WO2021000618A1 - Poudre d'alliage d'aluminium pour fabrication additive au laser et son utilisation - Google Patents

Poudre d'alliage d'aluminium pour fabrication additive au laser et son utilisation Download PDF

Info

Publication number
WO2021000618A1
WO2021000618A1 PCT/CN2020/083120 CN2020083120W WO2021000618A1 WO 2021000618 A1 WO2021000618 A1 WO 2021000618A1 CN 2020083120 W CN2020083120 W CN 2020083120W WO 2021000618 A1 WO2021000618 A1 WO 2021000618A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
additive manufacturing
alloy powder
laser additive
laser
Prior art date
Application number
PCT/CN2020/083120
Other languages
English (en)
Chinese (zh)
Inventor
吴一
夏存娟
廉清
王浩伟
谢薇
王鹏举
孙华
Original Assignee
上海交通大学
安徽相邦复合材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学, 安徽相邦复合材料有限公司 filed Critical 上海交通大学
Publication of WO2021000618A1 publication Critical patent/WO2021000618A1/fr
Priority to AU2021100223A priority Critical patent/AU2021100223A4/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the technical field of material preparation, and relates to an aluminum alloy, in particular, to an aluminum alloy powder for laser additive manufacturing.
  • the high-end fields have increasingly higher requirements for material performance and manufacturing technology.
  • the deep integration of manufacturing technology and information technology is an important support for the implementation of the strategy of making a strong country.
  • Laser additive manufacturing uses a laser as a heat source for melting metal powder, based on three-dimensional model data, and constructs entities through layer-by-layer manufacturing, which can solve the technical problem of combining complex shapes and rapid manufacturing of high-performance metal components.
  • the use of laser additive manufacturing technology to prepare parts with higher dimensional accuracy has obtained some applications in medical and other fields.
  • the metal powder available for laser additive manufacturing is very limited, mainly stainless steel, titanium alloy and nickel-based superalloy.
  • Aluminum alloy has the characteristics of low density and high specific strength, and has broad application prospects.
  • samples formed by laser additive manufacturing often have many defects.
  • Current research and applications are mostly limited to systems such as A356, AlSi10Mg, AlSi12, and AlMgScZr. It is far from meeting the usage requirements. Therefore, the development of aluminum alloy systems suitable for laser additive manufacturing is particularly important.
  • the purpose of the present invention is to provide an aluminum alloy powder for laser additive manufacturing and its application, so as to overcome the above-mentioned defects in the prior art and meet the needs of applications in related fields.
  • the aluminum alloy powder for optical additive manufacturing includes the following mass fraction components:
  • Si 5.0-20.0%, preferably 5.0-12.0%, particularly preferably 6.5-10.5%
  • Cu 0.1-5.0%, preferably 0.5-1.0%
  • Mg 0.1-5.0%, preferably 0.3-5.0%, particularly preferably 0.3-3.0%
  • TiB 2 1.0-12.0%, preferably 1.0-8.0%, particularly preferably, 1.5-6.5%
  • the balance is Al and unavoidable impurities
  • the TiB 2 exists in the form of ceramic particles with a particle size of 5-2000 nm.
  • a vacuum atomization process can be used to prepare powders with better sphericity and higher laser absorption.
  • the use of the aluminum alloy powder for laser additive manufacturing can improve uneven powder spreading, heat accumulation and other problems, thereby reducing defects and cracks in the forming process and improving forming quality.
  • the above-mentioned aluminum alloy contains Si in a mass fraction of 5.0-20.0%, preferably 5.0-12.0%, particularly preferably 6.5-10.5%.
  • Si causes the alloy to have good casting properties, improves the fluidity of the aluminum alloy, and reduces the tendency of hot cracking during the laser additive manufacturing process.
  • the above-mentioned aluminum alloy contains Cu in a mass fraction of 0.1-5.0%, preferably 0.5-1.0%.
  • the addition of Cu can form a supersaturated solid solution during the rapid cooling process of laser additive manufacturing, and improve the yield strength of the shaped sample.
  • the above-mentioned aluminum alloy contains Mg in a mass fraction of 0.1-5.0%, preferably 0.3-5.0%, and particularly preferably 0.3-3.0%.
  • Mg enables the formed sample to generate a second phase, such as Mg2Si, Al2CuMg, etc., through the subsequent heat treatment process, which further improves the strength of the sample.
  • the above-mentioned aluminum alloy contains TiB 2 in a mass fraction of 1.0-12.0%, preferably 1.0-8.0%, and particularly preferably 1.5-6.5%.
  • the TiB 2 exists in the form of ceramic particles with a particle size of 5-2000 nm.
  • TiB 2 particles can not only serve as an effective nucleation substrate for Al, increase the nucleation rate, and refine the grain size; it can also affect the diffusion rate of alloying elements Si, Cu, and Mg, and improve the morphology and distribution of the second phase.
  • TiB 2 particles can also improve the heat distribution during the laser additive manufacturing process, and reduce residual stress and anisotropy.
  • the invention provides an aluminum alloy powder for laser additive manufacturing.
  • the preparation method can refer to the method reported in patent CN100999018A. Specifically, it includes the following steps:
  • step (2) Mix KBF 4 and K 2 TiF 6 , add them to the melt obtained in step (1) after drying, and react with stirring.
  • the reaction time is 5-60 min, and the scum is removed;
  • the mass ratio of KBF 4 to K 2 TiF 6 is 1:0.5 to 1:2;
  • step (3) Add Al-Si master alloy, Al-Cu master alloy and Mg to the melt obtained in step (2) in sequence, degas refining, temperature 650 ⁇ 800°C, 10 ⁇ 20min, strip off scum;
  • step (3) Gas atomizing the melt obtained in step (3) to obtain the aluminum alloy powder.
  • the described aerosolization is a conventional technology, which can be referred to the method reported in patent CN107262730A. Specifically, it includes the following steps:
  • the melt is heated to 750-1200°C, and atomized under the protection of Ar and/or He gas, the atomization pressure is 0.5-10MPa, and the nozzle diameter used for atomization is 0.5-5mm.
  • the aluminum alloy powder for laser additive manufacturing provided by the present invention can be used for laser additive manufacturing and includes the following steps:
  • the aluminum alloy powder provided by the present invention is sieved to leave a powder with a particle size ranging from 15 to 53 ⁇ m, and a metal printer is used to prepare the sample drawn in step S1;
  • step S3 Perform subsequent heat treatment on the sample obtained in step S2 to further improve performance.
  • step S2 Selective Laser Melting (SLM) technology is used, the laser power is 150-350 W, the scanning speed is 500-1500 mm/s, the scanning interval is 0.15-0.20 mm, and the layer thickness is 30-40 ⁇ m.
  • SLM Selective Laser Melting
  • the heat treatment process in step S3 is a heating temperature of 120 to 180° C., a holding time of 6 to 12 hours, and air cooling.
  • the sample formed by SLM has a density of more than 99%, a yield strength of 420MPa after heat treatment, a tensile strength of 550MPa, an elongation after fracture of 7.8%, and no obvious anisotropy. It can meet the needs of applications in related fields.
  • the TiB 2 exists in the form of ceramic particles with a particle size of 5-2000 nm.
  • the melt is heated to 880°C, and atomized under the protection of Ar gas, the atomization pressure is 4.0 MPa, and the diameter of the nozzle used for the atomization is 1.8 mm to obtain the aluminum alloy powder;
  • the above aluminum alloy powder is sieved to leave a powder with a particle size ranging from 15 to 53 ⁇ m, and the sample is formed using SLM technology.
  • the process parameters are laser power 250W, scanning speed 1500mm/s, scanning distance 0.15mm, and layer thickness 30 ⁇ m;
  • the density of the sample formed by the SLM of the powder can reach more than 99%, the yield strength after heat treatment is 420MPa, the tensile strength is 550MPa, the elongation after fracture is 7.8%, and there is no obvious anisotropy.
  • the TiB 2 exists in the form of ceramic particles with a particle size of 5-2000 nm.
  • the melt is heated to 900°C, and atomized under the protection of He gas, the atomization pressure is 3.0MPa, and the nozzle diameter used for atomization is 1.7mm to obtain the aluminum alloy powder;
  • the above aluminum alloy powder is sieved to leave a powder with a particle size ranging from 15 to 53 ⁇ m, and the sample is formed using SLM technology.
  • the process parameters are laser power 325W, scanning speed 1000mm/s, scanning distance 0.19mm, and layer thickness 30 ⁇ m;
  • the density of the sample after the powder is formed by SLM can reach more than 99%, the yield strength after heat treatment is 410MPa, the tensile strength is 530MPa, the elongation after fracture is 8.3%, and there is no obvious anisotropy.
  • the preparation method is as follows:
  • the melt is heated to 780°C, and atomized under the protection of He gas, the atomization pressure is 2.5MPa, and the diameter of the nozzle used for atomization is 2.2mm to obtain the aluminum alloy powder;
  • the above aluminum alloy powder is sieved to leave a powder with a particle size ranging from 15 to 53 ⁇ m, and the sample is formed using SLM technology.
  • the process parameters are laser power 300W, scanning speed 1000mm/s, scanning distance 0.19mm, and layer thickness 30 ⁇ m;
  • the density of the sample formed by the powder through SLM can reach more than 99%, the yield strength after heat treatment is 448MPa, the tensile strength is 498MPa, the elongation after fracture is 2.3%, and there is no obvious anisotropy.
  • the preparation method is as follows:
  • the melt is heated to 980°C, and atomized under the protection of He gas, the atomization pressure is 4.5MPa, and the diameter of the nozzle used for atomization is 1.5mm, to obtain the aluminum alloy powder;
  • the above aluminum alloy powder is sieved to leave a powder with a particle size ranging from 15 to 53 ⁇ m, and the sample is formed using SLM technology.
  • the process parameters are laser power 175W, scanning speed 700mm/s, scanning distance 0.20mm, and layer thickness 40 ⁇ m;
  • the density of the sample formed by the powder through SLM can reach more than 99%, the yield strength after heat treatment is 354MPa, the tensile strength is 445MPa, the elongation after fracture is 4.6%, and there is no obvious anisotropy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

La présente invention concerne une poudre d'alliage d'aluminium pour fabrication additive au laser et une utilisation de cette dernière. La poudre d'alliage d'aluminium pour fabrication additive au laser comprend les constituants suivants, en parties en masse : 5,0 % à 20 % de Si, 0,1 % à 5,0 % de Cu, 0,1 % à 5,0 % de Mg et 1,0 % à 12,0 % de TiB2, le reste étant de l'aluminium et des impuretés inévitables. La poudre d'alliage d'aluminium pour fabrication additive au laser peut être utilisée dans la fabrication additive au laser. Dans la présente invention, un produit est obtenu lors d'un essai, un échantillon obtenu par fusion sélective au laser (SLM) peut atteindre une densité supérieure ou égale à 99 %, après avoir subi un traitement thermique, présente une limite d'élasticité de 420 MPa, une résistance à la traction de 550 MPa et un pourcentage d'allongement après rupture de 7,8 % ; il ne présente pas d'anisotropie évidente et les exigences d'application dans des domaines pertinents peuvent être satisfaites.
PCT/CN2020/083120 2019-07-01 2020-04-03 Poudre d'alliage d'aluminium pour fabrication additive au laser et son utilisation WO2021000618A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021100223A AU2021100223A4 (en) 2019-07-01 2021-01-14 Aluminum alloy powder for laser additive manufacturing and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910586326.XA CN110317982A (zh) 2019-07-01 2019-07-01 激光增材制造用铝合金粉末及其应用
CN201910586326.X 2019-07-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2021100223A Division AU2021100223A4 (en) 2019-07-01 2021-01-14 Aluminum alloy powder for laser additive manufacturing and application thereof

Publications (1)

Publication Number Publication Date
WO2021000618A1 true WO2021000618A1 (fr) 2021-01-07

Family

ID=68122300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083120 WO2021000618A1 (fr) 2019-07-01 2020-04-03 Poudre d'alliage d'aluminium pour fabrication additive au laser et son utilisation

Country Status (2)

Country Link
CN (1) CN110317982A (fr)
WO (1) WO2021000618A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113174517A (zh) * 2021-04-30 2021-07-27 北京冬曦既驾科技咨询有限公司 耐蚀型Al-Si合金及其增材制备方法
CN114525434A (zh) * 2022-04-22 2022-05-24 西安欧中材料科技有限公司 一种SiC诱导多相增强铝基复合材料及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110317982A (zh) * 2019-07-01 2019-10-11 上海交通大学 激光增材制造用铝合金粉末及其应用
CN112191844A (zh) * 2020-09-03 2021-01-08 苏州耀国电子有限公司 一种3d打印铝铜合金的方法
CN113814393B (zh) * 2021-08-31 2023-09-12 中国商用飞机有限责任公司上海飞机设计研究院 用于slm的铝合金粉末材料及其制备方法和应用方法
CN114054745B (zh) * 2021-11-23 2023-02-10 山东大学 一种铝合金粉末及其制备方法和应用、铝合金构件
CN116117165A (zh) * 2023-02-27 2023-05-16 常州钢研极光增材制造有限公司 一种提高AlSi10Mg铝合金制件综合性能的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342341A (ja) * 1986-08-06 1988-02-23 Toyo Alum Kk アルミニウム合金材料
CN107937762A (zh) * 2017-10-20 2018-04-20 上海交通大学 基于SLM制备原位自生TiB2增强复合材料的方法
WO2018144323A1 (fr) * 2017-02-01 2018-08-09 Hrl Laboratories, Llc Alliages d'aluminium contenant des affineurs de grains, et leurs procédés de fabrication et d'utilisation
CN110317982A (zh) * 2019-07-01 2019-10-11 上海交通大学 激光增材制造用铝合金粉末及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8083871B2 (en) * 2005-10-28 2011-12-27 Automotive Casting Technology, Inc. High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting
CN104372208B (zh) * 2014-10-28 2019-03-29 赵遵成 一种内生颗粒混杂增强铝基复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342341A (ja) * 1986-08-06 1988-02-23 Toyo Alum Kk アルミニウム合金材料
WO2018144323A1 (fr) * 2017-02-01 2018-08-09 Hrl Laboratories, Llc Alliages d'aluminium contenant des affineurs de grains, et leurs procédés de fabrication et d'utilisation
CN107937762A (zh) * 2017-10-20 2018-04-20 上海交通大学 基于SLM制备原位自生TiB2增强复合材料的方法
CN110317982A (zh) * 2019-07-01 2019-10-11 上海交通大学 激光增材制造用铝合金粉末及其应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113174517A (zh) * 2021-04-30 2021-07-27 北京冬曦既驾科技咨询有限公司 耐蚀型Al-Si合金及其增材制备方法
CN113174517B (zh) * 2021-04-30 2022-12-06 余姚思酷迈文具有限公司 耐蚀型Al-Si合金及其增材制备方法
CN114525434A (zh) * 2022-04-22 2022-05-24 西安欧中材料科技有限公司 一种SiC诱导多相增强铝基复合材料及其制备方法

Also Published As

Publication number Publication date
CN110317982A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
WO2021000618A1 (fr) Poudre d'alliage d'aluminium pour fabrication additive au laser et son utilisation
WO2021000617A1 (fr) Poudre d'alliage d'aluminium contenant des particules de céramique tib2 et application de celle-ci
CN109175350B (zh) 一种用于增材制造的Al-Mg-Mn-Sc-Zr铝合金粉末及其制备方法
WO2021184827A1 (fr) Procédé de traitement composite pour masse fondue d'alliage d'aluminium corroyé recyclé
WO2017133415A1 (fr) Coulée sous pression d'alliage d'aluminium à conductivité thermique élevée et procédé pour le préparer
WO2023019697A1 (fr) Poudre d'alliage d'aluminium à haute résistance pour impression 3d et procédé de préparation de poudre d'alliage d'aluminium à haute résistance
CN108796322B (zh) 一种含纳米氧化铝颗粒的铝合金焊丝及其制备方法
JP2017538861A (ja) 鉄、ケイ素、バナジウム及び銅を有するアルミニウム合金
CN103831422B (zh) 一种Al-Si系铝合金组织的纳米细化方法
CN111872386B (zh) 一种高强度铝镁合金的3d打印工艺方法
CN109202062B (zh) 一种用于增材制造的Al-Mg-Li-Sc-Zr铝合金粉末及其制备方法
CN111659889A (zh) 一种高强度铝锰合金的3d打印工艺方法
CN110484783B (zh) 一种铝-稀土合金粉末及其制备方法和应用
WO2022041618A1 (fr) Alliage d'aluminium et son utilisation
CN109402472B (zh) 一种用于增材制造的Al-Cu-Li-Sc-Zr铝合金粉末及其制备方法
CN111893350B (zh) 一种高导热变形铝合金及其制备方法
WO2018059322A1 (fr) Composition d'alliage d'aluminium, élément en alliage d'aluminium, produit de communication, et procédé de préparation de l'élément en alliage d'aluminium
CN111850332A (zh) 一种高强度铝锌合金的3d打印工艺方法
CN108866397A (zh) 高导热铝合金材料的制备方法及高导热铝合金
CN108998699A (zh) 一种铝锂基复合材料粉末及其制备方法和应用
CN113462911B (zh) 一种强韧耐蚀az80镁合金的制备方法
CN109338177A (zh) 一种AlSi10Mg系变质铝合金材料及其变质生产工艺
CN110449578A (zh) 一种高性能7050铝合金3d打印选区激光熔化成形件及其应用
AU2021100223A4 (en) Aluminum alloy powder for laser additive manufacturing and application thereof
CN114855035B (zh) 耐热高强度汽车轮毂铝合金材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835585

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20835585

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/09/2022)