WO2020262039A1 - Substrate processing method and substrate processing system - Google Patents

Substrate processing method and substrate processing system Download PDF

Info

Publication number
WO2020262039A1
WO2020262039A1 PCT/JP2020/023189 JP2020023189W WO2020262039A1 WO 2020262039 A1 WO2020262039 A1 WO 2020262039A1 JP 2020023189 W JP2020023189 W JP 2020023189W WO 2020262039 A1 WO2020262039 A1 WO 2020262039A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
organic film
treatment
soc
resist
Prior art date
Application number
PCT/JP2020/023189
Other languages
French (fr)
Japanese (ja)
Inventor
聡一郎 岡田
志村 悟
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2020262039A1 publication Critical patent/WO2020262039A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • B05D1/38Successively applying liquids or other fluent materials, e.g. without intermediate treatment with intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • This disclosure relates to a substrate processing method and a substrate processing system.
  • Patent Document 1 describes an organic film such as amorphous carbon (a-C) or SOC (spin-on carbon), a hard mask layer which is an inorganic film, and an organic film on a lower layer film such as a SiN film to be finally etched. It is disclosed that the antireflection film and the photoresist film of the above are formed in this order. Further, Patent Document 1 discloses that the aC film and the SOC film serve as a mask for etching the lower layer film to be the final etching target.
  • a-C amorphous carbon
  • SOC spin-on carbon
  • the technique according to the present disclosure increases the etching resistance of the organic film when the organic film which is the base film of the resist film and is used as the etching mask is formed by the coating process.
  • One aspect of the present disclosure is a substrate processing method for processing a substrate, in which a coating liquid is supplied onto a treatment target layer of the substrate to form a carbon-containing organic film, and the organic film is formed.
  • the step of heat-treating the substrate the carbons contained in the organic film are cleaved, and the carbons whose bonds are cleaved are moved in the organic film and then recombined with other carbons.
  • the etching resistance of the organic film can be increased.
  • FIG. 1 It is a figure which shows typically the outline of the structure of the substrate processing system which concerns on 1st Embodiment. It is a top view which shows the outline of the structure of the 1st processing system of FIG. 1 schematically. It is a front view which shows the outline of the structure of the 1st processing system of FIG. 1 schematically. It is a back view schematically showing the outline of the structure of the first processing system of FIG. It is a figure which shows the SEM image of the cross section of the SOC film after the SOC film baking treatment and before the plasma treatment as a modification treatment is performed. It is a figure which shows the SEM image of the cross section of the SOC film after plasma treatment. It is a figure which shows the mass density of the SOC film before and after the plasma treatment.
  • a resist coating process of applying a resist solution on a semiconductor wafer (hereinafter referred to as "wafer") to form a resist film, an exposure process of exposing the resist film, and an exposed resist film are applied.
  • Development processing and the like for developing are sequentially performed, and a resist pattern is formed on the wafer.
  • the process target layer is etched or the like using the resist pattern as a mask to form a predetermined pattern on the process target layer.
  • Patent Document 1 an organic film such as an a-C film or an SOC film, a hard mask layer which is an inorganic film, an organic antireflection film, and a photoresist film are sequentially formed on the lower layer film to be finally etched. It is disclosed that an organic film such as an aC film or an SOC film is formed and used as an etching mask for the lower layer film to be finally etched.
  • an organic film as an etching mask for the final etching target is required to have high etching resistance.
  • an aC film formed by the CVD method is used as the organic film, the etching resistance of the organic film is high, but the throughput and embedding property are low.
  • a coating film such as a SoC film formed by the coating treatment is used as the organic film, the throughput and embedding property are higher than those of the aC film.
  • the etching resistance of the current coating film such as the SoC film is not as high as that of the aC film.
  • the technique according to the present disclosure increases the etching resistance of the organic film when the organic film which is the base film of the resist film and is used as the etching mask is formed by the coating treatment.
  • the etching resistance of the organic film is improved by performing plasma treatment with plasma or heat treatment while irradiating an electron beam on the organic film formed by the coating treatment. I found out.
  • the bonds between the carbons contained in the organic film are cleaved by plasma treatment or the like, and the carbons whose bonds are cleaved move in the organic film and recombine with other carbons.
  • the etching resistance of the organic film means the resistance at the time of etching using the organic film as an etching mask, and more specifically, a SiN film or the like using the organic film as an etching mask. Means the resistance to etching of the layer to be treated. The same applies to “etching resistance of SOC film” and “etching resistance of aC film”.
  • FIG. 1 is a diagram schematically showing an outline of a configuration of a substrate processing system according to a first embodiment.
  • the substrate processing system 1 has three processing systems 10, 20, and 30 that perform desired processing on the wafer W as a substrate. Further, the substrate processing system 1 is provided with a control unit 40.
  • the control unit 40 is, for example, a computer equipped with a CPU, a memory, or the like, and has a program storage unit (not shown).
  • the program storage unit stores programs that control various processes in the substrate processing system 1.
  • the program may be recorded on a computer-readable storage medium and may be installed on the control unit 40 from the storage medium. Part or all of the program may be realized by dedicated hardware (circuit board).
  • FIG. 2 is a plan view schematically showing an outline of the configuration of the first processing system 10.
  • 3 and 4 are a front view and a rear view, respectively, schematically showing an outline of the internal configuration of the first processing system 10.
  • the first processing system 10 includes a cassette station 100 into which a cassette C accommodating a plurality of wafers W is carried in and out, and a plurality of processing devices for performing predetermined processing on the wafer W. It has a processing station 101 and a wafer.
  • the first processing system 10 has a configuration in which the cassette station 100, the processing station 101, and the interface station 103 that transfers the wafer W between the exposure apparatus 102 adjacent to the processing station 101 are integrally connected. Have.
  • the cassette station 100 is provided with a cassette mounting stand 110.
  • the cassette mounting table 110 is provided with a plurality of cassette mounting plates 111 on which the cassette C is mounted when the cassette C is carried in and out of the substrate processing system 1.
  • the cassette station 100 is provided with a wafer transfer device 113 that is movable on a transfer path 112 extending in the X direction.
  • the wafer transfer device 113 is also movable in the vertical direction and around the vertical axis ( ⁇ direction), and is a transfer device for the cassette C on each cassette mounting plate 111 and the third block G3 of the processing station 101 described later. Wafer W can be conveyed between them.
  • the processing station 101 is provided with a plurality of, for example, four blocks equipped with various devices, that is, first blocks G1 to fourth blocks G4.
  • a first block G1 is provided on the front side of the processing station 101 (negative direction in the X direction in FIG. 2), and on the back side of the processing station 101 (positive direction in the X direction in FIG. 2, upper side in the drawing).
  • the third block G3 described above is provided on the cassette station 100 side (negative direction side in the Y direction of FIG. 2) of the processing station 101, and the interface station 103 side of the processing station 101 (positive in the Y direction of FIG. 2).
  • a fourth block G4 is provided on the directional side).
  • a plurality of liquid processing devices for example, a developing processing device 120, an organic film forming device 121, an inorganic film forming device 122, and a resist coating device 123 are arranged in this order from the bottom in the first block G1. There is.
  • the developing processing apparatus 120 develops the wafer W. Specifically, the developing processing apparatus 120 supplies a developing solution onto the resist film of the wafer W to form a resist pattern.
  • the organic film forming apparatus 121 forms a carbon-containing organic film which is a film used as a mask for transferring a pattern to the processing target layer of the wafer W and is a base film of a resist film. Specifically, the organic film forming apparatus 121 applies an organic film material as a material for forming the organic film to the layer to be processed of the wafer W to form the organic film.
  • the organic film is an SOC film
  • the organic film material is an SOC material.
  • the layer to be treated is, for example, a SiN film.
  • the inorganic film forming apparatus 122 forms an inorganic film on the organic film of the wafer W after the reforming treatment by the reforming apparatus described later. Specifically, the inorganic film forming apparatus 122 coats the organic film with an inorganic film material as a material for forming the inorganic film to form the inorganic film.
  • the inorganic film is an SOG (spin-on-glass) film, and the inorganic film material is an SOG material.
  • the inorganic film is not limited to SOG, and may be another Si-containing inorganic film such as a film used as a Si-containing antireflection film (SiARC).
  • the resist coating device 123 applies a resist solution to the wafer W to form a resist film.
  • the resist coating apparatus 123 is placed on the organic film of the wafer W after the modification treatment by the reforming apparatus described later, and more specifically, on the inorganic film formed on the organic film. A resist solution is applied to form a resist film.
  • the developing processing apparatus 120, the organic film forming apparatus 121, the inorganic film forming apparatus 122, and the resist coating apparatus 123 are arranged side by side in the horizontal direction.
  • the number and arrangement of the developing processing apparatus 120, the organic film forming apparatus 121, the inorganic film forming apparatus 122, and the resist coating apparatus 123 can be arbitrarily selected.
  • film formation is performed by a spin coating method, that is, spin coating.
  • a spin coating method for example, a predetermined processing liquid is discharged onto the wafer W from the coating nozzle, and the wafer W is rotated to diffuse the processing liquid on the surface of the wafer W.
  • the second block G2 is provided with heat treatment devices 130 for performing heat treatment such as heating and cooling of the wafer W side by side in the vertical direction and the horizontal direction.
  • the number and arrangement of these heat treatment devices 130 can be arbitrarily selected. Further, known devices can be used for the heat treatment device 130.
  • a plurality of delivery devices 140, 141, 142, 143, 144, 145, 146 are provided in the third block G3 in order from the bottom. Further, in the fourth block G4, a plurality of delivery devices 150, 151, and 152 are provided in order from the bottom.
  • a wafer transfer region D is formed in a region surrounded by the first block G1 to the fourth block G4.
  • a wafer transfer region D for example, a plurality of wafer transfer devices 160 having transfer arms 160a that can move in the Y direction, the X direction, the ⁇ direction, and the vertical direction are arranged.
  • the wafer transfer device 160 moves in the wafer transfer area D and transfers the wafer W to desired devices in the surrounding first block G1, second block G2, third block G3, and fourth block G4. it can.
  • the wafer transfer region D is provided with a shuttle transfer device 170 that linearly conveys the wafer W between the third block G3 and the fourth block G4.
  • the shuttle transport device 170 is linearly movable in the Y direction of FIG. 4, for example.
  • the shuttle transfer device 170 moves in the Y direction while supporting the wafer W, and can transfer the wafer W between the transfer device 142 of the third block G3 and the transfer device 152 of the fourth block G4.
  • a wafer transfer device 180 is provided next to the third block G3 on the positive direction side in the X direction.
  • the wafer transfer device 180 has, for example, a transfer arm 180a that can move in the X direction, the ⁇ direction, and the vertical direction.
  • the wafer transfer device 180 can move up and down while supporting the wafer W to transfer the wafer W to each transfer device in the third block G3.
  • the interface station 103 is provided with a wafer transfer device 190 and a transfer device 191.
  • the wafer transfer device 190 has, for example, a transfer arm 190a that can move in the Y direction, the ⁇ direction, and the vertical direction.
  • the wafer transfer device 190 can, for example, support the wafer W on the transfer arm 190a and transfer the wafer W between each transfer device, the transfer device 191 and the exposure device 102 in the fourth block G4.
  • the second processing system 20 has an etching apparatus 201 and a reforming apparatus 202. Although not shown, the second processing system 20 is provided with a cassette station for loading and unloading the cassette C and a wafer transfer device for transporting the wafer W.
  • the etching apparatus 201 etches a desired film on the wafer W with plasma, and is composed of, for example, a RIE (Reactive Ion Etching) apparatus.
  • RIE Reactive Ion Etching
  • the reformer 202 cuts the bonds between carbons contained in the organic film (SOC film in this example) on the wafer W, and after the carbons at which the bonds have been broken are moved in the organic film, other carbons are used.
  • Plasma treatment with plasma is performed as a predetermined treatment (hereinafter, may be referred to as "modification treatment") for recombination with.
  • the reforming treatment by the reforming apparatus 202 increases the mass density of the organic film. Specifically, the modification treatment densifies the portion of the organic film on the film surface side and increases the mass density of the portion.
  • a known etching apparatus can be used for the etching apparatus 201. Further, as the physical structure of the reforming apparatus 202, a structure similar to that of a known apparatus for performing plasma treatment with plasma can be used.
  • the wafer W is subjected to a base film peeling process or the like.
  • the third processing system 30 has a peeling device 301.
  • the peeling device 301 peels the layer used as a mask at the time of etching from the wafer W to which the etching process of the layer to be processed has been performed. Specifically, for example, the organic film used as a mask when etching the film to be treated is removed by a lift-off treatment using a predetermined removing solution.
  • the third processing system 30 is also provided with a cassette station for loading and unloading the cassette C and a wafer transfer device for transporting the wafer W.
  • a SiN film as a layer to be processed is formed in advance on the wafer W.
  • the SOC material as a coating liquid is applied onto the processing target layer of the wafer W to form an SOC film.
  • the thickness of the SOC film formed by the organic film forming apparatus 121 is, for example, 50 to 3000 nm.
  • the wafer W on which the SOC film is formed is heat-treated, that is, the SOC film is baked.
  • the temperature of the wafer W during the baking process of the SOC film is, for example, 250 ° C. to 750 ° C.
  • the cassette C containing the wafer W after the baking treatment of the SOC film is conveyed to the second processing system 20, and the reformer 202 performs plasma treatment with plasma as the reforming treatment on the wafer W. Is done.
  • This plasma treatment is performed on the entire surface of the wafer.
  • the processing chamber (not shown) within the housing the wafers W of the reformer 202, for example, is introduced H 2 gas and Ar gas, an atmosphere of a mixed gas of H 2 gas and Ar gas Below the plasma is generated. Further, in addition to the H 2 gas and the Ar gas, a carbon-containing gas such as CF 4 gas or CH 4 gas may be introduced.
  • the plasma treatment as the modification treatment breaks the bonds between carbons (for example, cross-linking bonds) contained in the SOC film. Further, by this plasma treatment, the polymer containing carbon whose bond is broken moves in the SOC membrane, and then rebonds to the carbon whose bond is broken. As a result, the mass density of the SOC film is increased, and the etching resistance of the SOC film is improved. Specifically, the plasma treatment densifies the portion of the SOC film on the film surface side, increases the mass density of the portion, and improves the etching resistance of the portion.
  • the cassette C containing the wafer W after the plasma treatment in the reforming apparatus 202 is conveyed to the first processing system 10, and the SOG material is placed on the SOC film of the wafer W in the inorganic film forming apparatus 122. Is applied to form an SOG film.
  • the heat treatment apparatus 130 the wafer W on which the SOG film is formed is heat-treated, that is, the SOG film is baked.
  • the thickness of the SOG film formed by the inorganic film forming apparatus 122 is 10 to 100 nm.
  • the resist liquid is applied onto the SOG film of the wafer W to form the resist film.
  • the resist solution for example, ArF resist solution is used.
  • the heat treatment apparatus 130 the wafer W on which the resist film is formed is heat-treated, that is, the resist film is subjected to PAB treatment.
  • the thickness of the resist film formed by the resist coating device 123 is 20 to 100 nm.
  • the exposure apparatus 102 an exposure process is performed on the wafer W, and the resist film is exposed to a predetermined pattern.
  • the heat treatment apparatus 130 heat-treats the exposed wafer W, that is, the resist film is subjected to the PEB treatment.
  • the cassette C containing the developed wafer W is conveyed to the second processing system 20, and the etching apparatus 201 performs an etching process of the SOG film using the resist pattern as a mask on the wafer W. .. As a result, an SOG pattern is formed on the SOC film.
  • the etching apparatus 201 performs an etching process of the layer to be processed using the SOC pattern as a mask. As a result, a pattern of the layer to be processed is formed.
  • the SOG pattern may be removed before etching the layer to be processed. The removal of the SOG pattern can be performed, for example, by an etching process in the etching apparatus 201.
  • An etching apparatus 201 different from the above-mentioned SOG film etching, SOC film etching, and processing target layer etching may be used.
  • the cassette C containing the wafer W after etching the layer to be processed is conveyed to the third processing system 30, and the stripping device 301 performs the stripping process of the SOC pattern on the wafer W.
  • Lift-off processing is performed.
  • a predetermined removal liquid is supplied onto the wafer W, and the removal liquid dissolves the non-dense portion of the SOC pattern on the processing target layer side.
  • the removal liquid used in the lift-off treatment is, for example, nitric acid, hydrofluoric acid, hydrochloric acid, a mixed solution of sulfuric acid and hydrogen peroxide, a mixed solution of ammonia and hydrogen peroxide, an organic solvent and the like.
  • the SOG pattern remains on the SOC pattern during this lift-off process, the SOG pattern is also removed together with the SOC pattern. Further, when not only the portion of the SOC pattern on the film surface side but the entire SOC pattern is densified, the peeling process is the same as the conventional process for peeling the aC film formed by the CVD method. Processing is done.
  • the wafer W is returned to the cassette C, whereby the substrate process in the substrate processing system 1 is completed.
  • the substrate processing method includes a step of supplying an organic film material on the layer to be processed of the wafer W to form a carbon-containing organic film, and a wafer W on which the organic film is formed.
  • the process includes a step of performing the plasma treatment as described on the organic film after the heat treatment, and a step of supplying a resist liquid onto the organic film subjected to the plasma treatment to form a resist film.
  • the organic film which is the base film of the resist film and is used as the etching mask and is formed by the coating treatment is subjected to the above-mentioned modification treatment before the resist film is formed. Perform plasma processing. This method is based on the results of diligent studies by the present inventors.
  • the present inventors have repeated various experiments in order to improve the etching resistance of the organic film formed by the coating treatment, which is the base film of the resist film. As a result, even if the organic film is baked, the etching resistance of the organic film does not increase to the etching resistance of the aC film, but by performing the plasma treatment on the organic film, the organic film is formed. It was found that the etching resistance was improved to the level of the aC film.
  • FIG. 5 is a diagram showing an SEM image of a cross section of the SOC film after the SOC film baking treatment and before the plasma treatment as the reforming treatment is performed
  • FIG. 6 is a diagram showing a cross section of the SOC film after the plasma treatment. It is a figure which shows the SEM image of.
  • FIG. 7 is a diagram showing the mass density of the SOC film before and after the plasma treatment
  • FIG. 8 is a diagram showing the indentation hardness of the SOC film before and after the plasma treatment
  • FIG. 9 is a diagram showing the etching rate of the SOC film before and after the plasma treatment. is there.
  • FIG. 10 is a diagram showing the component analysis results of the SOC film before and after the plasma treatment.
  • plasma was generated in the treatment chamber in which CF 4 gas, NF 3 gas, and H 2 gas were introduced at flow rates of 10 sccm, 10 sccm, and 180 sccm, respectively.
  • the inductively coupled power and the bias power were 2000 W, respectively.
  • the processing conditions were the same as those in the etching of the SiN film.
  • plasma was generated in the processing chamber in which CH 2 F 2 gas, O 2 gas, and Ar gas were introduced at flow rates of 20 sccm, 30 sccm, and 300 sccm, respectively, and the inductively coupled power and the bias power were 300 W, respectively. ..
  • the SOC film F1 after the SOC film baking treatment and before the plasma treatment is composed of grains having a large particle size, and large voids are present between the grains.
  • the SOC film F2 after the plasma treatment has a reduced film thickness (for example, the film thickness which was about 250 nm before the plasma treatment becomes about 100 nm), but the particles have a small particle size. It is composed of no large voids between grains. That is, the SOC film F2 after the plasma treatment is denser than the SOC film F2 before the plasma treatment.
  • the mass density of the SOC film F2 after the plasma treatment is higher than that of the SOC film F1 before the plasma treatment, and further higher than that of the aC film. Further, as shown in FIG. 8, the indentation hardness of the SOC film F2 after the plasma treatment is higher than that of the SOC film F1 before the plasma treatment, which is equivalent to that of the aC film.
  • the etching rate of the SOC film F2 after the plasma treatment is less than half that of the SOC film F2 before the plasma treatment, as compared with the etching under the processing conditions for etching the SiN film.
  • AC film is equivalent. That is, the SOC film F2 after the plasma treatment has high resistance to etching of the treatment target layer when the treatment target layer is a SIN film, and is equivalent to the aC film.
  • the etching rate of the SOC film F2 after the plasma treatment is lower than that of the SOC film F2 before the plasma treatment even when the etching is performed under the treatment conditions for etching the silicon oxide film.
  • -It is equivalent to C film. That is, the SOC film F2 after the plasma treatment has improved resistance to etching of the treatment target layer even when the treatment target layer is an oxide film such as a silicon oxide film.
  • FIG. 11 is a schematic view for explaining the reason why the SOC film is densified and the etching resistance is improved.
  • a plurality of polymers P are entangled in the particles having a large particle size that constitute the SOC film after the baking treatment and before the reforming treatment.
  • FIG. 11B when energy E is applied to the entangled polymer P by plasma or the like, the bonds between the carbon atoms P1 constituting the polymer P are broken.
  • the polymer containing carbon atoms whose bonds have been broken moves in the SOC film due to the energy generated by the collision of molecules with a large molecular weight (for example, Ar gas molecules) with the surface of the SOC film during plasma treatment.
  • a large molecular weight for example, Ar gas molecules
  • the carbon atoms whose bonds have been broken are rebonded to each other. Unlike this, even if the polymer containing carbon atoms with broken bonds does not flow in the SOC film and the carbon atoms with broken bonds rebond to each other on the spot, the density of the SOC film does not change. Does not occur.
  • the carbon atom whose bond has been broken moves in the SOC film and then recombines, so that the carbon atom P1 has a diamond shape in the SOC film as shown in FIG. 11 (C). They are arranged so as to form a structure having three-dimensional regularity (hereinafter, may be abbreviated as "three-dimensional structure”) such as a structure.
  • An SOC film in which carbon atoms are arranged so as to form a three-dimensional structure such as a diamond-type structure is formed into an SOC film in which carbon atoms are arranged so as to form a structure having a planar regularity such as a graphite-type structure.
  • the mass density is higher. That is, the SOC film is densified by the above recombination. As a result, it is considered that the etching resistance is improved.
  • the above points are the same not only for the SOC film but also for other carbon-containing organic films formed by the coating treatment.
  • the bonds between the carbons contained in the organic film are cut before the resist film is formed.
  • a modification process is performed in which the carbon whose bond is broken is moved in the organic film and then rebonded with other carbon.
  • plasma treatment is performed as the reforming treatment. Therefore, according to the present embodiment, when an organic film which is a base film of a resist film and is used as an etching mask is formed by a coating treatment, the etching resistance of the organic film can be increased.
  • plasma treatment as a modification treatment is performed on the entire organic film before forming the resist film.
  • the entire organic film is subjected to plasma treatment as a modification treatment before forming the pattern of the organic film.
  • plasma treatment is performed after forming the pattern of the organic film, the shape of the pattern is impaired as the pattern of the organic film becomes densified, and the pattern of the organic film is used as an etching mask. It may not be possible to properly etch the layer to be treated.
  • the shape of the pattern of the organic film is not affected by the plasma treatment, so that the pattern of the organic film is not affected. Can be appropriately etched for the layer to be processed using the above as an etching mask.
  • plasma treatment as a reforming treatment is performed after forming a resist pattern on the organic film, the remaining state of the resist pattern differs depending on the position of the wafer W, so that the time during which plasma is irradiated depends on the position of the wafer W. Therefore, the degree of SOC modification differs depending on the position of the wafer W.
  • the SOG can have a high selectivity between the SOC film and the etching as a mask in the etching, as in the present embodiment.
  • An inorganic membrane such as a membrane may be used. Thereby, the etching of the SOC film itself can be appropriately performed.
  • the SOC film itself can be appropriately etched by increasing the thickness of the mask in the etching of the SOC film itself.
  • the above points are the same not only for the SOC film but also for other carbon-containing organic films formed by the coating treatment.
  • the SOC film is formed by the plasma of the inert gas. Since it is struck, the SOC film can be densified.
  • FIG. 12 is a diagram showing an SEM image of a cross section of the SOC film after plasma treatment when the film thickness of the SOC film is large.
  • the entire SOC film was densified after the plasma treatment, but when the thickness of the SOC film is large, as shown in FIG. 12, the film surface side of the SOC film F2 after the plasma treatment Only the part F21 of is densified. This is because when the film thickness of the SOC film is large, the plasma does not reach the deep part of the SOC film. Even when the SOC film is thin, only the film surface portion of the SOC film can be densified by reducing the execution time of the plasma treatment.
  • the SOC film By densifying only the film surface portion of the SOC film, the SOC film can be removed by the lift-off treatment.
  • the removal process of the SOC film when the entire SOC film is densified is the same process as the conventional process for peeling the a-C film formed by the CVD method, and the a-C film is peeled off.
  • the lift-off process can be performed easily and in a short time as compared with the conventional process for the purpose.
  • the depth from the film surface of the portion to be densified in the SOC film can be controlled by changing the execution time of the plasma treatment.
  • FIG. 13 is a front view showing an outline of the configuration of the substrate processing system according to the second embodiment.
  • the second processing system 20 that performs etching with plasma or the like is provided with a reforming device 202 that performs plasma treatment as a reforming treatment.
  • the substrate processing system 50 in which the resist film forming treatment and the like are performed is provided with the reforming device 131 that performs plasma treatment as the reforming treatment. Throughput can be improved by providing the reformer 131 in the substrate processing system 50 in which the resist film forming process or the like is performed.
  • FIG. 14 is a front view showing an outline of the configuration of the substrate processing system according to the third embodiment.
  • plasma treatment is performed as a modification treatment for the organic film.
  • the reforming treatment is not limited to this.
  • the reformer 132 of the substrate processing system 60 according to the present embodiment of FIG. 14 heats the wafer W while irradiating the organic film of the wafer W with an electron beam as a reforming process for the organic film. ..
  • the bonds between carbons contained in the organic film are broken. Due to the heat applied to the wafer W, the polymer containing carbon whose bonds have been broken flows in the organic film, and the carbons whose bonds have been broken are rebonded to each other. As a result, the carbon atoms are arranged in the organic film so as to form a three-dimensional structure including a diamond-shaped structure. Therefore, as a modification treatment for the organic film, the organic film of the wafer W is heated while irradiating the organic film with an electron beam, so that the organic film can be densified and the etching resistance can be improved.
  • the present inventors have confirmed that by performing the modification treatment according to the present embodiment, the SOC film as an organic film becomes denser and the indentation hardness becomes higher than that before the treatment, and the etching resistance is improved. We have confirmed that it can be improved.
  • the modification treatment according to this embodiment is useful, for example, when it is necessary to densify the entire organic film having a large film thickness.
  • the processing conditions for the reforming treatment according to this embodiment are as follows, for example. Electron beam acceleration voltage: 1kV-70kV Oxygen concentration in the processing chamber of the reforming treatment equipment: ⁇ 100ppm Wafer W temperature: 250 ° C to 500 ° C
  • the processing chamber of the reformer 125 may be an atmosphere of an inert gas such as nitrogen gas.
  • the substrate processing system 60 in which the resist film is formed and the like is provided with a reforming device 132 that heats the wafer W while irradiating the organic film of the wafer W with an electron beam.
  • a reformer that performs the same treatment may be provided outside the processing system in which the resist film forming treatment or the like is performed.
  • the organic film is baked after the formation of the organic film and before the modification treatment.
  • the baking treatment involves an unnecessary solvent in the organic film and an unnecessary low molecular weight polymer. This is a process for stabilizing the organic film by removing the solvent, and may be omitted.
  • a substrate processing method for processing a substrate A step of supplying a coating liquid onto the layer to be treated of the substrate to form a carbon-containing organic film, and The step of heat-treating the substrate on which the organic film is formed and After the heat treatment, a predetermined treatment of cleaving the bonds between the carbons contained in the organic film and moving the carbon having the broken bonds in the organic film and then rebonding the carbons with other carbons is performed. And the process to be performed on the organic film
  • a substrate processing method comprising a step of supplying a resist liquid onto the organic film that has been subjected to the predetermined treatment to form a resist film.
  • the organic film when an organic film which is a base film of a resist film and is used as an etching mask is formed by a coating process, the organic film is subjected to the predetermined treatment, so that the organic film is etched.
  • the resistance can be increased.
  • An inorganic film is formed on the organic film after the predetermined treatment after the step of performing the predetermined treatment on the organic film after the heat treatment and before the step of forming the resist film.
  • the substrate processing method according to (1) above which comprises a step of forming.
  • a substrate processing system that processes a substrate.
  • An organic film forming apparatus for forming an organic film by supplying a coating liquid containing carbon onto the layer to be treated of the substrate.
  • a heating device that heats the substrate on which the organic film is formed, and After the heat treatment, a predetermined treatment of cleaving the bond between carbons contained in the organic film and moving the carbon having the cleaved bond in the organic film and then recombination with another carbon is performed.
  • the reformer performed on the organic film of A substrate processing system including a resist coating apparatus that supplies a resist liquid onto the organic film that has been subjected to the predetermined treatment to form a resist film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Materials For Photolithography (AREA)

Abstract

Provided is a substrate processing method for processing a substrate, the method including: a step of supplying an application liquid on a layer to be processed of the substrate and forming an organic film containing carbon; a step of heat processing the substrate on which the organic film has been formed; a step of subjecting the organic film after heating processing to a predetermined process of cutting the bonds between carbons in the organic film, moving the carbons for which the bond has been cut within the organic film, and recombining the carbons with other carbons; and a step of supplying a resist liquid onto the organic film that has been subjected to the predetermined process to form a resist film.

Description

基板処理方法及び基板処理システムSubstrate processing method and substrate processing system
 本開示は、基板処理方法及び基板処理システムに関する。 This disclosure relates to a substrate processing method and a substrate processing system.
 特許文献1には、最終的なエッチング対象となるSiN膜等の下層膜上に、アモルファスカーボン(a-C)やSOC(スピンオンカーボン)等の有機膜、無機膜であるハードマスク層、有機系の反射防止膜、フォトレジスト膜を順に形成することが開示されている。また、特許文献1には、a-C膜やSOC膜が、最終的なエッチング対象である下層膜をエッチングするためのマスクとなることが開示されている。 Patent Document 1 describes an organic film such as amorphous carbon (a-C) or SOC (spin-on carbon), a hard mask layer which is an inorganic film, and an organic film on a lower layer film such as a SiN film to be finally etched. It is disclosed that the antireflection film and the photoresist film of the above are formed in this order. Further, Patent Document 1 discloses that the aC film and the SOC film serve as a mask for etching the lower layer film to be the final etching target.
特開2012-204668号公報Japanese Unexamined Patent Publication No. 2012-204668
 本開示にかかる技術は、レジスト膜の下地膜でありエッチングマスクとして用いられる有機膜を塗布処理により形成する場合において、当該有機膜のエッチング耐性を高くする。 The technique according to the present disclosure increases the etching resistance of the organic film when the organic film which is the base film of the resist film and is used as the etching mask is formed by the coating process.
 本開示の一態様は、基板を処理する基板処理方法であって、前記基板の処理対象層上に塗布液を供給し、炭素を含有する有機膜を形成する工程と、前記有機膜が形成された基板に対し加熱処理を行う工程と、前記有機膜に含有される炭素間の結合を切断すると共に結合が切断された炭素を当該有機膜内で移動させた後に他の炭素と再結合させる、予め定められた処理を、前記加熱処理後の前記有機膜に行う工程と、前記予め定められた処理が行われた前記有機膜上にレジスト液を供給し、レジスト膜を形成する工程と、を含む。 One aspect of the present disclosure is a substrate processing method for processing a substrate, in which a coating liquid is supplied onto a treatment target layer of the substrate to form a carbon-containing organic film, and the organic film is formed. In the step of heat-treating the substrate, the carbons contained in the organic film are cleaved, and the carbons whose bonds are cleaved are moved in the organic film and then recombined with other carbons. A step of performing a predetermined treatment on the organic film after the heat treatment and a step of supplying a resist solution onto the organic film on which the predetermined treatment has been performed to form a resist film. Including.
 本開示によれば、レジスト膜の下地膜でありエッチングマスクとして用いられる有機膜を塗布処理により形成する場合において、当該有機膜のエッチング耐性を高くすることができる。 According to the present disclosure, when an organic film which is a base film of a resist film and is used as an etching mask is formed by a coating process, the etching resistance of the organic film can be increased.
第1実施形態にかかる基板処理システムの構成の概略を模式的に示す図である。It is a figure which shows typically the outline of the structure of the substrate processing system which concerns on 1st Embodiment. 図1の第1の処理システムの構成の概略を模式的に示す平面図である。It is a top view which shows the outline of the structure of the 1st processing system of FIG. 1 schematically. 図1の第1の処理システムの構成の概略を模式的に示す正面図である。It is a front view which shows the outline of the structure of the 1st processing system of FIG. 1 schematically. 図1の第1の処理システムの構成の概略を模式的に示す背面図である。It is a back view schematically showing the outline of the structure of the first processing system of FIG. SOC膜ベーク処理後であって改質処理としてのプラズマ処理が行われる前の、SOC膜の断面のSEM像を示す図である。It is a figure which shows the SEM image of the cross section of the SOC film after the SOC film baking treatment and before the plasma treatment as a modification treatment is performed. プラズマ処理後のSOC膜の断面のSEM像を示す図である。It is a figure which shows the SEM image of the cross section of the SOC film after plasma treatment. プラズマ処理前後のSOC膜の質量密度を示す図である。It is a figure which shows the mass density of the SOC film before and after the plasma treatment. プラズマ処理前後のSOC膜の押し込み硬度を示す図である。It is a figure which shows the indentation hardness of the SOC film before and after the plasma treatment. プラズマ処理前後のSOC膜のエッチングレートを示す図である。It is a figure which shows the etching rate of the SOC film before and after the plasma treatment. プラズマ処理前後のSOC膜の成分分析結果を示す図である。It is a figure which shows the component analysis result of the SOC film before and after the plasma treatment. SOC膜が緻密化しエッチング耐性が向上した理由を説明するための図である。It is a figure for demonstrating the reason why the SOC film became densified and the etching resistance was improved. SOC膜の膜厚が大きい場合における、プラズマ処理後のSOC膜の断面のSEM像を示す図である。It is a figure which shows the SEM image of the cross section of the SOC film after plasma treatment when the film thickness of the SOC film is large. 第2実施形態にかかる基板処理システムの構成の概略を示す正面図である。It is a front view which shows the outline of the structure of the substrate processing system which concerns on 2nd Embodiment. 第3実施形態にかかる基板処理システムの構成の概略を示す正面図である。It is a front view which shows the outline of the structure of the substrate processing system which concerns on 3rd Embodiment.
 半導体デバイス等の製造工程では、半導体ウェハ(以下、「ウェハ」という。)上にレジスト液を塗布してレジスト膜を形成するレジスト塗布処理、レジスト膜を露光する露光処理、露光されたレジスト膜を現像する現像処理等が順次行われ、ウェハ上にレジストパターンが形成される。そして、レジストパターンの形成処理後に、このレジストパターンをマスクとした処理対象層のエッチング等が行われ、当該処理対象層に予め定められたパターンが形成される。 In the manufacturing process of semiconductor devices and the like, a resist coating process of applying a resist solution on a semiconductor wafer (hereinafter referred to as "wafer") to form a resist film, an exposure process of exposing the resist film, and an exposed resist film are applied. Development processing and the like for developing are sequentially performed, and a resist pattern is formed on the wafer. Then, after the resist pattern forming process, the process target layer is etched or the like using the resist pattern as a mask to form a predetermined pattern on the process target layer.
 ところで、半導体デバイスの微細化等に伴い、処理対象層のエッチングに際し、高アスペクト比でのエッチングが求められている。このための技術として、レジスト膜の下層に形成した下地膜をマスクとして用いる方法が知られている。
 特許文献1には、最終的なエッチング対象となる下層膜上に、a-C膜やSOC膜等の有機膜、無機膜であるハードマスク層、有機系の反射防止膜、フォトレジスト膜を順に形成し、a-C膜やSOC膜等の有機膜を、最終的なエッチング対象の下層膜に対するエッチングマスクとして用いることが開示されている。
By the way, with the miniaturization of semiconductor devices and the like, etching with a high aspect ratio is required when etching the layer to be processed. As a technique for this purpose, a method of using an undercoat film formed under the resist film as a mask is known.
In Patent Document 1, an organic film such as an a-C film or an SOC film, a hard mask layer which is an inorganic film, an organic antireflection film, and a photoresist film are sequentially formed on the lower layer film to be finally etched. It is disclosed that an organic film such as an aC film or an SOC film is formed and used as an etching mask for the lower layer film to be finally etched.
 近年では、更に高いアスペクト比でのエッチングが求められエッチング量も増加していること等から、最終的なエッチング対象に対するエッチングマスクとしての有機膜には、高いエッチング耐性が求められている。上記有機膜として、CVD法により形成したa-C膜を用いた場合、上記有機膜のエッチング耐性は高いが、スループットや埋め込み性等が低い。それに対し、上記有機膜として、塗布処理で形成したSoC膜等の塗布膜を用いた場合、スループットや埋め込み性はa-C膜より高くなる。しかし、SoC膜等の現状の塗布膜は、エッチング耐性がa-C膜程は高くない。 In recent years, etching with a higher aspect ratio has been required and the amount of etching has increased. Therefore, an organic film as an etching mask for the final etching target is required to have high etching resistance. When an aC film formed by the CVD method is used as the organic film, the etching resistance of the organic film is high, but the throughput and embedding property are low. On the other hand, when a coating film such as a SoC film formed by the coating treatment is used as the organic film, the throughput and embedding property are higher than those of the aC film. However, the etching resistance of the current coating film such as the SoC film is not as high as that of the aC film.
 そこで、本開示にかかる技術は、レジスト膜の下地膜でありエッチングマスクとして用いられる有機膜を塗布処理により形成する場合において、当該有機膜のエッチング耐性を高くする。本発明者らが鋭意検討したところ、塗布処理により形成した有機膜に対し、プラズマによるプラズマ処理や、電子線を照射しながら加熱する処理を行うことにより、当該有機膜のエッチング耐性が向上することが分かった。また、更に検討を進めたところ、プラズマ処理等により、有機膜に含有される炭素間の結合が切断されると共に結合が切断された炭素が当該有機膜内で移動し他の炭素と再結合することで、有機膜のエッチング耐性が向上することが推察された。以下の実施の形態は、上述の知見に基づくものである。なお、本明細書において、「有機膜のエッチング耐性」とは、当該有機膜をエッチングマスクとしたエッチング時の耐性を意味し、より具体的には、当該有機膜をエッチングマスクとしたSiN膜等の処理対象層のエッチング時の耐性を意味する。「SOC膜のエッチング耐性」や「a-C膜のエッチング耐性」等についても同様である。 Therefore, the technique according to the present disclosure increases the etching resistance of the organic film when the organic film which is the base film of the resist film and is used as the etching mask is formed by the coating treatment. As a result of diligent studies by the present inventors, it is found that the etching resistance of the organic film is improved by performing plasma treatment with plasma or heat treatment while irradiating an electron beam on the organic film formed by the coating treatment. I found out. In addition, as a result of further studies, the bonds between the carbons contained in the organic film are cleaved by plasma treatment or the like, and the carbons whose bonds are cleaved move in the organic film and recombine with other carbons. As a result, it was inferred that the etching resistance of the organic film was improved. The following embodiments are based on the above findings. In the present specification, the "etching resistance of the organic film" means the resistance at the time of etching using the organic film as an etching mask, and more specifically, a SiN film or the like using the organic film as an etching mask. Means the resistance to etching of the layer to be treated. The same applies to "etching resistance of SOC film" and "etching resistance of aC film".
 以下、本実施形態にかかる基板処理方法及び基板処理システムについて、図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, the substrate processing method and the substrate processing system according to this embodiment will be described with reference to the drawings. In the present specification and the drawings, elements having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.
(第1実施形態)
 図1は、第1実施形態にかかる基板処理システムの構成の概略を模式的に示す図である。
(First Embodiment)
FIG. 1 is a diagram schematically showing an outline of a configuration of a substrate processing system according to a first embodiment.
 図示するように、基板処理システム1は、基板としてのウェハWに所望の処理を行う3つの処理システム10、20、30を有している。また、基板処理システム1には、制御部40が設けられている。制御部40は、例えばCPUやメモリ等を備えたコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、基板処理システム1における各種処理を制御するプログラムが格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体に記録されていたものであって、当該記憶媒体から制御部40にインストールされたものであってもよい。プログラムの一部または全ては専用ハードウェア(回路基板)で実現してもよい。 As shown in the figure, the substrate processing system 1 has three processing systems 10, 20, and 30 that perform desired processing on the wafer W as a substrate. Further, the substrate processing system 1 is provided with a control unit 40. The control unit 40 is, for example, a computer equipped with a CPU, a memory, or the like, and has a program storage unit (not shown). The program storage unit stores programs that control various processes in the substrate processing system 1. The program may be recorded on a computer-readable storage medium and may be installed on the control unit 40 from the storage medium. Part or all of the program may be realized by dedicated hardware (circuit board).
 第1の処理システム10では、ウェハWに対してフォトリソグラフィー処理等が行われる。
 図2は、第1の処理システム10の構成の概略を模式的に示す平面図である。図3及び図4は、第1の処理システム10の内部構成の概略を模式的に示す、各々正面図と背面図である。
In the first processing system 10, photolithography processing or the like is performed on the wafer W.
FIG. 2 is a plan view schematically showing an outline of the configuration of the first processing system 10. 3 and 4 are a front view and a rear view, respectively, schematically showing an outline of the internal configuration of the first processing system 10.
 第1の処理システム10は、図2に示すように、複数枚のウェハWを収容したカセットCが搬入出されるカセットステーション100と、ウェハWに予め定められた処理を施す複数の処理装置を備えた処理ステーション101と、を有する。そして、第1の処理システム10は、カセットステーション100と、処理ステーション101と、処理ステーション101に隣接する露光装置102との間でウェハWの受け渡しを行うインターフェイスステーション103とを一体に接続した構成を有している。 As shown in FIG. 2, the first processing system 10 includes a cassette station 100 into which a cassette C accommodating a plurality of wafers W is carried in and out, and a plurality of processing devices for performing predetermined processing on the wafer W. It has a processing station 101 and a wafer. The first processing system 10 has a configuration in which the cassette station 100, the processing station 101, and the interface station 103 that transfers the wafer W between the exposure apparatus 102 adjacent to the processing station 101 are integrally connected. Have.
 カセットステーション100には、カセット載置台110が設けられている。カセット載置台110には、基板処理システム1の外部に対してカセットCを搬入出する際に、カセットCを載置するカセット載置板111が複数設けられている。 The cassette station 100 is provided with a cassette mounting stand 110. The cassette mounting table 110 is provided with a plurality of cassette mounting plates 111 on which the cassette C is mounted when the cassette C is carried in and out of the substrate processing system 1.
 カセットステーション100には、X方向に延びる搬送路112上を移動自在なウェハ搬送装置113が設けられている。ウェハ搬送装置113は、上下方向及び鉛直軸周り(θ方向)にも移動自在であり、各カセット載置板111上のカセットCと、後述する処理ステーション101の第3のブロックG3の受け渡し装置との間でウェハWを搬送できる。 The cassette station 100 is provided with a wafer transfer device 113 that is movable on a transfer path 112 extending in the X direction. The wafer transfer device 113 is also movable in the vertical direction and around the vertical axis (θ direction), and is a transfer device for the cassette C on each cassette mounting plate 111 and the third block G3 of the processing station 101 described later. Wafer W can be conveyed between them.
 処理ステーション101には、各種装置を備えた複数例えば4つのブロック、すなわち第1のブロックG1~第4のブロックG4が設けられている。例えば処理ステーション101の正面側(図2のX方向負方向側)には、第1のブロックG1が設けられ、処理ステーション101の背面側(図2のX方向正方向側、図面の上側)には、第2のブロックG2が設けられている。また、処理ステーション101のカセットステーション100側(図2のY方向負方向側)には、既述の第3のブロックG3が設けられ、処理ステーション101のインターフェイスステーション103側(図2のY方向正方向側)には、第4のブロックG4が設けられている。 The processing station 101 is provided with a plurality of, for example, four blocks equipped with various devices, that is, first blocks G1 to fourth blocks G4. For example, a first block G1 is provided on the front side of the processing station 101 (negative direction in the X direction in FIG. 2), and on the back side of the processing station 101 (positive direction in the X direction in FIG. 2, upper side in the drawing). Is provided with a second block G2. Further, the third block G3 described above is provided on the cassette station 100 side (negative direction side in the Y direction of FIG. 2) of the processing station 101, and the interface station 103 side of the processing station 101 (positive in the Y direction of FIG. 2). A fourth block G4 is provided on the directional side).
 第1のブロックG1には、図3に示すように複数の液処理装置、例えば現像処理装置120、有機膜形成装置121、無機膜形成装置122、レジスト塗布装置123が下からこの順に配置されている。 As shown in FIG. 3, a plurality of liquid processing devices, for example, a developing processing device 120, an organic film forming device 121, an inorganic film forming device 122, and a resist coating device 123 are arranged in this order from the bottom in the first block G1. There is.
 現像処理装置120は、ウェハWを現像処理する。具体的には、現像処理装置120は、ウェハWのレジスト膜上に現像液を供給し、レジストパターンを形成する。 The developing processing apparatus 120 develops the wafer W. Specifically, the developing processing apparatus 120 supplies a developing solution onto the resist film of the wafer W to form a resist pattern.
 有機膜形成装置121は、ウェハWの処理対象層にパターンを転写するためのマスクとして用いられる膜でありレジスト膜の下地膜である、炭素を含有する有機膜を形成する。具体的には、有機膜形成装置121は、上記有機膜を形成するための材料となる有機膜材料をウェハWの処理対象層に塗布し、上記有機膜を形成する。本例において、上記有機膜はSOC膜であり、上記有機膜材料はSOC材料である。なお、処理対象層は例えばSiN膜である。 The organic film forming apparatus 121 forms a carbon-containing organic film which is a film used as a mask for transferring a pattern to the processing target layer of the wafer W and is a base film of a resist film. Specifically, the organic film forming apparatus 121 applies an organic film material as a material for forming the organic film to the layer to be processed of the wafer W to form the organic film. In this example, the organic film is an SOC film, and the organic film material is an SOC material. The layer to be treated is, for example, a SiN film.
 無機膜形成装置122は、後述の改質装置による改質処理後のウェハWの有機膜上に無機膜を形成する。具体的には、無機膜形成装置122は、上記有機膜上に、無機膜を形成するための材料となる無機膜材料を塗布し、無機膜を形成する。本例において、上記無機膜はSOG(スピンオングラス)膜であり、上記無機膜材料はSOG材料である。なお、無機膜は、SOGに限定されず、例えばSi含有反射防止膜(SiARC)として用いられていた膜等、他のSi含有無機膜であってもよい。 The inorganic film forming apparatus 122 forms an inorganic film on the organic film of the wafer W after the reforming treatment by the reforming apparatus described later. Specifically, the inorganic film forming apparatus 122 coats the organic film with an inorganic film material as a material for forming the inorganic film to form the inorganic film. In this example, the inorganic film is an SOG (spin-on-glass) film, and the inorganic film material is an SOG material. The inorganic film is not limited to SOG, and may be another Si-containing inorganic film such as a film used as a Si-containing antireflection film (SiARC).
 レジスト塗布装置123は、ウェハWにレジスト液を塗布してレジスト膜を形成する。具体的には、レジスト塗布装置123は、後述の改質装置による改質処理後のウェハWの有機膜上に、より具体的には、上記有機膜上に形成された無機膜の上に、レジスト液を塗布し、レジスト膜を形成する。 The resist coating device 123 applies a resist solution to the wafer W to form a resist film. Specifically, the resist coating apparatus 123 is placed on the organic film of the wafer W after the modification treatment by the reforming apparatus described later, and more specifically, on the inorganic film formed on the organic film. A resist solution is applied to form a resist film.
 例えば現像処理装置120、有機膜形成装置121、無機膜形成装置122、レジスト塗布装置123は、それぞれ水平方向に3つ並べて配置されている。なお、これら現像処理装置120、有機膜形成装置121、無機膜形成装置122、レジスト塗布装置123の数や配置は、任意に選択できる。 For example, the developing processing apparatus 120, the organic film forming apparatus 121, the inorganic film forming apparatus 122, and the resist coating apparatus 123 are arranged side by side in the horizontal direction. The number and arrangement of the developing processing apparatus 120, the organic film forming apparatus 121, the inorganic film forming apparatus 122, and the resist coating apparatus 123 can be arbitrarily selected.
 有機膜形成装置121、無機膜形成装置122、レジスト塗布装置123では、スピン塗布法すなわちスピンコーティングにより成膜が行われる。スピン塗布法では、例えば塗布ノズルからウェハW上に予め定められた処理液を吐出すると共に、ウェハWを回転させて、処理液をウェハWの表面に拡散させる。 In the organic film forming apparatus 121, the inorganic film forming apparatus 122, and the resist coating apparatus 123, film formation is performed by a spin coating method, that is, spin coating. In the spin coating method, for example, a predetermined processing liquid is discharged onto the wafer W from the coating nozzle, and the wafer W is rotated to diffuse the processing liquid on the surface of the wafer W.
 第2のブロックG2には、図4に示すようにウェハWの加熱や冷却といった熱処理を行う熱処理装置130が上下方向と水平方向に並べて設けられている。これら熱処理装置130の数や配置は、任意に選択できる。また、熱処理装置130には、それぞれ公知の装置を用いることができる。 As shown in FIG. 4, the second block G2 is provided with heat treatment devices 130 for performing heat treatment such as heating and cooling of the wafer W side by side in the vertical direction and the horizontal direction. The number and arrangement of these heat treatment devices 130 can be arbitrarily selected. Further, known devices can be used for the heat treatment device 130.
 第3のブロックG3には、複数の受け渡し装置140、141、142、143、144、145、146が下から順に設けられている。また、第4のブロックG4には、複数の受け渡し装置150、151、152が下から順に設けられている。 A plurality of delivery devices 140, 141, 142, 143, 144, 145, 146 are provided in the third block G3 in order from the bottom. Further, in the fourth block G4, a plurality of delivery devices 150, 151, and 152 are provided in order from the bottom.
 図2に示すように第1のブロックG1~第4のブロックG4に囲まれた領域には、ウェハ搬送領域Dが形成されている。ウェハ搬送領域Dには、例えばY方向、X方向、θ方向及び上下方向に移動自在な搬送アーム160aを有する、ウェハ搬送装置160が複数配置されている。ウェハ搬送装置160は、ウェハ搬送領域D内を移動し、周囲の第1のブロックG1、第2のブロックG2、第3のブロックG3及び第4のブロックG4内の所望の装置にウェハWを搬送できる。 As shown in FIG. 2, a wafer transfer region D is formed in a region surrounded by the first block G1 to the fourth block G4. In the wafer transfer region D, for example, a plurality of wafer transfer devices 160 having transfer arms 160a that can move in the Y direction, the X direction, the θ direction, and the vertical direction are arranged. The wafer transfer device 160 moves in the wafer transfer area D and transfers the wafer W to desired devices in the surrounding first block G1, second block G2, third block G3, and fourth block G4. it can.
 また、ウェハ搬送領域Dには、図4に示すように、第3のブロックG3と第4のブロックG4との間で直線的にウェハWを搬送するシャトル搬送装置170が設けられている。 Further, as shown in FIG. 4, the wafer transfer region D is provided with a shuttle transfer device 170 that linearly conveys the wafer W between the third block G3 and the fourth block G4.
 シャトル搬送装置170は、例えば図4のY方向に直線的に移動自在になっている。シャトル搬送装置170は、ウェハWを支持した状態でY方向に移動し、第3のブロックG3の受け渡し装置142と第4のブロックG4の受け渡し装置152との間でウェハWを搬送できる。 The shuttle transport device 170 is linearly movable in the Y direction of FIG. 4, for example. The shuttle transfer device 170 moves in the Y direction while supporting the wafer W, and can transfer the wafer W between the transfer device 142 of the third block G3 and the transfer device 152 of the fourth block G4.
 図2に示すように第3のブロックG3のX方向正方向側の隣には、ウェハ搬送装置180が設けられている。ウェハ搬送装置180は、例えばX方向、θ方向及び上下方向に移動自在な搬送アーム180aを有している。ウェハ搬送装置180は、ウェハWを支持した状態で上下に移動して、第3のブロックG3内の各受け渡し装置にウェハWを搬送できる。 As shown in FIG. 2, a wafer transfer device 180 is provided next to the third block G3 on the positive direction side in the X direction. The wafer transfer device 180 has, for example, a transfer arm 180a that can move in the X direction, the θ direction, and the vertical direction. The wafer transfer device 180 can move up and down while supporting the wafer W to transfer the wafer W to each transfer device in the third block G3.
 インターフェイスステーション103には、ウェハ搬送装置190と受け渡し装置191が設けられている。ウェハ搬送装置190は、例えばY方向、θ方向及び上下方向に移動自在な搬送アーム190aを有している。ウェハ搬送装置190は、例えば搬送アーム190aにウェハWを支持して、第4のブロックG4内の各受け渡し装置、受け渡し装置191及び露光装置102との間でウェハWを搬送できる。 The interface station 103 is provided with a wafer transfer device 190 and a transfer device 191. The wafer transfer device 190 has, for example, a transfer arm 190a that can move in the Y direction, the θ direction, and the vertical direction. The wafer transfer device 190 can, for example, support the wafer W on the transfer arm 190a and transfer the wafer W between each transfer device, the transfer device 191 and the exposure device 102 in the fourth block G4.
 図1の説明に戻る。
 第2の処理システム20では、ウェハWに対してプラズマによるプラズマ処理、具体的には、プラズマによるウェハWに対するエッチング処理等が行われる。
 第2の処理システム20は、エッチング装置201と、改質装置202とを有する。なお、図示は省略するが、第2の処理システム20には、カセットCが搬入出されるカセットステーションや、ウェハWの搬送を行うウェハ搬送装置が設けられている。
Returning to the description of FIG.
In the second processing system 20, plasma treatment of the wafer W by plasma, specifically, etching treatment of the wafer W by plasma and the like is performed.
The second processing system 20 has an etching apparatus 201 and a reforming apparatus 202. Although not shown, the second processing system 20 is provided with a cassette station for loading and unloading the cassette C and a wafer transfer device for transporting the wafer W.
 エッチング装置201は、プラズマによりウェハW上の所望の膜をエッチングするものであり、例えばRIE(Reactive Ion Etching)装置で構成される。 The etching apparatus 201 etches a desired film on the wafer W with plasma, and is composed of, for example, a RIE (Reactive Ion Etching) apparatus.
 改質装置202は、ウェハW上の有機膜(本例ではSOC膜)に含有される炭素間の結合を切断すると共に結合が切断された炭素を当該有機膜内で移動させた後に他の炭素と再結合させる、予め定められた処理(以下、「改質処理」ということがある。)として、プラズマによるプラズマ処理を行う。
 改質装置202による改質処理により、有機膜の質量密度が増加する。具体的には、改質処理により、有機膜の膜表面側の部分が緻密化し、当該部分の質量密度が増加する。
The reformer 202 cuts the bonds between carbons contained in the organic film (SOC film in this example) on the wafer W, and after the carbons at which the bonds have been broken are moved in the organic film, other carbons are used. Plasma treatment with plasma is performed as a predetermined treatment (hereinafter, may be referred to as "modification treatment") for recombination with.
The reforming treatment by the reforming apparatus 202 increases the mass density of the organic film. Specifically, the modification treatment densifies the portion of the organic film on the film surface side and increases the mass density of the portion.
 なお、エッチング装置201には公知のエッチング装置を用いることができる。また、改質装置202の物理的な構造には、公知の、プラズマによるプラズマ処理を行う装置と同様な構造を用いることができる。 A known etching apparatus can be used for the etching apparatus 201. Further, as the physical structure of the reforming apparatus 202, a structure similar to that of a known apparatus for performing plasma treatment with plasma can be used.
 第3の処理システム30では、ウェハWに対して、下地膜の剥離処理等が行われる。
 第3の処理システム30は、剥離装置301を有する。
 剥離装置301は、処理対象層のエッチング処理が行われたウェハWからエッチングの際にマスクとして用いられた層をウェハWから剥離する。具体的には、例えば、処理対象膜のエッチングの際にマスクとして用いられた有機膜を、予め定められた除去液を用いたリフトオフ処理により除去する。
 なお、第3の処理システム30にも、カセットCが搬入出されるカセットステーションや、ウェハWの搬送を行うウェハ搬送装置が設けられている。
In the third processing system 30, the wafer W is subjected to a base film peeling process or the like.
The third processing system 30 has a peeling device 301.
The peeling device 301 peels the layer used as a mask at the time of etching from the wafer W to which the etching process of the layer to be processed has been performed. Specifically, for example, the organic film used as a mask when etching the film to be treated is removed by a lift-off treatment using a predetermined removing solution.
The third processing system 30 is also provided with a cassette station for loading and unloading the cassette C and a wafer transfer device for transporting the wafer W.
 続いて、以上のように構成された基板処理システム1で行われる基板処理の一例について説明する。なお、以下の例において、ウェハW上には処理対象層としてのSiN膜が予め形成されている。 Next, an example of substrate processing performed by the substrate processing system 1 configured as described above will be described. In the following example, a SiN film as a layer to be processed is formed in advance on the wafer W.
(SOC膜形成処理)
 まず、第1の処理システム10の有機膜形成装置121において、ウェハWの処理対象層上に、塗布液であるSOC材料が塗布され、SOC膜が形成される。なお、有機膜形成装置121で形成されるSOC膜の厚さは、例えば50~3000nmである。
(SOC film formation treatment)
First, in the organic film forming apparatus 121 of the first processing system 10, the SOC material as a coating liquid is applied onto the processing target layer of the wafer W to form an SOC film. The thickness of the SOC film formed by the organic film forming apparatus 121 is, for example, 50 to 3000 nm.
(SOC膜ベーク処理)
 次いで、熱処理装置130において、SOC膜が形成されたウェハWに対し加熱処理が行われ、すなわち、SOC膜のベーク処理が行われる。SOC膜のベーク処理時のウェハWの温度は例えば250℃~750℃である。
(SOC film baking treatment)
Next, in the heat treatment apparatus 130, the wafer W on which the SOC film is formed is heat-treated, that is, the SOC film is baked. The temperature of the wafer W during the baking process of the SOC film is, for example, 250 ° C. to 750 ° C.
(改質処理)
 続いて、SOC膜のベーク処理後のウェハWが収容されたカセットCが第2の処理システム20へ搬送され、改質装置202において、当該ウェハWに対し、改質処理として、プラズマによるプラズマ処理が行われる。このプラズマ処理はウェハ全面に対し行われる。プラズマ処理の際に、改質装置202のウェハWを収容する処理容器(図示せず)内には、例えば、HガスとArガスが導入され、HガスとArガスの混合ガスの雰囲気下でプラズマが生成される。また、HガスとArガスに加えて、CFガスやCHガス等の炭素含有ガスを導入するようにしてもよい。なお、Hガス及びArガスのいずれか一方または両方の代わりに、CFガス、NFガス、CHFガス、COガス、CHガス、CHガス及びCガスのうちの少なくともいずれか一つを導入してもよい。
 本発明者らが鋭意検討した結果によれば、後に詳述するように、この改質処理としてのプラズマ処理により、SOC膜に含有される炭素間の結合(例えば架橋結合)が切断される。また、このプラズマ処理により、結合が切断された炭素を含むポリマーが、SOC膜内を移動し、その後、結合が切断された炭素同士と再結合する。その結果、SOC膜の質量密度が増加し、当該SOC膜のエッチング耐性が向上する。具体的には、プラズマ処理により、SOC膜の膜表面側の部分が緻密化し、当該部分の質量密度が増加し、当該部分のエッチング耐性が向上する。
(Modification process)
Subsequently, the cassette C containing the wafer W after the baking treatment of the SOC film is conveyed to the second processing system 20, and the reformer 202 performs plasma treatment with plasma as the reforming treatment on the wafer W. Is done. This plasma treatment is performed on the entire surface of the wafer. During plasma processing, the processing chamber (not shown) within the housing the wafers W of the reformer 202, for example, is introduced H 2 gas and Ar gas, an atmosphere of a mixed gas of H 2 gas and Ar gas Below the plasma is generated. Further, in addition to the H 2 gas and the Ar gas, a carbon-containing gas such as CF 4 gas or CH 4 gas may be introduced. Instead of one or both of H 2 gas and Ar gas, CF 4 gas, NF 3 gas, CHF 3 gas, CO 2 gas, CH 2 F 2 gas, CH 4 gas and C 4 F 8 gas At least one of them may be introduced.
According to the results of diligent studies by the present inventors, as will be described in detail later, the plasma treatment as the modification treatment breaks the bonds between carbons (for example, cross-linking bonds) contained in the SOC film. Further, by this plasma treatment, the polymer containing carbon whose bond is broken moves in the SOC membrane, and then rebonds to the carbon whose bond is broken. As a result, the mass density of the SOC film is increased, and the etching resistance of the SOC film is improved. Specifically, the plasma treatment densifies the portion of the SOC film on the film surface side, increases the mass density of the portion, and improves the etching resistance of the portion.
(SOG膜形成処理)
 次に、改質装置202でのプラズマ処理後のウェハWが収容されたカセットCが第1の処理システム10へ搬送され、無機膜形成装置122において、当該ウェハWのSOC膜上に、SOG材料が塗布され、SOG膜が形成される。次いで、熱処理装置130において、SOG膜が形成されたウェハWに対し熱処理が行われ、すなわち、SOG膜のベーク処理が行われる。なお、無機膜形成装置122で形成されるSOG膜の厚さは10~100nmである。
(SOG film formation treatment)
Next, the cassette C containing the wafer W after the plasma treatment in the reforming apparatus 202 is conveyed to the first processing system 10, and the SOG material is placed on the SOC film of the wafer W in the inorganic film forming apparatus 122. Is applied to form an SOG film. Next, in the heat treatment apparatus 130, the wafer W on which the SOG film is formed is heat-treated, that is, the SOG film is baked. The thickness of the SOG film formed by the inorganic film forming apparatus 122 is 10 to 100 nm.
(レジスト膜形成処理)
 続いて、レジスト塗布装置123において、ウェハWのSOG膜上に、レジスト液が塗布され、レジスト膜が形成される。レジスト液としては例えばArFレジスト液が用いられる。次いで、熱処理装置130において、レジスト膜が形成されたウェハWに対し熱処理が行われ、すなわち、レジスト膜に対しPAB処理が行われる。なお、レジスト塗布装置123で形成されるレジスト膜の厚さは20~100nmである。
(Resist film forming treatment)
Subsequently, in the resist coating apparatus 123, the resist liquid is applied onto the SOG film of the wafer W to form the resist film. As the resist solution, for example, ArF resist solution is used. Next, in the heat treatment apparatus 130, the wafer W on which the resist film is formed is heat-treated, that is, the resist film is subjected to PAB treatment. The thickness of the resist film formed by the resist coating device 123 is 20 to 100 nm.
(露光処理)
 次に、露光装置102において、ウェハWに対し露光処理が行われ、レジスト膜が予め定められたパターンに露光される。なお、露光後、熱処理装置130において、露光処理されたウェハWに対し熱処理が行われ、すなわち、レジスト膜に対しPEB処理が行われる。
(Exposure processing)
Next, in the exposure apparatus 102, an exposure process is performed on the wafer W, and the resist film is exposed to a predetermined pattern. After the exposure, the heat treatment apparatus 130 heat-treats the exposed wafer W, that is, the resist film is subjected to the PEB treatment.
(現像処理)
 PEB処理後、現像処理装置120において、ウェハWのレジスト膜上に現像液が供給され、当該レジスト膜が現像される。これにより、ウェハWのSOG膜上にレジストパターンが形成される。
(Development processing)
After the PEB treatment, the developing solution is supplied onto the resist film of the wafer W in the developing processing apparatus 120, and the resist film is developed. As a result, a resist pattern is formed on the SOG film of the wafer W.
(SOG膜エッチング)
 次に、現像処理後のウェハWが収容されたカセットCが第2の処理システム20へ搬送され、エッチング装置201において、ウェハWに対し、レジストパターンをマスクとしたSOG膜のエッチング処理が行われる。これにより、SOC膜上にSOGパターンが形成される。
(SOG film etching)
Next, the cassette C containing the developed wafer W is conveyed to the second processing system 20, and the etching apparatus 201 performs an etching process of the SOG film using the resist pattern as a mask on the wafer W. .. As a result, an SOG pattern is formed on the SOC film.
(SOC膜エッチング)
 次いで、エッチング装置201において、SOGパターンをマスクとしたSOC膜のエッチング処理が行われる。これにより、処理対象層上にSOCパターンが形成される。
(SOC film etching)
Next, in the etching apparatus 201, the etching process of the SOC film using the SOG pattern as a mask is performed. As a result, an SOC pattern is formed on the layer to be processed.
(処理対象層エッチング)
 続いて、エッチング装置201において、SOCパターンをマスクとした処理対象層のエッチング処理が行われる。これにより、処理対象層のパターンが形成される。なお、処理対象層エッチングの前に、SOGパターンを除去するようにしてもよい。SOGパターンの除去は例えばエッチング装置201でのエッチング処理により行うことができる。
 上述のSOG膜エッチング、SOC膜エッチング、処理対象層エッチングとで異なるエッチング装置201を用いてもよい。
(Etching of layer to be processed)
Subsequently, the etching apparatus 201 performs an etching process of the layer to be processed using the SOC pattern as a mask. As a result, a pattern of the layer to be processed is formed. The SOG pattern may be removed before etching the layer to be processed. The removal of the SOG pattern can be performed, for example, by an etching process in the etching apparatus 201.
An etching apparatus 201 different from the above-mentioned SOG film etching, SOC film etching, and processing target layer etching may be used.
(剥離処理)
 その後、処理対象層エッチング後のウェハWが収容されたカセットCが第3の処理システム30へ搬送され、剥離装置301において、ウェハWに対し、SOCパターンの剥離処理が行われ、具体的にはリフトオフ処理が行われる。リフトオフ処理では、ウェハW上に予め定められた除去液が供給され、この除去液により、SOCパターンの処理対象層側の緻密化していない部分が溶解される。SOCパターンの処理対象層側の部分(すなわちSOCパターンの根元の部分)が溶解するため、SOCパターンにおいて緻密化され上記除去液に溶解しない膜表面側の部分(すなわちSOCパターンの上部)も除去される。これにより、SOCパターン全体が剥離される。リフトオフ処理で用いられる除去液は、例えば、硝酸、フッ酸、塩酸、硫酸と過酸化水素の混合溶液、アンモニアと過酸化水素の混合溶液、有機溶剤等である。なお、このリフトオフ処理の際、SOCパターン上にSOGパターンが残存していた場合、SOGパターンもSOCパターンと共に除去される。
 また、SOCパターンの膜表面側の部分だけでなくSOCパターン全体が緻密化されている場合は、剥離処理として、CVD法により形成されたa-C膜を剥離するための従来の処理と同様な処理が行われる。
(Peeling process)
After that, the cassette C containing the wafer W after etching the layer to be processed is conveyed to the third processing system 30, and the stripping device 301 performs the stripping process of the SOC pattern on the wafer W. Specifically, Lift-off processing is performed. In the lift-off process, a predetermined removal liquid is supplied onto the wafer W, and the removal liquid dissolves the non-dense portion of the SOC pattern on the processing target layer side. Since the portion of the SOC pattern on the treatment target layer side (that is, the portion at the base of the SOC pattern) is dissolved, the portion on the film surface side that is densified in the SOC pattern and is not dissolved in the removal liquid (that is, the upper portion of the SOC pattern) is also removed. To. As a result, the entire SOC pattern is peeled off. The removal liquid used in the lift-off treatment is, for example, nitric acid, hydrofluoric acid, hydrochloric acid, a mixed solution of sulfuric acid and hydrogen peroxide, a mixed solution of ammonia and hydrogen peroxide, an organic solvent and the like. If the SOG pattern remains on the SOC pattern during this lift-off process, the SOG pattern is also removed together with the SOC pattern.
Further, when not only the portion of the SOC pattern on the film surface side but the entire SOC pattern is densified, the peeling process is the same as the conventional process for peeling the aC film formed by the CVD method. Processing is done.
 剥離処理後、カセットCにウェハWが戻され、これにより基板処理システム1における基板処理は終了する。 After the peeling process, the wafer W is returned to the cassette C, whereby the substrate process in the substrate processing system 1 is completed.
 以上のように、本実施形態にかかる基板処理方法は、ウェハWの処理対象層上に有機膜材料を供給し、炭素を含有する有機膜を形成する工程と、有機膜が形成されたウェハWに対し加熱処理を行う工程と、有機膜に含有される炭素間の結合を切断すると共に結合が切断された炭素を当該有機膜内で移動させた後に他の炭素と再結合させる、改質処理としてのプラズマ処理を、加熱処理後の有機膜に行う工程と、プラズマ処理が行われた有機膜上にレジスト液を供給し、レジスト膜を形成する工程と、を含む。つまり、本実施形態にかかる基板処理方法では、レジスト膜の下地膜でありエッチングマスクとして用いられる有機膜であって塗布処理により形成された膜に対し、レジスト膜形成前に上記改質処理としてのプラズマ処理を行う。この手法は、本発明者らが鋭意検討した結果に基づくものである。 As described above, the substrate processing method according to the present embodiment includes a step of supplying an organic film material on the layer to be processed of the wafer W to form a carbon-containing organic film, and a wafer W on which the organic film is formed. A step of performing a heat treatment and a modification treatment in which the bond between carbons contained in the organic film is cleaved and the carbon having the broken bond is moved in the organic film and then rebonded with other carbons. The process includes a step of performing the plasma treatment as described on the organic film after the heat treatment, and a step of supplying a resist liquid onto the organic film subjected to the plasma treatment to form a resist film. That is, in the substrate treatment method according to the present embodiment, the organic film which is the base film of the resist film and is used as the etching mask and is formed by the coating treatment is subjected to the above-mentioned modification treatment before the resist film is formed. Perform plasma processing. This method is based on the results of diligent studies by the present inventors.
 本発明者らは、レジスト膜の下地膜であり塗布処理により形成された有機膜のエッチング耐性を向上させるにあたり、種々の実験を重ねた。その結果、上記有機膜に対しベーク処理を行っても当該有機膜のエッチング耐性はa-C膜のエッチング耐性まで高くなることはないが、上記有機膜に対しプラズマ処理を行うことにより当該有機膜が緻密化しエッチング耐性がa-C膜程度まで向上することが分かった。 The present inventors have repeated various experiments in order to improve the etching resistance of the organic film formed by the coating treatment, which is the base film of the resist film. As a result, even if the organic film is baked, the etching resistance of the organic film does not increase to the etching resistance of the aC film, but by performing the plasma treatment on the organic film, the organic film is formed. It was found that the etching resistance was improved to the level of the aC film.
 図5は、SOC膜ベーク処理後であって改質処理としてのプラズマ処理が行われる前の、SOC膜の断面のSEM像を示す図であり、図6は、プラズマ処理後のSOC膜の断面のSEM像を示す図である。図7は、プラズマ処理前後のSOC膜の質量密度を示す図、図8は、プラズマ処理前後のSOC膜の押し込み硬度を示す図、図9はプラズマ処理前後のSOC膜のエッチングレートを示す図である。図7~図9には、比較のために、CVD法により形成されたa-C膜の質量密度や押し込み硬度、エッチングレートも示されている。図10は、プラズマ処理前後のSOC膜の成分分析結果を示す図である。
 なお、図6~図9の結果が得られたときのプラズマ処理では、CFガス、NFガス、Hガスがそれぞれ10sccm、10sccm、180sccmの流量で導入された処理室内でプラズマが生成され、誘導結合電力及びバイアス電力がそれぞれ2000Wであった。また、図9の結果が得られたときのエッチングでは、SiN膜をエッチングする際と同様の処理条件とされた。具体的には、CHガス、Oガス、Arガスがそれぞれ20sccm、30sccm、300sccmの流量で導入された処理室内でプラズマが生成され、誘導結合電力及びバイアス電力がそれぞれ300Wであった。
FIG. 5 is a diagram showing an SEM image of a cross section of the SOC film after the SOC film baking treatment and before the plasma treatment as the reforming treatment is performed, and FIG. 6 is a diagram showing a cross section of the SOC film after the plasma treatment. It is a figure which shows the SEM image of. FIG. 7 is a diagram showing the mass density of the SOC film before and after the plasma treatment, FIG. 8 is a diagram showing the indentation hardness of the SOC film before and after the plasma treatment, and FIG. 9 is a diagram showing the etching rate of the SOC film before and after the plasma treatment. is there. For comparison, FIGS. 7 to 9 also show the mass density, indentation hardness, and etching rate of the aC film formed by the CVD method. FIG. 10 is a diagram showing the component analysis results of the SOC film before and after the plasma treatment.
In the plasma treatment when the results of FIGS. 6 to 9 were obtained, plasma was generated in the treatment chamber in which CF 4 gas, NF 3 gas, and H 2 gas were introduced at flow rates of 10 sccm, 10 sccm, and 180 sccm, respectively. The inductively coupled power and the bias power were 2000 W, respectively. Further, in the etching when the result of FIG. 9 was obtained, the processing conditions were the same as those in the etching of the SiN film. Specifically, plasma was generated in the processing chamber in which CH 2 F 2 gas, O 2 gas, and Ar gas were introduced at flow rates of 20 sccm, 30 sccm, and 300 sccm, respectively, and the inductively coupled power and the bias power were 300 W, respectively. ..
 図5に示すように、SOC膜ベーク処理後であってプラズマ処理前のSOC膜F1は、粒径の大きな粒からなり、粒間に大きな空隙が存在する。
 それに対し、図6に示すように、プラズマ処理後のSOC膜F2は、膜厚が減少する(例えばプラズマ処理前において約250nmであった膜厚が約100nmとなる)ものの、粒径の小さな粒からなり、粒間に大きな空隙が生じていない。つまり、プラズマ処理後のSOC膜F2はプラズマ処理前のSOC膜F2に比べ、緻密化している。
 実際に、プラズマ処理後のSOC膜F2の質量密度は、図7に示すように、プラズマ処理前のSOC膜F1より高くなっており、さらに、a-C膜より高くなっている。
 また、プラズマ処理後のSOC膜F2の押し込み硬度は、図8に示すように、プラズマ処理前のSOC膜F1より高くなっており、a-C膜と同等となっている。
As shown in FIG. 5, the SOC film F1 after the SOC film baking treatment and before the plasma treatment is composed of grains having a large particle size, and large voids are present between the grains.
On the other hand, as shown in FIG. 6, the SOC film F2 after the plasma treatment has a reduced film thickness (for example, the film thickness which was about 250 nm before the plasma treatment becomes about 100 nm), but the particles have a small particle size. It is composed of no large voids between grains. That is, the SOC film F2 after the plasma treatment is denser than the SOC film F2 before the plasma treatment.
Actually, as shown in FIG. 7, the mass density of the SOC film F2 after the plasma treatment is higher than that of the SOC film F1 before the plasma treatment, and further higher than that of the aC film.
Further, as shown in FIG. 8, the indentation hardness of the SOC film F2 after the plasma treatment is higher than that of the SOC film F1 before the plasma treatment, which is equivalent to that of the aC film.
 さらに、図9に示すように、SiN膜をエッチングするための処理条件でのエッチングに対し、プラズマ処理後のSOC膜F2のエッチングレートは、プラズマ処理前のSOC膜F2の半分以下となっており、a-C膜と同等となっている。つまり、プラズマ処理後のSOC膜F2は、処理対象層がSIN膜である場合において、処理対象層のエッチングエッチングに対する耐性が高く、a-C膜と同等となっている。
 なお、図示は省略するが、シリコン酸化膜をエッチングするための処理条件でのエッチングに対しても、プラズマ処理後のSOC膜F2のエッチングレートは、プラズマ処理前のSOC膜F2より低下し、a-C膜と同等となっている。つまり、プラズマ処理後のSOC膜F2は、処理対象層がシリコン酸化膜等の酸化膜である場合においても、処理対象層のエッチングに対する耐性が向上している。
Further, as shown in FIG. 9, the etching rate of the SOC film F2 after the plasma treatment is less than half that of the SOC film F2 before the plasma treatment, as compared with the etching under the processing conditions for etching the SiN film. , AC film is equivalent. That is, the SOC film F2 after the plasma treatment has high resistance to etching of the treatment target layer when the treatment target layer is a SIN film, and is equivalent to the aC film.
Although not shown, the etching rate of the SOC film F2 after the plasma treatment is lower than that of the SOC film F2 before the plasma treatment even when the etching is performed under the treatment conditions for etching the silicon oxide film. -It is equivalent to C film. That is, the SOC film F2 after the plasma treatment has improved resistance to etching of the treatment target layer even when the treatment target layer is an oxide film such as a silicon oxide film.
 また、図10に示すように、プラズマ処理前後でSOC膜の成分に殆ど変化がない。この点を踏まえれば、SOC膜が上述のように緻密化しそのエッチング耐性がa-C膜と同等まで向上した理由については以下のように推察される。 Further, as shown in FIG. 10, there is almost no change in the components of the SOC film before and after the plasma treatment. Based on this point, the reason why the SOC film is densified as described above and its etching resistance is improved to the same level as that of the aC film can be inferred as follows.
 図11は、SOC膜が緻密化しエッチング耐性が向上した理由を説明するための模式図である。
 ベーク処理後改質処理前のSOC膜を構成する粒径の大きな粒は、図11(A)に示すように、複数のポリマーPが絡み合ってなる。この絡み合ったポリマーPに対し、図11(B)に示すように、プラズマ等によりエネルギーEが加えられることにより、当該ポリマーPを構成する炭素原子P1同士の結合が切断される。また、プラズマ処理の際にSOC膜の表面に分子量の大きな分子(例えばArガス分子)が衝突すること等で生じるエネルギーにより、結合が切断された炭素原子を含むポリマーがSOC膜内を移動して、その後、結合が切断された炭素原子同士が再結合する。これとは異なり、結合が切断された炭素原子を含むポリマーがSOC膜内を流動せずに、その場で結合が切断された炭素原子同士が再結合してもSOC膜の緻密度に変化は生じない。それに対し、上述したように結合が切断された炭素原子がSOC膜内を移動した後に再結合することにより、SOC膜内において、図11(C)に示すように、炭素原子P1が、ダイヤモンド型構造等のような、立体的な規則性を有する構造(以下、「立体構造」と省略することがある。)を成すように配列される。ダイヤモンド型構造等のような立体構造を成すように炭素原子が配列されたSOC膜は、グラファイト型構造のような平面的な規則性を有する構造を成すように炭素原子が配列されたSOC膜に比べて、質量密度が高くなる。すなわち、上記再結合により、SOC膜が緻密化する。その結果、エッチング耐性が向上すると考えられる。
 以上の点は、SOC膜だけでなく、塗布処理により形成される、炭素を含有する他の有機膜においても同様である。
FIG. 11 is a schematic view for explaining the reason why the SOC film is densified and the etching resistance is improved.
As shown in FIG. 11A, a plurality of polymers P are entangled in the particles having a large particle size that constitute the SOC film after the baking treatment and before the reforming treatment. As shown in FIG. 11B, when energy E is applied to the entangled polymer P by plasma or the like, the bonds between the carbon atoms P1 constituting the polymer P are broken. In addition, the polymer containing carbon atoms whose bonds have been broken moves in the SOC film due to the energy generated by the collision of molecules with a large molecular weight (for example, Ar gas molecules) with the surface of the SOC film during plasma treatment. After that, the carbon atoms whose bonds have been broken are rebonded to each other. Unlike this, even if the polymer containing carbon atoms with broken bonds does not flow in the SOC film and the carbon atoms with broken bonds rebond to each other on the spot, the density of the SOC film does not change. Does not occur. On the other hand, as described above, the carbon atom whose bond has been broken moves in the SOC film and then recombines, so that the carbon atom P1 has a diamond shape in the SOC film as shown in FIG. 11 (C). They are arranged so as to form a structure having three-dimensional regularity (hereinafter, may be abbreviated as "three-dimensional structure") such as a structure. An SOC film in which carbon atoms are arranged so as to form a three-dimensional structure such as a diamond-type structure is formed into an SOC film in which carbon atoms are arranged so as to form a structure having a planar regularity such as a graphite-type structure. In comparison, the mass density is higher. That is, the SOC film is densified by the above recombination. As a result, it is considered that the etching resistance is improved.
The above points are the same not only for the SOC film but also for other carbon-containing organic films formed by the coating treatment.
 そこで、本実施形態では、前述のように、レジスト膜の下地膜であり塗布処理により形成された有機膜に対し、レジスト膜形成前に、当該有機膜に含有される炭素間の結合を切断すると共に結合が切断された炭素を当該有機膜内で移動させた後に他の炭素と再結合させる、改質処理を行う。そして、本実施形態では、上記改質処理としてプラズマ処理を行う。したがって、本実施形態によれば、レジスト膜の下地膜でありエッチングマスクとして用いられる有機膜を塗布処理により形成する場合において、当該有機膜のエッチング耐性を高くすることができる。 Therefore, in the present embodiment, as described above, with respect to the organic film which is the base film of the resist film and is formed by the coating treatment, the bonds between the carbons contained in the organic film are cut before the resist film is formed. A modification process is performed in which the carbon whose bond is broken is moved in the organic film and then rebonded with other carbon. Then, in the present embodiment, plasma treatment is performed as the reforming treatment. Therefore, according to the present embodiment, when an organic film which is a base film of a resist film and is used as an etching mask is formed by a coating treatment, the etching resistance of the organic film can be increased.
 また、本実施形態では、レジスト膜形成前に、改質処理としてのプラズマ処理を有機膜全体に行っている。言い換えると、本実施形態では、有機膜のパターンを形成する前に有機膜全体に改質処理としてのプラズマ処理を行っている。本実施形態とは異なり、有機膜のパターンを形成した後にプラズマ処理を行うと、有機膜のパターンの緻密化に伴って当該パターンの形状が損なわれ、当該有機膜のパターンをエッチングマスクとして用いた処理対象層のエッチングを適切に行うことができないことがある。それに対し、本実施形態では、有機膜のパターンを形成する前に、有機膜全体にプラズマ処理を行っているため、有機膜のパターンの形状がプラズマ処理の影響を受けないため、有機膜のパターンをエッチングマスクとして用いた処理対象層のエッチングを適切に行うことができる。
 なお、有機膜上にレジストパターンを形成した後に改質処理としてのプラズマ処理を行う場合、ウェハWの位置によってレジストパターンの残り方が異なること等から、ウェハWの位置によってプラズマが照射される時間にばらつきが出るために、ウェハWの位置によってSOCの改質程度が異なってしまう。
Further, in the present embodiment, plasma treatment as a modification treatment is performed on the entire organic film before forming the resist film. In other words, in the present embodiment, the entire organic film is subjected to plasma treatment as a modification treatment before forming the pattern of the organic film. Unlike the present embodiment, when plasma treatment is performed after forming the pattern of the organic film, the shape of the pattern is impaired as the pattern of the organic film becomes densified, and the pattern of the organic film is used as an etching mask. It may not be possible to properly etch the layer to be treated. On the other hand, in the present embodiment, since the entire organic film is subjected to plasma treatment before forming the pattern of the organic film, the shape of the pattern of the organic film is not affected by the plasma treatment, so that the pattern of the organic film is not affected. Can be appropriately etched for the layer to be processed using the above as an etching mask.
When plasma treatment as a reforming treatment is performed after forming a resist pattern on the organic film, the remaining state of the resist pattern differs depending on the position of the wafer W, so that the time during which plasma is irradiated depends on the position of the wafer W. Therefore, the degree of SOC modification differs depending on the position of the wafer W.
 また、本発明者らが行った試験によれば、SOC膜に改質処理としてのプラズマ処理を行うと、処理対象膜のエッチングに対するSOC膜のエッチングレートだけでなく、当該SOC膜自体のエッチングに対するSOC膜のエッチングレートも低下する。このようにSOC膜自体のエッチングに対するSOC膜のエッチングレートが低下しても、当該エッチングでのマスクとして、本実施形態のように、SOC膜とエッチングの選択比を高く取ることが可能な、SOG膜等の無機膜を用いればよい。これにより、SOC膜自体のエッチングを適切に行うことができる。なお、SOG膜等の無機膜を用いなくても、SOC膜自体のエッチングでのマスクの膜厚を大きくすることにより、SOC膜自体のエッチングを適切に行うことができる。
 以上の点は、SOC膜だけでなく、塗布処理により形成される、炭素を含有する他の有機膜においても同様である。
Further, according to the test conducted by the present inventors, when the SOC film is subjected to plasma treatment as a modification treatment, not only the etching rate of the SOC film with respect to the etching of the film to be treated but also the etching of the SOC film itself. The etching rate of the SOC film also decreases. Even if the etching rate of the SOC film with respect to the etching of the SOC film itself decreases in this way, the SOG can have a high selectivity between the SOC film and the etching as a mask in the etching, as in the present embodiment. An inorganic membrane such as a membrane may be used. Thereby, the etching of the SOC film itself can be appropriately performed. Even if an inorganic film such as an SOG film is not used, the SOC film itself can be appropriately etched by increasing the thickness of the mask in the etching of the SOC film itself.
The above points are the same not only for the SOC film but also for other carbon-containing organic films formed by the coating treatment.
 また、本実施形態では、Arガス等の不活性ガスの雰囲気下で生成されたプラズマを用いてSOC膜の改質処理としてのプラズマ処理を行っているため、不活性ガスのプラズマでSOC膜が叩かれるので、当該SOC膜を緻密化することができる。 Further, in the present embodiment, since plasma treatment is performed as a modification treatment of the SOC film using plasma generated in an atmosphere of an inert gas such as Ar gas, the SOC film is formed by the plasma of the inert gas. Since it is struck, the SOC film can be densified.
 前述したように、プラズマ処理の際に、改質装置202の処理容器(図示せず)内にCFガスやCHガス、CHFガス、COガス等の炭素含有ガスを導入してもよい。本発明者らが確認したところによれば、炭素含有ガスを導入して形成したプラズマを用いることにより、プラズマ処理時のSOC膜の膜厚の減少を抑えることができる。また、このプラズマを用いたプラズマ処理により、SOC膜中に炭素(C)を添加すなわち補充することで、当該SOC膜をより緻密化することができる。 As described above, even if a carbon-containing gas such as CF 4 gas, CH 4 gas, CHF 3 gas, or CO 2 gas is introduced into the processing container (not shown) of the reformer 202 during plasma treatment. Good. According to the findings of the present inventors, by using the plasma formed by introducing the carbon-containing gas, it is possible to suppress the decrease in the film thickness of the SOC film during the plasma treatment. Further, by plasma treatment using this plasma, carbon (C) is added or replenished into the SOC film, so that the SOC film can be further densified.
 図12は、SOC膜の膜厚が大きい場合における、プラズマ処理後のSOC膜の断面のSEM像を示す図である。
 図6の例では、プラズマ処理後において、SOC膜全体が緻密化していたが、SOC膜の膜厚が大きいときは、図12に示すように、プラズマ処理後のSOC膜F2のうち膜表面側の部分F21のみが緻密化している。これは、SOC膜の膜厚が大きいときは、プラズマがSOC膜の深い部分まで到達しないためである。
 なお、SOC膜が薄い場合でもプラズマ処理の実行時間を減らすことにより、SOC膜の膜表面の部分のみ緻密化させることができる。
 SOC膜の膜表面の部分のみを緻密化させることにより、リフトオフ処理でSOC膜を除去することができる。SOC膜全体を緻密化させたときのSOC膜の剥離処理は、CVD法により形成されたa-C膜を剥離するための従来の処理と同様な処理であり、このa-C膜を剥離するための従来の処理に比べ、リフトオフ処理は容易且つ短時間で行うことができる。
FIG. 12 is a diagram showing an SEM image of a cross section of the SOC film after plasma treatment when the film thickness of the SOC film is large.
In the example of FIG. 6, the entire SOC film was densified after the plasma treatment, but when the thickness of the SOC film is large, as shown in FIG. 12, the film surface side of the SOC film F2 after the plasma treatment Only the part F21 of is densified. This is because when the film thickness of the SOC film is large, the plasma does not reach the deep part of the SOC film.
Even when the SOC film is thin, only the film surface portion of the SOC film can be densified by reducing the execution time of the plasma treatment.
By densifying only the film surface portion of the SOC film, the SOC film can be removed by the lift-off treatment. The removal process of the SOC film when the entire SOC film is densified is the same process as the conventional process for peeling the a-C film formed by the CVD method, and the a-C film is peeled off. The lift-off process can be performed easily and in a short time as compared with the conventional process for the purpose.
 また、本実施形態によれば、プラズマ処理の実行時間を変化させることにより、SOC膜において緻密化させる部分の膜表面からの深さを制御することができる。 Further, according to the present embodiment, the depth from the film surface of the portion to be densified in the SOC film can be controlled by changing the execution time of the plasma treatment.
(第2実施形態)
 図13は、第2実施形態にかかる基板処理システムの構成の概略を示す正面図である。
 第1実施形態では、プラズマによるエッチング等を行う第2の処理システム20に、改質処理としてのプラズマ処理を行う改質装置202が設けられていた。それに対し、本実施形態では、図13に示すように、レジスト膜の形成処理等が行われる基板処理システム50に、改質処理としてのプラズマ処理を行う改質装置131が設けられている。レジスト膜の形成処理等が行われる基板処理システム50に改質装置131を設けることにより、スループットを向上させることができる。
(Second Embodiment)
FIG. 13 is a front view showing an outline of the configuration of the substrate processing system according to the second embodiment.
In the first embodiment, the second processing system 20 that performs etching with plasma or the like is provided with a reforming device 202 that performs plasma treatment as a reforming treatment. On the other hand, in the present embodiment, as shown in FIG. 13, the substrate processing system 50 in which the resist film forming treatment and the like are performed is provided with the reforming device 131 that performs plasma treatment as the reforming treatment. Throughput can be improved by providing the reformer 131 in the substrate processing system 50 in which the resist film forming process or the like is performed.
(第3実施形態)
 図14は、第3実施形態にかかる基板処理システムの構成の概略を示す正面図である。
 第1実施形態及び第2実施形態では、有機膜に対する改質処理としてプラズマ処理を行っていた。上記改質処理はこれに限られない。例えば、図14の本実施形態にかかる基板処理システム60が有する改質装置132は、有機膜に対する改質処理として、ウェハWの有機膜に電子線を照射ながら当該ウェハWを加熱する処理を行う。
(Third Embodiment)
FIG. 14 is a front view showing an outline of the configuration of the substrate processing system according to the third embodiment.
In the first embodiment and the second embodiment, plasma treatment is performed as a modification treatment for the organic film. The reforming treatment is not limited to this. For example, the reformer 132 of the substrate processing system 60 according to the present embodiment of FIG. 14 heats the wafer W while irradiating the organic film of the wafer W with an electron beam as a reforming process for the organic film. ..
 電子線の照射により、有機膜に含有される炭素同士の結合が切断される。ウェハWに加えられた熱により、結合が切断された炭素を含むポリマーが、有機膜内を流動して、結合が切断された炭素同士が再結合する。これにより、有機膜内において、炭素原子がダイヤモンド型構造を含む立体構造を成すように配列される。したがって、有機膜に対する改質処理として、ウェハWの有機膜に電子線を照射ながら当該ウェハWを加熱する処理を行うことで、有機膜を緻密化させ、エッチング耐性を向上させることができる。実際に、本発明者らは、本実施形態にかかる改質処理を行うことにより、有機膜としてのSOC膜が処理前に比べて緻密化し押込み硬度が高くなること等を確認し、エッチング耐性を向上させることができることを確認している。 By irradiation with an electron beam, the bonds between carbons contained in the organic film are broken. Due to the heat applied to the wafer W, the polymer containing carbon whose bonds have been broken flows in the organic film, and the carbons whose bonds have been broken are rebonded to each other. As a result, the carbon atoms are arranged in the organic film so as to form a three-dimensional structure including a diamond-shaped structure. Therefore, as a modification treatment for the organic film, the organic film of the wafer W is heated while irradiating the organic film with an electron beam, so that the organic film can be densified and the etching resistance can be improved. Actually, the present inventors have confirmed that by performing the modification treatment according to the present embodiment, the SOC film as an organic film becomes denser and the indentation hardness becomes higher than that before the treatment, and the etching resistance is improved. We have confirmed that it can be improved.
 電子線は、有機膜の膜表面から遠い部分まで到達するため、本実施形態にかかる改質処理は、例えば、膜厚の大きい有機膜全体を緻密化させる必要がある場合に有用である。 Since the electron beam reaches a portion far from the film surface of the organic film, the modification treatment according to this embodiment is useful, for example, when it is necessary to densify the entire organic film having a large film thickness.
 なお、本実施形態にかかる改質処理の処理条件は、例えば以下の通りである。
  電子線の加速電圧:1kV~70kV
  改質処理装置の処理室内の酸素濃度:~100ppm
  ウェハWの温度:250℃~500℃
The processing conditions for the reforming treatment according to this embodiment are as follows, for example.
Electron beam acceleration voltage: 1kV-70kV
Oxygen concentration in the processing chamber of the reforming treatment equipment: ~ 100ppm
Wafer W temperature: 250 ° C to 500 ° C
 上述の、~100ppmという低酸素濃度を達成するために、改質装置125の処理室を窒素ガス等の不活性ガスの雰囲気としてもよい。 In order to achieve the above-mentioned low oxygen concentration of ~ 100 ppm, the processing chamber of the reformer 125 may be an atmosphere of an inert gas such as nitrogen gas.
 本実施形態では、レジスト膜の形成処理等が行われる基板処理システム60に、ウェハWの有機膜に電子線を照射ながら当該ウェハWを加熱する処理を行う改質装置132が設けられていた。これに代えて、同様な処理を行う改質装置を、レジスト膜の形成処理等が行われる処理システムの外部に設けてもよい。 In the present embodiment, the substrate processing system 60 in which the resist film is formed and the like is provided with a reforming device 132 that heats the wafer W while irradiating the organic film of the wafer W with an electron beam. Instead of this, a reformer that performs the same treatment may be provided outside the processing system in which the resist film forming treatment or the like is performed.
 なお、以上の説明では、有機膜の形成後、改質処理を行う前に、有機膜のベーク処理を行っていたが、当該ベーク処理は、有機膜中の不要な溶媒や不要な低分子ポリマーを除去し有機膜を安定化させるための処理であり、省略してもよい。 In the above description, the organic film is baked after the formation of the organic film and before the modification treatment. However, the baking treatment involves an unnecessary solvent in the organic film and an unnecessary low molecular weight polymer. This is a process for stabilizing the organic film by removing the solvent, and may be omitted.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The above-described embodiment may be omitted, replaced, or changed in various forms without departing from the scope of the appended claims and the gist thereof.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)基板を処理する基板処理方法であって、
前記基板の処理対象層上に塗布液を供給し、炭素を含有する有機膜を形成する工程と、
前記有機膜が形成された基板に対し加熱処理を行う工程と、
前記有機膜に含有される炭素間の結合を切断すると共に結合が切断された炭素を当該有機膜内で移動させた後に他の炭素と再結合させる、予め定められた処理を、前記加熱処理後の前記有機膜に行う工程と、
前記予め定められた処理が行われた前記有機膜上にレジスト液を供給し、レジスト膜を形成する工程と、を含む、基板処理方法。
 前記(1)によれば、レジスト膜の下地膜でありエッチングマスクとして用いられる有機膜を塗布処理により形成する場合において、有機膜に対し上記予め定められた処理を行うため、当該有機膜のエッチング耐性を高くすることができる。
The following configurations also belong to the technical scope of the present disclosure.
(1) A substrate processing method for processing a substrate.
A step of supplying a coating liquid onto the layer to be treated of the substrate to form a carbon-containing organic film, and
The step of heat-treating the substrate on which the organic film is formed and
After the heat treatment, a predetermined treatment of cleaving the bonds between the carbons contained in the organic film and moving the carbon having the broken bonds in the organic film and then rebonding the carbons with other carbons is performed. And the process to be performed on the organic film
A substrate processing method comprising a step of supplying a resist liquid onto the organic film that has been subjected to the predetermined treatment to form a resist film.
According to the above (1), when an organic film which is a base film of a resist film and is used as an etching mask is formed by a coating process, the organic film is subjected to the predetermined treatment, so that the organic film is etched. The resistance can be increased.
(2)前記予め定められた処理を前記加熱処理後の前記有機膜に行う工程後、前記レジスト膜を形成する工程前に、前記予め定められた処理後の前記有機膜上に、無機膜を形成する工程を含む、前記(1)に記載の基板処理方法。 (2) An inorganic film is formed on the organic film after the predetermined treatment after the step of performing the predetermined treatment on the organic film after the heat treatment and before the step of forming the resist film. The substrate processing method according to (1) above, which comprises a step of forming.
(3)前記レジスト膜上に現像液を供給し、レジストパターンを形成する工程を含む、前記(1)または(2)に記載の基板処理方法。 (3) The substrate processing method according to (1) or (2) above, which comprises a step of supplying a developing solution onto the resist film to form a resist pattern.
(4)前記予め定められた処理は、プラズマによるプラズマ処理である、前記(1)~(3)のいずれか1に記載の基板処理方法。 (4) The substrate processing method according to any one of (1) to (3) above, wherein the predetermined process is a plasma process using plasma.
(5)前記プラズマは、不活性ガスを含む雰囲気下で生成されたものである、前記(4)に記載の基板処理方法。 (5) The substrate processing method according to (4) above, wherein the plasma is generated in an atmosphere containing an inert gas.
(6)前記プラズマは、炭素含有ガスを含む雰囲気下で生成されたものである、前記(4)または(5)に記載の基板処理方法。 (6) The substrate processing method according to (4) or (5) above, wherein the plasma is generated in an atmosphere containing a carbon-containing gas.
(7)前記予め定められた処理は、前記基板に電子線を照射ながら当該基板を加熱する処理である、前記(1)~(3)のいずれか1に記載の基板処理方法。 (7) The substrate processing method according to any one of (1) to (3) above, wherein the predetermined process is a process of heating the substrate while irradiating the substrate with an electron beam.
(8)基板を処理する基板処理システムであって、
前記基板の処理対象層上に炭素を含有する塗布液を供給し、有機膜を形成する有機膜形成装置と、
前記有機膜が形成された基板に対し加熱を行う加熱装置と、
前記有機膜に含有される炭素間の結合を切断すると共に結合が切断された炭素を当該有機膜内で移動させた後に他の炭素と再結合させる、予め定められた処理を、前記加熱処理後の前記有機膜に行う改質装置と、
前記予め定められた処理が行われた前記有機膜上にレジスト液を供給し、レジスト膜を形成するレジスト塗布装置と、を含む、基板処理システム。
(8) A substrate processing system that processes a substrate.
An organic film forming apparatus for forming an organic film by supplying a coating liquid containing carbon onto the layer to be treated of the substrate.
A heating device that heats the substrate on which the organic film is formed, and
After the heat treatment, a predetermined treatment of cleaving the bond between carbons contained in the organic film and moving the carbon having the cleaved bond in the organic film and then recombination with another carbon is performed. The reformer performed on the organic film of
A substrate processing system including a resist coating apparatus that supplies a resist liquid onto the organic film that has been subjected to the predetermined treatment to form a resist film.
1、50、60         基板処理システム
121             有機膜形成装置
123             レジスト塗布装置
125、131、132、202 改質装置
130             熱処理装置
W               ウェハ
1, 50, 60 Substrate processing system 121 Organic film forming device 123 Resist coating device 125, 131, 132, 202 Modification device 130 Heat treatment device W wafer

Claims (8)

  1. 基板を処理する基板処理方法であって、
    前記基板の処理対象層上に塗布液を供給し、炭素を含有する有機膜を形成する工程と、
    前記有機膜が形成された基板に対し加熱処理を行う工程と、
    前記有機膜に含有される炭素間の結合を切断すると共に結合が切断された炭素を当該有機膜内で移動させた後に他の炭素と再結合させる、予め定められた処理を、前記加熱処理後の前記有機膜に行う工程と、
    前記予め定められた処理が行われた前記有機膜上にレジスト液を供給し、レジスト膜を形成する工程と、を含む、基板処理方法。
    It is a substrate processing method that processes a substrate.
    A step of supplying a coating liquid onto the layer to be treated of the substrate to form a carbon-containing organic film, and
    The step of heat-treating the substrate on which the organic film is formed and
    After the heat treatment, a predetermined treatment of cleaving the bonds between the carbons contained in the organic film and moving the carbon having the broken bonds in the organic film and then rebonding the carbons with other carbons is performed. And the process to be performed on the organic film
    A substrate processing method comprising a step of supplying a resist liquid onto the organic film that has been subjected to the predetermined treatment to form a resist film.
  2. 前記予め定められた処理を前記加熱処理後の前記有機膜に行う工程後、前記レジスト膜を形成する工程前に、前記予め定められた処理後の前記有機膜上に、無機膜を形成する工程を含む、請求項1に記載の基板処理方法。 A step of forming an inorganic film on the organic film after the predetermined treatment after the step of performing the predetermined treatment on the organic film after the heat treatment and before the step of forming the resist film. The substrate processing method according to claim 1, which comprises.
  3. 前記レジスト膜上に現像液を供給し、レジストパターンを形成する工程を含む、請求項1または2に記載の基板処理方法。 The substrate processing method according to claim 1 or 2, which comprises a step of supplying a developing solution onto the resist film to form a resist pattern.
  4. 前記予め定められた処理は、プラズマによるプラズマ処理である、請求項1~3のいずれか1項に記載の基板処理方法。 The substrate treatment method according to any one of claims 1 to 3, wherein the predetermined treatment is plasma treatment using plasma.
  5. 前記プラズマは、不活性ガスを含む雰囲気下で生成されたものである、請求項4に記載の基板処理方法。 The substrate processing method according to claim 4, wherein the plasma is generated in an atmosphere containing an inert gas.
  6. 前記プラズマは、炭素含有ガスを含む雰囲気下で生成されたものである、請求項4または5に記載の基板処理方法。 The substrate processing method according to claim 4 or 5, wherein the plasma is generated in an atmosphere containing a carbon-containing gas.
  7. 前記予め定められた処理は、前記基板に電子線を照射ながら当該基板を加熱する処理である、請求項1~3のいずれか1項に記載の基板処理方法。 The substrate processing method according to any one of claims 1 to 3, wherein the predetermined process is a process of heating the substrate while irradiating the substrate with an electron beam.
  8. 基板を処理する基板処理システムであって、
    前記基板の処理対象層上に炭素を含有する塗布液を供給し、有機膜を形成する有機膜形成装置と、
    前記有機膜が形成された基板に対し加熱を行う加熱装置と、
    前記有機膜に含有される炭素間の結合を切断すると共に結合が切断された炭素を当該有機膜内で移動させた後に他の炭素と再結合させる、予め定められた処理を、前記加熱処理後の前記有機膜に行う改質装置と、
    前記予め定められた処理が行われた前記有機膜上にレジスト液を供給し、レジスト膜を形成するレジスト塗布装置と、を含む、基板処理システム。
    A substrate processing system that processes substrates
    An organic film forming apparatus for forming an organic film by supplying a coating liquid containing carbon onto the layer to be treated of the substrate.
    A heating device that heats the substrate on which the organic film is formed, and
    After the heat treatment, a predetermined treatment of cleaving the bond between carbons contained in the organic film and moving the carbon having the cleaved bond in the organic film and then recombination with another carbon is performed. The reformer performed on the organic film of
    A substrate processing system including a resist coating apparatus that supplies a resist liquid onto the organic film that has been subjected to the predetermined treatment to form a resist film.
PCT/JP2020/023189 2019-06-26 2020-06-12 Substrate processing method and substrate processing system WO2020262039A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-118081 2019-06-26
JP2019118081 2019-06-26

Publications (1)

Publication Number Publication Date
WO2020262039A1 true WO2020262039A1 (en) 2020-12-30

Family

ID=74061923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023189 WO2020262039A1 (en) 2019-06-26 2020-06-12 Substrate processing method and substrate processing system

Country Status (1)

Country Link
WO (1) WO2020262039A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335450A (en) * 2006-06-12 2007-12-27 Renesas Technology Corp Process for fabricating semiconductor device
JP2008242221A (en) * 2007-03-28 2008-10-09 Fujifilm Corp Method for forming pattern, and color filter
JP2010219491A (en) * 2009-02-20 2010-09-30 Tokyo Electron Ltd Plasma etching method, plasma etching apparatus, and storage medium
JP2013030801A (en) * 2007-02-28 2013-02-07 Tokyo Electron Ltd Deposition apparatus
JP2014096499A (en) * 2012-11-09 2014-05-22 Tokyo Electron Ltd Plasma etching method and plasma etching device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335450A (en) * 2006-06-12 2007-12-27 Renesas Technology Corp Process for fabricating semiconductor device
JP2013030801A (en) * 2007-02-28 2013-02-07 Tokyo Electron Ltd Deposition apparatus
JP2008242221A (en) * 2007-03-28 2008-10-09 Fujifilm Corp Method for forming pattern, and color filter
JP2010219491A (en) * 2009-02-20 2010-09-30 Tokyo Electron Ltd Plasma etching method, plasma etching apparatus, and storage medium
JP2014096499A (en) * 2012-11-09 2014-05-22 Tokyo Electron Ltd Plasma etching method and plasma etching device

Similar Documents

Publication Publication Date Title
KR101083623B1 (en) Method for plasma etching using periodic modulation of gas chemistry
US9330926B2 (en) Fabrication of a silicon structure and deep silicon etch with profile control
KR101160102B1 (en) Method for plasma stripping using periodic modulation of gas chemistry and hydrocarbon addition
US7547636B2 (en) Pulsed ultra-high aspect ratio dielectric etch
KR102083680B1 (en) Method for etching organic hardmasks
JP2007514327A (en) Method to prevent damage of porous low dielectric constant materials during resist stripping
KR20050044806A (en) System and method for removing material
JP2007005377A (en) Plasma etching method, control program, computer storage medium and plasma etching apparatus
WO2006020344A1 (en) Method for stripping photoresist from etched wafer
JP2014090192A (en) Method for resist strip in presence of regular low k and/or porous low k dielectric materials
JP3275043B2 (en) Post-treatment method of etching
KR101540816B1 (en) Plasma etching method, computer storage medium and plasma etching apparatus
JP2007080850A (en) Plasma ashing method
KR100379210B1 (en) Method for Semiconductor Wafer Ashing
JP4722550B2 (en) Manufacturing method of semiconductor device
WO2020262039A1 (en) Substrate processing method and substrate processing system
WO2016047493A1 (en) Substrate processing method, computer storage medium and substrate processing system
US9773649B2 (en) Dry development and image transfer of si-containing self-assembled block copolymers
KR20170122910A (en) Atomic layer ething method
JPWO2020161879A1 (en) Dry etching method and dry etching equipment
WO2022085449A1 (en) Substrate treating method, and substrate treating device
JP5089871B2 (en) Manufacturing method of semiconductor device
JPS6236826A (en) Ashing method
WO2020028119A1 (en) Non-selective and selective etching through alternating layers of materials
JP2007189153A (en) Process for fabrication of semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20830676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20830676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP