine utilisant la houle pour emmagasiner l'energie
FR2857424A1 (fr) Dispositif de transmission de force et utilisation
CA2626387A1 (fr) Dispositif de compaction par vibrotassage
BE638403A (fr)
CH191290A (fr) Dispositif d'amortissement des vibrations.
BE424991A (fr)
BE374540A (fr)
EP0544580A1 (fr) Centrifugeuse à moteurs hydrauliques, notamment pour l'entraînement de pilotes d'aéronefs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19755406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19755406

Country of ref document: EP

Kind code of ref document: A1