WO2021000699A1 - Oled发光组件、蒸镀方法、装置及控制方法 - Google Patents

Oled发光组件、蒸镀方法、装置及控制方法 Download PDF

Info

Publication number
WO2021000699A1
WO2021000699A1 PCT/CN2020/094829 CN2020094829W WO2021000699A1 WO 2021000699 A1 WO2021000699 A1 WO 2021000699A1 CN 2020094829 W CN2020094829 W CN 2020094829W WO 2021000699 A1 WO2021000699 A1 WO 2021000699A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
layer
electrode layer
transport layer
Prior art date
Application number
PCT/CN2020/094829
Other languages
English (en)
French (fr)
Inventor
王江南
翟雪晶
史晓波
丁磊
陶培培
梁舰
唐建新
Original Assignee
江苏集萃有机光电技术研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏集萃有机光电技术研究所有限公司 filed Critical 江苏集萃有机光电技术研究所有限公司
Publication of WO2021000699A1 publication Critical patent/WO2021000699A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • This application relates to the field of semiconductor technology, for example, to an organic light-emitting diode (OLED) light-emitting assembly, evaporation method, device, and control method.
  • OLED organic light-emitting diode
  • OLEDs are widely used in fields such as displays.
  • the diversity of display colors of OLED panels prepared by OLED devices determines the competitiveness of the market.
  • the driving circuit is relatively complicated.
  • the individual electrodes are relatively small, the alignment accuracy of the light-emitting layer and the electrode mask is very high, and it is very difficult to achieve mass production.
  • the application provides an OLED light-emitting component, an evaporation method, a device, and a control method.
  • the present application provides an OLED light emitting assembly, including a first electrode layer, a second electrode layer, and a plurality of first light emitting units and a plurality of second light emitting units arranged between the first electrode layer and the second electrode layer.
  • the first light-emitting unit includes a first hole transport layer, a first light-emitting layer, and a first electron transport layer sequentially disposed on the first electrode layer;
  • the second light-emitting unit includes a second electron transport layer, a second light-emitting layer, and a second hole transport layer that are sequentially disposed on the first electrode layer;
  • the first light-emitting layer and the second light-emitting layer have different light-emitting colors.
  • the present application provides an evaporation method of an OLED light-emitting component, which is used for evaporation to form the OLED light-emitting component provided in any embodiment of the present application, and the method includes:
  • the second hole transport layer is evaporated to the side of the second light-emitting layer away from the second electron transport layer through the second mask, where the first mask and the second mask
  • the shapes of the plates are complementary or partially overlapped
  • the second electrode layer is evaporated to a side of the first electron transport layer and the second hole transport layer away from the first electrode layer through a third mask.
  • the present application provides an OLED light emitting device, including a driving circuit and the OLED light emitting component provided by any embodiment of the present application;
  • the driving circuit is electrically connected to the first electrode layer and the second electrode layer of the OLED light-emitting component, and the driving circuit is configured to output a driving current alternating in positive and negative directions to drive the OLED light-emitting component.
  • the present application provides a method for controlling an OLED light-emitting component, which is used to control the OLED light-emitting component provided in any embodiment of this application, and the method includes:
  • the current magnitude of the alternating current in the positive and negative directions and/or the duty cycle in the positive and negative directions are adjusted, so that the light-emitting color of the OLED light-emitting component changes according to the preset rule.
  • FIG. 1 is a schematic diagram of the structure of an OLED light-emitting component provided by an embodiment of the application;
  • FIG. 2 is a schematic diagram of an exploded structure of an OLED light-emitting component provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of a partial structure of an OLED light-emitting component provided by an embodiment of the application;
  • FIG. 4 is a top view of a partial structure of another OLED light-emitting component provided by an embodiment of the application;
  • FIG. 5 is a schematic diagram of the structure of a first light-emitting layer provided by an embodiment of the application.
  • FIG. 6 is a top view of a partial structure of another OLED light-emitting component provided by an embodiment of the application.
  • FIG. 7 is a front view of a partial structure of an OLED light-emitting component provided by an embodiment of the application.
  • FIG. 8 is a top view of a partial structure of another OLED light-emitting component provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of a partial structure of another OLED light-emitting component provided by an embodiment of the application.
  • FIG. 10 is a schematic block diagram of a step flow of a vapor deposition method of an OLED light-emitting component provided by an embodiment of the application;
  • FIG. 11 is a schematic block diagram of the structure of an OLED light-emitting device provided by an embodiment of the application.
  • FIG. 12 is a circuit schematic diagram of a driving circuit provided by an embodiment of the application.
  • Icon 1-OLED light-emitting component; 10-first electrode layer; 20-second electrode layer; 30-first light-emitting unit; 301-first hole transport layer; 302-first light-emitting layer; 3021-green light emission Layer; 3022-red sub-light-emitting layer; 303-first electron transport layer; 304-green sub-light-emitting unit; 305-red sub-light-emitting unit; 40-second light-emitting unit; 401-second electron transport layer; 402-second Light-emitting layer; 403-second hole transport layer; 501-energy level matching layer; 2-drive circuit; 3-controller.
  • connection can be a fixed connection, a detachable connection, or an integral Connection; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication between two components.
  • connection can be a fixed connection, a detachable connection, or an integral Connection; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication between two components.
  • FIG. 1 is a schematic structural diagram of an OLED light-emitting component provided by an embodiment of the application
  • FIG. 2 is an exploded structure diagram of an OLED light-emitting component provided by an embodiment of the application.
  • the OLED light-emitting assembly 1 includes a first electrode layer 10, a second electrode layer 20, and a plurality of first light-emitting units 30 and a plurality of first light-emitting units arranged in parallel between the first electrode layer 10 and the second electrode layer 20.
  • a plurality of second light emitting units 40 is provided.
  • the first electrode layer 10 can be made of indium tin oxide (ITO for short), and the second electrode layer 20 can be made of 100 nm aluminum.
  • ITO indium tin oxide
  • the first light emitting unit 30 includes a first hole transport layer 301, a first light emitting layer 302 and a first electron transport layer 303 which are sequentially disposed on the first electrode layer 10.
  • the second light-emitting unit 40 includes a second electron transport layer 401, a second light-emitting layer 402, and a second hole transport layer 403 sequentially disposed on the first electrode layer 10.
  • the first light-emitting layer 302 and the second light-emitting layer 402 have different light-emitting colors.
  • the first electron transport layer 303 and the second electron transport layer 401 are configured to transport electrons
  • the first hole transport layer 301 and the second hole transport layer 403 are configured to transport holes to
  • the first light-emitting unit 30 and the second light-emitting unit 40 form organic light-emitting diodes with opposite current conduction directions.
  • the first light emitting unit 30 may be arranged on the first electrode layer 10 in the order of the first hole transport layer 301, the first light emitting layer 302, and the first electron transport layer 303, so that the first light emitting unit 30
  • the first electron transport layer 303 is connected to the second electrode layer 20, and the first hole transport layer 301 of the first light-emitting unit 30 is connected to the first electrode layer 10.
  • the second light-emitting unit 40 may be arranged on the first electrode layer 10 in the order of the second electron transport layer 401, the second light-emitting layer 402, and the second hole transport layer 403, so that the second hole of the second light-emitting unit 40
  • the transport layer 403 is connected to the second electrode layer 20, and the second electron transport layer 401 of the second light-emitting unit 40 is connected to the first electrode layer 10.
  • the first electrode layer 10 serves as an anode
  • the second electrode layer 20 serves as a cathode
  • the first light emitting unit 30 is activated, and the first light emitting layer 302 of the first light emitting unit 30 emits light of a corresponding color.
  • the second light emitting unit 40 When the first electrode layer 10 serves as a cathode and the second electrode layer 20 serves as an anode, the second light emitting unit 40 is activated, and the second light emitting layer 402 of the second light emitting unit 40 emits light of a corresponding color.
  • the first light emitting unit 30 can also be arranged on the first electrode layer 10 in the order of the first electron transport layer 303, the first light emitting layer 302, and the first hole transport layer 301, and the second light emitting unit 30
  • the unit 40 is arranged on the first electrode layer 10 in the order of the second hole transport layer 403, the second light emitting layer 402 and the second electron transport layer 401, as long as the first light emitting unit 30 and the second light emitting unit 40 are relative to the first
  • the conduction direction of the electrode layer 10 can be reversed, so that the first light-emitting unit 30 and the second light-emitting unit 40 are respectively lit by the power supply, and the OLED light-emitting assembly 1 presents the first light-emitting unit 30 and the second light-emitting unit. 40 The color and brightness of the mixed light.
  • the application provides an OLED light emitting component.
  • the OLED light emitting assembly includes a first electrode layer, a second electrode layer, and a plurality of first light emitting units and a plurality of second light emitting units arranged between the first electrode layer and the second electrode layer.
  • the first light-emitting unit includes a first hole transport layer, a first light-emitting layer, and a first electron transport layer that are sequentially disposed on the first electrode layer.
  • the second light-emitting unit includes a second hole transport layer, a second light-emitting layer, and a second electron transport layer sequentially disposed on the first electrode layer.
  • the first light-emitting layer and the second light-emitting layer have different light-emitting colors.
  • the OLED light-emitting assembly provided in the present application, by arranging the first light-emitting unit and the second light-emitting unit opposite to the first electron transport layer, the light-emitting color of the OLED light-emitting assembly is changed based on a simple structure.
  • FIG. 4 is a top view of a partial structure of another OLED light-emitting component provided by an embodiment of the application.
  • the first light emitting layer 302 includes a yellow light emitting layer
  • the second light emitting layer 402 includes a blue light emitting layer.
  • the yellow light-emitting layer included in the first light-emitting layer 302 and the blue light-emitting layer included in the second light-emitting layer 402 can be arranged side by side, so that the first light-emitting unit 30 and the second light-emitting unit 40 combine to emit light.
  • Set the light of the desired color (Y in this embodiment can represent the yellow light-emitting layer, and B can represent the blue light-emitting layer).
  • the yellow light-emitting layer may be made of a material that emits yellow light after being energized
  • the blue light-emitting layer is made of a material that emits blue light after being energized.
  • FIG. 5 is a schematic structural diagram of a first light-emitting layer provided by an embodiment of this application
  • FIG. 6 is a partial structural top view of another OLED light-emitting component provided by an embodiment of this application.
  • the first light emitting layer 302 includes a green sub light emitting layer 3021 and a red sub light emitting layer 3022.
  • the first light emitting layer 302 may be composed of the green sub light emitting layer 3021 and the red sub light emitting layer 3022. Therefore, when the first light emitting unit 30 is turned on, the green sub light emitting layer 3021 and the red sub light emitting layer 3022 It can be combined to emit yellow light, and the OLED light-emitting component 1 emits yellow light.
  • the second light emitting layer 402 may include a blue light emitting layer. When the second light emitting unit 40 is turned on, the blue light emitting layer emits blue light, and the OLED light emitting component 1 emits blue light at this time.
  • the OLED light-emitting assembly 1 can be realized by switching the retention time of the first electrode layer 10 as the anode, the second electrode layer 20 as the cathode, the first electrode layer 10 as the cathode, and the second electrode layer 20 as the anode. The color of the light is changed.
  • the green sub-light-emitting layer 3021 and the red sub-light-emitting layer 3022 are arranged in the first light-emitting layer of the first light-emitting unit 30.
  • the green sub-light-emitting layer 3021 covers the red sub-light-emitting layer 3022, or it can be red.
  • the sub-emissive layer 3022 covers the green sub-emissive layer 3021, and the green sub-emissive layer 3021 and the red sub-emissive layer 3022 can emit yellow light through color superposition.
  • the yellow light obtained by the first light emitting unit 30 according to the superposition of the green sub light emitting layer 3021 and the red sub light emitting layer 3022 (R in this embodiment may represent the red sub light emitting layer 3022, and G may represent the green sub light emitting layer 3021) and the The combination of the blue light emitted by the two light-emitting units 40 emits light of a preset desired color.
  • FIG. 7 is a front view of a partial structure of an OLED light-emitting device according to an embodiment of the application
  • FIG. 8 is a top view of a partial structure of another OLED light-emitting device according to an embodiment of the application.
  • the first light-emitting unit 30 and/or the second light-emitting unit 40 may include multiple groups of sub-light-emitting units with different colors, and the multiple groups of sub-light-emitting units are arranged in parallel on the first electrode layer 10 and the second electrode. Between layer 20.
  • the first light emitting unit 30 may include a green sub light emitting unit 304 and a red sub light emitting unit 305
  • the second light emitting unit 40 may include a blue light emitting unit
  • the green sub light emitting unit 304 and the red sub light emitting unit 305 The blue light-emitting unit and the blue light-emitting unit are arranged in parallel between the first electrode layer 10 and the second electrode layer 20.
  • the multiple sub-light-emitting units included in the first light-emitting unit 30 are arranged side by side, and the multiple sub-light-emitting units are relatively independent.
  • the first light-emitting unit 30 may include a blue light-emitting unit and a green sub-light-emitting unit 304
  • the second light-emitting unit 40 may include a red sub-light-emitting unit 305
  • the blue The light emitting unit, the green sub light emitting unit 304 and the red sub light emitting unit 305 are arranged in parallel between the first electrode layer 10 and the second electrode layer 20.
  • the first light-emitting unit 30 and the second light-emitting unit 40 may also include multiple groups of different sub-light-emitting units, and multiple sub-light-emitting units may be arranged in parallel on the first electrode layer 10 and the second light-emitting unit. Between the electrode layers 20.
  • the first light-emitting unit 30 and the second light-emitting unit 40 are arranged between the first electrode layer 10 and the second electrode layer 20 at intervals.
  • the first light-emitting unit 30 and the second light-emitting unit 40 may be spaced apart from each other to achieve the effect of uniform light-emitting color change.
  • the first light-emitting unit 30 and the second light-emitting unit 40 may be arranged at intervals in a grid pattern like a chess board.
  • the spacing arrangement of the first light-emitting unit 30 and the second light-emitting unit 40 may also be a stripe-shaped interval arrangement, a ring-shaped interval arrangement, etc., which is not limited in this embodiment.
  • FIG. 9 is a partial structural diagram of another OLED light-emitting component provided by an embodiment of the application.
  • the OLED light-emitting assembly 1 further includes an energy level matching layer 501 disposed between the second hole transport layer 403 and the second electrode layer 20, and is configured to improve Hole injection efficiency.
  • the first electrode layer 10 may be a transparent electrode (for example, ITO), and the second electrode layer 20 may be a metal electrode (for example, 100 nm Al).
  • the second electrode layer 20 is opaque, so An energy level matching layer 501 can be provided between the second hole transport layer 403 and the second electrode layer 20, which can improve the hole injection efficiency of the second hole transport layer 403.
  • the energy level matching layer 501 can be made of molybdenum trioxide. In other implementations of this embodiment, the energy level matching layer 501 can also be made of materials such as tungsten trioxide and rhenium trioxide.
  • FIG. 10 is a schematic block diagram of a step flow of a vapor deposition method of an OLED light-emitting component provided by an embodiment of the application.
  • the evaporation method of the OLED light-emitting assembly 1 includes steps S2010 to S2070.
  • step S2010 the first hole transport layer 301 is evaporated to one side of the first electrode layer 10 through a first mask.
  • step S2020 the first light-emitting layer 302 is vapor-deposited to a side of the first hole transport layer 301 away from the first electrode layer 10 through the first mask.
  • step S2030 the first electron transport layer 303 is evaporated to the side of the first light-emitting layer 302 away from the first hole transport layer 301 through the first mask.
  • step S2040 the second electron transport layer 401 is evaporated to one side of the first electrode layer 10 through a second mask.
  • step S2050 the second light-emitting layer 402 is vapor-deposited to the side of the second electron transport layer 401 away from the first electrode layer 10 through the second mask.
  • step S2060 the second hole transport layer 403 is evaporated to the side of the second light-emitting layer 402 away from the second electron transport layer 401 through the second mask, wherein the first mask
  • the shape of the plate and the second mask plate are complementary or partially overlapped.
  • the shapes of the first mask and the second mask may be complementary, and the openings of the first mask and the second mask may also be slightly larger to allow the passage through the first mask
  • step S2070 the second electrode layer 20 is vapor-deposited to the side of the first electron transport layer 303 and the second hole transport layer 403 away from the first electrode layer 10 through a third mask.
  • the opening of the third mask is smaller than the opening of the first mask and the opening of the second mask.
  • the opening of the third mask used to evaporate the second electrode layer 20 onto the first electron transport layer 303 and the second hole transport layer 403 may be smaller than that of the first mask.
  • the opening and the opening of the second mask In the case of vapor deposition of the second electrode layer 20, if the opening of the third mask is too large, the second electrode layer 20 will completely cover the first electron transport layer 303 and the second hole transport layer 403 and be evaporated to the first An electrode layer 10, at this time, the second electrode layer 20 is in contact with the first electrode layer 10, which will cause a short circuit. Therefore, the opening of the third mask is smaller than the opening of the first mask and the opening of the second mask, so that the second electrode layer 20 can be vapor-deposited to the first electron transport layer 303 through the third mask. On the second hole transport layer 403, the evaporation of the second electrode layer 20 onto the first electrode layer 10 will not cause a short circuit.
  • FIG. 11 is a schematic block diagram of a structure of an OLED light emitting device provided by an embodiment of the application.
  • the OLED light-emitting device includes a driving circuit 2 and the aforementioned OLED light-emitting component 1.
  • the driving circuit 2 is electrically connected to the first electrode layer 10 and the second electrode layer 20 of the OLED light-emitting component 1, and the driving circuit 2 is configured to output a driving current alternating in positive and negative directions to drive the OLED light-emitting component 1.
  • the OLED light-emitting device further includes a controller 3, which is electrically connected to the drive circuit 2, and is configured to adjust the magnitude and/or amount of the drive current in the positive and negative directions, respectively. Empty ratio.
  • FIG. 12 is a circuit schematic diagram of the driving circuit provided by an embodiment of the application.
  • the controller 3 Microcontroller Unit, MCU for short
  • the driving circuit 2 can be divided into two types: driving and commutation.
  • the circuit of the driving part can be driven by current in this embodiment (for example, PT4115, LM3410), and the circuit of the commutation part can be realized by a circuit composed of a field effect transistor (Metal-Oxide-Semiconductor Field-Effect Transistor, MOS) .
  • MOS Metal-Oxide-Semiconductor Field-Effect Transistor
  • the controller 3 can control the driving current of the driving circuit 2 to output alternate directions to realize the state switching of the first electrode layer 10 and the second electrode layer 20 as the anode and the cathode in the OLED light-emitting assembly 1, and by controlling the driving current to switch
  • the size and/or duty cycle in the positive and negative directions are used to control the color of the OLED light emitting component 1 to emit light.
  • the controller 3 may be a 51 single-chip microcomputer.
  • other microcontrollers may also be used, such as STM8 microcontrollers (STMicroelectronics-8) for interacting with users.
  • FIG. 12 also includes other auxiliary components and connections that make the drive circuit 2 operate normally. These auxiliary components and connections are set to ensure the normal operation of the circuit. The use of these auxiliary components belongs to the industry The general circuit application habits will not be repeated here.
  • the embodiment of the present application provides a method for controlling the OLED light-emitting assembly 1 for controlling the aforementioned OLED light-emitting assembly 1.
  • the method includes: inputting an alternating current to the first electrode layer 10 and the second electrode layer 20;
  • a preset rule is to adjust the magnitude of the alternating current in the positive and negative directions and/or the duty cycle in the positive and negative directions, so that the light-emitting color of the OLED light-emitting component 1 changes according to the preset rule.
  • the type of the alternating current is a square wave-like type with currents of equal magnitude and opposite directions.
  • the duty cycle of the current passing through the first light-emitting unit 30 can be increased, and/or the duty cycle of the current passing through the second light-emitting unit 40 can be reduced to reduce the light emission of the OLED light-emitting assembly 1
  • the color temperature can also reduce the duty cycle of the current passing through the first light-emitting unit 30 and/or increase the duty cycle of the current passing through the second light-emitting unit 40 to increase the color temperature of the light of the OLED light-emitting assembly 1 .
  • the ratio between the current level of the first light-emitting unit 30 and the current level through the second light-emitting unit 40 can also be increased or decreased, so as to reduce or increase the color temperature after mixing.
  • the frequency of the alternating current output by the driving circuit 2 may be greater than 3125 Hz to ensure the lighting health of the OLED light-emitting assembly 1.
  • the use of the OLED light-emitting component, evaporation method, device and control method provided in this application can realize the light-emitting color change of the OLED light-emitting component through a simple structure, which improves the need for complex circuit design in the related technology to realize OLED The problem of discoloration of the light-emitting components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED发光组件(1)、蒸镀方法、发光装置及控制方法。OLED发光组件(1)包括第一电极层(10)、第二电极层(20)以及设置在第一电极层(10)和第二电极层(20)之间的多个第一发光单元(30)和多个第二发光单元(40)。第一发光单元(30)包括依次设置在第一电极层(10)上的第一空穴传输层(301)、第一发光层(302)和第一电子传输层(303)。第二发光单元(40)包括依次设置在第一电极层(10)上的第二空穴传输层(403)、第二发光层(402)和第二电子传输层(401)。所述第一发光层(302)与所述第二发光层(402)的发光颜色不同。

Description

OLED发光组件、蒸镀方法、装置及控制方法
本申请要求在2019年07月03日提交中国专利局、申请号为201910596288.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体技术领域,例如,涉及一种有机发光二极管(Organic Light-Emitting Diode,OLED)发光组件、蒸镀方法、装置及控制方法。
背景技术
随着OLED的高速发展,OLED在显示器等领域被大量的使用。由OLED器件制备而成的OLED面板的显示颜色的多样性,决定了市场的竞争力。
在利用点阵和多个不同颜色的OLED器件制备可变色OLED面板后,由于可变色OLED面板具有很多个独立的发光区,驱动电路较为复杂。同时由于单独的电极较细小,对发光层与电极掩模版的对位精度要求很高,想要做到大量生产十分的困难。
如何提供一种结构简单的、可以实现OLED面板发光颜色改变的设计方案,是需要解决的问题。
发明内容
本申请提供一种OLED发光组件、蒸镀方法、装置及控制方法。
本申请提供一种OLED发光组件,包括第一电极层、第二电极层,以及设置在所述第一电极层和所述第二电极层之间的多个第一发光单元和多个第二发光单元;
所述第一发光单元包括依次设置在所述第一电极层上的第一空穴传输层、第一发光层和第一电子传输层;
所述第二发光单元包括依次设置在所述第一电极层上的第二电子传输层、第二发光层和第二空穴传输层;
所述第一发光层与所述第二发光层的发光颜色不同。
本申请提供一种OLED发光组件的蒸镀方法,用于蒸镀形成本申请任意实施例提供的OLED发光组件,所述方法包括:
通过第一掩膜版将第一空穴传输层蒸镀至所述第一电极层的一侧;
通过所述第一掩膜版将第一发光层蒸镀至所述第一空穴传输层远离所述第一电极层的一侧;
通过所述第一掩膜版将第一电子传输层蒸镀至所述第一发光层远离所述第一空穴传输层的一侧;
通过第二掩膜版将第二电子传输层蒸镀至所述第一电极层的一侧;
通过所述第二掩膜版将第二光层蒸镀至所述第二电子传输层远离所述第一电极层的一侧;
通过所述第二掩膜版将第二空穴传输层蒸镀至所述第二发光层远离所述第二电子传输层的一侧,其中,所述第一掩膜版与第二掩膜版的形状互补或部分重叠;
通过第三掩膜版将第二电极层蒸镀至所述第一电子传输层和第二空穴传输层远离所述第一电极层的一侧。
本申请提供一种OLED发光装置,包括驱动电路及本申请任意实施例提供的OLED发光组件;
所述驱动电路与所述OLED发光组件的第一电极层及第二电极层电连接,所述驱动电路设置为输出正负方向交替变化的驱动电流以驱动所述OLED发光组件。
本申请提供一种OLED发光组件的控制方法,用于控制本申请任意实施例提供的OLED发光组件,所述方法包括:
向所述第一电极层和第二电极层输入交变电流;
根据预设规则,调整所述交变电流分别在正负方向上的电流大小和/或在正负方向上的占空比,以使所述OLED发光组件的发光颜色根据预设规则改变。
附图说明
为了说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。以下附图仅示出了本申请的一些实施例,因此不应被看作是对范围的限定。
图1为本申请实施例提供的OLED发光组件的结构示意图;
图2为本申请实施例提供的OLED发光组件的爆炸结构示意图;
图3为本申请实施例提供的OLED发光组件的局部结构示意图;
图4为本申请实施例提供的另一OLED发光组件的局部结构俯视图;
图5为本申请实施例提供的第一发光层的结构示意图;
图6为本申请实施例提供的另一OLED发光组件的局部结构俯视图;
图7为本申请实施例提供的一OLED发光组件的局部结构的正视图;
图8为本申请实施例提供的另一OLED发光组件的局部结构俯视图;
图9为本申请实施例提供的另一OLED发光组件的局部结构示意图;
图10为本申请实施例提供的OLED发光组件的蒸镀方法的步骤流程示意框图;
图11为本申请实施例提供的OLED发光装置的结构示意框图;
图12为本申请实施例提供的驱动电路的电路原理图。
图标:1-OLED发光组件;10-第一电极层;20-第二电极层;30-第一发光单元;301-第一空穴传输层;302-第一发光层;3021-绿色子发光层;3022-红色子发光层;303-第一电子传输层;304-绿色子发光单元;305-红色子发光单元;40-第二发光单元;401-第二电子传输层;402-第二发光层;403-第二空穴传输层;501-能级匹配层;2-驱动电路;3-控制器。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以多种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。
相似的标号和字母在下面的附图中表示类似项,因此,一旦一项特征在一个附图中被定义,在随后的附图中不需要对此项特征进行定义和解释。
此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请的描述中,除非另有明确的规定和限定,“设置”、“连接”等术语应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接连接,也可以通过中间媒介间接连接,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的含义。
下面结合附图,对本申请的实施方式进行说明。
请结合参照图1及图2,图1为本申请实施例提供的OLED发光组件的结构示意图,图2为本申请实施例提供的OLED发光组件的爆炸结构示意图。
在本实施例中,OLED发光组件1包括第一电极层10、第二电极层20以及并列设置在所述第一电极层10和第二电极层20之间的多个第一发光单元30和多个第二发光单元40。
在本实施例中,第一电极层10可以采用氧化铟锡(简称ITO)制作,第二电极层20可以采用100nm的铝制作。
请结合参照图3,图3为本申请实施例提供的OLED发光组件的局部结构示意图。所述第一发光单元30包括依次设置在所述第一电极层10上的第一空穴传输层301、第一发光层302和第一电子传输层303。
所述第二发光单元40包括依次设置在所述第一电极层10上的第二电子传输层401、第二发光层402和第二空穴传输层403。
所述第一发光层302与所述第二发光层402的发光颜色不同。
在本实施例中,第一电子传输层303和第二电子传输层401设置为传输电子,所述第一空穴传输层301和所述第二空穴传输层403设置为传输空穴,以使第一发光单元30和第二发光单元40形成电流导通方向相反的有机发光二极管。
在一实施例中,第一发光单元30可以按照第一空穴传输层301、第一发光层302和第一电子传输层303的顺序设置在第一电极层10上,使得第一发光单元30的第一电子传输层303与第二电极层20连接,第一发光单元30的第一空穴传输层301与第一电极层10连接。而第二发光单元40可以按照第二电子传输层401、第二发光层402和第二空穴传输层403的顺序设置在第一电极层10上,使得第二发光单元40的第二空穴传输层403与第二电极层20连接,第二 发光单元40的第二电子传输层401与第一电极层10连接。在第一电极层10作为阳极,第二电极层20作为阴极的情况下,第一发光单元30被激活,第一发光单元30的第一发光层302发出对应颜色的光。在第一电极层10作为阴极,第二电极层20作为阳极的情况下,第二发光单元40被激活,第二发光单元40的第二发光层402发出对应颜色的光。在其他实施例中,也可以使第一发光单元30按照第一电子传输层303、第一发光层302和第一空穴传输层301的顺序设置在第一电极层10上,同时第二发光单元40按照第二空穴传输层403、第二发光层402和第二电子传输层401的顺序设置在第一电极层10上,只要满足第一发光单元30和第二发光单元40相对第一电极层10的导通方向相反即可,以使第一发光单元30和第二发光单元40在电源的驱动下分别点亮,所述OLED发光组件1呈现第一发光单元30和第二发光单元40发出的光混合后的颜色和亮度。
本申请提供一种OLED发光组件。OLED发光组件包括第一电极层、第二电极层以及设置在第一电极层和第二电极层之间的多个第一发光单元和多个第二发光单元。第一发光单元包括依次设置在第一电极层上的第一空穴传输层、第一发光层和第一电子传输层。第二发光单元包括依次设置在第一电极层上的第二空穴传输层、第二发光层和第二电子传输层。所述第一发光层与所述第二发光层的发光颜色不同。采用本申请提供的OLED发光组件,通过将第一发光单元和第二发光单元相对第一电子传输层反向设置,基于简单的结构实现了OLED发光组件发光颜色的改变。
请参照图4,图4为本申请实施例提供的另一OLED发光组件的局部结构俯视图。所述第一发光层302包括黄色发光层,所述第二发光层402包括蓝色发光层。
在本实施例中,可以通过将第一发光层302包括的黄色发光层和第二发光层402包括的蓝色发光层并列设置,以使第一发光单元30和第二发光单元40组合发出预设需求颜色的光(本实施例中的Y可以代表黄色发光层、B可以代表蓝色发光层)。在一实施例中,黄色发光层可以由通电后发出黄色的光的材料制作,蓝色发光层由通电后发出蓝色的光的材料制作。
请结合参照图5和图6,图5为本申请实施例提供的第一发光层的结构示意图,图6为本申请实施例提供的另一OLED发光组件的局部结构俯视图。所述第一发光层302包括绿色子发光层3021和红色子发光层3022。
在本实施例中,第一发光层302可以由绿色子发光层3021和红色子发光层3022组成,因此在第一发光单元30导通的情况下,绿色子发光层3021和红色子发光层3022可以组合发出黄色的光,OLED发光组件1发出黄光。第二发光层402可以包括蓝色发光层,在第二发光单元40导通的情况下,蓝色发光层发出蓝色的光,此时OLED发光组件1发出蓝光。在前述状况下,在第一电极层10作为阳极、第二电极层20作为阴极的状态保持时间更长的情况下,OLED发光组件1发出的光的颜色偏暖,在第一电极层10作为阴极、第二电极层20作为阳极的状态保持时间更长的情况下,OLED发光组件1发出的光的颜色偏冷。因此,可以通过切换第一电极层10作为阳极、第二电极层20作为阴极和第一电极层10作为阴极、第二电极层20作为阳极这两种状态的保持时间,来实现OLED发光组件1的发光颜色的改变。
在本实施例中,在第一发光单元30的第一发光层中设置绿色子发光层3021和红色子发光层3022的方式可以是绿色子发光层3021覆盖红色子发光层3022,也可以是红色子发光层3022覆盖绿色子发光层3021,绿色子发光层3021和红色子发光层3022通过颜色叠加可以发出黄色的光。由第一发光单元30根据绿 色子发光层3021和红色子发光层3022叠加获取的黄色的光(本实施例中的R可以代表红色子发光层3022,G可以代表绿色子发光层3021)和第二发光单元40发出的蓝色的光组合发出预设需求颜色的光。
请结合参照图7及图8,图7为本申请实施例提供的一OLED发光组件的局部结构的正视图,图8为本申请实施例提供的另一OLED发光组件的局部结构俯视图。在本实施例中所述第一发光单元30和/或第二发光单元40可以包括多组颜色互不相同的子发光单元,多组子发光单元并列设置在第一电极层10和第二电极层20之间。例如,所述第一发光单元30可以包括绿色子发光单元304及红色子发光单元305,所述第二发光单元40可以包括蓝色发光单元,所述绿色子发光单元304、红色子发光单元305及蓝色发光单元并列设置在第一电极层10和第二电极层20之间。在一实施例中,第一发光单元30包括的多个子发光单元之间是并列设置,多个子发光单元之间相对独立。
在本实施例中的其他实施方式中,所述第一发光单元30可以包括蓝色发光单元及绿色子发光单元304,所述第二发光单元40可以包括红色子发光单元305,所述蓝色发光单元、绿色子发光单元304及红色子发光单元305并列设置在第一电极层10和第二电极层20之间。在本申请提供的其他实施例中,第一发光单元30和第二发光单元40还可以分别包括多组不同的子发光单元,多个子发光单元都可以并列设置在第一电极层10和第二电极层20之间。
在一实施例中,所述第一发光单元30和第二发光单元40间隔设置在所述第一电极层10和第二电极层20之间。
在本实施例中,第一发光单元30和第二发光单元40相互之间可以间隔设置,以达到发光颜色变化均匀的效果。例如,如图2中所示,第一发光单元30和第二发光单元40之间间隔排列的方式可以如国际象棋棋盘一样的网格式间隔 排列。在本实施例的其他实施方式中,第一发光单元30和第二发光单元40的间隔排列方式也可以是呈条状间隔排列、环状间隔排列等,本实施例对此不作限制。
请参照图9,图9为本申请实施例提供的另一OLED发光组件的局部结构示意图。在一实施例中,所述OLED发光组件1还包括能级匹配层501,所述能级匹配层501设置在所述第二空穴传输层403和第二电极层20之间,设置为提高空穴的注入效率。
在本实施例中,所述第一电极层10可以是透明电极(例如ITO),第二电极层20可以为金属电极(例如100nm的Al),此时第二电极层20为不透明的,故可以设置一能级匹配层501在所述第二空穴传输层403和第二电极层20之间,可以提高所述第二空穴传输层403的空穴的注入效率。在本实施例中,能级匹配层501可以由三氧化钼构成,在本实施例的其他实施方式中,能级匹配层501还可以由三氧化钨和三氧化铼等材料构成。
请参照图10,图10为本申请实施例提供的OLED发光组件的蒸镀方法的步骤流程示意框图。OLED发光组件1的蒸镀方法包括步骤S2010至步骤S2070。
步骤S2010,通过第一掩膜版将第一空穴传输层301蒸镀至所述第一电极层10的一侧。
步骤S2020,通过所述第一掩膜版将第一发光层302蒸镀至所述第一空穴传输层301远离所述第一电极层10的一侧。
步骤S2030,通过所述第一掩膜版将第一电子传输层303蒸镀至所述第一发光层302远离所述第一空穴传输层301的一侧。
步骤S2040,通过第二掩膜版将第二电子传输层401蒸镀至所述第一电极层10的一侧。
步骤S2050,通过所述第二掩膜版将第二发光层402蒸镀至所述第二电子传输层401远离所述第一电极层10的一侧。
步骤S2060,通过所述第二掩膜版将第二空穴传输层403蒸镀至所述第二发光层402远离所述第二电子传输层401的一侧,其中,所述第一掩膜版与第二掩膜版的形状互补或部分重叠。
在本实施例中,第一掩膜版与第二掩膜版的形状可以是互补的,并且第一掩膜版与第二掩膜版的开口也可以稍大,以使通过第一掩膜版蒸镀至第一电极层10上的第一发光单元30和第二发光单元40之间有部分重叠,避免了第一掩膜版与第二掩膜版的对位误差(若完全互补且没有部分重叠,有很小误差也会使第一发光单元30和第二发光单元40之间出现间隙)导致蒸镀第二电极层20的情况下,第二电极层20的材料蒸镀至第一发光单元30和第二发光单元40之间的间隙中造成短路。
步骤S2070,通过第三掩膜版将第二电极层20蒸镀至所述第一电子传输层303和第二空穴传输层403远离所述第一电极层10的一侧。
在一实施例中,所述第三掩膜版的开口小于所述第一掩膜版的开口和第二掩膜版的开口。
在本实施例中,用于将第二电极层20蒸镀至所述第一电子传输层303和第二空穴传输层403上的第三掩膜版的开口可以小于第一掩膜版的开口和第二掩膜版的开口。在蒸镀第二电极层20的情况下,若第三掩膜版的开口过大,第二电极层20会完全覆盖第一电子传输层303和第二空穴传输层403并蒸镀至第一电极层10,此时第二电极层20和第一电极层10接触,会造成短路的问题。因此,设置第三掩膜版的开口比第一掩膜版的开口和第二掩膜版的开口小,能够使第二电极层20通过第三掩膜版蒸镀至第一电子传输层303和第二空穴传输层 403上,并不会使第二电极层20蒸镀到第一电极层10上导致短路。
请参照图11,图11为本申请实施例提供的OLED发光装置的结构示意框图。OLED发光装置包括驱动电路2及前述的OLED发光组件1。
所述驱动电路2与所述OLED发光组件1的第一电极层10及第二电极层20电连接,所述驱动电路2设置为输出正负方向交替变化的驱动电流以驱动所述OLED发光组件1。
在一实施例中,所述OLED发光装置还包括控制器3,所述控制器3与所述驱动电路2电连接,设置为调节所述驱动电流分别在正负方向上的大小和/或占空比。
请参照图12,图12为本申请实施例提供的驱动电路的电路原理图。在本实施例中,控制器3(Microcontroller Unit,简称MCU)可以通过如图12所示的驱动电路2对OLED发光组件1进行换向等操作,驱动电路2可以分为驱动和换向两个部分,驱动部分的电路在本实施例中可以采用电流型驱动(例如PT4115、LM3410),换向部分的电路可以采用场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOS)组成的电路实现。控制器3可以通过控制驱动电路2输出方向交替变化的驱动电流以实现OLED发光组件1中第一电极层10和第二电极层20分别作为阳极和阴极的状态切换,并通过控制驱动电流分别在正负方向上的大小和/或占空比,来对应控制OLED发光组件1发光的颜色。在本实施例中,控制器3可以是51单片机。在其他实施例中,也可以采用其他微控制器,例如STM8微控制器(STMicroelectronics-8)用于与用户交互。在一实施例中,图12中还包括其他使得驱动电路2正常运行的辅助元器件和连线,这些辅助元器件和连线,设置为保证电路的正常运行,这些辅助元器件的使用属于行业通用的电路应用习惯,在此不再赘述。
本申请实施例提供一种OLED发光组件1的控制方法,用于控制前述的OLED发光组件1,所述方法包括:向所述第一电极层10和第二电极层20输入交变电流;根据预设规则,调整所述交变电流分别在正负方向上的大小和/或在正负方向上的占空比,以使所述OLED发光组件1的发光颜色根据预设规则改变。
在一实施例中,所述交变电流的类型为电流大小相等、方向相反的类方波型。
在本实施中,可以通过增大通过第一发光单元30电流的占空比,和/或降低通过第二发光单元40的电流的占空比,以降低所述的OLED发光组件1的光线的色温,也可以减小通过第一发光单元30电流的占空比,和/或增大通过第二发光单元40的电流的占空比,以增大所述的OLED发光组件1的光线的色温。在一实施例中,也可以通过增大或减小第一发光单元30的电流大小与通过第二发光单元40的电流大小之间的比值,从而实现混合后颜色色温的降低或增大。
在一实施例中,还可以通过调节交变电流的大小,控制所述的OLED发光组件1对应发光状态下的发光颜色的亮度(电流越大,发光亮度越大)。还可以通过同时调整第一发光单元30和第二发光单元40的电流的占空比,以及第一发光单元30和第二发光单元40的电流的大小来获取需要的OLED发光组件1对应的色温与亮度。
在一实施例中,驱动电路2输出的交变电流的频率可以大于3125Hz以保证OLED发光组件1的照明健康。
综上所述,采用本申请提供的OLED发光组件、蒸镀方法、装置及控制方法,能够通过简单的结构实现OLED发光组件的发光变色,改善了相关技术中需要通过复杂的电路设计才能实现OLED发光组件的发光变色的问题。

Claims (10)

  1. 一种有机发光二极管OLED发光组件,包括第一电极层、第二电极层以及设置在所述第一电极层和第二电极层之间的多个第一发光单元和多个第二发光单元;
    所述第一发光单元包括依次设置在所述第一电极层上的第一空穴传输层、第一发光层和第一电子传输层;
    所述第二发光单元包括依次设置在所述第一电极层上的第二电子传输层、第二发光层和第二空穴传输层;
    所述第一发光层与所述第二发光层的发光颜色不同。
  2. 根据权利要求1所述的组件,其中,所述第一发光层包括黄色发光层;所述第二发光层包括蓝色发光层。
  3. 根据权利要求1所述的组件,其中,所述第一发光层包括绿色子发光层和红色子发光层,所述第二发光层包括蓝色发光层。
  4. 根据权利要求1所述的组件,其中,所述第一发光单元和第二发光单元中的至少之一包括多组颜色互不相同的子发光单元,所述多组子发光单元并列设置在第一电极层和第二电极层之间。
  5. 根据权利要求1所述的组件,其中,所述第一发光单元和所述第二发光单元间隔设置在所述第一电极层和第二电极层之间。
  6. 根据权利要求1所述的组件,还包括能级匹配层,所述能级匹配层设置在所述第二空穴传输层和所述第二电极层之间,设置为提高空穴的注入效率。
  7. 一种有机发光二极管OLED发光组件的蒸镀方法,用于蒸镀形成权利要求1-6中任一项所述的OLED发光组件,包括:
    通过第一掩膜版将第一空穴传输层蒸镀至第一电极层的一侧;
    通过所述第一掩膜版将第一发光层蒸镀至所述第一空穴传输层远离所述第 一电极层的一侧;
    通过所述第一掩膜版将第一电子传输层蒸镀至所述第一发光层远离所述第一空穴传输层的一侧;
    通过第二掩膜版将第二电子传输层蒸镀至所述第一电极层的一侧;
    通过所述第二掩膜版将第二发光层蒸镀至所述第二电子传输层远离所述第一电极层的一侧;
    通过所述第二掩膜版将第二空穴传输层蒸镀至所述第二发光层远离所述第二电子传输层的一侧,其中,所述第一掩膜版与第二掩膜版的形状互补或部分重叠;
    通过第三掩膜版将第二电极层蒸镀至所述第一电子传输层和第二空穴传输层远离所述第一电极层的一侧。
  8. 一种有机发光二极管OLED发光装置,包括驱动电路及权利要求1-6中任一项所述的OLED发光组件;
    所述驱动电路与所述OLED发光组件的第一电极层及第二电极层电连接,所述驱动电路设置为输出正负方向交替变化的驱动电流以驱动所述OLED发光组件。
  9. 根据权利要求8所述的装置,还包括控制器,所述控制器与所述驱动电路电连接,设置为调节所述驱动电流的以下参数中的至少之一:正负方向的电流大小;正负方向的占空比。
  10. 一种有机发光二极管OLED发光组件控制方法,用于控制权利要求1-6中任一项所述的OLED发光组件,包括:
    向所述OLED发光组件的第一电极层和第二电极层输入交变电流;
    根据预设规则,调整交变电流的以下参数中的至少之一:正负方向的电流 大小;正负方向的占空比,以使所述OLED发光组件的发光颜色根据所述预设规则改变。
PCT/CN2020/094829 2019-07-03 2020-06-08 Oled发光组件、蒸镀方法、装置及控制方法 WO2021000699A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910596288.6A CN110299464A (zh) 2019-07-03 2019-07-03 Oled发光组件、蒸镀方法、装置及控制方法
CN201910596288.6 2019-07-03

Publications (1)

Publication Number Publication Date
WO2021000699A1 true WO2021000699A1 (zh) 2021-01-07

Family

ID=68030151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094829 WO2021000699A1 (zh) 2019-07-03 2020-06-08 Oled发光组件、蒸镀方法、装置及控制方法

Country Status (2)

Country Link
CN (1) CN110299464A (zh)
WO (1) WO2021000699A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299464A (zh) * 2019-07-03 2019-10-01 江苏集萃有机光电技术研究所有限公司 Oled发光组件、蒸镀方法、装置及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931055A (zh) * 2009-06-26 2010-12-29 富士施乐株式会社 有机电致发光元件和驱动有机电致发光元件的方法
CN104485346A (zh) * 2014-12-22 2015-04-01 北京维信诺光电技术有限公司 一种有机电致发光装置及其制备方法
CN104617232A (zh) * 2015-01-05 2015-05-13 信利(惠州)智能显示有限公司 一种oled器件制造方法及oled器件
US20180006260A1 (en) * 2016-06-30 2018-01-04 Samsung Display Co., Ltd. Organic light emitting device and display device including same
CN110299464A (zh) * 2019-07-03 2019-10-01 江苏集萃有机光电技术研究所有限公司 Oled发光组件、蒸镀方法、装置及控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060022910A1 (en) * 2004-07-30 2006-02-02 Takuro Sekiya Multifunction display device
CN103996792B (zh) * 2014-04-30 2016-04-27 京东方科技集团股份有限公司 有机发光器件及制造方法和有机发光显示装置及驱动方法
CN104538553B (zh) * 2014-12-31 2017-08-04 北京维信诺科技有限公司 一种颜色可调的有机电致发光器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931055A (zh) * 2009-06-26 2010-12-29 富士施乐株式会社 有机电致发光元件和驱动有机电致发光元件的方法
CN104485346A (zh) * 2014-12-22 2015-04-01 北京维信诺光电技术有限公司 一种有机电致发光装置及其制备方法
CN104617232A (zh) * 2015-01-05 2015-05-13 信利(惠州)智能显示有限公司 一种oled器件制造方法及oled器件
US20180006260A1 (en) * 2016-06-30 2018-01-04 Samsung Display Co., Ltd. Organic light emitting device and display device including same
CN110299464A (zh) * 2019-07-03 2019-10-01 江苏集萃有机光电技术研究所有限公司 Oled发光组件、蒸镀方法、装置及控制方法

Also Published As

Publication number Publication date
CN110299464A (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
KR102277563B1 (ko) 백색 유기 발광 소자
US6320322B1 (en) Light emitting appliance
KR100697656B1 (ko) 다중 전자 공급원을 구비한 평면 발광 소자
CN107425043B (zh) 有机发光显示器件及控制方法、显示装置
WO2015165189A1 (zh) 有机发光器件及制造方法和有机发光显示装置及驱动方法
WO2005106835A1 (ja) 色度調整可能な有機エレクトロルミネッセンス装置
CN107180847B (zh) 像素结构、有机发光显示面板及其制作方法、显示装置
US11118259B2 (en) Evaporation device and evaporation method
JP4793075B2 (ja) 照明装置
WO2021000699A1 (zh) Oled发光组件、蒸镀方法、装置及控制方法
JP2000252063A (ja) 色切換発光素子、色切換発光素子用基板及びカラー表示装置
WO2014008700A1 (zh) 有机发光二极管器件结构及显示装置
JP5319695B2 (ja) 電界放出型バックライトユニット
WO2015161573A1 (zh) 有机发光二极管显示面板及其制作方法
WO2013047789A1 (ja) 照明装置
KR101163064B1 (ko) 유기 발광소자용 전극 및 이를 포함하는 유기 발광소자
KR20120053354A (ko) 프론트 라이트 유닛
KR100886902B1 (ko) 색상별 공통 전극이 형성된 유기 전계 발광 소자를 이용한면 조명 장치 및 이의 제조 방법
US20150179716A1 (en) Surface light-emitting device
JP5307766B2 (ja) 電界放出装置
JP2014103023A (ja) 有機elパネル及び有機elパネルの接続構造
KR20120035027A (ko) 유기 발광 장치 및 이를 이용한 조명 장치
KR101729166B1 (ko) 디스플레이 장치
JP2010010576A (ja) 有機発光素子アレイ
KR100744633B1 (ko) 유기발광소자를 포함하는 백라이트 유닛, 이를 포함하는액정표시장치 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835594

Country of ref document: EP

Kind code of ref document: A1