WO2020262557A1 - 検卵装置、検卵プログラム、および検卵方法 - Google Patents

検卵装置、検卵プログラム、および検卵方法 Download PDF

Info

Publication number
WO2020262557A1
WO2020262557A1 PCT/JP2020/025099 JP2020025099W WO2020262557A1 WO 2020262557 A1 WO2020262557 A1 WO 2020262557A1 JP 2020025099 W JP2020025099 W JP 2020025099W WO 2020262557 A1 WO2020262557 A1 WO 2020262557A1
Authority
WO
WIPO (PCT)
Prior art keywords
egg
inspected
factor
defective
image
Prior art date
Application number
PCT/JP2020/025099
Other languages
English (en)
French (fr)
Inventor
英希 大西
弘樹 松原
一範 清水
Original Assignee
四国計測工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四国計測工業株式会社 filed Critical 四国計測工業株式会社
Priority to CN202080047721.1A priority Critical patent/CN114096844A/zh
Priority to JP2021527746A priority patent/JP7407189B2/ja
Publication of WO2020262557A1 publication Critical patent/WO2020262557A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/08Eggs, e.g. by candling
    • G01N33/085Eggs, e.g. by candling by candling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Definitions

  • the present invention relates to an egg inspection device, an egg inspection program, and an egg inspection method.
  • a fertilized egg is irradiated with light to capture an image in which the inside of the egg is transparent, an inspection area is extracted from the captured image, blood vessel information in the inspection area is measured, and a certain thickness or more is obtained.
  • a technique for automatically determining a normal egg based on the total blood vessel length is known (see Patent Document 1).
  • An object of the present invention is to provide an egg inspection device, an egg inspection program, and an egg inspection method capable of identifying the cause of defective eggs with high accuracy.
  • the egg inspection device uses a first trained model created in advance using an egg image as teacher data, and uses a first discriminating means for discriminating whether or not an egg has a first defective factor, and an egg.
  • a second trained model different from the first trained model created in advance using the image as teacher data it is determined whether the egg has a second defect factor different from the first defect factor.
  • the second discriminating means is provided, an imaging means for irradiating the inspection target egg with light to capture an image of the inspection target egg, and a control means, and the control means is based on the image of the inspection target egg.
  • the control means causes the first determination means to determine whether the inspection target egg has the first defect factor based on the image of the inspection target egg, and the inspection target egg.
  • the control means causes the first determination means to determine whether the inspection target egg has the first defect factor based on the image of the inspection target egg, and the inspection target egg.
  • the second discriminating means can be configured to determine whether the egg to be inspected also has the second defect factor.
  • the first discriminating means discriminates a defective factor based on the state of the blood vessel of the egg as the first defective factor
  • the second discriminating means determines the defective factor as the second defective factor. It can be configured to discriminate defective factors based on any one of room condition, growth condition, and presence or absence of cracks.
  • the first defect factor and the first defect factor and the third trained model different from the first trained model and the second trained model, which are prepared in advance using the egg image as teacher data are used.
  • the egg inspection device can be configured to further have a third determining means for determining whether or not it has a third defective factor different from the second defective factor.
  • a fourth trained model different from the first trained model, the second trained model, and the third trained model, which is prepared in advance using an egg image as teacher data is used. It can be configured to further have a fourth determining means for determining whether or not the first defective factor, the second defective factor, and the fourth defective factor different from the third defective factor are present.
  • the first defective factor, the second defective factor, the third defective factor, and the fourth defective factor are the blood vessel condition, the air chamber condition, and the developmental condition, respectively.
  • And can be configured to be a defect factor based on the presence or absence of cracks.
  • the egg inspection device can be configured to further have a fifth discriminating means for discriminating normal eggs by using a fifth trained model created in advance using an egg image as teacher data.
  • the egg to be inspected can be configured to be an egg to be used for vaccine production.
  • the egg inspection device can be configured to have a function of totaling the frequency of occurrence for each defective factor.
  • the egg inspection program according to the present invention uses a first trained model created in advance by irradiating a computer with light to acquire an image of the egg to be inspected and using the image of the egg as teacher data.
  • the inspection target is determined by determining whether the egg to be inspected has the first defect factor, and using a second trained model different from the first trained model, which is created in advance using the egg image as teacher data.
  • the process of determining the cause of the defect is executed.
  • an image of the egg to be inspected is acquired by irradiating the egg to be inspected with light using a computer, and a first trained model created in advance using the image of the egg as teacher data is used.
  • a second trained model different from the first trained model the egg to be inspected has a first defect factor, and a second trained model different from the first trained model, which is prepared in advance using the egg image as teacher data, is used.
  • the egg to be inspected By determining whether the egg to be inspected has a second defective factor different from the first defective factor, it is determined whether or not the egg to be inspected has a defective factor, and the egg to be inspected has a defective factor. If, the cause of the defect is determined.
  • the defect factor of the egg to be inspected is not determined all at once, but the first trained model and the second trained model different from the first trained model are used separately to be inspected.
  • the defective factor of the egg it is possible not only to determine whether the egg to be inspected has a defective factor, but also to identify the defective factor with high accuracy when the egg to be inspected has a defective factor.
  • the present invention relates to an egg inspection device, an egg inspection program, and an egg inspection method for inspecting chicken eggs (fertilized eggs) used for producing vaccines and the like.
  • the egg to be inspected in the present invention is a fertilized egg such as a chicken, and the color of the egg surface may be white or brown.
  • the type of virus such as influenza, the type of injectables such as other chemicals, and the presence or absence of these injections do not matter, but the life and death and developmental status of fertilized eggs in which fetal blood vessels are widely distributed inside the egg as they grow are not considered. In the case of destructive inspection, the technical significance of the present invention is great.
  • FIG. 1 is a diagram illustrating a general structure of a normal fertilized egg aged ten and several days.
  • the external structure of a developing chicken egg is covered with a shell called an eggshell.
  • the eggshell membrane which uses the eggshell and eggshell membranes to exchange oxygen with the inside.
  • a large blood vessel Just inside the eggshell is a large blood vessel.
  • the internal structure of a developing chicken egg has an air chamber, which is a layer of air, at the tip of the egg, and a foetation wrapped in amniotic fluid containing amniotic fluid in the center. Between the foetation and the air chamber is a chorioallantoic space surrounded by the chorioallantoic membrane.
  • the chorioallantoic cavity has a certain size, and blood vessels are widely distributed in the chorioallantoic membrane.
  • FIG. 2 shows an example of a captured image of a normal egg aged ten and several days.
  • the egg by irradiating only the egg with light in a dark room, the egg can be imaged while the inside of the egg is transparent (the same applies to FIG. 3).
  • FIGS. 3 and 4 are diagrams showing an example of a captured image obtained by capturing a defective egg in the same manner as in FIG.
  • Unfertilized egg As shown in FIG. 3 (A), the unfertilized egg has no blood vessels and no foetation. Therefore, there is a feature that the difference in hue becomes small (contrast becomes low) as a whole.
  • Canceled eggs As shown in FIG. 3 (B), the discontinued eggs have a significantly narrower and smaller blood vessel distribution than the normal eggs.
  • the distributed blood vessels are extremely thin and pale in color, the difference in hue near the boundary between the air chamber and the chorioallantoic cavity may be small, and bleeding is observed in the eggshell membrane, on the chorioallantoic membrane, and in the chorioallantoic space.
  • the poor air chamber egg has a deformed air chamber (the air chamber is tilted), and the air chamber and allantois as compared with the normal egg.
  • the boundary with the membrane not being a smooth curve can be seen.
  • Upside-down egg An upside-down egg is an egg that has been placed upside down (the blunt end (tip on the air chamber side) and the sharp end are reversed) when the egg to be inspected is placed on the special tray. As shown in FIG. 3 (E), there is a characteristic that the air chamber is not seen.
  • (6) Cracked egg The cracked egg has a crack represented by a high-brightness line on the imaging screen as shown in FIG. 4 (F), or as shown in FIG. 4 (G). Features such as a significantly large room can be seen.
  • the egg inspection device 1 As described above, there are a plurality of defective factors of defective eggs, and in the egg inspection device 1 according to the present embodiment, when the egg to be inspected is a defective egg, it is also an object to identify the defective factor with high accuracy. .. Therefore, in the present embodiment, as shown in FIGS. 2 to 4, an expert is asked to actually confirm the captured image of the egg used for vaccine production in advance, and whether the egg is a normal egg or not (1). )-(6) to determine whether the egg is an unfertilized egg, a stopped egg, a stunted egg, a poorly ventilated egg, an upside-down egg, or a cracked egg, and each image data is used for discrimination. The results were labeled.
  • a trained model was constructed by machine learning the image data labeled in this way by deep learning using a deep neural network having a multi-layer structure as a model, so-called deep learning. Then, in the egg inspection device 1, in addition to determining whether the inspection target egg is a normal egg or a defective egg from the image of the inspection target egg by using the constructed trained model, it is a defective egg. In that case, it was decided to identify the cause of the defect. As a result, for example, by feeding back the defective factors and their frequency of occurrence to the producers of eggs and vaccines, it becomes possible to utilize them for improving the breeding conditions and vaccine production conditions of chickens and eggs. Further, in the egg inspection device 1 according to the present embodiment, as will be described later, by using a plurality of trained models in multiple stages, it is difficult for a single trained model to cause defective eggs. Can be specified with high accuracy at a practical level.
  • FIG. 5 is a configuration diagram of the egg inspection device 1 according to the present embodiment.
  • the egg inspection device 1 according to the present embodiment includes an image pickup device 10, a lighting device 20, a discrimination device 30, and a transfer device 40. Each device will be described below.
  • the image pickup device 10 is a camera for imaging the egg to be inspected, and examples thereof include a color CCD camera that images the egg to be inspected and outputs color image data of the egg to be inspected. Further, the image pickup device 10 is not limited to the color CCD camera, and a known camera for capturing a color image such as a color CMOS camera can be used.
  • the lighting device 20 is a light for irradiating the egg to be inspected with light, and as shown in FIG. 5, the light of the optical axis L1 of the imaging device 10 and the light of the lighting device 20 at the position where the egg to be inspected is arranged. It is arranged at a position where it intersects with the axis L2.
  • the lighting device 20 is not particularly limited, but may be, for example, an LED light.
  • the egg to be inspected When imaging the egg to be inspected, as shown in FIG. 5, the egg to be inspected is placed on the support base 42, and the support base 42 moves up and down to prevent disturbance during imaging, so that the egg to be inspected is imaged in a light-shielding manner. It is arranged in the part 50.
  • An imaging device 10 and a lighting device 20 are arranged in the imaging unit 50. Further, the lighting device 20 is housed in a cylinder 21 for lighting, and the support base 42 is raised until the tip of the cylinder 21 comes into contact with the egg to be inspected, and the egg to be inspected is moved to the air chamber side by the lighting device 20. Illuminate more.
  • the tip of the cylinder 21 for incorporating the lighting device 20 is made of a soft material and has a bellows structure so that the lighting light does not leak to the outside from the tip even if the egg shape and size are different. ing.
  • the egg to be inspected is illuminated by the lighting device 20 in the imaging unit 50, the egg to be inspected is imaged by the imaging device 10.
  • the imaging device 10 can take an image with the inside of the egg to be inspected transparent. Further, as shown in FIG.
  • the imaging apparatus 10 images the egg to be inspected from the side, so that the air chamber, the inside of the eggshell membrane, the chorioallantoic membrane, the chorioallantoic space, and the state of the foetation of the egg to be inspected Can be collectively observed and imaged.
  • the operation of the image pickup device 10, the lighting device 20, and the support base 42 is controlled by the discrimination device 30, and the captured image of the egg to be inspected captured by the image pickup device 10 is transmitted to the discrimination device 30.
  • the discrimination device 30 acquires an image of the egg to be inspected from the image pickup device 10, and determines whether the egg to be inspected is a normal egg or a defective egg based on the image of the egg to be inspected. Further, when the egg to be inspected is a defective egg, the discrimination device 30 identifies the cause of the defect. As shown in FIG. 5, the discrimination device 30 includes a storage device 31 and a processing device 32.
  • the storage device 31 stores in advance a plurality of trained models in which captured image groups of a plurality of eggs are used as teacher data. Specifically, the storage device 31 stores four different trained models M1 to M4 for determining the defective factor of the egg. The trained models M1 to M4 stored in the storage device 31 will be described below.
  • the trained model M1 is constructed by machine learning by deep learning using the first training data group classified by the state of the blood vessel of the egg as teacher data in order to discriminate between "unfertilized egg” and "stopped egg". It is a model that was made.
  • the first training data group is classified as an unfertilized egg in advance by an expert because the egg has no blood vessels, and is labeled as an "unfertilized egg", and an image group with a small distribution of blood vessels, short blood vessels, and blood vessels.
  • It includes an image group that is determined to be a discontinued egg for reasons such as thinness and labeled as a "discontinued egg", and an image group that is determined not to be an unfertilized egg or a discontinued egg and is labeled as a "first normal egg”.
  • the trained model M1 it can be determined from the image of the egg to be inspected whether the egg to be inspected is an "unfertilized egg", a "stopped egg”, or a first normal egg including a normal egg. It can be determined.
  • the second learning data group classified by the state of the air chamber is used as teacher data for machine learning by deep learning. It is a model built with.
  • the second training data group was previously determined by an expert to be an inverted egg because no air chamber was found in the egg, and the image group labeled as an "upside-down egg” and the shape of the air chamber were deformed. It was determined that the egg was a poorly ventilated egg and was labeled as a "poor air chamber egg”, and that it was not an inverted egg or a poorly ventilated egg and was labeled as a "second normal egg”. Includes a group of images.
  • the trained model M2 By using the trained model M2, from the image of the egg to be inspected, whether the egg to be inspected is an "upside-down egg", a “poor air chamber egg”, or another second normal egg including a normal egg. It is possible to determine whether or not there is.
  • the trained model M3 is a model constructed by machine learning by deep learning using a third learning data group classified as a characteristic of the developmental state as teacher data in order to identify a “developmental egg”. ..
  • the third learning data group was previously determined by an expert to be a stunted egg because the distribution of blood vessels on the chorioallantoic membrane is extremely narrow and few, and the distributed blood vessels are extremely thin and light in color. It includes an image group labeled as "bad egg” and an image group labeled as "third normal egg” which is determined not to be a stunted egg.
  • the trained model M4 is a model constructed by machine learning by deep learning using a fourth learning data group classified based on the presence or absence of cracks as teacher data in order to identify "cracked eggs". ..
  • the fourth training data group is a high-brightness linear image on the captured image among the captured images obtained by the expert in advance, which is directly visually determined to be a cracked egg because the egg is cracked. This includes an image group labeled as a "cracked egg” due to the presence of cracks displayed in (1), an extremely large air chamber, and an image group labeled as a "fourth normal egg” other than these.
  • the trained models M1 to M4 may be constructed in advance by the processing device 32, or the trained models M1 to M4 constructed by the external device may be acquired and stored in the storage device 31. ..
  • the algorithm of the machine-learned model is not particularly limited, such as a support vector machine, a logistic regression, and a neural network, but as described above, it is a neural network, and a deep neural network having three or more layers in particular. Of the deep neural networks, it is preferable to use a convolutional neural network suitable for image recognition.
  • the processing device 32 uses the captured image of the egg to be inspected acquired from the image pickup device 10 and the trained models M1 to M4 stored in the storage device 31 by executing the egg inspection program stored in the memory. Determine whether the egg to be inspected is a normal egg or a bad egg. Further, when the egg to be inspected is a defective egg, the processing device 32 identifies the cause of the defect. Further, the processing device 32 also has a function of totaling the defective factors of defective eggs and their frequency of occurrence and outputting them to a display (not shown) or the like. The details of the method for discriminating the egg to be inspected by the processing device 32 will be described later.
  • the transport device 40 carries the egg to be inspected to the imaging unit 50, and also carries out the egg to be inspected from the imaging unit 50. Specifically, the transport device 40 drives a conveyor to transport a plurality of eggs to be inspected placed on the dedicated tray 41 to the position of the support base 42 below the imaging unit 50. Further, the transport device 40 raises the support base 42 to transfer the eggs to be inspected from the dedicated tray 41 to the support base 42, and then further raises the support base 42 to raise the inspection target eggs to the inside of the imaging unit 50. lift. When the imaging unit 50 finishes imaging the egg to be inspected, the transport device 40 lowers the support 42 and returns the imaged egg to be inspected to the dedicated tray 41.
  • the transport device 40 moves the conveyor to transport the egg to be inspected next to the position of the support base 42.
  • the eggs to be inspected are sequentially conveyed to the imaging unit 50, and the imaging device 10 performs imaging.
  • the transport device 40 can also eliminate defective eggs based on the discrimination result of the eggs to be inspected by the discrimination device 30.
  • FIG. 6 is a flowchart showing the egg inspection process according to the first embodiment
  • FIG. 7 is a diagram for explaining the egg inspection process according to the first embodiment.
  • step S101 the imaging device 10 images the egg to be inspected.
  • the egg to be inspected is placed in the imaging unit 50, which is a dark room, and only the egg to be inspected is illuminated by the lighting device 20, so that the imaging device 10 takes an image with the inside of the egg to be inspected transparent. can do.
  • the image data of the egg to be inspected captured by the imaging device 10 is transmitted to the processing device 32.
  • the processing device 32 acquires the image data of the egg to be inspected imaged by the image capturing device 10.
  • step S103 the processing device 32 performs a process of determining whether the egg to be inspected is an unfertilized egg or a discontinued egg. Specifically, the processing device 32 executes an egg inspection program stored in the memory, and uses the image data of the inspection target egg acquired in step S102 and the trained model M1 to make the inspection target egg an unfertilized egg. It is determined whether it is an absent egg, a discontinued egg, or another first normal egg. Then, the process proceeds to step S104, and if the test target egg is determined to be an unfertilized egg or a discontinued egg as a result of the determination in step S103, the process proceeds to step S112, and the test target egg is determined to be a defective egg. Then, in the following step S113, the cause (unfertilized egg or discontinued egg) of the defective egg to be inspected is output.
  • step S104 the process proceeds to step S105.
  • step S105 the processing device 32 performs a process of determining whether the egg to be inspected is an inverted egg or an egg with a poor air chamber. Specifically, the processing device 32 executes the egg inspection program stored in the memory, and uses the image data of the inspection target egg acquired in step S102 and the trained model M2 to set the inspection target egg to the inverted egg. It is determined whether the egg is a poorly ventilated egg or a second normal egg other than the above.
  • step S106 the process proceeds to step S106, and if the test target egg is determined to be an inverted egg or an air chamber defective egg as a result of the determination in step S105, the process proceeds to step S112, and the test target egg is determined to be a defective egg. To. Then, in the following step S113, the cause of the defect (upside-down egg or the air chamber defective egg) of the egg to be inspected is output.
  • step S107 the processing device 32 performs a process of determining whether or not the egg to be inspected is a stunted egg. Specifically, the processing device 32 executes the egg inspection program stored in the memory, and uses the image data of the inspection target egg acquired in step S102 and the trained model M3 to cause the inspection target egg to grow poorly. It is determined whether it is an egg or a third normal egg other than that.
  • step S108 the process proceeds to step S108, and if the test target egg is determined to be a stunted egg as a result of the determination in step S107, the process proceeds to step S112 and the test target egg is determined to be a stunted egg. Then, in the following step S113, the cause of the defect (developed egg) of the egg to be inspected is output.
  • step S109 the processing device 32 performs a process of determining whether the egg to be inspected is a cracked egg. Specifically, the processing device 32 executes the egg inspection program stored in the memory, and uses the image data of the inspection target egg acquired in step S102 and the trained model M4 to crack the inspection target egg. It is determined whether it is an egg or a fourth normal egg other than that. Then, the process proceeds to step S110, and if the test target egg is determined to be a cracked egg as a result of the determination in step S109, the process proceeds to step S112, and the test target egg is determined to be a cracked egg. Then, in the following step S113, the cause of the defect (cracked egg) of the egg to be inspected is output.
  • step S110 if the egg to be inspected is determined to be the fourth normal egg in step S110, the process proceeds to step S111.
  • step S111 the processing device 32 determines that the egg to be inspected is a normal egg. As a result, the egg inspection process according to the present embodiment is completed.
  • a process of determining whether the egg to be inspected is an unfertilized egg or a discontinued egg (step S103), and a process of determining whether the egg to be inspected is an upside-down egg or a poorly ventilated egg.
  • Step S105 an example of a configuration in which a process of determining whether or not the egg to be inspected is a stunted egg (step S107) and a process of determining whether the egg to be inspected is a cracked egg (step S110) are sequentially performed. did.
  • the execution order of these processes is not limited to the example shown in FIG. 6, and the order may be changed as appropriate.
  • the egg inspection device 1 determines the result of determining whether the egg is a normal egg or a defective egg, and in the case of a defective egg, image data of an egg labeled with a defective factor.
  • a trained model constructed by machine learning by deep learning so-called deep learning, using the above as teacher data as a model of a deep neural network with a multi-layer structure, whether the egg to be inspected is a normal egg or a defective egg.
  • the cause of the defect can also be identified.
  • the egg inspection device 1 by using a plurality of learned models M1 to M4 in multiple stages, it is possible to determine the defective cause of a defective egg with higher accuracy.
  • the egg inspection device 1 also has a function of totaling the occurrence frequency for each defective factor, and feeds back the identified defective factor and its occurrence frequency to the production manager of eggs and vaccines, and chickens and chickens. It can be used to improve egg breeding conditions and vaccine production conditions.
  • the production manager can take measures such as changing the setting (temperature / humidity) of the incubator.
  • the production manager can take measures such as changing the feed composition and inspecting the transport equipment. In this way, the operation of the production process can be improved according to the frequency of occurrence of defective factors.
  • various conditions in the egg production work for example, breeding conditions such as temperature and humidity, food composition, parent chicken history, incubator settings such as temperature and humidity
  • various conditions in the virus production work for example, type of virus, etc.
  • the egg inspection device according to the second embodiment has the same configuration as the egg inspection device 1 according to the first embodiment, except for the following description, and is the same as the egg inspection device 1 according to the first embodiment. Do the action.
  • the storage device 31 stores seven trained models M11 to 17.
  • the seven trained models M11 to M17 stored in the storage device 31 will be described below.
  • the trained model M11 is a model constructed by machine learning by deep learning using a training data group classified by the state of the blood vessels of the egg as teacher data in order to discriminate the "stopped egg".
  • the learning data group includes an image group that has been previously determined by an expert as a discontinued egg due to a small distribution of blood vessels, a short blood vessel, a thin blood vessel, or the like, and is labeled as a "discontinued egg”.
  • the processing device 32 can determine whether or not the test target egg is a "stopped egg” from the image of the test target egg.
  • the trained model M12 is a model constructed by machine learning by deep learning using a training data group classified based on the state of the blood vessels of the egg as teacher data in order to discriminate "infertile eggs".
  • the learning data group includes an image group that has been previously determined to be an unfertilized egg by an expert because the egg has no blood vessels and is labeled as an "unfertilized egg”.
  • the processing device 32 can determine whether or not the test target egg is an "unfertilized egg" from the image of the test target egg.
  • the trained model M13 is a model constructed by machine learning by deep learning using a training data group classified based on the state of the air chamber as teacher data in order to discriminate "poor air chamber eggs". ..
  • the learning data group includes an image group that has been previously determined by an expert to be a poorly ventilated egg due to a deformed shape of the air chamber or the like and labeled as a “bad air chamber egg”.
  • the processing device 32 can determine whether or not the egg to be inspected is a "poor air chamber egg" from the image of the egg to be inspected.
  • the trained model M14 is a model constructed by machine learning by deep learning using a training data group classified by the state of the air chamber as teacher data in order to discriminate the "upside-down egg".
  • the learning data group includes an image group that has been previously determined by an expert as an upside-down egg because no air chamber is found in the egg and labeled as an "upside-down egg”.
  • the trained model M15 is a model constructed by machine learning by deep learning using a learning data group classified as a characteristic of the developmental state as teacher data in order to identify a "developmental egg".
  • the training data group was previously determined by an expert as a stunted egg due to reasons such as the distribution of blood vessels on the chorioallantoic membrane being extremely narrow and few, and the distributed blood vessels being extremely thin and light in color. Includes images labeled as "eggs”.
  • the processing device 32 can determine whether or not the egg to be inspected is a “developmental egg” from the image of the egg to be inspected.
  • the trained model M16 is a model constructed by machine learning by deep learning using a training data group classified based on the presence or absence of cracks as teacher data in order to identify "cracked eggs".
  • the training data group is a high-brightness linear image on the captured image among the captured images obtained by the expert in advance, which is determined to be a cracked egg because the egg is cracked by direct visual inspection. Includes images labeled as "cracked eggs” for reasons such as the displayed cracks or a significantly larger air chamber.
  • the trained model M17 is a model constructed by machine learning by deep learning using a training data group classified to identify a "normal egg” as teacher data.
  • the learning data group is an image taken by an expert in advance of an egg that is directly visually determined to be normal without any defective factor, and includes an image group labeled as "normal egg”.
  • the processing device 32 can determine whether or not the test target egg is a “normal egg” from the image of the test target egg.
  • FIG. 8 is a flowchart for explaining the egg inspection process according to the second embodiment.
  • FIG. 9 is a diagram for explaining the egg inspection process according to the second embodiment.
  • step S201 the egg to be inspected is imaged by the imaging device 10 (step S201) as in steps S101 and S102 of the first embodiment, and the inspection imaged in step S201.
  • Image data of the target egg is acquired (step S202).
  • step S203 the processing device 32 performs a process of determining whether the egg to be inspected is a "stopped egg". Specifically, the processing device 32 executes the egg inspection program stored in the memory, and uses the image data of the inspection target egg acquired in step S202 and the trained model M11 to set the inspection target egg to "stopped egg”. It is determined whether or not it is. Then, the processing device 32 stores the determination result of whether or not the egg is a "stopped egg" in the storage device 31, and proceeds to the next step S204.
  • the eggs to be inspected are "unfertilized eggs", “poor air chamber eggs”, “upside-down eggs”, “underdeveloped eggs”, “cracked eggs”, and Processing is performed to determine whether the eggs are "normal eggs”. That is, the processing device 32 executes the egg inspection program stored in the memory, and uses the image data of the inspection target egg acquired in step S202 and the trained models M12 to M17, respectively, to make the inspection target egg “unfertilized egg”. It is determined whether or not the egg is a “poor air chamber egg”, an “upside-down egg”, a “developmental egg”, a “cracked egg”, or a “normal egg”, and each discrimination result is stored in the storage device 31.
  • the test target eggs are "stopped egg”, “unfertilized egg”, and "air chamber” as shown in steps S203 to S209 and FIG. 9 of FIG. It will be determined whether it is a "bad egg”, an "upside-down egg”, a “developed egg”, a “cracked egg”, or a "normal egg”. Then, in step S210, the processing device 32 outputs the results of discrimination in each of the discrimination processes of steps S203 to S209.
  • the egg to be inspected when the egg to be inspected has any of the defective factors, it is immediately regarded as a defective egg, and the defective factor is not determined, but one inspection is performed as shown in FIG.
  • the defective factor By discriminating a plurality of defective factors in parallel in the target egg, it is possible to discriminate a plurality of defective factors such as "upside-down egg” and "cracked egg” in one test target egg.
  • the trained models M11 to M16 using the image of the egg having a defective factor as the teacher data but also the trained model M17 using the image of the "normal egg” as the teacher data is used. , The accuracy of discrimination from "normal egg” can be improved.
  • the egg to be inspected for which the defective factor has not been determined is determined as a "normal egg”, but in the second embodiment, the defective factor is not determined and is determined as a "normal egg".
  • the accuracy of distinguishing the "normal egg” can be improved, and the defective factor is not discriminated and the test target egg is not discriminated as a "normal egg”.
  • the configuration in which the egg to be inspected is imaged from only one direction by the imaging device 10 and the image to be inspected is discriminated by using the image captured from the direction is exemplified, but the configuration is limited to this configuration.
  • the egg to be inspected was imaged from a plurality of directions (for example, the support base 42 was rotated by 90 degrees in four directions) and images were taken from a plurality of directions.
  • the captured image can be used to determine the egg to be inspected. In this case, the accuracy of discriminating the egg to be inspected can be further improved.
  • the number of trained models may be two or more, for example, three trained models or Eggs to be inspected can be discriminated using 5 or more trained models.
  • the number of trained models may be two or more, for example, three trained models or Eggs to be inspected can be discriminated using 5 or more trained models.
  • FIG. 4 (F) and 4 (G) an image data group having a high-brightness line on the imaging screen and being able to be determined to be cracked, and an air chamber having a large crack.
  • An example of a configuration in which the “cracked egg” is determined using the trained model M4 in which the image data group that can be discriminated from is used as the teacher data of the “cracked egg” is illustrated. For example, as shown in FIG. 4 (F). After first determining "cracked eggs” using a trained model using only image data groups that have high-brightness lines on the imaging screen and can be determined to be cracked as teacher data, FIG. 4 (G) shows.
  • the “cracked egg” may be determined by using a trained model using an image data group that can determine that the air chamber is remarkably large and cracked as teacher data.
  • the eggs to be inspected are discriminated using five trained models, and the cracked eggs can be discriminated with higher accuracy.
  • a configuration having a single lighting device 20 and irradiating light from the air chamber side of the egg to be inspected has been illustrated, but in addition to this configuration, another lighting device 20 is used. It is also possible to inspect the egg to be inspected by irradiating light from the lower side of the egg to be inspected. In this case, it becomes easier to check the inside of the egg, and it becomes possible to detect a wide range of cracks, especially when inspecting a cracked egg.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Artificial Intelligence (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)

Abstract

課題:不良卵の不良の要因を高い精度で特定することができる、検卵装置、検卵プログラム、および検卵方法を提供する。 解決手段:卵の画像を教師データとして予め作成された第1学習済みモデルを用いて、卵が第1の不良要因を有するかを判別する第1判別手段32と、卵の画像を教師データとして予め作成された、第1学習済みモデルとは異なる第2学習済みモデルを用いて、卵が、第1の不良要因とは異なる第2の不良要因を有するかを判別する第2判別手段32と、検査対象卵に光を照射して検査対象卵の画像を撮像する撮像手段10,20と、制御手段32とを有し、前記制御手段は、前記検査対象卵の画像に基づいて、前記第1判別手段および/または前記第2判別手段に検査対象卵の不良要因を判別させることで、検査対象卵が不良要因を有するか否か判別し、検査対象卵が不良要因を有する場合には当該不良要因を判別する。

Description

検卵装置、検卵プログラム、および検卵方法
 本発明は、検卵装置、検卵プログラム、および検卵方法に関する。
 従来、有精卵に光を照射して卵内部を透かした状態の画像を撮像し、撮像した画像から検査領域を抽出し、該検査領域内の血管情報を計測し、一定の太さ以上の血管の総血管長に基づいて正常卵を自動判定する技術が知られている(特許文献1参照)。
特許3998184号
 従来技術では、検査対象卵が、正常卵であるか不良卵であるかを判定することはできたが、不良卵である場合、不良の要因までを高い精度で特定することができないという問題があった。近年、不良の要因を検証することで、鶏や卵の飼育条件やワクチン生産条件の改善に活用するニーズがあり、不良の要因を高い精度で特定できる技術が希求されていた。
 本発明は、不良卵の不良の要因を高い精度で特定することができる、検卵装置、検卵プログラム、および検卵方法を提供することを目的とする。
 本発明に係る検卵装置は、卵の画像を教師データとして予め作成された第1学習済みモデルを用いて、卵が第1の不良要因を有するかを判別する第1判別手段と、卵の画像を教師データとして予め作成された、前記第1学習済みモデルとは異なる第2学習済みモデルを用いて、卵が、前記第1の不良要因とは異なる第2の不良要因を有するかを判別する第2判別手段と、検査対象卵に光を照射して検査対象卵の画像を撮像する撮像手段と、制御手段とを有し、前記制御手段は、前記検査対象卵の画像に基づいて、前記第1判別手段および前記第2判別手段に前記検査対象卵の不良要因を判別させることで、前記検査対象卵が不良要因を有するか否か判別し、前記検査対象卵が不良要因を有する場合には当該不良要因を判別する。
 上記検卵装置において、前記制御手段は、前記検査対象卵の画像に基づいて、前記第1判別手段に、前記検査対象卵が前記第1の不良要因を有するかを判別させ、前記検査対象卵が前記第1の不良要因を有しない場合に、前記第2判別手段に、前記検査対象卵が前記第2の不良要因を有するかを判別させるように構成することができる。
 上記検卵装置において、前記制御手段は、前記検査対象卵の画像に基づいて、前記第1判別手段に、前記検査対象卵が前記第1の不良要因を有するかを判別させ、前記検査対象卵が前記第1の不良要因を有するか否かに関わらず、前記第2判別手段に、前記検査対象卵が前記第2の不良要因を有するかも判別させるように構成することができる。
 上記検卵装置において、前記第1判別手段は、前記第1の不良要因として、卵の血管の状態に基づく不良要因を判別し、前記第2判別手段は、前記第2の不良要因として、気室の状態、発育の状態、および、ひびの有無のうちいずれか1つに基づく不良要因を判別するように構成することができる。
 上記検卵装置において、卵の画像を教師データとして予め作成された、前記第1学習済みモデルおよび前記第2学習済みモデルとは異なる第3学習済みモデルを用いて、前記第1の不良要因および前記第2の不良要因とは異なる第3の不良要因を有するかを判別する第3判別手段をさらに有するように構成することができる。
 上記検卵装置において、卵の画像を教師データとして予め作成された、前記第1学習済みモデル、前記第2学習済みモデルおよび前記第3学習済みモデルとは異なる第4学習済みモデルを用いて、前記第1の不良要因、前記第2の不良要因、および前記第3の不良要因とは異なる第4の不良要因を有するかを判別する第4判別手段をさらに有するように構成することができる。
 上記検卵装置において、前記第1の不良要因、前記第2の不良要因、前記第3の不良要因、および前記第4の不良要因は、それぞれ、血管の状態、気室の状態、発育の状態、および、ひびの有無に基づく不良要因であるように構成することができる。
 上記検卵装置において、卵の画像を教師データとして予め作成された第5学習済みモデルを用いて、正常卵を判別するための第5判別手段をさらに有するように構成することができる。
 上記検卵装置において、前記検査対象卵は、ワクチン製造に供される卵であるように構成することができる。
 上記検卵装置において、不良要因ごとの発生頻度を集計する機能を有する構成とすることができる。
 本発明に係る検卵プログラムは、コンピュータに、検査対象卵に光を照射して前記検査対象卵の画像を取得し、卵の画像を教師データとして予め作成された第1学習済みモデルを用いて、前記検査対象卵が第1の不良要因を有するか判別し、卵の画像を教師データとして予め作成された、前記第1学習済みモデルとは異なる第2学習済みモデルを用いて、前記検査対象卵が、前記第1の不良要因とは異なる第2の不良要因を有するかを判別することで、前記検査対象卵が不良要因を有するか否か判別し、前記検査対象卵が不良要因を有する場合には当該不良要因を判別する処理を実行させる。
 本発明に係る検卵方法は、コンピュータを用いて、検査対象卵に光を照射して前記検査対象卵の画像を取得し、卵の画像を教師データとして予め作成された第1学習済みモデルを用いて、前記検査対象卵が第1の不良要因を有するか判別し、卵の画像を教師データとして予め作成された、前記第1学習済みモデルとは異なる第2学習済みモデルを用いて、前記検査対象卵が、前記第1の不良要因とは異なる第2の不良要因を有するかを判別することで、前記検査対象卵が不良要因を有するか否か判別し、前記検査対象卵が不良要因を有する場合には当該不良要因を判別する。
 本発明によれば、検査対象卵の不良要因を一度に判別するのではなく、第1学習済みモデルと、当該第1学習済みモデルとは異なる第2学習済みモデルとを別々に用いて検査対象卵の不良要因を判別することで、検査対象卵が不良要因を有するかを判別するだけではなく、検査対象卵が不良要因を有する場合に当該不良要因を高い精度で特定することができる。
十数日齢の正常な有精卵の構造を説明する模式図である。 十数日齢の正常卵の撮像画像の一例を示す図である。 十数日齢の不良卵(ひび有り卵を除く)の撮像画像の一例を示す図である。 十数日齢の不良卵(ひび有り卵)の撮像画像の一例を示す図である。 本実施形態に係る検卵装置の構成図である。 第1実施形態に係る検卵方法を説明するためのフローチャートである。 第1実施形態に係る検卵方法を説明するための図である。 第2実施形態に係る検卵方法を説明するためのフローチャートである。 第2実施形態に係る検卵方法を説明するための図である。
 以下に、本発明の実施形態を、図に基づいて説明する。本発明は、ワクチンなどの製造に供される鶏卵(有精卵)を検査するための検卵装置、検卵プログラム、および検卵方法に関する発明である。本発明で検査対象とする卵は、鶏等の有精卵であり、卵表面の色は白・褐色など何でも良い。インフルエンザなどのウィルスの種類やその他薬品などの注入物の種類、それらの注入の有無は問わないが、成長とともに胎児の血管が卵内部で広く分布する有精卵において、その生死および発育状況を非破壊的に検査する場合に、本発明の技術的意義は大きいものとなる。
 《第1実施形態》
 図1は、十数日齢の正常な有精卵の一般的な構造を説明する図である。発育鶏卵の外部構造は、卵殻と呼ばれる殻に覆われている。そのすぐ内側に卵殻膜があり、卵殻と卵殻膜を使用して、内部との酸素交換が行われる。卵殻のすぐ内側には太い血管がある。例えば発育鶏卵の内部構造は、卵先端部に空気の層である気室があり、中央部に羊水の入った羊膜に包まれた胎児がある。胎児と気室の間には、漿尿膜に包まれた漿尿膜腔がある。十数日齢の正常に成育している有精卵の場合、漿尿膜腔が一定の大きさであり、漿尿膜には広く血管が分布する。
 図2は、十数日齢の正常卵の撮像画像の一例を示す。図2に示す例では、暗室下において卵だけに光を照射することで、卵の内部が透けた状態で卵を撮像できるようになっている(図3においても同様。)。十数日齢の正常に成育している有精卵の場合、漿尿膜腔が一定の大きさであり胎児が卵中央部付近に存在する、漿尿膜には広く血管が分布する、気室と漿尿膜腔の色合い(コントラスト)が明白に異なる、卵殻膜内、漿尿膜および漿尿膜腔に出血が見られない、卵上部には一定の大きさの気室が存在するなどの特徴が見られる。
 これに対して、不良卵の場合、不良要因ごとに、下記に説明するような特徴が見られる。なお、図3および図4は、不良卵を図2と同様の方法で撮像した撮像画像の一例を示す図である。
(1)無精卵
 無精卵は、図3(A)に示すように、血管が見られず、胎児も存在しない。そのため、全体として色合いの差が小さくなる(コントラストが低くなる)という特徴が見られる。
(2)中止卵(死卵)
 中止卵は、図3(B)に示すように、正常卵と比べて、血管の分布が著しく狭く、少ない。また、分布する血管は著しく細く色が薄い、気室と漿尿膜腔の境界付近の色合いの差が小さい場合がある、卵殻膜内、漿尿膜上および漿尿膜腔に出血が見られる場合があるなどの特徴が見られる。
(3)発育不良卵
 発育不良卵は、図3(C)に示すように、漿尿膜上の血管の分布が著しく狭く、少ない、分布する血管は著しく細く色が薄いなどの特徴が見られる。
(4)気室不良卵
 気室不良卵は、図3(D)に示すように、正常卵に比べて、気室が変形している(気室が傾いている)、気室と漿尿膜との境界が滑らかな曲線になっていないなどの特徴が見られる。
(5)逆さ卵
 逆さ卵は、検査対象卵を専用トレイに載せる際に、卵を逆さにして(鈍端(気室側の先端)と鋭端とを逆向きにして)載せてしまった卵であり、図3(E)に示すように、気室が見られないとの特徴が見られる。
(6)ひび有り卵
 ひび有り卵は、図4(F)に示すように、撮像画面上において輝度の高い線で表されるひびが有る、または、図4(G)に示すように、気室が著しく大きいなどの特徴が見られる。
 このように、不良卵の不良要因は複数あり、本実施形態に係る検卵装置1では、検査対象卵が不良卵である場合には、その不良要因を高い精度で特定することも目的とする。そこで、本実施形態では、予め、専門家に、図2~図4に示すように、ワクチン製造に供される卵の撮像画像を実際に確認してもらい、正常卵であるか、上記(1)~(6)のように無精卵、中止卵、発育不良卵、気室不良卵、逆さ卵、ひび有り卵のいずれかの不良卵であるかを判別してもらい、それぞれの画像データに、判別結果をラベリングした。また、このようにラベリングした画像データを、多層構造の深層ニューラルネットワークをモデルとした深層学習、いわゆるディープラーニングにより、機械学習させることで学習済みモデルを構築した。そして、検卵装置1において、構築した学習済みモデルを用いて、検査対象卵の画像から、検査対象卵が正常卵であるか不良卵であるかを判別することに加えて、不良卵である場合には、その不良要因も特定することとした。これにより、たとえば、不良要因とその発生頻度を卵やワクチンの生産者にフィードバックすることで、鶏や卵の飼育条件やワクチン生産条件の改善に活用することが可能となる。さらに、本実施形態に係る検卵装置1では、後述するように、複数の学習済みモデルを多段階に分けて用いることで、単一の学習済みモデルでは困難であった、不良卵の不良要因を実用レベルの高い精度で特定することができる。
 図5は、本実施形態に係る検卵装置1の構成図である。図5に示すように、本実施形態に係る検卵装置1は、撮像装置10と、照明装置20と、判別装置30と、搬送装置40とを備える。以下に、各装置について説明する。
 撮像装置10は、検査対象卵を撮像するためのカメラであり、たとえば、検査対象卵を撮像して検査対象卵のカラー画像データを出力する、カラーCCDカメラが挙げられる。また、撮像装置10は、カラーCCDカメラに限定されず、カラーCMOSカメラなどカラー画像を撮像する公知のカメラを用いることができる。
 また、照明装置20は、検査対象卵に光を照射するためのライトであり、図5に示すように、検査対象卵が配置される位置において撮像装置10の光軸L1と照明装置20の光軸L2とが交差する位置に配置される。なお、照明装置20は、特に限定されないが、たとえばLEDライトとすることができる。
 検査対象卵を撮像する場合、図5に示すように、検査対象卵は支持台42に載せられるとともに、撮像時の外乱を防ぐため、支持台42が昇降し、検査対象卵を遮光性の撮像部50内に配置する。撮像部50内には、撮像装置10および照明装置20が配置されている。また、照明装置20は、照明用の筒21に入れられており、その筒21の先が検査対象卵に接するまで、支持台42を上昇させて、照明装置20により検査対象卵を気室側より照明する。なお、照明装置20を内蔵するための筒21の先端部は、卵形状やサイズが異なってもその先端から外部に照明光が漏れないよう、柔らかい材質で構成されているとともに、蛇腹構造となっている。撮像部50内において照明装置20により検査対象卵を照明している際に、撮像装置10により検査対象卵が撮像される。暗室下において照明装置20により検査対象卵だけを照明することで、撮像装置10は、検査対象卵の内部を透かした状態で撮像することができる。また、撮像装置10は、図2に示すように、検査対象卵を側方から撮像することで、検査対象卵の気室、卵殻膜内、漿尿膜、漿尿膜腔、および胎児の状態を一括して観察可能に撮像することができる。なお、撮像装置10、照明装置20、支持台42の動作は判別装置30により制御され、撮像装置10により撮像された検査対象卵の撮像画像は、判別装置30に送信される。
 判別装置30は、検査対象卵の撮像画像を撮像装置10から取得し、検査対象卵の撮像画像に基づいて、検査対象卵が正常卵であるか不良卵であるかを判別する。また、判別装置30は、検査対象卵が不良卵である場合には、不良要因を特定する。図5に示すように、判別装置30は、記憶装置31と、処理装置32とを有する。
 記憶装置31は、予め複数の卵の撮像画像群を教師データとする複数の学習済みモデルを記憶している。具体的には、記憶装置31は、卵の不良要因を判別するための異なる4つの学習済みモデルM1~M4を記憶している。以下に、記憶装置31が記憶する学習済みモデルM1~M4について説明する。
 学習済みモデルM1は、「無精卵」および「中止卵」を判別するために、卵の血管の状態を特徴として分類された第1学習データ群を教師データとして、ディープラーニングにより機械学習させることで構築されたモデルである。第1学習データ群は、専門家により、予め、卵に血管が無いなどの理由により無精卵と判別され、「無精卵」としてラベリングされた画像群と、血管の分布が少ない、血管が短い、血管が細いなどの理由により中止卵と判別され、「中止卵」としてラベリングされた画像群と、無精卵および中止卵ではないと判別され、「第1正常卵」としてラベリングされた画像群とを含む。学習済みモデルM1を用いることで、検査対象卵の画像から、検査対象卵が「無精卵」であるか、「中止卵」であるか、正常卵を含むそれ以外の第1正常卵であるかを判別することができる。
 学習済みモデルM2は、「逆さ卵」および「気室不良卵」を判別するために、気室の状態を特徴として分類された第2学習データ群を教師データとして、ディープラーニングにより機械学習させることで構築されたモデルである。第2学習データ群は、予め、専門家により、卵に気室が見られないとの理由により逆さ卵と判別され、「逆さ卵」としてラベリングされた画像群と、気室の形状が変形しているなどの理由により気室不良卵と判別され、「気室不良卵」としてラベリングされた画像群と、逆さ卵および気室不良卵ではないと判別され、「第2正常卵」としてラベリングされた画像群とを含む。学習済みモデルM2を用いることで、検査対象卵の画像から、検査対象卵が「逆さ卵」であるか、「気室不良卵」であるか、正常卵を含むそれ以外の第2正常卵であるかを判別することができる。
 学習済みモデルM3は、「発育不良卵」を特定するために、発育の状態を特徴として分類された第3学習データ群を教師データとして、ディープラーニングにより機械学習させることで構築されたモデルである。第3学習データ群は、予め、専門家により、漿尿膜上の血管の分布が著しく狭く、少ない、分布する血管は著しく細く色が薄いなどなどの理由により発育不良卵と判別され、「発育不良卵」としてラベリングされた画像群と、発育不良卵ではないと判別され、「第3正常卵」としてラベリングされた画像群とを含む。学習済みモデルM3を用いることで、検査対象卵の画像から、検査対象卵が「発育不良卵」であるか、正常卵を含むそれ以外の第3正常卵であるかを判別することができる。
 学習済みモデルM4は、「ひび有り卵」を特定するために、ひびの有無を特徴として分類された第4学習データ群を教師データとして、ディープラーニングにより機械学習させることで構築されたモデルである。第4学習データ群は、予め、専門家により、直接目視で卵にひびが有るとの理由によりひび有り卵と判別された卵を撮像した撮像画像のうち、撮像画像上に高い輝度の線状で表示されたひびが有る、気室が著しく大きいなどの理由により「ひび有り卵」としてラベリングされた画像群と、それら以外の「第4正常卵」としてラベリングされた画像群とを含む。学習済みモデルM4を用いることで、検査対象卵の画像から、検査対象卵が「ひび有り卵」であるか、正常卵を含むそれ以外の第4正常卵であるかを判別することができる。
 なお、学習済みモデルM1~M4の構築は、処理装置32が予め行う構成としてもよいし、外部装置で構築した学習済みモデルM1~M4を取得して、記憶装置31に記憶させる構成としてもよい。機械学習済みモデルのアルゴリズムは、サポートベクターマシン、ロジスティック回帰、ニューラルネットワークなど、特に限定されるものではないが、上述したように、ニューラルネットワークであって、特に階層が3層以上であるディープニューラルネットワークが好ましく、またディープニューラルネットワークのうち、画像認識に適したコンボリューショナルニューラルネットワーク(Convolutional Neural Network)を用いることが好ましい。
 処理装置32は、メモリに記憶した検卵プログラムを実行することにより、撮像装置10から取得した検査対象卵の撮像画像と、記憶装置31に記憶された学習済みモデルM1~M4とを用いて、検査対象卵が正常卵であるか不良卵であるかを判別する。また処理装置32は、検査対象卵が不良卵である場合には、その不良要因まで特定する。さらに、処理装置32は、不良卵の不良要因とその発生頻度とを集計し、ディスプレイ(不図示)などに出力する機能も有する。なお、処理装置32による、検査対象卵の判別方法の詳細については、後述する。
 搬送装置40は、検査対象卵を撮像部50まで搬入し、また、検査対象卵を撮像部50から搬出する。具体的には、搬送装置40は、コンベアを駆動し、専用トレイ41に載せた複数の検査対象卵を、撮像部50の下方にある支持台42の位置まで搬送する。また、搬送装置40は、支持台42を上昇させて、検査対象卵を専用トレイ41から支持台42に載せ替えた後、支持台42をさらに上昇させて、撮像部50内部まで検査対象卵を持ち上げる。撮像部50において検査対象卵の撮像が終了すると、搬送装置40は、支持台42を下降させ、撮像した検査対象卵を専用トレイ41に戻す。そして、搬送装置40は、コンベアを動かして、次に検査対象とする検査対象卵を、支持台42の位置まで搬送する。このように、検査対象卵が順次に撮像部50まで搬送され、撮像装置10による撮像が行われる。なお、搬送装置40は、判別装置30による検査対象卵の判別結果に基づいて、不良卵を排除することもできる。
 次に、図6および図7に基づいて、第1実施形態に係る検卵処理について説明する。図6は、第1実施形態に係る検卵処理を示すフローチャートであり、図7は、第1実施形態に係る検卵処理を説明するための図である。
 ステップS101では、撮像装置10により検査対象卵の撮像が行われる。本実施形態では、暗室である撮像部50内に検査対象卵を置いて、照明装置20により検査対象卵だけを照明することで、撮像装置10は、検査対象卵の内部を透かした状態で撮像することができる。撮像装置10により撮像された検査対象卵の画像データは、処理装置32へと送信される。そして、ステップS102において、処理装置32により、撮像装置10により撮像された検査対象卵の画像データが取得される。
 ステップS103では、処理装置32により、検査対象卵が無精卵または中止卵であるかを判別する処理が行われる。具体的には、処理装置32は、メモリに記憶した検卵プログラムを実行し、ステップS102で取得した検査対象卵の画像データと、学習済みモデルM1とを用いて、検査対象卵が、無精卵であるか、中止卵であるか、それ以外の第1正常卵であるかを判別する。そして、ステップS104に進み、ステップS103での判別の結果、検査対象卵が、無精卵または中止卵であると判別された場合には、ステップS112に進み、検査対象卵は不良卵と判別される。そして、続くステップS113において、検査対象卵の不良の要因(無精卵または中止卵)が出力される。
 一方、ステップS104において、検査対象卵が、第1正常卵であると判別された場合には、ステップS105に進む。ステップS105では、処理装置32により、検査対象卵が逆さ卵または気室不良卵であるかを判別する処理が行われる。具体的には、処理装置32は、メモリに記憶した検卵プログラムを実行し、ステップS102で取得した検査対象卵の画像データと、学習済みモデルM2とを用いて、検査対象卵が、逆さ卵であるか、気室不良卵であるか、それ以外の第2正常卵であるかを判別する。そして、ステップS106に進み、ステップS105の判別の結果、検査対象卵が、逆さ卵または気室不良卵であると判別された場合には、ステップS112に進み、検査対象卵は不良卵と判別される。そして、続くステップS113において、検査対象卵の不良の要因(逆さ卵または気室不良卵)が出力される。
 一方、ステップS106において、検査対象卵が、第2正常卵であると判別された場合には、ステップS107に進む。ステップS107では、処理装置32により、検査対象卵が発育不良卵であるか否かを判別する処理が行われる。具体的には、処理装置32は、メモリに記憶した検卵プログラムを実行し、ステップS102で取得した検査対象卵の画像データと、学習済みモデルM3とを用いて、検査対象卵が、発育不良卵であるか、それ以外の第3正常卵であるかを判別する。そして、ステップS108に進み、ステップS107の判別の結果、検査対象卵が発育不良卵であると判別された場合には、ステップS112に進み、検査対象卵は発育不良卵と判別される。そして、続くステップS113において、検査対象卵の不良の要因(発育不良卵)が出力される。
 一方、ステップS108において、検査対象卵が、第3正常卵であると判別された場合には、ステップS109に進む。ステップS109では、処理装置32により、検査対象卵がひび有り卵であるかを判別する処理が行われる。具体的には、処理装置32は、メモリに記憶した検卵プログラムを実行し、ステップS102で取得した検査対象卵の画像データと、学習済みモデルM4とを用いて、検査対象卵が、ひび有り卵であるか、それ以外の第4正常卵であるかを判別する。そして、ステップS110に進み、ステップS109の判別の結果、検査対象卵が、ひび有り卵であると判別された場合には、ステップS112に進み、検査対象卵はひび有り卵と判別される。そして、続くステップS113において、検査対象卵の不良の原因(ひび有り卵)が出力される。
 一方、ステップS110において、検査対象卵が、第4正常卵であると判別された場合には、ステップS111に進む。ステップS111では、処理装置32により、検査対象卵が正常卵であると判別される。これにより、本実施形態に係る検卵処理を終了する。
 なお、図6に示す検卵処理においては、検査対象卵が無精卵または中止卵であるかを判別する処理(ステップS103)、検査対象卵が逆さ卵または気室不良卵であるかを判別する処理(ステップS105)、検査対象卵が発育不良卵であるか否かを判別する処理(ステップS107)、検査対象卵がひび有り卵であるかを判別する処理(ステップS110)を順次行う構成を例示した。しかしながら、これらの処理の実行順序は、図6に示す例に限定されず、適宜順序を入れ替えて構成してもよい。
 以上のように、本実施形態に係る検卵装置1は、正常卵であるか不良卵であるかの判別の結果、および、不良卵である場合には不良要因をそれぞれラベリングした卵の画像データを教師データとして、多層構造の深層ニューラルネットワークをモデルとした深層学習、いわゆるディープラーニングにより、機械学習することで構築された学習済みモデルを用いることで、検査対象卵が正常卵であるか不良卵であるかを判定するができることに加えて、不良卵である場合にはその不良要因も特定することができる。
 また、本実施形態に係る検卵装置1では、複数の学習済みモデルM1~M4を多段階に分けて用いることで、不良卵の不良要因をより高い精度で判別することができる。特に、ワクチンの製造においては、「無精卵」、「中止卵」、「逆さ卵」、「正常卵」を高い精度で判別することが必要とされているところ、本実施形態に係る検卵装置1では、「無精卵」、「中止卵」、「逆さ卵」および「正常卵」を高い精度で判別することができる。たとえば、「無精卵」、「中止卵」、「気室不良卵」、「逆さ卵」、「発育不良卵」、「ひび有り卵」、「正常卵」をそれぞれラベリングした教師データを用いて構築した単一の学習済みモデルだけを用いて検査対象卵の判別を行った場合、「無精卵」、「中止卵」、「気室不良卵」、「逆さ卵」、「発育不良卵」、「ひび有り卵」、「正常卵」の全ての分類(要因)について90%程度の判別精度しか得られなかった。これに対して、本実施形態に係る検卵処理では、複数の学習済みモデルM1~M4を多段階に分けて用いて検査対象卵の判別を行ったところ、「無精卵」、「中止卵」、「逆さ卵」という、ワクチン製造上、混入を防止することが極めて重要な不良卵については、ほぼ100%(9万個弱の検査対象卵で試験したところ100%)判別することができた。また、「正常卵」についても、99%以上の精度で判別することができた。
 また、本実施形態に係る検卵装置1では、不良要因ごとの発生頻度を集計する機能も有し、特定した不良要因とその発生頻度を、卵やワクチンの生産管理者にフィードバックし、鶏や卵の飼育条件やワクチン生産条件の改善に活用してもらうことができる。たとえば、不良の要因として、発育不良卵の割合が多い場合、生産管理者は、孵卵器の設定(温度・湿度)を変えるなどの対応を取ることができる。また、不良要因として、ひび有り卵の割合が多い場合には、生産管理者は、餌の配合を変える、搬送設備を点検するなどの対応を取ることができる。このように、不良要因の発生頻度に応じて、生産工程の運用を改良することができる。また、孵卵作業における各種条件(たとえば温度や湿度などの飼育条件、餌の配合、親鶏歴、温度や湿度などの孵卵器の設定など)、ウィルス製造作業における各種条件(たとえば、ウィルスの種類、温度や湿度などの孵卵器の設定など)、および検卵作業における各種条件と、発生した各不良要因の割合とを関連付けることによって、ワクチンを製造するための有精卵の最適な生産条件を確立することにも期待できる。
 《第2実施形態》
 次に、本発明の第2実施形態について説明する。第2実施形態に係る検卵装置は、以下に説明すること以外は、第1実施形態に係る検卵装置1と同様の構成を有し、第1実施形態に係る検卵装置1と同様の動作を行う。
 第2実施形態において、記憶装置31は、7つの学習済みモデルM11~17を記憶している。以下に、記憶装置31が記憶する7つの学習済みモデルM11~M17について説明する。
 学習済みモデルM11は、「中止卵」を判別するために、卵の血管の状態を特徴として分類された学習データ群を教師データとして、ディープラーニングにより機械学習させることで構築されたモデルである。当該学習データ群は、専門家により、予め、血管の分布が少ない、血管が短い、血管が細いなどの理由により中止卵と判別され、「中止卵」としてラベリングされた画像群を含む。学習済みモデルM11を用いることで、処理装置32は、検査対象卵の画像から、検査対象卵が「中止卵」であるか否かを判別することができる。
 学習済みモデルM12は、「無精卵」を判別するために、卵の血管の状態を特徴として分類された学習データ群を教師データとして、ディープラーニングにより機械学習させることで構築されたモデルである。当該学習データ群は、専門家により、予め、卵に血管が無いなどの理由により無精卵と判別され、「無精卵」としてラベリングされた画像群とを含む。学習済みモデルM12を用いることで、処理装置32は、検査対象卵の画像から、検査対象卵が「無精卵」であるか否かを判別することができる。
 学習済みモデルM13は、「気室不良卵」を判別するために、気室の状態を特徴として分類された学習データ群を教師データとして、ディープラーニングにより機械学習させることで構築されたモデルである。当該学習データ群は、予め、専門家により、気室の形状が変形しているなどの理由により気室不良卵と判別され、「気室不良卵」としてラベリングされた画像群を含む。学習済みモデルM13を用いることで、処理装置32は、検査対象卵の画像から、検査対象卵が「気室不良卵」であるか否かを判別することができる。
 学習済みモデルM14は、「逆さ卵」を判別するために、気室の状態を特徴として分類された学習データ群を教師データとして、ディープラーニングにより機械学習させることで構築されたモデルである。当該学習データ群は、予め、専門家により、卵に気室が見られないとの理由により逆さ卵と判別され、「逆さ卵」としてラベリングされた画像群を含む。学習済みモデルM14を用いることで、処理装置32は、検査対象卵の画像から、検査対象卵が「逆さ卵」であるか否かを判別することができる。
 学習済みモデルM15は、「発育不良卵」を特定するために、発育の状態を特徴として分類された学習データ群を教師データとして、ディープラーニングにより機械学習させることで構築されたモデルである。当該学習データ群は、予め、専門家により、漿尿膜上の血管の分布が著しく狭く、少ない、分布する血管は著しく細く色が薄いなどなどの理由により発育不良卵と判別され、「発育不良卵」としてラベリングされた画像群を含む。学習済みモデルM15を用いることで、処理装置32は、検査対象卵の画像から、検査対象卵が「発育不良卵」であるか否かを判別することができる。
 学習済みモデルM16は、「ひび有り卵」を特定するために、ひびの有無を特徴として分類された学習データ群を教師データとして、ディープラーニングにより機械学習させることで構築されたモデルである。当該学習データ群は、予め、専門家により、直接目視で卵にひびが有るとの理由によりひび有り卵と判別された卵を撮像した撮像画像のうち、撮像画像上に高い輝度の線状で表示されたひびが有る、気室が著しく大きいなどの理由により「ひび有り卵」としてラベリングされた画像群を含む。学習済みモデルM16を用いることで、処理装置32は、検査対象卵の画像から、検査対象卵が「ひび有り卵」であるか否かを判別することができる。
 学習済みモデルM17は、「正常卵」を特定するために分類された学習データ群を教師データとして、ディープラーニングにより機械学習させることで構築されたモデルである。当該学習データ群は、予め、専門家により、直接目視で卵に不良要因がなく正常であると判別された卵を撮像した撮像画像であり、「正常卵」としてラベリングされた画像群を含む。学習済みモデルM17を用いることで、処理装置32は、検査対象卵の画像から、検査対象卵が「正常卵」であるか否かを判別することができる。
 次に、図8および図9に基づいて、第2実施形態に係る検卵処理について説明する。図8は、第2実施形態に係る検卵処理を説明するためのフローチャートである。また、図9は、第2実施形態に係る検卵処理を説明するための図である。
 図8に示すように、ステップS201,S202では、第1実施形態のステップS101,S102と同様に、撮像装置10により検査対象卵の撮像が行われ(ステップS201)、ステップS201で撮像された検査対象卵の画像データが取得される(ステップS202)。
 ステップS203では、処理装置32により、検査対象卵が「中止卵」であるかを判別する処理が行われる。具体的には、処理装置32は、メモリに記憶した検卵プログラムを実行し、ステップS202で取得した検査対象卵の画像データと、学習済みモデルM11とを用いて、検査対象卵が「中止卵」である否かを判別する。そして、処理装置32は、「中止卵」であるかの判別結果を記憶装置31に記憶し、次のステップS204に進む。
 ステップS204~S209では、ステップS203と同様に、処理装置32により、検査対象卵が「無精卵」、「気室不良卵」、「逆さ卵」、「発育不良卵」、「ひび有り卵」、および「正常卵」であるかをそれぞれ判別する処理が行われる。すなわち、処理装置32は、メモリに記憶した検卵プログラムを実行し、ステップS202で取得した検査対象卵の画像データと、学習済みモデルM12~M17をそれぞれ用いて、検査対象卵が「無精卵」、「気室不良卵」、「逆さ卵」、「発育不良卵」、「ひび有り卵」、「正常卵」である否かをそれぞれ判別し、各判別結果を記憶装置31に記憶する。なお、第2実施形態では、検査対象卵が不良要因を有する場合でも、図8のステップS203~S209および図9に示すように、検査対象卵が「中止卵」、「無精卵」、「気室不良卵」、「逆さ卵」、「発育不良卵」、「ひび有り卵」および「正常卵」であるかについて一通り判別されることとなる。そして、ステップS210では、処理装置32により、ステップS203~S209の各判別処理で判別した結果が出力される。
 以上のように、第2実施形態においては、検査対象卵にいずれかの不良要因がある場合に直ぐに不良卵とし、その不良要因を判別するのではなく、図9に示すように、1つの検査対象卵において並列的に複数の不良要因を判別することで、たとえば1つの検査対象卵において「逆さ卵」かつ「ひび有り卵」のように、複数の不良要因を判別することができる。また、第2実施形態においては、不良要因を有する卵の画像を教師データとした学習済みモデルM11~M16だけではなく、「正常卵」の画像を教師データとした学習済みモデルM17を用いることで、「正常卵」との判別精度を高めることができる。たとえば、第1実施形態では、不良要因が判別されなかった検査対象卵が「正常卵」として判別されるが、第2実施形態では、不良要因が判別されず、かつ、「正常卵」として判別された検査対象卵を「正常卵」と特定することで、「正常卵」の判別精度を高めることができるとともに、不良要因が判別されず、かつ、「正常卵」とも判別されない検査対象卵については、新たな不良要因が発生したことを作業者に認識させ、目視にて分類させることが可能となる。
 以上、本発明の好ましい実施形態例について説明したが、本発明の技術的範囲は上記実施形態の記載に限定されるものではない。上記実施形態例には様々な変更・改良を加えることが可能であり、そのような変更または改良を加えた形態のものも本発明の技術的範囲に含まれる。
 たとえば、上述した実施形態では、検査対象卵を撮像装置10により一方向のみから撮像し、当該方向から撮像した撮像画像を用いて、検査対象卵を判別する構成を例示したが、この構成に限定されず、たとえば、検査対象卵の支持台42を回転させることで、検査対象卵を複数の方向(たとえば支持台42を90度ずつ回転させて4方向)から撮像し、複数の方向から撮像した撮像画像を用いて、検査対象卵を判別する構成とすることができる。この場合、検査対象卵の判別精度をより向上させることができる。
 また、上述した第1実施形態では、4つの学習済みモデルを用いて検査対象卵を判別する構成を例示したが、学習済みモデルは2以上であればよく、たとえば、3つの学習済みモデル、あるいは5以上の学習済みモデルを用いて検査対象卵を判別することができる。たとえば、ワクチンを製造する場合には、「無精卵」、「中止卵」、「逆さ卵」の3つの不良要因を判別することが重要であり、そのため、「無精卵」および「中止卵」を判別するための学習済みモデルM1と、「逆さ卵」を判別するための学習済みモデルM2の2つの学習済みモデルを用いて検査対象卵を判別する構成とすることができる。また、本実施形態では、図4(F)および図4(G)に示すように、撮像画面上で輝度が高い線を有しひび有りと判別できる画像データ群と、気室が大きくひび有りと判別できる画像データ群とを「ひび有り卵」の教師データとした学習済みモデルM4を用いて「ひび有り卵」を判定する構成を例示したが、たとえば、図4(F)に示すように、撮像画面上で輝度が高い線を有しひび有りと判別できる画像データ群のみを教師データとした学習済みモデルを用いて「ひび有り卵」をまず判定した後に、図4(G)に示すように、気室が著しく大きくひび有りと判別できる画像データ群を教師データとした学習済みモデルを用いて「ひび有り卵」を判定する構成としてもよい。この場合、5個の学習済みモデルを用いて検査対象卵を判別することとなり、ひび有り卵をより高い精度で判別することができる。
 さらに、上述した実施形態では、単一の照明装置20を有し、検査対象卵の気室側から光を照射する構成を例示したが、この構成に加えて、照明装置20をさらにもう一つ有し、検査対象卵の下側からも光を照射して、検査対象卵を検査する構成とすることもできる。この場合、卵の内部をより確認しやすくなり、特に、ひび有り卵を検査する場合に、広範囲におけるひびを検出することが可能となる。
 また、上述した実施形態では、不良要因として「中止卵」、「無精卵」、「気室不良卵」、「逆さ卵」、「発育不良卵」および「ひび有り卵」を判別する構成を例示したが、不良要因は上記に限定されず、適宜追加/変更することができる。たとえば、気室境界に出血の溜まった卵を判別するための学習済みモデルを用いて、このような不良要因を判別する構成とすることもできる。
 1…検卵装置
  10…撮像装置
  20…照明装置
  30…判別装置
   31…記憶装置
   32…処理装置
  40…搬送装置
   41…専用トレイ
   42…支持台
  50…撮像部
 

Claims (12)

  1.  卵の画像を教師データとして予め作成された第1学習済みモデルを用いて、卵が第1の不良要因を有するかを判別する第1判別手段と、
     卵の画像を教師データとして予め作成された、前記第1学習済みモデルとは異なる第2学習済みモデルを用いて、卵が、前記第1の不良要因とは異なる第2の不良要因を有するかを判別する第2判別手段と、
     検査対象卵に光を照射して検査対象卵の画像を撮像する撮像手段と、
     制御手段とを有し、
     前記制御手段は、前記検査対象卵の画像に基づいて、前記第1判別手段および前記第2判別手段に前記検査対象卵の不良要因を判別させることで、検査対象卵が不良要因を有するか否か判別し、前記検査対象卵が不良要因を有する場合には当該不良要因を判別する、検卵装置。
  2.  前記制御手段は、前記検査対象卵の画像に基づいて、前記第1判別手段に、前記検査対象卵が前記第1の不良要因を有するかを判別させ、前記検査対象卵が前記第1の不良要因を有しない場合に、前記第2判別手段に、前記検査対象卵が前記第2の不良要因を有するかを判別させる、請求項1に記載の検卵装置。
  3.  前記制御手段は、前記検査対象卵の画像に基づいて、前記第1判別手段に前記、検査対象卵が前記第1の不良要因を有するかを判別させ、前記検査対象卵が前記第1の不良要因を有するか否かに関わらず、前記第2判別手段に、前記検査対象卵が前記第2の不良要因を有するかも判別させる、請求項1に記載の検卵装置。
  4.  前記第1判別手段は、前記第1の不良要因として、血管の状態に基づく不良要因を判別し、
     前記第2判別手段は、前記第2の不良要因として、気室の状態、発育の状態、および、ひびの有無のうちいずれか1つに基づく不良要因を判別する、請求項1ないし3のいずれかに記載の検卵装置。
  5.  卵の画像を教師データとして予め作成された、前記第1学習済みモデルおよび前記第2学習済みモデルとは異なる第3学習済みモデルを用いて、前記第1の不良要因および前記第2の不良要因とは異なる第3の不良要因を有するかを判別する第3判別手段をさらに有する、請求項1ないし4のいずれかに記載の検卵装置。
  6.  卵の画像を教師データとして予め作成された、前記第1学習済みモデル、前記第2学習済みモデルおよび前記第3学習済みモデルとは異なる第4学習済みモデルを用いて、前記第1の不良要因、前記第2の不良要因、および前記第3の不良要因とは異なる第4の不良要因を有するかを判別する第4判別手段をさらに有する、請求項5に記載の検卵装置。
  7.  前記第1の不良要因、前記第2の不良要因、前記第3の不良要因、および前記第4の不良要因は、それぞれ、血管の状態、気室の状態、発育の状態、および、ひびの有無に基づく不良要因である、請求項6に記載の検卵装置。
  8.  卵の画像を教師データとして予め作成された第5学習済みモデルを用いて、正常卵を判別するための第5判別手段をさらに有する、請求項1ないし7のいずれかに記載の検卵装置。
  9.  前記検査対象卵は、ワクチン製造に供される卵である、請求項1ないし8のいずれかに記載の検卵装置。
  10.  不良要因ごとの発生頻度を集計する機能を有する、請求項1ないし9のいずれかに記載の検卵装置。
  11.  コンピュータに、
     検査対象卵に光を照射して前記検査対象卵の画像を取得し、
     卵の画像を教師データとして予め作成された第1学習済みモデルを用いて、前記検査対象卵が第1の不良要因を有するか判別し、
     卵の画像を教師データとして予め作成された、前記第1学習済みモデルとは異なる第2学習済みモデルを用いて、前記検査対象卵が、前記第1の不良要因とは異なる第2の不良要因を有するかを判別することで、
     前記検査対象卵が不良要因を有するか否か判別し、前記検査対象卵が不良要因を有する場合には当該不良要因を判別する処理を実行させる、検卵プログラム。
  12.  コンピュータを用いて、
     検査対象卵に光を照射して前記検査対象卵の画像を取得し、
     卵の画像を教師データとして予め作成された第1学習済みモデルを用いて、前記検査対象卵が第1の不良要因を有するかを判別し、
     卵の画像を教師データとして予め作成された、前記第1学習済みモデルとは異なる第2学習済みモデルを用いて、前記検査対象卵が、前記第1の不良要因とは異なる第2の不良要因を有するかを判別することで、
     前記検査対象卵が不良要因を有するか否か判別し、前記検査対象卵が不良要因を有する場合には当該不良要因を判別する、検卵方法。
     
PCT/JP2020/025099 2019-06-28 2020-06-25 検卵装置、検卵プログラム、および検卵方法 WO2020262557A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080047721.1A CN114096844A (zh) 2019-06-28 2020-06-25 验蛋装置、验蛋程序及验蛋方法
JP2021527746A JP7407189B2 (ja) 2019-06-28 2020-06-25 検卵装置、検卵プログラム、および検卵方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-121424 2019-06-28
JP2019121424 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020262557A1 true WO2020262557A1 (ja) 2020-12-30

Family

ID=74060597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025099 WO2020262557A1 (ja) 2019-06-28 2020-06-25 検卵装置、検卵プログラム、および検卵方法

Country Status (4)

Country Link
JP (1) JP7407189B2 (ja)
CN (1) CN114096844A (ja)
TW (1) TW202117305A (ja)
WO (1) WO2020262557A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230153397A (ko) 2021-03-04 2023-11-06 시코쿠 케이소쿠 코교 가부시키가이샤 검란 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05501918A (ja) * 1989-11-10 1993-04-08 オバスカン プロプライアタリー リミティド 殻付き卵を格付けするための方法及び装置
JP2004101204A (ja) * 2002-09-04 2004-04-02 Shikoku Instrumentation Co Ltd 有精卵の検査法および装置
JP2007212155A (ja) * 2006-02-07 2007-08-23 Kumamotoken Yokei Nogyo Kyodo Kumiai 優良卵自動判別装置
JP2012013587A (ja) * 2010-07-02 2012-01-19 Joichiro Tsuboi 自動検卵方法における画像処理装置
WO2019092265A1 (en) * 2017-11-13 2019-05-16 Technische Universität München Automated noninvasive determining the sex of an embryo of and the fertility of a bird's egg

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235005A (ja) * 1999-02-15 2000-08-29 Nidec Tosok Corp 卵検査装置
WO2010074572A1 (en) 2008-12-23 2010-07-01 Fps Food Processing Systems B.V. Method and apparatus for classifying eggs
JP2011169629A (ja) * 2010-02-16 2011-09-01 Joichiro Tsuboi 有精卵検査装置
JP5501918B2 (ja) 2010-09-30 2014-05-28 株式会社トプコン 光学素子の製造方法およびその方法により作製された光学素子
SG11201806757XA (en) 2016-02-11 2018-09-27 10X Genomics Inc Systems, methods, and media for de novo assembly of whole genome sequence data
CN106645605B (zh) * 2016-09-05 2019-01-08 中国农业大学 基于机器视觉的禽类受精蛋检测方法
WO2018101139A1 (ja) * 2016-11-30 2018-06-07 株式会社ナベル 種卵検査システム及び種卵検査プログラム
TWI644616B (zh) * 2017-03-17 2018-12-21 Method for judging the hatching shape of poultry eggs by using image processing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05501918A (ja) * 1989-11-10 1993-04-08 オバスカン プロプライアタリー リミティド 殻付き卵を格付けするための方法及び装置
JP2004101204A (ja) * 2002-09-04 2004-04-02 Shikoku Instrumentation Co Ltd 有精卵の検査法および装置
JP2007212155A (ja) * 2006-02-07 2007-08-23 Kumamotoken Yokei Nogyo Kyodo Kumiai 優良卵自動判別装置
JP2012013587A (ja) * 2010-07-02 2012-01-19 Joichiro Tsuboi 自動検卵方法における画像処理装置
WO2019092265A1 (en) * 2017-11-13 2019-05-16 Technische Universität München Automated noninvasive determining the sex of an embryo of and the fertility of a bird's egg

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MITSUTOME, DAISUKE ET AL.: "Superior egg inspection using image processing", PROCEEDINGS OF THE ANNUAL CONFERENCE OF THE INSTITUTE OF THE 50TH SYSTEMS, CONTROL AND INFORMATION ENGINEERS, vol. 6W4-4, 10 May 2008 (2008-05-10), pages 395 - 396 *
PATEL V. C., MCCLENDON R. W., GOODRUM J. W.: "Color computer vision and artificial neural networks for the detection of defects in poultry eggs", ARTIFICIAL INTELLIGENCE REVIEW, vol. 12, 1998, pages 163 - 176, XP055739203 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230153397A (ko) 2021-03-04 2023-11-06 시코쿠 케이소쿠 코교 가부시키가이샤 검란 장치

Also Published As

Publication number Publication date
JP7407189B2 (ja) 2023-12-28
JPWO2020262557A1 (ja) 2020-12-30
TW202117305A (zh) 2021-05-01
CN114096844A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2011162213A1 (ja) 微生物検出方法、微生物検出装置及びプログラム
AU2001266865B2 (en) Methods and apparatus for non-invasively identifying conditions of eggs via multi-wavelength spectral comparison
AU2006275872B2 (en) Methods and apparatus for identifying live eggs
JP5377324B2 (ja) サーマルカメラを介して鳥類の卵をキャンドリングする方法及び装置
JP2010104301A (ja) 微生物の検出方法、装置およびプログラム
JP2016049055A (ja) 微生物検査装置の検証方法、微生物検査装置における検証装置及びプログラム
TW589374B (en) Inspection method for microorganisms and the like, and unit therefore
WO2020184542A1 (ja) 卵分類装置、卵分類方法及びコンピュータプログラム
JP2005127720A (ja) 自動汚卵検出機構とこれを備えた鶏卵選別包装システム
Liu et al. Determination of the quality of stripe-marked and cracked eggs during storage
JP2012080802A (ja) 細菌コロニーの釣菌方法及び釣菌装置
WO2020262557A1 (ja) 検卵装置、検卵プログラム、および検卵方法
KR102283869B1 (ko) 계란 품질 자동검사 시스템
WO2022186339A1 (ja) 検卵装置
Liu et al. AFF-YOLOX: An improved lightweight YOLOX network to detect early hatching information of duck eggs
Xu et al. Non-destructive detection on the fertility of injected SPF eggs in vaccine manufacture
JP2019203701A (ja) パック詰めされた卵の検査装置
JP2007212155A (ja) 優良卵自動判別装置
JP2012013587A (ja) 自動検卵方法における画像処理装置
JPWO2020262557A5 (ja)
WO2021142603A1 (zh) 皮革检测设备
JP6689296B2 (ja) エッグフラット識別システム及び関連方法
Visen Machine vision based grain handling system
JP2004101204A (ja) 有精卵の検査法および装置
JP2004101204A6 (ja) 有精卵の検査法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527746

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832884

Country of ref document: EP

Kind code of ref document: A1