WO2021000585A1 - 一种微波加热储能用复合相变材料及其制备和储能方法 - Google Patents

一种微波加热储能用复合相变材料及其制备和储能方法 Download PDF

Info

Publication number
WO2021000585A1
WO2021000585A1 PCT/CN2020/074463 CN2020074463W WO2021000585A1 WO 2021000585 A1 WO2021000585 A1 WO 2021000585A1 CN 2020074463 W CN2020074463 W CN 2020074463W WO 2021000585 A1 WO2021000585 A1 WO 2021000585A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
change material
graphene
composite phase
energy storage
Prior art date
Application number
PCT/CN2020/074463
Other languages
English (en)
French (fr)
Inventor
韩晓刚
杨超
杨恒瑞
白宇鸽
郭伟昌
李曼妮
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910592641.3A external-priority patent/CN110345542A/zh
Priority claimed from CN201910592628.8A external-priority patent/CN110305633A/zh
Priority claimed from CN201910592630.5A external-priority patent/CN110283573A/zh
Priority claimed from CN201910592743.5A external-priority patent/CN110205102A/zh
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2021000585A1 publication Critical patent/WO2021000585A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G19/00Table service
    • A47G19/22Drinking vessels or saucers used for table service
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/08Warming pads, pans or mats; Hot-water bottles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to the field of energy conversion and storage materials, in particular to a composite phase change material for microwave heating energy storage and a preparation method for energy storage.
  • the latent heat energy storage system using phase change materials with high latent heat storage density and almost constant phase change temperature as the energy storage medium is a research hotspot in the field of heat storage.
  • phase change material undergoes a solid phase and liquid phase transformation within a certain temperature range.
  • the material absorbs or releases a large amount of heat, and has a high latent heat storage capacity, compared with general sensible heat Heat storage materials, phase change heat storage materials have a higher energy storage density, can store more energy than sensible heat materials (water, oil, etc.) with the same volume, and it changes between solid phase and liquid phase, namely When absorbing or releasing thermal energy, the temperature can be kept constant when the phase changes to absorb or release thermal energy.
  • This kind of high heat storage capacity, high energy storage density and constant temperature heat absorption/release performance has great application space in energy saving, emission reduction and clean energy utilization.
  • phase change heat storage methods use electric furnace wires to heat the block or the phase change material encapsulated in the block carrier. Due to the poor thermal conductivity of the phase change material and/or the carrier material, the phase change material has a temperature gradient during the heat storage process. That is, the surface temperature of the phase change material has reached the upper temperature limit, but the inside has not reached the specified heat storage temperature, which reduces the actual utilization rate of the heat storage material.
  • the present invention provides a composite phase change material for microwave heating energy storage and a preparation and energy storage method thereof.
  • the composite phase change material has excellent thermal conductivity, stable heat absorption and release cycles, and latent heat storage density High, simple preparation and energy storage operation, convenient and reliable.
  • a composite phase change material for microwave heating and energy storage includes a uniformly dispersed phase change material and graphene; the mass ratio of the phase change material and graphene is 1: (0.01-0.05).
  • the phase change material is at least one of paraffin wax, sodium acetate trihydrate, barium hydroxide octahydrate, magnesium nitrate hydrate, and 2,2-dimethylolpropionic acid.
  • the graphene is expanded graphite, thermally exfoliated graphene, mechanically exfoliated graphene, liquid phase exfoliated graphene, high temperature carbonized graphene, 3D graphene, graphene oxide, reduced graphene oxide and CVD graphene. At least one of.
  • the graphene is powder or film.
  • the number of layers of graphene is a single layer, an oligo-layer or multiple layers.
  • the number of graphene layers is less than or equal to 10 layers.
  • the phase transition temperature is 54-62°C
  • the heat of fusion is 200-220 J/g
  • the density is 0.9 g/cm 3 .
  • phase change material After the phase change material is melted, graphene is added and fully stirred until it is completely dispersed, and the composite phase change material is prepared after natural cooling;
  • phase change material and graphene are mechanically mixed and then melted and stirred until they are completely dispersed to obtain a composite phase change material.
  • the heating temperature is higher than the phase change temperature of the phase change material, and is heated to complete melting.
  • the phase change material is heated to be completely melted at a temperature of 80 to 200°C.
  • an electromagnetic heating plate or a water bath heater is used to heat the phase change material or the mixture of the phase change material and graphene for 5-15 minutes until it is completely melted.
  • an electromagnetic stirrer is used to stir until it is completely dispersed, and the stirring time is 10-20 min.
  • a method for energy storage using a composite phase change material for microwave heating and energy storage is irradiated with electric energy driven microwave, and graphene absorbs the microwave to generate heat and conducts it to the phase change material, The electric energy is converted into heat energy through the action of microwave/graphene and stored in the composite phase change material.
  • the microwave power driven by the electric energy is 500-1500w.
  • the irradiation time is 15-360s.
  • the composite phase change material is used as the heat preservation material of the heat storage system, and the composite phase change material in the heat storage system is heated by microwaves, and the heat is stored and transferred;
  • the heat storage system includes a microwave generator 1 and a wave absorbing Phase change heat storage brick 3, the wave absorbing phase change heat storage brick 3 is provided with a composite phase change material;
  • the wave absorbing phase change heat storage brick 3 is arranged on both sides of the circulating water 2 for heating to heat the circulating water 2 for heating
  • the microwave generator 1 is arranged on one side of the wave-absorbing phase change heat storage brick 3 to microwave the composite phase change material, and the microwave generator 1 uses clean energy or valley electricity for power supply.
  • the composite phase change material is used as the thermal insulation material of the thermal insulation cup, and the composite phase change material in the thermal insulation cup is heated by microwaves and the heat is stored in the composite phase change material filled in the thermal insulation layer.
  • the composite phase change material is used as the thermal insulation material of the warm baby, the composite phase change material in the warm baby is heated by microwave, and the heat is stored in the composite phase change material filled in the warm baby.
  • the present invention has the following beneficial technical effects:
  • the invention uses graphene as a wave absorbing material, converts it into heat energy through wave absorption, combines the high latent heat storage density of the phase change material and the almost constant phase change temperature, and creatively provides a composite phase change material composite for microwave heating energy storage Phase change material, suitable for microwave heating.
  • the mass ratio of phase change material to graphene is 1: (0.01-0.05)
  • the heating time of the material is short, and it is easy to prepare. If the proportion of graphene is too low, the absorbing effect is not obvious; if the proportion of graphene is too large, It is not easy to be uniformly distributed in the phase change material, and the cost is increased, and the heat storage effect of the phase change material is also deteriorated.
  • the graphene used includes expanded graphite, thermal exfoliated graphene, mechanical exfoliated graphene, liquid phase exfoliated graphene, high temperature carbonized graphene, 3D graphene, graphene oxide, reduced graphene oxide, and CVD graphene.
  • At least one type of graphene has many sources, and different types of graphene can be used according to actual application environment, specific cost budget, heating speed and other factors to achieve the purpose of absorbing microwaves.
  • phase change materials which is convenient for selecting materials with different phase change temperatures when used in different occasions.
  • the number of graphene layers used is single-layer, oligo-layer or multi-layer, using the self-absorbing properties of single-layer graphene and the huge resistance formed by multilayer graphene-
  • the inductance-capacitance coupling circuit can achieve the purpose of converting microwave energy into heat energy.
  • the invention provides a preparation method of a composite phase change material for microwave heating energy storage.
  • the preparation process is simple and convenient, without vacuuming or setting circuits, and the materials used are safe and non-toxic, and can further stimulate the cross-development of the wave absorption field and the heat storage field. Progress is significant.
  • rapid heating devices such as electromagnetic heating plates or water bath heaters can make phase change materials such as paraffin wax safely, stably and rapidly change from solid phase to liquid phase, thereby fully mixing with graphene and other wave-absorbing materials.
  • heating temperature to be slightly higher than the phase change temperature of the phase change material
  • adding a rotor to stir on the magnetic stirrer can quickly and uniformly disperse the graphene and facilitate the preparation of the composite phase change material.
  • the invention provides an energy storage method using a composite phase change material for microwave heating energy storage. Aiming at the deficiencies of the existing phase change heat storage technology, a new mechanism for efficient heat storage is proposed. Due to the addition of absorbing materials, the composite phase change material can be rapidly heated in microwaves. Using microwave energy, the graphene starts to heat from the inside and reaches a high temperature in a short time, and the phase change material is heated quickly to make the composite phase change material Rapidly change from solid phase to liquid phase, and store microwave energy converted from graphene to thermal energy. The heat storage process of phase change materials is quick and convenient. The composite phase change material still retains the characteristics of long heat storage time and slow cooling of phase change materials. , And the cycle life is long, thus forming a new energy conversion and storage mechanism.
  • the composite phase change material can change the ratio of the wave absorbing materials such as graphene, the time required for absorbing microwaves to undergo phase change can be adjusted and changed.
  • the microwave power range is large, the application device is small, and it can be directly heated by a household microwave oven, which is convenient and fast; the application equipment is large, and a large industrial microwave generator or a customized frequency microwave can be used.
  • the microwave time is set according to user needs, the longer the time, the higher the temperature.
  • the composite phase change material is used as the heat storage material of the energy storage system, and clean energy or night electricity is used to reduce greenhouse gas emissions and make full use of idle energy to reduce heat storage costs; innovatively introduce microwave heating methods and use microwaves
  • the strong penetrability, high energy performance, rapid, uniform and safe heating of the heat storage material quickly store the heat in the heat storage material, increase the heat storage density of the heat storage material, and ensure that the temperature of the heat storage material is in the appropriate range , It will not reduce the service life of the heat storage material, and there is no need to add a thermal conductivity agent to the heat storage material, increase the proportion of the heat storage material, and increase the heat storage density of the heat storage material.
  • the invention uses new energy or valley electricity to supply power to the microwave system.
  • the microwave environment heats and stores the composite phase change material, and provides the stored heat to the user by circulating the heating water; it is environmentally friendly, low in cost, and heat storage. Speed is a very promising new mechanism.
  • thermos thermos
  • the design is simple, the production process does not require harsh environments such as vacuum, which can reduce costs and is safer, and can be mass-produced and used
  • the microwave quickly heats the thermos cup and stores a large amount of heat energy to meet the daily demand for heat preservation of beverages.
  • the heat preservation time is long, and the cost is saved without any additional devices.
  • the heat storage composite phase change material in the vacuum flask can absorb the heat from the stored liquid (drinking water, milk, etc.), and change from the solid phase to the liquid phase, so that the temperature of the beverage in the vacuum flask is long.
  • the time is maintained at the phase transition temperature of the composite phase change material, for example, the phase transition temperature of paraffin wax is about 58°C.
  • the composite phase change material is filled in the warm baby, so that there is only paraffin and graphene inside, no circuit, simple structure, and safe to use; at the same time, microwave heating is used, on the one hand, due to the low melting point of paraffin wax (about 58°C) ), there will be no overheating and scalding the user.
  • the warm baby can be heated evenly, and the temperature in different positions is consistent, which enhances the warmth retention effect; in addition, the warm baby can be used repeatedly and has a long life.
  • Figure 1 is a thermal insulation diagram of the graphene/paraffin composite phase change material in Example 1;
  • Example 3 is a graphene/Mg(NO 3 ) 2 ⁇ 6H 2 O hydrated salt composite phase change material heat preservation cycle diagram in Example 3.
  • Figure 3 is a trend diagram of the holding time in Example 5 of the present invention.
  • Fig. 4 is a trend diagram of the holding time in Example 6 of the invention.
  • Figure 5 is a schematic diagram of the structure of the insulated cup described in the example of the present invention.
  • Figure 6 is the solid phase of the composite phase change material in the example of the present invention.
  • Figure 7 is the liquid phase of the composite phase change material in an example of the present invention.
  • Figure 8 shows the solid-liquid mixed phase of the composite phase change material in an example of the present invention
  • Figure 9 is a schematic diagram of a heat storage system in an example of the present invention.
  • FIG. 10 is a schematic diagram of the wave-absorbing phase-change heat storage brick in an example of the present invention, in which (a) is a front view, (b) is a side view, (c) is a cross-sectional view, and (d) is a three-dimensional view;
  • Figure 11 is a schematic diagram of a warm baby in an example of the present invention, in which (a) is an inner bladder and (b) is an outer sleeve.
  • the composite phase change material for microwave heating energy storage of the present invention can promote the timely conversion of energy from adjacent states to Fermi level through the high impedance matching characteristics of graphene, which are all conducive to the wave absorption performance of graphene.
  • the intricate network structure formed by graphene nanoparticles spontaneously and strongly responds to incident microwaves. Due to its huge resistance-inductance-capacitance coupling circuit, the time-varying electric field induces current rapidly in the circuit network Attenuate and convert into heat energy. In this process, the incident electromagnetic wave can quickly transform into heat energy.
  • the material is heated rapidly and uniformly in microwave, while retaining the advantages of long-lasting heat preservation time, repeated use, and good cycle life of the phase change material, and has broad application prospects in the field of heat storage .
  • Graphene is a two-dimensional nanomaterial with a single atomic layer thickness composed of carbon atoms through SP2 hybridization. Due to its large specific surface area, ultra-thin, large interface, high light transmittance, tunable conductivity and other unique structure and physical and chemical properties . In the prior art, there is little research on the cross-application of graphene in the field of wave absorption and heat storage, and there is no cross-application of graphene mixed in phase change heat storage materials. Graphene’s excellent microwave absorption performance makes it useful in the field of thermal energy.
  • the composite phase change material has the properties of absorbing, heating and storing heat, the better the absorbing properties of graphene, the stronger the ability to convert into heat energy; and compared with ordinary phase change heat storage materials, it has More excellent thermal conductivity and stable heat absorption and release cycle performance; rapid heating and uniform heating of the material, long holding time, repeated use, good cycle life, easy heating conditions, and broad application prospects.
  • a composite phase change material composed of a wave absorbing material and a phase change material is quickly heated and heat-storing heat preservation, specifically: take the phase change material as a raw material, place it in a rapid heating device, then add graphene, and use electromagnetic stirring Stir the device until it is completely dispersed. After natural cooling, it is made into a complex phase change material.
  • the rapid heating device includes but is not limited to heating devices such as electromagnetic heating plates, water bath heaters, etc., which are heated at 80-200°C for 5-15 minutes to completely transform the phase change material from solid to liquid.
  • the container used for microwave heating of the composite phase change material must be a microwave-permeable appliance, and the melting point must be high to prevent the material from melting at too high temperature.
  • the laboratory uses a beaker or a glass petri dish.
  • the heat storage system provided by the present invention includes a microwave generator 1 and a wave-absorbing phase-change heat storage brick 3.
  • the wave-absorbing phase-change heat storage brick 3 is arranged on both sides of the circulating water 2 for heating, which is convenient for comparison.
  • the circulating water 2 for heating is used for heating, and then the heating facilities are heated by the circulating water 2 for heating; the microwave generator 1 is installed on the side of the wave-absorbing phase-change heat storage brick (3), which can store the wave-absorbing phase change
  • the composite phase change material inside the hot brick 3 is heated by microwave; clean energy (wind, hydrogen, solar, tidal energy, etc.), valley electricity and other environmentally friendly energy sources are used to power the microwave generator 1, which not only reduces greenhouse gas emissions, but also And it can make rational use of energy in idle time.
  • the power of the microwave generator 1 is 0.5-15 kW. If you can choose microwave for medium and small heating at home, the microwave time is set to tens of seconds or a few minutes, which is very convenient and fast, which can enhance the user experience; if you choose industrial microwave for large heating in shopping malls, buildings, etc.; For special requirements, you can also customize the microwave frequency yourself.
  • a plurality of composite phase change material storage cavities 4 are arranged in the internal interval of the wave absorbing phase change heat storage brick 3.
  • the composite phase change material storage cavity 4 is a spherical space for storing the composite phase change material.
  • the exterior of the single-piece heat storage brick is made of high thermal conductivity, high temperature resistance, and corrosion resistance materials, which can avoid the brick rupture and damage to the greatest extent;
  • the interior of the brick body is a spherical space, this structure can avoid the solid-liquid phase transition of the composite phase change material When the heat storage brick is leaked out, and the phase change material is isolated from contact with the air, the service life of the composite phase change material is prolonged.
  • the invention utilizes the phase change of the heat storage material in the composite phase change material at the phase change temperature, and the heat energy is stored by absorbing or releasing heat.
  • the heat storage temperature of the composite phase change material after being heated by microwave is 91 ⁇ 607°C.
  • the composite phase change material with different heat storage ranges can be obtained by controlling its ratio, and the absorbing phase change can also be adjusted by setting the microwave power and time
  • the surface temperature of the heat storage brick (95 ⁇ 608°C) can meet the application of the heat storage system in different scenarios (small or industrial).
  • the mass ratio of phase change material and graphene is 1: (0.01 ⁇ 0.015).
  • a heat-conducting anti-corrosion layer is provided on the outside of the wave-absorbing phase change heat storage brick 3, and the heat-conducting anti-corrosion layer is made of silicate, carbonate and other materials with high thermal conductivity, high temperature resistance and corrosion resistance.
  • the heating process of the heat storage system provided by the present invention is as follows:
  • phase change material phase change material/graphene
  • Microwave heating is the body heating of materials caused by dielectric loss in an electromagnetic field.
  • the medium material is composed of polar molecules and non-polar molecules.
  • the molecules with asymmetric charges are excited by the alternating electromagnetic field and rotate, changing from a random distribution state to an orientation arrangement according to the direction of the electric field.
  • the temperature difference between the circulating water for heating and the absorbing phase change heat storage brick is used to transfer heat from the absorbing phase change heat storage brick to the circulating water for heating, and the circulating water for heating passes through heat transfer Pipes guide users to heating facilities, providing users with a steady stream of heating;
  • this heat storage mechanism can be applied to the heating of residential buildings, shopping malls and other buildings.
  • the present invention combines the wave absorbing performance of graphene and the heat storage performance of phase change materials, and for the first time proposes to combine the wave absorbing performance of graphene and other wave absorbing materials with the complex change performance of phase change materials such as paraffin as the thermal insulation material of the vacuum flask.
  • phase change materials such as paraffin
  • the thermal insulation cup as a whole includes a cup body 5 and a cup cover 7.
  • the cup cover 7 is installed at the upper end of the cup body 5.
  • the cup body 1 is filled with a composite phase change material 6, and the microwave of the composite phase change material 6 is adjusted.
  • the heating time realizes heat preservation and energy storage.
  • the phase transition temperature of the composite phase change material 6 is about 54-62°C
  • the heat of fusion is about 200-220J/g
  • the density is about 0.9g/cm 3. With its excellent heat storage capacity and low density, it is an excellent heat preservation and energy storage material.
  • a kind of warm baby including lace 8, pocket 9 and inner liner 10
  • the inner liner 10 is provided with paraffin/graphene composite phase change material, after microwave heating, the paraffin/graphene composite phase change material
  • the melting point is 56-85°C
  • the inner liner 10 is arranged in the pocket 9 and a tie 8 is arranged at one end of the pocket 9.
  • the liner made of paraffin wax/graphene composite phase change material is brick-like, the length, width and height are 25cm ⁇ 15cm ⁇ 2cm, and the capacity is 750mL.
  • Heat storage technology is mainly used for heat energy supply. Advanced heat storage technology can improve energy utilization efficiency and reduce energy loss, which is conducive to the "on demand" of heat energy.
  • Phase change energy storage means that the heat storage material undergoes a phase change through processing, and the energy obtained is stored in the material. When energy is needed, the heat storage material is phase changed again, and the stored energy is released in the form of heat energy for use by the hot end. .
  • the mass ratio of paraffin wax and graphene is 1:(0.01 ⁇ 0.03), and the melting point range of the prepared composite phase change material is 56 ⁇ 85°C. Heating under microwave environment for 20 ⁇ 35s can realize rapid heat storage.
  • the melting point of the prepared composite phase change material will change accordingly, and the melting point range is 56-85°C.
  • paraffin wax has a strong heat storage capacity, no precipitation, and has the advantages of non-toxic, non-corrosive, easy to obtain, and inexpensive.
  • the main disadvantage of paraffin wax is that its thermal conductivity is too low, and it is prone to uneven heating, resulting in a long heat storage time and high energy consumption, which limits its large-scale use.
  • the paraffin/graphene composite phase change material is obtained by compounding paraffin wax with graphene with high thermal conductivity, which has the advantages of paraffin wax and graphene, and can realize rapid heat conduction and long-lasting heat storage.
  • Paraffin wax is solid at room temperature, and it needs high temperature (100-120°C) heating to quickly turn it into a molten state. Add graphene to the molten paraffin and stir it well to make the graphene dispersed well in the paraffin. Obtain homogeneous paraffin/graphene composite phase change material.
  • the mass ratio of paraffin wax to graphene is finally obtained through experimental measurement and comparison. If the graphene content is too small, the heating effect in microwave is not obvious, and the temperature rises too slowly; if the graphene content is too much, for example, about 5% , There will be pungent white smoke in the microwave, namely paraffin smoke. Comprehensive comparison shows that the mass ratio of graphene to paraffin wax is (0.01-0.03):1 is the most appropriate.
  • the time is set to 20-35s; after taking it out, you can observe the phase change of the composite phase change material, and you can start heating; put the thermal insulation bag containing the composite phase change material
  • the inner bladder can be put into the thermal insulation outer sheath.
  • the present invention uses graphene to enhance its thermal conductivity.
  • Graphene has very good thermal conductivity.
  • the thermal conductivity of pure, defect-free single-layer graphene is as high as 5300W/(m*K), which is the carbon material with the highest thermal conductivity so far.
  • graphene is very promising as a doping material.
  • the thermal conductivity of paraffin wax can be greatly enhanced.
  • the composite phase change material as the inner tank of the warm baby, in the laboratory, when the material content is 30g, it can provide 45 minutes of warming effect. When the material content is increased, the warming effect will be extended to several hours accordingly.
  • the temperature of the composite phase change material when taken out of the microwave generator after 20 seconds was 82°C. In the environment, the phase change temperature was reduced to 60°C after 10 minutes, and to 33°C after 45 minutes. As shown in Figure 1.
  • the temperature was 102°C when it was taken out of the microwave, and the phase transition temperature was reduced to 60°C in 13 minutes, and then it took about 47 minutes to drop to 32°C in the environment.
  • the temperature was 155°C when it was taken out of the microwave, and the phase transition temperature was reduced to 90°C in 15 minutes, and then it took 35 minutes to drop to room temperature 25°C in the environment. After microwave heat storage is performed again, heat can be released well.
  • 2,2-dimethylolpropionic acid and graphene into a ball mill and stir for 15 minutes.
  • the mass ratio of 2,2-dimethylolpropionic acid to graphene is 1:0.05.
  • a 15kW microwave generator is used to The prepared composite phase change material is heated for 1 minute for energy storage.
  • the temperature was 170°C when it was taken out of the microwave, and the phase transition temperature was reduced to 150°C in 3 minutes, and then it took 50 minutes to cool to room temperature 55°C in the environment.
  • phase change materials correspond to different types of phase change materials and adding different proportions of graphene, which enriches the choice of phase change materials.
  • the user selects the specific addition ratio according to the specific temperature, indicating that the energy storage method has a wide range of applications and implementation The conditions are low and it has good research and application value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

一种微波加热储能用复合相变材料及其制备和储能方法,其复合相变材料导热性能优异,吸放热循环稳定,潜热储热密度高,制备和储能操作简单,方便可靠。所述复合相变材料,包括分散均匀的相变材料和石墨烯;相变材料和石墨烯的质量比为1:(0.01~0.05)。所述方法,根据相变材料和石墨烯的质量比,将相变材料熔化后添加石墨烯并充分搅拌至完全分散,自然冷却后制得复合相变材料;或将相变材料和石墨烯机械混合后再熔化并搅拌至完全分散制得复合相变材料。储能时,对复合相变材料进行电能驱动的微波辐照,石墨烯吸收微波产生热并传导至相变材料,将电能经微波/石墨烯作用转换为热能并储存于复合相变材料中。

Description

一种微波加热储能用复合相变材料及其制备和储能方法 技术领域
本发明涉及能量转换与存储材料领域,具体为一种微波加热储能用复合相变材料及其制备储能方法。
背景技术
在全球环境污染和能源短缺的问题十分严峻的情况下,提高能源效率和利用率,解决能源供需缺口的热能储存系统是近年来研究的热点。更具体地说,以具有较高的潜热储热密度和几乎恒定的相变温度的相变材料为储能介质的潜热储能系统,是储热领域的研究热点。
相变材料作为潜热储存的介质,在一定温度范围内,发生固相和液相的转变,在这个过程中,材料吸收或释放大量的热,具有高的潜热储存能力,相比一般的显热储热材料,相变储热材料具有更高的储能密度,能够存储比具有相同体积的显热材料(水,油等)储存更多的能量,并且其在固相和液相转变,即吸收或者释放热能时,可以在其相变吸收或者释放热能时可以保持温度恒定。这种高储热能力、高储能密度和恒温吸/放热性能在节能减排和清洁能源利用中有极大的应用空间。
但是,目前相变储热方法都是采用电炉丝加热块体或封装于块体载体的相变材料,由于相变材料和/或载体材料导热性差,储热过程中相变材料出现温度梯度,即相变材料表面温度已经达到温度上限,而内部还没有达到规定储热温度,从而降低了储热材料的实际利用率。
发明内容
针对现有技术中存在的问题,本发明提供一种微波加热储能用复合相变材料及其制备和储能方法,其复合相变材料导热性能优异,吸放热循环稳定,潜热储热密度高,制备和储能操作简单,方便可靠。
本发明是通过以下技术方案来实现:
一种微波加热储能用复合相变材料,包括分散均匀的相变材料和石墨烯;相变材料和石墨烯的质量比为1:(0.01~0.05)。
优选的,所述的相变材料为石蜡、三水合醋酸钠、八水合氢氧化钡、水合硝酸镁和2,2-二羟甲基丙酸中的至少一种。
优选的,所述的石墨烯为膨胀石墨、热剥离石墨烯、机械剥离石墨烯、液相剥离石墨烯、高温碳化石墨烯、3D石墨烯、氧化石墨烯、还原氧化石墨烯和CVD石墨烯中的至少一种。
优选的,石墨烯为粉体或薄膜。
优选的,石墨烯的层数是单层、寡层或多层。
优选的,石墨烯的层数小于等于10层。
优选的,相变温度为54~62℃,熔化热为200~220J/g,密度为0.9g/cm 3
一种如上述任意一项方案所述微波加热储能用复合相变材料的制备方法,根据相变材料和石墨烯的质量比,
将相变材料熔化后添加石墨烯并充分搅拌至完全分散,自然冷却后制得复合相变材料;
或将相变材料和石墨烯机械混合后再熔化并搅拌至完全分散制得复合相变材料。
优选的,加热温度高于相变材料的相变温度,加热至完全熔化。
优选的,在80~200℃的温度下加热相变材料至完全熔化。
优选的,采用电磁加热板或水浴加热器对相变材料或者相变材料和石墨烯的混合物加热5~15min,至完全熔化。
优选的,使用电磁搅拌器搅拌至完全分散,搅拌时间为10~20min。
一种微波加热储能用复合相变材料的储能方法,对如上述任意一项所述的复合相变材料进行电能驱动的微波辐照,石墨烯吸收微波产生热并传导至相变材料,将电能经微波/石墨烯作用转换为热能并储存于复合相变材料中。
优选的,所述电能驱动的微波功率为500~1500w。
优选的,辐照作用时间为15~360s。
优选的,将复合相变材料作为储热系统的保温材料,通过微波对储热系统中的复合相变材料进行加热并储存和传递热量;所述的储热系统包括微波发生器1和吸波相变储热砖3,吸波相变储热砖3内设置有复合相变材料;吸波相变储热砖3设置在供暖用循环水2的两侧,对供暖用循环水2进行加热处理,微波发生器1设置在吸波相变储热砖3的一侧,对复合相变材料进行微波加热,微波发生器1使用清洁能源或谷电进行供电。
优选的,将复合相变材料作为保温杯的保温材料,通过微波对保温杯中的复合相变材料进行加热并将热量储存于填充在保温层的复合相变材料中。
优选的,将复合相变材料作为暖宝宝的保温材料,通过微波对暖宝宝中的复合相变材料进行加热,并将热量储存于填充在暖宝宝内的复合相变材料中。
与现有技术相比,本发明具有以下有益的技术效果:
本发明利用石墨烯作为吸波材料,通过吸波转换为热能,结合相变材料的高潜热储热密度和几乎恒定的相变温度,创造性地提供一种微波加热储能用复合相变材料复合相变材料,适用于微波加热。其中,相变材料与石墨烯的质量比为1:(0.01~0.05),材料加热时间短,且容易制备,若石墨烯占比太低,则吸波效果不明显;若石墨烯占比太高,不容易均匀分布在相变材料中,且成本提高,相变材料储热效果也变差。
进一步的,使用的石墨烯包括膨胀石墨、热剥离石墨烯、机械剥离石墨烯、液相剥离石墨烯、高温碳化石墨烯、3D石墨烯、氧化石墨烯、还原氧化石墨烯和CVD石墨烯中的至少一种,石墨烯来源多,可根据实际应用环境,具体成本预算、加热速度等因素考虑使用不同种类的石墨烯,以达到吸收微波的目的。
进一步的,相变材料种类多,方便选取应用于不同场合时不同相变温度的材料。
进一步的,考虑到石墨烯的吸波原理,使用的石墨烯的层数是单层、寡层或多层,利用单层石墨烯的自吸波性质和多层石墨烯形成的巨大的电阻-电感-电容耦合电路,均可达到将微波能转变为热能的目的。
本发明一种微波加热储能用复合相变材料的制备方法,制备过程简单方便,无需抽真空或设置电路,使用材料安全无毒,能够进一步激励吸波领域和储热领域的交叉发展,科技进步意义重大。
进一步的,通过电磁加热板或水浴加热器等快速加热装置可以使石蜡等相变材料安全、稳定、快速地由固相转变为液相,从而与石墨烯等吸波材料充分完全的混合。
进一步的,设置加热温度略高于相变材料相变温度,并加入转子在磁力搅拌器上搅拌,可以快速均匀分散石墨烯,方便复合相变材料的制备。
本发明一种微波加热储能用复合相变材料的储能方法,针对现有相变储热技术的不足,提出了一种高效储热的新机制。由于加入吸波材料,复合相变材料可以在微波中可以被快速加热,利用微波能量,使石墨烯自内部开始发热并于短时间内达到高温,并且快速加热相变材料,使复合相变材料迅速由固相转变为液相,并储存由石墨烯转换为热能的微波能,完成相变材料储热过程快捷便利,复合相变材料依然保留了相变材料储热时间长,降温慢的特性,且循环寿命长,从而形成了一种新的能量转换和存储新机制。
进一步的,由于复合相变材料可以改变石墨烯等吸波材料的配比,从而能够调整改变吸收微波以发生相变所需的时间。
进一步的,微波功率范围大,应用器件小,可以直接使用家用微波炉加热,方便快捷;应用设备大,可以使用大型工业微波发生器,或定制频段的微波。微波时间根据用户需求设置,时间越长,温度越高。
进一步的,将复合相变材料作为储能系统的储热材料,使用清洁能源或夜间谷电,减少温室气体排放和充分利用闲时能源,降低储热成本;创新性引入微波加热法,利用微波的强穿透性、高能性,快速、均匀、安全地加热储热材料,将热能迅速地储存在储热材料中,提高储热材料的储热密度,保证储热材料的温度在合适的范围,不至于降低储热材料的使用寿命,并且不需要在储热材料中添加导热剂,提高储热材料占比,以提高储热材料的储热密度。本发明利用新能源或谷电为微波系统供电,微波环境对复合相变材料进行加热储热,并且通过循环供暖用水,将储存的热量提供给用户端使用;绿色环保,成本较低,储热迅速,是一种非常有前景的新机制。
进一步的,作为保温杯保温材料对保温杯内储藏液体(饮用水,牛奶等)进行保温;设计简单,制作流程无需真空等苛刻环境,可降低成本且更加安全,可以大批量规模化生产,利用微波对保温杯进行快速加热并储存大量热能,满足日常对饮品的保温需求,保温时间长,节约成本,且无任何附加装置。另外,在不使用微波时,保温杯内储热复合相变材料可以吸收来自储藏液体(饮用水,牛奶等)的热量,并由固相转变为液相,以使保温杯内饮品的温度长时间保持在复合相变材料的相变温度,如石蜡的相变温度约58℃。
进一步的,将复合相变材料填充在暖宝宝内,使其内部只有石蜡和石墨烯,没有电路,结构简单,使用安全;同时,采用微波加热的方式,一方面由于石蜡熔点低(58℃左右),不会发生温度过高、烫伤使用者的情况,另一方面可使暖宝宝受热均匀,不同位置温度一致,增强了保暖效果;此外,该暖宝宝可多次反复使用,寿命长。
附图说明
图1为实施例1中石墨烯/石蜡复合相变材料保温图;
图2为实施例3中石墨烯/Mg(NO 3) 2·6H 2O水合盐复合相变材料保温循环图。
图3为本发明实施例5保温时间的趋势图;
图4为发明实施例6保温时间的趋势图;
图5为本发明实例中所述的保温杯结构示意图;
图6为本发明实例中复合相变材料的固相;
图7为本发明实例中复合相变材料的液相;
图8为本发明实例中复合相变材料的固液混合相;
图9为本发明实例中储热系统示意图;
图10为本发明实例中吸波相变储热砖示意图,其中,(a)为主视图,(b)为侧视图,(c)为剖视图,(d)为立体图;
图11为本发明实例中暖宝宝示意图,其中,(a)为内胆,(b)为外包套。
图中:1.微波发生器;2.供暖用循环水;3.吸波相变储热砖;4.复合相变材料储存腔;5.杯体;6.复合相变材料;7.杯盖;8.系带;9.口袋;10.内胆。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
本发明所述的微波加热储能用复合相变材料,通过石墨烯的高阻抗匹配特性可以促使能量从相邻态向费米能级的及时转化,这些都有利于石墨烯的吸波性能,在相变材料的包围下,石墨烯纳米颗粒形成的错综复杂的网状结构自发且强烈地响应入射微波,由于其巨大的电阻-电感-电容耦合电路,时变电场感应电流在电路网络中迅速衰减并转换成热能。在这个过程中入射电磁波能迅速转变为热能。
本发明中的储能方法由于引入吸波材料,材料在微波中加热迅速且受热均匀,同时保留了相变材料保温时间持久,反复利用,循环寿命好的优点,在储热领域有广阔应用前景。
石墨烯是由碳原子通过SP2杂化构成的单原子层厚度的二维纳米材料,由于其比表面积大、超薄、界面大、透光率高、可调谐导电等独特的结构和物理化学性质。现有技术中在石墨烯吸波领域和储热领域交叉应用却鲜有研究,更没有在相变储热材料里混合石墨烯的交叉应用,石墨烯对微波优异的吸收性能使其在热能领域有得天独厚的优势,不仅是复合相变材料具有了吸波发热储热性能,石墨烯的吸波性能越优秀,相应的转换成热能的能力就越强;而且相比普通相变储热材料具有更优异的导热性能和稳定的吸放热循环性能;加热迅速且材料受热均匀,保温时间持久,可反复利用,循环寿命好,加热条件容易达到,有广阔的应用前景。
储能时,以吸波材料与相变材料构成的复合相变材料快速加热并储热保温,具体为:取相变材料作为原料,置于快速加热装置中,然后加入石墨烯,使用电磁搅拌器搅拌至完全分散,经自然冷却后制成复变相变材料。
其中,快速加热装置包括但不限于电磁加热板,水浴加热器等加热装置,在80~200℃下加热5~15min使相变材料完全由固态转变为液态。
操作时,复合相变材料微波加热时所用容器必须是微波可以穿透的器具,同时熔点要高,防止材料温度过高容器熔化,实验室所用为烧杯或玻璃培养皿。
本发明提供的储热系统,如图9所示,包括微波发生器1和吸波相变储热砖3,吸波相变储热砖3设置在供暖用循环水2的两侧,方便对供暖用循环水2进行加热,再通过供暖用循环水2对用户供暖设施进行供热;微波发生器1设置在吸波相变储热砖(3)的一侧,能够对吸波相变储热砖3内部的复合相变材料进行微波加热;使用清洁能源(风能、氢能、太阳能、潮汐能等)、谷电等环保能源对微波发生器1进行供电,不仅可减少温室气体的排放,而且能够合理利用闲时能源。
微波发生器1的功率为0.5~15kW。若在家中等小型供热时可选择微波, 微波时间设置为几十秒或者几分钟,非常方便快捷,可增强使用者的体验感;若在商场、建筑等大型供暖时可选择工业微波;如有特殊要求,还可以自己定制微波频率。
如图10所示,吸波相变储热砖3的内部间隔设置有多个复合相变材料储存腔4,复合相变材料储存腔4为球状空间,用于储存复合相变材料。
单块储热砖外部是由高导热、耐高温、耐腐蚀材料构成,最大程度避免砖体破裂损坏;砖体内部是球型空间,这种结构可以避免复合相变材料发生固-液相变时泄露出储热砖,并且隔绝相变材料与空气接触,延长了复合相变材料使用寿命。
本发明利用复合相变材料中蓄热材料在相变温度下发生物相变化,并伴随着吸收或放出热量来实现储存热能。复合相变材料经微波加热后的储热温度为91~607℃,可通过采用控制其比例得到不同储热范围的复合相变材料,还可通过设置微波的功率及时间来调节吸波相变储热砖的表面温度(95~608℃)以满足储热系统在不同场景(小型或工业)中的应用。
在储热系统中,相变材料和石墨烯的质量比为1:(0.01~0.015)。
吸波相变储热砖3外部设置有导热防腐层,导热防腐层采用硅酸盐、碳酸盐等高导热、耐高温、耐腐蚀材料构成。
本发明提供的储热系统的供暖过程如下:
1)首先在电力端,使用清洁能源进行供电,目前清洁能源技术发展迅速,包括风电,太阳能,氢能等,但这些能源由于不稳定无法并入电网,如果存储在电池中,再对储热系统进行供电,可以充分利用清洁能源,降低污染,减少温室气体的排放;还可以利用谷电,在夜间对系统进行供电储热,大大降低成本;
2)在储热系统端,提出一种新的加热方法,即对复合相变材料(相变材料/石墨烯)进行微波加热,微波加热属于介质加热范畴。微波加热是材 料在电磁场中由介质损耗引起的体加热。介质材料由极性分子和非极性分子组成。当介质在交变电磁场中,带有不对称电荷的分子受到交变电磁场的激励,产生转动,从随机分布状态转变为依电场方向进行取向排列。在微波电磁场作用下,这些取向运动以每秒数十亿次的频率不断发生,必须克服物体内部分子原有的无规则热运动和分子间相互作用的干扰和阻碍,产生“摩擦效应”,以热的形式表现出来,从而使物料被加热。微波场中,物质吸收微波的能力与其电磁特性和介电性能有关。介电损失能力强、介电常数较大的极性分子,与微波有较强的耦合作用,可将微波电磁能转化为热能;
3)在能量传输端,利用供暖用循环水与吸波相变储热砖之间的温度差,使热量由吸波相变储热砖传导入供暖用循环水,供暖用循环水再通过导热管道导向用户供暖设施,为用户提供源源不断的暖气;
4)由于储热材料在微波环境下可以重复储热放热,达到多次循环的效果,所以这种储热机制可以应用于民用住宅,商场等建筑群的供暖中。
本发明结合石墨烯的吸波性能和相变材料的储热性能,首次提出结合石墨烯等吸波材料吸波性能和石蜡等相变材料的复变性能作为保温杯的保温材料,具体的,通过控制石墨烯等吸波材料与石蜡材料等相变材料的配比;调整复合相变材料的微波加热时间;将复合相变材料置于保温杯内胆与外壁之间,充分密封制成保温杯。如图5所示,保温杯整体包括杯体5和杯盖7,杯盖7安装在杯体5的上端,杯体1内填充有复合相变材料6,通过调整复合相变材料6的微波加热时间实现保温储能。复合相变材料6相变温度约为54~62℃,熔化热约200~220J/g,密度约0.9g/cm 3,其优秀的储热能力和低密度,是优秀的保温储能材料。
请参阅图11,一种暖宝宝,包括系带8、口袋9和内胆10,内胆10的内部设置有石蜡/石墨烯复合相变材料,微波加热后石蜡/石墨烯复合相变材料的熔点为56~85℃,内胆10设置在口袋9内,口袋9的一端设置有系带8。
石蜡/石墨烯复合相变材料制成的内胆为砖块状,长宽高分别为25cm×15cm×2cm,容量为750mL,使用时将由相变材料制成的内胆10放入微波加热20~35s,放入外包套的口袋9,即可使用;如有需要,外包套的长条系带8可以系在腰间。
储热技术主要用于热能供应,先进的储热技术能够提高能源的利用效率,减少能量的损失,有利于热能的“随需随供”。相变储能是蓄热材料通过处理发生相变,把获得的能量储存在材料中,当需要能量时,使蓄热材料再次相变,把储存的能量以热能形式释放,供应用热端使用。
本发明一种暖宝宝中石蜡/石墨烯复合相变材料中,石蜡和石墨烯的质量比为1:(0.01~0.03),制得的复合相变材料的熔点范围为56~85℃,在微波环境下加热20~35s,可实现快速储热。
需要说明的是,由于石蜡与石墨烯的质量比不同,制得的复合相变材料的熔点会相应发生变化,其熔点范围为56~85℃。
需要说明的是,石蜡有很强的蓄热能力,没有析出现象,且具有无毒,无腐蚀,方便得到,价格便宜等优点。但是石蜡的主要缺点是导热率太低,容易出现受热不均匀的现象,导致储热时间很长,消耗能量多,限制了其大量使用。通过将石蜡与具有高导热系数的石墨烯复合得到石蜡/石墨烯复合相变材料,兼具石蜡和石墨烯的优点,可实现快速导热,持久储热。
石蜡在常温下是固态,需要高温(100-120℃)加热使之快速变为熔融状态,在熔融状态的石蜡中添加石墨烯后充分搅拌,可使石墨烯良好的分散于石蜡中,从而制得均匀的石蜡/石墨烯复合相变材料。
进一步的,石蜡与石墨烯的质量比是通过实验测定比较最终得到的,如果石墨烯含量太少,在微波中加热效果不明显,温度上升太慢;如果石墨烯含量太多,例如5%左右,在微波中会出现刺鼻的白烟,即石蜡烟雾。综合比较可得,石墨烯与石蜡的质量比为(0.01-0.03):1最为合适。
将复合相变材料放入微波环境中进行储热,时间设置为20-35s;取出后可以观察到复合相变材料发生相变,即可进行供热;将装有复合相变材料的保温袋内胆放入保温外护套中即可。
综上所述,为了增强石蜡的导热性,本发明采用添加石墨烯增强其导热能力。石墨烯具有非常好的热传导性能。纯的无缺陷的单层石墨烯的导热系数高达5300W/(m*K),是目前为止导热系数最高的碳材料。随着科学研究的不断发现,目前可以制备石墨烯的方法层出不穷,成本也在逐渐降低,因此石墨烯作为掺杂材料非常有应用前景。通过掺杂分布在石蜡中,可以大大增强石蜡的导热性能。以该复合相变材料作为暖宝宝的内胆,在实验室中,材料含量为30g时,可提供45分钟的保暖效果,将材料含量增加时,相应的,保暖效果会延长至几小时。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。通常在此处附图中的描述和所示的本发明实施例的组件可以通过各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
将30克石蜡在100℃加热5分钟,添加石墨烯充分搅拌至完全分散得到复合相变材料,石蜡与石墨烯的质量比为1:0.01,搅拌时间为10分钟,冷却后得到石墨烯复合相变材料。使用功率0.5千瓦的微波发生器对制备的石墨烯复合相变材料加热20秒用于储能。
放热测试结果:
20秒后从微波发生器中取出时复合相变材料温度为82℃,在环境中,10分钟后降至相变温度60℃,45分钟后降至33℃。如图1所示。
实施例2
将30克石蜡在140℃加热5分钟,添加石墨烯充分搅拌至完全分散得到复合相变材料,石蜡与石墨烯的质量比为1:0.02,搅拌时间为20分钟,使用功率1千瓦微波发生器对制备的复合相变材料加热15秒用于储能。
放热测试结果:
从微波炉中取出时温度为102℃,13分钟降至相变温度60℃,随后在环境中降至32℃所需时间约47分钟。
实施例3
将Mg(NO 3) 2·6H 2O在160℃加热10分钟,添加石墨烯充分搅拌至分散得到复合相变材料,Mg(NO 3) 2·6H 2O与石墨烯的质量比为1:0.03,超声搅拌10分钟,使用1千瓦的微波发生器对制备的复合相变材料加热3分钟用于储能,如图2所示。
放热测试结果:
从微波炉中取出时温度为155℃,15分钟降至相变温度90℃,随后在环境中降至室温25℃所需时间35分钟。再次进行微波储热后可很好进行放热。
实施例4
将2,2-二羟甲基丙酸和石墨烯放入球磨机中搅拌15分钟,2,2-二羟甲基丙酸与石墨烯的质量比为1:0.05,使用15kW的微波发生器对制备的复合相变材料加热1分钟用于储能。
保温测试结果:
从微波炉中取出时温度为170℃,3分钟降至相变温度150℃,随后在环境中降至室温55℃所需时间50分钟。
给出的实例对应不同种类的相变材料和添加不同比例的石墨烯,丰富了相变材料的选择,使用者根据具体温度选择具体的添加配比,说明了该储能方法适用范围广泛,实行条件要求低,具有很好研究和应用价值。
实施例5
1.取30g石蜡和0.3g石墨烯作为原料在80℃的加热情况下用电磁搅拌器使其充分混合,待其冷却后准备放入微波炉中测试;复合相变材料冷却后如图6所示;
2.设定微波时间20s,功率800w,微波结束后,可以看到本发明中复合相变材料完全转变为液相,储存了大量热量;复合相变材料液相如图7所示;
3.观测本发明中复合相变材料的冷却过程并记录其温度变化曲线。冷却放热过程中复合相变材料固液混合相状态如图8所示,温度变化曲线如图3所示。
实施例6
1.取30g水合盐八水合氢氧化钡和1.5g石墨烯作为原料在200℃的加热情况下用电磁搅拌器使其充分混合,待其冷却后准备放入微波炉中测试;
2.设定微波时间30s,功率1000w,微波结束后,可以看到本发明中复合相变材料完全转变为液相,储存了大量热量。
实施例7
1.取30g水合盐三水合醋酸钠和0.3g石墨烯作为原料在加热情况下用电磁搅拌器使其充分混合,待其冷却后准备放入微波炉中测试;
2.设定微波时间40s,功率1500w,微波结束后,可以看到本发明中复合相变材料完全转变为液相,储存了大量热量;
3.观测本发明中复合相变材料的冷却过程并记录其温度变化曲线,温度变化曲线如图4所示。
实施例8
将八水合氢氧化钡和石墨烯放入球磨机中搅拌20分钟,并在180℃情况下加热15分钟分散均匀,八水合氢氧化钡与石墨烯的质量比为1:0.04,使用15kW的微波发生器对制备的复合相变材料加热360秒用于储能。

Claims (18)

  1. 一种微波加热储能用复合相变材料,其特征在于,包括分散均匀的相变材料和石墨烯;相变材料和石墨烯的质量比为1:(0.01~0.05)。
  2. 根据权利要求1所述的一种微波加热储能用复合相变材料,其特征在于,所述的相变材料为石蜡、三水合醋酸钠、八水合氢氧化钡、水合硝酸镁和2,2-二羟甲基丙酸中的至少一种。
  3. 根据权利要求1所述的一种微波加热储能用复合相变材料,其特征在于,所述的石墨烯为膨胀石墨、热剥离石墨烯、机械剥离石墨烯、液相剥离石墨烯、高温碳化石墨烯、3D石墨烯、氧化石墨烯、还原氧化石墨烯和CVD石墨烯中的至少一种。
  4. 根据权利要求1所述的一种微波加热储能用复合相变材料,其特征在于,石墨烯为粉体或薄膜。
  5. 根据权利要求1所述的一种微波加热储能用复合相变材料,其特征在于,石墨烯的层数是单层、寡层或多层。
  6. 根据权利要求1所述的一种微波加热储能用复合相变材料,其特征在于,石墨烯的层数小于等于10层。
  7. 根据权利要求1所述的一种微波加热储能用复合相变材料,其特征在于,相变温度为54~62℃,熔化热为200~220J/g,密度为0.9g/cm 3
  8. 一种如权利要求1-7任意一项所述微波加热储能用复合相变材料的制备方法,其特征在于,根据相变材料和石墨烯的质量比,
    将相变材料熔化后添加石墨烯并充分搅拌至完全分散,自然冷却后制得复合相变材料;
    或将相变材料和石墨烯机械混合后再熔化并搅拌至完全分散制得复合相变材料。
  9. 根据权利要求8所述的制备方法,其特征在于,加热温度高于相变材料的相变温度,加热至完全熔化。
  10. 根据权利要求8所述的制备方法,其特征在于,在80~200℃的温度下加热相变材料至完全熔化。
  11. 根据权利要求8所述的制备方法,其特征在于,采用电磁加热板或水浴加热器对相变材料或者相变材料和石墨烯的混合物加热5~15min,至完全熔化。
  12. 根据权利要求8所述的制备方法,其特征在于,使用电磁搅拌器搅拌至完全分散,搅拌时间为10~20min。
  13. 一种微波加热储能用复合相变材料的储能方法,其特征在于,对如权利要求1-7任意一项所述的复合相变材料进行电能驱动的微波辐照,石墨烯吸收微波产生热并传导至相变材料,将电能经微波/石墨烯作用转换为热能并储存于复合相变材料中。
  14. 根据权利要求13所述的一种微波加热储能用复合相变材料的储能方法,其特征在于,所述电能驱动的微波功率为500~1500w。
  15. 根据权利要求13所述的一种微波加热储能用复合相变材料的储能方法,其特征在于,辐照作用时间为15~360s。
  16. 根据权利要求13所述的一种微波加热储能用复合相变材料的储能方法,其特征在于,将复合相变材料作为储热系统的保温材料,通过微波对储热系统中的复合相变材料进行加热并储存和传递热量;所述的储热系统包括微波发生器1和吸波相变储热砖3,吸波相变储热砖3内设置有复合相变材料;吸波相变储热砖3设置在供暖用循环水2的两侧,对供暖用循环水2进行加热处理,微波发生器1设置在吸波相变储热砖3的一侧,对复合相变材料进行微波加热,微波发生器1使用清洁能源或谷电进行供电。
  17. 根据权利要求13所述的一种微波加热储能用复合相变材料的储能方法,其特征在于,将复合相变材料作为保温杯的保温材料,通过微波对保温杯中的复合相变材料进行加热并将热量储存于填充在保温层的复合相变材料 中。
  18. 根据权利要求13所述的一种微波加热储能用复合相变材料的储能方法,其特征在于,将复合相变材料作为暖宝宝的保温材料,通过微波对暖宝宝中的复合相变材料进行加热,并将热量储存于填充在暖宝宝内的复合相变材料中。
PCT/CN2020/074463 2019-07-03 2020-02-07 一种微波加热储能用复合相变材料及其制备和储能方法 WO2021000585A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201910592641.3A CN110345542A (zh) 2019-07-03 2019-07-03 一种基于微波加热的复合材料及储热系统和其工作方法
CN201910592630.5 2019-07-03
CN201910592628.8A CN110305633A (zh) 2019-07-03 2019-07-03 一种暖宝宝
CN201910592630.5A CN110283573A (zh) 2019-07-03 2019-07-03 一种微波加热储能用复合相变材料及其制备方法和应用
CN201910592641.3 2019-07-03
CN201910592628.8 2019-07-03
CN201910592743.5A CN110205102A (zh) 2019-07-03 2019-07-03 一种基于微波-石墨烯复合相变材料体系的储能方法
CN201910592743.5 2019-07-03

Publications (1)

Publication Number Publication Date
WO2021000585A1 true WO2021000585A1 (zh) 2021-01-07

Family

ID=74100846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074463 WO2021000585A1 (zh) 2019-07-03 2020-02-07 一种微波加热储能用复合相变材料及其制备和储能方法

Country Status (1)

Country Link
WO (1) WO2021000585A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870760A (zh) * 2022-05-13 2022-08-09 湖北大学 一种无机壳材相变微胶囊的制备方法
CN114921233A (zh) * 2022-06-08 2022-08-19 安徽宇航派蒙健康科技股份有限公司 石墨烯相变导热膜及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2755500Y (zh) * 2004-12-27 2006-02-01 朱德峰 微波加热采暖及热水装置
CN102297511A (zh) * 2011-07-27 2011-12-28 华南理工大学 纳米相变蓄热材料的热泵热水器
CN106634854A (zh) * 2016-07-18 2017-05-10 常州富烯科技股份有限公司 一种泡沫状石墨烯/相变复合储能材料及其制备方法
CN207898585U (zh) * 2017-06-01 2018-09-25 赖可人 一种微波加热暖手宝
CN110205102A (zh) * 2019-07-03 2019-09-06 西安交通大学 一种基于微波-石墨烯复合相变材料体系的储能方法
CN110283573A (zh) * 2019-07-03 2019-09-27 西安交通大学 一种微波加热储能用复合相变材料及其制备方法和应用
CN110305633A (zh) * 2019-07-03 2019-10-08 西安交通大学 一种暖宝宝
CN110345542A (zh) * 2019-07-03 2019-10-18 西安交通大学 一种基于微波加热的复合材料及储热系统和其工作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2755500Y (zh) * 2004-12-27 2006-02-01 朱德峰 微波加热采暖及热水装置
CN102297511A (zh) * 2011-07-27 2011-12-28 华南理工大学 纳米相变蓄热材料的热泵热水器
CN106634854A (zh) * 2016-07-18 2017-05-10 常州富烯科技股份有限公司 一种泡沫状石墨烯/相变复合储能材料及其制备方法
CN207898585U (zh) * 2017-06-01 2018-09-25 赖可人 一种微波加热暖手宝
CN110205102A (zh) * 2019-07-03 2019-09-06 西安交通大学 一种基于微波-石墨烯复合相变材料体系的储能方法
CN110283573A (zh) * 2019-07-03 2019-09-27 西安交通大学 一种微波加热储能用复合相变材料及其制备方法和应用
CN110305633A (zh) * 2019-07-03 2019-10-08 西安交通大学 一种暖宝宝
CN110345542A (zh) * 2019-07-03 2019-10-18 西安交通大学 一种基于微波加热的复合材料及储热系统和其工作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUO MEI-RU , ZHOU WEN , ZHOU TIAN , SUN ZHI-QIANG , ZHOU JIE-MIN: "Investigation on the Thermophysical Properties of Graphene/Paraffin Composites", JOURNAL OF ENGINEERING THERMOPHYSICS, vol. 35, no. 6, 15 June 2014 (2014-06-15), pages 1200 - 1205, XP055771578, ISSN: 0253-231X *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870760A (zh) * 2022-05-13 2022-08-09 湖北大学 一种无机壳材相变微胶囊的制备方法
CN114870760B (zh) * 2022-05-13 2023-08-29 湖北大学 一种无机壳材相变微胶囊的制备方法
CN114921233A (zh) * 2022-06-08 2022-08-19 安徽宇航派蒙健康科技股份有限公司 石墨烯相变导热膜及其制备方法

Similar Documents

Publication Publication Date Title
Tao et al. Magnetically-accelerated large-capacity solar-thermal energy storage within high-temperature phase-change materials
WO2021000585A1 (zh) 一种微波加热储能用复合相变材料及其制备和储能方法
CN104710965A (zh) 一种多级孔道碳基复合相变材料的制备方法
Quan et al. Cellulose nanofibrous/MXene aerogel encapsulated phase change composites with excellent thermal energy conversion and storage capacity
Cui et al. Enhancing the heat transfer and photothermal conversion of salt hydrate phase change material for efficient solar energy utilization
CN110345542A (zh) 一种基于微波加热的复合材料及储热系统和其工作方法
Gao et al. Energy harvesting and storage blocks based on 3D oriented expanded graphite and stearic acid with high thermal conductivity for solar thermal application
CN110283573A (zh) 一种微波加热储能用复合相变材料及其制备方法和应用
CN111944496A (zh) 基于三维弹性泡沫结构的柔性相变储热复合材料及其制备和应用
Luo et al. A novel phase change materials used for direct photothermal conversion and efficient thermal storage
Liang et al. Sponge gourd-bioinspired phase change material with high thermal conductivity and excellent shape-stability
Chen et al. Integrating multiple energy storage in 1D–2D bridged array carbon‐based phase change materials
CN210430029U (zh) 板式加热冷却导热装置及采用该装置的可控温锂电池组
CN112940685A (zh) 一种相变储能材料及制备方法
CN109749715A (zh) 一种热相变储热材料在可移动多功能储热装置中的应用
CN110205102A (zh) 一种基于微波-石墨烯复合相变材料体系的储能方法
Wu et al. Development of a sodium acetate trihydrate-based phase change material for efficient solar/electric-to-thermal energy conversion
CN205048728U (zh) 一种双内胆蓄能水箱
CN111059601A (zh) 一种家用相变取暖装置
CN111336347A (zh) 一种储热保温管道热能补给装置
CN206300263U (zh) 一种硝酸盐电蓄热储能装置
CN105091331A (zh) 一种无水箱蓄能热泵热水器
CN108467712A (zh) 一种熔盐储热材料
CN108413797A (zh) 肋片式相变蓄放热一体式换热器
CN201401864Y (zh) 双相变超导储能电暖气

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20834764

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20834764

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20834764

Country of ref document: EP

Kind code of ref document: A1