WO2020262051A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2020262051A1
WO2020262051A1 PCT/JP2020/023301 JP2020023301W WO2020262051A1 WO 2020262051 A1 WO2020262051 A1 WO 2020262051A1 JP 2020023301 W JP2020023301 W JP 2020023301W WO 2020262051 A1 WO2020262051 A1 WO 2020262051A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
unit
power
active filter
power supply
Prior art date
Application number
PCT/JP2020/023301
Other languages
English (en)
French (fr)
Inventor
河野 雅樹
圭祐 太田
川嶋 玲二
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202080045498.7A priority Critical patent/CN114008903A/zh
Priority to AU2020308761A priority patent/AU2020308761B2/en
Priority to EP20833070.4A priority patent/EP3985476A4/en
Publication of WO2020262051A1 publication Critical patent/WO2020262051A1/ja
Priority to US17/561,185 priority patent/US20220113058A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1892Arrangements for adjusting, eliminating or compensating reactive power in networks the arrangements being an integral part of the load, e.g. a motor, or of its control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/26Power factor control [PFC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • This disclosure relates to an air conditioner.
  • Patent Document 1 discloses an active filter device connected to a power conversion device that receives power supply via a distribution board.
  • This active filter device includes a current source, a first detection unit, a second detection unit, and a controller.
  • the current source has an output connected to the power receiving path of the power converter and generates a first compensating current for at least one of the reduction of the harmonic current of the power converter and the improvement of the fundamental power factor.
  • the first detection unit detects the current flowing in the power receiving path of the power conversion device.
  • the second detection unit detects the current flowing in the power receiving path of the distribution board.
  • the controller calculates the current for the first compensation based on the detection value detected by the first detection unit, and the harmonic current in the power receiving path of the distribution board based on the detection value detected by the second detection unit.
  • the second compensation component for reducing or improving the fundamental wave power factor is calculated, and a current in which the current for the second compensation component and the current for the first compensation component are superimposed is generated in the current source.
  • a second detector for detecting the current supplied from the AC power supply is arranged on the power supply side of the distribution board (specifically, between the AC power supply and the distribution board), and the controller is installed. Since it is arranged inside the air conditioner, the distance from the second detector to the controller is long. Therefore, it is difficult to reduce the cost (for example, initial cost) including the cost required for wiring between the second detection unit and the controller and the cost required for manufacturing the second detection unit.
  • the first aspect of the present disclosure relates to an air conditioner (10) connected to an AC power source (2).
  • the air conditioner (10) is supplied to the adjustment unit (60) for adjusting the apparent power at the power input end of the air conditioner (10) and the AC power supply (2) from the air conditioner (10). It is provided with a control unit (80) that controls the adjustment unit (60) based on information according to a target value of apparent power.
  • the adjusting unit (60) is an active filter (61), a phase-advancing capacitor (62a), and the phase-advancing capacitor connected to the AC power supply (2).
  • Capacitor switching mechanism (62b) that switches the connection between (62a) and the AC power supply (2), slow-phase reactor (63a), and reactor switching that switches the connection between the slow-phase reactor (63a) and the AC power supply (2).
  • An air conditioner characterized by containing at least one of the mechanisms (63b).
  • the information according to the target value of the apparent power given from the air conditioner (10) to the AC power source (2) is the air conditioner.
  • Information on the operating state of the device (20) connected to the AC power supply (2) together with (10), or the target value of the apparent power given from the air conditioner (10) to the AC power supply (2) is shown. It is an air conditioner characterized by being an apparent power command.
  • the information according to the target value of the apparent power given from the air conditioner (10) to the AC power source (2) is the air conditioner.
  • Information about the state is input to the input unit (30), and the control unit (80) controls the adjustment unit (60) based on the information input to the input unit (30). It is an air conditioner.
  • the AC power supply (2) is controlled by controlling the adjusting unit (60) based on the information on the operating state of the device (20) connected to the AC power supply (2) together with the air conditioner (10). It is possible to control the apparent power supplied from the air conditioner (10) to the AC power source (2) so that the power factor of is close to the target power factor.
  • the input unit (30) detects the operating state of the device (20) connected to the AC power supply (2) together with the air conditioner (10).
  • the control unit (80) is an air conditioner including a state detection unit (31) that controls the adjustment unit (60) based on the detection result of the state detection unit (31). ..
  • the air conditioner (6) is controlled so that the power factor of the AC power source (2) approaches the target power factor by controlling the adjusting unit (60) based on the detection result of the state detecting unit (31).
  • the apparent power given to the AC power supply (2) from 10) can be controlled.
  • a sixth aspect of the present disclosure is the type and presence / absence of the device (20) in which the input unit (30) is connected to the AC power supply (2) together with the air conditioner (10) in the fourth aspect.
  • An air conditioner including a setting unit (32) in which at least one of them is set is included, and the control unit (80) controls the adjustment unit (60) based on the setting of the setting unit (32). It is a machine.
  • the air conditioner (10) controls the adjusting unit (60) based on the setting of the setting unit (32) so that the power factor of the AC power source (2) approaches the target power factor. It is possible to control the apparent power given to the AC power supply (2) from.
  • a seventh aspect of the present disclosure is that in any one of the first to sixth aspects, the control unit (80) is the air conditioner even when the air conditioner (10) is stopped.
  • the air conditioner is characterized in that the adjusting unit (60) is controlled based on information according to a target value of apparent power given to the AC power source (2) from (10).
  • the adjusting unit (60) can be controlled even when the air conditioner (10) is stopped.
  • the power can be controlled.
  • the adjusting unit (60) includes an active filter (61) connected to the AC power supply (2), and the air conditioner (10) is stopped.
  • the carrier frequency of the active filter (61) driven therein is lower than the carrier frequency of the active filter (61) driven during the driving of the air conditioner (10). ..
  • the carrier frequency of the active filter (61) driven while the air conditioner (10) is stopped is set to be higher than the carrier frequency of the active filter (61) driven while the air conditioner (10) is driven. By lowering the temperature, it is possible to reduce the temperature rise of the active filter (61) that is driven while the air conditioner (10) is stopped.
  • a ninth aspect of the present disclosure in the seventh aspect, comprises a cooler (65), the adjusting unit (60) including an active filter (61) connected to the AC power source (2), said.
  • the cooler (65) cools the active filter (61), and the control unit (80) cools the active filter (61) when the active filter (61) is driven while the air conditioner (10) is stopped. It is an air conditioner characterized by driving a vessel (65).
  • the cooler (65) can be forcibly driven when the active filter (61) is driven while the air conditioner (10) is stopped, so that the air conditioner (10) is stopped. It is possible to reduce the temperature rise of the active filter (61) driven inside.
  • the adjusting unit (60) includes an active filter (61) connected to the AC power supply (2).
  • the control unit (80) is an air conditioner characterized in that the carrier frequency of the active filter (61) is changed according to the temperature of the components constituting the active filter (61).
  • the temperature rise of the active filter (61) can be reduced by changing the carrier frequency of the active filter (61) according to the temperature of the components constituting the active filter (61).
  • the active filter (61) includes a reactor (61b) and a switching element (61c), and the control unit (80) is the active filter (80).
  • the air conditioner is characterized in that the carrier frequency of the active filter (61) is changed according to the temperature of each of the reactor (61b) and the switching element (61c) included in 61).
  • the temperature of the active filter (61) is changed by changing the carrier frequency of the active filter (61) according to the temperature of the reactor (61b) and the switching element (61c) included in the active filter (61). The rise can be reduced.
  • the adjusting unit (60) includes an active filter (61) connected to the AC power supply (2).
  • the active filter (61) is an air conditioner characterized by being configured by using a wide-gap semiconductor.
  • the power loss in the active filter (61) can be reduced by configuring the active filter (61) using a wide-gap semiconductor. As a result, the temperature rise of the active filter (61) can be reduced.
  • a thirteenth aspect of the present disclosure is any one of the first to twelfth aspects, wherein the control unit (80) adjusts the adjustment in a period of 14 hours or more including a time zone in which the power factor discount is performed.
  • the air conditioner is characterized in that the adjusting unit (60) is controlled so that the unit (60) is continuously driven.
  • the power factor discount is performed by controlling the adjusting unit (60) so that the adjusting unit (60) is continuously driven during a period of 14 hours or more including the time zone in which the power factor discount is implemented.
  • FIG. 1 is a block diagram illustrating the configuration of the system of the first embodiment.
  • FIG. 2 is a diagram illustrating the configuration of an active filter.
  • FIG. 3 is a block diagram illustrating the configuration of the control unit.
  • FIG. 4 is a block diagram illustrating the configuration of the system of the second embodiment.
  • FIG. 5 is a block diagram illustrating the configuration of the system of the third embodiment.
  • FIG. 6 is a block diagram illustrating the configuration of the system of the fourth embodiment.
  • FIG. 7 is a diagram illustrating the configuration of a phase-advancing capacitor and a switching mechanism.
  • FIG. 8 is a diagram illustrating the configuration of the slow phase reactor and the switching mechanism.
  • FIG. 9 is a block diagram illustrating the configuration of a modified example of the control unit.
  • FIG. 1 illustrates the configuration of the system (1) of the first embodiment.
  • This system (1) is a system that receives the power supplied from the AC power supply (2).
  • the AC power source (2) is a three-phase AC power source and has an R phase, an S phase, and a T phase.
  • the system (1) includes an air conditioner (10), a distribution board (3), a loader (20), and a state detection unit (31).
  • this system (1) is installed in a building (not shown) such as a factory, a building, a condominium, or a detached house.
  • the distribution board (3) is connected to the AC power supply (2) and a plurality of devices (in this example, the air conditioner (10) and the loader (20)) provided in the system (1). Then, the distribution board (3) receives the electric power supplied from the AC power supply (2) and supplies the electric power to a plurality of devices provided in the system (1). Specifically, the distribution board (3) is provided with a plurality of breakers (not shown), and the power from the AC power supply (2) is connected to the distribution board (3) via the plurality of breakers. It is supplied to each of the multiple devices to be installed. In this example, of the plurality of breakers provided on the distribution board (3), one breaker is connected to the air conditioner (10) and another breaker is connected to the loader (20).
  • the loader (20) is a device connected to the AC power supply (2) together with the air conditioner (10).
  • the loader (20) is electrically connected to the AC power supply (2) via the distribution board (3) and is supplied from the AC power supply (2) via the distribution board (3). It operates by receiving the generated power.
  • Examples of the loader (20) include an elevator, an escalator, a fan, a pump, a ventilation device, a lighting fixture driven by three-phase AC power, and an air conditioner different from the air conditioner (10) installed in the building. Examples include machines (for example, air conditioners that do not have an adjusting device (50) described later).
  • the state detection unit (31) detects the operating state of the loader (20) (a device connected to the AC power supply (2) together with the air conditioner (10)). The detection result of the state detection unit (31) is transmitted to the control unit (80) described later.
  • the state detection unit (31) is an example of an input unit (30) into which information regarding the operating state of the load device (20) is input.
  • the information on the operating state of the loader (20) is an example of information according to the target value of the apparent power given from the air conditioner (10) to the AC power supply (2) (hereinafter referred to as "target apparent power"). Is. This information will be described in detail later.
  • the state detection unit (31) detects the operating state of the load device (20) and outputs a detection signal (S1) indicating the detection result. Further, the state detection unit (31) is provided outside the air conditioner (10).
  • the air conditioner (10) harmonizes the air-conditioned space (for example, indoor space) in the building.
  • the air conditioner (10) is connected to the AC power supply (2).
  • the air conditioner (10) is electrically connected to the AC power supply (2) via the distribution board (3), and from the AC power supply (2) via the distribution board (3). It operates by receiving the supplied power.
  • the air conditioner (10) includes a refrigerant circuit (not shown), a power conversion device (40), and an adjustment device (50).
  • the refrigerant circuit includes a compressor that compresses the refrigerant, a heat exchanger that exchanges heat between the refrigerant and air, and the like, and circulates the refrigerant to perform a refrigeration cycle.
  • the compressor is provided with an electric motor that drives the compression mechanism. When electric power is supplied to the electric motor, the electric motor is driven, and when the electric motor is driven, the compressor is driven and the refrigerant circuit performs a refrigeration cycle. As a result, air conditioning is performed.
  • the power converter (40) is connected to an AC power source (2).
  • the power converter (40) is connected to the distribution board (3) by a power receiving path (P40).
  • the power receiving path (P40) is composed of a power cable.
  • the power converter (40) is electrically connected to the AC power supply (2) via the power receiving path (P40) and the distribution board (3), and is separated from the AC power supply (2). It operates by receiving the power supplied via the switchboard (3) and the power receiving path (P40).
  • the power converter (40) converts the power supplied from the AC power supply (2) into output power having a desired voltage and frequency, and the output power is provided in the compressor of the refrigerant circuit. Supply to the electric motor.
  • the power conversion device (40) includes a converter that converts AC power into DC power, an inverter that converts power flow power into AC power by a switching operation, and the like.
  • the regulator (50) regulates the apparent power at the power input end of the air conditioner (10).
  • the apparent power supplied from the air conditioner (10) to the AC power source (2) is adjusted, and the power factor of the AC power source (2) (hereinafter referred to as "power factor") is adjusted.
  • the regulator (50) is incorporated in the air conditioner (10). Then, when the air conditioner (10) is in the driving state, the adjusting device (50) is in the driving state, and when the air conditioner (10) is in the stopped state, the adjusting device (50) is in the stopped state. ..
  • the adjusting device (50) includes an adjusting unit (60), a cooler (65), a first current detector (71), a second current detector (72), and a voltage detector. It has (73) and a control unit (80).
  • the adjusting unit (60) adjusts the apparent power at the power input end of the air conditioner (10).
  • the adjusting unit (60) is connected to the middle part of the power receiving path (P40), which is an example of the power input end of the air conditioner (10), and adjusts the apparent power in the power receiving path (P40).
  • the adjustment unit (60) is the active filter (61) shown in FIG.
  • the active filter (61) is connected to the AC power supply (2).
  • the active filter (61) is connected to the power receiving path (P40) and electrically connected to the AC power supply (2) via the power receiving path (P40) and the distribution board (3). ..
  • the active filter (61) improves the power factor. Specifically, the active filter (61) improves the power supply power factor by supplying a compensation current that can compensate for the invalid component of the AC power supply (2) to the power receiving path (P40).
  • the active filter (61) improves the power factor and reduces the harmonic current contained in the current (Ir0, Is0, It0) of the AC power supply (2). Specifically, the active filter (61) can compensate for the invalid component of the AC power supply (2), and the waveform of the current (Ir0, Is0, It0) of the AC power supply (2) approaches a sinusoidal wave. As described above, the compensation current, which is the antiphase current of the harmonic current included in the current (Ir0, Is0, It0) of the AC power supply (2), is supplied to the power receiving path (P40).
  • the active filter (61) has a low-pass filter (61a), a reactor (61b), a switching element (61c), and an electrolytic capacitor (61d).
  • the switching element (61c) is controlled by the control unit (80).
  • the cooler (65) cools the active filter (61).
  • the cooler (65) is switched between a driving state in which the active filter (61) is cooled and a stopped state in which the active filter (61) is not cooled.
  • the operation of the cooler (65) is controlled by the control unit (80).
  • the cooler (65) is in the driving state while the air conditioner (10) is being driven, and is in the stopped state while the air conditioner (10) is stopped.
  • the cooler (65) is a fan that can be switched between driving and stopping by the control unit (80).
  • This fan may be a dedicated fan used exclusively for cooling the active filter (61), or air to other components other than the active filter (61) (eg, heat exchangers in the refrigerant circuit). It may be a transport fan for transport.
  • the active filter (61) may be placed in the air transfer path generated by the transfer fan.
  • the first current detector (71) detects the current (Ir1, Is1, It1) input to the air conditioner (10).
  • the first current detector (71) has a first current sensor (71r) and a second current sensor (71t).
  • the first current sensor (71r) and the second current sensor (71t) are the R-phase current (Ir1) and the T-phase of the three-phase currents (Ir1, Is1, It1) input to the air conditioner (10).
  • Current (It1) is detected respectively.
  • the detection result of the first current detector (71) is transmitted to the control unit (80).
  • the first current detector (71) may be a current transformer.
  • the second current detector (72) detects the current (Ir1a, Is1a, It1a) input to the regulator (50).
  • the second current detector (72) has a third current sensor (72r) and a fourth current sensor (72t).
  • the third current sensor (72r) and the fourth current sensor (72t) are of the R-phase current (Ir1a) and the T-phase of the three-phase currents (Ir1a, Is1a, It1a) input to the regulator (50). Detect each current (It1a).
  • the detection result of the second current detector (72) is transmitted to the control unit (80).
  • the second current detector (72) may be a current transformer.
  • the voltage detector (73) detects the power supply voltage (Vrs), which is the voltage of the AC power supply (2). The detection result of the voltage detector (73) is transmitted to the control unit (80).
  • the control unit (80) controls the adjustment unit (60) based on the information according to the target apparent power. Specifically, the control unit (80) controls the adjustment unit (60) so that the power supply power factor becomes a predetermined target power factor (for example, 1).
  • the control unit (80) is composed of a processor and a memory for storing programs and data for operating the processor.
  • the waveform of the current (Ir2, Is2, It2) input to the load device (20) in the operating state of the load device (20) is generally determined for each operating state. Therefore, the waveform of the current (Ir2, Is2, It2) input to the loader (20) can be estimated from the operating state of the loader (20). Further, from the waveform of the current (Ir2, Is2, It2) input to the loader (20), the fluctuation amount of the power supply factor due to the operation of the loader (20) can be estimated.
  • the total of the current (Ir1, Is1, It1) input to the air conditioner (10) and the current (Ir2, Is2, It2) input to the loader (20) is from the AC power supply (2). It corresponds to the supplied current (Ir0, Is0, It0).
  • the sum of the fluctuation amount of the power factor due to the operation of the air conditioner (10) and the fluctuation amount of the power factor due to the operation of the loader (20) is the power factor of the AC power supply (2). Corresponds to the fluctuation amount of.
  • the control unit (80) determines the target apparent power according to the amount of fluctuation in the power factor due to the operation of the loader (20) so that the power factor becomes the target power factor. For example, when the target power factor is "1" and the fluctuation amount of the power power factor due to the operation of the loader (20) is "-0.3 (delay power factor)", the air conditioner (10) The target apparent power is determined so that the fluctuation amount of the power supply power factor due to the operation of is "+0.3 (advance power factor)”. Then, the control unit (80) controls the adjustment unit (60) so that the apparent power supplied from the air conditioner (10) to the AC power source (2) becomes the target apparent power. By controlling the apparent power supplied from the air conditioner (10) to the AC power source (2) in this way, it is possible to control the amount of fluctuation in the power factor due to the operation of the air conditioner (10). , The power factor can be brought closer to the target power factor.
  • the control unit (80) estimates the current (Ir2, Is2, It2) input to the loader (20) based on the operating state of the loader (20), and supplies power.
  • the current (Ir1a, Is1a,) input to the regulator (50) according to the estimated value of the current (Ir2, Is2, It2) input to the loader (20) so that the power factor becomes the target power factor.
  • Determine the target value of It1a) (hereinafter referred to as "target compensation current").
  • the target compensation current is an example of the target apparent power.
  • the control unit (80) controls the adjustment unit (60) so that the currents (Ir1a, Is1a, It1a) input to the adjustment device (50) become the target compensation current. In this way, by controlling the currents (Ir1a, Is1a, It1a) input to the adjusting device (50), it is possible to control the apparent power supplied from the air conditioner (10) to the AC power supply (2). ..
  • the control unit (80) controls the adjustment unit (60) based on the detection result of the state detection unit (31).
  • the state detection unit (31) is an example of an input unit (30) into which information regarding the operating state of the load device (20) is input.
  • the information regarding the operating state of the loader (20) is information used for deriving the target apparent power, and is an example of information according to the target apparent power.
  • the control unit (80) controls the adjustment unit (60) based on the information input to the input unit (30) (information regarding the operating state of the load device (20)).
  • control unit (80) is in the driving state when the air conditioner (10) is in the driving state, and is in the stopped state when the air conditioner (10) is in the stopped state.
  • control unit (80) includes a phase detection unit (81), a load current estimation unit (82), a first current calculation unit (83), and a second current calculation unit (84). , A subtraction unit (85), a current command calculation unit (86), and a gate pulse generator (87).
  • the phase detector (81) inputs the power supply voltage (Vrs) detected by the voltage detector (73) and detects the phase of the power supply voltage (Vrs).
  • the load current estimation unit (82) is input to the load device (20) based on the detection result of the state detection unit (31) and the phase of the power supply voltage (Vrs) detected by the phase detection unit (81).
  • the current (Ir2, Is2, It2) is estimated, and the estimated current is output as the load current (iL).
  • the load current estimation unit (82) uses table data in which the operating state of the load device (20) and the waveform of the current (Ir2, Is2, It2) input to the load device (20) are associated with each other. Has. Then, the load current estimation unit (82) uses the table data to indicate the load device (20) corresponding to the operating state of the load device (20) indicated by the detection signal (S1) output from the state detection unit (31).
  • the current value corresponding to the phase of the power supply voltage (Vrs) detected by the phase detection unit (81) is detected from among the current values, and the detected current value is output as the load current (iL).
  • the first current calculation unit (83) is the current (Ir1, Is1, It1) input to the air conditioner (10) detected by the first current detector (71) (in this example, the current (Ir1, It1)). ), The phase of the power supply voltage (Vrs) detected by the phase detection unit (81), and the current (Ir1a, Is1a, It1a) input to the loader (20) estimated by the load current estimation unit (82). Based on the above, the first current command value (i1) is generated.
  • the first current command value (i1) is a value corresponding to the fluctuation of the power power factor due to the operation of the air conditioner (10) and the loader (20).
  • the first current calculation unit (83) combines the output of the first current detector (71) and the output of the load current estimation unit (82), and the combined current obtained by the synthesis is combined with the fundamental wave.
  • the harmonic current component is extracted, and the extracted component is output as the first current command value (i1).
  • the second current calculation unit (84) is the current (Ir1a, Is1a, It1a) input to the regulator (50) detected by the second current detector (72) (current (Ir1a, It1a) in this example). And the phase of the power supply voltage (Vrs) detected by the phase detection unit (81), the second current command value (i2) is generated.
  • the second current command value (i2) is a value corresponding to the fluctuation of the power power factor due to the operation of the adjusting device (50).
  • the second current calculation unit (84) extracts the fundamental wave and the harmonic component from the output of the second current detector (72), and the extracted component is used as the second current command value (i2). Is output as.
  • the subtraction unit (85) subtracts the second current command value (i2) generated by the second current calculation unit (84) from the first current command value (i1) generated by the first current calculation unit (83). To do.
  • the current command calculation unit (86) is a target command value based on the output of the subtraction unit (85) (a command value obtained by subtracting the second current command value (i2) from the first current command value (i1)). Generate (Iref).
  • the target command value (Iref) corresponds to the target compensation current (the target value of the currents (Ir1a, Is1a, It1a) input to the adjusting device (50)). Specifically, the current command calculation unit (86) generates a target command value (Iref) indicating a current of the opposite phase of the output of the subtraction unit (85).
  • the gate pulse generator (87) has a target command value (Iref) generated by the current command calculation unit (86) and a second current command value (i2) generated by the second current calculation unit (84). Based on this, the switching command value (G) is generated.
  • the switching command value (G) is a command value for controlling the operation of the adjusting unit (60). Specifically, the gate pulse generator (87) has a second current command value (i2) and a target command value (Iref) so that the second current command value (i2) becomes the target command value (Iref).
  • the switching command value (G) is generated according to the deviation of.
  • Patent Document 1 Patent No. 6299831
  • the apparatus of Patent Document 1 which is a comparative example of the present disclosure
  • the second detection unit is arranged between the AC power supply and the distribution board and the controller is arranged inside the air conditioner, the distance from the second detection unit to the controller. Is getting longer. Therefore, since the wiring between the second detection unit and the controller must be lengthened, it is difficult to reduce the cost (for example, construction cost) required for the wiring between the second detection unit and the controller. Further, since the current capacity of the second detection unit must be increased, it is difficult to reduce the cost required for manufacturing the second detection unit. As described above, it is difficult to reduce the initial cost including the cost required for wiring between the second detection unit and the controller and the cost required for manufacturing the second detection unit.
  • the air conditioner (10) of the first embodiment is the air conditioner (10) connected to the AC power supply (2), and the apparent power at the power input end of the air conditioner (10) is applied.
  • the cost required for wiring and the cost required for manufacturing the current sensor are higher than those in the case of providing such a current sensor. (For example, initial cost) can be reduced.
  • the information according to the target value of the apparent power given from the air conditioner (10) to the AC power source (2) is transmitted to the AC power source (10) together with the air conditioner (10).
  • Information on the operating status of the equipment (20) connected to the AC power supply (2) together with the air conditioner (10) is input to the input unit (30).
  • the control unit (80) controls the adjustment unit (60) based on the information input to the input unit (30).
  • the AC power supply (2) is controlled by controlling the adjusting unit (60) based on the information on the operating state of the device (20) connected to the AC power supply (2) together with the air conditioner (10).
  • the apparent power supplied from the air conditioner (10) to the AC power source (2) can be controlled so that the power factor approaches the target power factor (for example, 1).
  • the input unit (30) is a state detection unit that detects the operating state of the device (20) connected to the AC power supply (2) together with the air conditioner (10). Including (31).
  • the control unit (80) controls the adjustment unit (60) based on the detection result of the state detection unit (31).
  • the air is controlled so that the power factor of the AC power source (2) approaches the target power factor (for example, 1) by controlling the adjusting unit (60) based on the detection result of the state detecting unit (31).
  • the apparent power supplied from the air conditioner (10) to the AC power supply (2) can be controlled.
  • FIG. 4 illustrates the configuration of the system (1) of the second embodiment.
  • the operations of the state detection unit (31) and the control unit (80) are different from those of the system (1) of the first embodiment.
  • Other configurations of the system (1) of the second embodiment are the same as the configurations of the system (1) of the first embodiment.
  • the state detection unit (31) detects the operating state of the load device (20) and the operating state of the air conditioner (10).
  • the state detection unit (31) of the second embodiment is an example of an input unit (30) in which information on the operating state of the load device (20) and information on the operating state of the air conditioner (10) are input. is there.
  • the state detection unit (31) is a central monitoring device provided in the central monitoring room of a building. This central monitoring device manages the motion state of a plurality of devices installed in the building.
  • the state detection unit (31) detects the operating state of the loader (20) and the operating state of the air conditioner (10), and outputs a detection signal (S1) indicating the detection result. Further, the state detection unit (31) is provided outside the air conditioner (10).
  • control unit (80) is based on the information according to the target apparent power (the target value of the apparent power given from the air conditioner (10) to the AC power source (2)). To control the adjustment unit (60). Specifically, the control unit (80) controls the adjustment unit (60) so that the power factor (power factor of the AC power supply (2)) becomes the target power factor (for example, 1).
  • control unit (80) is configured to operate not only when the air conditioner (10) is in the driving state but also when the air conditioner (10) is in the stopped state.
  • control unit (80) controls the adjustment unit (60) based on the information according to the target apparent power even when the air conditioner (10) is stopped.
  • control unit (80) controls the adjustment unit (60) based on the detection result of the state detection unit (31) even when the air conditioner (10) is stopped.
  • the control unit (80) operates the air conditioner (10) and the loader (20).
  • the target apparent power is determined according to the amount of fluctuation in the power factor due to the power factor.
  • the control unit (80) changes the power factor due to the operation of the air conditioner (10). Determine the target apparent power according to.
  • the control unit (80) adjusts to the fluctuation amount of the power power factor due to the operation of the load device (20). The target apparent power is determined accordingly.
  • the air conditioner (10) of the second embodiment can obtain the same effect as the air conditioner (10) of the first embodiment.
  • costs such as wiring costs and costs required for manufacturing the current sensor (for example, initial stage) are higher than when such a current sensor is provided. Cost) can be reduced.
  • the control unit (80) is supplied from the air conditioner (10) to the AC power source (2) even when the air conditioner (10) is stopped.
  • the adjustment unit (60) is controlled based on the information according to the target value of the apparent power.
  • the adjusting unit (60) can be controlled even when the air conditioner (10) is stopped.
  • the power factor of the AC power supply (2) approaches the target power factor (for example, 1) from the air conditioner (10) to the AC power supply (2). It is possible to control the apparent power given to the air conditioner.
  • FIG. 5 illustrates the configuration of the system (1) of the third embodiment.
  • the system (1) of the third embodiment includes a setting unit (32) instead of the state detection unit (31) shown in FIG. Further, in the system (1) of the third embodiment, the operation of the control unit (80) is different from that of the system (1) of the first embodiment.
  • Other configurations of the system (1) of the third embodiment are the same as those of the system (1) of the first embodiment.
  • At least one of the type and presence / absence of the load device (20) is set in the setting unit (32).
  • the setting unit (32) has a plurality of switches, and at least one of the type and presence / absence of the load device (20) is set by turning on / off the plurality of switches.
  • different loader (20) types are associated with a plurality of switches in the setting unit (32). Then, when one of the plurality of switches of the setting unit (32) is turned from the on state to the off state, the setting unit indicates that the load device (20) of the type assigned to the switch is provided in the system (1). It is set to (32).
  • the setting unit (32) when one of the plurality of switches in the setting unit (32) is turned from the off state to the on state, the setting unit indicates that the load device (20) of the type assigned to the switch is not provided in the system (1). It is set to (32).
  • the setting unit (32) is a DIP switch (Dual In-line PackageSwitch).
  • At least one of the type and presence / absence of the load device (20) is set in the setting unit (32), and the setting signal (S2) indicating the setting of the setting unit (32) is output.
  • the setting unit (32) is provided in the adjusting device (50). In other words, the setting unit (32) is incorporated in the air conditioner (10).
  • control unit (80) is based on the information according to the target apparent power (the target value of the apparent power given from the air conditioner (10) to the AC power source (2)). To control the adjustment unit (60). Specifically, the control unit (80) controls the adjustment unit (60) so that the power factor (power factor of the AC power supply (2)) becomes the target power factor (for example, 1).
  • the fluctuation amount of the power supply factor due to the operation of the loader (20) can be estimated.
  • the sum of the fluctuation amount of the power factor due to the operation of the air conditioner (10) and the fluctuation amount of the power factor due to the operation of the loader (20) is the power factor of the AC power supply (2). Corresponds to the fluctuation amount of.
  • control unit (80) responds to the fluctuation amount of the power factor due to the operation of the loader (20) so that the power factor becomes the target power factor. , Determine the target apparent power. Then, the control unit (80) controls the adjustment unit (60) so that the apparent power supplied from the air conditioner (10) to the AC power source (2) becomes the target apparent power.
  • the control unit (80) receives a current (20) input to the load device (20) based on at least one of the type and presence / absence of the load device (20) provided in the system (1). Ir2, Is2, It2) is estimated, and the target compensation current (Ir2, Is2, It2) is estimated according to the estimated value of the current (Ir2, Is2, It2) input to the loader (20) so that the power factor becomes the target power factor. The target value of the current (Ir1a, Is1a, It1a) input to the adjusting device (50) is determined. Then, the control unit (80) controls the adjustment unit (60) so that the currents (Ir1a, Is1a, It1a) input to the adjustment device (50) become the target compensation current.
  • control unit (80) controls the adjustment unit (60) based on the settings of the setting unit (32).
  • the setting unit (32) is an example of an input unit (30) in which information on the operating state of the load device (20) is input, and the information on the operating state of the load device (20) is information according to the target apparent power. This is an example.
  • the control unit (80) controls the adjustment unit (60) based on the information input to the input unit (30) (information regarding the operating state of the load device (20)).
  • the load current estimation unit (82) of the control unit (80) is of the setting of the setting unit (32) and the power supply voltage (Vrs) detected by the phase detection unit (81).
  • the current (Ir2, Is2, It2) input to the loader (20) is estimated based on the phase, and the estimated current is output as the load current (iL).
  • the load current estimation unit (82) uses the setting unit (32) to set (at least one of the types and presence / absence of the load device (20)) and the current (Ir2, Is2) input to the load device (20). , It2) has table data associated with the waveform.
  • the load current estimation unit (82) is a load device (20) corresponding to the setting of the setting unit (32) indicated by the setting signal (S2) output from the setting unit (32) from the table data.
  • the waveform of the current (Ir2, Is2, It2) input to is detected, and among the multiple current values constituting the waveform of the current (Ir2, Is2, It2) input to the detected loader (20). Therefore, the current value corresponding to the phase of the power supply voltage (Vrs) detected by the phase detection unit (81) is detected, and the detected current value is output as the load current (iL).
  • control unit (80) is configured to operate not only while the air conditioner (10) is being driven but also when the air conditioner (10) is stopped. Specifically, the control unit (80) controls the adjustment unit (60) based on the settings of the setting unit (32) even when the air conditioner (10) is stopped.
  • the air conditioner (10) of the third embodiment can obtain the same effect as the air conditioner (10) of the first embodiment.
  • costs such as wiring costs and costs required for manufacturing the current sensor (for example, initial stage) are higher than when such a current sensor is provided. Cost) can be reduced.
  • the information according to the target value of the apparent power given from the air conditioner (10) to the AC power source (2) is transmitted to the AC power source (10) together with the air conditioner (10).
  • Information on the operating status of the equipment (20) connected to the AC power supply (2) together with the air conditioner (10) is input to the input unit (30).
  • the input unit (30) includes a setting unit (32) in which at least one of the type and presence / absence of the device (20) connected to the AC power supply (2) together with the air conditioner (10) is set.
  • the control unit (80) controls the adjustment unit (60) based on the settings of the setting unit (32).
  • the air conditioner is controlled so that the power factor of the AC power source (2) approaches the target power factor (for example, 1) by controlling the adjusting unit (60) based on the setting of the setting unit (32).
  • the apparent power supplied from (10) to the AC power supply (2) can be controlled.
  • FIG. 6 illustrates the configuration of the system (1) of the fourth embodiment.
  • the system (1) of the fourth embodiment includes a distribution board (3), a plurality of (two in this example) air conditioners (10), a loader (20), and a setting unit (32). Be prepared.
  • the configuration of the distribution board (3), the loader (20), and the setting unit (32) of the fourth embodiment is the configuration of the distribution board (3), the loader (20), and the setting unit (32) of the third embodiment. Is similar to.
  • the configuration of each of the plurality of air conditioners (10) of the fourth embodiment is the same as the configuration of the air conditioner (10) of the third embodiment.
  • the setting unit (32) is also used by the plurality of air conditioners (10).
  • the setting unit (32) is provided outside the adjusting device (50). In other words, the setting unit (32) is provided outside the air conditioner (10).
  • the air conditioner (10) of the fourth embodiment can obtain the same effect as the air conditioner (10) of the third embodiment.
  • costs such as wiring costs and costs required for manufacturing the current sensor (for example, initial stage) are higher than when such a current sensor is provided. Cost) can be reduced.
  • the setting unit (32) is also used as a plurality of air conditioners (10).
  • the settings in each of the plurality of air conditioners (10) are set. Since it can be performed all at once, it is easier to set each of the plurality of air conditioners (10) than when one setting unit (32) is provided for each of the plurality of air conditioners (10). It can be carried out.
  • the adjusting unit (60) may be a phase-advancing capacitor (62a) and a capacitor switching mechanism (62b).
  • the capacitor switching mechanism (62b) switches the connection between the phase-advancing capacitor (62a) and the AC power supply (2).
  • the capacitor switching mechanism (62b) is controlled by the control unit (80).
  • the capacitor switching mechanism (62b) is composed of a thyristor.
  • the adjusting unit (60) may be a slow phase reactor (63a) and a reactor switching mechanism (63b).
  • the reactor switching mechanism (63b) switches the connection between the slow phase reactor (63a) and the AC power supply (2).
  • the reactor switching mechanism (63b) is controlled by the control unit (80).
  • the reactor switching mechanism (63b) is composed of a thyristor.
  • the adjustment unit (60) is an active filter (61), a phase-advancing capacitor (62a), a capacitor switching mechanism (62b) that switches the connection between the phase-advancing capacitor (62a) and the AC power supply (2), and a slow speed. It may include at least one of a phase reactor (63a) and a reactor switching mechanism (63b) that switches the connection between the slow phase reactor (63a) and the AC power supply (2).
  • the loader (20) air conditioner (10)
  • the information on the operating status of the AC power supply (2) are given as an example, but the information is not limited to this.
  • the information according to the target apparent power may be an apparent power command indicating a target value of the apparent power given from the air conditioner (10) to the AC power source (2).
  • the information according to the target value of the apparent power given from the air conditioner (10) to the AC power source (2) is the air conditioner (10).
  • Information on the operating status of the equipment (20) connected to the AC power supply (2) together with 10), or the apparent power command indicating the target value of the apparent power given to the AC power supply (2) from the air conditioner (10). is there.
  • the control unit (80) estimates the amount of fluctuation in the power factor (power factor of the AC power supply (2)) due to the operation of the loader (20) based on the operating state of the loader (20). , The target compensation current (current (Ir1a, Ir1a,) input to the regulator (50) according to the amount of fluctuation of the power factor due to the operation of the loader (20) so that the power factor becomes the target power factor. It may be configured to determine the target value) of Is1a, It1a).
  • the control unit (80) may have a load power factor estimation unit (88) instead of the load current estimation unit (82) shown in FIG.
  • the load power factor estimation unit (88) estimates the fluctuation amount of the power supply power factor due to the operation of the load device (20) based on the detection result of the state detection unit (31), and calculates the estimated fluctuation amount. Output as load power factor (PL).
  • the load power factor estimation unit (88) has table data in which the operating state of the load device (20) and the fluctuation amount of the power supply power factor due to the operation of the load device (20) are associated with each other. ..
  • the load power factor estimation unit (88) is a load device corresponding to the operating state of the load device (20) indicated in the detection signal (S1) output from the state detection unit (31) from the table data.
  • the fluctuation amount of the power supply power factor due to the operation of (20) is detected, and the detected fluctuation amount is output as the load power factor (PL).
  • the load power factor estimation unit (88) fluctuates the power power factor due to the operation of the loader (20) based on the settings of the setting unit (32). It may be configured to estimate the amount and output the estimated fluctuation amount as a load power factor (PL). Specifically, the load power factor estimation unit (88) uses the power factor of the power factor due to the setting of the setting unit (32) (at least one of the type and presence / absence of the load device (20)) and the operation of the load power factor (20). It may have table data associated with the fluctuation amount of.
  • the load power factor estimation unit (88) is a load device (20) corresponding to the setting of the setting unit (32) indicated in the detection signal (S1) output from the setting unit (32) from the table data.
  • the fluctuation amount of the power supply power factor due to the operation of) may be detected, and the detected fluctuation amount may be output as the load power factor (PL).
  • the carrier frequency of the active filter (61) driven while the air conditioner (10) is stopped is higher than the carrier frequency of the active filter (61) driven while the air conditioner (10) is being driven. May be low.
  • the carrier frequency of the active filter (61) is set to a predetermined first frequency. Controls the operation of the active filter (61).
  • the control unit (80) drives the active filter (61) while the air conditioner (10) is stopped, the carrier frequency of the active filter (61) is set to a predetermined second frequency. Controls the operation of the active filter (61).
  • the second frequency is a frequency lower than the first frequency.
  • the carrier frequency of the active filter (61) that is driven while the air conditioner (10) is stopped is the drive of the air conditioner (10). It is lower than the carrier frequency of the active filter (61) driven in.
  • the carrier frequency of the active filter (61) driven while the air conditioner (10) is stopped is changed to the carrier frequency of the active filter (61) driven while the air conditioner (10) is driven.
  • the temperature rise of the active filter (61) driven while the air conditioner (10) is stopped can be reduced.
  • the continuous drive time of the active filter (61) can be lengthened.
  • the active filter (61) may be provided with a temperature sensor (not shown) for detecting the temperature of the components constituting the active filter (61). The detection result of this temperature sensor is transmitted to the control unit (80). Then, the control unit (80) may change the carrier frequency of the active filter (61) according to the temperature of the component constituting the active filter (61).
  • the component of the active filter (61) subject to temperature control is a component whose temperature tends to decrease as the carrier frequency of the active filter (61) increases (for example, a reactor (61b))
  • control is performed.
  • the unit (80) increases the carrier frequency of the active filter (61), and the temperature of the component falls below the predetermined second temperature.
  • the second temperature is set to a temperature equal to or lower than the first temperature.
  • the component of the active filter (61) subject to temperature control is a component whose temperature tends to rise as the carrier frequency of the active filter (61) increases (for example, a switching element (61c)).
  • the control unit (80) reduces the carrier frequency of the active filter (61), and the temperature of the component becomes the predetermined second temperature. Below this, the carrier frequency of the active filter (61) is increased.
  • the second temperature is set to, for example, a temperature equal to or lower than the first temperature.
  • the control unit (80) has the carrier frequency of the active filter (61) according to the temperature of the components constituting the active filter (61). To change.
  • the temperature rise of the active filter (61) can be reduced by changing the carrier frequency of the active filter (61) according to the temperature of the components constituting the active filter (61). ..
  • the continuous drive time of the active filter (61) can be lengthened.
  • the active filter (61) is provided with a temperature sensor (not shown) that detects the temperature of each of the reactor (61b) and the switching element (61c) included in the active filter (61). You may. The detection result of this temperature sensor is transmitted to the control unit (80). Then, the control unit (80) may change the carrier frequency of the active filter (61) according to the respective temperatures of the reactor (61b) and the switching element (61c) included in the active filter (61).
  • the control unit (80) increases the carrier frequency of the active filter (61) when the temperature of the reactor (61b) of the active filter (61) exceeds a predetermined first determination temperature, and the active filter (61) increases the carrier frequency.
  • the first determination temperature is, for example, a temperature obtained by adding the temperature of the switching element (61c) or the temperature of the switching element (61c) to a predetermined first correction temperature (temperature higher than zero). Is set to.
  • the second determination temperature is set to, for example, the temperature of the reactor (61b) or the temperature obtained by adding a predetermined second correction temperature (temperature higher than zero) to the temperature of the reactor (61b). ..
  • control unit (80) is set to the respective temperatures of the reactor (61b) and the switching element (61c) included in the active filter (61).
  • the carrier frequency of the active filter (61) is changed accordingly.
  • the active filter (61) is modified by changing the carrier frequency of the active filter (61) according to the temperature of the reactor (61b) and the switching element (61c) included in the active filter (61). It is possible to reduce the temperature rise of. As a result, the continuous drive time of the active filter (61) can be lengthened.
  • control unit (80) may drive the cooler (65) when the active filter (61) is driven while the air conditioner (10) is stopped.
  • control unit (80) cannot sufficiently reduce the temperature rise of the active filter (61) due to the change of the carrier frequency of the active filter (61) described above while the air conditioner (10) is stopped. To drive the cooler (65).
  • control unit (80) is a cooler when the active filter (61) is driven while the air conditioner (10) is stopped. Drive (65).
  • the cooler (65) can be forcibly driven when the active filter (61) is driven while the air conditioner (10) is stopped, so that the air conditioner (10) can be driven. It is possible to reduce the temperature rise of the active filter (61) that is driven while the air conditioner is stopped. As a result, the continuous drive time of the active filter (61) can be lengthened.
  • the active filter (61) may be configured by using a wide gap semiconductor.
  • the switching element included in the active filter (61) may be configured by using any of silicon carbide, gallium oxide, and diamond, which are examples of wide-gap semiconductors.
  • the active filter (61) is configured by using a wide-gap semiconductor.
  • the power loss in the active filter (61) can be reduced by configuring the active filter (61) using the wide gap semiconductor. As a result, the temperature rise of the active filter (61) can be reduced, and the continuous driving time of the active filter (61) can be lengthened.
  • control unit (80) has a continuous adjustment unit (60) for a period of 14 hours or more including a time zone in which the power factor discount is implemented (for example, a time zone from 8:00 to 22:00).
  • the adjusting unit (60) may be controlled so as to drive the vehicle.
  • the control unit (80) has the adjusting unit (60) in a period of 14 hours or more including the time zone in which the power factor discount is implemented.
  • the adjustment unit (60) is controlled so as to be driven continuously.
  • the force is controlled by controlling the adjusting unit (60) so that the adjusting unit (60) is continuously driven during a period of 14 hours or more including the time zone in which the power factor discount is implemented.
  • the apparent power given to the can be controlled.
  • the data (or signal) transmission / reception method performed in the system (1) may be a wired method or a wireless method.
  • data transmission / reception between various sensors for example, the first current detector (71), the second current detector (72), etc.
  • the control unit (80) the input unit (30) (state detection).
  • the transmission / reception of a signal between the unit (31) or the setting unit (32)) and the control unit (80) may be a wired system or a wireless system.
  • the adjusting device (50) is incorporated in the air conditioner (10) is taken as an example, but the present invention is not limited to this.
  • the adjusting device (50) may be provided outside the air conditioner (10), or may be incorporated in another device (for example, a loader (20)) different from the air conditioner (10). You may.
  • the adjusting unit (60) and the control unit (80) may be incorporated in the air conditioner (10) or may be provided outside the air conditioner (10). It may be incorporated in another device (for example, a loader (20)) different from the air conditioner (10).
  • the state detection unit (31) is provided outside the air conditioner (10) as an example, but the present invention is not limited to this.
  • the state detector (31) may be incorporated in the air conditioner (10), or may be incorporated in another device (for example, a loader (20)) different from the air conditioner (10). May be good.
  • the case where the setting unit (32) is incorporated in the air conditioner (10) and the case where the setting unit (32) is provided outside the air conditioner (10) are given as examples. , Not limited to this.
  • the setting unit (32) may be incorporated in another device (for example, a load device (20)) different from the air conditioner (10).
  • this disclosure is useful as an air conditioner.
  • System 2 AC power supply 3 Distribution board 10 Air conditioner 20 Load device (equipment connected to AC power supply) 30 Input unit 31 State detection unit 32 Setting unit 40 Power conversion device 50 Adjustment device 60 Adjustment unit 65 Cooler 80 Control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Air Conditioning Control Device (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

調整部(60)は、空気調和機(10)の電源入力端における皮相電力を調整する。制御部(80)は、空気調和機(10)から交流電源(2)に与えられる皮相電力の目標値に応じた情報に基づいて調整部(60)を制御する。

Description

空気調和機
 本開示は、空気調和機に関する。
 特許文献1には、分電盤を介して電力供給を受ける電力変換装置に接続されるアクティブフィルタ装置が開示されている。このアクティブフィルタ装置は、電流源と、第1検出部と、第2検出部と、制御器とを備える。電流源は、電力変換装置の受電経路に出力が接続され、電力変換装置の高調波電流の低減及び基本波力率の改善の少なくとも一方を行うための第1補償分の電流を生成する。第1検出部は、電力変換装置の受電経路に流れる電流を検出する。第2検出部は、分電盤の受電経路に流れる電流を検出する。制御器は、第1検出部で検出された検出値に基づいて第1補償分の電流を算出し、第2検出部で検出された検出値に基づいて分電盤の受電経路における高調波電流の低減及び基本波力率の改善の少なくとも一方を行うための第2補償分を算出し、第2補償分の電流と、第1補償分の電流とを重畳した電流を電流源において生成させる。
特許第6299831号
 特許文献1の装置では、交流電源から供給される電流を検出する第2検出部が分電盤の電源側(具体的には交流電源と分電盤との間)に配置され、制御器が空気調和機の内部に配置されているので、第2検出部から制御器までの距離が長くなっている。そのため、第2検出部と制御器との配線に要する費用や第2検出部の製造に要する費用などを含む費用(例えば初期費用)を削減することが困難である。
 本開示の第1の態様は、交流電源(2)に接続される空気調和機(10)に関する。この空気調和機(10)は、前記空気調和機(10)の電源入力端における皮相電力を調整する調整部(60)と、前記空気調和機(10)から前記交流電源(2)に与えられる皮相電力の目標値に応じた情報に基づいて前記調整部(60)を制御する制御部(80)とを備える。
 第1の態様では、交流電源(2)から供給される電流(Ir0,Is0,It0)を検出する電流センサを分電盤(3)の電源側に設ける必要がないので、このような電流センサを設ける場合よりも、配線に要する費用や電流センサの製造に要する費用などの費用を低減することができる。
 本開示の第2の態様は、第1の態様において、前記調整部(60)は、前記交流電源(2)に接続されるアクティブフィルタ(61)、進相コンデンサ(62a)および該進相コンデンサ(62a)と前記交流電源(2)との接続を切り換えるコンデンサ切り換え機構(62b)、遅相リアクトル(63a)および該遅相リアクトル(63a)と前記交流電源(2)との接続を切り換えるリアクトル切り換え機構(63b)のうち少なくとも1つを含むことを特徴とする空気調和機である。
 本開示の第3の態様は、第1または第2の態様において、前記空気調和機(10)から前記交流電源(2)に与えられる皮相電力の目標値に応じた情報は、前記空気調和機(10)とともに前記交流電源(2)に接続される機器(20)の運転状態に関する情報、または、前記空気調和機(10)から前記交流電源(2)に与えられる皮相電力の目標値を示す皮相電力指令であることを特徴とする空気調和機である。
 本開示の第4の態様は、第1または第2の態様において、前記空気調和機(10)から前記交流電源(2)に与えられる皮相電力の目標値に応じた情報は、前記空気調和機(10)とともに前記交流電源(2)に接続される機器(20)の運転状態に関する情報であり、前記空気調和機(10)とともに前記交流電源(2)に接続される機器(20)の運転状態に関する情報は、入力部(30)に入力され、前記制御部(80)は、前記入力部(30)に入力される情報に基づいて前記調整部(60)を制御することを特徴とする空気調和機である。
 第4の態様では、空気調和機(10)とともに交流電源(2)に接続される機器(20)の運転状態に関する情報に基づいて調整部(60)を制御することにより、交流電源(2)の力率が目標力率に近づくように、空気調和機(10)から交流電源(2)に与えられる皮相電力を制御することができる。
 本開示の第5の態様は、第4の態様において、前記入力部(30)は、前記空気調和機(10)とともに前記交流電源(2)に接続される機器(20)の運転状態を検出する状態検出部(31)を含み、前記制御部(80)は、前記状態検出部(31)の検出結果に基づいて前記調整部(60)を制御することを特徴とする空気調和機である。
 第5の態様では、状態検出部(31)の検出結果に基づいて調整部(60)を制御することにより、交流電源(2)の力率が目標力率に近づくように、空気調和機(10)から交流電源(2)に与えられる皮相電力を制御することができる。
 本開示の第6の態様は、第4の態様において、前記入力部(30)は、前記空気調和機(10)とともに前記交流電源(2)に接続される機器(20)の種類および有無のうち少なくとも一方が設定される設定部(32)を含み、前記制御部(80)は、前記設定部(32)の設定に基づいて前記調整部(60)を制御することを特徴とする空気調和機である。
 第6の態様では、設定部(32)の設定に基づいて調整部(60)を制御することにより、交流電源(2)の力率が目標力率に近づくように、空気調和機(10)から交流電源(2)に与えられる皮相電力を制御することができる。
 本開示の第7の態様は、第1~第6の態様のいずれか1つにおいて、前記制御部(80)は、前記空気調和機(10)の停止中であっても、前記空気調和機(10)から前記交流電源(2)に与えられる皮相電力の目標値に応じた情報に基づいて前記調整部(60)を制御することを特徴とする空気調和機である。
 第7の態様では、空気調和機(10)の停止中であっても調整部(60)を制御することができる。これにより、空気調和機(10)の停止中であっても、交流電源(2)の力率が目標力率に近づくように、空気調和機(10)から交流電源(2)に与えられる皮相電力を制御することができる。
 本開示の第8の態様は、第7の態様において、前記調整部(60)は、前記交流電源(2)に接続されるアクティブフィルタ(61)を含み、前記空気調和機(10)の停止中に駆動する前記アクティブフィルタ(61)のキャリア周波数は、前記空気調和機(10)の駆動中に駆動する前記アクティブフィルタ(61)のキャリア周波数よりも低いことを特徴とする空気調和機である。
 第8の態様では、空気調和機(10)の停止中に駆動するアクティブフィルタ(61)のキャリア周波数を、空気調和機(10)の駆動中に駆動するアクティブフィルタ(61)のキャリア周波数よりも低くすることにより、空気調和機(10)の停止中に駆動するアクティブフィルタ(61)の温度上昇を低減することができる。
 本開示の第9の態様は、第7の態様において、冷却器(65)を備え、前記調整部(60)は、前記交流電源(2)に接続されるアクティブフィルタ(61)を含み、前記冷却器(65)は、前記アクティブフィルタ(61)を冷却し、前記制御部(80)は、前記空気調和機(10)の停止中に前記アクティブフィルタ(61)が駆動する場合に、前記冷却器(65)を駆動させることを特徴とする空気調和機である。
 第9の態様では、空気調和機(10)の停止中にアクティブフィルタ(61)が駆動する場合に冷却器(65)を強制的に駆動させることができるので、空気調和機(10)の停止中に駆動するアクティブフィルタ(61)の温度上昇を低減することができる。
 本開示の第10の態様は、第1~第9の態様のいずれか1つにおいて、前記調整部(60)は、前記交流電源(2)に接続されるアクティブフィルタ(61)を含み、前記制御部(80)は、前記アクティブフィルタ(61)を構成する部品の温度に応じて前記アクティブフィルタ(61)のキャリア周波数を変更することを特徴とする空気調和機である。
 第10の態様では、アクティブフィルタ(61)を構成する部品の温度に応じてアクティブフィルタ(61)のキャリア周波数を変更することにより、アクティブフィルタ(61)の温度上昇を低減することができる。
 本開示の第11の態様は、第10の態様において、前記アクティブフィルタ(61)は、リアクトル(61b)と、スイッチング素子(61c)とを含み、前記制御部(80)は、前記アクティブフィルタ(61)に含まれる前記リアクトル(61b)および前記スイッチング素子(61c)の各々の温度に応じて前記アクティブフィルタ(61)のキャリア周波数を変更することを特徴とする空気調和機である。
 第11の態様では、アクティブフィルタ(61)に含まれるリアクトル(61b)およびスイッチング素子(61c)の温度に応じてアクティブフィルタ(61)のキャリア周波数を変更することにより、アクティブフィルタ(61)の温度上昇を低減することができる。
 本開示の第12の態様は、第1~第11の態様のいずれか1つにおいて、前記調整部(60)は、前記交流電源(2)に接続されるアクティブフィルタ(61)を含み、前記アクティブフィルタ(61)は、ワイドギャップ半導体を用いて構成されることを特徴とする空気調和機である。
 第12の態様では、ワイドギャップ半導体を用いてアクティブフィルタ(61)を構成することにより、アクティブフィルタ(61)における電力損失を低減することができる。これにより、アクティブフィルタ(61)の温度上昇を低減することができる。
 本開示の第13の態様は、第1~第12の態様のいずれか1つにおいて、前記制御部(80)は、力率割引が実施される時間帯を含む14時間以上の期間において前記調整部(60)が連続的に駆動するように、前記調整部(60)を制御することを特徴とする空気調和機である。
 第13の態様では、力率割引が実施される時間帯を含む14時間以上の期間において調整部(60)が連続的に駆動するように調整部(60)を制御することにより、力率割引が実施される時間帯ではない時間帯であっても、交流電源(2)の力率が目標力率に近づくように、空気調和機(10)から交流電源(2)に与えられる皮相電力を制御することができる。
図1は、実施形態1のシステムの構成を例示するブロック図である。 図2は、アクティブフィルタの構成を例示する図である。 図3は、制御部の構成を例示するブロック図である。 図4は、実施形態2のシステムの構成を例示するブロック図である。 図5は、実施形態3のシステムの構成を例示するブロック図である。 図6は、実施形態4のシステムの構成を例示するブロック図である。 図7は、進相コンデンサと切り換え機構の構成を例示する図である。 図8は、遅相リアクトルと切り換え機構の構成を例示する図である。 図9は、制御部の変形例の構成を例示するブロック図である。
 以下、実施の形態を図面を参照して詳しく説明する。なお、図中同一または相当部分には同一の符号を付しその説明は繰り返さない。
 (実施形態1)
 図1は、実施形態1のシステム(1)の構成を例示する。このシステム(1)は、交流電源(2)から供給された電力を受けるシステムである。この例では、交流電源(2)は、三相交流電源であり、R相とS相とT相とを有する。また、システム(1)は、空気調和機(10)と、分電盤(3)と、負荷器(20)と、状態検出部(31)とを備える。例えば、このシステム(1)は、工場、ビル、マンション、戸建て住宅などの建物(図示を省略)内に設けられる。
  〔分電盤〕
 分電盤(3)は、交流電源(2)と、システム(1)に設けられる複数の機器(この例では空気調和機(10)と負荷器(20))とに接続される。そして、分電盤(3)は、交流電源(2)から供給された電力を受け、その電力をシステム(1)に設けられる複数の機器に供給する。具体的には、分電盤(3)には、複数のブレーカ(図示を省略)が設けられ、交流電源(2)からの電力が複数のブレーカを経由して分電盤(3)に接続される複数の機器にそれぞれ供給される。この例では、分電盤(3)に設けられた複数のブレーカのうち、1つのブレーカが空気調和機(10)に接続され、別の1つのブレーカが負荷器(20)に接続される。
  〔負荷器〕
 負荷器(20)は、空気調和機(10)とともに交流電源(2)に接続される機器である。この例では、負荷器(20)は、分電盤(3)を経由して交流電源(2)と電気的に接続され、交流電源(2)から分電盤(3)を経由して供給された電力を受けて動作する。なお、負荷器(20)の例としては、建物に設けられたエレベータ,エスカレータ,ファン,ポンプ,換気装置,三相交流電力で駆動する照明器具,空気調和機(10)とは別の空気調和機(例えば後述する調整装置(50)を有さない空気調和機)などが挙げられる。
  〔状態検出部(入力部)〕
 状態検出部(31)は、負荷器(20)(空気調和機(10)とともに交流電源(2)に接続される機器)の運転状態を検出する。状態検出部(31)の検出結果は、後述する制御部(80)に送信される。状態検出部(31)は、負荷器(20)の運転状態に関する情報が入力される入力部(30)の一例である。なお、負荷器(20)の運転状態に関する情報は、空気調和機(10)から交流電源(2)に与えられる皮相電力の目標値(以下「目標皮相電力」と記載)に応じた情報の一例である。これらの情報については、後で詳しく説明する。
 この例では、状態検出部(31)は、負荷器(20)の運転状態を検出し、その検出結果を示す検出信号(S1)を出力する。また、状態検出部(31)は、空気調和機(10)の外部に設けられる。
  〔空気調和機〕
 空気調和機(10)は、建物内の空調対象空間(例えば室内空間)の空気調和を行う。空気調和機(10)は、交流電源(2)に接続される。この例では、空気調和機(10)は、分電盤(3)を経由して交流電源(2)と電気的に接続され、交流電源(2)から分電盤(3)を経由して供給された電力を受けて動作する。具体的には、空気調和機(10)は、冷媒回路(図示を省略)と、電力変換装置(40)と、調整装置(50)とを備える。
   〈冷媒回路〉
 冷媒回路は、冷媒を圧縮する圧縮機や、冷媒と空気とを熱交換させる熱交換器などを有し、冷媒を循環させて冷凍サイクルを行う。圧縮機には、圧縮機構を駆動させる電動機が設けられる。電動機に電力が供給されると、電動機が駆動し、電動機が駆動すると、圧縮機が駆動して冷媒回路が冷凍サイクルを行う。これにより、空気調和が行われる。
   〈電力変換装置〉
 電力変換装置(40)は、交流電源(2)に接続される。この例では、電力変換装置(40)は、受電経路(P40)により分電盤(3)と接続される。例えば、受電経路(P40)は、電力ケーブルにより構成される。このような構成により、電力変換装置(40)は、受電経路(P40)と分電盤(3)とを経由して交流電源(2)と電気的に接続され、交流電源(2)から分電盤(3)と受電経路(P40)とを経由して供給された電力を受けて動作する。具体的には、電力変換装置(40)は、交流電源(2)から供給された電力を所望の電圧および周波数を有する出力電力に変換し、その出力電力を冷媒回路の圧縮機に設けられた電動機に供給する。例えば、電力変換装置(40)は、交流電力を直流電力に変換するコンバータや、スイッチング動作により力流電力を交流電力に変換するインバータなどを有する。
   〈調整装置〉
 調整装置(50)は、空気調和機(10)の電源入力端における皮相電力を調整する。これにより、空気調和機(10)から交流電源(2)に与えられる皮相電力が調整され、交流電源(2)の力率(以下「電源力率」と記載)が調整される。この例では、調整装置(50)は、空気調和機(10)に組み込まれている。そして、空気調和機(10)が駆動状態である場合に、調整装置(50)が駆動状態となり、空気調和機(10)が停止状態である場合に、調整装置(50)が停止状態となる。また、この例では、調整装置(50)は、調整部(60)と、冷却器(65)と、第1電流検出器(71)と、第2電流検出器(72)と、電圧検出器(73)と、制御部(80)とを有する。
    《調整部》
 調整部(60)は、空気調和機(10)の電源入力端における皮相電力を調整する。この例では、調整部(60)は、空気調和機(10)の電源入力端の一例である受電経路(P40)の中途部に接続され、受電経路(P40)における皮相電力を調整する。
 この例では、調整部(60)は、図2に示されたアクティブフィルタ(61)である。アクティブフィルタ(61)は、交流電源(2)に接続される。具体的には、アクティブフィルタ(61)は、受電経路(P40)に接続され、受電経路(P40)と分電盤(3)とを経由して交流電源(2)に電気的に接続される。
 なお、この例では、アクティブフィルタ(61)は、電源力率を改善する。具体的には、アクティブフィルタ(61)は、交流電源(2)の無効成分を補償することができる補償電流を受電経路(P40)に供給することで、電源力率の改善を行う。
 また、この例では、アクティブフィルタ(61)は、電源力率の改善とともに、交流電源(2)の電流(Ir0,Is0,It0)に含まれる高調波電流を低減する。具体的には、アクティブフィルタ(61)は、交流電源(2)の無効成分を補償することができ、且つ、交流電源(2)の電流(Ir0,Is0,It0)の波形が正弦波に近づくように、交流電源(2)の電流(Ir0,Is0,It0)に含まれる高調波電流の逆位相の電流である補償電流を受電経路(P40)に供給する。
 図2に示すように、アクティブフィルタ(61)は、ローパスフィルタ(61a)と、リアクトル(61b)と、スイッチング素子(61c)と、電解コンデンサ(61d)とを有する。スイッチング素子(61c)は、制御部(80)により制御される。
    《冷却器》
 冷却器(65)は、アクティブフィルタ(61)を冷却する。冷却器(65)は、アクティブフィルタ(61)の冷却を行う駆動状態と、アクティブフィルタ(61)の冷却を行わない停止状態とに切り換えられる。そして、冷却器(65)の動作は、制御部(80)により制御される。この例では、冷却器(65)は、空気調和機(10)の駆動中に駆動状態となり、空気調和機(10)の停止中に停止状態となる。例えば、冷却器(65)は、制御部(80)により駆動と停止を切り換え可能なファンである。このファンは、アクティブフィルタ(61)の冷却のために専ら使用される専用ファンであってもよいし、アクティブフィルタ(61)ではない他の構成部品(例えば冷媒回路の熱交換器)に空気を搬送する搬送ファンであってもよい。例えば、アクティブフィルタ(61)は、搬送ファンにより生成される空気の搬送経路に配置されてもよい。
    《第1電流検出器》
 第1電流検出器(71)は、空気調和機(10)に入力される電流(Ir1,Is1,It1)を検出する。この例では、第1電流検出器(71)は、第1電流センサ(71r)と、第2電流センサ(71t)とを有する。第1電流センサ(71r)と第2電流センサ(71t)は、空気調和機(10)に入力される三相の電流(Ir1,Is1,It1)のうちR相の電流(Ir1)とT相の電流(It1)をそれぞれ検出する。第1電流検出器(71)の検出結果は、制御部(80)に送信される。例えば、第1電流検出器(71)は、カレントトランスであってもよい。
     《第2電流検出器》
 第2電流検出器(72)は、調整装置(50)に入力される電流(Ir1a,Is1a,It1a)を検出する。この例では、第2電流検出器(72)は、第3電流センサ(72r)と、第4電流センサ(72t)とを有する。第3電流センサ(72r)と第4電流センサ(72t)は、調整装置(50)に入力される三相の電流(Ir1a,Is1a,It1a)のうちR相の電流(Ir1a)とT相の電流(It1a)をそれぞれ検出する。第2電流検出器(72)の検出結果は、制御部(80)に送信される。例えば、第2電流検出器(72)は、カレントトランスであってもよい。
    《電圧検出器》
 電圧検出器(73)は、交流電源(2)の電圧である電源電圧(Vrs)を検出する。電圧検出器(73)の検出結果は、制御部(80)に送信される。
    《制御部》
 制御部(80)は、目標皮相電力に応じた情報に基づいて、調整部(60)を制御する。具体的には、制御部(80)は、電源力率が予め定められた目標力率(例えば1)となるように、調整部(60)を制御する。例えば、制御部(80)は、プロセッサと、プロセッサを動作させるためのプログラムやデータを記憶するメモリとにより構成される。
  〔負荷器の運転状態と電源力率との関係〕
 ここで、負荷器(20)の運転状態と電源力率との関係について説明する。負荷器(20)の運転状態毎に、その運転状態において負荷器(20)に入力される電流(Ir2,Is2,It2)の波形が概ね決まっている。したがって、負荷器(20)の運転状態から、負荷器(20)に入力される電流(Ir2,Is2,It2)の波形を推定することができる。また、負荷器(20)に入力される電流(Ir2,Is2,It2)の波形から、負荷器(20)の動作に起因する電源力率の変動量を推定することができる。
 また、空気調和機(10)に入力される電流(Ir1,Is1,It1)と、負荷器(20)に入力される電流(Ir2,Is2,It2)との合計は、交流電源(2)から供給される電流(Ir0,Is0,It0)に相当する。そして、空気調和機(10)の動作に起因する電源力率の変動量と、負荷器(20)の動作に起因する電源力率の変動量との合計は、交流電源(2)の力率の変動量に相当する。
  〔制御部の詳細〕
 この例では、制御部(80)は、電源力率が目標力率となるように、負荷器(20)の動作に起因する電源力率の変動量に応じて、目標皮相電力を決定する。例えば、目標力率が“1”であり、負荷器(20)の動作に起因する電源力率の変動量が“-0.3(遅れ力率)”である場合、空気調和機(10)の動作に起因する電源力率の変動量が“+0.3(進み力率)”となるように目標皮相電力が決定される。そして、制御部(80)は、空気調和機(10)から交流電源(2)に与えられる皮相電力が目標皮相電力となるように、調整部(60)を制御する。このように、空気調和機(10)から交流電源(2)に与えられる皮相電力を制御することにより、空気調和機(10)の動作に起因する電源力率の変動量を制御することができ、電源力率を目標力率に近づけることができる。
 具体的には、この例では、制御部(80)は、負荷器(20)の運転状態に基づいて、負荷器(20)に入力される電流(Ir2,Is2,It2)を推定し、電源力率が目標力率となるように、負荷器(20)に入力される電流(Ir2,Is2,It2)の推定値に応じて、調整装置(50)に入力される電流(Ir1a,Is1a,It1a)の目標値(以下「目標補償電流」と記載)を決定する。なお、目標補償電流は、目標皮相電力の一例である。そして、制御部(80)は、調整装置(50)に入力される電流(Ir1a,Is1a,It1a)が目標補償電流となるように、調整部(60)を制御する。このように、調整装置(50)に入力される電流(Ir1a,Is1a,It1a)を制御することにより、空気調和機(10)から交流電源(2)に与えられる皮相電力を制御することができる。
 なお、この例では、制御部(80)は、状態検出部(31)の検出結果に基づいて調整部(60)を制御する。状態検出部(31)は、負荷器(20)の運転状態に関する情報が入力される入力部(30)の一例である。負荷器(20)の運転状態に関する情報は、目標皮相電力を導出するために利用される情報であり、目標皮相電力に応じた情報の一例である。制御部(80)は、入力部(30)に入力される情報(負荷器(20)の運転状態に関する情報)に基づいて調整部(60)を制御する。
 また、この例では、制御部(80)は、空気調和機(10)が駆動状態である場合に駆動状態となり、空気調和機(10)が停止状態である場合に停止状態となる。
  〔制御部の構成〕
 図3に示すように、制御部(80)は、位相検出部(81)と、負荷電流推定部(82)と、第1電流演算部(83)と、第2電流演算部(84)と、減算部(85)と、電流指令演算部(86)と、ゲートパルス発生器(87)とを有する。
 位相検出部(81)は、電圧検出器(73)により検出された電源電圧(Vrs)を入力し、電源電圧(Vrs)の位相を検出する。
 負荷電流推定部(82)は、状態検出部(31)の検出結果と、位相検出部(81)により検出された電源電圧(Vrs)の位相とに基づいて、負荷器(20)に入力される電流(Ir2,Is2,It2)を推定し、その推定された電流を負荷電流(iL)として出力する。具体的には、負荷電流推定部(82)は、負荷器(20)の運転状態と負荷器(20)に入力される電流(Ir2,Is2,It2)の波形とが対応付けられたテーブルデータを有する。そして、負荷電流推定部(82)は、テーブルデータの中から、状態検出部(31)から出力された検出信号(S1)に示された負荷器(20)の運転状態に対応する負荷器(20)に入力される電流(Ir2,Is2,It2)の波形を検出し、その検出された負荷器(20)に入力される電流(Ir2,Is2,It2)の波形を構成する複数の電流値の中から、位相検出部(81)により検出された電源電圧(Vrs)の位相に対応する電流値を検出し、その検出された電流値を負荷電流(iL)として出力する。
 第1電流演算部(83)は、第1電流検出器(71)により検出された空気調和機(10)に入力される電流(Ir1,Is1,It1)(この例では電流(Ir1,It1))と、位相検出部(81)により検出された電源電圧(Vrs)の位相と、負荷電流推定部(82)により推定された負荷器(20)に入力される電流(Ir1a,Is1a,It1a)とに基づいて、第1電流指令値(i1)を生成する。第1電流指令値(i1)は、空気調和機(10)および負荷器(20)の動作に起因する電源力率の変動に応じた値である。この例では、第1電流演算部(83)は、第1電流検出器(71)の出力と負荷電流推定部(82)の出力とを合成し、その合成により得られる合成電流から基本波と高調波電流成分とを抽出し、その抽出された成分を第1電流指令値(i1)として出力する。
 第2電流演算部(84)は、第2電流検出器(72)により検出された調整装置(50)に入力される電流(Ir1a,Is1a,It1a)(この例では電流(Ir1a,It1a))と、位相検出部(81)により検出された電源電圧(Vrs)の位相とに基づいて、第2電流指令値(i2)を生成する。第2電流指令値(i2)は、調整装置(50)の動作に起因する電源力率の変動に応じた値である。この例では、第2電流演算部(84)は、第2電流検出器(72)の出力から基本波と高調波成分とを抽出し、その抽出された成分を第2電流指令値(i2)として出力する。
 減算部(85)は、第1電流演算部(83)により生成された第1電流指令値(i1)から第2電流演算部(84)により生成された第2電流指令値(i2)を減算する。電流指令演算部(86)は、減算部(85)の出力(第1電流指令値(i1)から第2電流指令値(i2)を減算して得られる指令値)に基づいて、目標指令値(Iref)を生成する。目標指令値(Iref)は、目標補償電流(調整装置(50)に入力される電流(Ir1a,Is1a,It1a)の目標値)に相当する。具体的には、電流指令演算部(86)は、減算部(85)の出力の逆位相の電流を示す目標指令値(Iref)を生成する。
 ゲートパルス発生器(87)は、電流指令演算部(86)により生成された目標指令値(Iref)と、第2電流演算部(84)により生成された第2電流指令値(i2)とに基づいて、スイッチング指令値(G)を生成する。スイッチング指令値(G)は、調整部(60)の動作を制御するための指令値である。具体的には、ゲートパルス発生器(87)は、第2電流指令値(i2)が目標指令値(Iref)となるように、第2電流指令値(i2)と目標指令値(Iref)との偏差に応じてスイッチング指令値(G)を生成する。
  〔比較例の説明〕
 次に、本開示の比較例である特許文献1(特許第6299831号)の装置について説明する。特許文献1の装置では、第2検出部が交流電源と分電盤との間に配置され、制御器が空気調和機の内部に配置されているので、第2検出部から制御器までの距離が長くなっている。そのため、第2検出部と制御器との配線を長くしなければならないので、第2検出部と制御器との配線に要する費用(例えば工事費用)を削減することが困難である。また、第2検出部の電流容量を大きくしなければならないので、第2検出部の製造に要する費用を削減することが困難である。このように、第2検出部と制御器との配線に要する費用や第2検出部の製造に要する費用などを含む初期費用を削減することが困難である。
  〔実施形態1の特徴(1)〕
 以上のように、実施形態1の空気調和機(10)は、交流電源(2)に接続される空気調和機(10)であって、空気調和機(10)の電源入力端における皮相電力を調整する調整部(60)と、空気調和機(10)から交流電源(2)に与えられる皮相電力の目標値に応じた情報に基づいて調整部(60)を制御する制御部(80)とを備える。
 実施形態1では、分電盤(3)の電源側に電流センサを設ける必要がないので、このような電流センサを設ける場合よりも、配線に要する費用や電流センサの製造に要する費用などの費用(例えば初期費用)を低減することができる。
  〔実施形態1の特徴(2)〕
 また、実施形態1の空気調和機(10)では、空気調和機(10)から交流電源(2)に与えられる皮相電力の目標値に応じた情報は、空気調和機(10)とともに交流電源(2)に接続される機器(20)の運転状態に関する情報である。空気調和機(10)とともに交流電源(2)に接続される機器(20)の運転状態に関する情報は、入力部(30)に入力される。制御部(80)は、入力部(30)に入力される情報に基づいて調整部(60)を制御する。
 実施形態1では、空気調和機(10)とともに交流電源(2)に接続される機器(20)の運転状態に関する情報に基づいて調整部(60)を制御することにより、交流電源(2)の力率が目標力率(例えば1)に近づくように、空気調和機(10)から交流電源(2)に与えられる皮相電力を制御することができる。
  〔実施形態1の特徴(3)〕
 また、実施形態1の空気調和機(10)では、入力部(30)は、空気調和機(10)とともに交流電源(2)に接続される機器(20)の運転状態を検出する状態検出部(31)を含む。制御部(80)は、状態検出部(31)の検出結果に基づいて調整部(60)を制御する。
 実施形態1では、状態検出部(31)の検出結果に基づいて調整部(60)を制御することにより、交流電源(2)の力率が目標力率(例えば1)に近づくように、空気調和機(10)から交流電源(2)に与えられる皮相電力を制御することができる。
 (実施形態2)
 図4は、実施形態2のシステム(1)の構成を例示する。この実施形態2のシステム(1)は、状態検出部(31)と制御部(80)の動作が実施形態1のシステム(1)と異なる。実施形態2のシステム(1)のその他の構成は、実施形態1のシステム(1)の構成と同様である。
  〔状態検出部〕
 実施形態2では、状態検出部(31)は、負荷器(20)の運転状態と空気調和機(10)の運転状態とを検出する。言い換えると、実施形態2の状態検出部(31)は、負荷器(20)の運転状態に関する情報と空気調和機(10)の運転状態に関する情報とが入力される入力部(30)の一例である。例えば、状態検出部(31)は、ビルの中央監視室に設けられる中央監視装置である。この中央監視装置は、ビルに設けられた複数の機器の運動状態を管理する。
 この例では、状態検出部(31)は、負荷器(20)の運転状態と空気調和機(10)の運転状態とを検出し、その検出結果を示す検出信号(S1)を出力する。また、状態検出部(31)は、空気調和機(10)の外部に設けられる。
  〔制御部〕
 実施形態1と同様に、実施形態2において、制御部(80)は、目標皮相電力(空気調和機(10)から交流電源(2)に与えられる皮相電力の目標値)に応じた情報に基づいて、調整部(60)を制御する。具体的には、制御部(80)は、電源力率(交流電源(2)の力率)が目標力率(例えば1)となるように、調整部(60)を制御する。
 また、実施形態2では、制御部(80)は、空気調和機(10)の駆動状態である場合だけでなく、空気調和機(10)の停止状態である場合にも動作するように構成される。この例では、制御部(80)は、空気調和機(10)の停止中であっても、目標皮相電力に応じた情報に基づいて調整部(60)を制御する。具体的には、制御部(80)は、空気調和機(10)の停止中であっても、状態検出部(31)の検出結果に基づいて調整部(60)を制御する。
 そして、実施形態2では、空気調和機(10)および負荷器(20)の両方が駆動状態である場合、制御部(80)は、空気調和機(10)および負荷器(20)の動作に起因する電源力率の変動量に応じて目標皮相電力を決定する。また、空気調和機(10)が駆動状態であり且つ負荷器(20)が停止状態である場合、制御部(80)は、空気調和機(10)の動作に起因する電源力率の変動量に応じて目標皮相電力を決定する。そして、負荷器(20)が駆動状態であり且つ空気調和機(10)が停止状態である場合、制御部(80)は、負荷器(20)の動作に起因する電源力率の変動量に応じて目標皮相電力を決定する。
  〔実施形態2の特徴(1)〕
 以上のように、実施形態2の空気調和機(10)では、実施形態1の空気調和機(10)と同様の効果を得ることができる。例えば、分電盤(3)の電源側に電流センサを設ける必要がないので、このような電流センサを設ける場合よりも、配線に要する費用や電流センサの製造に要する費用などの費用(例えば初期費用)を低減することができる。
  〔実施形態2の特徴(2)〕
 また、実施形態2の空気調和機(10)では、制御部(80)は、空気調和機(10)の停止中であっても、空気調和機(10)から交流電源(2)に与えられる皮相電力の目標値に応じた情報に基づいて調整部(60)を制御する。
 実施形態2では、空気調和機(10)の停止中であっても調整部(60)を制御することができる。これにより、空気調和機(10)の停止中であっても、交流電源(2)の力率が目標力率(例えば1)に近づくように、空気調和機(10)から交流電源(2)に与えられる皮相電力を制御することができる。
 (実施形態3)
 図5は、実施形態3のシステム(1)の構成を例示する。この実施形態3のシステム(1)は、図1に示した状態検出部(31)に代えて、設定部(32)を備える。また、実施形態3のシステム(1)は、制御部(80)の動作が実施形態1のシステム(1)と異なる。実施形態3のシステム(1)のその他の構成は、実施形態1のシステム(1)と同様である。
  〔設定部〕
 設定部(32)は、負荷器(20)の種類および有無のうち少なくとも一方が設定される。具体的には、設定部(32)は、複数のスイッチを有し、これらの複数のスイッチのオンオフにより負荷器(20)の種類および有無のうち少なくとも一方が設定される。例えば、設定部(32)の複数のスイッチに対してそれぞれ異なる負荷器(20)の種類が対応付けられる。そして、設定部(32)の複数のスイッチの1つをオン状態からオフ状態にすると、そのスイッチに割り当てられた種類の負荷器(20)がシステム(1)に設けられていることが設定部(32)に設定される。一方、設定部(32)の複数のスイッチの1つをオフ状態からオン状態にすると、そのスイッチに割り当てられた種類の負荷器(20)がシステム(1)に設けられていないことが設定部(32)に設定される。例えば、設定部(32)は、ディップスイッチ(Dual In-line PackageSwitch)である。
 また、この例では、設定部(32)は、負荷器(20)の種類および有無のうち少なくとも一方が設定され、設定部(32)の設定を示す設定信号(S2)を出力する。また、設定部(32)は、調整装置(50)に設けられる。言い換えると、設定部(32)は、空気調和機(10)に組み込まれる。
  〔制御部〕
 実施形態1と同様に、実施形態3において、制御部(80)は、目標皮相電力(空気調和機(10)から交流電源(2)に与えられる皮相電力の目標値)に応じた情報に基づいて、調整部(60)を制御する。具体的には、制御部(80)は、電源力率(交流電源(2)の力率)が目標力率(例えば1)となるように、調整部(60)を制御する。
  〔負荷器の種類および有無と電源力率との関係〕
 ここで、負荷器(20)の種類および有無と電源力率との関係について説明する。特定の負荷器(20)(例えばエレベータ)では、その負荷器(20)が駆動する時間帯と駆動中の負荷器(20)に入力される電流(Ir2,Is2,It2)の波形とが概ね決まっている。したがって、システム(1)に設けられる負荷器(20)の種類および有無の少なくとも一方から、負荷器(20)に入力される電流(Ir2,Is2,It2)の波形を推定することができる。また、負荷器(20)に入力される電流(Ir2,Is2,It2)の波形から、負荷器(20)の動作に起因する電源力率の変動量を推定することができる。そして、空気調和機(10)の動作に起因する電源力率の変動量と、負荷器(20)の動作に起因する電源力率の変動量との合計は、交流電源(2)の力率の変動量に相当する。
  〔制御部の詳細〕
 実施形態3では、実施形態1と同様に、制御部(80)は、電源力率が目標力率となるように、負荷器(20)の動作に起因する電源力率の変動量に応じて、目標皮相電力を決定する。そして、制御部(80)は、空気調和機(10)から交流電源(2)に与えられる皮相電力が目標皮相電力となるように、調整部(60)を制御する。
 具体的には、実施形態3では、制御部(80)は、システム(1)に設けられる負荷器(20)の種類および有無の少なくとも一方に基づいて負荷器(20)に入力される電流(Ir2,Is2,It2)を推定し、電源力率が目標力率となるように、負荷器(20)に入力される電流(Ir2,Is2,It2)の推定値に応じて、目標補償電流(調整装置(50)に入力される電流(Ir1a,Is1a,It1a)の目標値)を決定する。そして、制御部(80)は、調整装置(50)に入力される電流(Ir1a,Is1a,It1a)が目標補償電流となるように、調整部(60)を制御する。
 なお、実施形態3では、制御部(80)は、設定部(32)の設定に基づいて調整部(60)を制御する。設定部(32)は、負荷器(20)の運転状態に関する情報が入力される入力部(30)の一例であり、負荷器(20)の運転状態に関する情報は、目標皮相電力に応じた情報の一例である。制御部(80)は、入力部(30)に入力される情報(負荷器(20)の運転状態に関する情報)に基づいて調整部(60)を制御する。
 具体的には、実施形態3では、制御部(80)の負荷電流推定部(82)は、設定部(32)の設定と、位相検出部(81)により検出された電源電圧(Vrs)の位相とに基づいて、負荷器(20)に入力される電流(Ir2,Is2,It2)を推定し、その推定された電流を負荷電流(iL)として出力する。具体的には、負荷電流推定部(82)は、設定部(32)の設定(負荷器(20)の種類および有無の少なくとも一方)と負荷器(20)に入力される電流(Ir2,Is2,It2)の波形とが対応付けられたテーブルデータを有する。そして、負荷電流推定部(82)は、テーブルデータの中から、設定部(32)から出力された設定信号(S2)に示された設定部(32)の設定に対応する負荷器(20)に入力される電流(Ir2,Is2,It2)の波形を検出し、その検出された負荷器(20)に入力される電流(Ir2,Is2,It2)の波形を構成する複数の電流値の中から、位相検出部(81)により検出された電源電圧(Vrs)の位相に対応する電流値を検出し、その検出された電流値を負荷電流(iL)として出力する。
 また、実施形態3では、制御部(80)は、空気調和機(10)の駆動中だけでなく、空気調和機(10)の停止中であっても動作するように構成される。具体的には、制御部(80)は、空気調和機(10)の停止中であっても、設定部(32)の設定に基づいて調整部(60)を制御する。
  〔実施形態3の特徴(1)〕
 以上のように、実施形態3の空気調和機(10)では、実施形態1の空気調和機(10)と同様の効果を得ることができる。例えば、分電盤(3)の電源側に電流センサを設ける必要がないので、このような電流センサを設ける場合よりも、配線に要する費用や電流センサの製造に要する費用などの費用(例えば初期費用)を低減することができる。
  〔実施形態3の特徴(2)〕
 また、実施形態3の空気調和機(10)では、空気調和機(10)から交流電源(2)に与えられる皮相電力の目標値に応じた情報は、空気調和機(10)とともに交流電源(2)に接続される機器(20)の運転状態に関する情報である。空気調和機(10)とともに交流電源(2)に接続される機器(20)の運転状態に関する情報は、入力部(30)に入力される。入力部(30)は、空気調和機(10)とともに交流電源(2)に接続される機器(20)の種類および有無のうち少なくとも一方が設定される設定部(32)を含む。制御部(80)は、設定部(32)の設定に基づいて調整部(60)を制御する。
 実施形態3では、設定部(32)の設定に基づいて調整部(60)を制御することにより、交流電源(2)の力率が目標力率(例えば1)に近づくように、空気調和機(10)から交流電源(2)に与えられる皮相電力を制御することができる。
 (実施形態4)
 図6は、実施形態4のシステム(1)の構成を例示する。この実施形態4のシステム(1)は、分電盤(3)と、複数(この例では2つ)の空気調和機(10)と、負荷器(20)と、設定部(32)とを備える。実施形態4の分電盤(3)と負荷器(20)と設定部(32)の構成は、実施形態3の分電盤(3)と負荷器(20)と設定部(32)の構成と同様である。実施形態4の複数の空気調和機(10)の各々の構成は、実施形態3の空気調和機(10)の構成と同様である。なお、実施形態4では、設定部(32)は、複数の空気調和機(10)に兼用される。また、実施形態4では、設定部(32)は、調整装置(50)の外部に設けられる。言い換えると、設定部(32)は、空気調和機(10)の外部に設けられる。
  〔実施形態4の特徴(1)〕
 以上のように、実施形態4の空気調和機(10)では、実施形態3の空気調和機(10)と同様の効果を得ることができる。例えば、分電盤(3)の電源側に電流センサを設ける必要がないので、このような電流センサを設ける場合よりも、配線に要する費用や電流センサの製造に要する費用などの費用(例えば初期費用)を低減することができる。
  〔実施形態4の特徴(2)〕
 また、実施形態4のシステム(1)では、設定部(32)は、複数の空気調和機(10)に兼用される。
 実施形態4では、複数の空気調和機(10)の各々における設定(空気調和機(10)とともに交流電源(2)に接続される機器(20)の種類および有無のうち少なくとも一方の設定)を一括で行うことができるので、複数の空気調和機(10)の各々に対して設定部(32)を1つずつ設ける場合よりも、複数の空気調和機(10)の各々における設定を容易に行うことができる。
 (実施形態の変形例1)
 なお、以上の説明では、調整部(60)がアクティブフィルタ(61)である場合を例に挙げたが、これに限定されない。
 例えば、図7に示すように、調整部(60)は、進相コンデンサ(62a)とコンデンサ切り換え機構(62b)であってもよい。コンデンサ切り換え機構(62b)は、進相コンデンサ(62a)と交流電源(2)との接続を切り換える。コンデンサ切り換え機構(62b)は、制御部(80)により制御される。例えば、コンデンサ切り換え機構(62b)は、サイリスタにより構成される。
 また、図8に示すように、調整部(60)は、遅相リアクトル(63a)とリアクトル切り換え機構(63b)であってもよい。リアクトル切り換え機構(63b)は、遅相リアクトル(63a)と交流電源(2)との接続を切り換える。リアクトル切り換え機構(63b)は、制御部(80)により制御される。例えば、リアクトル切り換え機構(63b)は、サイリスタにより構成される。
 以上を纏めると、調整部(60)は、アクティブフィルタ(61)、進相コンデンサ(62a)および進相コンデンサ(62a)と交流電源(2)との接続を切り換えるコンデンサ切り換え機構(62b)、遅相リアクトル(63a)および遅相リアクトル(63a)と交流電源(2)との接続を切り換えるリアクトル切り換え機構(63b)のうち少なくとも1つを含むものであってもよい。
 (実施形態の変形例2)
 また、以上の説明では、目標皮相電力(空気調和機(10)から交流電源(2)に与えられる皮相電力の目標値)に応じた情報の一例として負荷器(20)(空気調和機(10)とともに交流電源(2)に接続される機器)の運転状態に関する情報を例に挙げたが、これに限定されない。例えば、目標皮相電力に応じた情報は、空気調和機(10)から交流電源(2)に与えられる皮相電力の目標値を示す皮相電力指令であってもよい。
 以上のように、実施形態の変形例2の空気調和機(10)では、空気調和機(10)から交流電源(2)に与えられる皮相電力の目標値に応じた情報は、空気調和機(10)とともに交流電源(2)に接続される機器(20)の運転状態に関する情報、または、空気調和機(10)から交流電源(2)に与えられる皮相電力の目標値を示す皮相電力指令である。
 (実施形態の変形例3)
 なお、制御部(80)は、負荷器(20)の運転状態に基づいて、負荷器(20)の動作に起因する電源力率(交流電源(2)の力率)の変動量を推定し、電源力率が目標力率となるように、負荷器(20)の動作に起因する電源力率の変動量に応じて、目標補償電流(調整装置(50)に入力される電流(Ir1a,Is1a,It1a)の目標値)を決定するように構成されてもよい。
 例えば、図9に示すように、制御部(80)は、図3に示した負荷電流推定部(82)に代えて、負荷力率推定部(88)を有してもよい。負荷力率推定部(88)は、状態検出部(31)の検出結果に基づいて、負荷器(20)の動作に起因する電源力率の変動量を推定し、その推定された変動量を負荷力率(PL)として出力する。具体的には、負荷力率推定部(88)は、負荷器(20)の運転状態と負荷器(20)の動作に起因する電源力率の変動量とが対応付けられたテーブルデータを有する。そして、負荷力率推定部(88)は、テーブルデータの中から、状態検出部(31)から出力された検出信号(S1)に示された負荷器(20)の運転状態に対応する負荷器(20)の動作に起因する電源力率の変動量を検出し、その検出された変動量を負荷力率(PL)として出力する。
 または、図9に示した制御部(80)において、負荷力率推定部(88)は、設定部(32)の設定に基づいて、負荷器(20)の動作に起因する電源力率の変動量を推定し、その推定された変動量を負荷力率(PL)として出力するように構成されてもよい。具体的には、負荷力率推定部(88)は、設定部(32)の設定(負荷器(20)の種類および有無の少なくとも一方)と負荷器(20)の動作に起因する電源力率の変動量とが対応付けられたテーブルデータを有してもよい。そして、負荷力率推定部(88)は、テーブルデータの中から、設定部(32)から出力された検出信号(S1)に示された設定部(32)の設定に対応する負荷器(20)の動作に起因する電源力率の変動量を検出し、その検出された変動量を負荷力率(PL)として出力してもよい。
 (実施形態の変形例4)
 また、以上の説明において、空気調和機(10)の停止中に駆動するアクティブフィルタ(61)のキャリア周波数は、空気調和機(10)の駆動中に駆動するアクティブフィルタ(61)のキャリア周波数よりも低くてもよい。
 例えば、制御部(80)は、空気調和機(10)の駆動中にアクティブフィルタ(61)を駆動させる場合には、アクティブフィルタ(61)のキャリア周波数が予め定められた第1周波数となるようにアクティブフィルタ(61)の動作を制御する。一方、制御部(80)は、空気調和機(10)の停止中にアクティブフィルタ(61)を駆動させる場合には、アクティブフィルタ(61)のキャリア周波数が予め定められた第2周波数となるようにアクティブフィルタ(61)の動作を制御する。なお、第2周波数は、第1周波数よりも低い周波数である。
 以上のように、実施形態の変形例4の空気調和機(10)では、空気調和機(10)の停止中に駆動するアクティブフィルタ(61)のキャリア周波数は、空気調和機(10)の駆動中に駆動するアクティブフィルタ(61)のキャリア周波数よりも低い。
 実施形態の変形例4では、空気調和機(10)の停止中に駆動するアクティブフィルタ(61)のキャリア周波数を、空気調和機(10)の駆動中に駆動するアクティブフィルタ(61)のキャリア周波数よりも低くすることにより、空気調和機(10)の停止中に駆動するアクティブフィルタ(61)の温度上昇を低減することができる。これにより、アクティブフィルタ(61)の連続駆動時間を長くすることができる。
 (実施形態の変形例5)
 また、以上の説明において、アクティブフィルタ(61)には、アクティブフィルタ(61)を構成する部品の温度を検出する温度センサ(図示を省略)が設けられてもよい。この温度センサの検出結果は、制御部(80)に送信される。そして、制御部(80)は、アクティブフィルタ(61)を構成する部品の温度に応じて、アクティブフィルタ(61)のキャリア周波数を変更してもよい。
 例えば、温度管理の対象となるアクティブフィルタ(61)の構成部品がアクティブフィルタ(61)のキャリア周波数の増加に応じて温度が低下する傾向がある部品(例えばリアクトル(61b))である場合、制御部(80)は、その構成部品の温度が予め定められた第1温度を上回ると、アクティブフィルタ(61)のキャリア周波数を増加させ、その構成部品の温度が予め定められた第2温度を下回ると、アクティブフィルタ(61)のキャリア周波数を減少させる。なお、第2温度は、第1温度以下の温度に設定される。
 また、温度管理の対象となるアクティブフィルタ(61)の構成部品がアクティブフィルタ(61)のキャリア周波数の増加に応じて温度が上昇する傾向がある部品(例えばスイッチング素子(61c))である場合、制御部(80)は、その構成部品の温度が予め定められた第1温度を上回ると、アクティブフィルタ(61)のキャリア周波数を減少させ、その構成部品の温度が予め定められた第2温度を下回ると、アクティブフィルタ(61)のキャリア周波数を増加させる。なお、第2温度は、例えば、第1温度以下の温度に設定される。
 以上のように、実施形態の変形例5の空気調和機(10)では、制御部(80)は、アクティブフィルタ(61)を構成する部品の温度に応じて、アクティブフィルタ(61)のキャリア周波数を変更する。
 実施形態の変形例5では、アクティブフィルタ(61)を構成する部品の温度に応じてアクティブフィルタ(61)のキャリア周波数を変更することにより、アクティブフィルタ(61)の温度上昇を低減することができる。これにより、アクティブフィルタ(61)の連続駆動時間を長くすることができる。
 (実施形態の変形例6)
 また、以上の説明において、アクティブフィルタ(61)には、アクティブフィルタ(61)に含まれるリアクトル(61b)およびスイッチング素子(61c)の各々の温度を検出する温度センサ(図示を省略)が設けられてもよい。この温度センサの検出結果は、制御部(80)に送信される。そして、制御部(80)は、アクティブフィルタ(61)に含まれるリアクトル(61b)およびスイッチング素子(61c)の各々の温度に応じて、アクティブフィルタ(61)のキャリア周波数を変更してもよい。
 例えば、制御部(80)は、アクティブフィルタ(61)のリアクトル(61b)の温度が予め定められた第1判定温度を上回ると、アクティブフィルタ(61)のキャリア周波数を増加させ、アクティブフィルタ(61)のスイッチング素子(61c)の温度が予め定められた第2判定温度を上回ると、アクティブフィルタ(61)のキャリア周波数を減少させる。なお、第1判定温度は、例えば、スイッチング素子(61c)の温度、または、スイッチング素子(61c)の温度に予め定められた第1補正温度(ゼロよりも高い温度)を加算して得られる温度に設定される。第2判定温度は、例えば、リアクトル(61b)の温度、または、リアクトル(61b)の温度に予め定められた第2補正温度(ゼロよりも高い温度)を加算して得られる温度に設定される。
 以上のように、実施形態の変形例6の空気調和機(10)では、制御部(80)は、アクティブフィルタ(61)に含まれるリアクトル(61b)およびスイッチング素子(61c)の各々の温度に応じて、アクティブフィルタ(61)のキャリア周波数を変更する。
 実施形態の変形例6では、アクティブフィルタ(61)に含まれるリアクトル(61b)およびスイッチング素子(61c)の温度に応じてアクティブフィルタ(61)のキャリア周波数を変更することにより、アクティブフィルタ(61)の温度上昇を低減することができる。これにより、アクティブフィルタ(61)の連続駆動時間を長くすることができる。
 (実施形態の変形例7)
 また、以上の説明において、制御部(80)は、空気調和機(10)の停止中にアクティブフィルタ(61)が駆動する場合に、冷却器(65)を駆動させてもよい。
 例えば、制御部(80)は、空気調和機(10)の停止中に、上述のアクティブフィルタ(61)のキャリア周波数の変更によるアクティブフィルタ(61)の温度上昇を十分に低減することができない場合に、冷却器(65)を駆動させる。
 以上のように、実施形態の変形例7の空気調和機(10)では、制御部(80)は、空気調和機(10)の停止中にアクティブフィルタ(61)が駆動する場合に、冷却器(65)を駆動する。
 実施形態の変形例7では、空気調和機(10)の停止中にアクティブフィルタ(61)が駆動する場合に冷却器(65)を強制的に駆動させることができるので、空気調和機(10)の停止中に駆動するアクティブフィルタ(61)の温度上昇を低減することができる。これにより、アクティブフィルタ(61)の連続駆動時間を長くすることができる。
 (実施形態の変形例8)
 また、以上の説明において、アクティブフィルタ(61)は、ワイドギャップ半導体を用いて構成されてもよい。例えば、アクティブフィルタ(61)に含まれるスイッチング素子は、ワイドギャップ半導体の一例であるシリコンカーバイト,酸化ガリウム,ダイヤモンドのいずれかを用いて構成されてもよい。
 以上のように、実施形態の変形例8の空気調和機(10)では、アクティブフィルタ(61)は、ワイドギャップ半導体を用いて構成される。
 実施形態の変形例8では、ワイドギャップ半導体を用いてアクティブフィルタ(61)を構成することにより、アクティブフィルタ(61)における電力損失を低減することができる。これにより、アクティブフィルタ(61)の温度上昇を低減することができ、アクティブフィルタ(61)の連続駆動時間を長くすることができる。
 (実施形態の変形例9)
 また、以上の説明において、制御部(80)は、力率割引が実施される時間帯(例えば8時から22時までの時間帯)を含む14時間以上の期間において調整部(60)が連続的に駆動するように、調整部(60)を制御してもよい。
 以上のように、実施形態の変形例9の空気調和機(10)では、制御部(80)は、力率割引が実施される時間帯を含む14時間以上の期間において調整部(60)が連続的に駆動するように、調整部(60)を制御する。
 実施形態の変形例9では、力率割引が実施される時間帯を含む14時間以上の期間において調整部(60)が連続的に駆動するように調整部(60)を制御することにより、力率割引が実施される時間帯ではない時間帯であっても、交流電源(2)の力率が目標力率(例えば1)に近づくように、空気調和機(10)から交流電源(2)に与えられる皮相電力を制御することができる。
 (その他の実施形態)
 なお、システム(1)において行われるデータ(または信号)の送受信の方式は、有線方式であってもよいし、無線方式であってもよい。具体的には、各種センサ(例えば第1電流検出器(71)や第2電流検出器(72)など)と制御部(80)との間のデータの送受信、入力部(30)(状態検出部(31)または設定部(32))と制御部(80)との間の信号の送受信などは、有線方式であってもよいし、無線方式であってもよい。なお、このようなデータ(または信号)の送受信の方式を無線方式とすることにより、配線を削除することができる。
 また、以上の説明では、調整装置(50)が空気調和機(10)に組み込まれている場合を例に挙げたが、これに限定されない。例えば、調整装置(50)は、空気調和機(10)の外部に設けられていてもよいし、空気調和機(10)とは異なる別の機器(例えば負荷器(20))に組み込まれていてもよい。これと同様に、調整部(60)および制御部(80)は、空気調和機(10)に組み込まれていてもよいし、空気調和機(10)の外部に設けられていてもよいし、空気調和機(10)とは異なる別の機器(例えば負荷器(20))に組み込まれていてもよい。
 また、実施形態1および実施形態2では、状態検出部(31)が空気調和機(10)の外部に設けられる場合を例に挙げたが、これに限定されない。例えば、状態検出部(31)は、空気調和機(10)に組み込まれていてもよいし、空気調和機(10)とは異なる別の機器(例えば負荷器(20))に組み込まれていてもよい。
 また、実施形態3および実施形態4では、設定部(32)が空気調和機(10)に組み込まれている場合および空気調和機(10)の外部に設けられている場合を例に挙げたが、これに限定されない。例えば、設定部(32)は、空気調和機(10)とは異なる別の機器(例えば負荷器(20))に組み込まれていてもよい。
 実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり置換したりしてもよい。
 以上説明したように、本開示は、空気調和機として有用である。
1     システム
2     交流電源
3     分電盤
10    空気調和機
20    負荷器(交流電源に接続される機器)
30    入力部
31    状態検出部
32    設定部
40    電力変換装置
50    調整装置
60    調整部
65    冷却器
80    制御部

Claims (13)

  1.  交流電源(2)に接続される空気調和機(10)であって、
     前記空気調和機(10)の電源入力端における皮相電力を調整する調整部(60)と、
     前記空気調和機(10)から前記交流電源(2)に与えられる皮相電力の目標値に応じた情報に基づいて前記調整部(60)を制御する制御部(80)とを備える
    ことを特徴とする空気調和機。
  2.  請求項1において、
     前記調整部(60)は、前記交流電源(2)に接続されるアクティブフィルタ(61)、進相コンデンサ(62a)および該進相コンデンサ(62a)と前記交流電源(2)との接続を切り換えるコンデンサ切り換え機構(62b)、遅相リアクトル(63a)および該遅相リアクトル(63a)と前記交流電源(2)との接続を切り換えるリアクトル切り換え機構(63b)のうち少なくとも1つを含む
    ことを特徴とする空気調和機。
  3.  請求項1または2において、
     前記空気調和機(10)から前記交流電源(2)に与えられる皮相電力の目標値に応じた情報は、前記空気調和機(10)とともに前記交流電源(2)に接続される機器(20)の運転状態に関する情報、または、前記空気調和機(10)から前記交流電源(2)に与えられる皮相電力の目標値を示す皮相電力指令である
    ことを特徴とする空気調和機。
  4.  請求項1または2において、
     前記空気調和機(10)から前記交流電源(2)に与えられる皮相電力の目標値に応じた情報は、前記空気調和機(10)とともに前記交流電源(2)に接続される機器(20)の運転状態に関する情報であり、
     前記空気調和機(10)とともに前記交流電源(2)に接続される機器(20)の運転状態に関する情報は、入力部(30)に入力され、
     前記制御部(80)は、前記入力部(30)に入力される情報に基づいて前記調整部(60)を制御する
    ことを特徴とする空気調和機。
  5.  請求項4において、
     前記入力部(30)は、前記空気調和機(10)とともに前記交流電源(2)に接続される機器(20)の運転状態を検出する状態検出部(31)を含み、
     前記制御部(80)は、前記状態検出部(31)の検出結果に基づいて前記調整部(60)を制御する
    ことを特徴とする空気調和機。
  6.  請求項4において、
     前記入力部(30)は、前記空気調和機(10)とともに前記交流電源(2)に接続される機器(20)の種類および有無のうち少なくとも一方が設定される設定部(32)を含み、
     前記制御部(80)は、前記設定部(32)の設定に基づいて前記調整部(60)を制御する
    ことを特徴とする空気調和機。
  7.  請求項1~6のいずれか1つにおいて、
     前記制御部(80)は、前記空気調和機(10)の停止中であっても、前記空気調和機(10)から前記交流電源(2)に与えられる皮相電力の目標値に応じた情報に基づいて前記調整部(60)を制御する
    ことを特徴とする空気調和機。
  8.  請求項7において、
     前記調整部(60)は、前記交流電源(2)に接続されるアクティブフィルタ(61)を含み、
     前記空気調和機(10)の停止中に駆動する前記アクティブフィルタ(61)のキャリア周波数は、前記空気調和機(10)の駆動中に駆動する前記アクティブフィルタ(61)のキャリア周波数よりも低い
    ことを特徴とする空気調和機。
  9.  請求項7において、
     冷却器(65)を備え、
     前記調整部(60)は、前記交流電源(2)に接続されるアクティブフィルタ(61)を含み、
     前記冷却器(65)は、前記アクティブフィルタ(61)を冷却し、
     前記制御部(80)は、前記空気調和機(10)の停止中に前記アクティブフィルタ(61)が駆動する場合に、前記冷却器(65)を駆動させる
    ことを特徴とする空気調和機。
  10.  請求項1~9のいずれか1つにおいて、
     前記調整部(60)は、前記交流電源(2)に接続されるアクティブフィルタ(61)を含み、
     前記制御部(80)は、前記アクティブフィルタ(61)を構成する部品の温度に応じて前記アクティブフィルタ(61)のキャリア周波数を変更する
    ことを特徴とする空気調和機。
  11.  請求項10において、
     前記アクティブフィルタ(61)は、リアクトル(61b)と、スイッチング素子(61c)とを含み、
     前記制御部(80)は、前記アクティブフィルタ(61)に含まれる前記リアクトル(61b)および前記スイッチング素子(61c)の各々の温度に応じて前記アクティブフィルタ(61)のキャリア周波数を変更する
    ことを特徴とする空気調和機。
  12.  請求項1~11のいずれか1つにおいて、
     前記調整部(60)は、前記交流電源(2)に接続されるアクティブフィルタ(61)を含み、
     前記アクティブフィルタ(61)は、ワイドギャップ半導体を用いて構成される
    ことを特徴とする空気調和機。
  13.  請求項1~12のいずれか1つにおいて、
     前記制御部(80)は、力率割引が実施される時間帯を含む14時間以上の期間において前記調整部(60)が連続的に駆動するように、前記調整部(60)を制御する
    ことを特徴とする空気調和機。
PCT/JP2020/023301 2019-06-24 2020-06-12 空気調和機 WO2020262051A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080045498.7A CN114008903A (zh) 2019-06-24 2020-06-12 空调机
AU2020308761A AU2020308761B2 (en) 2019-06-24 2020-06-12 Air conditioner
EP20833070.4A EP3985476A4 (en) 2019-06-24 2020-06-12 AIR CONDITIONER
US17/561,185 US20220113058A1 (en) 2019-06-24 2021-12-23 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019116480A JP6819731B2 (ja) 2019-06-24 2019-06-24 空気調和機
JP2019-116480 2019-06-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/561,185 Continuation US20220113058A1 (en) 2019-06-24 2021-12-23 Air conditioner

Publications (1)

Publication Number Publication Date
WO2020262051A1 true WO2020262051A1 (ja) 2020-12-30

Family

ID=73994114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023301 WO2020262051A1 (ja) 2019-06-24 2020-06-12 空気調和機

Country Status (6)

Country Link
US (1) US20220113058A1 (ja)
EP (1) EP3985476A4 (ja)
JP (1) JP6819731B2 (ja)
CN (1) CN114008903A (ja)
AU (1) AU2020308761B2 (ja)
WO (1) WO2020262051A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032426A1 (ja) * 2021-09-02 2023-03-09 東芝キヤリア株式会社 電力変換装置
JP7206532B1 (ja) 2021-10-05 2023-01-18 ダイキン工業株式会社 空気調和装置および制御システム
DE102022120261A1 (de) 2022-06-01 2023-12-07 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Ladeanordnung und Ladepark

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225537A (ja) * 2011-04-15 2012-11-15 Mitsubishi Electric Corp 室外ユニット及びその室外ユニットを備えた冷凍サイクル装置
JP6299831B1 (ja) 2016-09-30 2018-03-28 ダイキン工業株式会社 アクティブフィルタ装置、空気調和装置、及び空気調和システム
JP2018061351A (ja) * 2016-10-05 2018-04-12 三菱重工サーマルシステムズ株式会社 アクティブフィルタ制御装置、アクティブフィルタ装置、電力変換装置、制御方法及びプログラム
WO2018105737A1 (ja) * 2016-12-09 2018-06-14 ダイキン工業株式会社 アクティブフィルタ内蔵機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110004685A (ko) * 2009-07-08 2011-01-14 엘지전자 주식회사 공기조화기
JP5606645B1 (ja) * 2014-03-27 2014-10-15 松尾建設株式会社 目標値設定型需要電力比例制御装置
KR102303048B1 (ko) * 2014-12-16 2021-09-17 주성엔지니어링(주) 에어컨 및 그 구동 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225537A (ja) * 2011-04-15 2012-11-15 Mitsubishi Electric Corp 室外ユニット及びその室外ユニットを備えた冷凍サイクル装置
JP6299831B1 (ja) 2016-09-30 2018-03-28 ダイキン工業株式会社 アクティブフィルタ装置、空気調和装置、及び空気調和システム
JP2018061351A (ja) * 2016-10-05 2018-04-12 三菱重工サーマルシステムズ株式会社 アクティブフィルタ制御装置、アクティブフィルタ装置、電力変換装置、制御方法及びプログラム
WO2018105737A1 (ja) * 2016-12-09 2018-06-14 ダイキン工業株式会社 アクティブフィルタ内蔵機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3985476A4

Also Published As

Publication number Publication date
EP3985476A1 (en) 2022-04-20
US20220113058A1 (en) 2022-04-14
CN114008903A (zh) 2022-02-01
JP2021002970A (ja) 2021-01-07
EP3985476A4 (en) 2023-02-15
JP6819731B2 (ja) 2021-01-27
AU2020308761B2 (en) 2023-02-23
AU2020308761A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
WO2020262051A1 (ja) 空気調和機
CN110062999B (zh) 有源滤波装置内置设备
JP2012533724A (ja) 冗長冷却方法およびシステム
US10797584B2 (en) Active filter device, air conditioning device, and air conditioning system
KR101482101B1 (ko) 공기조화기
JP2005534270A (ja) 低減された部品定格の電力伝達装置
EP1952072B1 (en) Apparatus and method for controlling air conditioner
US11577186B2 (en) Active filter system and air conditioning device
JP2012070531A (ja) インバータ装置
US6997002B2 (en) Air conditioning unit and method of operating the same
JPWO2018109805A1 (ja) 高調波電流補償装置および空気調和システム
JPH1066201A (ja) 車両電源制御装置
JP6834754B2 (ja) アクティブフィルタ装置、及びそれを用いた空気調和装置
JP6834753B2 (ja) アクティブフィルタ装置、及びそれを用いた空気調和装置
JP2019022344A5 (ja)
WO2016170633A1 (ja) 空気調和機
JP2018191373A5 (ja)
KR20080047694A (ko) 역률 보상 기능이 구비된 공기조화기
JP2019124372A (ja) 電源システム搭載型空気調和装置
JPH03255843A (ja) インバータエアコン
JPH1175374A (ja) 蓄電式空気調和装置
JPS6370040A (ja) 空気調和機の集中制御装置
KR20190020521A (ko) 공기조화기
JP2012135163A (ja) 空気調和機
KR20040003690A (ko) 인버터 에어컨의 주파수/상전압 보상방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020833070

Country of ref document: EP

Effective date: 20220111

ENP Entry into the national phase

Ref document number: 2020308761

Country of ref document: AU

Date of ref document: 20200612

Kind code of ref document: A