WO2021000364A1 - 隔离电源芯片 - Google Patents

隔离电源芯片 Download PDF

Info

Publication number
WO2021000364A1
WO2021000364A1 PCT/CN2019/097954 CN2019097954W WO2021000364A1 WO 2021000364 A1 WO2021000364 A1 WO 2021000364A1 CN 2019097954 W CN2019097954 W CN 2019097954W WO 2021000364 A1 WO2021000364 A1 WO 2021000364A1
Authority
WO
WIPO (PCT)
Prior art keywords
shielding layer
coil
isolated power
side coil
primary coil
Prior art date
Application number
PCT/CN2019/097954
Other languages
English (en)
French (fr)
Inventor
盛云
龚晓寒
徐海君
叶健
Original Assignee
苏州纳芯微电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州纳芯微电子股份有限公司 filed Critical 苏州纳芯微电子股份有限公司
Publication of WO2021000364A1 publication Critical patent/WO2021000364A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters

Definitions

  • the isolated power chip is usually relatively small in size.
  • it usually includes a transmitter and a receiver.
  • the transmitter includes a primary coil and the receiver includes a secondary coil.
  • the primary side coil and the driver structure of the primary side form a high-frequency L-C resonant cavity to transmit energy to the secondary side coil.
  • the secondary coil is connected to a rectifier bridge to rectify the received high frequency current to the isolated power output.
  • Planar transformers usually have no magnetic core, and the primary coil and the secondary coil are isolated by an insulating barrier, which is composed of an insulating medium.
  • the thickness of the insulated grid should not be too thick, so there is a certain parasitic capacitance between the primary coil and the secondary coil. Since the common mode voltage of the primary coil of the planar transformer has large fluctuations and the frequency is very high, this high frequency common mode voltage fluctuation will form high frequency current paths on both sides of the isolated power domain through parasitic capacitance. Since the current return path between the isolated power domains is long, this high-frequency energy is easily radiated in the form of electromagnetic radiation, thereby deteriorating the electromagnetic radiation interference performance of the isolated power supply.
  • a new isolation power chip must be designed to reduce electromagnetic radiation interference.
  • the transmitting terminal includes a power terminal and a ground terminal, the two free ends of the primary coil are respectively connected to the power terminal and the ground terminal, and the shielding layer is connected to the power terminal or the ground terminal .
  • the transmitting terminal further includes a bypass capacitor connected between the power terminal and the ground terminal.
  • the shielding layer is arranged parallel to the primary coil and the secondary coil.
  • the outermost edge of the shielding layer surrounds at least the primary coil and the secondary coil.
  • the shape and size of the fan pieces are consistent and evenly arranged around the connecting portion.
  • the primary side coil and the secondary side coil are both spiral-shaped and their starting point corresponds to the center of the shielding layer, and the extension lines of the side edges pass through the center.
  • the distance between the shielding layer and the primary coil is smaller than the distance between the shielding layer and the secondary coil.
  • the planar transformer further includes a shielding layer, which is sandwiched between the primary coil and the insulating grid. There is no direct high-frequency coupling path between the primary coil and the secondary coil.
  • the common-mode voltage fluctuation of the primary coil will only form a high-frequency common-mode current in the parasitic capacitance between the primary coil and the shielding layer, and will not affect it.
  • To the secondary coil it can further reduce electromagnetic radiation interference.
  • Figure 1 is a schematic circuit diagram of a planar transformer of the present invention
  • FIG. 2 is a schematic diagram of the three-dimensional structure of part of the planar transformer of the present invention.
  • Figure 3 is a front view of part of the planar transformer of the present invention.
  • FIG. 4 is a schematic diagram of the three-dimensional structure of the shielding layer in the planar transformer of the present invention.
  • Figure 5 is a side view of part of the planar transformer of the present invention.
  • the present invention provides an isolated power chip, the isolated power chip has a built-in planar transformer, the isolated power chip includes a transmitting end and a receiving end, and the planar transformer includes a source at the transmitting end.
  • the planar transformer also includes an insulated grid 10 arranged between the primary side coil Lp and the secondary side coil Ls.
  • the insulated grid 10 is made of an insulating medium so that the primary side The coil Lp and the secondary coil Ls have high insulation properties.
  • the primary coil Lp and the secondary coil Ls are respectively located on two mutually parallel planes and have a multilayer winding structure to form an inductance, so that the energy on the primary coil Lp can be transmitted to the secondary coil Ls.
  • the planar transformer further includes a shielding layer 20 which is sandwiched between the primary coil Lp and the insulating grid 10. Therefore, there is no direct high frequency coupling path between the primary coil Lp and the secondary coil Ls, and the common mode voltage fluctuation of the primary coil Lp will only form a high frequency common in the parasitic capacitance between the primary coil Lp and the shielding layer 20. The mode current will not affect the secondary coil Ls, which can further reduce electromagnetic radiation interference.
  • the transmitting terminal includes a power terminal VDDP and a ground terminal GNDP, and a first LC resonance branch and a second LC resonance branch connected to the power terminal VDDP and the ground terminal GNDP.
  • the primary side The coil Lp includes a first inductance Lp1 and a second inductance Lp2.
  • the first LC resonance branch includes the first inductor Lp1, a first capacitor C1, and a first mos tube M1.
  • the first inductor Lp1 and the first capacitor C1 are connected in series with each other and connected between the power terminal VDDP and the ground terminal GNDP ,
  • the input end of the first mos tube M1 is connected between the first inductor Lp1 and the first capacitor C1, and the output end is grounded;
  • the second LC resonance branch includes the second inductor Lp2, the second capacitor C2, and the second The mos tube M2, the second inductor Lp2 and the second capacitor C2 are connected in series with each other and connected between the power terminal VDDP and the ground terminal GNDP.
  • the input terminal of the second mos tube M2 is connected between the second inductor Lp2 and the second capacitor C2, The output terminal is grounded.
  • the transmitting end further includes a first voltage divider Cs1 and a second voltage divider Cs2.
  • the first voltage divider Cs1 and the second voltage divider Cs2 are both capacitors.
  • One end of the pressure part Cs1 is connected to the input end of the first mos tube M1, and the other end is connected to the control end of the second mos tube M2.
  • One end of the second pressure dividing part Cs2 is connected to the input end of the second mos tube M2, and the other end Connected to the control end of the first mos tube M1.
  • the shielding layer 20 is connected to the power terminal VDDP or the ground terminal GNDP.
  • the material of the shielding layer 20 is a metal conductor material, and in this embodiment, a metal conductor material with a lower resistance value is used.
  • the selected material is the same as the material of the primary coil Lp and the secondary coil Ls, so that the original A high-frequency common mode current is formed between the side coil Lp and the parasitic capacitance of the shielding layer 20.
  • the shielding layer 20 is connected to the ground terminal GNDP.
  • the transmitting terminal of the isolated power chip further includes a bypass capacitor Cp connected between the power terminal VDDP and the ground terminal GNDP. Therefore, even if the common mode voltage fluctuation of the primary coil Lp forms a high frequency common mode current between the parasitic capacitance between the primary coil Lp and the shielding layer 20, the bypass capacitor Cp can also form a high frequency between VDDP and GNDP. High-frequency and low-resistance path, so as to suppress its electromagnetic radiation interference outward radiation.
  • the shielding layer 20 is arranged parallel to the primary coil Lp and the secondary coil Ls. This is to make the shielding layer 20 flatter and occupy less space.
  • the shielding layer 20 is not arranged parallel to the primary coil Lp and the secondary coil Ls, the objective of the present invention can also be achieved.
  • the outermost periphery of the shielding layer 20 covers at least the primary side coil Lp and the secondary side coil.
  • Coil Ls As shown in Figures 2 to 3, the primary side coil Lp and the secondary side coil Ls are spiral-shaped, so the outermost edges of the primary side coil Lp and the secondary side coil Ls gradually expand outward, but the outermost edge of the shielding layer 20 The range formed by the outer periphery still covers the primary loop Lp and the secondary loop Ls. The outermost edge of the shielding layer 20 is not a continuous line. The structure of the shielding layer 20 will be described in detail below.
  • the shielding layer 20 includes a connecting portion 21 and a plurality of segments 22 arranged in a circumferential direction from the connecting portion 21 and extending radially outward, and the plurality of segments 22 do not overlap.
  • the fan pieces 22 have the same shape and size and are evenly arranged around the connecting portion 21. That is, the shape and size of each sector 22 are the same, and the distance between adjacent sectors 22 is also the same.
  • the connecting portion 21 is arranged in a circular shape.
  • the fan pieces 22 are arranged around the connecting portion 21 and finally make the shielding layer 20 have a substantially circular structure.
  • eddy currents are formed in the shielding layer 20.
  • the eddy current is the current circulating in the shielding layer 20.
  • the faster the magnetic field changes the stronger the eddy current is.
  • the high-frequency resonance of the transmitting end makes the eddy current stronger. Therefore, by arranging the fan blades 22 which are isolated from each other, the eddy current is cut as far as possible, and the eddy current effect can be effectively reduced. Therefore, the coupling coefficient and quality factor of the planar transformer will not be affected.
  • the fan piece 22 includes two side edges 221 extending outward from the connecting portion 21 and an outer edge 222 connected between the two side edges 221.
  • adjacent segments 22 do not overlap each other, and therefore, the side edges 221 of adjacent segments 22 are also spaced apart from each other.
  • the outer edges 222 of the plurality of segments 22 are all arc-shaped and are located on the same circumference.
  • the outer edge 222 and the extension line of the fan piece 22 can be surrounded to form a perfect circle, and the connecting portion 21 is also a perfect circle, and two perfect circles The centers of the shapes coincide.
  • the primary coil Lp and the secondary coil Ls are all arranged in a spiral shape and their starting point corresponds to the center of the shielding layer 20, and the extension lines of the outer edge 222 pass through the center.
  • the starting point of the above-mentioned primary coil Lp and secondary coil Ls does not refer to the free end, but because the primary coil Lp and the secondary coil Ls are both helical, and the helical lines have a starting point. Starting point. Starting from this starting point and setting the starting angle, a spiral line can be formed. In this embodiment, the free ends of the primary coil Lp and the secondary coil Ls do not coincide with the starting point.
  • the eddy current generated in the shielding layer 20 also has a ring shape and circulates around its center.
  • the center of the shielding layer 20 is center.
  • the spiral current in the primary coil Lp forms a changing magnetic field
  • the center line of the magnetic field passes through the starting point of the primary coil Lp.
  • the eddy current generated in the shielding layer 20 is also formed around the center line. Therefore, the center of the shielding layer 20 corresponds to the starting points of the primary coil Lp and the secondary coil Ls, that is, the positions of the starting points of the primary coil Lp and the secondary coil Ls determine the eddy current generation position.
  • the extension lines of the side edge 221 of the fan 22 pass through the center, so that the direction of the current at the intersection of the vortex and the fan 22 is perpendicular to the side edge 221 of the fan 22.
  • the side edges 221 of each fan 22 completely cut off the eddy current, making the path of the eddy current discontinuous, and the eddy current effect of the shielding layer 20 can be minimized, so it can and will not affect the coupling coefficient of the transformer as much as possible.
  • the inductance value and quality factor of the primary coil Lp The inductance value and quality factor of the primary coil Lp.
  • the center of the shielding layer 20 coincides with the center of the connecting portion 21, and the center of the shielding layer 20 also coincides with the center of the circle.
  • the distance between the shielding layer 20 and the primary coil Lp is smaller than the distance between the shielding layer 20 and the secondary coil Ls. This is because the primary coil Lp and the shielding layer 20 are both on the same side of the insulating grid 10, so the distance between the two can be smaller.
  • the distance between the secondary coil Ls and the shielding layer 20 needs to meet the requirement of insulation withstand voltage, so the distance between the two needs to be slightly larger than the distance between the primary coil Lp and the shielding layer 20.
  • the present invention provides an isolated power supply chip with a built-in planar transformer.
  • the planar transformer includes a primary coil Lp and a secondary coil Ls, which are arranged on the primary coil Lp and the secondary coil Ls.
  • the insulating grid 10 between the insulating grid 10 and the shielding layer 20 arranged between the insulating grid 10 and the primary coil Lp, so that there is only a weak high-frequency coupling path between the primary coil Lp and the secondary coil Ls.
  • the common mode voltage fluctuation of the coil Lp mainly forms a high frequency common mode current in the parasitic capacitance between the primary coil Lp and the shielding layer 20, and only a small amount of high frequency common mode current flows into the secondary coil Ls, which further reduces electromagnetic radiation interference.
  • a bypass capacitor Cp is provided between the power supply terminal VDDP and the ground terminal GNDP of the primary coil Lp, so that the high frequency common mode current between the primary coil Lp and the shielding layer 20 can also pass through the bypass
  • the circuit capacitance Cp can further inhibit electromagnetic radiation interference from radiating outward through the power lead and the ground wire.
  • the shielding layer 20 includes a connecting portion 21 and a plurality of segments 22 arranged in the circumferential direction from the connecting portion 21. The side edges 221 of adjacent segments 22 are spaced apart from each other, and the side edge 221 is connected to the shielding edge 221 that reaches the side edge 221.
  • the direction of the eddy current in the layer 20 is vertical, so the eddy current effect can be minimized, and the influence on the coupling coefficient of the planar transformer, the inductance value of the primary coil Lp, and the quality factor can also be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

一种隔离电源芯片,包括平面变压器,隔离电源芯片包括发射端和接收端,平面变压器包括位于发射端的原边线圈以及位于接收端的副边线圈,平面变压器还包括设置于原边线圈和副边线圈之间的绝缘栅,原边线圈和副边线圈分别位于两个相互平行的平面上并呈多层绕组结构;平面变压器还包括屏蔽层,屏蔽层夹设于原边线圈和绝缘栅之间。原边线圈和副边线圈之间不存在直接的高频耦合通路,原边线圈的共模电压波动仅会在原边线圈与屏蔽层之间的寄生电容形成高频共模电流,而不会影响到副边线圈,进一步的可减少电磁辐射干扰。

Description

隔离电源芯片
本申请要求了申请日为2019年07月01日,申请号为201910587046.0,发明名称为“隔离电源芯片”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种隔离电源芯片,特别是一种可以改善电磁辐射干扰的隔离电源芯片。
背景技术
隔离电源芯片通常体积相对较小,在隔离电源芯片中,通常包括发射端和接收端,发射端包括原边线圈,接收端包括副边线圈。原边线圈和原边的驱动器结构构成了一个高频的L-C谐振腔向副边线圈传送能量。副边线圈再接一个整流桥将收到的高频电流整流到隔离电源输出。
平面变压器通常无磁芯,原边线圈和副边线圈之间通过绝缘栅隔离,绝缘栅由绝缘介质构成。为了保证有足够的耦合系数,绝缘栅的厚度不能太厚,因此原边线圈和副边线圈之间存在着一定的寄生电容。由于平面变压器的原边线圈的共模电压的波动较大,频率很高,因此这种高频的共模电压波动会通过寄生电容在隔离电源域的两侧形成高频的电流路径。由于隔离电源域之间的电流返回路径较长,这种高频能量很容易以电磁辐射的方式辐射出去,从而恶化隔离电源的电磁辐射干扰性能。
因此,必须设计一种新的隔离电源芯片,以减少电磁辐射干扰。
发明内容
为解决上述问题之一,本发明提供了一种隔离电源芯片,包括平面变压器,所述隔离电源芯片包括发射端和接收端,所述平面变压器包括位于发射端的原边线圈以及位于接收端的副边线圈,所述平面变压器还包括设置于原边线圈和副边线圈之间的绝缘栅,所述原边线圈和副边线圈分别位于两个相互平行的平面上并呈多层绕组结构;其特征在于,所述平面变压器还包括屏蔽层,所述屏蔽层夹设于原边线圈和绝缘栅之间。
作为本发明的进一步改进,所述发射端包括电源端和接地端,所述原边线圈的两个自由端分别连接于电源端和接地端,所述屏蔽层与所述电源端或接地端连接。
作为本发明的进一步改进,所述发射端还包括连接于电源端和接地端之间的旁路电容。
作为本发明的进一步改进,所述屏蔽层平行于所述原边线圈及副边线圈设置。
作为本发明的进一步改进,所述屏蔽层的最外缘围设形成的范围至少覆盖了所述原边线圈及副边线圈。
作为本发明的进一步改进,所述屏蔽层包括连结部及自连结部沿周向排布且沿径向向外 延伸的若干扇片;所述扇片包括自连结部向外延伸的两个侧边沿及连接于两个侧边沿之间的外边沿,相邻扇片的侧边沿之间相互间隔。
作为本发明的进一步改进,所述扇片的形状大小一致且均匀环绕于所述连结部设置。
作为本发明的进一步改进,若干所述扇片的外边沿呈弧形且均位于同一圆周上。
作为本发明的进一步改进,所述原边线圈、副边线圈均呈螺旋状且其起始点对应于所述屏蔽层的中心,所述侧边沿的延长线均穿过该中心。
作为本发明的进一步改进,屏蔽层和原边线圈之间的距离小于屏蔽层和副边线圈之间的距离。
与现有技术相比,所述平面变压器还包括屏蔽层,所述屏蔽层夹设于原边线圈和绝缘栅之间。原边线圈和副边线圈之间不存在直接的高频耦合通路,原边线圈的共模电压波动仅会在原边线圈与屏蔽层之间的寄生电容形成高频共模电流,而不会影响到副边线圈,进一步的可减少电磁辐射干扰。
附图说明
图1为本发明平面变压器的电路示意图;
图2为本发明部分平面变压器的立体结构示意图;
图3为本发明部分平面变压器的主视图;
图4为本发明平面变压器中屏蔽层的立体结构示意图;
图5为本发明部分平面变压器的侧视图。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
如图1至图5所示,本发明提供了一种隔离电源芯片,所述隔离电源芯片内置有平面变压器,所述隔离电源芯片包括发射端和接收端,所述平面变压器包括位于发射端的原边线圈Lp以及位于接收端的副边线圈Ls,所述平面变压器还包括设置于原边线圈Lp和副边线圈Ls之间的绝缘栅10,该绝缘栅10通过绝缘介质制作而成,使得原边线圈Lp和副边线圈Ls之间具有价高的绝缘性。当然,所述原边线圈Lp和副边线圈Ls分别位于两个相互平行的平面上并呈多层绕组结构,以形成电感,从而原边线圈Lp上的能量可传输至副边线圈Ls上。在本发明中,所述平面变压器还包括屏蔽层20,所述屏蔽层20夹设于原边线圈Lp和 绝缘栅10之间。从而,原边线圈Lp和副边线圈Ls之间不存在直接的高频耦合通路,原边线圈Lp的共模电压波动仅会在原边线圈Lp与屏蔽层20之间的寄生电容形成高频共模电流,而不会影响到副边线圈Ls,进一步的可减少电磁辐射干扰。
所述原边线圈Lp的两个自由端分别连接于电源端VDDP和接地端GNDP,当然,所述原边线圈Lp不直接与接地端相连接。具体的,如图1所示,所述发射端包括电源端VDDP和接地端GNDP及连接于电源端VDDP和接地端GNDP的第一LC谐振支路和第二LC谐振支路,所述原边线圈Lp包括第一电感Lp1和第二电感Lp2。所述第一LC谐振支路包括所述第一电感Lp1、第一电容C1、第一mos管M1,第一电感Lp1和第一电容C1相互串联并连接于电源端VDDP和接地端GNDP之间,第一mos管M1的输入端连接于第一电感Lp1和第一电容C1之间,输出端接地;所述第二LC谐振支路包括所述第二电感Lp2、第二电容C2、第二mos管M2,第二电感Lp2和第二电容C2相互串联并连接于电源端VDDP和接地端GNDP之间,第二mos管M2的输入端连接于第二电感Lp2和第二电容C2之间,输出端接地。从而,第一LC谐振支路和第二LC谐振支路可产生谐振电流,并将能量传输至接收端的副边线圈Ls。在本实施方式中,接收端还包括有整流桥,将电流整合后进行输出。
并且,所述发射端还包括第一分压部Cs1和第二分压部Cs2,在本实施方式中,第一分压部Cs1和第二分压部Cs2均为电容,所述第一分压部Cs1一端连接于第一mos管M1的输入端,另一端连接于第二mos管M2的控制端,所述第二分压部Cs2一端连接于第二mos管M2的输入端,另一端连接于第一mos管M1控制端。通过设计第一分压部Cs1和第二分压部Cs2以及第一mos管M1和第二mos管M2的栅极寄生电容的比例,可以让第一mos管M1和第二mos管M2的栅极电压保持在稳定电压内。
因此,在本实施方式中,所述屏蔽层20与所述电源端VDDP或接地端GNDP相连。所述屏蔽层20的材料为金属导体材料,并且在本实施方式中采用阻值较低的金属导体材料,一般选用的材料和原边线圈Lp及副边线圈Ls的材料相同,从而可进一步在原边线圈Lp和屏蔽层20的寄生电容之间形成高频共模电流。在本实施方式中,如图1所述,屏蔽层20与接地端GNDP相连接。
进一步的,所述隔离电源芯片的发射端还包括连接于电源端VDDP和接地端GNDP之间的旁路电容Cp。因此,即使原边线圈Lp的共模电压波动在原边线圈Lp和屏蔽层20之间的寄生电容之间形成高频的共模电流,该旁路电容Cp也可在VDDP和GNDP之间构成高频低阻通路,从而即可抑制其电磁辐射干扰向外辐射。
另外,在本发明的隔离电源芯片中,所述接收端还包括并联在副边线圈Ls两端的整流器,所述接收端和发射端之间还串联有隔离反馈器40和驱动器50,用以确认接收端的电压信号并反馈给第一mos管M1和第二mos管M2的控制端。
在本实施方式中,所述屏蔽层20平行于所述原边线圈Lp及副边线圈Ls设置。这是为了让屏蔽层20更为的扁平化,使其占用较少空间,当然,若屏蔽层20不为平行于原边线圈Lp及副边线圈Ls设置,也可达到本发明的目的。
另外,为了实现屏蔽层20对原边线圈Lp及副边线圈Ls之间更好的屏蔽,所述屏蔽层20的最外缘围设形成的范围至少覆盖了所述原边线圈Lp及副边线圈Ls。如图2至图3所示,所述原边线圈Lp和副边线圈Ls由于成螺旋状,因而原边线圈Lp和副边线圈Ls的最外缘逐渐向外扩张,但是屏蔽层20的最外缘围设形成的范围也仍然覆盖了原边线圈Lp和副边线圈Ls。所述屏蔽层20的最外缘不为连续的线条,以下对该屏蔽层20的结构进行具体描述。
具体的,所述屏蔽层20包括连结部21及自连结部21沿周向排布且径向向外延伸的若干扇片22,若干扇片22之间不相重叠。在本实施方式中,如图2所示,所述扇片22的形状大小一致且均匀环绕于所述连结部21设置。即,每个扇片22的形状大小均相同,且相邻扇片22之间的距离也相同。在本实施方式中,所述连结部21呈圆形设置,相应的,所述扇片22围绕所述连结部21设置并最终也使得屏蔽层20大致呈圆形结构。
由于原边线圈Lp的电磁感应作用,而且屏蔽层20的材料为金属材料,因而屏蔽层20内会形成涡流。涡流为在屏蔽层20内循环的电流,磁场变化越快时,涡流就越强,而在本实施方式中,发射端的高频谐振使得涡流也较强。因此,通过设置相互隔离的扇片22,使得涡流被尽量切断,涡流效应即可被有效的降低。从而也不会影响平面变压器的耦合系数及品质因数。
如图4所示,所述扇片22包括自连结部21向外延伸的两个侧边沿221及连接于两个侧边沿221之间的外边沿222。如上所述,相邻扇片22之间不相重叠,因此,相邻扇片22的侧边沿221之间也相互间隔。并且,若干所述扇片22的外边沿222均呈弧形且均位于同一圆周上。
因此,在本实施方式中,如图2所述,所述扇片22的外边沿222及延长线可围设形成一个正圆形,所述连结部21也呈正圆形,且两个正圆形的圆心重合。
并且,所述原边线圈Lp、副边线圈Ls均呈螺旋状排列且其起始点对应于所述屏蔽层20的中心,所述外边沿222的延长线均穿过该中心。需要说明的是,上述原边线圈Lp、副 边线圈Ls的起始点并不是指自由端,而是由于原边线圈Lp及副边线圈Ls均呈螺旋状,而螺旋状的线条均有一个起始点。从该起始点出发,并设置起始角度,即可形成螺旋状的线条。在本实施方式中,所述原边线圈Lp、副边线圈Ls的自由端和起始点不相重合。
从而,由于呈螺旋状的原边线圈Lp内会产生电流,因而也会产生变化的磁场,屏蔽层20中产生的涡流也呈环状且围绕其圆心循环,将该圆心设为屏蔽层20的中心。而根据涡流产生的原理可得,原边线圈Lp内的螺旋形的电流形成变化的磁场,磁场的中线穿过所述原边线圈Lp的起始点。而屏蔽层20中产生的涡流也为围绕该中线形成。因此,屏蔽层20的中心与该上述原边线圈Lp、副边线圈Ls的起始点相对应,也就是说,原边线圈Lp、副边线圈Ls起始点的位置决定了涡流的产生位置。在本实施方式中,所述扇片22的侧边沿221的延长线均穿过该中心,从而,涡流与扇片22相交处的电流方向与该扇片22的侧边沿221相垂直。从而每一扇片22的侧边沿221均完全截断了涡流,使得涡流的路径不连续,屏蔽层20的涡流效果可以降到最低,因此也可以也尽可能的不会影响到变压器的耦合系数、原边线圈Lp的电感值及品质因数。
在本实施方式中,如图2所示,由于屏蔽层20大致呈圆形,屏蔽层20的圆心与连结部21的圆心相重合,上述屏蔽层20的中心也与上述圆心相重合。
另外,如图5所示,所述屏蔽层20和原边线圈Lp之间的距离小于屏蔽层20和副边线圈Ls之间的距离。这是由于原边线圈Lp和屏蔽层20均处于绝缘栅10的同侧,因而两者之间的距离可以较小。而副边线圈Ls和屏蔽层20之间的距离则需要满足绝缘耐压的要求,因而两者之间的距离需要略大于原边线圈Lp和屏蔽层20之间距离。
因此,综上所述,本发明提供了一种隔离电源芯片,该隔离电源芯片内置有平面变压器,平面变压器包括原边线圈Lp和副边线圈Ls、设置于原边线圈Lp和副边线圈Ls之间的绝缘栅10、及设置于绝缘栅10和原边线圈Lp之间的屏蔽层20,从而,原边线圈Lp和副边线圈Ls之间仅存在较弱的高频耦合通路,原边线圈Lp的共模电压波动主要会在原边线圈Lp与屏蔽层20之间的寄生电容形成高频共模电流,只有少量高频共模电流流入副边线圈Ls,进一步的可减少电磁辐射干扰。并且,本实施方式中还在原边线圈Lp的电源端VDDP和接地端GNDP之间设置旁路电容Cp,从而,原边线圈Lp与屏蔽层20之间的高频共模电流也可以通过上述旁路电容Cp,可进一步抑制电磁辐射干扰通过电源引线和地线向外辐射。另外,该屏蔽层20包括连结部21及自连结部21沿周向排列的若干扇片22,相邻扇片22的侧边沿221相互间隔,且该侧边沿221与到达该侧边沿221的屏蔽层20中的涡流的走向垂直,因此可以最大程度的降低涡流效应,也减小对平面变压器的耦合系数、原边线圈Lp的 电感值、品质因数的影响。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种隔离电源芯片,包括平面变压器,所述隔离电源芯片包括发射端和接收端,所述平面变压器包括位于发射端的原边线圈以及位于接收端的副边线圈,所述平面变压器还包括设置于原边线圈和副边线圈之间的绝缘栅,所述原边线圈和副边线圈分别位于两个相互平行的平面上并呈多层绕组结构;其特征在于,所述平面变压器还包括屏蔽层,所述屏蔽层夹设于原边线圈和绝缘栅之间。
  2. 根据权利要求1所述的隔离电源芯片,其特征在于,所述发射端包括电源端和接地端,所述原边线圈的两个自由端分别连接于电源端和接地端,所述屏蔽层与所述电源端或接地端连接。
  3. 根据权利要求2所述的隔离电源芯片,其特征在于,所述发射端还包括连接于电源端和接地端之间的旁路电容。
  4. 根据权利要求1所述的隔离电源芯片,其特征在于,所述屏蔽层平行于所述原边线圈及副边线圈设置。
  5. 根据权利要求1所述的隔离电源芯片,其特征在于,所述屏蔽层的最外缘围设形成的范围至少覆盖了所述原边线圈及副边线圈。
  6. 根据权利要求1所述的隔离电源芯片,其特征在于,所述屏蔽层包括连结部及自连结部沿周向排布且沿径向向外延伸的若干扇片;所述扇片包括自连结部向外延伸的两个侧边沿及连接于两个侧边沿之间的外边沿,相邻扇片的侧边沿之间相互间隔。
  7. 根据权利要求6所述的隔离电源芯片,其特征在于,所述扇片的形状大小一致且均匀环绕于所述连结部设置。
  8. 根据权利要求6所述的隔离电源芯片,其特征在于,若干所述扇片的外边沿呈弧形且均位于同一圆周上。
  9. 根据权利要求6所述的隔离电源芯片,其特征在于,所述原边线圈、副边线圈均呈螺旋状且其起始点对应于所述屏蔽层的中心,所述侧边沿的延长线均穿过该中心。
  10. 根据权利要求1所述的隔离电源芯片,其特征在于,屏蔽层和原边线圈之间的距离小于屏蔽层和副边线圈之间的距离。
PCT/CN2019/097954 2019-07-01 2019-07-26 隔离电源芯片 WO2021000364A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910587046.0A CN111181404B (zh) 2019-07-01 2019-07-01 隔离电源芯片
CN201910587046.0 2019-07-01

Publications (1)

Publication Number Publication Date
WO2021000364A1 true WO2021000364A1 (zh) 2021-01-07

Family

ID=70655319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097954 WO2021000364A1 (zh) 2019-07-01 2019-07-26 隔离电源芯片

Country Status (2)

Country Link
CN (1) CN111181404B (zh)
WO (1) WO2021000364A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103021635A (zh) * 2012-11-29 2013-04-03 华为技术有限公司 一种llc变压器及电源设备
CN106024340A (zh) * 2016-08-02 2016-10-12 成都线易科技有限责任公司 具有屏蔽结构的变压器
CN206585480U (zh) * 2016-11-14 2017-10-24 东莞市盈聚电子有限公司 一种低共模噪声开关电源电路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114541B (zh) * 2006-07-28 2011-05-25 台达电子工业股份有限公司 电源转换装置
CN201138608Y (zh) * 2007-12-14 2008-10-22 蔡俊东 一种新型平面变压器
WO2010065113A1 (en) * 2008-12-03 2010-06-10 Planarmag,Inc. An integrated planar variable transformer with embedded magnetic core
CN102163492B (zh) * 2010-12-31 2013-05-29 崧顺电子(深圳)有限公司 一种无y电容的变压器及其制备方法
CN202737546U (zh) * 2012-06-28 2013-02-13 深圳天珑无线科技有限公司 Rcc充电器控制电路及用于电容屏移动终端的充电器
CN107395181A (zh) * 2017-08-04 2017-11-24 桂林航天电子有限公司 平面变压器隔离固态继电器及其运行方法
CN108364768B (zh) * 2017-11-10 2019-11-19 华为技术有限公司 平面变压器、电源转换电路以及适配器
CN208444729U (zh) * 2018-04-17 2019-01-29 江苏德嘉源电子科技有限公司 一种变比及过电流能力可调的平面变压器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103021635A (zh) * 2012-11-29 2013-04-03 华为技术有限公司 一种llc变压器及电源设备
CN106024340A (zh) * 2016-08-02 2016-10-12 成都线易科技有限责任公司 具有屏蔽结构的变压器
CN206585480U (zh) * 2016-11-14 2017-10-24 东莞市盈聚电子有限公司 一种低共模噪声开关电源电路

Also Published As

Publication number Publication date
CN111181404A (zh) 2020-05-19
CN111181404B (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
US10002707B2 (en) Induction coil structure for wireless charging device
US10594290B2 (en) Planar balun and multi-layer circuit board
JP6332759B2 (ja) 8の字及び双8の字の入れ子構造の変圧器を有する変圧器回路
US9330837B2 (en) Energy transfer assembly with tuned leakage inductance and common mode noise compensation
US9312815B2 (en) Broadband integrated RF/microwave/millimeter mixer with integrated balun(s)
US20030001709A1 (en) Multiple-interleaved integrated circuit transformer
US10879043B2 (en) Device intrinsically designed to resonate, suitable for RF power transfer as well as group including such device and usable for the production of plasma
CN105845404B (zh) 一种高品质因数的发射线圈结构及其绕制方法
JPH04229076A (ja) 放射電磁妨害を抑制した電源
US3550137A (en) Constant impedance loop antenna
CN107430933A (zh) 地面侧线圈单元
CN109712792B (zh) 平衡-不平衡变压器
JP2020009900A (ja) ノイズフィルター及びノイズフィルターの製造方法
KR101174400B1 (ko) 공명형 무선전력전송을 위한 공간 적응형 자기 공진기
JP2866054B2 (ja) ライン放射防止素子
JPWO2019176636A1 (ja) アンテナ装置、通信システム、及び電子機器
US2274389A (en) Asymmetrical antenna with shielded feed line
WO2021000364A1 (zh) 隔离电源芯片
CN203895449U (zh) 螺旋电感的图案衬底接地屏蔽结构
JP6384633B2 (ja) コイルアンテナ、給電装置、受電装置およびワイヤレス電力給電システム
US11783986B2 (en) Resonant coils with integrated capacitance
JP5848287B2 (ja) アンテナ装置
JP7087428B2 (ja) コイル部品
RU2344521C1 (ru) Симметрирующее устройство
Park et al. Investigation of the effects of common and separate ground systems in wireless power transfer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935765

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19935765

Country of ref document: EP

Kind code of ref document: A1