WO2021000266A1 - 油井平台附近溢油监测装置及操作方法 - Google Patents

油井平台附近溢油监测装置及操作方法 Download PDF

Info

Publication number
WO2021000266A1
WO2021000266A1 PCT/CN2019/094436 CN2019094436W WO2021000266A1 WO 2021000266 A1 WO2021000266 A1 WO 2021000266A1 CN 2019094436 W CN2019094436 W CN 2019094436W WO 2021000266 A1 WO2021000266 A1 WO 2021000266A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
module
oil
well platform
oil well
Prior art date
Application number
PCT/CN2019/094436
Other languages
English (en)
French (fr)
Inventor
刘浩源
Original Assignee
唐山哈船科技有限公司
唐山圣因海洋科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 唐山哈船科技有限公司, 唐山圣因海洋科技有限公司 filed Critical 唐山哈船科技有限公司
Priority to PCT/CN2019/094436 priority Critical patent/WO2021000266A1/zh
Publication of WO2021000266A1 publication Critical patent/WO2021000266A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Definitions

  • the invention relates to the technical field of oil spill monitoring equipment, in particular to an oil spill monitoring device near an oil well platform and an operation method.
  • Existing marine oil spill monitoring devices that detect oil fluorescence (excited by ultraviolet light) basically use photodiodes as detectors, with extremely low sensitivity, while the oil fluorescence signal is relatively weak, and the detection device is far from the target oil spill surface, for example When used on offshore oil rigs, oil spills cannot be detected.
  • the luminous frequency is low, which is not suitable for real-time monitoring. It has high requirements on the light source filter and can only detect certain high fluorescent oils. Misjudgment of the oil spill.
  • the present invention proposes an oil spill monitoring device near an oil well platform and an operation method, which can monitor the oil spill situation on the ocean surface in real time and avoid large-area pollution of the ocean surface.
  • an oil spill monitoring device near an oil well platform including a transmitting module, a receiving module, an automatic alignment module and a control module,
  • the transmitting module includes:
  • a floating device for floating the launch module on the ocean surface includes a propulsion module, and the propulsion module is located on the floating device and used to drive the floating device to move on the ocean surface;
  • a laser emitting module fixed on the floating device, capable of emitting laser signals
  • the receiving module includes:
  • the laser receiving module is configured to receive the laser signal sent by the laser emitting module; the laser signal is the laser signal reflected from the ocean surface; the laser receiving module is rotatably fixed on the oil well platform;
  • the automatic alignment module includes:
  • a distance measuring module for measuring the distance between the laser emitting module and the laser receiving module
  • a light sensor for sensing the laser signal emitted by the laser emitting module
  • the calculation module calculates the rotation angle of the receiving module according to the direction of the laser signal sent by the laser emitting module as sensed by the optical sensor and the distance between the laser emitting module and the laser receiving module obtained by the distance measuring module, So that the laser emitting module is aligned with the laser receiving module;
  • the control module receives the laser light emitted by the laser emitting module to the ocean surface along the direction of the receiving module according to the laser receiving module, and if the energy loss is greater than the energy difference on the ocean surface without oil spill, Confirm that there is oil spill on the ocean surface.
  • launch modules which are scattered around the oil well platform.
  • the oil spill monitoring device near the oil well platform further includes an automatic alarm device, which is connected with the control module, and when it is confirmed that there is oil spill on the ocean surface, the automatic alarm device gives an alarm prompt.
  • an automatic alarm device which is connected with the control module, and when it is confirmed that there is oil spill on the ocean surface, the automatic alarm device gives an alarm prompt.
  • the floating device, the laser emitting module and the laser receiving module rotate synchronously.
  • the rotation is intermittent, and the laser is emitted once for 10 seconds after each rotation, and the rotation is 7-13° each time.
  • the monitoring device includes a wireless communication module for transmitting information in the control module to a data center, such as a cloud center.
  • the wireless communication module preferably includes a Wi-Fi module or a mobile network module.
  • an operating method of the above-mentioned oil spill monitoring device near the oil well platform including:
  • the distance measurement module to measure the distance between the floating equipment and the oil well platform; combine with the optical sensor and the calculation module to obtain the angle and direction that the laser emitting module is aligned with the laser receiving module;
  • the laser emission module starts the laser emission module to emit the laser obliquely downwards towards the ocean surface.
  • the laser will emit when it contacts the ocean surface. If the reflection point is covered by oil spill, it will cause laser loss;
  • the laser light emitted by the laser emitting module is reflected and received by the laser receiving module;
  • the controller compares the laser information received by the laser receiving module with the preset value when there is no oil spill. If the energy difference of the laser is greater than the energy difference when there is no oil spill, confirm that there is Oil spill.
  • the number and various movements of the floating equipment are regulated, and the measurement is performed again.
  • the present invention has the following advantages: set up a cruising laser emitting module near the oil well platform, automatically align the oil well platform for laser emission, set up a laser receiving module on the oil well platform, and use the reflected laser signal Judging the oil spill situation on the ocean surface, covering a wide area, simple operation, real-time monitoring of the oil spill situation near the oil well platform, easy to clean up in time, so as not to expand the pollution surface.
  • Figure 1 is a schematic diagram of the structure of the oil spill monitoring device near the oil well platform of the present invention
  • the directional indication is only used to explain that it is in a specific posture (as shown in the drawings). If the specific posture changes, the relative positional relationship, movement, etc. of the components below will also change the directional indication accordingly.
  • an oil spill monitoring device near an oil well platform includes a transmitting module, a receiving module, an automatic alignment module, and a control module,
  • the transmitting module includes:
  • a floating device for floating the launch module on the ocean surface includes a propulsion module located on the floating device, and used for driving the floating device to move on the ocean surface;
  • a laser emitting module fixed on the floating device, capable of emitting laser signals
  • the receiving module includes:
  • the laser receiving module is configured to receive the laser signal sent by the laser emitting module; the laser signal is the laser signal reflected from the ocean surface; the laser receiving module is rotatably fixed on the oil well platform;
  • the automatic alignment module 5 includes:
  • a distance measuring module for measuring the distance between the laser emitting module and the laser receiving module
  • a light sensor for sensing the laser signal emitted by the laser emitting module
  • the calculation module calculates the rotation angle of the receiving module according to the direction of the laser signal sent by the laser emitting module as sensed by the optical sensor and the distance between the laser emitting module and the laser receiving module obtained by the distance measuring module, So that the laser emitting module is aligned with the laser receiving module;
  • the control module receives the laser light emitted by the laser emitting module to the ocean surface along the direction of the receiving module according to the laser receiving module, and if the energy loss is greater than the energy difference on the ocean surface without oil spill, Confirm that there is oil spill on the ocean surface.
  • the operation method of the above oil spill monitoring device near the oil well platform includes:
  • the distance measurement module to measure the distance between the floating equipment and the oil well platform; combine with the optical sensor and the calculation module to obtain the angle and direction that the laser emitting module is aligned with the laser receiving module;
  • the laser emission module starts the laser emission module to emit the laser obliquely downwards towards the ocean surface.
  • the laser will emit when it contacts the ocean surface. If the reflection point is covered by oil spill, it will cause laser loss;
  • the laser light emitted by the laser emitting module is reflected and received by the laser receiving module;
  • the controller compares the laser information received by the laser receiving module with the preset value when there is no oil spill. If the energy difference of the laser is greater than the energy difference when there is no oil spill, confirm that there is Oil spill.
  • the laser receiver 12 is installed on the oil well platform 1, and the laser transmitter 12 is installed far away from the oil well platform 1.
  • the laser emitting device 13 emits laser light to the ocean surface 4 near the oil well platform 1 to generate the emitted light to the laser receiving device 12.
  • transmitting modules which are scattered around the oil well platform 1; there are several corresponding laser transmitting devices 13 and laser receiving devices 12.
  • Several transmitting modules are used in combination with the corresponding laser transmitting device 13 and the laser receiving device 12, which are scattered around the oil well platform 1, which can quickly monitor the ocean surface 4 around the oil well platform 1, with high efficiency.
  • the transmitting module is configured as a movable mechanism, and the corresponding laser receiving device 12 is movably installed on the oil well platform 1.
  • the launch module with a small boat structure When the launch module with a small boat structure is selected, it can be rotated with the oil well platform 1 as the center of the circle, and the laser receiving device 12 can rotate on the oil well platform 1. Carry out all-round monitoring around the oil well platform 1 to prevent the spread of oil spills.
  • the oil spill monitoring device of the ocean surface 4 further includes an automatic alarm device, which is connected to the controller 11, and when it is confirmed that there is oil spill on the ocean surface 4, the automatic alarm device gives an alarm prompt. Because the above-mentioned monitoring process can be carried out automatically, combined with an automatic alarm device, when the presence of oil pollution on the ocean surface 4 is detected, it can be reminded in time for cleaning treatment to prevent further expansion of the pollution area.
  • laser emitting modules and/or laser receiving modules which can be evenly dispersed around the oil well platform 1, or more reflection stations 2 can be set downstream according to the direction of ocean currents or wind directions.
  • the floating device 2, the laser emitting device 12 and the laser receiving device 13 rotate synchronously.
  • the synchronous rotation makes the detection effect better.
  • the rotation is intermittent, stopping for 10 seconds to emit a laser for each rotation, and 7-13° for each rotation.
  • the monitoring device includes a wireless communication module for transmitting information in the control module to a data center, such as a cloud center.
  • the wireless communication module preferably includes a Wi-Fi module or a mobile network module.
  • the marine surface oil spill monitoring device of the present invention can perform real-time monitoring of the marine surface 4 attached to the oil well platform 1, so as to avoid oil leakage and pollute the entire marine environment.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种油井平台(1)附近溢油监测装置,包括发射模块、接收模块、自动对准模块(5)和控制模块(11);发射模块包括固定在漂浮设备(2)上的激光发射模块(13);接收模块包括可转动地固定在油井平台(1)上的激光接收模块(12);自动对准模块(5)可以使得激光发射模块(13)对准激光接收模块(12);控制模块(11)根据激光由发射至接收所损耗的能量差,若大于无溢油时的能量差,确认海洋面(4)上有溢油。该监测装置利用激光经过油污和水面所损耗能量差的不同来确定海洋面(4)上的溢油情况,覆盖面广,操作简单,能实时监测油井平台(1)附近的漏油情况,便于及时清理,以免污染面扩大。

Description

油井平台附近溢油监测装置及操作方法 技术领域
本发明涉及溢油监测设备技术领域,尤其是一种油井平台附近溢油监测装置及操作方法。
背景技术
现有采用探测油荧光(采用紫外光激发)的海洋溢油监测装置,基本采用光电二极管作为探测器,灵敏度极低,而油荧光信号比较微弱,探测装置离目标溢油水面较远时,例如在海上石油钻井平台使用,则无法探测到溢油的发生。有采用光电倍增管作为探测器的装置,采用氙灯作为激发光源,发光频率较低,不适合实时监测,对光源滤光片要求较高,只能实现某些高荧光油的探测,且经常对溢油现象发生误判。
发明内容
本发明针对现有技术的不足,提出一种油井平台附近溢油监测装置及操作方法,能实时监测海洋面溢油情况,避免大面积污染海洋面。
为了实现上述发明目的,本发明提供以下技术方案:一种油井平台附近溢油监测装置,包括发射模块、接收模块、自动对准模块和控制模块,
所述发射模块包括:
漂浮设备,用于使发射模块漂浮在海洋面上,所述漂浮设备包括推进模块, 所述推进模块位于所述漂浮设备上,用于驱动所述漂浮设备在海洋面上运动;
激光发射模块,固定在所述漂浮设备上,能发射激光信号;
所述接收模块包括:
激光接收模块,用于接收激光发射模块发出的激光信号;所述激光信号为海洋面反射过来的激光信号;所述激光接收模块可转动地固定所述油井平台上;
所述自动对准模块包括:
测距模块,用于测量所述激光发射模块和所述激光接收模块的距离;
光传感器,用于感应所述激光发射模块发出的激光信号;
计算模块,根据光传感器感应到所述激光发射模块发出的激光信号方向,以及所述测距模块获得的所述激光发射模块和所述激光接收模块的距离,计算所述接收模块的转动角度,以使得所述激光发射模块对准所述激光接收模块;
所述控制模块根据所述激光接收模块接收由所述激光发射模块向沿所述接收模块方向的海洋面发射激光而发射的激光,若损耗的能量差大于海洋面无溢油时的能量差,确认所述海洋面上有溢油。
优选地,所述发射模块设有若干个,分散在所述油井平台上周围。
优选地,所述油井平台附近溢油监测装置还包括自动报警装置,所述自动报警装置与所述控制模块连接,在确认所述海洋面有溢油时,所述自动报警装置进行报警提示。
优选地,所述激光发射模块和/或所述激光接收模块设有3-5个。
优选地,所述漂浮设备、所述激光发射模块和所述激光接收模块为同步转动。
优选地,所述转动为间歇式,每转动一次停止10s发射一次激光,每次转动7-13°。
优选地,所述监测装置包括无线通讯模块,用于将所述控制模块中信息传输至数据中心,例如云中心。
优选地,所述无线通讯模块优选包括Wi-Fi模块或移动网络模块。
为了实现上述发明目的,本发明提供另一技术方案:一种如上所述油井平台附近溢油监测装置的操作方法,包括:
驱动漂浮设备在油井平台周围游弋;
利用测距模块,测量漂浮设备与油井平台之间的距离;再结合光传感器和计算模块,获得使得所述激光发射模块对准所述激光接收模块的角度和方向;
启动激光发射模块向海洋面倾斜向下发射激光,该激光在与海洋面接触时会产生发射现象,若该反射点被溢油覆盖,会造成激光损耗;
利用海洋面对激光反射,激光发射模块发出的激光经反射后被激光接收模块所述接收;
所述控制器根据所述激光接收模块收到的激光信息,与无溢油时的预设值进行比较,若该激光损耗的能量差大于无溢油时能量差,确认所述海洋面上有溢油。
优选地,调控所述漂浮设备数量和多方面的移动,再次进行测量。
与现有技术相比,本发明具有以下优点:在油井平台附近设置四处游弋的激光发射模块,自动对准油井平台进行激光发射,在油井平台上设置激光接收模块,根据反射得到的激光信号来判断海洋面上的溢油情况,覆盖面广,操作 简单,能实时监测油井平台附近的漏油情况,便于及时清理,以免污染面扩大。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明油井平台附近溢油监测装置的结构示意图;
图2为本发明油井平台附近溢油监测装置的操作方法流程图;
图示标记:
1、油井平台;11、控制器;12、激光接收装置;13、激光发射装置;2、反射站;3、激光线束;4、海洋面;5、自动对准模块。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指 示也相应地随之改变。
另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
如图1所示,本发明一个实施例,一种油井平台附近溢油监测装置,包括发射模块、接收模块、自动对准模块和控制模块,
所述发射模块包括:
漂浮设备,用于使发射模块漂浮在海洋面上,所述漂浮设备包括推进模块,所述推进模块位于所述漂浮设备上,用于驱动所述漂浮设备在海洋面上运动;
激光发射模块,固定在所述漂浮设备上,能发射激光信号;
所述接收模块包括:
激光接收模块,用于接收激光发射模块发出的激光信号;所述激光信号为海洋面反射过来的激光信号;所述激光接收模块可转动地固定所述油井平台上;
所述自动对准模块5包括:
测距模块,用于测量所述激光发射模块和所述激光接收模块的距离;
光传感器,用于感应所述激光发射模块发出的激光信号;
计算模块,根据光传感器感应到所述激光发射模块发出的激光信号方向,以及所述测距模块获得的所述激光发射模块和所述激光接收模块的距离,计算所述接收模块的转动角度,以使得所述激光发射模块对准所述激光接收模块;
所述控制模块根据所述激光接收模块接收由所述激光发射模块向沿所述接收模块方向的海洋面发射激光而发射的激光,若损耗的能量差大于海洋面无溢 油时的能量差,确认所述海洋面上有溢油。
上述油井平台附近溢油监测装置的操作方法,包括:
驱动漂浮设备在油井平台周围游弋;
利用测距模块,测量漂浮设备与油井平台之间的距离;再结合光传感器和计算模块,获得使得所述激光发射模块对准所述激光接收模块的角度和方向;
启动激光发射模块向海洋面倾斜向下发射激光,该激光在与海洋面接触时会产生发射现象,若该反射点被溢油覆盖,会造成激光损耗;
利用海洋面对激光反射,激光发射模块发出的激光经反射后被激光接收模块所述接收;
所述控制器根据所述激光接收模块收到的激光信息,与无溢油时的预设值进行比较,若该激光损耗的能量差大于无溢油时能量差,确认所述海洋面上有溢油。
由于深海采油的油井平台1,是安设零部件最多的位置,导致容易出现漏油现象,在油井平台1上设置激光接收装置12,同时在远离油井平台1的地方设置激光发射装置12,利用激光发射装置13对油井平台1附近海洋面4发射激光,产生发射光线至激光接收装置12。
在海洋面4无溢油污染的情况下,激光发射装置13发出的激光与激光接收装置12接收的激光,存在强度差(或能量差),设定该差值为参考值。若海洋面4存在溢油时,由于激光在油污面与海洋面4上的损耗存在差异,必然使得上述强度差不同,若差值大于参考值,表明该海洋面4上存在油污。不然就没有被油污污染。上述强度差是通过油井平台1上的控制器11来操作完成。
所述发射模块设有若干个,分散在所述油井平台1上周围;相应的所述激光发射装置13和所述激光接收装置12设有若干个。采用若干个发射模块结合相应的激光发射装置13和所述激光接收装置12,分散在油井平台1周围,能快速对油井平台1周围的海洋面4进行监测,效率高。
所述发射模块设为可移动机构,相应的所述激光接收装置12为可活动地设在所述油井平台1上。
在选用小船结构的发射模块,可以以所述油井平台1为圆心转动,所述激光接收装置12在所述油井平台1上转动。对油井平台1周围进行全方位的监测,防止溢油扩散。
所述海洋面4溢油监测装置还包括自动报警装置,所述自动报警装置与所述控制器11连接,在确认所述海洋面4有溢油时,所述自动报警装置进行报警提示。由于上述监测过程可自动进行,结合自动报警装置,当检测到海洋面4上的油污存在,可及时提醒进行清污处理,防止进一步扩大污染面积。
所述激光发射模块和/或所述激光接收模块设有3-5个,可均匀分散在油井平台1的周围,或根据洋流方向或风向在下游设置较多的反射站2。
所述漂浮设备2、所述激光发射装置12和所述激光接收装置13为同步转动。对于游弋在油井平台1附近的反射站2,以提高检测的稳定性,同步转动使得检测效果更好。
所述转动为间歇式,每转动一次停止10s发射一次激光,每次转动7-13°。
所述监测装置包括无线通讯模块,用于将所述控制模块中信息传输至数据中心,例如云中心。
所述无线通讯模块优选包括Wi-Fi模块或移动网络模块。
本发明海洋面溢油监测装置,能对油井平台1附件的海洋面4进行实时监测,以免发生漏油现象而污染整个海洋环境。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种油井平台附近溢油监测装置,其特征在于:包括发射模块、接收模块、自动对准模块和控制模块,
    所述发射模块包括:
    漂浮设备,用于使发射模块漂浮在海洋面上,所述漂浮设备包括推进模块,所述推进模块位于所述漂浮设备上,用于驱动所述漂浮设备在海洋面上运动;
    激光发射模块,固定在所述漂浮设备上,能发射激光信号;
    所述接收模块包括:
    激光接收模块,用于接收激光发射模块发出的激光信号;所述激光信号为海洋面反射过来的激光信号;所述激光接收模块可转动地固定所述油井平台上;
    所述自动对准模块包括:
    测距模块,用于测量所述激光发射模块和所述激光接收模块的距离;
    光传感器,用于感应所述激光发射模块发出的激光信号;
    计算模块,根据光传感器感应到所述激光发射模块发出的激光信号方向,以及所述测距模块获得的所述激光发射模块和所述激光接收模块的距离,计算所述接收模块的转动角度,以使得所述激光发射模块对准所述激光接收模块;
    所述控制模块根据所述激光接收模块接收由所述激光发射模块向沿所述接收模块方向的海洋面发射激光而发射的激光,若损耗的能量差大于海洋面无溢油时的能量差,确认所述海洋面上有溢油。
  2. 如权利要求1所述油井平台附近溢油监测装置,其特征在于:所述发射模块设有若干个,分散在所述油井平台(1)上周围。
  3. 如权利要求1或2所述油井平台附近溢油监测装置,其特征在于:所述油井平台附近溢油监测装置还包括自动报警装置,所述自动报警装置与所述控制模块(11)连接,在确认所述海洋面(4)有溢油时,所述自动报警装置进行报警提示。
  4. 如权利要求2所述油井平台附近溢油监测装置,其特征在于:所述激光发射模块和/或所述激光接收模块设有3-5个。
  5. 如权利要求4所述油井平台附近溢油监测装置,其特征在于:所述漂浮设备、所述激光发射模块和所述激光接收模块为同步转动。
  6. 如权利要求5所述油井平台附近溢油监测装置,其特征在于:所述转动为间歇式,每转动一次停止10s发射一次激光,每次转动7-13°。
  7. 如权利要求5所述油井平台附近溢油监测装置,其特征在于:所述监测装置包括无线通讯模块,用于将所述控制模块中信息传输至数据中心,例如云中心。
  8. 如权利要求7所述油井平台附近溢油监测装置,其特征在于:所述无线通讯模块优选包括Wi-Fi模块或移动网络模块。
  9. 一种如权利要求1-8任一所述油井平台附近溢油监测装置的操作方法,其特征在于:包括:
    驱动漂浮设备在油井平台周围游弋;
    利用测距模块,测量漂浮设备与油井平台之间的距离;再结合光传感器和计算模块,获得使得所述激光发射模块对准所述激光接收模块的角度和方向;
    启动激光发射模块向海洋面(4)倾斜向下发射激光,该激光在与海洋面(4) 接触时会产生发射现象,若该反射点被溢油覆盖,会造成激光损耗;
    利用海洋面对激光反射,激光发射模块发出的激光经反射后被激光接收模块所述接收;
    所述控制器(11)根据所述激光接收模块收到的激光信息,与无溢油时的预设值进行比较,若该激光损耗的能量差大于无溢油时能量差,确认所述海洋面(4)上有溢油。
  10. 如权利要求9所述的操作方法,其特征在于:调控所述漂浮设备数量和多方面的移动,再次进行测量。
PCT/CN2019/094436 2019-07-02 2019-07-02 油井平台附近溢油监测装置及操作方法 WO2021000266A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/094436 WO2021000266A1 (zh) 2019-07-02 2019-07-02 油井平台附近溢油监测装置及操作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/094436 WO2021000266A1 (zh) 2019-07-02 2019-07-02 油井平台附近溢油监测装置及操作方法

Publications (1)

Publication Number Publication Date
WO2021000266A1 true WO2021000266A1 (zh) 2021-01-07

Family

ID=74101103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094436 WO2021000266A1 (zh) 2019-07-02 2019-07-02 油井平台附近溢油监测装置及操作方法

Country Status (1)

Country Link
WO (1) WO2021000266A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199742A (ja) * 1999-01-05 2000-07-18 Fuji Electric Co Ltd 油膜検知装置
JP2000275135A (ja) * 1999-03-29 2000-10-06 Mitsubishi Heavy Ind Ltd 漏油検査装置及び検査方法
JP2013205075A (ja) * 2012-03-27 2013-10-07 Nec Corp 環境の観測システム
CN106442423A (zh) * 2016-11-30 2017-02-22 吉林大学 一种基于spr传感原理的接触式海上溢油监测系统
CN106769882A (zh) * 2016-11-01 2017-05-31 深圳先进技术研究院 溢油监测仪及其监测方法
CN109298410A (zh) * 2018-11-02 2019-02-01 北京遥测技术研究所 一种海洋溢油探测激光雷达

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199742A (ja) * 1999-01-05 2000-07-18 Fuji Electric Co Ltd 油膜検知装置
JP2000275135A (ja) * 1999-03-29 2000-10-06 Mitsubishi Heavy Ind Ltd 漏油検査装置及び検査方法
JP2013205075A (ja) * 2012-03-27 2013-10-07 Nec Corp 環境の観測システム
CN106769882A (zh) * 2016-11-01 2017-05-31 深圳先进技术研究院 溢油监测仪及其监测方法
CN106442423A (zh) * 2016-11-30 2017-02-22 吉林大学 一种基于spr传感原理的接触式海上溢油监测系统
CN109298410A (zh) * 2018-11-02 2019-02-01 北京遥测技术研究所 一种海洋溢油探测激光雷达

Similar Documents

Publication Publication Date Title
US8738324B2 (en) Method and system for determination of detection probability of a target object based on a range
US8855268B1 (en) System for inspecting objects underwater
CN205504489U (zh) 一种搭载激光甲烷气体泄漏检测器的无人机管道巡检装置
CN204177363U (zh) 一种镜面瓷砖平整度在线检测装置
CN102221450B (zh) 一种激光系统跟瞄偏差测量装置
US20120158303A1 (en) Unmanned drifting substance monitoring buoy, drifting substance monitoring system, and drifting substance monitoring method
US8956022B2 (en) Device to reflect in a desired direction a laser beam emitted by a laser device mounted with an aircraft
CN111928889A (zh) 一种智能水质监控系统
WO2021000266A1 (zh) 油井平台附近溢油监测装置及操作方法
WO2016024303A1 (ja) コンクリート構造物非破壊検査システム
CN104374747B (zh) 一种双基线大气能见度透射仪
WO2020232644A1 (zh) 油井平台附近溢油监测装置及操作方法
JP2017110985A (ja) ガス検知装置
CN103759816B (zh) 一种现场光环境自动测量定位装置
KR20170074519A (ko) Lng 탱크 검사장치 및 방법
JP2008281423A (ja) 浮流物質検出システム及び浮流物質検出方法
CN210243838U (zh) 用于无压输水隧洞的无人巡视装备
WO2020232640A1 (zh) 海洋面溢油监测装置和操作方法
WO2021000269A1 (zh) 海洋面溢油的自动监测装置和操作方法
CN210923513U (zh) 海洋面溢油的自动监测装置
CN110596047A (zh) 一种能见度传感器及其自清洁方法和标定方法
CN209946005U (zh) 油井平台附近溢油监测装置
WO2020232643A1 (zh) 油井平台溢油监测装置及操作方法
KR100621415B1 (ko) 이동로봇의 자기위치 검출시스템 및 검출방법
CN210051695U (zh) 海洋面溢油监测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936364

Country of ref document: EP

Kind code of ref document: A1