WO2021000467A1 - 一种用于异氰酸酯类物质检测的荧光化合物及制备方法与其作为试纸型检测探针的应用 - Google Patents

一种用于异氰酸酯类物质检测的荧光化合物及制备方法与其作为试纸型检测探针的应用 Download PDF

Info

Publication number
WO2021000467A1
WO2021000467A1 PCT/CN2019/113788 CN2019113788W WO2021000467A1 WO 2021000467 A1 WO2021000467 A1 WO 2021000467A1 CN 2019113788 W CN2019113788 W CN 2019113788W WO 2021000467 A1 WO2021000467 A1 WO 2021000467A1
Authority
WO
WIPO (PCT)
Prior art keywords
isocyanate
detection
fluorescent compound
solution
probe
Prior art date
Application number
PCT/CN2019/113788
Other languages
English (en)
French (fr)
Inventor
吴水珠
徐灵峰
曾钫
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US17/298,951 priority Critical patent/US11427532B2/en
Publication of WO2021000467A1 publication Critical patent/WO2021000467A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B55/00Azomethine dyes
    • C09B55/005Disazomethine dyes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/24Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B

Definitions

  • the invention relates to the technical field of photochemical detection and analysis, in particular to a fluorescent compound used for isocyanate substance detection, a preparation method and its application as a test paper type detection probe.
  • Isocyanates mainly include monoisocyanates, diisocyanates, polyisocyanates and other compounds with -NCO functional groups. Because of its high reactivity of functional groups, isocyanates are widely used as raw materials in the polyurethane industry to produce various types of polyurethane products. In addition, isocyanate is also a necessary component of pesticides, fungicides, herbicides, etc., and is also widely used in industrial chemistry, pharmaceutical preparation, agricultural sterilization and other fields. Polyurethane products (such as polyurethane adhesives) will release residual free isocyanates or isocyanates produced by degradation during construction and use. In factories producing polyurethane products, isocyanate-based raw materials may also leak into the ambient atmosphere.
  • HPLC high performance liquid chromatography
  • Literature Journal of Chromatography, 1988, 435, 469-481 reported the analysis of substances containing 2,4-toluene diisocyanate, 2,6-toluene diisocyanate and related amino isocyanates by HPLC, mainly using alkaline ethanol as the derivatization reagent.
  • the isocyanate functional group is derivatized for detection.
  • Published in Analytical A research paper in Chemistry, 1981, 53, 1122-1125 reported the use of N-methyl-1-naphthylmethylamine as a derivatization reagent to derivatize a variety of isocyanates, and then use liquid chromatography to make their derivatives Perform testing.
  • the test process of the above method is cumbersome and the conditions are demanding.
  • Gas chromatography is also a method for the analysis and determination of isocyanate compounds.
  • the main operation steps include the selection of carrier gas type, flow rate control, preparation of test standard solutions, preparation of buffer solutions, preparation of samples, preparation of chromatographic columns Waiting for the process.
  • absorption spectroscopy is a measurement method based on the correlation between sample concentration and absorbance, and can also be used to determine the content of isocyanate.
  • Analytical Chemistry, 1957, 29, 552-558 reported the use of naphthalene ethylene diamine hydrochloride as the derivatization reagent of toluene diisocyanate, and the use of an absorption spectrophotometer to detect residual toluene diisocyanate volatiles in the air.
  • Published in Analyst, Articles on 1979, 104, 928-936 reported an absorption spectroscopy method to determine the content of aliphatic isocyanates and their oligomers in the air.
  • the isocyanates were dissolved in the corresponding amines for derivatization and the derivatives were determined. The absorbance, and then the isocyanate content.
  • the detection accuracy and sensitivity of absorption spectroscopy is low, and there are also problems such as incomplete hydrolysis of isocyanate, which leads to large discrepancies between the measurement results and actual results, a large amount of sample required, and a long color development process.
  • Fluorescence spectroscopy is a detection method with good selectivity, high sensitivity, and convenient use. It can also be used for the detection and analysis of isocyanate substances. Journal Paper Chemical Communication, 2014, 50, 716-718 reported a polymer for the detection of isocyanate.
  • the currently reported fluorescent probe compounds used to detect isocyanate substances are basically traditional aggregation quenching type fluorescent compounds and do not have aggregation-induced fluorescence enhancement effects. Therefore, these fluorescent probe compounds are used as solid-state detectors (such as test strips). ) When the fluorescence is quenched due to aggregation, the fluorescence quantum yield of solid-state detectors such as test paper is low, and the luminescence is weak, which affects the detection effect.
  • the purpose of the present invention is to provide a fluorescent compound for isocyanate detection, a preparation method and its application as a test paper detection probe.
  • the primary purpose of the present invention is to develop a fluorescent probe with aggregation induced luminescence (AIE) effect and sensitive detection of isocyanate.
  • AIE aggregation induced luminescence
  • Another object of the present invention is to provide a simple, fast and high-yield method for preparing the fluorescent compound.
  • Another object of the present invention is to provide the application of the above-mentioned fluorescent compound in isocyanate detection, and to provide a portable, fast, visual, and in-situ fluorescent change to isocyanate test paper probe.
  • the present invention provides a fluorescent compound (fluorescent probe) for the detection of isocyanate substances, with a chemical name of 2,4-bis(((4'-(diphenylamino)-[1,1'-biphenyl) ]-4-yl)imino)methyl)phenol, molecular formula is C 56 H 42 N 4 O, relative molecular mass is 786.33, referred to as BTPAP, structural formula is
  • the present invention provides a method for preparing the fluorescent compound for isocyanate detection, and the prepared reaction formula is as follows:
  • the present invention provides a method for preparing said fluorescent compound for isocyanate detection, including the following steps:
  • the molar ratio of the N,N-diphenyl-[1,1'-biphenyl]-4,4'-diamine in step (1) to the potassium carbonate in step (3) is 1:( 1-10).
  • the concentration of N,N-diphenyl-[1,1'-biphenyl]-4,4'-diamine is 0.01 M-0.1 M;
  • the concentration of 4-hydroxyisophthalaldehyde is 0.01 M-0.1 M.
  • the concentration of the aqueous potassium carbonate solution in step (3) is 1-6 mol/L.
  • the temperature of the heating reaction in step (4) is 25-120 °C, and the time of the heating reaction is 3 h-24 h.
  • step (4) includes: extracting with dichloromethane and deionized water, collecting the organic phase, drying with anhydrous sodium sulfate, and distilling under reduced pressure to remove the solvent, and further separating and purifying by silica gel chromatography.
  • the fluorescent compound used for the detection of isocyanate substances and the test paper type detection probe provided by the present invention can be applied to the analysis and detection of isocyanate substances.
  • test paper type detection probe used for isocyanate detection method includes the following steps:
  • BTPAP 2,4-bis(((4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)imino)methyl)phenol
  • the fluorescent compound used in the detection of isocyanate substances provided by the present invention is 2,4-bis(((4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)imino)methyl Base) phenol (abbreviated as BTPAP), molecular formula is C 56 H 42 N 4 O, relative molecular mass is 786.33.
  • BTPAP 2,4-bis(((4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)imino)methyl Base) phenol
  • molecular formula is C 56 H 42 N 4 O
  • relative molecular mass is 786.33.
  • the fluorescent compound BTPAP is an orange-yellow solid powder that is easily soluble in solvents such as dichloromethane (DCM), tetrahydrofuran (THF), and dimethyl sulfoxide (DMSO).
  • DCM dichloromethane
  • THF tetrahydrofuran
  • the fluorescent probe BTPAP under light conditions, due to the excited state intramolecular proton transfer effect (ESIPT), there is a rapid photoisomerization process, and its molecular structure is in the enol form (Enol form) and ketone form (Keto form). ) Reversible transition (the specific structural interconversion diagram is shown in Figure 1); therefore, BTPAP only shows weak dark orange fluorescence (at 580 nm).
  • ESIPT excited state intramolecular proton transfer effect
  • BTPAP When a test paper probe containing BTPAP is immersed in a solution containing isocyanate or exposed to air containing isocyanate, BTPAP chemically reacts with isocyanate, and the phenolic hydroxyl group in the molecular structure is converted into carbamate to form a new substance (BTPAP). -iso), its mechanism of action is shown in Figure 2 below.
  • the new substance does not have the ESIPT effect, so it shows a strong bright blue fluorescence at 425 nm. Due to the aggregation-induced luminescence characteristics, the fluorophore BTPAP-iso in the probe test paper has a high fluorescence quantum yield and strong luminescence, which can realize sensitive detection.
  • the fluorescent probe compound of the invention can be used for selective detection and visual analysis of isocyanate liquids and gases in industrial production or environmental monitoring.
  • the invention provides a fluorescent probe that can be used for the detection of isocyanate substances.
  • the fluorescence of the probe changes and enhances significantly, so that it can be portable and sensitive to isocyanate in solution or on test paper. , Visual inspection in situ.
  • the present invention has the following advantages and beneficial effects:
  • the fluorescent compound BTPAP for isocyanate detection provided by the present invention reacts with isocyanate, the power-supplying aromatic hydroxyl group (recognition group) on it is converted into a power-absorbing carbamate, which prevents
  • the ESIPT effect in the original structure quickly produces strong fluorescence; as the concentration of isocyanate substances increases, the fluorescence increases, so sensitive detection of isocyanates can be realized;
  • the fluorescent compound BTPAP provided by the present invention for the detection of isocyanate substances originally had a weak fluorescence emission peak at 580 nm. After reacting with the isocyanate, a new substance (BTPAP-iso) with strong fluorescence emission is produced.
  • the fluorescence peak moves to around 425 nm; the fluorescence emission wavelength range before and after the reaction does not overlap, the color distinguishability is high, and the influence of background fluorescence is reduced, so it can be used for visual detection with the naked eye;
  • the fluorescent compound BTPAP for the detection of isocyanate substances provided by the present invention has two triphenylamine groups, which can endow the probe with aggregation-inducing luminescence characteristics, ensuring that it is in solid state probes (such as test paper probes) with isocyanate After the reaction, the fluorescence quantum yield is high and the luminescence is strong, which is beneficial to improve the detection effect;
  • the prepared fluorescence detection test paper has a simple process, and the fluorescent compound (as a test paper-type detection probe) provided by the present invention for detecting isocyanate substances is applied in
  • the method for the analysis and detection of isocyanate substances is a method for the detection of isocyanate gases with good selectivity and high sensitivity, which can realize convenient, rapid, in-situ sensitive detection and easy to use;
  • the fluorescent compound BTPAP for isocyanate detection provided by the present invention is prepared by a simple one-step method, which is simple, efficient, and high in yield, suitable for large-scale industrial production, simple chemical process, easy to design, and no complicated post-processing The process, at the same time, the raw materials are abundant and easily available, and the price is moderate.
  • Figure 1 shows the fluorescent compound used in the detection of isocyanate substances in the enol formula (Enol Schematic diagram of the interconversion between the structure of form) and keto form (Keto form);
  • Fig. 2 is a schematic diagram of the response mechanism of the fluorescent compound used for isocyanate detection provided by the present invention to isocyanate;
  • Figure 3 shows the NMR of 2,4-bis(((4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)imino)methyl)phenol prepared in Example 1. Resonance hydrogen spectrum.
  • Fig. 4 shows the fluorescence spectra before and after the response of the fluorescent compound for isocyanate substance detection as a fluorescent probe to isocyanate provided by the present invention.
  • Fig. 5 is the absorption spectra before and after the response to the isocyanate of the fluorescent compound used for the detection of isocyanate substances as a fluorescent probe provided by the present invention.
  • FIG. 6 is a fluorescence spectrum diagram of the reaction product BTPAP-iso in Example 4 in a dichloromethane/methanol mixed solution with different ratios.
  • FIG. 7 is a graph showing the changes in fluorescence intensity of BTPAP-iso at 425 nm in different ratios of dichloromethane/methanol mixed solutions in Example 4.
  • FIG. 8 is a fluorescence spectrum diagram of the fluorescent compound BTPAP prepared in Example 4 for detecting isocyanate substances in response to different concentrations of isocyanate.
  • FIG 9 is a graph of the fluorescence intensity of the fluorescent compound BTPAP prepared in Example 4 for detecting isocyanate substances in response to different concentrations of isocyanate.
  • a method for preparing a fluorescent compound (BTPAP) for isocyanate detection including the following steps:
  • the chemical shift a at 9.91 ppm belongs to the characteristic peak of hydroxyl proton
  • the b and c at 8.79 ppm and 8.47 ppm belong to the characteristic peak of proton on the Schiff base structure, respectively
  • the proton peaks at 7.93 ppm and 7.65 ppm mainly belong to
  • the characteristic peaks of the benzene ring structure connected with triphenylamine, g between 7.3 ppm and 6.9 ppm are mainly the characteristic peaks of protons on the three aromatic rings of triphenylamine.
  • Nuclear magnetic analysis can confirm that the synthesized product is the target product.
  • the proton nuclear magnetic resonance spectrum is shown in Figure 3.
  • a method for preparing a fluorescent compound (BTPAP) for isocyanate detection including the following steps:
  • the characterization of the fluorescent probe compound BTPAP obtained in this example is the same as the result of the characterization in Example 1, which is shown in FIG. 3.
  • a method for preparing a fluorescent compound (BTPAP) for isocyanate detection including the following steps:
  • the characterization of the fluorescent probe compound (BTPAP) obtained in this example is the same as the characterization result in Example 1, which can be referred to as shown in FIG. 3.
  • isocyanate compounds include a variety of compounds containing isocyanate groups, in this example Chloroethyl isocyanate is mainly used as the model test object; the isocyanate solution is added dropwise to the probe BTPAP solution at room temperature 25 °C, shaken for 5 minutes, and the response of BTPAP to isocyanate is tested.
  • the test results are shown in Figure 4 and attached. Shown in Figure 5. It can be seen from Figure 4 and Figure 5 that after responding to isocyanate, the emission wavelength and absorption spectrum have a certain degree of blue shift.
  • BTPAP-iso When the fluorescent compound BTPAP chemically reacts with isocyanate, the phenolic hydroxyl group in the molecular structure will be converted into carbamate to form a new substance (BTPAP-iso).
  • BTPAP-iso The aggregation-induced luminescence properties of BTPAP-iso are tested below.
  • the volume percentages of methanol are 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%. , 95%, 99%, the concentration of BTPAP-iso during the test is 5 ⁇ M, the test temperature is room temperature, 360 nm is used as the excitation wavelength, and the measured spectrum is shown in Figure 6.
  • the fluorescence intensity at 425 nm varies with the volume fraction of methanol The changes are shown in Figure 7.
  • the electrons can dissipate the energy of the excited state electrons to transition back to the ground state through mechanical motion, making the fluorescence weak;
  • the increase in the volume fraction of methanol, a poor solvent makes the space for molecules to freely rotate and vibrate in the test solution system become smaller and smaller, and even agglomerate together due to poor solubility, thereby opening the excited state electron radiation to transition back to the ground state.
  • the channel can emit fluorescence, which fully reflects the characteristics of aggregation-induced luminescence.
  • Fig. 7 the quantitative curve of the fluorescence intensity at 425 nm with the increase of the methanol volume fraction also illustrates the existence of the above phenomenon.
  • the fluorescent compound prepared by the present invention has a good response effect to isocyanates of different concentrations, and as the isocyanate concentration increases, the fluorescence intensity gradually increases. It can be seen from Figure 9 that when the isocyanate concentration reaches 20 ⁇ M, the fluorescence enhancement amplitude gradually slows down, which shows that the reaction system tends to be saturated. It can be seen that the probe prepared by the present invention is suitable for the detection of isocyanates of different concentrations and has a wide applicable concentration range.
  • test paper type fluorescent probe containing BTPAP to isocyanate The response test of test paper type fluorescent probe containing BTPAP to isocyanate.
  • test paper probe yellow in appearance
  • test paper is suspended at a concentration of 5 In a ⁇ M isocyanate atmosphere, after standing for 5 minutes, the apparent color change under visible light can be seen.
  • isocyanate substances the test paper changes from apparent yellow to white, and the color change is visible to the naked eye.
  • the test papers were placed in an isocyanate atmosphere of different concentrations (0 ⁇ M-5 ⁇ M).
  • test paper After standing for 5 min, the test paper was placed at 15 W The fluorescence change graph under the irradiation of a 365 nm portable UV lamp can be directly observed; under the excitation of 365 nm, as the concentration of isocyanate increases, it can be found that the fluorescence intensity of the probe increases, and the fluorescence color gradually changes from dark orange to bright blue color.
  • the probe molecule itself has a good aggregation-induced luminescence effect, and the fluorescence quantum yield is high when it is assembled in the solid state and has a strong fluorescence intensity.
  • the above results indicate that the test paper probe prepared from the probe molecule can respond to isocyanate, and the changes are visible to the naked eye.
  • the preparation process is simple, the operation is convenient, and it is easy to carry, store and apply.
  • the present invention uses the fluorescent probe molecule 2,4-bis(((4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)imino)methyl)phenol (BTPAP) to For detection of isocyanate, the probe molecule (the fluorescent compound used for isocyanate detection) itself has AIE properties.
  • the fluorescence can change and increase with the increase of isocyanate concentration, and the fluorescence change range is large , The color can be distinguished to a high degree.
  • test paper probe which is suitable for detecting isocyanate volatiles in the air; in the presence of isocyanate, the color change of the test paper probe under visible light can be visible to the naked eye; under a 365nm ultraviolet lamp, the test paper probe The fluorescence intensity of the needle blue shifts and increases with the increase of the isocyanate gas concentration.
  • the fluorescent probe prepared by the present invention can be used in the detection of solution and gaseous isocyanate, and can be specifically applied to the monitoring of the harmful substance of isocyanate in the atmosphere, water resources, factory working space, and industrial wastewater.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开了一种用于异氰酸酯类物质检测的荧光化合物及制备方法与其作为试纸型检测探针的应用。该荧光化合物为2,4-二(((4'-(二苯基氨基)-[1,1'-联苯]-4-基)亚氨基)甲基)苯酚。该荧光化合物由一步法制得,制备简便,产率较高,能对异氰酸酯类物质发生快速而特异性的响应,其荧光强度会随异氰酸酯浓度的增大而增强。该荧光化合物可制成便携式检测空气中异氰酸酯类物质的试纸型探针,能实现对挥发性异氰酸酯类气体的可视化检测。该探针有聚集诱导发光效应,能够在采用试纸型探针进行检测时具有较高的荧光量子产率。本发明制备的荧光探针能用于溶液中和气态异氰酸酯类物质的检测,可用于监测大气、水资源等中的异氰酸酯。

Description

一种用于异氰酸酯类物质检测的荧光化合物及制备方法与其作为试纸型检测探针的应用 技术领域
本发明涉及光化学检测分析技术领域,具体涉及一种用于异氰酸酯类物质检测的荧光化合物及制备方法与其作为试纸型检测探针的应用。
背景技术
异氰酸酯主要包括单异氰酸酯、二异氰酸酯和多异氰酸酯等多种带有-NCO官能团的化合物。因其官能团反应活性较高,异氰酸酯作为原料广泛应用于聚氨酯工业中,用于生产各类聚氨酯物品。此外,异氰酸酯也是杀虫剂、杀菌剂、除草剂等的必要组分,在工业化学、药物制备、农业杀菌等领域也有广泛应用。聚氨酯产品(如聚氨酯胶黏剂)在施工和使用过程中都会释放出残存的游离异氰酸酯或降解产生的异氰酸酯类物质。在生产聚氨酯产品的工厂里,异氰酸酯类原料也可能泄漏至环境气氛中。人类暴露在含有这类物质的空气中,短期可出现口干、咳嗽、咽痛甚至哮喘等症状,长期则可能出现肝、肺功能下降的严重危害。因此,开发一种能够高效便捷地检测水和空气中异氰酸酯含量的荧光化合物,对工业安全、环境以及人体健康具有重要意义。
迄今为止,已有多种方法用于检测异氰酸酯的分析和检测,主要包括液相色谱法、气相色谱法、吸收光谱法和荧光光谱法等。其中,高效液相色谱法(HPLC)是目前国际主流的一种检测异氰酸酯类物质的常用方法,其主要原理是将异氰酸酯类物质与衍生化试剂反应生成稳定的衍生物再进行测定,常用的检测器为紫外检测器和示差折光检测器。例如文献Analyst, 1991, 116, 21-25报道了利用不同种类的胺类物质作为衍生化试剂与异氰酸酯进行衍生反应,然后采用HPLC对衍生化产物进行检测,可实现对苯基异氰酸酯类物质的检测。美国专利U.S. Pat. No. 6656737公开了9-蒽甲基-1-哌嗪羧酸酯作为异氰酸酯的衍生化试剂,使用HPLC对异氰酸酯单体和异氰酸酯类物质总量进行检测。文献Journal of Chromatography, 1988, 435, 469-481报道了采用HPLC对含有2,4-甲苯二异氰酸酯、2,6-甲苯二异氰酸酯及相关氨基异氰酸酯类物质的分析,主要采用碱性乙醇作为衍生化试剂,将异氰酸酯官能团衍生化进行检测。发表在Analytical Chemistry, 1981, 53, 1122-1125的研究论文报道了以N-甲基-1-萘甲胺作为衍生化试剂,用以衍生化多种异氰酸酯类物质,进而采用液相色谱法对其衍生物进行检测。然而,上述方法的测试过程繁琐且条件要求高,需要有较高的经验来根据被检测物质的特性选择合适的衍生化试剂以及选择合适的检测器,同时测试周期较长,且难以实现便携、快速及可视化检测。气相色谱法也是一种用于异氰酸酯类化合物的分析测定方法,主要的操作步骤包括载气类型的选择、流速的控制、测试标准溶液的配制、缓冲溶液的配制、样品的准备、色谱柱的准备等过程。例如文献Journal of Chromatography A, 1981, 208, 313-321报道了通过异氰酸酯在稀盐酸中水解成胺,然后使用七氟丁酸酐将其衍生化,通过气相色谱仪检测工业废气中存在的异氰酸酯类挥发物。另外,气相色谱中的毛细管气相色谱法,其柱内无需装填料,柱效较高。文献Analytical Chemistry, 1994, 66, 1664-1666报道了用毛细管气相色谱法测定涂料中的1,6-己二异氰酸酯(HDI)含量。文献Journal of Chromatography A, 1985, 346, 191-204报道了使用毛细管气相色谱法检测聚氨酯聚合物热降解过程中可能产生的异氰酸酯类物质。但是使用气相色谱法检测时必须将待测物气化,并需要严格控制气化温度等实验条件,整个分析测试过程繁杂且对样品要求高,限制性较强,所需的设备操作经验也要求较高,同时其设备价格较为昂贵,且测试周期较长,难以实现便携、快速的检测应用。
此外,吸收光谱法是基于样品浓度与吸光度的相关性的测定方法,也可用来测定异氰酸酯的含量。例如文献Analytical Chemistry, 1957, 29, 552-558报道了以盐酸萘乙二胺作为甲苯二异氰酸酯的衍生化试剂,使用吸收分光光度计来检测空气中残留的甲苯二异氰酸酯类挥发物。发表在Analyst, 1979, 104, 928-936上的文章报道了一种测定空气中脂肪族异氰酸酯及其低聚物含量的吸收光谱法,将异氰酸酯类物质溶解在相应的胺中进行衍生化反应,并测定衍生物的吸光度,进而得出异氰酸酯的含量。但是吸收光谱法的检测准确度和灵敏度较低,也存在异氰酸酯的不完全水解导致测定结果与实际出入较大、所需样品量较大、显色过程较为漫长等问题。荧光光谱法是一种选择性较好、灵敏度高、且使用方便的检测方法,也可用于对异氰酸酯类物质进行检测分析。期刊论文Chemical Communication, 2014, 50, 716-718报道了一种用于检测异氰酸酯的聚合物,当空气氛围中存在挥发性异氰酸酯时聚合物的荧光就会淬灭(turn-off),由此能够对异氰酸酯进行检测,但是该种聚合物结构较复杂,制备困难;同时探针还可能受多种因素的影响导致荧光淬灭,可能导致假阳性的结果,影响检测效果。文献Chemical Communication, 2017, 53, 6231-6234报道了一种基于蒽甲酰亚胺的比率型荧光小分子,当异氰酸酯和荧光分子中芳香环上的羟基反应后,分子内推-拉电子效应发生变化,导致荧光颜色发生变化,从而实现了对异氰酸酯的检测。但是该分子合成复杂,且制备过程中需要用到大量的诸如草酰氯等危险且具有刺激性的化学试剂,不利于环境保护;同时因为制备的流程较长,导致最终的产率也不高,不利于大规模生产。目前报道的用于检测异氰酸酯类物质的荧光探针化合物基本属于传统的聚集淬灭型的荧光化合物,不具备聚集诱导荧光增强效应,因而这些荧光探针化合物在用作固态检测器(如检测试纸)时往往会因聚集导致荧光淬灭,使得试纸等固态检测器的荧光量子产率低,发光较弱,从而影响检测效果。
尽管用于检测异氰酸酯的荧光化合物的研究目前已经取得了一定的进展,但鲜有同时具备以下特性的检测体系:(1)对异氰酸酯类物质响应速度快、灵敏且特异性识别能力强;(2)制备过程简单、产率高且制备所需原料来源丰富、易得;(3)荧光探针化合物具有聚集诱导发光特性,因此试纸型固体探针的荧光量子产率高,发光强度高;(4)既可以用于液体异氰酸酯的检测,还能构建成试纸型固态探针对气体异氰酸酯进行检测;(5)响应前后颜色和荧光变化可依赖裸眼直接可区分。因此,开发具有上述特性的荧光检测探针可实现对异氰酸酯的更加便捷、灵敏、可视化的检测分析。
技术问题
为了克服现有技术存在的上述不足,本发明的目的是提供一种用于异氰酸酯类物质检测的荧光化合物及制备方法与其作为试纸型检测探针的应用。
本发明的首要目的是开发一种具有聚集诱导发光(AIE)效应、且对异氰酸酯灵敏检测的荧光探针。
本发明的另一目的在于提供一种的简单、快捷、产率高制备上述荧光化合物的方法。
本发明的再一目的在于提供上述荧光化合物在异氰酸酯检测中的应用,以及提供一种便携、快速、可视化、原位地对异氰酸酯有荧光变化的试纸型探针。
技术解决方案
本发明的目的至少通过如下技术方案之一实现。
本发明提供的一种用于异氰酸酯类物质检测的荧光化合物(荧光探针),化学名称为2,4-二(((4’-(二苯基氨基)-[1,1’-联苯]-4-基)亚氨基)甲基)苯酚,分子式为C 56H 42N 4O,相对分子质量为786.33,简称为BTPAP,结构式为
Figure dest_path_image001
本发明提供的一种制备所述的用于异氰酸酯类物质检测的荧光化合物的方法,制备的反应式如下所示:
Figure 729397dest_path_image002
本发明提供的一种制备所述的用于异氰酸酯类物质检测的荧光化合物的方法,包括如下步骤:
(1)将N,N-二苯基-[1,1’-联苯]-4,4’-二胺溶于乙腈,超声搅拌均匀,得到溶液1;
(2)将4-羟基间苯二甲醛溶于乙腈,超声搅拌均匀,得到溶液2;
(3)将碳酸钾溶于去离子水中,超声搅拌均匀,得到碳酸钾的水溶液;
(4)将步骤(1)所述溶液1和步骤(2)所述溶液2混合,混合均匀,然后滴加步骤(3)所述碳酸钾的水溶液,抽真空充入氮气,进行加热反应,冷却至室温,分离纯化,得到橙黄色粉末,即所述用于异氰酸酯类物质检测的荧光化合物。
进一步地,步骤(1)所述N,N-二苯基-[1,1’-联苯]-4,4’-二胺与步骤(2)所述4-羟基间苯二甲醛的摩尔比为(2-5):1。
进一步地,步骤(1)所述N,N-二苯基-[1,1’-联苯]-4,4’-二胺与步骤(3)所述碳酸钾的摩尔比为1:(1-10)。
进一步地,在步骤(1)所述溶液1中,N,N-二苯基-[1,1’-联苯]-4,4’-二胺的浓度为0.01 M-0.1 M;在步骤(2)所述溶液2中,4-羟基间苯二甲醛的浓度为0.01 M-0.1 M。
进一步地,步骤(3)所述碳酸钾的水溶液浓度为1-6 mol/L。
进一步地,步骤(4)所述加热反应的温度为25-120 °С,所述加热反应的时间为3 h-24 h。
进一步地,步骤(4)所述分离纯化包括:用二氯甲烷和去离子水萃取,收集有机相,并用无水硫酸钠干燥,减压蒸馏除去溶剂后,经硅胶色谱柱进一步分离纯化。
本发明提供的用于异氰酸酯类物质检测的荧光化合物及其试纸型检测探针能够应用于异氰酸酯类物质的分析检测。
以上所述的试纸型检测探针用于异氰酸酯检测的方法,包括如下步骤:
将2,4-二(((4’-(二苯基氨基)-[1,1’-联苯]-4-基)亚氨基)甲基)苯酚(简称为BTPAP)溶于二氯甲烷中,制备得到荧光化合物测试母液;将所述测试母液滴加在Whatman滤纸上,充分润湿后,自然风干,得到试纸型检测探针,将检测探针与待检测物(被污染的空气或水源)接触,若检测探针显现出亮蓝色荧光(425 nm处),则表明待检测物含有异氰酸酯类物质。
本发明提供的用于异氰酸酯类物质检测的荧光化合物为2,4-二(((4’-(二苯基氨基)-[1,1’-联苯]-4-基)亚氨基)甲基)苯酚(简称为BTPAP),分子式为C 56H 42N 4O,相对分子质量为786.33。荧光化合物BTPAP为一种橙黄色固体粉末,易溶于二氯甲烷(DCM)、四氢呋喃(THF)、二甲基亚砜(DMSO)等溶剂。该化合物光稳定性良好,无毒,难升华,物理稳定性良好,且化学结构稳定,适合长期贮存使用。另外,荧光探针BTPAP在光照情况下,因激发态分子内质子转移效应(ESIPT),存在着快速的光异构化过程,其分子结构在烯醇式(Enol form)和酮式(Keto form)之间发生可逆的转变(具体结构互变示意图如附图1所示);因此BTPAP只显现出较弱的暗橙色荧光(580 nm处)。
当含BTPAP的试纸型探针浸入含异氰酸酯的溶液中或者暴露于含有异氰酸酯的空气中,BTPAP与异氰酸酯发生化学反应,分子结构中的酚羟基被转化为氨基甲酸酯而生成新的物质(BTPAP-iso),其作用机理如下附图2所示。新物质不存在ESIPT效应,因此在425 nm处显现出强烈的亮蓝色荧光。由于聚集诱导发光特性,探针试纸中的荧光团BTPAP-iso的荧光量子产率高,发光强烈,可实现灵敏检测。本发明荧光探针化合物可用于工业生产或者环境监测过程中对异氰酸酯类液体、气体的选择性检测和可视化分析。
本发明提供了一种可用于异氰酸酯类物质检测的荧光探针,该探针在异氰酸酯类物质存在条件下,其荧光显著变化及增强,从而能够在溶液中或者试纸上实现对异氰酸酯的便携、灵敏、原位的可视化检测。
有益效果
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明提供的用于异氰酸酯类物质检测的荧光化合物BTPAP在与异氰酸酯类物质反应后,其上的供电性芳羟基(识别基团)转变为吸电性的氨基甲酸酯,阻止了原结构中的ESIPT效应,从而迅速产生强烈的荧光;随着异氰酸酯类物质浓度的增加,荧光增强,因此可实现对异氰酸酯的灵敏检测;
(2)本发明提供的用于异氰酸酯类物质检测的荧光化合物BTPAP原本在580 nm处有一微弱的荧光发射峰,与异氰酸酯反应后,产生新的物质(BTPAP-iso)具有强烈的荧光发射,其荧光峰移至425 nm附近;反应前后的荧光发射波长范围不重叠,颜色可区分度较高,降低了背景荧光的影响,因此可用于肉眼可视化的检测;
(3)本发明提供的用于异氰酸酯类物质检测的荧光化合物BTPAP具有两个三苯胺基团,可赋予探针聚集诱导发光特性,确保其在固态探针(如试纸型探针)中与异氰酸酯反应后的荧光量子产率高、发光强烈,有利于提高检测效果;所制备的荧光检测试纸工艺简单,本发明提供的用于异氰酸酯类物质检测的荧光化合物(作为试纸型检测探针)应用在异氰酸酯类物质分析检测的方法,是一种检测选择性好、灵敏度高的异氰酸酯类气体检测的方法,可实现便捷、快速、原位的灵敏检测,易于使用;
(4)本发明提供的用于异氰酸酯类物质检测的荧光化合物BTPAP采用简单的一步法制备,简单、高效、且产率高,适合大规模工业化生产,化工流程简单、易设计,后处理无复杂流程,同时,原料丰富易得、价格适中。
附图说明
图1为本发明提供的用于异氰酸酯类物质检测的荧光化合物在烯醇式(Enol form)和酮式(Keto form)结构之间互变的示意图;
图2为本发明提供的用于异氰酸酯类物质检测的荧光化合物对异氰酸酯响应的机理示意图;
图3为实施例1制得的2,4-二(((4’-(二苯基氨基)-[1,1’-联苯]-4-基)亚氨基)甲基)苯酚的核磁共振氢谱图。
图4为本发明提供的用于异氰酸酯类物质检测的荧光化合物作为荧光探针对异氰酸酯响应前后的荧光光谱图。
图5为本发明提供的用于异氰酸酯类物质检测的荧光化合物作为荧光探针对异氰酸酯响应前后的吸收光谱图。
图6为实施例4中反应产物BTPAP-iso在不同比例二氯甲烷/甲醇混合溶液中的荧光光谱图。
图7为实施例4中在不同比例的二氯甲烷/甲醇混合溶液中BTPAP-iso在425 nm处的荧光强度变化图。
图8为实施例4制得的用于异氰酸酯类物质检测的荧光化合物BTPAP对不同浓度的异氰酸酯响应的荧光光谱图。
图9为实施例4制得的用于异氰酸酯类物质检测的荧光化合物BTPAP对不同浓度异氰酸酯响应的荧光强度图。
本发明的实施方式
以下结合附图和实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。所用试剂或仪器未注明生产厂商者,视为可以通过市售购买得到的常规产品。
以下实施例制备用于异氰酸酯类物质检测的荧光化合物的化学反应式如下所示:
Figure dest_path_image003
实施例1
一种用于异氰酸酯类物质检测的荧光化合物(BTPAP)的制备方法,包括如下步骤:
(1)将672 mg的N,N-二苯基-[1,1’-联苯]-4,4’-二胺溶于20 mL乙腈,超声搅拌均匀,得到溶液1;
(2)将150 mg的4-羟基间苯二甲醛溶于10 mL乙腈,超声搅拌均匀,得到溶液2;
(3)同时将138 mg的碳酸钾溶于去离子水,超声搅拌均匀,得到1 mol/L的碳酸钾水溶液;
(4)将步骤(1)所述溶液1和步骤(2)所述溶液2混合均匀,并向其中滴加步骤(3)制得的1 mol/L的碳酸钾水溶液,抽真空充入氮气,进行加热反应,控制反应温度在25 °C,反应3 h后,将反应停止,冷却到室温后,分离纯化,得到565.9 mg橙黄色粉末2,4-二(((4’-(二苯基氨基)-[1,1’-联苯]-4-基)亚氨基)甲基)苯酚,即所述用于异氰酸酯类物质检测的荧光化合物(BTPAP),产率为72%;
通过核磁共振氢谱对该产物进行表征, 1H NMR (600 MHz, DMSO-d6) δ 9.91 (s, 1H), 8.79 (s, 1H), 8.47 (s, 1H), 7.93 (dd, J = 17.1, 9.0 Hz, 2H), 7.65 (dd, J = 8.2, 3.2 Hz, 4H), 7.40 (dd, J = 15.6, 8.3 Hz, 8H), 7.27-7.23 (m, 10H), 7.13-7.08 (m, 6H), 7.07-6.98 (m, 9H)。其中,化学位移在9.91 ppm处的a归属于羟基质子特征峰,在8.79 ppm和8.47 ppm的b、c分别属于席夫碱结构上的质子特征峰,7.93 ppm和7.65 ppm上的质子峰主要属于与三苯胺想连的苯环结构特征峰,7.3 ppm-6.9 ppm之间的g主要属于三苯胺三个芳环上的质子特征峰。通过核磁的分析可以确定所合成的产物为目标产物体。其核磁共振氢谱如附图3所示。
实施例2
一种用于异氰酸酯类物质检测的荧光化合物(BTPAP)的制备方法,包括如下步骤:
(1)将1008 mg的N,N-二苯基-[1,1’-联苯]-4,4’-二胺溶于50 mL乙腈,超声搅拌均匀,得到溶液1;
(2)将150 mg的4-羟基间苯二甲醛溶于50 mL乙腈,超声搅拌均匀,得到溶液2;
(3)将690 mg的碳酸钾溶于去离子水,超声搅拌均匀,得到3 mol/L的碳酸钾水溶液
(4)将步骤(1)所述溶液1和步骤(2)所述溶液2混合均匀,并向其中滴加步骤(3)制得的3 mol/L的碳酸钾水溶液,抽真空充入氮气,进行加热反应,控制反应温度在70 °C,反应12 h后,将反应停止,冷却到室温后,分离纯化,得到644.5 mg橙黄色粉末2,4-二(((4’-(二苯基氨基)-[1,1’-联苯]-4-基)亚氨基)甲基)苯酚,即所述用于异氰酸酯类物质检测的荧光化合物(BTPAP),产率为82%。
本实施例中所得荧光探针化合物BTPAP的表征与实施例1中表征的结果是相同的,可参照附图3所示。
实施例3
一种用于异氰酸酯类物质检测的荧光化合物(BTPAP)的制备方法,包括如下步骤:
(1)将1680 mg的N,N-二苯基-[1,1’-联苯]-4,4’-二胺溶于500 mL乙腈,超声搅拌均匀,得到溶液1;
(2)将150 mg的4-羟基间苯二甲醛溶于100 mL乙腈,超声搅拌均匀,得到溶液2;
(3)将1380 mg的碳酸钾溶于去离子水,超声搅拌均匀,得到6 mol/L的碳酸钾水溶液;
(4)将步骤(1)所述溶液1和步骤(2)所述溶液2混合均匀,并向其中滴加步骤(3)制得的6 mol/L碳酸钾水溶液,抽真空充入氮气,进行加热反应,控制反应温度在120 °C,反应24 h后,将反应停止,冷却到室温后,分离纯化,得到707.4 mg橙黄色粉末2,4-二(((4’-(二苯基氨基)-[1,1’-联苯]-4-基)亚氨基)甲基)苯酚,即所述用于异氰酸酯类物质检测的荧光化合物(BTPAP),产率为90%。
本实施例中所得荧光探针化合物(BTPAP)的表征与实施例1中表征的结果是相同的,可参照附图3所示。
实施例4
光谱学性能测试。
(1)BTPAP荧光化合物对异氰酸酯响应前后的荧光光谱和吸收光谱测试:
将1.6 mg荧光化合物2,4-二(((4’-(二苯基氨基)-[1,1’-联苯]-4-基)亚氨基)甲基)苯酚(BTPAP)溶于2 mL的DCM中,配制成浓度为1 mM的荧光化合物母液。测试时保持荧光化合物浓度为5 μM,测试体系总体积保持为3 mL(含体积百分比为1%的二氯甲烷);异氰酸酯类化合物包括多种含有异氰酸基团的化合物,在本实施例中主要使用氯乙基异氰酸酯为模型被测物;在室温25 °C下往探针BTPAP溶液中滴加异氰酸酯溶液,摇晃5 min,测试BTPAP对异氰酸酯的响应情况,测试结果如附图4和附图5所示。从附图4和附图5中可以看出,对异氰酸酯响应后,发射波长和吸收光谱都出现了一定程度的蓝移,这是由于异氰酸酯和芳香羟基反应后,ESIPT效应消失,从而无法进行烯醇式和酮式结构互变,同时电子效应也发生变化,导致荧光发射的蓝移与增强。
(2)BTPAP-iso的聚集诱导发光性质测试:
当荧光化合物BTPAP与异氰酸酯发生化学反应,分子结构中的酚羟基会被转化为氨基甲酸酯而生成新的物质(BTPAP-iso)。以下对BTPAP-iso进行聚集诱导发光性质测试。
通过配制不同体积分数的二氯甲烷和甲醇混合溶液,其中甲醇的体积百分比分别为0%、10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、99%,测试时BTPAP-iso浓度为5 μM,测试温度为室温,以360 nm作为激发波长,所测光谱如附图6所示,在425 nm处的荧光强度随甲醇体积分数的变化如附图7所示。从附图7中可以看出,在甲醇体积分数较小的测试溶液体系中(<50%),溶液荧光微弱;当甲醇体积分数逐渐增大时,荧光强度逐渐增强,尤其是当甲醇体积分数增大到99%时,荧光强度增加到最大值。这是因为探针分子在二氯甲烷中溶解性较好,其分子能够在溶液中自由旋转和振动,电子可以通过机械运动耗散激发态电子跃迁回基态的能量,使得荧光微弱;而随着甲醇这种不良溶剂体积分数的增加,使得分子在测试溶液体系中自由旋转和振动的空间越来越小,甚至因为溶解性变差而团聚在一起,进而打开了激发态电子辐射跃迁回基态的通道,能够释放出荧光,这充分体现了聚集诱导发光现象的特点。另外,从附图7中也可以看出,在425 nm的荧光强度随着甲醇体积分数增加的量化曲线也说明了上述现象的存在。
(3)BTPAP荧光探针对不同浓度异氰酸酯的响应试验:
配制不同浓度的异氰酸酯测试样本溶液(浓度值分别为0 μM、1 μM、2 μM、3 μM、5 μM、8 μM、10 μM、15 μM、20 μM、30 μM、40 μM)。在测试过程中保持探针浓度为5 μM,且控制DCM与甲醇的体积分数为1/99,测试温度为室温,响应时间为5 min,以360 nm作为激发波长,分别测定荧光探针对不同浓度异氰酸酯响应的荧光光谱图(在425 nm处的荧光强度),测试结果如附图8所示。另外,对不同浓度异氰酸酯的荧光强度值曲线如附图9所示。从附图8中可以看出,本发明制得的荧光化合物对不同浓度的异氰酸酯均有良好的响应效果,且随着异氰酸酯浓度的增加,荧光强度也逐渐增强。从附图9中可见,当异氰酸酯浓度达到20 μM后荧光增强幅度逐渐放缓,可见反应体系趋于饱和。由此可见,本发明所制得的探针适用于不同浓度的异氰酸酯的检测,且有较宽的适用浓度范围。
实施例5
含BTPAP的试纸型荧光探针对异氰酸酯的响应试验。
配制1 mM的荧光探针BTPAP母液,并将其均匀地滴在Whatman滤纸上,在室温下自然风干后,制得试纸型探针(表观呈黄色),之后将一个试纸悬挂于浓度为5 μM的异氰酸酯氛围中,静置5 min后,可看出其在可见光下的表观颜色变化,在异氰酸酯类物质存在下,试纸从表观的黄色变为白色,且颜色变化裸眼可见。另外,将试纸分别静置在不同浓度(0 μM-5 μM)的异氰酸酯氛围中,静置5 min后,在15 W 365 nm的手提式紫外灯照射下的荧光变化图可直接观察;在365 nm的激发下,随着异氰酸酯浓度的增加,能够发现探针的荧光强度增加,荧光颜色由暗橙色逐渐变成亮蓝色。另一方面,探针分子本身具有较好的聚集诱导发光效应,在固态聚集时荧光量子产率高而具有很强的荧光强度。以上结果说明由探针分子制备的试纸型探针能够对异氰酸酯响应,且变化裸眼可见。其制备工艺简单、操作方便,易于携带、贮存、应用。
本发明以荧光探针分子2,4-二(((4’-(二苯基氨基)-[1,1’-联苯]-4-基)亚氨基)甲基)苯酚(BTPAP)对异氰酸酯进行检测,该探针分子(所述用于异氰酸酯类物质检测的荧光化合物)本身具有AIE性质,在测试溶液中能够随着异氰酸酯浓度的增加而荧光发生变化及增强,其荧光变化范围较大,颜色的可分辨程度高。此外,其可以制备成试纸型探针,适用于检测空气中存在的异氰酸酯挥发物;在异氰酸酯存在下,在可见光下试纸型探针的颜色变化能够裸眼可见;在365nm紫外灯下,试纸型探针的荧光强度随异氰酸酯气体浓度的增大而发生蓝移和增强。上述结果说明本发明制备的荧光探针能用于溶液中和气态异氰酸酯的检测,具体可应用于大气、水资源、工厂作业空间、工业废水中异氰酸酯这一有害物的监测。
以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

Claims (10)

  1. 一种用于异氰酸酯类物质检测的荧光化合物,其特征在于,化学名称为2,4-二(((4’-(二苯基氨基)-[1,1’-联苯]-4-基)亚氨基)甲基)苯酚,分子式为C 56H 42N 4O,相对分子质量为786.33,结构式为
    Figure 900829dest_path_image002
  2. 一种制备权利要求1所述的用于异氰酸酯类物质检测的荧光化合物的方法,其特征在于,制备的反应式如下所示:
    Figure 536079dest_path_image004
  3. 根据权利要求2所述的制备用于异氰酸酯类物质检测的荧光化合物的方法,其特征在于,包括如下步骤:
    (1)将N,N-二苯基-[1,1’-联苯]-4,4’-二胺溶于乙腈,超声搅拌均匀,得到溶液1;
    (2)将4-羟基间苯二甲醛溶于乙腈,超声搅拌均匀,得到溶液2;
    (3)将碳酸钾溶于水中,超声搅拌均匀,得到碳酸钾的水溶液;
    (4)将步骤(1)所述溶液1和步骤(2)所述溶液2混合,混合均匀,然后滴加步骤(3)所述碳酸钾的水溶液,抽真空充入氮气,进行加热反应,冷却至室温,分离纯化,得到所述用于异氰酸酯类物质检测的荧光化合物。
  4. 根据权利要求3所述的制备用于异氰酸酯类物质检测的荧光化合物的方法,其特征在于,步骤(1)所述N,N-二苯基-[1,1’-联苯]-4,4’-二胺与步骤(2)所述4-羟基间苯二甲醛的摩尔比为(2-5):1。
  5. 根据权利要求3所述的制备用于异氰酸酯类物质检测的荧光化合物的方法,其特征在于,步骤(1)所述N,N-二苯基-[1,1’-联苯]-4,4’-二胺与步骤(3)所述碳酸钾的摩尔比为1:(1-10)。
  6. 根据权利要求3所述的制备用于异氰酸酯类物质检测的荧光化合物的方法,其特征在于,在步骤(1)所述溶液1中,N,N-二苯基-[1,1’-联苯]-4,4’-二胺的浓度为0.01 M-0.1 M;在步骤(2)所述溶液2中,4-羟基间苯二甲醛的浓度为0.01 M-0.1 M。
  7. 根据权利要求3所述的制备用于异氰酸酯类物质检测的荧光化合物的方法,其特征在于,步骤(3)所述碳酸钾的水溶液浓度为1-6 mol/L。
  8. 根据权利要求3所述的制备用于异氰酸酯类物质检测的荧光化合物的方法,其特征在于,步骤(4)所述加热反应的温度为25-120 °С,所述加热反应的时间为3 h-24 h。
  9. 根据权利要求3所述的制备用于异氰酸酯类物质检测的荧光化合物的方法,其特征在于,步骤(4)所述分离纯化包括:用二氯甲烷和去离子水萃取,收集有机相,并用无水硫酸钠干燥,减压蒸馏除去溶剂,然后过硅胶色谱柱。
  10. 权利要求1所述用于异氰酸酯类物质检测的荧光化合物作为试纸型检测探针在异氰酸酯类物质分析检测中的应用。
PCT/CN2019/113788 2019-06-29 2019-10-28 一种用于异氰酸酯类物质检测的荧光化合物及制备方法与其作为试纸型检测探针的应用 WO2021000467A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/298,951 US11427532B2 (en) 2019-06-29 2019-10-28 Fluorescent compound for detection of isocyanate substances, preparation method and use thereof as test-paper-type detection probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910581460.0A CN110330444B (zh) 2019-06-29 2019-06-29 一种用于异氰酸酯类物质检测的荧光化合物及制备方法与其作为试纸型检测探针的应用
CN201910581460.0 2019-06-29

Publications (1)

Publication Number Publication Date
WO2021000467A1 true WO2021000467A1 (zh) 2021-01-07

Family

ID=68144641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113788 WO2021000467A1 (zh) 2019-06-29 2019-10-28 一种用于异氰酸酯类物质检测的荧光化合物及制备方法与其作为试纸型检测探针的应用

Country Status (3)

Country Link
US (1) US11427532B2 (zh)
CN (1) CN110330444B (zh)
WO (1) WO2021000467A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115308198A (zh) * 2022-08-26 2022-11-08 同济大学 一种负载多酚类物质氧化硅水凝胶试纸及其制备方法和应用
CN116041348A (zh) * 2022-12-31 2023-05-02 长江师范学院 一种对十氟化二硫具有增强荧光响应的纳米材料及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111978433A (zh) * 2020-07-20 2020-11-24 南京林业大学 N-壳聚糖基-4-羟基-1,8-萘二甲酰亚胺荧光材料及其制备方法与应用
CN111892552A (zh) * 2020-07-20 2020-11-06 山西大学 一种三苯胺衍生物及其制备方法和在对硫化氢的双通道荧光检测中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108976160A (zh) * 2017-06-05 2018-12-11 华东理工大学 一种荧光探针及其制备方法和用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656737B1 (en) 1999-05-13 2003-12-02 The United States Of America As Represented By The Department Of Health And Human Services Isocynate derivatizing agent and methods of production and use
CN107488147A (zh) * 2017-08-22 2017-12-19 华南农业大学 一种荧光探针及其制备方法与应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108976160A (zh) * 2017-06-05 2018-12-11 华东理工大学 一种荧光探针及其制备方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P. SARAVANA KUMAR ET AL.: "Easy to make chemoreceptor for selective ratiometric fluorescent detection of cyanide in aqueous solution and in food materials", NEW JOURNAL OF CHEMISTRY, vol. 43, no. 2,, 6 December 2018 (2018-12-06), XP055771689, ISSN: 1144-0546, DOI: 20200320151357A *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115308198A (zh) * 2022-08-26 2022-11-08 同济大学 一种负载多酚类物质氧化硅水凝胶试纸及其制备方法和应用
CN116041348A (zh) * 2022-12-31 2023-05-02 长江师范学院 一种对十氟化二硫具有增强荧光响应的纳米材料及其制备方法和应用
CN116041348B (zh) * 2022-12-31 2023-12-01 长江师范学院 一种对十氟化二硫具有增强荧光响应的纳米材料及其制备方法和应用

Also Published As

Publication number Publication date
US20220041545A1 (en) 2022-02-10
CN110330444A (zh) 2019-10-15
US11427532B2 (en) 2022-08-30
CN110330444B (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
WO2021000467A1 (zh) 一种用于异氰酸酯类物质检测的荧光化合物及制备方法与其作为试纸型检测探针的应用
US8263018B2 (en) Environment sensor and conjugated polyene for manufacturing environment sensors
CN101619032B (zh) 一类席夫碱类化合物及其应用
US10655060B2 (en) Preparation method and application of fluorescent compound having sensing ability to aniline and o-toluidine gas, and fluorescent film with the same
CN101891642B (zh) 一种荧光化合物及其在检测痕量硝基苯类物质中的应用
Du et al. A “Turn-On” fluorescent probe for sensitive and selective detection of fluoride ions based on aggregation-induced emission
Ma et al. A water-soluble tetraphenylethene based probe for luminescent carbon dioxide detection and its biological application
CN105842235B (zh) 高灵敏度、可裸眼检测易挥发性有机胺的荧光试纸及制备
CN107245334B (zh) 一种检测汞离子的水溶性高分子荧光素类荧光探针及其制备方法
Xie et al. A dansyl-rhodamine ratiometric fluorescent probe for Hg 2+ based on FRET mechanism
Yang et al. A novel aggregation-induced-emission-active supramolecular organogel for the detection of volatile acid vapors
Kong et al. Dimalononitrile-containing probe based on aggregation-enhanced emission features for the multi-mode fluorescence detection of volatile amines
CN110132924B (zh) Aie型荧光检测探针及其应用及一种传感器及其制备方法
CN108489953A (zh) 一种原位修饰纸基硝基爆炸物荧光传感材料的制备方法
CN110499152B (zh) 一种比色和荧光双响应型荧光检测探针及一种传感器
Doan et al. Synthesis of Conjugated Molecules Based on Dithienopyrrole Derivatives and Pyrene as Chemosensor for Mesotrione Detection
CN105158219A (zh) 一种利用含醛基的硼酯化合物检测过氧化物的方法
CN109320533A (zh) 一种镉基金属-有机框架材料及其制备方法与应用
CN113045506A (zh) 三苯胺基喹喔啉丙二腈及其合成方法以及检测cn-的方法
CN113087637B (zh) 一种用于检测甲基苯丙胺的荧光传感材料和检测甲基苯丙胺的方法
CN112110913A (zh) 一种可用于水合肼检测的新型荧光探针及试纸的制备和应用
CN105601888B (zh) 一种五蝶烯共轭聚合物及其制备方法与其在快速检测硝基芳烃类爆炸物中的应用
CN110951084A (zh) 一种发白光的双稀土金属有机骨架材料在酚类污染物检测中的应用
CN113801067B (zh) 一种苯并咪唑衍生物及其在检测硝基芳香爆炸物中的应用
CN115594629B (zh) 具有aee特性的咔唑类衍生物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936486

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19936486

Country of ref document: EP

Kind code of ref document: A1