WO2023190507A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2023190507A1
WO2023190507A1 PCT/JP2023/012496 JP2023012496W WO2023190507A1 WO 2023190507 A1 WO2023190507 A1 WO 2023190507A1 JP 2023012496 W JP2023012496 W JP 2023012496W WO 2023190507 A1 WO2023190507 A1 WO 2023190507A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
heat exchanger
bonded
tube
filler
Prior art date
Application number
PCT/JP2023/012496
Other languages
French (fr)
Japanese (ja)
Inventor
彰洋 大井
浩之 奥平
大未 齊藤
達彦 西野
真一郎 滝瀬
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023190507A1 publication Critical patent/WO2023190507A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning

Definitions

  • the present disclosure relates to a heat exchanger.
  • heat exchangers used in vehicle air conditioners and the like require high heat exchange performance, so aluminum is often used as the material.
  • studies have been underway to manufacture heat exchangers using aluminum, which is a recycled material.
  • Recycled aluminum often contains magnesium element as an impurity.
  • magnesium element reacts with the flux used during brazing and inhibits the function of the flux. For this reason, when manufacturing a heat exchanger using recycled aluminum, it is difficult to join the members together by brazing. Therefore, as described in Patent Document 1 below, it is conceivable to join the members using an adhesive instead of brazing.
  • Adhesives have significantly lower thermal conductivity than metal materials such as brazing filler metals. In order to ensure the performance of the heat exchanger, it is necessary to increase the thermal conductivity of a joint between a tube and a fin by some method, for example, among a plurality of joints joined with an adhesive.
  • An object of the present disclosure is to provide a heat exchanger with high performance even though at least a portion of the bonding is performed by a method other than brazing.
  • the heat exchanger includes a flow path member (300) that defines a flow path through which a fluid flows, and fins (400) bonded to the flow path member with an adhesive (610).
  • a film layer (301, 401) for promoting covalent bonding with the adhesive is formed on at least one adhered surface of the flow path member and the fin.
  • FIG. 1 is a diagram showing the overall configuration of a heat exchanger according to a first embodiment.
  • FIG. 2 is a diagram showing the configuration of tubes and fins in the heat exchanger according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing the configuration at the joint between the tube and the fin.
  • FIG. 4 is a sectional view showing the configuration at the joint between the tube and the header plate.
  • FIG. 5 is a diagram showing the appearance of a heat exchanger according to the second embodiment.
  • FIG. 6 is a diagram showing the internal configuration of the heat exchanger of FIG. 5.
  • FIG. 7 is a cross-sectional view showing the structure of a joint inside the heat exchanger of FIG. 5.
  • FIG. 1 is a diagram showing the overall configuration of a heat exchanger according to a first embodiment.
  • FIG. 2 is a diagram showing the configuration of tubes and fins in the heat exchanger according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing the configuration at the joint between the tube
  • the heat exchanger 10 is a heat exchanger for exchanging heat between air and a heat medium fluid, and is configured as a so-called "heater core" provided in a vehicle air conditioner.
  • the heat exchanger 10 high-temperature cooling water supplied from the outside is used as the heat medium fluid, and air is heated by heat exchange with the cooling water.
  • the heat exchanger 10 includes an inlet tank 100, an outlet tank 200, tubes 300, and fins 400.
  • the inlet side tank 100 is a container that receives cooling water supplied from the outside and distributes and supplies it to each tube 300.
  • the inlet side tank 100 is formed as an elongated container having a substantially cylindrical shape, and is arranged with its longitudinal direction parallel to the horizontal direction.
  • the inlet tank 100 includes a header plate 110, a tank plate 120, and a joint portion 130.
  • the header plate 110 is a generally flat plate-shaped member. Header plate 110 is made of metal. A plurality of through holes are formed in the header plate 110, and the lower end of each tube 300 is inserted into each through hole from above. The edge portion of the through hole in the header plate 110 and the outer circumferential surface of the tube 300 are watertightly joined over the entire circumference.
  • the tank plate 120 is a member for dividing a space in which cooling water is stored.
  • Tank plate 120 is arranged to cover header plate 110 from the lower side, that is, from the side opposite to tube 300.
  • Tank plate 120 is made of metal.
  • Tank plate 120 and header plate 110 are joined watertightly. This prevents cooling water from leaking to the outside from between the two.
  • the joint portion 130 receives cooling water supplied from the outside and guides it to the space inside the inlet side tank 100.
  • a pipe (not shown) for supplying cooling water to the heat exchanger 10 is connected to the joint portion 130 .
  • the joint portion 130 is provided at a position along the longitudinal direction of the inlet side tank 100.
  • An opening 131 which is an inlet for cooling water, is formed at an end of the joint portion 130 along the same direction. Cooling water supplied from the outside to the joint portion 130 through the opening 131 is distributed to each tube 300 while flowing inside the inlet tank 100 along the longitudinal direction.
  • the outlet tank 200 is a container for receiving the cooling water that has passed through each tube 300 and discharging it to the outside.
  • the outlet side tank 200 is arranged at a position vertically above the inlet side tank 100.
  • the outlet side tank 200 has a header plate 210, a tank plate 220, and a joint portion 230.
  • the header plate 210 is a generally flat plate-shaped member. Header plate 210 is made of metal. The shape of header plate 210 is generally the same as the shape of header plate 110. A plurality of through holes are formed in the header plate 210, and the upper end portion of each tube 300 is inserted into each through hole from below. The edge portion of the through hole of the header plate 210 and the outer circumferential surface of the tube 300 are watertightly joined over the entire circumference.
  • the tank plate 220 is a member for dividing a space in which cooling water is stored.
  • Tank plate 220 is arranged to cover header plate 210 from above, that is, from the side opposite to tube 300.
  • Tank plate 220 is made of metal.
  • Tank plate 220 and header plate 210 are joined watertightly. This prevents cooling water from leaking to the outside from between the two.
  • the joint portion 230 is a portion configured as an outlet for discharging the cooling water stored inside the outlet side tank 200 to the outside.
  • a pipe (not shown) for discharging cooling water from the heat exchanger 10 is connected to the joint portion 230 .
  • the joint portion 230 is provided at a position along the longitudinal direction of the outlet side tank 200.
  • An opening 231, which is an outlet for cooling water, is formed at an end of the joint portion 230 along the same direction.
  • the cooling water supplied into the outlet side tank 200 through each tube 300 flows inside the outlet side tank 200 along the above-mentioned longitudinal direction, and then is discharged from the joint part 230 to the outside.
  • the tube 300 is a tubular member in which a flow path for cooling water is formed. In other words, the tube 300 partitions the flow path.
  • the tube 300 corresponds to the "flow path member" in this embodiment.
  • a plurality of tubes 300 are provided in the heat exchanger 10. Each tube 300 is arranged at a position between the inlet side tank 100 and the outlet side tank 200, with its longitudinal direction aligned in the up-down direction.
  • the respective tubes 300 are stacked together with fins 400, which will be described later, and are arranged along the longitudinal direction of the inlet tank 100 and the outlet tank 200. Therefore, the direction in which the plurality of stacked tubes 300 are lined up will also be referred to as the "stacking direction" below.
  • the stacking direction is the left-right direction in FIG.
  • the lower end of the tube 300 is connected to the header plate 110 of the inlet side tank 100, and the upper end of the tube 300 is connected to the header plate 210 of the outlet side tank 200.
  • the internal space of the inlet side tank 100 and the internal space of the outlet side tank 200 are communicated through a flow path formed in the tube 300.
  • the fin 400 is a corrugated fin formed by bending a metal plate into a wave shape.
  • a plurality of fins 400 are provided in the heat exchanger 10 and are arranged between the respective tubes 300.
  • the fin 400 is in contact with and joined to each of the pair of tubes 300 arranged on both sides thereof.
  • the portion of the heat exchanger 10 where the tubes 300 and fins 400 are alternately stacked as described above exchanges heat between the cooling water passing through the inside of the tube 300 and the air passing through the outside of the tube 300. This is the part where heat exchange is performed, and is the so-called "heat exchange core part.”
  • Side plates 11 and 12 are arranged at the left and right end portions of the heat exchange core portion in FIG. 1 .
  • the side plates 11 and 12 are plate-like members formed by bending metal plates, and are arranged so as to extend in the same direction as the longitudinal direction of the tube 300.
  • the side plate 11 is disposed at the end of the heat exchange core portion closest to the joint portion 130 along the stacking direction.
  • the side plate 12 is disposed at a position of the heat exchange core section that is the end closest to the joint section 130 along the stacking direction.
  • the side plates 11 and 12 sandwich the heat exchange core portion from both sides along the stacking direction. This increases the rigidity of the heat exchange core.
  • high-temperature cooling water that has passed through an internal combustion engine (not shown) is supplied into the inlet side tank 100 from the opening 131 of the joint portion 130.
  • the cooling water is supplied to each tube 300 while flowing inside the inlet side tank 100 along the stacking direction.
  • the cooling water flows upward inside each tube 300 and is supplied to the inside of the outlet side tank 200.
  • a fan (not shown) is provided near the heat exchanger 10 to send air through the heat exchange core.
  • the direction in which air is sent out by the fan is from the front side to the back side of the page in FIG.
  • the cooling water flows through the flow path formed in the tube 300 as described above, it is cooled by air.
  • the air that is, the air sent out by the fan, is heated by the cooling water as it passes around the tube 300, increasing its temperature.
  • the air is blown into the vehicle interior as, for example, air conditioned air for heating.
  • the cooling water supplied into the outlet side tank 200 through each tube 300 is discharged to the outside from the joint portion 230, as described above.
  • the x-axis shown in FIG. 1 is a horizontal direction, and is an axis set along the direction from the front side to the back side of the page.
  • the y-axis is an axis perpendicular to the above-mentioned axis, is a horizontal direction, and is set along a direction from the joint part 130 to the inside of the inlet tank 100.
  • the z-axis is an axis perpendicular to both the x-axis and y-axis, and is set along the direction from the inlet tank 100 to the outlet tank 200.
  • the x-axis, y-axis, and z-axis defined as above are shown for reference.
  • FIG. 2 shows a perspective view of one of the plurality of tubes 300 and one fin 400 joined to the tube 300.
  • a plurality of louvers 410 are formed in a portion of each fin 400 that extends generally along the y-axis.
  • the louver 410 is formed by cutting and raising a part of the fin 400.
  • louver 410 is formed by rotating it around. By forming the louvers 410, it is possible to more efficiently exchange heat with the passing air. Note that since a conventional shape can be adopted as the shape of such a louver 410, detailed illustration thereof will be omitted.
  • Recycled aluminum is used as the material for each member constituting the heat exchanger 10.
  • recycled aluminum often contains magnesium element as an impurity, making it difficult to join parts together by brazing. This is because the magnesium element reacts with the flux used during brazing and inhibits the function of the flux. Therefore, in the heat exchanger 10 according to the present embodiment, the members are joined using an adhesive.
  • the adhesive for example, a thermosetting epoxy adhesive is used, but other adhesives such as thermoplastic resin may also be used.
  • the thermal conductivity of a bonded joint is lower than that of a brazed joint. Therefore, in the heat exchanger 10 according to the present embodiment, deterioration in the performance of the heat exchanger 10 is suppressed by devising the configuration of the portion where high thermal conductivity is required.
  • FIG. 3 shows a cross section at the joint between the tube 300 and the fin 400 as an example of the above-mentioned "portion where high thermal conductivity is required.”
  • the tube 300 and the fin 400 are bonded together with an adhesive 610.
  • “FP” shown in the figure is a flow path formed inside the tube 300.
  • thermosetting epoxy adhesive is used as described above.
  • the adhesive 610 may contain any one of epoxy, silicone, urethane, and acrylic.
  • the adhesive 610 contains a filler (not shown).
  • the "filler” herein refers to a plurality of particles for promoting heat conduction, and is contained in a predetermined proportion (wt%) of the adhesive 610.
  • the filler it is preferable to use particles made of a material with as high a thermal conductivity as possible. Furthermore, considering that the heat exchanger 10 will be recycled, it is preferable to use particles made of a material that can be easily removed when melting the aluminum material.
  • the filler may be formed of any material, such as any element contained in the tube 300 or fin 400 to be bonded, an oxide of the element, or a nitride of the element, or carbon. It is preferable that the
  • any element contained in the tube 300 or fin 400 to be bonded includes, for example, Al, Si, Fe, Cu, Mn, Mg, Cr, Zn, Ti, and the like.
  • alumina particles are used as the filler.
  • the adhesive 610 containing filler corresponds to the "first adhesive" in this embodiment.
  • carbon nanotubes it is preferable to use carbon nanotubes whose orientation is controlled along the thickness direction.
  • the adhesive 610 contains the filler as described above, its thermal conductivity is relatively high. By using such an adhesive 610, the thermal conductivity at the joint between the tube 300 and the fin 400 is increased.
  • a film layer 301 is formed on a portion of the surface of the tube 300 that is bonded with the adhesive 610 (that is, the surface to be bonded).
  • a film layer 401 is formed on a portion of the surface of the fin 400 that is bonded with the adhesive 610 (that is, the bonded surface). Both film layers 301 and 401 are formed as layers for promoting covalent bonding with adhesive 610.
  • the film layers 301 and 401 have OH groups, which are hydrophilic groups, on their surfaces.
  • Examples of such film layers 301 and 401 include layers containing aluminosilicate or aluminum hydroxide.
  • an aluminum material may be immersed in sodium silicate and then its surface may be dried. Alternatively, after spraying sodium silicate onto the surface of the aluminum material, the surface may be dried.
  • superheated steam may be sprayed onto the surface of an aluminum material, and then the member may be dried.
  • the process of forming the film layers 301 and 401 on each aluminum material is performed after the forming (pressing, etc.) of the aluminum material is completed.
  • the film layers 301 and 401 in advance before molding, in this case, part of the film layers 301 and 401 may be damaged or deteriorated due to impact or distortion during molding. This is because there is a possibility that
  • the film layers 301 and 401 are formed on the surfaces to be bonded, in the joint shown in FIG.
  • the percentage is high. This reduces the thermal resistance at the interface between the adhesive 610 and the film layers 301 and 401, and further increases the thermal conductivity between the tube 300 and the fins 400.
  • the effect of increasing the bonding strength at the interface can also be obtained. Furthermore, the effect of suppressing the permeation of fluid (cooling water in this embodiment) along the interface can also be obtained.
  • a film layer 301 is formed on the entire surface of the tube 300, including the surface to be adhered.
  • the film layer 301 may be locally formed only on the surface of the tube 300 to be adhered and its vicinity.
  • the film layer 401 may be locally formed only on the surface of the fin 4000 to be adhered and its vicinity.
  • the film layers 301 and 401 may be formed only on the surface to be joined of either the tube 300 or the fin 400.
  • the film layer 301 may be formed on the surface of the tube 300, while the film layer 401 may not be formed on the surface of the fin 400.
  • aluminum which is not a recycled material, may be used, for example, and the members may be joined by brazing.
  • FIG. 4 shows a cross section at the joint between the tube 300 and the header plate 210, as an example of the aforementioned "portion where high thermal conductivity is not required.”
  • a through hole 211 is formed in the header plate 210.
  • the tube 300 is bonded to the edge of the through hole 211 with an adhesive 620, with its tip inserted into the through hole 211.
  • the flow path FP of the tube 300 may be provided with an inner fin.
  • the adhesive 620 the same epoxy adhesive as the adhesive 610 is used. However, the adhesive 620 does not contain the filler described above. This is because in the joint shown in FIG. 4, there is no need to increase the thermal conductivity between the members.
  • the adhesive 620 that does not contain filler corresponds to the "second adhesive" in this embodiment. In the portion bonded with the adhesive 620, since no filler is present, the amount of resin material serving as a matrix is relatively large, and sufficient adhesive strength is ensured.
  • the adhesive 620 may contain any one of epoxy, silicone, urethane, and acrylic.
  • Adhesive 620 may be the same adhesive as adhesive 610, except that it does not include a filler, or may be a different adhesive from adhesive 610. For example, an additive for increasing bonding strength may be included only in the adhesive 620.
  • a film layer 301 is formed on the entire surface of the tube 300. For this reason, a film layer 301 is also formed on the surface of the tube 300 to be adhered with the adhesive 620. However, in the joint shown in FIG. 4, the coating layer 301 is not necessarily required.
  • a film layer 301 is formed on the surface of the tube 300 at the joint shown in FIG. . Further, a film layer similar to the film layer 301 may be formed on the edge of the through hole 211 or in the vicinity thereof.
  • the heat exchanger 10 has a plurality of joints where two members are bonded to each other.
  • the plurality of joints are bonded with a first adhesive 610 (first adhesive) and an adhesive 620 (second adhesive) whose thermal conductivity is lower than that of the adhesive 610.
  • a second adhesive portion is included.
  • all members constituting the heat exchanger 10 are made of recycled material, that is, an aluminum alloy containing the element magnesium.
  • a part of the heat exchanger 10 may be made of an ordinary aluminum material that is not a recycled material. If at least one of the tube 300 and the fins 400 is formed of an aluminum alloy containing the element magnesium, the effect of applying the above-described structure of the adhesive portion is particularly large.
  • the heat exchanger 10A is configured as a plate-type heat exchanger formed by stacking a plurality of plates 15.
  • the heat exchanger 10A is provided, for example, in a vehicle air conditioner, and is a heat exchanger that exchanges heat between cooling water and a refrigerant.
  • a first flow path FP1 through which the cooling water flows and a second flow path FP2 through which the refrigerant flows are formed so as to be arranged alternately.
  • Each plate 15 that partitions the first flow path FP1 and the second flow path FP2 corresponds to a "flow path member" in this embodiment. It should be noted that since a known configuration can be adopted as the configuration of such a fin-plate type heat exchanger 10A, explanations of detailed configurations other than those shown in the drawings will be omitted.
  • An inner fin 310 is provided in the first flow path FP1, and an inner fin 320 is provided in the second flow path FP2. Both inner fins 310 and 320 are joined to adjacent plates 15.
  • FIG. 7 a pair of plates 15 that partition the second flow path FP2 and an inner fin 320 provided inside the second flow path FP2 are illustrated as a schematic cross-sectional view.
  • a film layer 151 is formed on the surface of the plate 15 facing the inner fin 320. Further, a film layer 321 is formed on the entire surface of the inner fin 320 facing the plate 15 (the entire surface in this embodiment).
  • the film layers 151 and 321 are both the same films as the film layer 301 and the like in the first embodiment, and are layers containing aluminosilicate or aluminum hydroxide, which are O--H groups. The method of forming it is the same as described above.
  • the plate 15 and the inner fin 320 are bonded together using the same adhesive 610 as in the first embodiment. As a result, the thermal conductivity between the plate 15 and the inner fin 320 is relatively high. Furthermore, a pair of adjacent plates 15 are bonded together using the same adhesive 620 as in the first embodiment. This ensures sufficient adhesive strength between the plates 15.
  • the plurality of joints included in the heat exchanger 10A include a first adhesive portion that is bonded with the adhesive 610 (first adhesive), and an adhesive 620 that has a lower thermal conductivity than the adhesive 610. (second adhesive). Even with such a configuration, the same effects as those described in the first embodiment can be achieved.
  • the adhesive portion between the plate 15 and the inner fin 310 can also be a first adhesive portion using adhesive 610 (first adhesive).
  • first adhesive first adhesive
  • the film layer 151 may be formed on both the front and back surfaces of the plate 15. Further, a film layer similar to the film layer 321 may be formed on the entire surface of the inner fin 310.
  • the bond between the inlet pipe 16 and the plate 15, which is the inlet of the cooling water, and other bond parts that do not require high thermal conductivity are also bonded with a second bond using adhesive 620 (second adhesive). can do.
  • Additional notes 1 to 13 below can be arbitrarily combined as long as there is no technical contradiction.
  • the first adhesive includes a filler for promoting heat conduction, The heat exchanger according to appendix 5 or 6, wherein the second adhesive has a smaller content of the filler than the first adhesive.
  • the first adhesive includes a filler for promoting heat conduction, The heat exchanger according to appendix 7, wherein the second adhesive does not contain the filler.
  • Supplementary note 9 Supplementary note 7 or 8, wherein the filler is formed of any material of any element, oxide of the element, or nitride of the element contained in the channel member or the fin to be bonded. Heat exchanger described in.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger (10) comprises a tube (300) demarcating a flow passage through which a fluid flows, and a fin (400) bonded to the tube (300) by means of a bonding agent (610). Coating layers 301, 401 for promoting covalent bonding with the bonding agent 610 are formed on a bonded surface of at least one of the tube (300) and the fin 400.

Description

熱交換器Heat exchanger 関連出願の相互参照Cross-reference of related applications
 本出願は、2022年3月29日に出願された日本国特許出願2022-053060号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2022-053060 filed on March 29, 2022, and claims the benefit of priority thereto, and all contents of the patent application are Incorporated herein by reference.
 本開示は、熱交換器に関する。 The present disclosure relates to a heat exchanger.
 例えば車両用空調装置等に用いられる熱交換器は、高い熱交換性能が求められることから、その材料としてアルミニウムが用いられることが多い。近年では、カーボンニュートラル等の観点から、リサイクル材のアルミニウムを用いて熱交換器を製造することについて検討が進められている。 For example, heat exchangers used in vehicle air conditioners and the like require high heat exchange performance, so aluminum is often used as the material. In recent years, from the viewpoint of carbon neutrality and the like, studies have been underway to manufacture heat exchangers using aluminum, which is a recycled material.
 リサイクル材のアルミニウムには、不純物としてマグネシウム元素が含まれていることが多い。しかしながら、マグネシウム元素は、ロウ付けの際に用いられるフラックスと反応し、フラックスの機能を阻害してしまうことが知られている。このため、リサイクル材のアルミニウムで熱交換器を製造するにあたっては、部材間の接合をロウ付けで行うことが難しい。このため、下記特許文献1に記載されているように、部材間をロウ付けではなく接着剤により接合することが考えれられる。 Recycled aluminum often contains magnesium element as an impurity. However, it is known that magnesium element reacts with the flux used during brazing and inhibits the function of the flux. For this reason, when manufacturing a heat exchanger using recycled aluminum, it is difficult to join the members together by brazing. Therefore, as described in Patent Document 1 below, it is conceivable to join the members using an adhesive instead of brazing.
特許第4026503号公報Patent No. 4026503
 接着剤は、ロウ材のような金属材料に比べると、その熱伝導率が著しく小さい。熱交換器の性能を確保するためには、接着剤で接合された複数の接合部のうち、例えばチューブとフィンとの接合部における熱伝導率を、何らかの方法で高める必要がある。 Adhesives have significantly lower thermal conductivity than metal materials such as brazing filler metals. In order to ensure the performance of the heat exchanger, it is necessary to increase the thermal conductivity of a joint between a tube and a fin by some method, for example, among a plurality of joints joined with an adhesive.
 本開示は、少なくとも一部の接合をロウ付け以外の方法で行った構成としながらも、性能の高い熱交換器を提供することを目的とする。 An object of the present disclosure is to provide a heat exchanger with high performance even though at least a portion of the bonding is performed by a method other than brazing.
 本開示に係る熱交換器は、流体の流れる流路を区画する流路部材(300)と、流路部材に対し接着剤(610)により接着されたフィン(400)と、を備える。流路部材及びフィンのうち、少なくとも一方の被接着面には、接着剤との共有結合を促進するための皮膜層(301,401)が形成されている。 The heat exchanger according to the present disclosure includes a flow path member (300) that defines a flow path through which a fluid flows, and fins (400) bonded to the flow path member with an adhesive (610). A film layer (301, 401) for promoting covalent bonding with the adhesive is formed on at least one adhered surface of the flow path member and the fin.
 被接着面に皮膜層が形成されていると、当該接合部では、接着剤と皮膜層との接合において、共有結合が占める割合が高くなる。これにより、接着剤と皮膜層との界面における熱抵抗が低下するので、互いに接合された流路部材とフィンとの間の熱伝導率を十分に確保することができる。つまり、熱交換器のうち少なくとも一部の接合をロウ付け以外の方法で行った構成としながらも、それに起因した熱交換器の性能低下を抑制することができる。 If a film layer is formed on the surface to be adhered, the proportion of covalent bonds in the bond between the adhesive and the film layer will be high at the joint. As a result, the thermal resistance at the interface between the adhesive and the film layer is reduced, so that a sufficient thermal conductivity between the flow path member and the fins that are joined to each other can be ensured. In other words, even though at least a portion of the heat exchanger is joined by a method other than brazing, it is possible to suppress the performance deterioration of the heat exchanger caused by this.
図1は、第1実施形態に係る熱交換器の全体構成を示す図である。FIG. 1 is a diagram showing the overall configuration of a heat exchanger according to a first embodiment. 図2は、第1実施形態に係る熱交換器のうち、チューブ及びフィンの構成を示す図である。FIG. 2 is a diagram showing the configuration of tubes and fins in the heat exchanger according to the first embodiment. 図3は、チューブとフィンとの接合部における構成を示す断面図である。FIG. 3 is a cross-sectional view showing the configuration at the joint between the tube and the fin. 図4は、チューブとヘッダプレートとの接合部における構成を示す断面図である。FIG. 4 is a sectional view showing the configuration at the joint between the tube and the header plate. 図5は、第2実施形態に係る熱交換器の外観を示す図である。FIG. 5 is a diagram showing the appearance of a heat exchanger according to the second embodiment. 図6は、図5の熱交換器の内部構成を示す図である。FIG. 6 is a diagram showing the internal configuration of the heat exchanger of FIG. 5. 図7は、図5の熱交換器の内部における、接合部の構成を示す断面図である。FIG. 7 is a cross-sectional view showing the structure of a joint inside the heat exchanger of FIG. 5. FIG.
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, this embodiment will be described with reference to the accompanying drawings. In order to facilitate understanding of the description, the same components in each drawing are denoted by the same reference numerals as much as possible, and redundant description will be omitted.
 第1実施形態について説明する。本実施形態に係る熱交換器10は、空気と熱媒体流体との間で熱交換を行うための熱交換器であって、車両用空調装置に設けられる所謂「ヒータコア」として構成されている。熱交換器10では、外部から供給される高温の冷却水が上記の熱媒体流体として用いられ、当該冷却水との熱交換によって空気の加熱が行われる。図1に示されるように、熱交換器10は、入口側タンク100と、出口側タンク200と、チューブ300と、フィン400と、を備えている。 A first embodiment will be described. The heat exchanger 10 according to the present embodiment is a heat exchanger for exchanging heat between air and a heat medium fluid, and is configured as a so-called "heater core" provided in a vehicle air conditioner. In the heat exchanger 10, high-temperature cooling water supplied from the outside is used as the heat medium fluid, and air is heated by heat exchange with the cooling water. As shown in FIG. 1, the heat exchanger 10 includes an inlet tank 100, an outlet tank 200, tubes 300, and fins 400.
 入口側タンク100は、外部から供給される冷却水を受け入れて、これをそれぞれのチューブ300に分配し供給するための容器である。入口側タンク100は、略円柱形状の細長い容器として形成されており、その長手方向を水平方向に沿わせた状態で配置されている。入口側タンク100は、ヘッダプレート110と、タンクプレート120と、ジョイント部130と、を有している。 The inlet side tank 100 is a container that receives cooling water supplied from the outside and distributes and supplies it to each tube 300. The inlet side tank 100 is formed as an elongated container having a substantially cylindrical shape, and is arranged with its longitudinal direction parallel to the horizontal direction. The inlet tank 100 includes a header plate 110, a tank plate 120, and a joint portion 130.
 ヘッダプレート110は、概ね平坦な板状の部材である。ヘッダプレート110は金属によって形成されている。ヘッダプレート110には複数の貫通穴が形成されており、それぞれの貫通穴に、それぞれのチューブ300の下端部が上方側から挿通されている。ヘッダプレート110のうち上記貫通穴の縁の部分と、チューブ300の外周面との間は、全周に亘って水密に接合されている。 The header plate 110 is a generally flat plate-shaped member. Header plate 110 is made of metal. A plurality of through holes are formed in the header plate 110, and the lower end of each tube 300 is inserted into each through hole from above. The edge portion of the through hole in the header plate 110 and the outer circumferential surface of the tube 300 are watertightly joined over the entire circumference.
 タンクプレート120は、冷却水を貯える空間を区画するための部材である。タンクプレート120は、ヘッダプレート110を下方側、すなわちチューブ300とは反対側から覆うように配置されている。タンクプレート120は金属によって形成されている。タンクプレート120とヘッダプレート110との間は水密に接合されている。これにより、両者の間から冷却水が外部に漏出することが防止されている。 The tank plate 120 is a member for dividing a space in which cooling water is stored. Tank plate 120 is arranged to cover header plate 110 from the lower side, that is, from the side opposite to tube 300. Tank plate 120 is made of metal. Tank plate 120 and header plate 110 are joined watertightly. This prevents cooling water from leaking to the outside from between the two.
 ジョイント部130は、外部から供給される冷却水を受け入れて、これを入口側タンク100の内側の空間へと導くものである。ジョイント部130には、熱交換器10に冷却水を供給するための不図示の配管が接続される。ジョイント部130は、入口側タンク100のうち、その長手方向に沿った端部となる位置に設けられている。ジョイント部130のうち同方向に沿った端部には、冷却水の入口である開口131が形成されている。外部から開口131を通じてジョイント部130に供給された冷却水は、入口側タンク100の内側を上記長手方向に沿って流れながら、それぞれのチューブ300へと分配されていく。 The joint portion 130 receives cooling water supplied from the outside and guides it to the space inside the inlet side tank 100. A pipe (not shown) for supplying cooling water to the heat exchanger 10 is connected to the joint portion 130 . The joint portion 130 is provided at a position along the longitudinal direction of the inlet side tank 100. An opening 131, which is an inlet for cooling water, is formed at an end of the joint portion 130 along the same direction. Cooling water supplied from the outside to the joint portion 130 through the opening 131 is distributed to each tube 300 while flowing inside the inlet tank 100 along the longitudinal direction.
 出口側タンク200は、それぞれのチューブ300を通った冷却水を受け入れて、これを外部へと排出するための容器である。出口側タンク200は、入口側タンク100の鉛直上方となる位置に配置されている。出口側タンク200は、ヘッダプレート210と、タンクプレート220と、ジョイント部230と、を有している。 The outlet tank 200 is a container for receiving the cooling water that has passed through each tube 300 and discharging it to the outside. The outlet side tank 200 is arranged at a position vertically above the inlet side tank 100. The outlet side tank 200 has a header plate 210, a tank plate 220, and a joint portion 230.
 ヘッダプレート210は、概ね平坦な板状の部材である。ヘッダプレート210は金属によって形成されている。ヘッダプレート210の形状は、ヘッダプレート110の形状と概ね同一である。ヘッダプレート210には複数の貫通穴が形成されており、それぞれの貫通穴に、それぞれのチューブ300の上端部が下方側から挿通されている。ヘッダプレート210のうち上記貫通穴の縁の部分と、チューブ300の外周面との間は、全周に亘って水密に接合されている。 The header plate 210 is a generally flat plate-shaped member. Header plate 210 is made of metal. The shape of header plate 210 is generally the same as the shape of header plate 110. A plurality of through holes are formed in the header plate 210, and the upper end portion of each tube 300 is inserted into each through hole from below. The edge portion of the through hole of the header plate 210 and the outer circumferential surface of the tube 300 are watertightly joined over the entire circumference.
 タンクプレート220は、冷却水を貯える空間を区画するための部材である。タンクプレート220は、ヘッダプレート210を上方側、すなわちチューブ300とは反対側から覆うように配置されている。タンクプレート220は金属によって形成されている。タンクプレート220とヘッダプレート210との間は水密に接合されている。これにより、両者の間から冷却水が外部に漏出することが防止されている。 The tank plate 220 is a member for dividing a space in which cooling water is stored. Tank plate 220 is arranged to cover header plate 210 from above, that is, from the side opposite to tube 300. Tank plate 220 is made of metal. Tank plate 220 and header plate 210 are joined watertightly. This prevents cooling water from leaking to the outside from between the two.
 ジョイント部230は、出口側タンク200の内部に貯えられた冷却水を、外部へと排出するための出口として構成された部分である。ジョイント部230には、熱交換器10から冷却水を排出するための不図示の配管が接続される。ジョイント部230は、出口側タンク200のうち、その長手方向に沿った端部となる位置に設けられている。ジョイント部230のうち同方向に沿った端部には、冷却水の出口である開口231が形成されている。それぞれのチューブ300を通って出口側タンク200の内部へと供給された冷却水は、出口側タンク200の内側を上記長手方向に沿って流れた後、ジョイント部230から外部へと排出される。 The joint portion 230 is a portion configured as an outlet for discharging the cooling water stored inside the outlet side tank 200 to the outside. A pipe (not shown) for discharging cooling water from the heat exchanger 10 is connected to the joint portion 230 . The joint portion 230 is provided at a position along the longitudinal direction of the outlet side tank 200. An opening 231, which is an outlet for cooling water, is formed at an end of the joint portion 230 along the same direction. The cooling water supplied into the outlet side tank 200 through each tube 300 flows inside the outlet side tank 200 along the above-mentioned longitudinal direction, and then is discharged from the joint part 230 to the outside.
 チューブ300は、冷却水の通る流路が形成された管状の部材である。つまり、チューブ300は、当該流路を区画している。チューブ300は、本実施形態における「流路部材」に該当する。チューブ300は、熱交換器10において複数備えられている。それぞれのチューブ300は、その長手方向を上下方向に沿わせた状態で、入口側タンク100と出口側タンク200との間となる位置に配置されている。それぞれのチューブ300は、後述のフィン400と共に積層されており、入口側タンク100や出口側タンク200の長手方向に沿って並ぶように配置されている。このため、積層された複数のチューブ300が並んでいる方向のことを、以下では「積層方向」とも称する。積層方向は、図1では左右方向である。 The tube 300 is a tubular member in which a flow path for cooling water is formed. In other words, the tube 300 partitions the flow path. The tube 300 corresponds to the "flow path member" in this embodiment. A plurality of tubes 300 are provided in the heat exchanger 10. Each tube 300 is arranged at a position between the inlet side tank 100 and the outlet side tank 200, with its longitudinal direction aligned in the up-down direction. The respective tubes 300 are stacked together with fins 400, which will be described later, and are arranged along the longitudinal direction of the inlet tank 100 and the outlet tank 200. Therefore, the direction in which the plurality of stacked tubes 300 are lined up will also be referred to as the "stacking direction" below. The stacking direction is the left-right direction in FIG.
 既に述べたように、チューブ300の下端は入口側タンク100のヘッダプレート110に接続されており、チューブ300の上端は出口側タンク200のヘッダプレート210に接続されている。入口側タンク100の内部空間と、出口側タンク200の内部空間とは、チューブ300に形成された流路によって連通されている。 As already mentioned, the lower end of the tube 300 is connected to the header plate 110 of the inlet side tank 100, and the upper end of the tube 300 is connected to the header plate 210 of the outlet side tank 200. The internal space of the inlet side tank 100 and the internal space of the outlet side tank 200 are communicated through a flow path formed in the tube 300.
 フィン400は、金属板を波状に折り曲げることによって形成されたコルゲートフィンである。フィン400は、熱交換器10において複数備えられおり、それぞれのチューブ300の間に配置されている。フィン400は、その両側に配置された一対のチューブ300のそれぞれに対して当接しており、且つ接合されている。 The fin 400 is a corrugated fin formed by bending a metal plate into a wave shape. A plurality of fins 400 are provided in the heat exchanger 10 and are arranged between the respective tubes 300. The fin 400 is in contact with and joined to each of the pair of tubes 300 arranged on both sides thereof.
 熱交換器10のうち、上記のようにチューブ300とフィン400とが交互に積層されている部分は、チューブ300の内部を通る冷却水と、チューブ300の外部を通る空気との間で熱交換が行われる部分であって、所謂「熱交換コア部」と称される部分である。熱交換コア部のうち、図1における左右両側の端部となる部分には、サイドプレート11、12が配置されている。 The portion of the heat exchanger 10 where the tubes 300 and fins 400 are alternately stacked as described above exchanges heat between the cooling water passing through the inside of the tube 300 and the air passing through the outside of the tube 300. This is the part where heat exchange is performed, and is the so-called "heat exchange core part." Side plates 11 and 12 are arranged at the left and right end portions of the heat exchange core portion in FIG. 1 .
 サイドプレート11、12は、金属板を曲げ加工することによって形成された板状部材であって、チューブ300の長手方向と同じ方向に沿って伸びるように配置されている。サイドプレート11は、熱交換コア部のうち、積層方向に沿って最もジョイント部130側の端部となる位置に配置されている。サイドプレート12は、熱交換コア部のうち、積層方向に沿って最もジョイント部130とは反対側の端部となる位置に配置されている。サイドプレート11、12は、熱交換コア部を積層方向に沿った両側から挟み込んでいる。これにより、熱交換コア部の剛性が高められている。 The side plates 11 and 12 are plate-like members formed by bending metal plates, and are arranged so as to extend in the same direction as the longitudinal direction of the tube 300. The side plate 11 is disposed at the end of the heat exchange core portion closest to the joint portion 130 along the stacking direction. The side plate 12 is disposed at a position of the heat exchange core section that is the end closest to the joint section 130 along the stacking direction. The side plates 11 and 12 sandwich the heat exchange core portion from both sides along the stacking direction. This increases the rigidity of the heat exchange core.
 熱交換器10による熱交換が行われる際には、不図示の内燃機関を通り高温となった冷却水が、ジョイント部130の開口131から入口側タンク100の内部へと供給される。当該冷却水は、入口側タンク100の内部を積層方向に沿って流れながら、それぞれのチューブ300へと供給される。冷却水は、それぞれのチューブ300の内部を上方側に向かって流れて、出口側タンク200の内部へと供給される。 When heat exchange is performed by the heat exchanger 10, high-temperature cooling water that has passed through an internal combustion engine (not shown) is supplied into the inlet side tank 100 from the opening 131 of the joint portion 130. The cooling water is supplied to each tube 300 while flowing inside the inlet side tank 100 along the stacking direction. The cooling water flows upward inside each tube 300 and is supplied to the inside of the outlet side tank 200.
 熱交換器10の近傍には、熱交換コア部を通過するように空気を送り出す不図示のファンが設けられている。ファンによって空気が送り出される方向は、図1において紙面手前側から奥側へと向かう方向である。 A fan (not shown) is provided near the heat exchanger 10 to send air through the heat exchange core. The direction in which air is sent out by the fan is from the front side to the back side of the page in FIG.
 冷却水は、チューブ300に形成された流路を上記のように流れる際において、空気によって冷却される。当該空気、すなわちファンによって送り出された空気は、チューブ300の周囲を通過する際において冷却水によって加熱され、その温度を上昇させる。当該空気は、例えば暖房用の空調風として車室内に向けて吹き出される。それぞれのチューブ300を通って出口側タンク200の内部へと供給された冷却水は、先に述べたように、ジョイント部230から外部へと排出される。 When the cooling water flows through the flow path formed in the tube 300 as described above, it is cooled by air. The air, that is, the air sent out by the fan, is heated by the cooling water as it passes around the tube 300, increasing its temperature. The air is blown into the vehicle interior as, for example, air conditioned air for heating. The cooling water supplied into the outlet side tank 200 through each tube 300 is discharged to the outside from the joint portion 230, as described above.
 尚、図1に示されるx軸は、水平方向であり且つ紙面手前側から奥側に向かう方向に沿って設定された軸である。y軸は、上記の軸に対して垂直な軸であって、水平方向であり且つジョイント部130から入口側タンク100の内側へと向かう方向に沿って設定された軸である。z軸は、上記のx軸及びy軸のいずれに対しても垂直な軸であって、入口側タンク100から出口側タンク200へと向かう方向に沿って設定された軸である。図1以外の他の図においても、上記のように定義されたx軸、y軸、及びz軸が参考のために示されている。 Note that the x-axis shown in FIG. 1 is a horizontal direction, and is an axis set along the direction from the front side to the back side of the page. The y-axis is an axis perpendicular to the above-mentioned axis, is a horizontal direction, and is set along a direction from the joint part 130 to the inside of the inlet tank 100. The z-axis is an axis perpendicular to both the x-axis and y-axis, and is set along the direction from the inlet tank 100 to the outlet tank 200. In other figures besides FIG. 1, the x-axis, y-axis, and z-axis defined as above are shown for reference.
 図2には、複数のチューブ300のうちの1つと、当該チューブ300に接合された1つのフィン400と、が斜視図として示されている。同図に示されるように、それぞれのフィン400のうち概ねy軸に沿って伸びる部分には、複数のルーバー410が形成されている。ルーバー410は、フィン400の一部を切り起こすことによって形成されている。 FIG. 2 shows a perspective view of one of the plurality of tubes 300 and one fin 400 joined to the tube 300. As shown in the figure, a plurality of louvers 410 are formed in a portion of each fin 400 that extends generally along the y-axis. The louver 410 is formed by cutting and raising a part of the fin 400.
 具体的には、y軸に沿った直線状の切り込みを、x軸に沿って並ぶように複数形成した上で、それぞれの切り込みによって分かれた短冊状の部分を、その長手方向に沿った軸の周りに回転させることによってルーバー410が形成されている。ルーバー410が形成されていることにより、通過する空気との熱交換をより効率的に行うことが可能となっている。尚、このようなルーバー410の形状としては従来の形状を採用することができるので、その詳細な図示については省略する。 Specifically, a plurality of linear cuts along the y-axis are formed so as to line up along the x-axis, and then the strip-shaped parts separated by each cut are cut along the axis along the longitudinal direction. A louver 410 is formed by rotating it around. By forming the louvers 410, it is possible to more efficiently exchange heat with the passing air. Note that since a conventional shape can be adopted as the shape of such a louver 410, detailed illustration thereof will be omitted.
 熱交換器10を構成する各部材の材料としては、リサイクル材のアルミニウムが用いられている。よく知られているように、リサイクル材のアルミニウムには、不純物としてマグネシウム元素が含まれていることが多く、部材間の接合をロウ付けにより行うことが難しくなっている。マグネシウム元素は、ロウ付けの際に用いられるフラックスと反応し、フラックスの機能を阻害してしまうからである。そこで、本実施形態に係る熱交換器10では、接着剤を用いて部材間の接合を行っている。接着剤としては、例えば熱硬化性のエポキシ系接着剤が用いられるが、例えば熱可塑性樹脂のような他の接着剤が用いられてもよい。 Recycled aluminum is used as the material for each member constituting the heat exchanger 10. As is well known, recycled aluminum often contains magnesium element as an impurity, making it difficult to join parts together by brazing. This is because the magnesium element reacts with the flux used during brazing and inhibits the function of the flux. Therefore, in the heat exchanger 10 according to the present embodiment, the members are joined using an adhesive. As the adhesive, for example, a thermosetting epoxy adhesive is used, but other adhesives such as thermoplastic resin may also be used.
 ところで、熱交換器10が有する複数の接合部の中には、高い熱伝導率が求められる部分と、求められない部分とが存在する。高い熱伝導率が求められる部分としては、例えば、チューブ300とフィン400との間の接合部等が挙げられる。高い熱伝導率が求められない部分としては、例えば、チューブ300とヘッダプレート210との間の接合部等が挙げられる。 By the way, among the plurality of joints that the heat exchanger 10 has, there are parts where high thermal conductivity is required and parts where high thermal conductivity is not required. Examples of parts where high thermal conductivity is required include the joint between the tube 300 and the fin 400. Examples of areas where high thermal conductivity is not required include the joint between the tube 300 and the header plate 210.
 接着された接合部の熱伝導率は、ロウ付けされた接合部の熱伝導率に比べると小さくなる。そこで、本実施形態に係る熱交換器10では、高い熱伝導率が求められる部分の構成を工夫することにより、熱交換器10の性能低下を抑制することとしている。 The thermal conductivity of a bonded joint is lower than that of a brazed joint. Therefore, in the heat exchanger 10 according to the present embodiment, deterioration in the performance of the heat exchanger 10 is suppressed by devising the configuration of the portion where high thermal conductivity is required.
 図3には、上記の「高い熱伝導率が求められる部分」の一例として、チューブ300とフィン400との接合部における断面が示されている。同図に示されるように、チューブ300とフィン400との間は、接着剤610によって接着されている。尚、同図に示される「FP」は、チューブ300の内側に形成された流路である。 FIG. 3 shows a cross section at the joint between the tube 300 and the fin 400 as an example of the above-mentioned "portion where high thermal conductivity is required." As shown in the figure, the tube 300 and the fin 400 are bonded together with an adhesive 610. Note that “FP” shown in the figure is a flow path formed inside the tube 300.
 接着剤610としては、先に述べたように熱硬化性のエポキシ系接着剤が用いられる。接着剤610は、エポキシ、シリコーン、ウレタン、アクリル、のいずれかを含むものであればよい。 As the adhesive 610, a thermosetting epoxy adhesive is used as described above. The adhesive 610 may contain any one of epoxy, silicone, urethane, and acrylic.
 接着剤610には、不図示のフィラーが含まれている。ここでいう「フィラー」とは、熱伝導を促進するための複数の粒子であって、接着剤610に対し所定の割合(重量%)だけ含有されている。フィラーとしては、可能な限り熱伝導率の高い材料からなる粒子を用いることが好ましい。また、熱交換器10がリサイクルされることを考慮すれば、アルミニウム材の際溶解時において容易に除去可能な材料からなる粒子を用いることが好ましい。これらの点に鑑みれば、フィラーは、接着対象であるチューブ300又はフィン400に含まれるいずれかの元素、当該元素の酸化物、当該元素の窒化物、のいずれかの材料、もしくはカーボン等で形成されていることが好ましい。 The adhesive 610 contains a filler (not shown). The "filler" herein refers to a plurality of particles for promoting heat conduction, and is contained in a predetermined proportion (wt%) of the adhesive 610. As the filler, it is preferable to use particles made of a material with as high a thermal conductivity as possible. Furthermore, considering that the heat exchanger 10 will be recycled, it is preferable to use particles made of a material that can be easily removed when melting the aluminum material. In view of these points, the filler may be formed of any material, such as any element contained in the tube 300 or fin 400 to be bonded, an oxide of the element, or a nitride of the element, or carbon. It is preferable that the
 尚、「接着対象であるチューブ300又はフィン400に含まれるいずれかの元素」としては、例えば、Al、Si、Fe、Cu、Mn、Mg、Cr、Zn、Ti等を挙げることができる。 Note that "any element contained in the tube 300 or fin 400 to be bonded" includes, for example, Al, Si, Fe, Cu, Mn, Mg, Cr, Zn, Ti, and the like.
 本実施形態では、フィラーとしてアルミナ粒子が用いられている。フィラーを含んでいる接着剤610は、本実施形態における「第1接着剤」に該当する。尚、フィラーとしてカーボンを用いる場合には、厚さ方向に沿うよう配向制御されたカーボンナノチューブを用いることが好ましい。 In this embodiment, alumina particles are used as the filler. The adhesive 610 containing filler corresponds to the "first adhesive" in this embodiment. In addition, when using carbon as a filler, it is preferable to use carbon nanotubes whose orientation is controlled along the thickness direction.
 接着剤610は、上記のようにフィラーを含んでいるので、その熱伝導率が比較的高くなっている。このような接着剤610を用いることにより、チューブ300とフィン400との接合部における熱伝導率が高められている。 Since the adhesive 610 contains the filler as described above, its thermal conductivity is relatively high. By using such an adhesive 610, the thermal conductivity at the joint between the tube 300 and the fin 400 is increased.
 図3に示されるように、チューブ300の表面のうち、接着剤610で接着されている部分(つまり被接着面)には、皮膜層301が形成されている。同様に、フィン400の表面のうち、接着剤610で接着されている部分(つまり被接着面)には、皮膜層401が形成されている。皮膜層301、401は、いずれも、接着剤610との共有結合を促進するための層として形成されている。 As shown in FIG. 3, a film layer 301 is formed on a portion of the surface of the tube 300 that is bonded with the adhesive 610 (that is, the surface to be bonded). Similarly, a film layer 401 is formed on a portion of the surface of the fin 400 that is bonded with the adhesive 610 (that is, the bonded surface). Both film layers 301 and 401 are formed as layers for promoting covalent bonding with adhesive 610.
 皮膜層301、401は、親水基であるO-H基をその表面に有している。このような皮膜層301、401としては、例えば、アルミノケイ酸又は水酸化アルミニウムを含む層を挙げることができる。 The film layers 301 and 401 have OH groups, which are hydrophilic groups, on their surfaces. Examples of such film layers 301 and 401 include layers containing aluminosilicate or aluminum hydroxide.
 アルミノケイ酸を含む皮膜層301、401を形成するには、例えば、アルミニウム材をケイ酸ソーダに浸漬した後、その表面を乾燥させればよい。また、アルミニウム材の表面にケイ酸ソーダを噴霧した後、当該表面を乾燥させてもよい。水酸化アルミニウムを含む皮膜層301、401を形成するには、例えば、アルミニウム材の表面に過熱蒸気を噴霧した後、当該部材を乾燥させればよい。 To form the film layers 301 and 401 containing aluminosilicate, for example, an aluminum material may be immersed in sodium silicate and then its surface may be dried. Alternatively, after spraying sodium silicate onto the surface of the aluminum material, the surface may be dried. In order to form the film layers 301 and 401 containing aluminum hydroxide, for example, superheated steam may be sprayed onto the surface of an aluminum material, and then the member may be dried.
 各アルミニウム材に対し皮膜層301、401を形成する処理は、アルミニウム材の成形(プレス加工等)が完了した後に行うことが好ましい。成形前において皮膜層301、401を予め形成しておくことも可能ではあるが、この場合、成形時の衝撃や歪により、皮膜層301、401の一部で欠損が生じたり、変質が生じたりする可能性があるからである。 It is preferable that the process of forming the film layers 301 and 401 on each aluminum material is performed after the forming (pressing, etc.) of the aluminum material is completed. Although it is possible to form the film layers 301 and 401 in advance before molding, in this case, part of the film layers 301 and 401 may be damaged or deteriorated due to impact or distortion during molding. This is because there is a possibility that
 被接着面に皮膜層301、401が形成されていることにより、図3の接合部では、接着剤610と皮膜層301、401との接合部において、(アンカー結合に比べて)共有結合が占める割合が高くなっている。これにより、接着剤610と皮膜層301、401との界面における熱抵抗が低下しており、チューブ300とフィン400との間の熱伝導率が更に高められている。 Since the film layers 301 and 401 are formed on the surfaces to be bonded, in the joint shown in FIG. The percentage is high. This reduces the thermal resistance at the interface between the adhesive 610 and the film layers 301 and 401, and further increases the thermal conductivity between the tube 300 and the fins 400.
 また、接着剤610と皮膜層301、401との間では、界面の密着度合いが高められることにより、当該界面の接合強度が高められる、という効果も得られる。更に、当該界面に沿った流体(本実施形態では冷却水)の透過が抑制される、という効果も得られる。 Further, by increasing the degree of adhesion at the interface between the adhesive 610 and the film layers 301 and 401, the effect of increasing the bonding strength at the interface can also be obtained. Furthermore, the effect of suppressing the permeation of fluid (cooling water in this embodiment) along the interface can also be obtained.
 このように、本実施形態では、熱交換器10のうち少なくとも一部の接合をロウ付け以外の方法で行った構成としながらも、それに起因した熱交換器10の性能低下を抑制することが可能となっている。 In this way, in this embodiment, even though at least a portion of the heat exchanger 10 is joined by a method other than brazing, it is possible to suppress the performance deterioration of the heat exchanger 10 caused by this. It becomes.
 本実施形態では、チューブ300の表面のうち、被接着面を含む面の全体に皮膜層301が形成されている。このような態様に換えて、チューブ300の表面のうち被接着面及びその近傍の範囲のみに、皮膜層301が局所的に形成されていることとしてもよい。同様に、フィン4000の表面のうち被接着面及びその近傍の範囲のみに、皮膜層401が局所的に形成されていることとしてもよい。 In this embodiment, a film layer 301 is formed on the entire surface of the tube 300, including the surface to be adhered. Instead of this embodiment, the film layer 301 may be locally formed only on the surface of the tube 300 to be adhered and its vicinity. Similarly, the film layer 401 may be locally formed only on the surface of the fin 4000 to be adhered and its vicinity.
 また、皮膜層301、401が形成されているのは、チューブ300及びフィン400のうち、いずれか一方の被接合面のみであってもよい。例えば、一つの接合部において、チューブ300の表面には皮膜層301が形成されている一方で、フィン400の表面には皮膜層401が形成されていない構成であってもよい。 Furthermore, the film layers 301 and 401 may be formed only on the surface to be joined of either the tube 300 or the fin 400. For example, in one joint part, the film layer 301 may be formed on the surface of the tube 300, while the film layer 401 may not be formed on the surface of the fin 400.
 尚、熱交換器10のうち一部においては、例えばリサイクル材ではないアルミニウムを用いることとし、当該部材の接合をロウ付けにより行うこととしてもよい。 Incidentally, for a part of the heat exchanger 10, aluminum, which is not a recycled material, may be used, for example, and the members may be joined by brazing.
 図4には、先に述べた「高い熱伝導率が求められない部分」の一例として、チューブ300とヘッダプレート210との接合部における断面が示されている。同図に示されるように、ヘッダプレート210には貫通穴211が形成されている。チューブ300は、その先端を貫通穴211に挿通させた状態で、貫通穴211の縁に対して接着剤620により接着されている。尚、チューブ300の流路FPには、インナーフィンが設けられていてもよい。 FIG. 4 shows a cross section at the joint between the tube 300 and the header plate 210, as an example of the aforementioned "portion where high thermal conductivity is not required." As shown in the figure, a through hole 211 is formed in the header plate 210. The tube 300 is bonded to the edge of the through hole 211 with an adhesive 620, with its tip inserted into the through hole 211. Note that the flow path FP of the tube 300 may be provided with an inner fin.
 接着剤620としては、接着剤610と同じエポキシ系接着剤が用いられる。ただし、接着剤620には、先に述べたフィラーが含まれていない。図4に示される接合部においては、部材間の熱伝導率を高める必要が無いからである。フィラーを含んでいない接着剤620は、本実施形態における「第2接着剤」に該当する。接着剤620で接着された部分では、フィラーが存在しないため、マトリックスとなる樹脂材料の量が相対的に多くなっており、十分な接着強度が確保される。 As the adhesive 620, the same epoxy adhesive as the adhesive 610 is used. However, the adhesive 620 does not contain the filler described above. This is because in the joint shown in FIG. 4, there is no need to increase the thermal conductivity between the members. The adhesive 620 that does not contain filler corresponds to the "second adhesive" in this embodiment. In the portion bonded with the adhesive 620, since no filler is present, the amount of resin material serving as a matrix is relatively large, and sufficient adhesive strength is ensured.
 接着剤620は、エポキシ、シリコーン、ウレタン、アクリル、のいずれかを含むものであればよい。接着剤620は、フィラーを含まない点を除き、接着剤610と同じ接着剤であってもよいが、接着剤610と異なる接着剤であってもよい。例えば、接合強度を高めるための添加剤が、接着剤620にのみ含まれることとしてもよい。 The adhesive 620 may contain any one of epoxy, silicone, urethane, and acrylic. Adhesive 620 may be the same adhesive as adhesive 610, except that it does not include a filler, or may be a different adhesive from adhesive 610. For example, an additive for increasing bonding strength may be included only in the adhesive 620.
 本実施形態では、チューブ300の表面全体に皮膜層301が形成されている。このため、チューブ300のうち接着剤620によって接着される被接着面にも皮膜層301が形成されている。しかしながら、図4の接合部においては、皮膜層301は必ずしも必要ではない。 In this embodiment, a film layer 301 is formed on the entire surface of the tube 300. For this reason, a film layer 301 is also formed on the surface of the tube 300 to be adhered with the adhesive 620. However, in the joint shown in FIG. 4, the coating layer 301 is not necessarily required.
 ただし、界面の接合強度を向上させ、透過による流体の漏出を確実に防止する必要がある場合には、図4の接合部において、チューブ300の表面に皮膜層301が形成されていることが好ましい。また、貫通穴211の縁やその近傍に、皮膜層301と同様の皮膜層が形成されていることとしてもよい。 However, if it is necessary to improve the joint strength at the interface and reliably prevent leakage of fluid due to permeation, it is preferable that a film layer 301 is formed on the surface of the tube 300 at the joint shown in FIG. . Further, a film layer similar to the film layer 301 may be formed on the edge of the through hole 211 or in the vicinity thereof.
 このように、熱交換器10には、2つの部材が互いに接着されている接合部が複数存在している。複数の接合部には、接着剤610(第1接着剤)により接着されている第1接着部と、接着剤610よりも熱伝導率の低い接着剤620(第2接着剤)、により接着されている第2接着部と、が含まれる。熱伝導率が求められる程度に応じて、接着剤を異ならせることで、それぞれの接着部で適切な接着剤を選定することが可能となる。 In this way, the heat exchanger 10 has a plurality of joints where two members are bonded to each other. The plurality of joints are bonded with a first adhesive 610 (first adhesive) and an adhesive 620 (second adhesive) whose thermal conductivity is lower than that of the adhesive 610. A second adhesive portion is included. By using different adhesives depending on the degree of thermal conductivity required, it becomes possible to select an appropriate adhesive for each bonding part.
 本実施形態では、熱交換器10を構成する全ての部材が、リサイクル材、すなわち、マグネシウム元素を含むアルミニウム合金で形成されている。しかしながら、熱交換器10の一部に、リサイクル材ではない通常のアルミニウム材が用いられてもよい。チューブ300及びフィン400のうち少なくとも一方が、マグネシウム元素を含むアルミニウム合金で形成されているのであれば、以上に説明した接着部の構成を適用する効果が特に大きい。 In this embodiment, all members constituting the heat exchanger 10 are made of recycled material, that is, an aluminum alloy containing the element magnesium. However, a part of the heat exchanger 10 may be made of an ordinary aluminum material that is not a recycled material. If at least one of the tube 300 and the fins 400 is formed of an aluminum alloy containing the element magnesium, the effect of applying the above-described structure of the adhesive portion is particularly large.
 第2実施形態について説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。 A second embodiment will be described. In the following, points different from the first embodiment will be mainly explained, and explanations of points common to the first embodiment will be omitted as appropriate.
 図5及び図6に示されるように、本実施形態に係る熱交換器10Aは、複数のプレート15を積層してなるプレート式の熱交換器として構成されている。熱交換器10Aは、例えば、車両用空調装置に設けられるものであり、冷却水と冷媒との間で熱交換を行う熱交換器である。図6に示されるように、熱交換器10Aの内部には、冷却水の流れる第1流路FP1と、冷媒の流れる第2流路FP2と、のそれぞれが交互に並ぶように形成されている。第1流路FP1や第2流路FP2を区画するそれぞれのプレート15は、本実施形態における「流路部材」に該当する。尚、このようなフィン-プレートタイプの熱交換器10Aの構成としては、公知の構成を採用し得るので、図示されている部分以外の細部の構成等については説明を省略する。 As shown in FIGS. 5 and 6, the heat exchanger 10A according to the present embodiment is configured as a plate-type heat exchanger formed by stacking a plurality of plates 15. The heat exchanger 10A is provided, for example, in a vehicle air conditioner, and is a heat exchanger that exchanges heat between cooling water and a refrigerant. As shown in FIG. 6, inside the heat exchanger 10A, a first flow path FP1 through which the cooling water flows and a second flow path FP2 through which the refrigerant flows are formed so as to be arranged alternately. . Each plate 15 that partitions the first flow path FP1 and the second flow path FP2 corresponds to a "flow path member" in this embodiment. It should be noted that since a known configuration can be adopted as the configuration of such a fin-plate type heat exchanger 10A, explanations of detailed configurations other than those shown in the drawings will be omitted.
 第1流路FP1にはインナーフィン310が設けられており、第2流路FP2にはインナーフィン320が設けられている。インナーフィン310、320は、いずれも、隣接するプレート15に対して接合されている。 An inner fin 310 is provided in the first flow path FP1, and an inner fin 320 is provided in the second flow path FP2. Both inner fins 310 and 320 are joined to adjacent plates 15.
 その接合方法について、図7を参照しながら説明する。図7では、第2流路FP2を区画する一対のプレート15と、第2流路FP2の内部に設けられたインナーフィン320と、が模式的な断面図として描かれている。 The joining method will be explained with reference to FIG. 7. In FIG. 7, a pair of plates 15 that partition the second flow path FP2 and an inner fin 320 provided inside the second flow path FP2 are illustrated as a schematic cross-sectional view.
 プレート15のうち、インナーフィン320と対向する面には、皮膜層151が形成されている。また、インナーフィン320のうち、プレート15と対向する表面の全体(本実施形態では表面全体)には、皮膜層321が形成されている。皮膜層151、321はいずれも、第1実施形態における皮膜層301等と同じ膜であり、O-H基であるアルミノケイ酸又は水酸化アルミニウムを含む層である。その形成方法は先に述べた方法と同じである。 A film layer 151 is formed on the surface of the plate 15 facing the inner fin 320. Further, a film layer 321 is formed on the entire surface of the inner fin 320 facing the plate 15 (the entire surface in this embodiment). The film layers 151 and 321 are both the same films as the film layer 301 and the like in the first embodiment, and are layers containing aluminosilicate or aluminum hydroxide, which are O--H groups. The method of forming it is the same as described above.
 プレート15とインナーフィン320との間は、第1実施形態と同じ接着剤610により接着されている。これにより、プレート15とインナーフィン320との間の熱伝導率は比較的大きくなっている。また、互いに隣り合う一対のプレート15同士の間は、第1実施形態と同じ接着剤620により接着されている。これにより、プレート15間の接着強度が十分に確保される。 The plate 15 and the inner fin 320 are bonded together using the same adhesive 610 as in the first embodiment. As a result, the thermal conductivity between the plate 15 and the inner fin 320 is relatively high. Furthermore, a pair of adjacent plates 15 are bonded together using the same adhesive 620 as in the first embodiment. This ensures sufficient adhesive strength between the plates 15.
 このように、熱交換器10Aが有する複数の接合部にも、接着剤610(第1接着剤)により接着されている第1接着部と、接着剤610よりも熱伝導率の低い接着剤620(第2接着剤)、により接着されている第2接着部と、が含まれる。このような構成でも、第1実施形態で説明したものと同様の効果を奏する。 In this way, the plurality of joints included in the heat exchanger 10A include a first adhesive portion that is bonded with the adhesive 610 (first adhesive), and an adhesive 620 that has a lower thermal conductivity than the adhesive 610. (second adhesive). Even with such a configuration, the same effects as those described in the first embodiment can be achieved.
 プレート15とインナーフィン310との間の接着部も、接着剤610(第1接着剤)を用いた第1接着部とすることができる。この場合、プレート15の表裏両面に皮膜層151を形成すればよい。また、インナーフィン310の表面全体に、皮膜層321と同様の皮膜層を形成すればよい。 The adhesive portion between the plate 15 and the inner fin 310 can also be a first adhesive portion using adhesive 610 (first adhesive). In this case, the film layer 151 may be formed on both the front and back surfaces of the plate 15. Further, a film layer similar to the film layer 321 may be formed on the entire surface of the inner fin 310.
 また、冷却水の入口となる導入管16とプレート15との接着部や、高い熱伝導率の不要なその他の接着部も、接着剤620(第2接着剤)を用いた第2接着部とすることができる。 In addition, the bond between the inlet pipe 16 and the plate 15, which is the inlet of the cooling water, and other bond parts that do not require high thermal conductivity are also bonded with a second bond using adhesive 620 (second adhesive). can do.
 [付記]下記付記1から13は、技術的に矛盾しない限り任意に組合せ可能である。 [Additional notes] Additional notes 1 to 13 below can be arbitrarily combined as long as there is no technical contradiction.
 [付記1]
流体の流れる流路を区画する流路部材(300)と、
前記流路部材に対し接着剤(610)により接着されたフィン(400)と、を備え、
前記流路部材及び前記フィンのうち、少なくとも一方の被接着面には、前記接着剤との共有結合を促進するための皮膜層(301,401)が形成されている、熱交換器。
[Additional note 1]
a channel member (300) that defines a channel through which fluid flows;
fins (400) bonded to the flow path member with an adhesive (610);
A heat exchanger, wherein a coating layer (301, 401) for promoting covalent bonding with the adhesive is formed on at least one adhesive surface of the flow path member and the fin.
 [付記2]
前記皮膜層は親水基を含む、付記1に記載の熱交換器。
[Additional note 2]
The heat exchanger according to supplementary note 1, wherein the film layer includes a hydrophilic group.
 [付記3]
前記皮膜層はアルミノケイ酸を含む、付記2に記載の熱交換器。
[Additional note 3]
The heat exchanger according to appendix 2, wherein the film layer contains aluminosilicate.
 [付記4]
前記皮膜層は水酸化アルミニウムを含む、付記2または3に記載の熱交換器。
[Additional note 4]
The heat exchanger according to appendix 2 or 3, wherein the film layer contains aluminum hydroxide.
 [付記5]
2つの部材が互いに接着されている接合部には、
第1接着剤により接着されている第1接着部と、
前記第1接着剤よりも熱伝導率の低い第2接着剤、により接着されている第2接着部と、が含まれる、付記1から4のいずれか1つに記載の熱交換器。
[Additional note 5]
At the joint where two parts are glued together,
a first bonded portion bonded with a first adhesive;
5. The heat exchanger according to any one of Supplementary Notes 1 to 4, further comprising a second bonded portion bonded with a second adhesive having a lower thermal conductivity than the first adhesive.
 [付記6]
前記第1接着部により前記流路部材に対し前記フィンが接着されている、付記5に記載の熱交換器。
[Additional note 6]
The heat exchanger according to appendix 5, wherein the fins are bonded to the flow path member by the first bonding portion.
 [付記7]
前記第1接着剤は、熱伝導を促進するためのフィラーを含んでおり、
前記第2接着剤は、前記フィラーの含有量が前記第1接着剤よりも少ない、付記5または6に記載の熱交換器。
[Additional note 7]
The first adhesive includes a filler for promoting heat conduction,
The heat exchanger according to appendix 5 or 6, wherein the second adhesive has a smaller content of the filler than the first adhesive.
 [付記8]
前記第1接着剤は、熱伝導を促進するためのフィラーを含んでおり、
前記第2接着剤は、前記フィラーを含んでいない、付記7に記載の熱交換器。
[Additional note 8]
The first adhesive includes a filler for promoting heat conduction,
The heat exchanger according to appendix 7, wherein the second adhesive does not contain the filler.
 [付記9]
前記フィラーは、接着対象である前記流路部材又は前記フィンに含まれるいずれかの元素、当該元素の酸化物、当該元素の窒化物、のいずれかの材料で形成されている、付記7または8に記載の熱交換器。
[Additional note 9]
Supplementary note 7 or 8, wherein the filler is formed of any material of any element, oxide of the element, or nitride of the element contained in the channel member or the fin to be bonded. Heat exchanger described in.
 [付記10]
前記フィラーはカーボンである、付記7または8に記載の熱交換器。
[Additional note 10]
The heat exchanger according to appendix 7 or 8, wherein the filler is carbon.
 [付記11]
前記流体は冷媒を含む、付記1から10のいずれか1つに記載の熱交換器。
[Additional note 11]
11. The heat exchanger according to any one of appendices 1 to 10, wherein the fluid includes a refrigerant.
 [付記12]
前記接着剤は、エポキシ、シリコーン、ウレタン、アクリル、のいずれかを含む、付記1から11のいずれか1つに記載の熱交換器。
[Additional note 12]
12. The heat exchanger according to any one of Supplementary Notes 1 to 11, wherein the adhesive includes any one of epoxy, silicone, urethane, and acrylic.
 [付記13]
前記流路部材及び前記フィンのうち少なくとも一方が、マグネシウム元素を含むアルミニウム合金で形成されている、付記1から12のいずれか1つに記載の熱交換器。
[Additional note 13]
13. The heat exchanger according to any one of Supplementary Notes 1 to 12, wherein at least one of the flow path member and the fin is formed of an aluminum alloy containing a magnesium element.
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Design changes made by those skilled in the art as appropriate to these specific examples are also included within the scope of the present disclosure as long as they have the characteristics of the present disclosure. The elements included in each of the specific examples described above, their arrangement, conditions, shapes, etc. are not limited to those illustrated, and can be changed as appropriate. The elements included in each of the specific examples described above can be appropriately combined as long as no technical contradiction occurs.

Claims (10)

  1.  流体の流れる流路を区画する流路部材(300)と、
     前記流路部材に対し接着剤(610)により接着されたフィン(400)と、を備え、
     前記流路部材及び前記フィンのうち、少なくとも一方の被接着面には、前記接着剤との共有結合を促進するための皮膜層(301,401)が形成されている、熱交換器。
    a channel member (300) that defines a channel through which fluid flows;
    fins (400) bonded to the flow path member with an adhesive (610);
    A heat exchanger, wherein a coating layer (301, 401) for promoting covalent bonding with the adhesive is formed on at least one adhesive surface of the flow path member and the fin.
  2.  前記皮膜層は親水基を含む、請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the film layer includes a hydrophilic group.
  3.  前記皮膜層はアルミノケイ酸を含む、請求項2に記載の熱交換器。 The heat exchanger according to claim 2, wherein the film layer contains aluminosilicate.
  4.  前記皮膜層は水酸化アルミニウムを含む、請求項2に記載の熱交換器。 The heat exchanger according to claim 2, wherein the film layer contains aluminum hydroxide.
  5.  2つの部材が互いに接着されている接合部には、
     第1接着剤により接着されている第1接着部と、
     前記第1接着剤よりも熱伝導率の低い第2接着剤、により接着されている第2接着部と、が含まれる、請求項1に記載の熱交換器。
    At the joint where two parts are glued together,
    a first bonded portion bonded with a first adhesive;
    The heat exchanger according to claim 1, further comprising: a second adhesive bonded with a second adhesive having a lower thermal conductivity than the first adhesive.
  6.  前記第1接着部により前記流路部材に対し前記フィンが接着されている、請求項5に記載の熱交換器。 The heat exchanger according to claim 5, wherein the fins are bonded to the flow path member by the first adhesive portion.
  7.  前記第1接着剤は、熱伝導を促進するためのフィラーを含んでおり、
     前記第2接着剤は、前記フィラーの含有量が前記第1接着剤よりも少ない、請求項5に記載の熱交換器。
    The first adhesive includes a filler for promoting heat conduction,
    The heat exchanger according to claim 5, wherein the second adhesive has a smaller content of the filler than the first adhesive.
  8.  前記第1接着剤は、熱伝導を促進するためのフィラーを含んでおり、
     前記第2接着剤は、前記フィラーを含んでいない、請求項7に記載の熱交換器。
    The first adhesive includes a filler for promoting heat conduction,
    The heat exchanger according to claim 7, wherein the second adhesive does not contain the filler.
  9.  前記フィラーは、接着対象である前記流路部材又は前記フィンに含まれるいずれかの元素、当該元素の酸化物、当該元素の窒化物、のいずれかの材料で形成されている、請求項7に記載の熱交換器。 According to claim 7, the filler is formed of any one of the following materials: any element contained in the channel member or the fin to be bonded, an oxide of the element, or a nitride of the element. Heat exchanger as described.
  10.  前記フィラーはカーボンである、請求項7に記載の熱交換器。 The heat exchanger according to claim 7, wherein the filler is carbon.
PCT/JP2023/012496 2022-03-29 2023-03-28 Heat exchanger WO2023190507A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-053060 2022-03-29
JP2022053060 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023190507A1 true WO2023190507A1 (en) 2023-10-05

Family

ID=88202493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012496 WO2023190507A1 (en) 2022-03-29 2023-03-28 Heat exchanger

Country Status (1)

Country Link
WO (1) WO2023190507A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127092A (en) * 1982-01-25 1983-07-28 Nippon Denso Co Ltd Heat exchanger and manufacture thereof
JP2016044841A (en) * 2014-08-20 2016-04-04 日本軽金属株式会社 Fin and tube type heat exchanger and manufacturing method thereof
WO2020144928A1 (en) * 2019-01-09 2020-07-16 株式会社デンソー Joining structure and method for manufacturing same
WO2020262434A1 (en) * 2019-06-28 2020-12-30 株式会社デンソー Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127092A (en) * 1982-01-25 1983-07-28 Nippon Denso Co Ltd Heat exchanger and manufacture thereof
JP2016044841A (en) * 2014-08-20 2016-04-04 日本軽金属株式会社 Fin and tube type heat exchanger and manufacturing method thereof
WO2020144928A1 (en) * 2019-01-09 2020-07-16 株式会社デンソー Joining structure and method for manufacturing same
WO2020262434A1 (en) * 2019-06-28 2020-12-30 株式会社デンソー Heat exchanger

Similar Documents

Publication Publication Date Title
JP4379967B2 (en) Double heat exchanger
US8037930B2 (en) Heat exchanger
US6988539B2 (en) Heat exchanger
US6513582B2 (en) Heat exchanger and fluid pipe therefor
JPH0315117B2 (en)
JP4560902B2 (en) Heat exchanger and manufacturing method thereof
JP2001194080A (en) Heat exchanger
JP6439454B2 (en) Heat exchanger
JP4122670B2 (en) Heat exchanger
US7077193B2 (en) Compound type heat exchanger
WO2023190507A1 (en) Heat exchanger
JP7314655B2 (en) Heat exchanger
JP5884484B2 (en) Heat exchanger
CN103702791A (en) Brazing method for a heat exchanger, and corresponding tube and heat exchanger
US20020134535A1 (en) Heat exchanger
JP2019015492A (en) Heat exchanger
JP2014034037A (en) Cold storage heat exchanger and method of manufacturing the same
JP6806212B2 (en) Intercooler
JP2536294B2 (en) Stacked heat exchanger
JP2023146070A (en) Heat exchanger
CN110446903B (en) Heat exchanger
JP2003185365A (en) Heat exchanger
JP2000304489A (en) Heat exchanger and heat radiator
JP6182876B2 (en) Tube for heat exchanger and method for producing heat exchanger
JP2008082647A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780516

Country of ref document: EP

Kind code of ref document: A1