WO2020262434A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2020262434A1
WO2020262434A1 PCT/JP2020/024741 JP2020024741W WO2020262434A1 WO 2020262434 A1 WO2020262434 A1 WO 2020262434A1 JP 2020024741 W JP2020024741 W JP 2020024741W WO 2020262434 A1 WO2020262434 A1 WO 2020262434A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
adhesive
heat exchanger
series
covalent bond
Prior art date
Application number
PCT/JP2020/024741
Other languages
French (fr)
Japanese (ja)
Inventor
森本 正和
雅貴 内山
大未 齊藤
田中 聡
安浩 水野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020262434A1 publication Critical patent/WO2020262434A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to heat exchangers.
  • the heat exchanger described in Patent Document 1 is composed of a plurality of plate members joined to each other. A fluid flow path is formed inside the heat exchanger. Batteries can be installed on the outer surface of this heat exchanger. In this heat exchanger, it is possible to cool the battery by exchanging heat between the battery installed on the outer surface thereof and the fluid flowing inside the battery.
  • Aluminum, copper, resin, stainless steel, etc. are mainly used as materials for forming various parts of heat exchangers.
  • aluminum alloys are often used as a material for forming the components thereof.
  • a plurality of parts made of an aluminum alloy are joined by brazing.
  • As a material for parts suitable for brazing 1000 series or 3000 series aluminum alloys are used. The reasons why this kind of aluminum alloy is used as a material for heat exchanger parts are as follows.
  • Aluminum alloy suitable for brazing is used as the brazing material for joining multiple parts to each other.
  • a plurality of parts made of an aluminum alloy pre-coated with a brazing material are prepared. After the plurality of parts are assembled by a jig, the assembly is put into a furnace and heated. As a result, the brazing material on the surface of the parts melts, and the brazing material permeates the joint portion of each part. After that, the assembly is cooled by natural cooling or the like to complete the production of the heat exchanger.
  • the additives contained in the aluminum alloy forming the parts may invade the brazing material. is there.
  • a material that does not hinder brazing specifically, a 1000-series or 3000-series aluminum alloy is selected as a material for forming a part. ..
  • the 1000th series and 3000th series aluminum alloys have lower strength than, for example, the 5000th series and 7000th series aluminum alloys. Therefore, when a 1000th or 3000th aluminum alloy is used as the material for forming the parts, it is essential to thicken the parts in order to secure the pressure resistance of the heat exchanger against the pressure of the fluid flowing inside. ing. This has led to an increase in the weight of the heat exchanger. In particular, since a large heat exchanger is used as a heat exchanger for cooling a battery in an electric vehicle or the like, the increase in the weight is remarkable, which is one of the factors for reducing the cruising range of the vehicle.
  • An object of the present disclosure is to provide a heat exchanger capable of reducing weight while ensuring pressure resistance.
  • the heat exchanger has a joining member in which a plurality of parts made of metal or resin are joined, and heat exchange between the fluid flowing through the flow path formed inside the joining member and the outside of the joining member. Heat exchange takes place with the subject.
  • the two parts to be joined to each other are the first part and the second part, the first part and the second part are joined to each other via an adhesive.
  • a first covalent bond layer that covalently bonds the interface between the first component and the adhesive is formed on the surface of the first component facing the adhesive.
  • a second covalent bond layer for covalently bonding the interface between the second component and the adhesive is formed on the surface of the second component facing the adhesive.
  • the first component and the second component are joined to each other via an adhesive, there are restrictions to be considered when brazing regarding the selection of the material forming the first component and the second component. There is no. Therefore, since the degree of freedom in selecting the materials for the first component and the second component can be improved, a material having higher strength can be selected as the material for forming them. Therefore, the first component and the second component can be thinned while ensuring the pressure resistance of the heat exchanger with respect to the pressure of the fluid flowing inside. As a result, it is possible to reduce the weight of the heat exchanger.
  • FIG. 1 is a diagram schematically showing a planar structure of the heat exchanger of the first embodiment.
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure of the heat exchange member of the first embodiment.
  • FIG. 3 is an enlarged cross-sectional view of the cross-sectional structure of the joint portion of the first component and the second component in the heat exchange member of the first embodiment.
  • FIG. 4 is a cross-sectional view showing a cross-sectional structure of a heat exchange member of a modified example of the first embodiment.
  • FIG. 5 is an enlarged cross-sectional view of the cross-sectional structure of the joint portion of the first component and the second component in the heat exchange member of the second embodiment.
  • FIG. 6 is a cross-sectional view showing a part of the manufacturing process of the heat exchanger of the second embodiment.
  • FIG. 7 is a cross-sectional view showing a cross-sectional structure of the heat exchanger of the third embodiment.
  • the heat exchanger 10 is used as a battery cooler for cooling a plurality of batteries 50 mounted on an electric vehicle.
  • the plurality of batteries 50 supply electric power to an electric motor that is a power source of an electric vehicle and various other electric devices mounted on the electric vehicle.
  • the heat exchanger 10 includes tank members 20 and 21 and a plurality of heat exchange members 30.
  • the heat exchange member 30 is formed so as to extend in the direction indicated by the arrow Y. Inside the heat exchange member 30, a flow path Pw10 through which a cooling fluid flows is formed.
  • the plurality of heat exchange members 30 are arranged at predetermined intervals in the direction indicated by the arrow X.
  • the direction indicated by the arrow X is a direction orthogonal to the direction indicated by the arrow Y.
  • the end heat exchange member 30a arranged at one end in the direction indicated by the arrow X has an internal flow path Pw10 in the first internal flow path Pw11 and the second internal flow path Pw12.
  • a partition portion 31 for partitioning is formed.
  • the inflow port 32 and the outflow port 33 are formed so as to project on the outer peripheral surface of the end heat exchange member 30a in the vicinity of the partition portion 31.
  • the inflow port 32 is communicated with the first internal flow path Pw11.
  • the outlet 33 is communicated with the second internal flow path Pw12.
  • the heat exchange member 30 excluding the end heat exchange member 30a will be referred to as a "heat exchange member 30b".
  • a battery 50 is installed on the outer surface of each heat exchange member 30b.
  • the tank members 20 and 21 are formed so as to extend in the direction indicated by the arrow X. Inside the tank members 20 and 21, flow paths Pw20 and Pw21 through which the cooling fluid flows are formed, respectively.
  • the tank member 20 is provided so as to be joined to one end of each of the plurality of heat exchange members 30.
  • the tank member 21 is provided so as to be joined to the other end of each of the plurality of heat exchange members 30.
  • the internal flow path Pw20 of the tank member 20 is communicated with one end of each of the internal flow paths Pw10 of the plurality of heat exchange members 30.
  • the internal flow path Pw21 of the tank member 21 is communicated with the other end of each of the internal flow paths Pw10 of the plurality of heat exchange members 30.
  • the cooling fluid is supplied to the inflow port 32.
  • the cooling fluid supplied to the inflow port 32 flows into the internal flow path Pw20 of the tank member 20 through the first internal flow path Pw11 of the end heat exchange member 30a, and then a plurality of heat exchanges other than the end heat exchange member 30a. It is distributed to each internal flow path Pw10 of the member 30b.
  • the cooling fluid that has passed through the internal flow path Pw10 of each heat exchange member 30b is collected in the internal flow path Pw21 of the tank member 20 and then discharged from the outflow port 33 through the second internal flow path Pw12 of the end heat exchange member 30a. Will be done.
  • the cooling water discharged from the outflow port 33 is cooled by heat exchange with the outside air in a radiator mounted on the vehicle, for example, and then returned to the inflow port 32 again.
  • the heat exchange member 30 has a structure in which the first component 33 and the second component 34 are joined to each other via an adhesive 35.
  • the heat exchange member 30 corresponds to a joining member to which the first component 33 and the second component 34 are joined.
  • the cooling fluid flowing inside the heat exchange member 30 corresponds to the fluid flowing inside the joining member, and the battery 50 corresponds to the heat exchange target outside the joining member.
  • the second component 34 is formed in a flat plate shape.
  • the second component 34 is made of aluminum.
  • the second component 34 is formed of any one of 2000 series, 5000 series, 6000 series, 7000 series, and 8000 series aluminum alloy.
  • One surface 340 of the second component 34 is an installation surface on which the battery 50 is installed.
  • the first component 33 is adhered to the other surface 341 of the second component 34 via an adhesive 35.
  • the first component 33 is formed so that the cross-sectional shape orthogonal to the direction indicated by the arrow Y is concave. Like the second component 34, the first component 33 is formed of any one of 2000 series, 5000 series, 6000 series, 7000 series, and 8000 series aluminum alloy. A flange portion 330 is formed on the outer peripheral portion of the opening of the first component 33. The surface 330a of the flange portion 330 is adhered to the first component 33 via the adhesive 35.
  • the internal flow path Pw10 of the heat exchange member 30 is formed by the inner wall surface 331 of the first component 33, the surface 341 of the second component, and the space surrounded by the adhesive 35.
  • the adhesive 35 is provided between the surface 330a of the flange portion 330 of the first component 33 and the surface 341 of the second component 34, and joins them.
  • a silicon-based adhesive is used as the adhesive 35.
  • the first covalent bond layer 36 is formed on the surface 330a of the flange portion 330 facing the adhesive 35 in the first component 33.
  • the first covalent bond layer 36 joins them by covalently bonding the interface between the first component 33 and the adhesive 35.
  • a second covalent bond layer 37 is formed on the surface 341 of the second component 34 facing the adhesive 35.
  • the second covalent bond layer 37 joins them by covalently bonding the interface between the second component 34 and the adhesive 35.
  • a silicate glass layer more specifically, an aluminosilicate glass layer is used as a material for forming the first covalent bond layer 36 and the second covalent bond layer 37.
  • the heat exchange member 30 When manufacturing the heat exchange member 30, first, the concave first part 33 and the flat plate-shaped second part 34 are molded, and then the first covalent bond layer 36 is formed on the surface 330a of the first part 33. At the same time, the second covalent bond layer 37 is formed on the surface 341 of the second component 34. Specifically, the covalent bond layers 36 and 37 are formed on the parts 33 and 34 by dipping, shower coating, roll coating and the like using the liquid corresponding to the covalent bond layers 36 and 37, respectively. After that, the flange portion 330 of the first component 33 and the second component 34 are adhered to each other via the adhesive 35 to complete the production of the heat exchange member 30.
  • the operation and effect of the heat exchanger 10 of the present embodiment will be described.
  • the first component 33 and the second component 34 are joined to each other via the adhesive 35, regarding the selection of the material forming the first component 33 and the second component 34, There are no restrictions to consider when brazing. Therefore, since the degree of freedom in selecting the materials for the first component 33 and the second component 34 can be improved, a material having higher strength can be selected as the material for forming them.
  • the material of the first part 33 and the second part 34 instead of the conventional 1000 series and 3000 series aluminum alloys, 2000 series, 5000 series, 6000 series, 7000 series, And any aluminum alloy of the 8000 series can be used. Therefore, the first component 33 and the second component 34 can be thinned while ensuring the pressure resistance of the heat exchanger 10 with respect to the pressure of the cooling fluid flowing inside. As a result, the heat exchanger 10 can be made lighter.
  • the heat exchanger 10 of the second embodiment will be described.
  • the differences from the heat exchanger 10 of the first embodiment will be mainly described.
  • the flange portion 330 of the first component 33 of the present embodiment is formed with a stepped portion 333 and a protruding portion 334.
  • the step portion 333 is a portion that is arranged with a predetermined gap from the second component 34 and is arranged substantially parallel to the surface 341 of the second component 34.
  • the projecting portion 334 is formed so as to project from substantially the center of the step portion 333 toward the second component 34.
  • the tip surface 334a of the protrusion 334 is a flat surface substantially parallel to the surface 341 of the second component 34.
  • the tip surface 334a of the protrusion 334 is adhered to the surface 341 of the second component 34 via the adhesive 35.
  • the adhesive 35 is arranged in the gap between the step portion 333 of the first component 33 and the surface 341 of the second component 34.
  • the adhesive 35 is arranged on the outer peripheral portion of the protruding portion 334.
  • the adhesive 35 joins the stepped portion 333 of the first component 33 and the surface 341 of the second component 34 by adhering them.
  • An arcuate fillet 335 is formed on the outer surface of the adhesive 35.
  • the first component 33 and the second component 34 are molded, and then the first covalent bond layer 36 is formed on the surface 330a of the first component 33, and the first covalent bond layer 36 is formed.
  • a second covalent bond layer 37 is formed on the surface 341 of the second component 34.
  • the adhesive 35 is applied to the tip surface 334a of the protruding portion 334 of the first component 33.
  • the second component 34 is placed on the tip surface 334a of the protruding portion 334 of the first component 33, so that the first component 33 and the second component 34 are joined via the adhesive 35.
  • the height H of the protruding portion 334 of the first component 33 is preset so that the fillet 335 as shown in FIG. 5 is formed on the outer surface of the adhesive 35.
  • the protruding portion 334 of the first component 33 is joined to the second component 34 via the adhesive 35.
  • the length of the bonded portion between the first component 33 and the second component 34 can be arbitrarily set by appropriately adjusting the length L of the protruding portion 334 of the first component 33. it can. Therefore, if the length L of the protruding portion 334 of the first component 33 is set to a length equal to or longer than the length required for adhesion, the bonding strength of the first component 33 and the second component 34 via the adhesive 35 can be increased. Can be secured.
  • the heat exchange member 30 is stretched and contracted due to, for example, a temperature change of the cooling liquid.
  • the adhesive 35 may be damaged, and as a result, the bonding of the first component 33 and the second component 34 may be released.
  • the fillet 335 is formed on the outer surface of the adhesive 35, it is difficult for local stress to act on the outer surface of the adhesive 35. Therefore, it is unlikely that the adhesive 35 will be damaged when the heat exchange member 30 is stretched or contracted, so that it is easy to maintain the state in which the first component 33 and the second component 34 are joined.
  • the heat exchanger 10 of the third embodiment is a double-tube internal heat exchanger.
  • the heat exchanger 10 includes a first pipe member 60, a second pipe member 70, and an inflow pipe 80.
  • the same material as that used for the first component 33 and the second component 34 of the first embodiment may be used. It is possible.
  • the first pipe member 60 is formed in an annular shape about the axis m.
  • the internal space of the first pipe member 60 constitutes a first internal flow path Pw31 through which the first fluid flows.
  • the second pipe member 70 is also formed in an annular shape about the axis m.
  • the second pipe member 70 has an inner diameter larger than that of the first pipe member 60, and the first pipe member 60 is housed therein.
  • One end of the second pipe member 70 is joined to the outer peripheral surface of the first pipe member 60.
  • the space surrounded by the inner peripheral surface of the second pipe member 70 and the outer peripheral surface of the first pipe member 60 constitutes a second internal flow path Pw32 through which the second fluid flows.
  • heat exchanger 10 heat exchange is performed between the first fluid flowing through the first internal flow path Pw31 and the second fluid flowing through the second internal flow path Pw32.
  • One end of the first pipe member 60 projects from one end of the second pipe member 70.
  • An inflow pipe 80 for allowing the first fluid to flow into the first pipe member 60 is joined to one end of the first pipe member 60.
  • the inner peripheral surface of one end of the inflow pipe 80 is joined to the outer peripheral surface of one end of the first pipe member 60 via an adhesive 35. Since the structure similar to the structure shown in FIG. 3 is adopted for the joint structure of the inflow pipe 80 and the first pipe member 60 via the adhesive 35, a detailed description thereof will be omitted.
  • first pipe member 60 and the inflow pipe 80 joined to each other correspond to the joining member 90
  • first pipe member 60 and the inflow pipe 80 correspond to the parts constituting the joining member.
  • first fluid flowing inside the first pipe member 60 and the inflow pipe 80 corresponds to the fluid flowing inside the joining member
  • the second fluid corresponds to the heat exchange target outside the joining member.
  • the first component 33 and the second component 34 of the heat exchange member 30 of the first and second embodiments may be formed of a metal such as aluminum, iron, stainless steel, or a resin.
  • the adhesive 35 of each embodiment is not limited to silicon-based adhesives, but epoxy-based adhesives, polyurethane-based adhesives, polyester-based adhesives, melanin-based adhesives, urea resin-based adhesives, and the like can be used. It is possible.

Abstract

This heat exchanger includes a joint member (30) in which a plurality of metallic components (33, 34) are joined together, and heat is exchanged between a fluid flowing in a flow path formed inside the joint member and a substance which is located on the outside of the joint member and with which heat is to be exchanged. The first component (33) and the second component (34) are joined together through an adhesive (35). A first covalently bonded layer (36) is formed on the surface of the first component opposing the adhesive such that the interface between the first component and the adhesive is covalently bonded. A second covalently bonded layer (37) is formed on the surface of the second component opposing the adhesive such that the interface between the second component and the adhesive is covalently bonded.

Description

熱交換器Heat exchanger 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年6月28日に出願された日本国特許出願2019-121066号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2019-121066 filed on June 28, 2019, claiming the benefit of its priority, and all the contents of the patent application. Incorporated herein by reference.
 本開示は、熱交換器に関する。 This disclosure relates to heat exchangers.
 従来、下記の特許文献1に記載の熱交換器がある。特許文献1に記載の熱交換器は、互いに接合される複数のプレート部材により構成されている。熱交換器の内部には、流体の流れる流路が形成されている。この熱交換器の外面には、電池を設置することが可能となっている。この熱交換器では、その外面に設置される電池と、その内部を流れる流体との間で熱交換が行われることにより、電池を冷却することが可能となっている。 Conventionally, there is a heat exchanger described in Patent Document 1 below. The heat exchanger described in Patent Document 1 is composed of a plurality of plate members joined to each other. A fluid flow path is formed inside the heat exchanger. Batteries can be installed on the outer surface of this heat exchanger. In this heat exchanger, it is possible to cool the battery by exchanging heat between the battery installed on the outer surface thereof and the fluid flowing inside the battery.
特表2013-539899号公報Special Table 2013-539899
 熱交換器の各種部品を形成する材料には、主に、アルミニウムや、銅、樹脂、ステンレス鋼等が用いられる。特に、車両に搭載される熱交換器では、その構成部品を形成する材料として、アルミニウム合金が用いられることが多い。このような熱交換器では、アルミニウム合金からなる複数の部品がろう付けにより接合されている。ろう付けに適した部品の材料としては、1000番系や3000番系のアルミニウム合金が用いられる。この種のアルミニウム合金が熱交換器の部品の材料として用いられる理由は以下の通りである。 Aluminum, copper, resin, stainless steel, etc. are mainly used as materials for forming various parts of heat exchangers. In particular, in heat exchangers mounted on vehicles, aluminum alloys are often used as a material for forming the components thereof. In such a heat exchanger, a plurality of parts made of an aluminum alloy are joined by brazing. As a material for parts suitable for brazing, 1000 series or 3000 series aluminum alloys are used. The reasons why this kind of aluminum alloy is used as a material for heat exchanger parts are as follows.
 複数の部品を互いに接合するためのろう材には、ろう付けに適したアルミニウム合金が用いられる。熱交換器の製造の際には、ろう材が予め塗布されたアルミニウム合金からなる複数の部品が用意される。それらの複数の部品が治具により組み付けられた後、その組立品を炉内に投入して加熱する。これにより、部品の表面のろう材が融解し、各部品の接合部分にろう材が浸透する。その後、この組立品が自然冷却等により冷却されることにより、熱交換器の製造が完了する。このような工程を経て熱交換器を製造する場合、組立品を炉内に投入して加熱した際に、部品を形成するアルミニウム合金に含まれている添加剤がろう材に侵入する可能性がある。ろう材に添加剤が侵入すると、ろう材の特性が変化するため、結果としてろう付けが適切に行われないおそれがある。このような問題を回避するために、従来の熱交換器では、部品を形成する材料として、ろう付けを阻害しない材料、具体的には1000番系や3000番系のアルミニウム合金が選定されている。 Aluminum alloy suitable for brazing is used as the brazing material for joining multiple parts to each other. During the manufacture of heat exchangers, a plurality of parts made of an aluminum alloy pre-coated with a brazing material are prepared. After the plurality of parts are assembled by a jig, the assembly is put into a furnace and heated. As a result, the brazing material on the surface of the parts melts, and the brazing material permeates the joint portion of each part. After that, the assembly is cooled by natural cooling or the like to complete the production of the heat exchanger. When a heat exchanger is manufactured through such a process, when the assembly is put into a furnace and heated, the additives contained in the aluminum alloy forming the parts may invade the brazing material. is there. When additives enter the brazing material, the characteristics of the brazing material change, and as a result, brazing may not be performed properly. In order to avoid such a problem, in the conventional heat exchanger, a material that does not hinder brazing, specifically, a 1000-series or 3000-series aluminum alloy is selected as a material for forming a part. ..
 一方、1000番系や3000番系のアルミニウム合金は、例えば5000番系や7000番系のアルミニウム合金と比較すると、強度が低い。そのため、部品を形成する材料として1000番系や3000番系のアルミニウム合金を用いる場合、内部を流れる流体の圧力に対する熱交換器の耐圧性を確保するために、部品の厚肉化が必須となっている。これが、熱交換器の重量の増加を招いている。特に、電気自動車等において電池を冷却するための熱交換器には大型の熱交換器が用いられるため、その重量の増加が顕著となり、車両の航続距離を低減させる要因の一つとなっている。 On the other hand, the 1000th series and 3000th series aluminum alloys have lower strength than, for example, the 5000th series and 7000th series aluminum alloys. Therefore, when a 1000th or 3000th aluminum alloy is used as the material for forming the parts, it is essential to thicken the parts in order to secure the pressure resistance of the heat exchanger against the pressure of the fluid flowing inside. ing. This has led to an increase in the weight of the heat exchanger. In particular, since a large heat exchanger is used as a heat exchanger for cooling a battery in an electric vehicle or the like, the increase in the weight is remarkable, which is one of the factors for reducing the cruising range of the vehicle.
 なお、このような課題は、電池を冷却するための熱交換器に限らず、各種の熱交換器に共通する課題である。
 本開示の目的は、耐圧性を確保しつつ、軽量化が可能な熱交換器を提供することにある。
It should be noted that such a problem is not limited to the heat exchanger for cooling the battery, but is a problem common to various heat exchangers.
An object of the present disclosure is to provide a heat exchanger capable of reducing weight while ensuring pressure resistance.
 本開示の一態様による熱交換器は、金属又は樹脂からなる複数の部品が接合された接合部材を有し、接合部材の内部に形成された流路を流れる流体と接合部材の外部の熱交換対象との間で熱交換が行われる。互いに接合される2つの部品を第1部品及び第2部品とするとき、第1部品及び第2部品は、接着剤を介して互いに接合されている。接着剤に対向する第1部品の表面には、第1部品と接着剤との界面を共有結合させる第1共有結合層が形成されている。接着剤に対向する第2部品の表面には、第2部品と接着剤との界面を共有結合させる第2共有結合層が形成されている。 The heat exchanger according to one aspect of the present disclosure has a joining member in which a plurality of parts made of metal or resin are joined, and heat exchange between the fluid flowing through the flow path formed inside the joining member and the outside of the joining member. Heat exchange takes place with the subject. When the two parts to be joined to each other are the first part and the second part, the first part and the second part are joined to each other via an adhesive. A first covalent bond layer that covalently bonds the interface between the first component and the adhesive is formed on the surface of the first component facing the adhesive. A second covalent bond layer for covalently bonding the interface between the second component and the adhesive is formed on the surface of the second component facing the adhesive.
 この構成によれば、第1部品及び第2部品が接着剤を介して互いに接合されているため、第1部品及び第2部品を形成する材料の選定に関して、ろう付けの際に考慮すべき制約がない。したがって、第1部品及び第2部品の材料の選定の自由度を向上させることができるため、それらを形成する材料として、より強度の高い材料を選定することができる。そのため、内部を流れる流体の圧力に対する熱交換器の耐圧性を確保しつつ、第1部品及び第2部品を薄肉化することができる。結果的に、熱交換器を軽量化することが可能である。 According to this configuration, since the first component and the second component are joined to each other via an adhesive, there are restrictions to be considered when brazing regarding the selection of the material forming the first component and the second component. There is no. Therefore, since the degree of freedom in selecting the materials for the first component and the second component can be improved, a material having higher strength can be selected as the material for forming them. Therefore, the first component and the second component can be thinned while ensuring the pressure resistance of the heat exchanger with respect to the pressure of the fluid flowing inside. As a result, it is possible to reduce the weight of the heat exchanger.
図1は、第1実施形態の熱交換器の平面構造を模式的に示す図である。FIG. 1 is a diagram schematically showing a planar structure of the heat exchanger of the first embodiment. 図2は、第1実施形態の熱交換部材の断面構造を示す断面図である。FIG. 2 is a cross-sectional view showing a cross-sectional structure of the heat exchange member of the first embodiment. 図3は、第1実施形態の熱交換部材における第1部品及び第2部品の接合部分の断面構造を拡大した断面図である。FIG. 3 is an enlarged cross-sectional view of the cross-sectional structure of the joint portion of the first component and the second component in the heat exchange member of the first embodiment. 図4は、第1実施形態の変形例の熱交換部材の断面構造を示す断面図である。FIG. 4 is a cross-sectional view showing a cross-sectional structure of a heat exchange member of a modified example of the first embodiment. 図5は、第2実施形態の熱交換部材における第1部品及び第2部品の接合部分の断面構造を拡大した断面図である。FIG. 5 is an enlarged cross-sectional view of the cross-sectional structure of the joint portion of the first component and the second component in the heat exchange member of the second embodiment. 図6は、第2実施形態の熱交換器の製造工程の一部を示す断面図である。FIG. 6 is a cross-sectional view showing a part of the manufacturing process of the heat exchanger of the second embodiment. 図7は、第3実施形態の熱交換器の断面構造を示す断面図である。FIG. 7 is a cross-sectional view showing a cross-sectional structure of the heat exchanger of the third embodiment.
 以下、熱交換器の実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 <第1実施形態>
 はじめに、図1に示される第1実施形態の熱交換器10について説明する。この熱交換器10は、電気自動車に搭載された複数の電池50を冷却する電池冷却器として用いられるものである。複数の電池50は、電気自動車の動力源である電動機や、電気自動車に搭載されるその他の各種電気機器に電力を供給する。熱交換器10は、タンク部材20,21と、複数の熱交換部材30とを備えている。
Hereinafter, embodiments of the heat exchanger will be described with reference to the drawings. In order to facilitate understanding of the description, the same components are designated by the same reference numerals as much as possible in each drawing, and duplicate description is omitted.
<First Embodiment>
First, the heat exchanger 10 of the first embodiment shown in FIG. 1 will be described. The heat exchanger 10 is used as a battery cooler for cooling a plurality of batteries 50 mounted on an electric vehicle. The plurality of batteries 50 supply electric power to an electric motor that is a power source of an electric vehicle and various other electric devices mounted on the electric vehicle. The heat exchanger 10 includes tank members 20 and 21 and a plurality of heat exchange members 30.
 熱交換部材30は、矢印Yで示される方向に延びるように形成されている。熱交換部材30の内部には、冷却流体が流れる流路Pw10が形成されている。複数の熱交換部材30は、矢印Xで示される方向に所定の間隔を空けて配置されている。矢印Xで示される方向は、矢印Yで示される方向に直交する方向である。 The heat exchange member 30 is formed so as to extend in the direction indicated by the arrow Y. Inside the heat exchange member 30, a flow path Pw10 through which a cooling fluid flows is formed. The plurality of heat exchange members 30 are arranged at predetermined intervals in the direction indicated by the arrow X. The direction indicated by the arrow X is a direction orthogonal to the direction indicated by the arrow Y.
 複数の熱交換部材30のうち、矢印Xで示される方向の一端に配置される端部熱交換部材30aには、その内部流路Pw10を第1内部流路Pw11及び第2内部流路Pw12に仕切る仕切部31が形成されている。仕切部31の近傍における端部熱交換部材30aの外周面には、流入口32及び流出口33が突出するように形成されている。流入口32は第1内部流路Pw11に連通されている。流出口33は第2内部流路Pw12に連通されている。なお、以下では、複数の熱交換部材30のうち、端部熱交換部材30aを除く熱交換部材30を「熱交換部材30b」と称する。各熱交換部材30bの外面には電池50が設置される。 Of the plurality of heat exchange members 30, the end heat exchange member 30a arranged at one end in the direction indicated by the arrow X has an internal flow path Pw10 in the first internal flow path Pw11 and the second internal flow path Pw12. A partition portion 31 for partitioning is formed. The inflow port 32 and the outflow port 33 are formed so as to project on the outer peripheral surface of the end heat exchange member 30a in the vicinity of the partition portion 31. The inflow port 32 is communicated with the first internal flow path Pw11. The outlet 33 is communicated with the second internal flow path Pw12. In the following, among the plurality of heat exchange members 30, the heat exchange member 30 excluding the end heat exchange member 30a will be referred to as a "heat exchange member 30b". A battery 50 is installed on the outer surface of each heat exchange member 30b.
 タンク部材20,21は、矢印Xで示される方向に延びるように形成されている。タンク部材20,21の内部には、冷却流体が流れる流路Pw20,Pw21がそれぞれ形成されている。タンク部材20は、複数の熱交換部材30のそれぞれの一端部に接合されるように設けられている。タンク部材21は、複数の熱交換部材30のそれぞれの他端部に接合されるように設けられている。タンク部材20の内部流路Pw20は、複数の熱交換部材30のそれぞれの内部流路Pw10の一端部に連通されている。タンク部材21の内部流路Pw21は、複数の熱交換部材30のそれぞれの内部流路Pw10の他端部に連通されている。 The tank members 20 and 21 are formed so as to extend in the direction indicated by the arrow X. Inside the tank members 20 and 21, flow paths Pw20 and Pw21 through which the cooling fluid flows are formed, respectively. The tank member 20 is provided so as to be joined to one end of each of the plurality of heat exchange members 30. The tank member 21 is provided so as to be joined to the other end of each of the plurality of heat exchange members 30. The internal flow path Pw20 of the tank member 20 is communicated with one end of each of the internal flow paths Pw10 of the plurality of heat exchange members 30. The internal flow path Pw21 of the tank member 21 is communicated with the other end of each of the internal flow paths Pw10 of the plurality of heat exchange members 30.
 この熱交換器10では、流入口32に冷却流体が供給される。流入口32に供給される冷却流体は、端部熱交換部材30aの第1内部流路Pw11を通じてタンク部材20の内部流路Pw20した流入した後、端部熱交換部材30aを除く複数の熱交換部材30bのそれぞれの内部流路Pw10に分配される。各熱交換部材30bの内部流路Pw10を通過した冷却流体は、タンク部材20の内部流路Pw21に集められた後、端部熱交換部材30aの第2内部流路Pw12を通じて流出口33から排出される。流出口33から排出された冷却水は、例えば車両に搭載されたラジエータにおいて外気との熱交換により冷却された後、流入口32に再び戻される。 In this heat exchanger 10, the cooling fluid is supplied to the inflow port 32. The cooling fluid supplied to the inflow port 32 flows into the internal flow path Pw20 of the tank member 20 through the first internal flow path Pw11 of the end heat exchange member 30a, and then a plurality of heat exchanges other than the end heat exchange member 30a. It is distributed to each internal flow path Pw10 of the member 30b. The cooling fluid that has passed through the internal flow path Pw10 of each heat exchange member 30b is collected in the internal flow path Pw21 of the tank member 20 and then discharged from the outflow port 33 through the second internal flow path Pw12 of the end heat exchange member 30a. Will be done. The cooling water discharged from the outflow port 33 is cooled by heat exchange with the outside air in a radiator mounted on the vehicle, for example, and then returned to the inflow port 32 again.
 次に、熱交換部材30の構造について詳しく説明する。
 図2に示されるように、熱交換部材30は、第1部品33と第2部品34とが接着剤35を介して互いに接合された構造を有している。なお、本実施形態では、熱交換部材30が、第1部品33及び第2部品34が接合された接合部材に相当する。また、熱交換部材30の内部を流れる冷却流体が、接合部材の内部を流れる流体に相当し、電池50が、接合部材の外部の熱交換対象に相当する。
Next, the structure of the heat exchange member 30 will be described in detail.
As shown in FIG. 2, the heat exchange member 30 has a structure in which the first component 33 and the second component 34 are joined to each other via an adhesive 35. In the present embodiment, the heat exchange member 30 corresponds to a joining member to which the first component 33 and the second component 34 are joined. Further, the cooling fluid flowing inside the heat exchange member 30 corresponds to the fluid flowing inside the joining member, and the battery 50 corresponds to the heat exchange target outside the joining member.
 第2部品34は、平板状に形成されている。第2部品34は、アルミニウムにより形成されている。具体的には、第2部品34は、2000番系、5000番系、6000番系、7000番系、及び8000番系のいずれかのアルミニウム合金により形成されている。第2部品34の一方の表面340は、電池50が設置される設置面となっている。第2部品34の他方の表面341には、接着剤35を介して第1部品33が接着されている。 The second component 34 is formed in a flat plate shape. The second component 34 is made of aluminum. Specifically, the second component 34 is formed of any one of 2000 series, 5000 series, 6000 series, 7000 series, and 8000 series aluminum alloy. One surface 340 of the second component 34 is an installation surface on which the battery 50 is installed. The first component 33 is adhered to the other surface 341 of the second component 34 via an adhesive 35.
 第1部品33は、矢印Yで示される方向に直交する断面形状が凹字状をなすように形成されている。第1部品33は、第2部品34と同様に、2000番系、5000番系、6000番系、7000番系、及び8000番系のいずれかのアルミニウム合金により形成されている。第1部品33の開口部の外周部分にはフランジ部330が形成されている。フランジ部330の表面330aは、接着剤35を介して第1部品33に接着されている。第1部品33の内壁面331、第2部品の表面341、及び接着剤35によって囲まれる空間により、熱交換部材30の内部流路Pw10が形成されている。 The first component 33 is formed so that the cross-sectional shape orthogonal to the direction indicated by the arrow Y is concave. Like the second component 34, the first component 33 is formed of any one of 2000 series, 5000 series, 6000 series, 7000 series, and 8000 series aluminum alloy. A flange portion 330 is formed on the outer peripheral portion of the opening of the first component 33. The surface 330a of the flange portion 330 is adhered to the first component 33 via the adhesive 35. The internal flow path Pw10 of the heat exchange member 30 is formed by the inner wall surface 331 of the first component 33, the surface 341 of the second component, and the space surrounded by the adhesive 35.
 接着剤35は、第1部品33のフランジ部330の表面330aと第2部品34の表面341との間に設けられており、それらを接合している。接着剤35としては、シリコン系接着剤が用いられている。
 図3に示されるように、第1部品33において接着剤35に対向するフランジ部330の表面330aには、第1共有結合層36が形成されている。第1共有結合層36は、第1部品33と接着剤35との界面を共有結合させることにより、それらを接合させている。同様に、第2部品34において接着剤35に対向する表面341には第2共有結合層37が形成されている。第2共有結合層37は、第2部品34と接着剤35との界面を共有結合させることにより、それらを接合させている。第1共有結合層36及び第2共有結合層37を形成する材料としては、ケイ酸ガラス層、より詳しくはアルミノケイ酸ガラス層が用いられている。
The adhesive 35 is provided between the surface 330a of the flange portion 330 of the first component 33 and the surface 341 of the second component 34, and joins them. As the adhesive 35, a silicon-based adhesive is used.
As shown in FIG. 3, the first covalent bond layer 36 is formed on the surface 330a of the flange portion 330 facing the adhesive 35 in the first component 33. The first covalent bond layer 36 joins them by covalently bonding the interface between the first component 33 and the adhesive 35. Similarly, a second covalent bond layer 37 is formed on the surface 341 of the second component 34 facing the adhesive 35. The second covalent bond layer 37 joins them by covalently bonding the interface between the second component 34 and the adhesive 35. As a material for forming the first covalent bond layer 36 and the second covalent bond layer 37, a silicate glass layer, more specifically, an aluminosilicate glass layer is used.
 次に、熱交換部材30の製造方法について説明する。
 熱交換部材30を製造する際には、まず、凹字状の第1部品33、及び平板状の第2部品34を成形した後、第1部品33の表面330aに第1共有結合層36を形成するとともに、第2部品34の表面341に第2共有結合層37を形成する。具体的には、共有結合層36,37に対応する液体を用いて、ディッピング、シャワー塗布、及びロールコート等により各部品33,34に共有結合層36,37をそれぞれ形成する。その後、第1部品33のフランジ部330と第2部品34とを接着剤35を介して接着させることにより、熱交換部材30の製造が完了する。
Next, a method of manufacturing the heat exchange member 30 will be described.
When manufacturing the heat exchange member 30, first, the concave first part 33 and the flat plate-shaped second part 34 are molded, and then the first covalent bond layer 36 is formed on the surface 330a of the first part 33. At the same time, the second covalent bond layer 37 is formed on the surface 341 of the second component 34. Specifically, the covalent bond layers 36 and 37 are formed on the parts 33 and 34 by dipping, shower coating, roll coating and the like using the liquid corresponding to the covalent bond layers 36 and 37, respectively. After that, the flange portion 330 of the first component 33 and the second component 34 are adhered to each other via the adhesive 35 to complete the production of the heat exchange member 30.
 次に、本実施形態の熱交換器10の作用及び効果について説明する。
 本実施形態の熱交換器10では、第1部品33及び第2部品34が接着剤35を介して互いに接合されているため、第1部品33及び第2部品34を形成する材料の選定に関して、ろう付けの際に考慮すべき制約がない。したがって、第1部品33及び第2部品34の材料の選定の自由度を向上させることができるため、それらを形成する材料として、より強度の高い材料を選定することができる。具体的には、第1部品33及び第2部品34の材料として、従来の1000番系や3000番系のアルミニウム合金に代えて、2000番系、5000番系、6000番系、7000番系、及び8000番系のいずれかのアルミニウム合金を用いることができる。そのため、内部を流れる冷却流体の圧力に対する熱交換器10の耐圧性を確保しつつ、第1部品33及び第2部品34を薄肉化することができる。結果的に、熱交換器10を軽量化することができる。
Next, the operation and effect of the heat exchanger 10 of the present embodiment will be described.
In the heat exchanger 10 of the present embodiment, since the first component 33 and the second component 34 are joined to each other via the adhesive 35, regarding the selection of the material forming the first component 33 and the second component 34, There are no restrictions to consider when brazing. Therefore, since the degree of freedom in selecting the materials for the first component 33 and the second component 34 can be improved, a material having higher strength can be selected as the material for forming them. Specifically, as the material of the first part 33 and the second part 34, instead of the conventional 1000 series and 3000 series aluminum alloys, 2000 series, 5000 series, 6000 series, 7000 series, And any aluminum alloy of the 8000 series can be used. Therefore, the first component 33 and the second component 34 can be thinned while ensuring the pressure resistance of the heat exchanger 10 with respect to the pressure of the cooling fluid flowing inside. As a result, the heat exchanger 10 can be made lighter.
 (変形例)
 次に、第1実施形態の熱交換器10の変形例について説明する。
 図4に示されるように、本変形例の熱交換器10では、第1部品33の底面332に電池51が更に配置されている。このような構成によれば、熱交換器10に設置可能な電池の個数を増加させることができる、換言すれば熱交換器10により冷却可能な電池の個数を増加させることが可能である。
(Modification example)
Next, a modification of the heat exchanger 10 of the first embodiment will be described.
As shown in FIG. 4, in the heat exchanger 10 of this modified example, the battery 51 is further arranged on the bottom surface 332 of the first component 33. According to such a configuration, the number of batteries that can be installed in the heat exchanger 10 can be increased, in other words, the number of batteries that can be cooled by the heat exchanger 10 can be increased.
 <第2実施形態>
 次に、第2実施形態の熱交換器10について説明する。以下、第1実施形態の熱交換器10との相違点を中心に説明する。
 図5に示されるように、本実施形態の第1部品33のフランジ部330には、段差部333と、突出部334とが形成されている。
<Second Embodiment>
Next, the heat exchanger 10 of the second embodiment will be described. Hereinafter, the differences from the heat exchanger 10 of the first embodiment will be mainly described.
As shown in FIG. 5, the flange portion 330 of the first component 33 of the present embodiment is formed with a stepped portion 333 and a protruding portion 334.
 段差部333は、第2部品34と所定の隙間を有して配置され、且つ第2部品34の表面341と略平行に配置されている部分である。
 突出部334は、段差部333の略中央から第2部品34に向かって突出するように形成されている。突出部334の先端面334aは、第2部品34の表面341に対して略平行な平坦面となっている。突出部334の先端面334aは接着剤35を介して第2部品34の表面341に接着されている。
The step portion 333 is a portion that is arranged with a predetermined gap from the second component 34 and is arranged substantially parallel to the surface 341 of the second component 34.
The projecting portion 334 is formed so as to project from substantially the center of the step portion 333 toward the second component 34. The tip surface 334a of the protrusion 334 is a flat surface substantially parallel to the surface 341 of the second component 34. The tip surface 334a of the protrusion 334 is adhered to the surface 341 of the second component 34 via the adhesive 35.
 図5に示されるように、第1部品33の段差部333と第2部品34の表面341との間の隙間には、接着剤35が配置されている。接着剤35は、突出部334の外周部分に配置されている。接着剤35は、第1部品33の段差部333と第2部品34の表面341とを接着させることにより、それらを接合させている。接着剤35の外面には、円弧状のフィレット335が形成されている。 As shown in FIG. 5, the adhesive 35 is arranged in the gap between the step portion 333 of the first component 33 and the surface 341 of the second component 34. The adhesive 35 is arranged on the outer peripheral portion of the protruding portion 334. The adhesive 35 joins the stepped portion 333 of the first component 33 and the surface 341 of the second component 34 by adhering them. An arcuate fillet 335 is formed on the outer surface of the adhesive 35.
 なお、接着剤35を介した突出部334の先端面334aと第2部品34の表面341との接合構造、並びに接着剤35を介した第1部品33の段差部333と第2部品34の表面341との接合構造には、図3に示される構造と同様の構造が採用されているため、その詳細な説明は割愛する。 The joint structure between the tip surface 334a of the protruding portion 334 via the adhesive 35 and the surface 341 of the second component 34, and the stepped portion 333 of the first component 33 and the surface of the second component 34 via the adhesive 35. Since a structure similar to the structure shown in FIG. 3 is adopted for the joint structure with 341, a detailed description thereof will be omitted.
 次に、本実施形態の熱交換器10の製造方法について説明する。
 本実施形態の熱交換器10を製造する際には、まず、第1部品33及び第2部品34を成形した後、第1部品33の表面330aに第1共有結合層36を形成するとともに、第2部品34の表面341に第2共有結合層37を形成する。そして、図6に示されるように、第1部品33の突出部334の先端面334aに接着剤35を塗布する。その後、第1部品33の突出部334の先端面334aに第2部品34を載せることにより、接着剤35を介して第1部品33及び第2部品34を接合させる。その際、接着剤35の外面に図5に示されるようなフィレット335が形成されるように、第1部品33の突出部334の高さHが予め設定されている。
Next, a method of manufacturing the heat exchanger 10 of the present embodiment will be described.
When manufacturing the heat exchanger 10 of the present embodiment, first, the first component 33 and the second component 34 are molded, and then the first covalent bond layer 36 is formed on the surface 330a of the first component 33, and the first covalent bond layer 36 is formed. A second covalent bond layer 37 is formed on the surface 341 of the second component 34. Then, as shown in FIG. 6, the adhesive 35 is applied to the tip surface 334a of the protruding portion 334 of the first component 33. After that, the second component 34 is placed on the tip surface 334a of the protruding portion 334 of the first component 33, so that the first component 33 and the second component 34 are joined via the adhesive 35. At that time, the height H of the protruding portion 334 of the first component 33 is preset so that the fillet 335 as shown in FIG. 5 is formed on the outer surface of the adhesive 35.
 次に、本実施形態の熱交換器10の作用及び効果について説明する。
 本実施形態の熱交換器10では、図5に示されるように、第1部品33の突出部334が接着剤35を介して第2部品34に接合されている。このような構造によれば、第1部品33の突出部334の長さLを適宜調整することにより、第1部品33と第2部品34との接着部分の長さを任意に設定することができる。よって、第1部品33の突出部334の長さLを、接着に必要な長さ以上の長さに設定すれば、接着剤35を介した第1部品33及び第2部品34の接合強度を確保することができる。
Next, the operation and effect of the heat exchanger 10 of the present embodiment will be described.
In the heat exchanger 10 of the present embodiment, as shown in FIG. 5, the protruding portion 334 of the first component 33 is joined to the second component 34 via the adhesive 35. According to such a structure, the length of the bonded portion between the first component 33 and the second component 34 can be arbitrarily set by appropriately adjusting the length L of the protruding portion 334 of the first component 33. it can. Therefore, if the length L of the protruding portion 334 of the first component 33 is set to a length equal to or longer than the length required for adhesion, the bonding strength of the first component 33 and the second component 34 via the adhesive 35 can be increased. Can be secured.
 一方、このような熱交換器10では、例えば冷却液体の温度変化により熱交換部材30が伸張変形及び収縮変形する。このような熱交換部材30の変形により接着剤35の外面に局所的な応力が加わると、接着剤35が破損して、結果として第1部品33及び第2部品34の接合が解除される可能性がある。この点、本実施形態の熱交換部材30では、接着剤35の外面にフィレット335が形成されているため、接着剤35の外面に局所的な応力が作用し難くなっている。したがって、熱交換部材30が伸張変形及び収縮変形した際に接着剤35が破損するような状況が生じ難いため、第1部品33及び第2部品34が接合されている状態を維持し易くなる。 On the other hand, in such a heat exchanger 10, the heat exchange member 30 is stretched and contracted due to, for example, a temperature change of the cooling liquid. When a local stress is applied to the outer surface of the adhesive 35 due to such deformation of the heat exchange member 30, the adhesive 35 may be damaged, and as a result, the bonding of the first component 33 and the second component 34 may be released. There is sex. In this respect, in the heat exchange member 30 of the present embodiment, since the fillet 335 is formed on the outer surface of the adhesive 35, it is difficult for local stress to act on the outer surface of the adhesive 35. Therefore, it is unlikely that the adhesive 35 will be damaged when the heat exchange member 30 is stretched or contracted, so that it is easy to maintain the state in which the first component 33 and the second component 34 are joined.
 <第3実施形態>
 次に、第3実施形態の熱交換器10について説明する。
 図7に示されるように、本実施形態の熱交換器10は、2重管式内部熱交換器である。熱交換器10は、第1管部材60と、第2管部材70と、流入管80とを備えている。第1管部材60、第2管部材70、及び流入管80を形成する材料としては、第1実施形態の第1部品33及び第2部品34に採用される材料と同一の材料を用いることが可能である。
<Third Embodiment>
Next, the heat exchanger 10 of the third embodiment will be described.
As shown in FIG. 7, the heat exchanger 10 of the present embodiment is a double-tube internal heat exchanger. The heat exchanger 10 includes a first pipe member 60, a second pipe member 70, and an inflow pipe 80. As the material for forming the first pipe member 60, the second pipe member 70, and the inflow pipe 80, the same material as that used for the first component 33 and the second component 34 of the first embodiment may be used. It is possible.
 第1管部材60は、軸線mを中心として円環状に形成されている。第1管部材60の内部空間は、第1流体が流れている第1内部流路Pw31を構成している。
 第2管部材70も、軸線mを中心として円環状に形成されている。第2管部材70は、第1管部材60よりも大きい内径を有しており、その内部に第1管部材60を収容している。第2管部材70の一端部は、第1管部材60の外周面に接合されている。第2管部材70の内周面と第1管部材60の外周面とによって囲まれる空間により、第2流体が流れる第2内部流路Pw32が構成されている。
The first pipe member 60 is formed in an annular shape about the axis m. The internal space of the first pipe member 60 constitutes a first internal flow path Pw31 through which the first fluid flows.
The second pipe member 70 is also formed in an annular shape about the axis m. The second pipe member 70 has an inner diameter larger than that of the first pipe member 60, and the first pipe member 60 is housed therein. One end of the second pipe member 70 is joined to the outer peripheral surface of the first pipe member 60. The space surrounded by the inner peripheral surface of the second pipe member 70 and the outer peripheral surface of the first pipe member 60 constitutes a second internal flow path Pw32 through which the second fluid flows.
 この熱交換器10では、第1内部流路Pw31を流れる第1流体と、第2内部流路Pw32を流れる第2流体との間で熱交換が行われる。
 第1管部材60の一端部は、第2管部材70の一端部から突出している。この第1管部材60の一端部には、第1管部材60に第1流体を流入させるための流入管80が接合されている。具体的には、流入管80の一端部の内周面が第1管部材60の一端部の外周面に接着剤35を介して接合されている。なお、接着剤35を介した流入管80及び第1管部材60の接合構造には、図3に示される構造と同様の構造が採用されているため、その詳細な説明は割愛する。
In this heat exchanger 10, heat exchange is performed between the first fluid flowing through the first internal flow path Pw31 and the second fluid flowing through the second internal flow path Pw32.
One end of the first pipe member 60 projects from one end of the second pipe member 70. An inflow pipe 80 for allowing the first fluid to flow into the first pipe member 60 is joined to one end of the first pipe member 60. Specifically, the inner peripheral surface of one end of the inflow pipe 80 is joined to the outer peripheral surface of one end of the first pipe member 60 via an adhesive 35. Since the structure similar to the structure shown in FIG. 3 is adopted for the joint structure of the inflow pipe 80 and the first pipe member 60 via the adhesive 35, a detailed description thereof will be omitted.
 本実施形態では、互いに接合された第1管部材60及び流入管80が接合部材90に相当し、第1管部材60及び流入管80が接合部材を構成する部品に相当する。また、第1管部材60及び流入管80の内部を流れる第1流体が、接合部材の内部を流れる流体に相当し、第2流体が、接合部材の外部の熱交換対象に相当する。 In the present embodiment, the first pipe member 60 and the inflow pipe 80 joined to each other correspond to the joining member 90, and the first pipe member 60 and the inflow pipe 80 correspond to the parts constituting the joining member. Further, the first fluid flowing inside the first pipe member 60 and the inflow pipe 80 corresponds to the fluid flowing inside the joining member, and the second fluid corresponds to the heat exchange target outside the joining member.
 図7に示されるような構造を有する本実施形態の熱交換器10であっても、第1実施形態の熱交換器10と同一又は類似の作用及び効果を得ることが可能である。
 <他の実施形態>
 なお、各実施形態は、以下の形態にて実施することもできる。
Even the heat exchanger 10 of the present embodiment having the structure as shown in FIG. 7 can obtain the same or similar operation and effect as the heat exchanger 10 of the first embodiment.
<Other embodiments>
In addition, each embodiment can also be implemented in the following embodiments.
 ・第1及び第2実施形態の熱交換部材30の第1部品33及び第2部品34は、アルミニウムや鉄、ステンレス鋼等の金属、あるいは樹脂により形成されていればよい。第3実施形態の第1管部材60、第2管部材70、及び流入管80に関しても同様である。
 ・各実施形態の接着剤35としては、シリコン系接着剤に限らず、エポキシ系接着剤、ポリウレタン系接着剤、ポリエステル系接着剤、メラニン系接着剤、及びユリア樹脂系接着剤等を用いることが可能である。
-The first component 33 and the second component 34 of the heat exchange member 30 of the first and second embodiments may be formed of a metal such as aluminum, iron, stainless steel, or a resin. The same applies to the first pipe member 60, the second pipe member 70, and the inflow pipe 80 of the third embodiment.
-The adhesive 35 of each embodiment is not limited to silicon-based adhesives, but epoxy-based adhesives, polyurethane-based adhesives, polyester-based adhesives, melanin-based adhesives, urea resin-based adhesives, and the like can be used. It is possible.
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 ・ This disclosure is not limited to the above specific examples. Specific examples described above with appropriate design changes by those skilled in the art are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the above-mentioned specific examples, and their arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. The combinations of the elements included in each of the above-mentioned specific examples can be appropriately changed as long as there is no technical contradiction.

Claims (10)

  1.  金属又は樹脂からなる複数の部品(33,34,60,80)が接合された接合部材(30,90)を有し、前記接合部材の内部に形成された流路を流れる流体と前記接合部材の外部の熱交換対象との間で熱交換が行われる熱交換器であって、
     互いに接合される2つの前記部品を第1部品(33,60)及び第2部品(34,80)とするとき、
     前記第1部品及び前記第2部品は、接着剤(35)を介して互いに接合されており、
     前記接着剤に対向する前記第1部品の表面には、前記第1部品と前記接着剤との界面を共有結合させる第1共有結合層(36)が形成され、
     前記接着剤に対向する前記第2部品の表面には、前記第2部品と前記接着剤との界面を共有結合させる第2共有結合層(37)が形成されている
     熱交換器。
    It has a joining member (30, 90) to which a plurality of parts (33, 34, 60, 80) made of metal or resin are joined, and a fluid flowing through a flow path formed inside the joining member and the joining member. A heat exchanger that exchanges heat with an external heat exchange target.
    When the two parts joined to each other are the first part (33,60) and the second part (34,80),
    The first part and the second part are joined to each other via an adhesive (35).
    On the surface of the first component facing the adhesive, a first covalent bond layer (36) for covalently bonding the interface between the first component and the adhesive is formed.
    A heat exchanger in which a second covalent bond layer (37) for covalently bonding the interface between the second component and the adhesive is formed on the surface of the second component facing the adhesive.
  2.  前記第1共有結合層及び前記第2共有結合層のうち少なくとも何れか一方は、ケイ酸ガラス層からなる
     請求項1に記載の熱交換器。
    The heat exchanger according to claim 1, wherein at least one of the first covalent bond layer and the second covalent bond layer is made of a silicate glass layer.
  3.  前記第1共有結合層及び前記第2共有結合層のうち少なくとも何れか一方は、アルミノケイ酸ガラス層からなる
     請求項1に記載の熱交換器。
    The heat exchanger according to claim 1, wherein at least one of the first covalent bond layer and the second covalent bond layer is made of an aluminosilicate glass layer.
  4.  前記接着剤は、シリコン系接着剤、エポキシ系接着剤、ポリウレタン系接着剤、ポリエステル系接着剤、メラニン系接着剤、及びユリア樹脂系接着剤のいずれかからなる
     請求項1~3のいずれか一項に記載の熱交換器。
    Any one of claims 1 to 3, wherein the adhesive comprises any one of a silicon-based adhesive, an epoxy-based adhesive, a polyurethane-based adhesive, a polyester-based adhesive, a melanin-based adhesive, and a urea resin-based adhesive. The heat exchanger described in the section.
  5.  前記部品は、アルミニウム、鉄、及びステンレス鋼のいずれかにより形成されている
     請求項1~4のいずれか一項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 4, wherein the component is made of any one of aluminum, iron, and stainless steel.
  6.  前記部品は、2000番系、5000番系、6000番系、7000番系、及び8000番系のいずれかのアルミニウム合金により形成されている
     請求項1~4のいずれか一項に記載の熱交換器。
    The heat exchange according to any one of claims 1 to 4, wherein the component is made of an aluminum alloy of any one of 2000 series, 5000 series, 6000 series, 7000 series, and 8000 series. vessel.
  7.  前記第2部品(34)は、平板状に形成されており、
     前記第1部品(33)は、前記第1部品と所定の隙間を有して配置される段差部(333)と、前記段差部から前記第2部品に向かって突出する突出部(334)とを有しており、
     前記突出部が前記接着剤を介して前記第2部品に接合されている
     請求項1~6のいずれか一項に記載の熱交換器。
    The second component (34) is formed in a flat plate shape.
    The first component (33) includes a stepped portion (333) arranged with a predetermined gap from the first component, and a protruding portion (334) protruding from the stepped portion toward the second component. Have and
    The heat exchanger according to any one of claims 1 to 6, wherein the protruding portion is joined to the second component via the adhesive.
  8.  前記接着剤は、前記突出部の外周部分であって、且つ前記第1部品と前記第2部品の前記段差部との間に形成される隙間に形成されており、
     前記接着剤の外面には、フィレット(335)が形成されている
     請求項7に記載の熱交換器。
    The adhesive is formed in the outer peripheral portion of the protruding portion and in the gap formed between the first component and the stepped portion of the second component.
    The heat exchanger according to claim 7, wherein a fillet (335) is formed on the outer surface of the adhesive.
  9.  前記熱交換対象は、電気自動車に搭載される電池(50)であり、
     前記接合部材の内部に形成された流路を流れる流体と前記電池との間で熱交換を行うことにより前記電池を冷却する
     請求項1~8のいずれか一項に記載の熱交換器。
    The heat exchange target is a battery (50) mounted on an electric vehicle.
    The heat exchanger according to any one of claims 1 to 8, wherein the battery is cooled by exchanging heat between the fluid flowing through the flow path formed inside the joining member and the battery.
  10.  前記第1部品及び前記第2部品のうち前記電池側に設けられる部品は、アルミニウム合金により形成されている
     請求項9に記載の熱交換器。
    The heat exchanger according to claim 9, wherein the component provided on the battery side of the first component and the second component is made of an aluminum alloy.
PCT/JP2020/024741 2019-06-28 2020-06-24 Heat exchanger WO2020262434A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019121066A JP7314655B2 (en) 2019-06-28 2019-06-28 Heat exchanger
JP2019-121066 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020262434A1 true WO2020262434A1 (en) 2020-12-30

Family

ID=74060400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024741 WO2020262434A1 (en) 2019-06-28 2020-06-24 Heat exchanger

Country Status (2)

Country Link
JP (1) JP7314655B2 (en)
WO (1) WO2020262434A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190507A1 (en) * 2022-03-29 2023-10-05 株式会社デンソー Heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102651444B1 (en) * 2021-11-29 2024-03-27 (주)세원물산 Electric vehicle battery pack case

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148492U (en) * 1982-03-30 1983-10-05 松下冷機株式会社 Heat exchanger
JPH10153358A (en) * 1996-06-13 1998-06-09 Denso Corp Stacked type heat exchanger
JPH10267571A (en) * 1997-03-20 1998-10-09 Furukawa Electric Co Ltd:The Plate type heat pipe and cooling structure using the same
JP2009228010A (en) * 2008-03-19 2009-10-08 Kobe Steel Ltd Brazing sheet made from aluminum alloy and method for manufacturing heat exchanger
JP2013178078A (en) * 2012-02-10 2013-09-09 T Rad Co Ltd Stacked heat exchanger
JP2013539899A (en) * 2010-10-04 2013-10-28 デーナ、カナダ、コーパレイシャン Conformal fluid cooling heat exchanger for batteries
JP2017203209A (en) * 2015-07-09 2017-11-16 株式会社神戸製鋼所 Method for producing aluminum alloy material, aluminum alloy material and joined body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148492U (en) * 1982-03-30 1983-10-05 松下冷機株式会社 Heat exchanger
JPH10153358A (en) * 1996-06-13 1998-06-09 Denso Corp Stacked type heat exchanger
JPH10267571A (en) * 1997-03-20 1998-10-09 Furukawa Electric Co Ltd:The Plate type heat pipe and cooling structure using the same
JP2009228010A (en) * 2008-03-19 2009-10-08 Kobe Steel Ltd Brazing sheet made from aluminum alloy and method for manufacturing heat exchanger
JP2013539899A (en) * 2010-10-04 2013-10-28 デーナ、カナダ、コーパレイシャン Conformal fluid cooling heat exchanger for batteries
JP2013178078A (en) * 2012-02-10 2013-09-09 T Rad Co Ltd Stacked heat exchanger
JP2017203209A (en) * 2015-07-09 2017-11-16 株式会社神戸製鋼所 Method for producing aluminum alloy material, aluminum alloy material and joined body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190507A1 (en) * 2022-03-29 2023-10-05 株式会社デンソー Heat exchanger

Also Published As

Publication number Publication date
JP7314655B2 (en) 2023-07-26
JP2021007084A (en) 2021-01-21

Similar Documents

Publication Publication Date Title
WO2020262434A1 (en) Heat exchanger
US5014775A (en) Oil cooler and manufacturing method thereof
JP5305634B2 (en) Heat exchanger system with manifold integral with conduit
JP2001099585A (en) Heat exchanger made of aluminum
CN101410688A (en) Method of manufacturing metallic foam based heat exchanger
JP2009501309A (en) Automotive heat exchanger
WO2012090748A1 (en) Method for manufacturing hot-water heater, and hot-water heater manufactured thereby
KR20140077272A (en) Battery heat sink having structure stacked fluid path
WO1995008089A1 (en) Aluminum heat exchanger
US20100300664A1 (en) Heat exchanger
KR20120092642A (en) Exhaust gas heat exchanger
CN106247817A (en) Pot type heat exchanger
US20080093061A1 (en) Heat exchanger assemblies having hybrid tanks
JP2008530502A (en) Box for receiving a heat exchanger fluid, in particular a heat exchanger for a heat exchanger unit, in particular a heat exchanger unit implemented as a monoblock
US20130312943A1 (en) Process for producing an integral bond
JP6459776B2 (en) Seal structure for joint connection and manufacturing method thereof
KR101507588B1 (en) Non-welding type clear water cooler and manufacturing method of the same
JP6080746B2 (en) Plate laminate
KR101385266B1 (en) Heat exchanger
JP2015200445A (en) Heat exchanger and method of manufacturing heat exchanger
JP3409350B2 (en) Stacked heat exchanger
JP2014052147A (en) Heat exchanger and method for fabricating the same
CN107735640A (en) For manufacturing the method and heat exchanger of heat exchanger
US20210270548A1 (en) Heat exchanger
KR100710617B1 (en) Heat exchanger for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20830788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20830788

Country of ref document: EP

Kind code of ref document: A1