WO2020261783A1 - Resin layered body, and transparent substrate material and transparent protective material material containing the same - Google Patents

Resin layered body, and transparent substrate material and transparent protective material material containing the same Download PDF

Info

Publication number
WO2020261783A1
WO2020261783A1 PCT/JP2020/018929 JP2020018929W WO2020261783A1 WO 2020261783 A1 WO2020261783 A1 WO 2020261783A1 JP 2020018929 W JP2020018929 W JP 2020018929W WO 2020261783 A1 WO2020261783 A1 WO 2020261783A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin laminate
copolymer
vinyl
mol
Prior art date
Application number
PCT/JP2020/018929
Other languages
French (fr)
Japanese (ja)
Inventor
謙 田桑
正樹 平林
Original Assignee
三菱瓦斯化学株式会社
Mgcフィルシート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Mgcフィルシート株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2021527450A priority Critical patent/JPWO2020261783A1/ja
Publication of WO2020261783A1 publication Critical patent/WO2020261783A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films

Definitions

  • the present invention relates to a resin laminate that is preferably used as a transparent base material or a protective material and has a polycarbonate-based resin layer and a thermoplastic resin layer containing a specific vinyl copolymer and a specific styrene copolymer. ..
  • Acrylic resin has excellent surface hardness, transparency, scratch resistance and weather resistance.
  • the polycarbonate resin has excellent impact resistance and the like. From this, the laminate having the acrylic resin layer and the polycarbonate resin layer is excellent in surface hardness, transparency, scratch resistance, weather resistance, impact resistance, etc., and is used for automobile parts, home appliances, electronic devices and portable information terminals. It is used for displays.
  • the laminate having the acrylic resin layer and the polycarbonate resin layer has a problem that warpage occurs when used outdoors or in a car under high temperature and high humidity.
  • Patent Document 1 International Publication No. 2011/145630 reports a laminate having a vinyl copolymer resin layer and a polycarbonate resin layer. It has been reported that such a laminate suppresses warpage at a high temperature and high humidity of 85 ° C. and 85%.
  • the vinyl copolymer resin layer looks like a vinyl copolymer resin layer. Defects occur. Further, since the difference in refractive index between the vinyl copolymer resin layer and the polycarbonate resin layer of the laminate is large, the reflected light intensity at the interface between the vinyl copolymer resin layer / the polycarbonate resin layer is large, and problems such as interference fringes occur.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2016-196522 reports that a resin having a high glass transition temperature / refractive index is blended with a vinyl copolymer resin, and the glass transition temperature / refractive index is high. As a transparent sheet, Haze is high, and there is no description of warpage under high temperature and high humidity.
  • An object of the present invention is to solve at least one of the above-mentioned conventional problems.
  • the present invention is used as a transparent base material or protective material, has a polycarbonate resin layer, a thermoplastic resin layer containing a specific vinyl copolymer and a specific styrene copolymer, and has a high temperature.
  • An object of the present invention is to provide a resin laminate having excellent warp deformation resistance and heat resistance even when exposed to high humidity, having a high refractive index, and having a good appearance.
  • a resin laminate having a layer containing a thermoplastic resin (B) on at least one surface of a layer containing a polycarbonate resin (A) containing a polycarbonate resin as a main component.
  • the thermoplastic resin (B) contains a vinyl copolymer (C) and a styrene copolymer (D), and the vinyl copolymer (C) is a (meth) acrylic acid ester represented by the following general formula (1).
  • the styrene copolymer (D) contains 60 to 90 mol% of the vinyl aromatic monomer unit (d1), 10 to 20 mol% of the cyclic acid anhydride monomer unit (d2), and a methacrylic acid ester simple substance. It is a copolymer containing 0 to 20 mol% of a metric unit (d3).
  • the resin laminate having Haze ⁇ 1.0%.
  • R1 represents a hydrogen atom or a methyl group
  • R2 represents an alkyl group having 1 to 18 carbon atoms.
  • R3 represents a hydrogen atom or a methyl group
  • R4 represents a cyclohexyl group which may have a hydrocarbon substituent having 1 to 4 carbon atoms.
  • thermoplastic resin (B) is a polymer alloy of a vinyl copolymer (C) and a styrene copolymer (D). Is.
  • the content of the vinyl copolymer (C) is 5 based on the total content of 100 parts by mass of the vinyl copolymer (C) and the styrene copolymer (D) in the thermoplastic resin (B).
  • the vinyl copolymer (C) is derived from the aromatic vinyl monomer after polymerizing at least one (meth) acrylic acid ester monomer and at least one aromatic vinyl monomer.
  • R3 in the general formula (2) represents a hydrogen atom and R4 represents a cyclohexyl group.
  • a resin laminate having excellent warp deformation resistance and heat resistance, a high refractive index, and a good appearance even when exposed to high temperature and high humidity is provided, and the resin laminate is provided.
  • the body can be used as a transparent substrate material or a transparent protective material.
  • portable display devices such as mobile phone terminals, portable electronic play equipment, personal digital assistants, and mobile PCs
  • stationary display devices such as notebook PCs, desktop PC liquid crystal monitors, and liquid crystal televisions, for example, these It can be suitably used as a front plate for protecting the equipment of. Whether or not the appearance is good can be determined by, for example, the presence or absence of interference fringes described in Examples described later.
  • the polycarbonate-based resin (A) used in the present invention is a polycarbonate-based resin (A) containing a polycarbonate resin as a main component.
  • "mainly composed of a polycarbonate resin” means that the content of the polycarbonate resin exceeds 50% by mass.
  • the polycarbonate resin (A) preferably contains 75% by mass or more of the polycarbonate resin, more preferably 90% by mass or more of the polycarbonate resin, and further preferably substantially composed of the polycarbonate resin. ..
  • the polycarbonate resin (A) contains a carbonic acid ester bond in the molecular main chain.
  • R contains an aliphatic group, an aromatic group, or both an aliphatic group and an aromatic group, and further has a linear structure or a branched structure. Is not particularly limited as long as it contains), but it is particularly preferable to use a polycarbonate containing the structural unit of the following formula (3).
  • a resin laminate having excellent impact resistance can be obtained.
  • an aromatic polycarbonate resin for example, Iupiron S-2000, Iupiron S-1000, Iupiron E-2000, which is commercially available from Mitsubishi Engineering Plastics Co., Ltd.
  • the glass transition temperature of the polycarbonate resin (A) used in the present invention is preferably 120 to 160 ° C, more preferably 125 to 155 ° C, and particularly preferably 130 ° C to 150 ° C.
  • the polycarbonate resin (A) is synthesized by using a monohydric phenol represented by the following general formula (4) as a terminal terminator. Is preferable.
  • R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms.
  • R 2 - R 5 each represents hydrogen, halogen, or a substituent and 1 carbon atoms which may have a 20 alkyl group or an aryl group having 6 to 12 carbon atoms, the substituents are halogen, C 1 - It is an alkyl group of 20 or an aryl group having 6 to 12 carbon atoms.
  • the monovalent phenol of the general formula (4) is more preferably a monohydric phenol represented by the following general formula (5).
  • R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms.
  • the carbon number of R 1 in the general formula (4) or the general formula (5) is within a specific numerical range. Specifically, as the upper limit of the number of carbon atoms of R 1 , 36 is preferable, 22 is more preferable, and 18 is particularly preferable. Further, as the lower limit of the number of carbon atoms of R 1 , 8 is preferable, and 12 is more preferable.
  • one or both of the parahydroxybenzoic acid hexadecyl ester and the parahydroxybenzoic acid 2-hexyldecyl ester are terminated. It is particularly preferable to use it as an agent.
  • R 1 a monohydric phenol (terminal terminator) having an alkyl group having 16 carbon atoms
  • R 1 the glass transition temperature, melt fluidity, moldability, and the like. It has excellent draw-down resistance and solvent solubility of monohydric phenol during the production of polycarbonate resin, and is particularly preferable as a terminal terminator used in the polycarbonate resin used in the present invention.
  • the organic solvent solubility of the monohydric phenol tends to decrease, and the polycarbonate resin is manufactured.
  • Productivity may decrease.
  • the carbon number of R 1 is 36 or less, the productivity is high and the economy is good in producing the polycarbonate resin.
  • the carbon number of R 1 is 22 or less, the monohydric phenol is particularly excellent in organic solvent solubility, and the productivity can be made very high in the production of the polycarbonate resin, and the economic efficiency is also improved. If the carbon number of R 1 in the general formula (4) or the general formula (5) is too small, the glass transition temperature of the polycarbonate resin does not become a sufficiently low value, and the thermoformability may decrease.
  • the polyester resin may contain terephthalic acid as a main component as the dicarboxylic acid component, and may contain a dicarboxylic acid component other than terephthalic acid.
  • a glycol component containing 20 to 40 (molar ratio, 100 in total) of 1,4-cyclohexanedimethanol with respect to ethylene glycol 80 to 60 (molar ratio) as the main component and a dicarboxylic acid component are polycondensed.
  • a polyester resin, so-called "PETG” is preferable.
  • the polycarbonate resin (A) may contain a polyester carbonate resin having an ester bond and a carbonate bond in the polymer skeleton.
  • the weight average molecular weight of the polycarbonate resin (A) affects the impact resistance and molding conditions of the resin laminate. That is, if the weight average molecular weight is too small, the impact resistance of the resin laminate is lowered, which is not preferable. If the weight average molecular weight is too high, an excessive heat source may be required when laminating the layer containing the polycarbonate resin (A), which is not preferable. In addition, since a high temperature is required depending on the molding method, the polycarbonate resin (A) is exposed to a high temperature, which may adversely affect its thermal stability.
  • the weight average molecular weight of the polycarbonate resin (A) is preferably 15,000 to 75,000, more preferably 20,000 to 70,000. More preferably, it is 25,000 to 65,000.
  • the weight average molecular weight of the polycarbonate resin (A) can be measured based on the description in paragraphs 0061 to 0064 of JP-A-2007-179018. The details of the measurement method are shown below.
  • the relationship between the elution time and the molecular weight of polycarbonate (PC) is obtained by a universal calibration method and used as a calibration curve. Then, the elution curve (chromatogram) of PC is measured under the same conditions as in the case of the calibration curve, and each average molecular weight is obtained from the elution time (molecular weight) and the peak area (molecular number) of the elution time. Assuming that the number of molecules of the molecular weight Mi is Ni, the weight average molecular weight is expressed as follows. The following formula was used as the conversion formula.
  • MPC 0.47822MPS 1.01470 MPC indicates the molecular weight of PC, and MPS indicates the molecular weight of PS.
  • the method for producing the polycarbonate resin (A) used in the present invention can be appropriately selected depending on the monomer used, such as a known phosgene method (interfacial polymerization method) or transesterification method (melting method).
  • thermoplastic resin (B) used in the present invention contains a vinyl copolymer (C) and a styrene copolymer (D), which will be described later. Each component will be described below.
  • the vinyl copolymer (C) contained in the thermoplastic resin (B) according to the present invention has the (meth) acrylic acid ester monomer unit (c1) represented by the following general formula (1) and the following general formula (c1).
  • the ratio of the aliphatic vinyl monomer unit (c2) represented by the following general formula (2) is 60 to 80 mol% with respect to the total of all the monomer units in the coalescence (C). It is characterized in that it is 40 to 20 mol% with respect to the total of all the monomer units in the polymer (C).
  • R1 represents a hydrogen atom or a methyl group
  • R2 represents an alkyl group having 1 to 18 carbon atoms.
  • R3 represents a hydrogen atom or a methyl group
  • R4 represents a cyclohexyl group which may have a hydrocarbon substituent having 1 to 4 carbon atoms.
  • R2 is an alkyl group having 1 to 18 carbon atoms, preferably an alkyl group having 1 to 2 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a butyl group, a lauryl group, a stearyl group, a cyclohexyl group, and an isobornyl group.
  • R2 is a methyl group and / or an ethyl group is preferable
  • R1 is more preferable. It is a methyl methacrylate monomer unit in which R2 is a methyl group.
  • R3 is a hydrogen atom or a methyl group
  • R4 has a cyclohexyl group or a hydrocarbon substituent having 1 to 4 carbon atoms. Examples thereof include those having a cyclohexyl group.
  • an aliphatic vinyl monomer unit in which R3 is a hydrogen atom and R4 is a cyclohexyl group is preferable.
  • the vinyl copolymer (C) used in the present invention mainly contains the (meth) acrylic acid ester monomer unit (c1) represented by the general formula (1) and the fat represented by the general formula (2). It is composed of a group vinyl monomer unit (c2).
  • the vinyl copolymer (C) may contain one or more of the (meth) acrylic acid ester monomer unit (c1), and the aliphatic vinyl monomer unit (c2) is 1 type. It may contain seeds or two or more kinds.
  • the total ratio of the (meth) acrylic acid ester monomer unit (c1) and the aliphatic vinyl monomer unit (c2) is the total of all the monomer units in the vinyl copolymer (C).
  • the vinyl copolymer (C) contains the (meth) acrylic acid ester monomer unit (c1) and the aliphatic vinyl monomer in a range of 10 mol% or less with respect to the total of all the monomer units. It may contain a monomer unit other than the metric unit (c2). Examples of the monomer unit other than the (meth) acrylic acid ester monomer unit (c1) and the aliphatic vinyl monomer unit (c2) include (meth) acrylic acid ester monomer and aromatic vinyl monomer.
  • a simple substance derived from the aromatic vinyl monomer containing the non-hydrogenated aromatic double bond examples include a monomer unit.
  • the ratio of the (meth) acrylic acid ester monomer unit (c1) represented by the general formula (1) is 60 with respect to the total of all the monomer units in the vinyl copolymer (C). It is -80 mol%, preferably 70-80 mol%, and the ratio of the aliphatic vinyl monomer unit (c2) represented by the general formula (2) is in the vinyl copolymer (C).
  • the ratio of the aliphatic vinyl monomer unit (c2) to the total of all the monomer units in the vinyl copolymer (C) is less than 20 mol%, the glass transition temperature is low and the heat-resistant dimensional stability is low. It may be inferior and impractical. On the other hand, if it exceeds 40 mol%, the solvent resistance is poor and it may not be practical.
  • the method for producing the vinyl copolymer (C) is not particularly limited, but after polymerizing at least one (meth) acrylic acid ester monomer and at least one aromatic vinyl monomer, the fragrance derived from the aromatic vinyl monomer is used. Those obtained by hydrogenating the group double bond are preferable.
  • the (meth) acrylic acid means methacrylic acid and / or acrylic acid.
  • Specific examples of the aromatic vinyl monomer used at this time include styrene, ⁇ -methylstyrene, p-hydroxystyrene, alkoxystyrene, chlorostyrene, and derivatives thereof. Of these, styrene is preferred.
  • a known method can be used for the polymerization of the (meth) acrylic acid ester monomer and the aromatic vinyl monomer, and for example, it can be produced by a massive polymerization method, a solution polymerization method, or the like.
  • the massive polymerization method is carried out by a method in which a monomer composition containing the above-mentioned monomer and a polymerization initiator is continuously supplied to a complete mixing tank and continuously polymerized at 100 to 180 ° C.
  • the monomer composition may contain a chain transfer agent, if necessary.
  • the polymerization initiator is not particularly limited, but t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, 1,1-di (t-hexylperoxy).
  • the chain transfer agent is used as needed, and examples thereof include ⁇ -methylstyrene dimer.
  • Examples of the solvent used in the solution polymerization method include hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate and methyl isobutyrate, ketone solvents such as acetone and methyl ethyl ketone, tetrahydrofuran, and the like.
  • Examples thereof include ether solvents such as dioxane and alcohol solvents such as methanol and isopropanol.
  • the solvent used for the hydrogenation reaction after polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer may be the same as or different from the above-mentioned polymerization solvent.
  • hydrocarbon solvents such as cyclohexane and methylcyclohexane
  • ester solvents such as ethyl acetate and methyl isobutyrate
  • ketone solvents such as acetone and methyl ethyl ketone
  • ether solvents such as tetrahydrofuran and dioxane
  • alcohol solvents such as methanol and isopropanol.
  • solvents include solvents.
  • the vinyl copolymer used in the present invention is obtained by polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer as described above, and then hydrogenating the aromatic double bond derived from the aromatic vinyl monomer. (C) is obtained.
  • the method of hydrogenation is not particularly limited, and a known method can be used. For example, it can be carried out in a batch system or a continuous flow system at a hydrogen pressure of 3 to 30 MPa and a reaction temperature of 60 to 250 ° C. When the temperature is 60 ° C. or higher, the reaction time does not take too long, and when the temperature is 250 ° C. or lower, the molecular chain is less likely to be cleaved or the ester site is hydrogenated.
  • Examples of the catalyst used in the hydrogenation reaction include metals such as nickel, palladium, platinum, cobalt, ruthenium, and rhodium, or oxides, salts, or complex compounds of those metals, and carbon, alumina, silica, silica-alumina, and diatomaceous earth. Examples thereof include a solid catalyst supported on a porous carrier such as.
  • the vinyl copolymer (C) is preferably one in which 70% or more of the aromatic double bonds derived from the aromatic vinyl monomer are hydrogenated. That is, the ratio of the unhydrogenated portion of the aromatic double bond in the monomer unit derived from the aromatic vinyl monomer is preferably 30% or less. If it exceeds 30%, the transparency of the vinyl copolymer resin (C) may decrease. It is more preferably in the range of less than 10%, and even more preferably in the range of less than 5%.
  • the weight average molecular weight of the vinyl copolymer (C) is not particularly limited, but is preferably 50,000 to 400,000, preferably 70,000 to 300,000 from the viewpoint of strength and moldability. Is more preferable.
  • the weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
  • the vinyl copolymer (C) can be blended with other resins as long as the transparency is not impaired.
  • examples thereof include methyl methacrylate-styrene copolymer resin, polymethyl methacrylate, polystyrene, polycarbonate, cycloolefin (co) polymer resin, acrylonitrile-styrene copolymer resin, acrylonitrile-butadiene-styrene copolymer resin, and various elastomers. ..
  • the glass transition temperature of the vinyl copolymer (C) is preferably in the range of 110 to 190 ° C, and more preferably in the range of 110 to 160 ° C.
  • the laminate provided in the present invention is less likely to be deformed or cracked in a thermal environment or a moist heat environment, and when it is 190 ° C. or lower, it depends on a mirror roll or a shaping roll. It has excellent workability such as continuous heat shaping, or batch type heat shaping using a mirror surface mold or a shaping die.
  • the glass transition temperature in the present invention is a temperature measured by a differential scanning calorimetry device at a heating rate of 10 ° C./min and calculated by the midpoint method.
  • the styrene copolymer (D) contained in the thermoplastic resin (B) according to the present invention contains a vinyl aromatic monomer unit (d1), a cyclic acid anhydride monomer unit (d2), and a methacrylic acid ester simple substance.
  • the total ratio of the vinyl aromatic monomer unit (d1), the cyclic acid anhydride monomer unit (d2), and the methacrylic acid ester monomer unit (d3) is the styrene, including the metric unit (d3).
  • the vinyl aromatic monomer unit (d1) of the styrene copolymer (D) is not particularly limited, and any known aromatic vinyl monomer can be used, but it is easily available. From the viewpoint, styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene and the like can be mentioned. Of these, styrene is particularly preferable from the viewpoint of compatibility. Two or more kinds of these aromatic vinyl monomers may be mixed.
  • Examples of the cyclic acid anhydride monomer unit (d2) of the styrene copolymer (D) include acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid, which are compatible with acrylic resins.
  • Maleic anhydride is preferable from the viewpoint of. Two or more kinds of these unsaturated dicarboxylic acid anhydride monomers may be mixed.
  • Examples of the methacrylic acid ester monomer unit (d3) of the styrene copolymer (D) include acrylonitrile, metaacrylonitrile, acrylic acid, methacrylic acid, and (meth) acrylic acid ester.
  • Examples of the (meth) acrylic acid ester include methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate and 2-ethylhexyl methacrylate. Be done. Among them, methyl methacrylate (MMA) is preferable from the viewpoint of compatibility with acrylic resin. Two or more kinds of these acrylic compound monomers may be mixed.
  • the vinyl aromatic monomer unit (d1) the cyclic acid anhydride monomer unit (d2), and the methacrylic acid ester monomer unit (d3).
  • the total ratio with and from is 90 to 100 mol%, preferably 95 to 100 mol%, and more preferably 98 to 100 mol% with respect to the total of all the monomer units in the styrene copolymer (D). Mol%. That is, the styrene copolymer (D) contains the vinyl aromatic monomer unit (d1) and the cyclic acid anhydride monomer in a range of 10 mol% or less with respect to the total of all the monomer units.
  • the monomer unit other than the vinyl aromatic monomer unit (d1), the cyclic acid anhydride monomer unit (d2), and the methacrylate ester monomer unit (d3) include N-substituted.
  • Examples of the N-substituted maleimide monomer include N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-naphthylmaleimide, N-hydroxyphenylmaleimide, N-methoxyphenylmaleimide, and N-carboxyphenylmaleimide.
  • N-arylmaleimide such as N-nitrophenylmaleimide and N-tribromophenylmaleimide
  • N-phenylmaleimide is preferable from the viewpoint of compatibility with acrylic resin. Two or more kinds of these N-substituted maleimide monomers may be mixed.
  • the ratio of the vinyl aromatic monomer unit (d1) is 60 to 90 mol%, preferably 65 to 90 mol%, based on the total of all the monomer units in the styrene copolymer (D). It is more preferably 70 to 90 mol%, further preferably 72 to 88 mol%, and particularly preferably 74 to 86 mol%.
  • the ratio of the cyclic acid anhydride monomer unit (d2) is 10 to 20 mol%, preferably 12 to 18 mol%, based on the total of all the monomer units in the styrene copolymer (D). %, More preferably 14 to 16 mol%.
  • the ratio of the methacrylic acid ester monomer unit (d3) is 0 to 20 mol%, preferably 0 to 15 mol%, based on the total of all the monomer units in the styrene copolymer (D). It is more preferably 0 to 10 mol%.
  • the ratio of the vinyl aromatic monomer unit (d1) to the total of all the monomer units in the styrene copolymer (D) is less than 60 mol%, the phase with the vinyl copolymer (C) Poor solubility. Further, if it exceeds 90 mol%, sufficient heat resistance cannot be imparted.
  • the ratio of the cyclic acid anhydride monomer unit (d2) to the total of all the monomer units in the styrene copolymer (D) is less than 10 mol%, the heat resistance is insufficient. If it exceeds 20 mol%, the compatibility with the vinyl copolymer (C) deteriorates.
  • the method for producing the styrene copolymer (D) is not particularly limited, but a known solution polymerization method, massive polymerization method, or the like can be appropriately selected.
  • the weight average molecular weight of the styrene copolymer (D) is not particularly limited, but is preferably 50,000 to 400,000 from the viewpoint of compatibility with the vinyl copolymer (C), 70, More preferably, it is 000 to 300,000.
  • the weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
  • the glass transition temperature of the styrene copolymer (D) is preferably higher than the glass transition temperature of the vinyl copolymer (C), preferably in the range of 120 to 190 ° C, and preferably in the range of 125 to 185 ° C. Is more preferable.
  • the glass transition temperature is 120 ° C. or higher, the laminate provided in the present invention is less likely to be deformed or cracked in a thermal environment or a moist thermal environment.
  • the temperature is 190 ° C. or lower, the workability is excellent such as continuous heat shaping by a mirror surface roll or a shaping roll, or batch type heat shaping by a mirror surface mold or a shaping die.
  • the glass transition temperature in the present invention is a temperature measured by a differential scanning calorimetry device at a heating rate of 10 ° C./min and calculated by the midpoint method.
  • the styrene copolymer (D) is a binary copolymer containing a vinyl aromatic monomer unit (d1) and a cyclic acid anhydride monomer unit (d2), or a vinyl aromatic monomer unit. It is a ternary copolymer containing (d1), a cyclic acid anhydride monomer unit (d2), and a methacrylic acid ester monomer unit (d3), but a vinyl copolymer (C) may be used in combination. Therefore, the resin laminate has higher hardness than the case where only the styrene copolymer (D) is used, and has shape stability under high temperature and high humidity as compared with the case where only the vinyl copolymer (C) is used. can get.
  • the mass ratio of the vinyl copolymer (C) to the styrene copolymer (D) is 100 parts by mass in total of the contents of the vinyl copolymer (C) and the styrene copolymer (D). It is preferable that the vinyl copolymer (C) is 5 to 95 parts by mass and the styrene copolymer (D) is 95 to 5 parts by mass based on the above. More preferably, the vinyl copolymer (C) is 15 to 85 parts by mass, and the styrene copolymer (D) is 85 to 15 parts by mass, and more preferably, the vinyl copolymer (C).
  • the styrene copolymer (D) is 75 to 25 parts by mass with respect to 25 to 75 parts by mass, and particularly preferably, the vinyl copolymer (C) is 40 to 60 parts by mass with the styrene.
  • the copolymer (D) is 60 to 40 parts by mass.
  • the temperature at which the vinyl copolymer (C) and the styrene copolymer (D) are alloyed is preferably in the range of 230 to 320 ° C, and more preferably in the range of 240 to 300 ° C. If the alloy temperature is less than 230 ° C., the compatibility tends to be poor and the haze tends to be high. Further, when the temperature exceeds 320 ° C., the vinyl copolymer (C) and / and the styrene copolymer (D) are thermally decomposed.
  • the method for producing the thermoplastic resin (B) is not particularly limited, and necessary components are mixed in advance using a mixer such as a tumbler, a Henschel mixer, or a super mixer, and then a Banbury mixer, Known methods such as melt-kneading with a machine such as a roll, a brabender, a single-screw extruder, a twin-screw extruder, or a pressure kneader can be applied.
  • a mixer such as a tumbler, a Henschel mixer, or a super mixer
  • Known methods such as melt-kneading with a machine such as a roll, a brabender, a single-screw extruder, a twin-screw extruder, or a pressure kneader can be applied.
  • One of the characteristics of the thermoplastic resin (B) used in the present invention is that the glass transition temperature is relatively high, preferably in the range of 122 to 185
  • the range of 125 to 140 ° C. is particularly preferable. Since the glass transition temperature of the thermoplastic resin (B) used in the present invention is relatively high and the difference from the glass transition temperature of the polycarbonate resin (A) is small, the polycarbonate resin is used during hot press molding or heat bending. Even if the temperature approaches the glass transition temperature of (A), there is an advantage that there is little problem that the layer containing the thermoplastic resin (B) has a poor appearance.
  • the difference between the glass transition temperature of the polycarbonate resin (A) and the glass transition temperature of the thermoplastic resin (B) is preferably in the range of 0 to 25 ° C, more preferably in the range of 0 to 20 ° C. It is particularly preferably in the range of 10 to 20 ° C.
  • the resin laminate of the present invention has Haze ⁇ 1.0%, preferably Haze ⁇ 0.8%, and more preferably Haze ⁇ 0.7%. If Haze exceeds 1.0%, the resin laminate may appear whitish visually.
  • the amount of change in warpage measured according to the ⁇ warp test in a high temperature and high humidity environment> in Examples described later is preferably 200 ⁇ m or less in absolute value, and is 150 ⁇ m or less. It is more preferably 100 ⁇ m or less, and particularly preferably 100 ⁇ m or less. When the absolute value of the amount of change in warpage exceeds 200 ⁇ m, deformation of the resin laminate may be visually confirmed.
  • the thickness of the layer containing the thermoplastic resin (B) affects the surface hardness and impact resistance of the resin laminate. That is, if the thickness of the layer containing the thermoplastic resin (B) is too thin, the surface hardness becomes low, which is not preferable. If the thickness of the layer containing the thermoplastic resin (B) is too large, the impact resistance deteriorates, which is not preferable.
  • the thickness of the layer containing the thermoplastic resin (B) is preferably 10 to 250 ⁇ m, more preferably 20 to 200 ⁇ m. More preferably, it is 30 to 150 ⁇ m.
  • the total thickness of the layer containing the polycarbonate resin (A) and the layer containing the thermoplastic resin (B) is preferably 0.04 to 4.0 mm, more preferably 0.05 to 3.5 mm, still more preferably 0. It is 5 to 3.0 mm.
  • the polycarbonate resin (A) forming the base material layer and / or the thermoplastic resin (B) forming the surface layer may contain components other than the above-mentioned main components.
  • the polycarbonate resin (A) and / or the thermoplastic resin (B) can be mixed with an ultraviolet absorber and used. If the content of the UV absorber is too large, depending on the molding method, the excess UV absorber may be scattered due to the high temperature and pollute the molding environment, which may cause a problem. From this, the content ratio of the ultraviolet absorber is preferably 0 to 5% by mass, more preferably 0 to 3% by mass, and even more preferably 0 to 1% by mass.
  • the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, and 2-hydroxy.
  • Benzophenone UV absorber 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, 2- (2-hydroxy-3) Bentriazole-based UV absorbers such as -t-butyl-5-methylphenyl) benzotriazole, (2H-benzotriazole-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol, salicylic acid Phenyl, benzoate-based UV absorbers such as 2,4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, bis (2,2,6,6-tetramethylpiperidine-4) -Il) Hindered amine-based ultraviolet absorbers such as sebacate, 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-
  • the polycarbonate resin (A) forming the base material layer and / or the thermoplastic resin (B) forming the surface layer may be mixed with various additives in addition to the above-mentioned ultraviolet absorber.
  • additives include, for example, antioxidants and colorants, antioxidants, mold release agents, lubricants, dyes, pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, organic fillers and the like. Reinforcing materials such as inorganic fillers can be mentioned.
  • the mixing method is not particularly limited, and a method of total compounding, a method of dry blending the masterbatch, a method of total dry blending, and the like can be used.
  • the surface of the layer containing the thermoplastic resin (B) or the surface of the layer containing the polycarbonate resin (A) may be subjected to a hard coat treatment.
  • a hard coat layer is formed by a hard coat treatment using a hard coat paint that cures using heat energy and / or light energy.
  • the hard coat paint to be cured by using heat energy include thermosetting resin compositions such as polyorganosiloxane-based and crosslinked acrylic-based.
  • a hard coat coating material to be cured using light energy for example, a photocurable resin obtained by adding a photopolymerization initiator to a resin composition composed of a monofunctional and / or polyfunctional acrylate monomer and / or oligomer. Examples include compositions.
  • the method of applying the hard coat paint in the present invention is not particularly limited, and a known method can be used.
  • spin coating method dip method, spray method, slide coating method, bar coating method, roll coating method, gravure coating method, meniscus coating method, flexographic printing method, screen printing method, beat coating method, and handling method can be mentioned. ..
  • the coated surface may be pretreated before the hard coat.
  • Known treatment examples include sandblasting, solvent treatment, corona discharge treatment, chromic acid treatment, flame treatment, hot air treatment, ozone treatment, ultraviolet treatment, and primer treatment with a resin composition. Can be mentioned.
  • Each material of the layer containing the polycarbonate resin (A), the layer containing the thermoplastic resin (B), and the hard coat in the present invention for example, the polycarbonate resin (A) and the thermoplastic resin (B), is filtered. It is preferably filtered and purified. By forming or laminating through a filter, it is possible to obtain a resin laminate having few appearance defects such as foreign substances and defects.
  • the filtration method is not particularly limited, and melt filtration, solution filtration, or a combination thereof can be used.
  • the filter medium of the filter is not particularly limited, but is a polypropylene, cotton, polyester, viscose rayon or glass fiber non-woven fabric or roving yarn roll, phenol resin impregnated cellulose, metal fiber non-woven fabric sintered body, metal powder sintered body, breaker plate, etc. Alternatively, any combination of these can be used. In particular, considering heat resistance, durability, and pressure resistance, a type obtained by sintering a metal fiber non-woven fabric is preferable.
  • the filtration accuracy of the polycarbonate resin (A) and the thermoplastic resin (B) is 50 ⁇ m or less, preferably 30 ⁇ m or less, and more preferably 10 ⁇ m or less. Further, the filtration accuracy of the hard coating agent is 20 ⁇ m or less, preferably 10 ⁇ m or less, and more preferably 2 ⁇ m or less because it is applied to the outermost layer of the resin laminate.
  • the polymer filter used for the thermoplastic resin melt filtration is classified into a leaf disc filter, a candle filter, a pack disc filter, a cylindrical filter and the like according to its structure, and a leaf disc filter having a large effective filtration area is particularly preferable.
  • the resin laminate of the present invention can be subjected to any one or more of anti-fingerprint treatment, anti-reflection treatment, anti-fouling treatment, anti-static treatment, weather resistance treatment and anti-glare treatment on one or both sides thereof.
  • the methods of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment are not particularly limited, and known methods can be used. For example, a method of applying antireflection paint, a method of depositing a dielectric thin film, a method of applying antistatic paint, and the like can be mentioned.
  • the total light transmittance was measured using a reflection / transmittance meter HR-100 manufactured by Murakami Color Technology Laboratory Co., Ltd.
  • Haze was measured using COH-400 manufactured by Nippon Denshoku Kogyo Co., Ltd.
  • ⁇ Glass transition temperature> A differential scanning calorimetry device DSC6200 manufactured by Seiko Instruments Inc. was used. Nitrogen 30 ml / min. Under circulation, 10 ° C./min. The temperature was raised from 30 ° C. to 200 ° C., and then 50 ° C./min. The temperature was lowered from 200 ° C. to 30 ° C., and again at 10 ° C./min. The temperature was raised from 30 ° C. to 200 ° C. The midpoint glass transition temperature (Tmg) in the second temperature rise was used as the glass transition temperature.
  • Tmg midpoint glass transition temperature
  • ⁇ Refractive index measurement> The measurement was performed with a multi-wavelength Abbe refractometer DR-M2 manufactured by Atago Co., Ltd. The measurement temperature was 20 ° C., the measurement wavelength was 589 nm, and monobromonaphthalene was used as the intermediate solution.
  • a test piece having a length of 100 mm and a width of 60 mm was cut out from the vicinity of the center of the resin laminate.
  • the test piece was set in a two-point support type holder and placed in an environmental tester set at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours or more to adjust the state, and then the warp was measured. The value at this time was taken as the value of the amount of warpage before processing.
  • the test piece was set in a holder and placed in an environmental tester set at a temperature of 85 ° C. and a relative humidity of 85%, and held in that state for 120 hours. Further, the holder was moved into an environmental tester set at a temperature of 23 ° C.
  • the value at this time was taken as the value of the amount of warpage after processing.
  • a three-dimensional shape measuring machine equipped with an electric stage is used, and the taken-out test piece is placed horizontally in a convex state and scanned at 1 mm intervals, and the swelling in the center is measured as the warp. did.
  • the difference in the amount of warpage before and after the treatment that is, (the amount of warpage after treatment)-(the amount of warpage before treatment) was evaluated as the amount of change in warpage.
  • ⁇ Interference fringes> A black tape (black vinyl tape model number 117BLA manufactured by 3M Japan Co., Ltd.) is attached to the layer side of the resin laminate containing the polycarbonate resin (A), and three-wavelength fluorescent light is applied from the surface of the layer containing the thermoplastic resin (B).
  • the interference fringes were evaluated by illuminating with a lamp (Technica Inverter Light 60 AL-60231). The pass / fail judgment of the interference fringes was made according to the following criteria, and ⁇ was judged as a pass. ⁇ : Interference fringes are not visible or interference fringes appear weak ⁇ : Interference fringes appear strong
  • thermoplastic resins (F-1) to (F-5) using the styrene copolymers (E-1) to (E-5) shown below were used.
  • Synthesis Example 1 [Production of Vinyl Copolymer (C-1)] Purified methyl methacrylate (manufactured by Mitsubishi Gas Chemical Industries, Ltd.) 75,000 mol% and purified styrene (manufactured by Wako Pure Chemical Industries, Ltd.) 24.998 mol% as monomer components, and t-amylperoxy as a polymerization initiator. A monomer composition consisting of 0.002 mol% of -2-ethylhexanoate (manufactured by Alchema Yoshitomi, trade name: Luperox 575) was continuously supplied to a 10 L complete mixing tank with helical ribbon wings at 1 kg / h.
  • Continuous polymerization was carried out at an average residence time of 2.5 hours and a polymerization temperature of 150 ° C.
  • the liquid level in the polymerization tank was continuously extracted from the bottom so as to be constant, and introduced into a solvent removing device to obtain a pellet-shaped copolymer.
  • the proportion of the (meth) acrylic acid ester monomer unit (c1) derived from methyl methacrylate in the obtained copolymer was 73 mol%.
  • the weight average molecular weight (standard polystyrene equivalent) measured by gel permeation chromatography was 124,000.
  • This copolymer was dissolved in methyl isobutyrate (manufactured by Kanto Chemical Co., Inc.) to prepare a 10 mass% methyl isobutyrate solution.
  • Production Example 1A [Production of a single-layer film of a thermoplastic resin (B-1)] After mixing 25 parts by mass of vinyl copolymer (C-1) and 75 parts by mass of styrene copolymer (D-1) with a blender for 20 minutes, a shaft diameter of 32 mm ⁇ with a 280 mm wide single layer die attached. It was put into a single-screw extruder and kneaded under the conditions of a cylinder temperature of 220 ° C. to 290 ° C., an adapter temperature of 290 ° C., a die temperature of 290 ° C., and a discharge rate of 9.0 kg / h. 2 Chill roll temperature: Cooled at 90 ° C.
  • thermoplastic resin (B-1) having a thickness of 70 ⁇ m.
  • the single-layer film of the thermoplastic resin (B-1) had Haze: 0.4%, a glass transition temperature: 131 ° C., and a refractive index: 1.568.
  • Production Example 2A [Production of a single-layer film of thermoplastic resin (B-2)] After mixing 40 parts by mass of the vinyl copolymer (C-1) and 60 parts by mass of the styrene copolymer (D-1) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 ⁇ m (similar to Production Example 1A). A single-layer film of B-2) was prepared. The single-layer film of the thermoplastic resin (B-2) had Haze: 0.4%, a glass transition temperature of 129 ° C., and a refractive index of 1.551.
  • Production Example 3A [Production of a single-layer film of thermoplastic resin (B-3)] After mixing 50 parts by mass of the vinyl copolymer (C-1) and 50 parts by mass of the styrene copolymer (D-1) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 ⁇ m (similar to Production Example 1A). A single-layer film of B-3) was prepared. The monolayer film of the thermoplastic resin (B-3) had Haze: 0.5%, a glass transition temperature: 128 ° C., and a refractive index: 1.543.
  • Production Example 4A [Production of a single-layer film of thermoplastic resin (B-4)] After mixing 60 parts by mass of the vinyl copolymer (C-1) and 40 parts by mass of the styrene copolymer (D-1) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 ⁇ m (similar to Production Example 1A). A single-layer film of B-4) was prepared. The single-layer film of the thermoplastic resin (B-4) had Haze: 0.4%, a glass transition temperature of 127 ° C., and a refractive index of 1.524.
  • Production Example 5A [Production of a single-layer film of a thermoplastic resin (B-5)] After mixing 75 parts by mass of the vinyl copolymer (C-1) and 25 parts by mass of the styrene copolymer (D-1) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 ⁇ m (similar to Production Example 1A). A single-layer film of B-5) was prepared. The single-layer film of the thermoplastic resin (B-5) had Haze: 0.3%, a glass transition temperature: 125 ° C., and a refractive index: 1.519.
  • Production Example 6A [Production of a single-layer film of thermoplastic resin (B-6)] After mixing 50 parts by mass of the vinyl copolymer (C-1) and 50 parts by mass of the styrene copolymer (D-2) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 ⁇ m (similar to Production Example 1A). A single-layer film of B-6) was prepared. The single-layer film of the thermoplastic resin (B-6) had Haze: 0.9%, a glass transition temperature: 128 ° C., and a refractive index: 1.536.
  • thermoplastic resin (F-1) After mixing 50 parts by mass of the vinyl copolymer (C-1) and 50 parts by mass of the styrene copolymer (E-1) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 ⁇ m (similar to Production Example 1A). A single-layer film of F-1) was produced.
  • the single-layer film of the thermoplastic resin (F-1) had Haze: 0.1%, a glass transition temperature of 118 ° C., and a refractive index of 1.537.
  • thermoplastic resin (F-2) After mixing 50 parts by mass of the vinyl copolymer (C-1) and 50 parts by mass of the styrene copolymer (E-2) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 ⁇ m (similar to Production Example 1A). A single layer film of F-2) was prepared.
  • the monolayer film of the thermoplastic resin (F-2) had Haze: 1.9%, a glass transition temperature of 124 ° C., and a refractive index of 1.532.
  • Production Comparative Example 3A Manufacture of Single Layer Film of Thermoplastic Resin (F-3)] After mixing 50 parts by mass of the vinyl copolymer (C-1) and 50 parts by mass of the styrene copolymer (E-3) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 ⁇ m (similar to Production Example 1A). A single-layer film of F-3) was prepared. The single-layer film of the thermoplastic resin (F-3) had Haze: 34.8%, glass transition temperature: two peaks due to incompatibility, and refractive index: incompatible, so that measurement was impossible.
  • Production Comparative Example 4A Manufacture of Single Layer Film of Thermoplastic Resin (F-4)] After mixing 50 parts by mass of the vinyl copolymer (C-1) and 50 parts by mass of the styrene copolymer (E-4) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 ⁇ m (similar to Production Example 1A). A single-layer film of F-4) was prepared. The monolayer film of the thermoplastic resin (F-4) had Haze: 25.5%, glass transition temperature: two peaks were generated due to incompatibility, and refractive index: could not be measured because of incompatibility.
  • thermoplastic resin (F-5) After mixing 50 parts by mass of the vinyl copolymer (C-1) and 50 parts by mass of the styrene copolymer (E-5) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 ⁇ m (similar to Production Example 1A). A single layer film of F-5) was prepared.
  • the single-layer film of the thermoplastic resin (F-5) had Haze: 54.6%, the glass transition temperature: two peaks were generated due to incompatibility, and the refractive index was incompatible, so measurement was impossible.
  • thermoplastic resin (F-6) Using 100 parts by mass of the vinyl copolymer (C-1) (without the styrene copolymer), a single-layer film of a thermoplastic resin (F-6) having a thickness of 70 ⁇ m was prepared in the same manner as in Production Example 1A.
  • the single-layer film of the thermoplastic resin (F-6) had Haze: 0.1%, a glass transition temperature of 121 ° C., and a refractive index of 1.494.
  • Production Comparative Example 7A Manufacturing of Single Layer Film of Thermoplastic Resin (F-7)] Using 100 parts by mass of the styrene copolymer (D-1) (without the vinyl copolymer), a single-layer film of a thermoplastic resin (F-7) having a thickness of 70 ⁇ m was prepared in the same manner as in Production Example 1A.
  • the single-layer film of the thermoplastic resin (F-7) had Haze: 0.3%, a glass transition temperature of 134 ° C., and a refractive index of 1.590.
  • Production Example 1B [Production of pellets (B-1-1)]
  • the dry blend ratio of Production Example 1A is 25 parts by mass of vinyl copolymer (C-1) and 75 parts by mass of styrene copolymer (D-1), for a total of 100 parts by mass of phosphorus.
  • Production Example 2B [Production of pellets (B-2-1)]
  • the dry blend ratio is the same as in Production Example 2A, with respect to 40 parts by mass of the vinyl copolymer (C-1) and 60 parts by mass of the styrene copolymer (D-1), for a total of 100 parts by mass.
  • the system additive PEP-36 500 ppm and 0.2% by mass of stearate monoglyceride were added, and the mixture and pelletization were carried out in the same manner as in Production Example 1B.
  • the pellets could be produced stably.
  • Production Example 3B [Production of pellets (B-3-1)] Lynn with respect to 50 parts by mass of vinyl copolymer (C-1) and 50 parts by mass of styrene copolymer (D-1), which is the same dry blend ratio as in Production Example 3A, for a total of 100 parts by mass.
  • the system additive PEP-36 500 ppm and 0.2% by mass of stearate monoglyceride were added, and the mixture and pelletization were carried out in the same manner as in Production Example 1B.
  • the pellets could be produced stably.
  • Production Example 4B [Production of pellets (B-4-1)]
  • the dry blend ratio is the same as in Production Example 4A, with respect to 60 parts by mass of the vinyl copolymer (C-1) and 40 parts by mass of the styrene copolymer (D-1), for a total of 100 parts by mass.
  • the system additive PEP-36 500 ppm and 0.2% by mass of stearate monoglyceride were added, and the mixture and pelletization were carried out in the same manner as in Production Example 1B.
  • the pellets could be produced stably.
  • Production Example 5B [Production of pellets (B-5-1)]
  • the dry blend ratio is the same as in Production Example 5A, with respect to 75 parts by mass of the vinyl copolymer (C-1) and 25 parts by mass of the styrene copolymer (D-1), for a total of 100 parts by mass.
  • the system additive PEP-36 500 ppm and 0.2% by mass of stearate monoglyceride were added, and the mixture and pelletization were carried out in the same manner as in Production Example 1B.
  • the pellets could be produced stably.
  • Production Example 6B [Production of pellets (B-6-1)] Lynn with respect to 50 parts by mass of the vinyl copolymer (C-1) and 50 parts by mass of the styrene copolymer (D-2), which is the same dry blend ratio as in Production Example 6A, for a total of 100 parts by mass.
  • the system additive PEP-36 500 ppm and 0.2% by mass of stearate monoglyceride were added, and the mixture and pelletization were carried out in the same manner as in Production Example 1B.
  • the pellets could be produced stably.
  • Production Comparative Example 6B [Production of pellets (F-6-1)] To 100 parts by mass of the vinyl copolymer (C-1) which is the same as in Production Comparative Example 6A, 500 ppm of phosphorus-based additive PEP-36 and 0.2% by mass of stearic acid monoglyceride are added, and the same as in Production Example 1B. Was pelletized. The pellets could be produced stably.
  • Production Comparative Example 7B [Production of pellets (F-7-1)] To 100 parts by mass of the styrene copolymer (D-1) which is the same as in Production Comparative Example 7A, 500 ppm of phosphorus-based additive PEP-36 and 0.2% by mass of stearic acid monoglyceride are added, and the same as in Production Example 1B. Was pelletized. The pellets could be produced stably.
  • Example 1 Manufacturing of resin laminate (G-1)] Each is a multi-layer extruder having a single-screw extruder with a shaft diameter of 32 mm, a single-screw extruder with a shaft diameter of 65 mm, a feed block connected to all extruders, and a 650 mm wide T-die connected to the feed block.
  • the resin laminate was molded using a multi-layer extruder having a multi-manifold die connected to the extruder.
  • the pellets (B-1-1) obtained in Production Example 1B were continuously introduced into a single-screw extruder having a shaft diameter of 32 mm, and extruded under the conditions of a cylinder temperature of 240 ° C.
  • a polycarbonate resin (A-1) (manufactured by Mitsubishi Engineering Plastics Co., Ltd., product name: Iupiron S-1000) is continuously introduced into a single-screw extruder with a shaft diameter of 65 mm, and the cylinder temperature is 280 ° C. and the discharge amount is Was extruded at 31.8 kg / h.
  • the feed block connected to the full extruder was equipped with two types and two layers of distribution pins, and the pellet (B-1-1) and the polycarbonate resin (A-1) were introduced and laminated at a temperature of 270 ° C.
  • a resin laminate (G-1) of 1-1) and a polycarbonate resin (A-1) was obtained.
  • the total thickness of the central portion of the obtained resin laminate (G-1) was 1000 ⁇ m, and the thickness of the surface layer (layer containing the thermoplastic resin (B)) was 70 ⁇ m.
  • This resin laminate (G-1) has total light transmittance: 91.0%, haze: 0.4%, pencil hardness: H, warp change amount under high temperature and high humidity environment: -187 ⁇ m, interference fringes: ⁇ . there were.
  • Example 2 [Manufacturing of resin laminate (G-2)] The resin laminate (G) of Example 1 except that the discharge amount of the single-screw extruder having a shaft diameter of 32 mm was changed to 1.4 kg / h and the discharge amount of the single-screw extruder having a shaft diameter of 65 mm was changed to 32.8 kg / h.
  • a resin laminate (G-2) of pellets (B-1-1) and a polycarbonate-based resin (A-1) was obtained in the same manner as in -1).
  • the total thickness of the central portion of the obtained resin laminate (G-2) was 1000 ⁇ m, and the surface layer thickness was 40 ⁇ m.
  • This resin laminate (G-2) has total light transmittance: 90.9%, haze: 0.7%, pencil hardness: H, amount of change in warpage under high temperature and high humidity environment: -76 ⁇ m, interference fringes: ⁇ . there were.
  • Example 3 Manufacturing of resin laminate (G-3)
  • the pellet (B-2-1) in the same manner as the resin laminate (G-1) of Example 1 except that the pellet (B-2-1) was used instead of the pellet (B-1-1).
  • a resin laminate (G-3) of a polycarbonate resin (A-1) was obtained.
  • the total thickness of the central portion of the obtained resin laminate (G-3) was 1000 ⁇ m, and the surface layer thickness was 70 ⁇ m.
  • This resin laminate (G-3) has total light transmittance: 91.0%, haze: 0.3%, pencil hardness: H, amount of change in warpage under high temperature and high humidity environment: -161 ⁇ m, interference fringes: ⁇ . there were.
  • Example 4 Manufacturing of resin laminate (G-4)
  • the pellet (B-2-1) in the same manner as the resin laminate (G-2) of Example 2 except that the pellet (B-2-1) was used instead of the pellet (B-1-1).
  • a resin laminate (G-4) of a polycarbonate resin (A-1) was obtained.
  • the total thickness of the central portion of the obtained resin laminate (G-4) was 1000 ⁇ m, and the surface layer thickness was 40 ⁇ m.
  • This resin laminate (G-4) has total light transmittance: 91.0%, haze: 0.3%, pencil hardness: H, amount of change in warpage under high temperature and high humidity environment: -38 ⁇ m, interference fringes: ⁇ . there were.
  • Example 5 Manufacturing of resin laminate (G-5)] With the pellet (B-3-1) in the same manner as the resin laminate (G-1) of Example 1 except that the pellet (B-3-1) was used instead of the pellet (B-1-1). A resin laminate (G-5) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (G-5) was 1000 ⁇ m, and the surface layer thickness was 70 ⁇ m. This resin laminate (G-5) has total light transmittance: 91.2%, haze: 0.3%, pencil hardness: H, amount of change in warpage under high temperature and high humidity environment: -141 ⁇ m, interference fringes: ⁇ . there were.
  • Example 6 Manufacturing of resin laminate (G-6)
  • the pellet (B-3-1) in the same manner as the resin laminate (G-2) of Example 2 except that the pellet (B-3-1) was used instead of the pellet (B-1-1).
  • a resin laminate (G-6) of a polycarbonate resin (A-1) was obtained.
  • the total thickness of the central portion of the obtained resin laminate (G-6) was 1000 ⁇ m, and the surface layer thickness was 40 ⁇ m.
  • This resin laminate (G-6) has total light transmittance: 91.2%, haze: 0.2%, pencil hardness: H, amount of change in warpage under high temperature and high humidity environment: -1 ⁇ m, interference fringes: ⁇ . there were.
  • Example 7 Manufacturing of resin laminate (G-7)] With the pellet (B-4-1) in the same manner as the resin laminate (G-1) of Example 1 except that the pellet (B-4-1) was used instead of the pellet (B-1-1). A resin laminate (G-7) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (G-7) was 1000 ⁇ m, and the surface layer thickness was 70 ⁇ m. This resin laminate (G-7) has total light transmittance: 91.4%, haze: 0.3%, pencil hardness: H, amount of change in warpage under high temperature and high humidity environment: -67 ⁇ m, interference fringes: ⁇ . there were.
  • Example 8 Manufacturing of resin laminate (G-8)] With the pellet (B-4-1) in the same manner as the resin laminate (G-2) of Example 2 except that the pellet (B-4-1) was used instead of the pellet (B-1-1). A resin laminate (G-8) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (G-8) was 1000 ⁇ m, and the surface layer thickness was 40 ⁇ m. This resin laminate (G-8) has total light transmittance: 91.3%, haze: 0.3%, pencil hardness: H, warpage change amount under high temperature and high humidity environment: + 77 ⁇ m, interference fringes: ⁇ . It was.
  • Example 9 Manufacturing of resin laminate (G-9)
  • the pellet (B-5-1) in the same manner as the resin laminate (G-1) of Example 1 except that the pellet (B-5-1) was used instead of the pellet (B-1-1).
  • a resin laminate (G-9) of a polycarbonate resin (A-1) was obtained.
  • the total thickness of the central portion of the obtained resin laminate (G-9) was 1000 ⁇ m, and the surface layer thickness was 70 ⁇ m.
  • This resin laminate (G-9) has total light transmittance: 91.2%, haze: 0.3%, pencil hardness: 2H, warp change amount under high temperature and high humidity environment: +56 ⁇ m, interference fringes: ⁇ . It was.
  • Example 10 Manufacturing of resin laminate (G-10)] With the pellet (B-5-1) in the same manner as the resin laminate (G-2) of Example 2 except that the pellet (B-5-1) was used instead of the pellet (B-1-1). A resin laminate (G-10) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (G-10) was 1000 ⁇ m, and the surface layer thickness was 40 ⁇ m. This resin laminate (G-10) has total light transmittance: 91.3%, haze: 0.3%, pencil hardness: 2H, warp change amount under high temperature and high humidity environment: +16 ⁇ m, interference fringes: ⁇ . It was.
  • Example 11 Manufacturing of Resin Laminated Body (G-11)] With the pellet (B-6-1) in the same manner as the resin laminate (G-1) of Example 1 except that the pellet (B-6-1) was used instead of the pellet (B-1-1). A resin laminate (G-11) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (G-11) was 1000 ⁇ m, and the surface layer thickness was 70 ⁇ m. This resin laminate (G-11) has total light transmittance: 90.9%, haze: 1.0%, pencil hardness: H, warp change amount under high temperature and high humidity environment: +132 ⁇ m, interference fringes: ⁇ . It was.
  • Example 12 Manufacturing of resin laminate (G-12)] With the pellet (B-6-1) in the same manner as the resin laminate (G-2) of Example 2 except that the pellet (B-6-1) was used instead of the pellet (B-1-1). A resin laminate (G-12) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (G-12) was 1000 ⁇ m, and the surface layer thickness was 40 ⁇ m. This resin laminate (G-12) has total light transmittance: 91.0%, haze: 0.8%, pencil hardness: H, warpage change amount under high temperature and high humidity environment: +56 ⁇ m, interference fringes: ⁇ . It was.
  • Comparative Example 1 Manufacturing of Resin Laminated Body (H-1)] With the pellet (F-6-1) in the same manner as the resin laminate (G-1) of Example 1 except that the pellet (F-6-1) was used instead of the pellet (B-1-1). A resin laminate (H-1) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (H-1) was 1000 ⁇ m, and the surface layer thickness was 70 ⁇ m. This resin laminate (H-1) has total light transmittance: 91.5%, haze: 0.3%, pencil hardness: 2H, amount of change in warpage under high temperature and high humidity environment: + 220 ⁇ m, interference fringes: ⁇ . It was.
  • Comparative Example 3 Manufacturing of Resin Laminated Body (H-3)
  • the pellet (F-7-1) in the same manner as the resin laminate (G-1) of Example 1 except that the pellet (F-7-1) was used instead of the pellet (B-1-1).
  • a resin laminate (H-3) of a polycarbonate resin (A-1) was obtained.
  • the total thickness of the central portion of the obtained resin laminate (H-3) was 1000 ⁇ m, and the surface layer thickness was 70 ⁇ m.
  • This resin laminate (H-3) has total light transmittance: 90.8%, haze: 0.3%, pencil hardness: F, amount of change in warpage under high temperature and high humidity environment: -205 ⁇ m, interference fringes: ⁇ . there were.
  • Comparative Example 4 Manufacturing of Resin Laminated Body (H-4)
  • the pellet (F-7-1) in the same manner as the resin laminate (G-2) of Example 2 except that the pellet (F-7-1) was used instead of the pellet (B-1-1).
  • a resin laminate (H-4) of a polycarbonate resin (A-1) was obtained.
  • the total thickness of the central portion of the obtained resin laminate (H-4) was 1000 ⁇ m, and the surface layer thickness was 40 ⁇ m.
  • This resin laminate (H-4) has total light transmittance: 90.7%, Haze: 0.4%, pencil hardness: F, amount of change in warpage under high temperature and high humidity environment: -135 ⁇ m, interference fringes: ⁇ . there were.
  • Production Examples 1A to 6A are compared with Production Comparative Example 1A in which a specific vinyl copolymer (C) and a styrene copolymer (E) other than the specific styrene copolymer (D) are blended, Production Examples 1A to 6A were superior in heat resistance. Further, Production Examples 1A to 6A are compared with Production Comparative Examples 2A to 5A in which a specific vinyl copolymer (C) and a styrene copolymer (E) other than the specific styrene copolymer (D) are blended. Then, Production Examples 1A to 6A had a lower haze and a better appearance.
  • the resin laminate has a specific vinyl copolymer (C) and a specific styrene copolymer (D) characterized by a high glass transition temperature and a high refractive index.
  • Example 1 when Examples 1 to 12 are compared with Comparative Examples 3 to 4 in which a thermoplastic resin obtained by pelletizing a specific styrene copolymer (D) alone and a polycarbonate resin (A) are laminated, Example 1 The resin laminates of ⁇ 12 had better pencil hardness.

Abstract

The present invention provides a resin layered body having a layer containing a polycarbonate-based resin (A) comprising a polycarbonate resin as a primary component, and a layer containing a thermoplastic resin (B) disposed on at least one surface of the polycarbonate-based resin. The thermoplastic resin (B) includes a vinyl copolymer (C) and a styrene copolymer (D). The vinyl copolymer (C) contains 60-80 mol% of (meth)acrylic acid ester monomeric units (c1) and 40-20 mol% of aliphatic vinyl monomeric units (c2). The styrene copolymer (D) contains 60-90 mol% of vinyl aromatic monomeric units (d1), 10-20 mol% of cyclic acid anhydride monomeric units (d2) and 0-20 mol% of methacrylic acid ester monomeric units (d3). The haze value is ≤ 1.0%.

Description

樹脂積層体及びそれを含む透明基板材料並びに透明保護材料Resin laminate and transparent substrate material and transparent protective material containing it
 本発明は、透明な基材材料や保護材料に好適に使用され、ポリカーボネート系樹脂層と、特定のビニル共重合体と特定のスチレン共重合体を含む熱可塑性樹脂層とを有する樹脂積層体に関する。 The present invention relates to a resin laminate that is preferably used as a transparent base material or a protective material and has a polycarbonate-based resin layer and a thermoplastic resin layer containing a specific vinyl copolymer and a specific styrene copolymer. ..
 アクリル樹脂は表面硬度、透明性、耐擦傷性および耐候性などに優れる。一方、ポリカーボネート樹脂は耐衝撃性などに優れる。このことからアクリル樹脂層とポリカーボネート樹脂層を有する積層体は、表面硬度、透明性、耐擦傷性、耐候性および耐衝撃性などに優れ、自動車部品、家電製品、電子機器および携帯型情報端末のディスプレイに用いられている。しかし、アクリル樹脂層とポリカーボネート樹脂層を有する積層体は、高温高湿下である屋外や車中で使用される場合に、反りが発生する問題を抱えている。 Acrylic resin has excellent surface hardness, transparency, scratch resistance and weather resistance. On the other hand, the polycarbonate resin has excellent impact resistance and the like. From this, the laminate having the acrylic resin layer and the polycarbonate resin layer is excellent in surface hardness, transparency, scratch resistance, weather resistance, impact resistance, etc., and is used for automobile parts, home appliances, electronic devices and portable information terminals. It is used for displays. However, the laminate having the acrylic resin layer and the polycarbonate resin layer has a problem that warpage occurs when used outdoors or in a car under high temperature and high humidity.
 特許文献1(国際公開第2011/145630号)ではビニル共重合樹脂層とポリカーボネート樹脂層を有する積層体が報告されている。かかる積層体は、85℃85%の高温高湿下で反りを抑えることが報告されている。 Patent Document 1 (International Publication No. 2011/145630) reports a laminate having a vinyl copolymer resin layer and a polycarbonate resin layer. It has been reported that such a laminate suppresses warpage at a high temperature and high humidity of 85 ° C. and 85%.
 しかしながら、上記積層体のビニル共重合樹脂層とポリカーボネート樹脂層のガラス転移温度の差が大きいため、熱プレス成形や熱曲げ加工時にポリカーボネート樹脂のガラス転移温度に近づけると、ビニル共重合樹脂層に外観不良が発生する。
 また、上記積層体のビニル共重合樹脂層とポリカーボネート樹脂層の屈折率差が大きいため、ビニル共重合樹脂層/ポリカーボネート樹脂層の界面の反射光強度が大きく、干渉縞等の不具合が発生する。
However, since the difference in glass transition temperature between the vinyl copolymer resin layer and the polycarbonate resin layer of the laminate is large, when the glass transition temperature of the polycarbonate resin is approached during hot press molding or thermal bending, the vinyl copolymer resin layer looks like a vinyl copolymer resin layer. Defects occur.
Further, since the difference in refractive index between the vinyl copolymer resin layer and the polycarbonate resin layer of the laminate is large, the reflected light intensity at the interface between the vinyl copolymer resin layer / the polycarbonate resin layer is large, and problems such as interference fringes occur.
 特許文献2(特開2016-196522号公報)ではビニル共重合体樹脂にガラス転移温度/屈折率が高い樹脂をブレンドすることが報告されており、ガラス転移温度/屈折率は高くなっているが、透明シートとしてはHazeが高く、高温高湿下での反りの記載がない。 Patent Document 2 (Japanese Unexamined Patent Publication No. 2016-196522) reports that a resin having a high glass transition temperature / refractive index is blended with a vinyl copolymer resin, and the glass transition temperature / refractive index is high. As a transparent sheet, Haze is high, and there is no description of warpage under high temperature and high humidity.
国際公開第2011/145630号International Publication No. 2011/145630 特開2016-196522号公報Japanese Unexamined Patent Publication No. 2016-196522
 本発明は、上記従来における問題の少なくとも一つを解決することを課題とする。好ましくは、本発明は、透明な基材材料や保護材料に使用され、ポリカーボネート系樹脂層と、特定のビニル共重合体と特定のスチレン共重合体を含む熱可塑性樹脂層とを有し、高温高湿下に曝されても耐反り変形性と耐熱性に優れ、屈折率が高く、且つ、外観良好な樹脂積層体を提供することを課題とする。 An object of the present invention is to solve at least one of the above-mentioned conventional problems. Preferably, the present invention is used as a transparent base material or protective material, has a polycarbonate resin layer, a thermoplastic resin layer containing a specific vinyl copolymer and a specific styrene copolymer, and has a high temperature. An object of the present invention is to provide a resin laminate having excellent warp deformation resistance and heat resistance even when exposed to high humidity, having a high refractive index, and having a good appearance.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、以下の構成からなる解決手段を見出し、本発明を完成するに至った。
[1]ポリカーボネート樹脂を主成分とするポリカーボネート系樹脂(A)を含む層の少なくとも一方の面に、熱可塑性樹脂(B)を含む層を有する樹脂積層体であって、
 前記熱可塑性樹脂(B)がビニル共重合体(C)とスチレン共重合体(D)を含み
 前記ビニル共重合体(C)が下記一般式(1)で表される(メタ)アクリル酸エステル単量体単位(c1)を60~80モル%と、下記一般式(2)で表される脂肪族ビニル単量体単位(c2)を40~20モル%とを含む共重合体であり、
 前記スチレン共重合体(D)がビニル芳香族単量体単位(d1)を60~90モル%と、環状酸無水物単量体単位(d2)を10~20モル%と、メタクリル酸エステル単量体単位(d3)を0~20モル%とを含む共重合体であり、
 Haze≦1.0%である、前記樹脂積層体である。
Figure JPOXMLDOC01-appb-C000003
(式中、R1は水素原子又はメチル基を表し、R2は炭素数1~18のアルキル基を表す 。)
Figure JPOXMLDOC01-appb-C000004
(式中、R3は水素原子又はメチル基を表し、R4は炭素数1~4の炭化水素置換基を有することのあるシクロヘキシル基を表す。)
[2]温度85℃、相対湿度85%の環境下に120時間保持した後の反り変化量が、絶対値で200μm以下である、上記[1]に記載の樹脂積層体である。
[3]ポリカーボネート系樹脂(A)のガラス転移温度と熱可塑性樹脂(B)のガラス転移温度との差が、0~25℃の範囲である、上記[1]または[2]に記載の樹脂積層体である。
[4]熱可塑性樹脂(B)が、ビニル共重合体(C)とスチレン共重合体(D)とのポリマーアロイである、上記[1]~[3]のいずれかに記載の樹脂積層体である。
[5]熱可塑性樹脂(B)におけるビニル共重合体(C)とスチレン共重合体(D)との含有量の合計100質量部を基準として、ビニル共重合体(C)の含有量は5~95質量部であり、スチレン共重合体(D)の含有量は95~5質量部である、上記[1]~[4]のいずれかに記載の樹脂積層体である。
[6]ビニル共重合体(C)が、少なくとも1種の(メタ)アクリル酸エステル単量体と少なくとも1種の芳香族ビニル単量体とを重合した後、芳香族ビニル単量体由来の芳香族二重結合の70%以上を水素化して得られたものである、上記[1]~[5]のいずれかに記載の樹脂積層体である。
[7]前記一般式(1)におけるR1及びR2がメチル基を表す、上記[1]~[6]のいずれかに記載の樹脂積層体である。
[8]前記一般式(2)におけるR3が水素原子を表し、R4がシクロヘキシル基を表す、上記[1]~[7]のいずれかに記載の樹脂積層体である。
[9]スチレン共重合体(D)に含まれるビニル芳香族単量体単位(d1)が、スチレンである、上記[1]~[8]のいずれかに記載の樹脂積層体である。
[10]スチレン共重合体(D)に含まれる環状酸無水物単量体単位(d2)が、無水マレイン酸である、上記[1]~[9]のいずれかに記載の樹脂積層体である。
[11]スチレン共重合体(D)に含まれるメタクリル酸エステル単量体単位(d3)が、メタクリル酸エステルである、上記[1]~[10]のいずれかに記載の樹脂積層体である。
[12]熱可塑性樹脂(B)を含む層の厚さが10~250μmであり、樹脂積層体の全体厚みが0.04~4.0mmの範囲である、上記[1]~[11]のいずれかに記載の樹脂積層体である。
[13]ポリカーボネート系樹脂(A)を含む層および熱可塑性樹脂(B)を含む層の少なくとも一方が紫外線吸収剤を含有する、上記[1]~[12]のいずれかに記載の樹脂積層体である。
[14]熱可塑性樹脂(B)を含む層の表面にハードコート層をさらに備える、上記[1]~[13]のいずれかに記載の樹脂積層体である。
[15]樹脂積層体の片面または両面に、耐指紋処理、反射防止処理、防眩処理、耐候性処理、帯電防止処理および防汚処理のいずれか一つ以上が施されてなる、上記[1]~[14]のいずれかに記載の樹脂積層体である。
[16]上記[1]~[15]のいずれかに記載の樹脂積層体を含む透明基板材料である。
[17]上記[1]~[15]のいずれかに記載の樹脂積層体を含む透明保護材料である。
[18]上記[1]~[15]のいずれかに記載の樹脂積層体を含むタッチパネル前面保護板である。
[19]上記[1]~[15]のいずれかに記載の樹脂積層体を含む、OA機器用または携帯電子機器用の前面板である。
As a result of diligent studies to solve the above problems, the present inventors have found a solution means having the following configuration, and have completed the present invention.
[1] A resin laminate having a layer containing a thermoplastic resin (B) on at least one surface of a layer containing a polycarbonate resin (A) containing a polycarbonate resin as a main component.
The thermoplastic resin (B) contains a vinyl copolymer (C) and a styrene copolymer (D), and the vinyl copolymer (C) is a (meth) acrylic acid ester represented by the following general formula (1). It is a copolymer containing 60 to 80 mol% of the monomer unit (c1) and 40 to 20 mol% of the aliphatic vinyl monomer unit (c2) represented by the following general formula (2).
The styrene copolymer (D) contains 60 to 90 mol% of the vinyl aromatic monomer unit (d1), 10 to 20 mol% of the cyclic acid anhydride monomer unit (d2), and a methacrylic acid ester simple substance. It is a copolymer containing 0 to 20 mol% of a metric unit (d3).
The resin laminate having Haze ≦ 1.0%.
Figure JPOXMLDOC01-appb-C000003
(In the formula, R1 represents a hydrogen atom or a methyl group, and R2 represents an alkyl group having 1 to 18 carbon atoms.)
Figure JPOXMLDOC01-appb-C000004
(In the formula, R3 represents a hydrogen atom or a methyl group, and R4 represents a cyclohexyl group which may have a hydrocarbon substituent having 1 to 4 carbon atoms.)
[2] The resin laminate according to the above [1], wherein the amount of change in warpage after being held in an environment of a temperature of 85 ° C. and a relative humidity of 85% for 120 hours is 200 μm or less in absolute value.
[3] The resin according to the above [1] or [2], wherein the difference between the glass transition temperature of the polycarbonate resin (A) and the glass transition temperature of the thermoplastic resin (B) is in the range of 0 to 25 ° C. It is a laminated body.
[4] The resin laminate according to any one of the above [1] to [3], wherein the thermoplastic resin (B) is a polymer alloy of a vinyl copolymer (C) and a styrene copolymer (D). Is.
[5] The content of the vinyl copolymer (C) is 5 based on the total content of 100 parts by mass of the vinyl copolymer (C) and the styrene copolymer (D) in the thermoplastic resin (B). The resin laminate according to any one of the above [1] to [4], wherein the styrene copolymer (D) has a content of up to 95 parts by mass and the content of the styrene copolymer (D) is 95 to 5 parts by mass.
[6] The vinyl copolymer (C) is derived from the aromatic vinyl monomer after polymerizing at least one (meth) acrylic acid ester monomer and at least one aromatic vinyl monomer. The resin laminate according to any one of the above [1] to [5], which is obtained by hydrogenating 70% or more of the aromatic double bonds.
[7] The resin laminate according to any one of the above [1] to [6], wherein R1 and R2 in the general formula (1) represent a methyl group.
[8] The resin laminate according to any one of [1] to [7] above, wherein R3 in the general formula (2) represents a hydrogen atom and R4 represents a cyclohexyl group.
[9] The resin laminate according to any one of the above [1] to [8], wherein the vinyl aromatic monomer unit (d1) contained in the styrene copolymer (D) is styrene.
[10] The resin laminate according to any one of the above [1] to [9], wherein the cyclic acid anhydride monomer unit (d2) contained in the styrene copolymer (D) is maleic anhydride. is there.
[11] The resin laminate according to any one of the above [1] to [10], wherein the methacrylic acid ester monomer unit (d3) contained in the styrene copolymer (D) is a methacrylic acid ester. ..
[12] The above [1] to [11], wherein the thickness of the layer containing the thermoplastic resin (B) is 10 to 250 μm, and the total thickness of the resin laminate is in the range of 0.04 to 4.0 mm. The resin laminate according to any one.
[13] The resin laminate according to any one of the above [1] to [12], wherein at least one of the layer containing the polycarbonate resin (A) and the layer containing the thermoplastic resin (B) contains an ultraviolet absorber. Is.
[14] The resin laminate according to any one of [1] to [13] above, further comprising a hard coat layer on the surface of the layer containing the thermoplastic resin (B).
[15] One or both sides of the resin laminate is subjected to any one or more of anti-fingerprint treatment, anti-reflection treatment, anti-glare treatment, weather resistance treatment, anti-static treatment and anti-fouling treatment. ] To [14]. The resin laminate according to any one of.
[16] A transparent substrate material containing the resin laminate according to any one of the above [1] to [15].
[17] A transparent protective material containing the resin laminate according to any one of the above [1] to [15].
[18] A touch panel front protective plate containing the resin laminate according to any one of the above [1] to [15].
[19] A front plate for an OA device or a portable electronic device, which comprises the resin laminate according to any one of the above [1] to [15].
 本発明によれば、上記従来における問題の少なくとも一つを解決することができる。更に、本発明の好ましい態様によれば、高温高湿下に曝されても耐反り変形性と耐熱性に優れ、屈折率が高く、且つ、外観良好な樹脂積層体が提供され、該樹脂積層体は透明基板材料や透明保護材料として用いることができる。具体的には携帯電話端末、携帯型電子遊具、携帯情報端末、モバイルPCといった携帯型のディスプレイデバイスや、ノート型PC、デスクトップ型PC液晶モニター、液晶テレビといった設置型のディスプレイデバイスなどにおいて、例えばこれらの機器を保護する前面板として、好適に使用することができる。なお、外観が良好か否かの判断は、例えば後述する実施例に記載の干渉縞の有無で判断することができる。 According to the present invention, at least one of the above-mentioned conventional problems can be solved. Further, according to a preferred embodiment of the present invention, a resin laminate having excellent warp deformation resistance and heat resistance, a high refractive index, and a good appearance even when exposed to high temperature and high humidity is provided, and the resin laminate is provided. The body can be used as a transparent substrate material or a transparent protective material. Specifically, in portable display devices such as mobile phone terminals, portable electronic play equipment, personal digital assistants, and mobile PCs, and stationary display devices such as notebook PCs, desktop PC liquid crystal monitors, and liquid crystal televisions, for example, these It can be suitably used as a front plate for protecting the equipment of. Whether or not the appearance is good can be determined by, for example, the presence or absence of interference fringes described in Examples described later.
 以下、本発明について製造例や実施例等を例示して詳細に説明するが、本発明は例示される製造例や実施例等に限定されるものではなく、本発明の内容を大きく逸脱しない範囲であれば任意の方法に変更して行うこともできる。 Hereinafter, the present invention will be described in detail by exemplifying manufacturing examples and examples, but the present invention is not limited to the exemplified manufacturing examples and examples and does not deviate significantly from the contents of the present invention. If so, it can be changed to any method.
<ポリカーボネート系樹脂(A)>
 本発明に使用されるポリカーボネート系樹脂(A)は、ポリカーボネート樹脂を主成分とするポリカーボネート系樹脂(A)である。ここで、「ポリカーボネート樹脂を主成分とする」とは、ポリカーボネート樹脂の含有量が50質量%を超えることを意味する。ポリカーボネート系樹脂(A)は、75質量%以上のポリカーボネート樹脂を含んでいるのが好ましく、90質量%以上のポリカーボネート樹脂を含んでいるのがより好ましく、実質的にポリカーボネート樹脂からなるのがさらに好ましい。ポリカーボネート系樹脂(A)は分子主鎖中に炭酸エステル結合を含む。即ち、-[O-R-OCO]-単位(式中、Rが脂肪族基、芳香族基、又は脂肪族基と芳香族基の双方を含むもの、さらに直鎖構造あるいは分岐構造を持つものを示す)を含むものであれば特に限定されるものではないが、特に下記式(3)の構造単位を含むポリカーボネートを使用することが好ましい。このようなポリカーボネートを使用することで、耐衝撃性に優れた樹脂積層体を得ることができる。
Figure JPOXMLDOC01-appb-C000005
 具体的には、ポリカーボネート系樹脂(A)として、芳香族ポリカーボネート樹脂(例えば、三菱エンジニアリングプラスチックス株式会社から市販されている、ユーピロンS-2000、ユーピロンS-1000、ユーピロンE-2000)等が使用可能である。
 本発明に使用されるポリカーボネート系樹脂(A)のガラス転移温度は、120~160℃が好ましく、125~155℃がより好ましく、130℃~150℃が特に好ましい。
 近年、前面板にも曲げ加工を行うような要望が増えていることから、ポリカーボネート系樹脂(A)は、下記一般式(4)で表わされる1価フェノールを末端停止剤として用いて合成することが好ましい。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは、炭素数8~36のアルキル基、又は炭素数8~36のアルケニル基を表し、
 R~Rはそれぞれ水素、ハロゲン、又は置換基を有してもよい炭素数1~20のアルキル基若しくは炭素数6~12のアリール基を表し、置換基は、ハロゲン、炭素数1~20のアルキル基、又は炭素数6~12のアリール基である。)
<Polycarbonate resin (A)>
The polycarbonate-based resin (A) used in the present invention is a polycarbonate-based resin (A) containing a polycarbonate resin as a main component. Here, "mainly composed of a polycarbonate resin" means that the content of the polycarbonate resin exceeds 50% by mass. The polycarbonate resin (A) preferably contains 75% by mass or more of the polycarbonate resin, more preferably 90% by mass or more of the polycarbonate resin, and further preferably substantially composed of the polycarbonate resin. .. The polycarbonate resin (A) contains a carbonic acid ester bond in the molecular main chain. That is,-[OR-OCO] -units (in the formula, R contains an aliphatic group, an aromatic group, or both an aliphatic group and an aromatic group, and further has a linear structure or a branched structure. Is not particularly limited as long as it contains), but it is particularly preferable to use a polycarbonate containing the structural unit of the following formula (3). By using such polycarbonate, a resin laminate having excellent impact resistance can be obtained.
Figure JPOXMLDOC01-appb-C000005
Specifically, as the polycarbonate resin (A), an aromatic polycarbonate resin (for example, Iupiron S-2000, Iupiron S-1000, Iupiron E-2000, which is commercially available from Mitsubishi Engineering Plastics Co., Ltd.) is used. It is possible.
The glass transition temperature of the polycarbonate resin (A) used in the present invention is preferably 120 to 160 ° C, more preferably 125 to 155 ° C, and particularly preferably 130 ° C to 150 ° C.
In recent years, since there has been an increasing demand for bending the front plate as well, the polycarbonate resin (A) is synthesized by using a monohydric phenol represented by the following general formula (4) as a terminal terminator. Is preferable.
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms.
R 2 - R 5 each represents hydrogen, halogen, or a substituent and 1 carbon atoms which may have a 20 alkyl group or an aryl group having 6 to 12 carbon atoms, the substituents are halogen, C 1 - It is an alkyl group of 20 or an aryl group having 6 to 12 carbon atoms. )
 一般式(4)の1価フェノールは、下記一般式(5)で表わされる1価フェノールであることがより好ましい。
Figure JPOXMLDOC01-appb-C000007
(式中、Rは、炭素数8~36のアルキル基、又は、炭素数8~36のアルケニル基を表す。)
The monovalent phenol of the general formula (4) is more preferably a monohydric phenol represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000007
(In the formula, R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms.)
 一般式(4)又は一般式(5)におけるRの炭素数は特定の数値範囲内であることがより好ましい。具体的には、Rの炭素数の上限値として36が好ましく、22がより好ましく、18が特に好ましい。また、Rの炭素数の下限値として、8が好ましく、12がより好ましい。 It is more preferable that the carbon number of R 1 in the general formula (4) or the general formula (5) is within a specific numerical range. Specifically, as the upper limit of the number of carbon atoms of R 1 , 36 is preferable, 22 is more preferable, and 18 is particularly preferable. Further, as the lower limit of the number of carbon atoms of R 1 , 8 is preferable, and 12 is more preferable.
 一般式(4)又は一般式(5)で示される1価フェノール(末端停止剤)の中でも、パラヒドロキシ安息香酸ヘキサデシルエステル、パラヒドロキシ安息香酸2-ヘキシルデシルエステルのいずれかもしくは両方を末端停止剤として使用することが特に好ましい。 Among the monovalent phenols (terminal terminators) represented by the general formula (4) or the general formula (5), one or both of the parahydroxybenzoic acid hexadecyl ester and the parahydroxybenzoic acid 2-hexyldecyl ester are terminated. It is particularly preferable to use it as an agent.
 一般式(4)又は一般式(5)におけるRとして、例えば、炭素数16のアルキル基を有する1価フェノール(末端停止剤)を使用した場合、ガラス転移温度、溶融流動性、成形性、耐ドローダウン性、ポリカーボネート樹脂製造時の1価フェノールの溶剤溶解性が優れており、本発明に用いるポリカーボネート樹脂に使用する末端停止剤として、特に好ましい。 When, for example, a monohydric phenol (terminal terminator) having an alkyl group having 16 carbon atoms is used as R 1 in the general formula (4) or the general formula (5), the glass transition temperature, melt fluidity, moldability, and the like. It has excellent draw-down resistance and solvent solubility of monohydric phenol during the production of polycarbonate resin, and is particularly preferable as a terminal terminator used in the polycarbonate resin used in the present invention.
 一方、一般式(4)又は一般式(5)におけるRの炭素数が増加しすぎると、1価フェノール(末端停止剤)の有機溶剤溶解性が低下する傾向があり、ポリカーボネート樹脂製造時の生産性が低下することがある。
 一例として、Rの炭素数が36以下であれば、ポリカーボネート樹脂を製造するにあたって生産性が高く、経済性も良い。Rの炭素数が22以下であれば、1価フェノールは、特に有機溶剤溶解性に優れており、ポリカーボネート樹脂を製造するにあたって生産性を非常に高くすることができ、経済性も向上する。
 一般式(4)又は一般式(5)におけるRの炭素数が小さすぎると、ポリカーボネート樹脂のガラス転移温度が十分に低い値とはならず、熱成形性が低下することがある。
On the other hand, if the number of carbon atoms of R 1 in the general formula (4) or the general formula (5) is increased too much, the organic solvent solubility of the monohydric phenol (terminal terminator) tends to decrease, and the polycarbonate resin is manufactured. Productivity may decrease.
As an example, when the carbon number of R 1 is 36 or less, the productivity is high and the economy is good in producing the polycarbonate resin. When the carbon number of R 1 is 22 or less, the monohydric phenol is particularly excellent in organic solvent solubility, and the productivity can be made very high in the production of the polycarbonate resin, and the economic efficiency is also improved.
If the carbon number of R 1 in the general formula (4) or the general formula (5) is too small, the glass transition temperature of the polycarbonate resin does not become a sufficiently low value, and the thermoformability may decrease.
 ポリカーボネート系樹脂(A)に含まれる他の樹脂としては、ポリエステル系樹脂がある。ポリエステル系樹脂は、ジカルボン酸成分として、テレフタル酸を主成分として含んでいればよく、テレフタル酸以外のジカルボン酸成分を含んでいてもよい。例えば、主成分であるエチレングリコール80~60(モル比率)に対して1,4-シクロヘキサンジメタノールを20~40(モル比率、合計100)含むグリコール成分とジカルボン酸成分とが重縮合してなるポリエステル系樹脂、所謂「PETG」が好ましい。また、ポリカーボネート系樹脂(A)には、エステル結合とカーボネート結合をポリマー骨格中に有するポリエステルカーボネート系樹脂が含まれていてもよい。 As another resin contained in the polycarbonate resin (A), there is a polyester resin. The polyester resin may contain terephthalic acid as a main component as the dicarboxylic acid component, and may contain a dicarboxylic acid component other than terephthalic acid. For example, a glycol component containing 20 to 40 (molar ratio, 100 in total) of 1,4-cyclohexanedimethanol with respect to ethylene glycol 80 to 60 (molar ratio) as the main component and a dicarboxylic acid component are polycondensed. A polyester resin, so-called "PETG", is preferable. Further, the polycarbonate resin (A) may contain a polyester carbonate resin having an ester bond and a carbonate bond in the polymer skeleton.
 本発明において、ポリカーボネート系樹脂(A)の重量平均分子量は、樹脂積層体の耐衝撃性および成形条件に影響する。つまり、重量平均分子量が小さすぎる場合は、樹脂積層体の耐衝撃性が低下するので好ましくない。重量平均分子量が高すぎる場合は、ポリカーボネート系樹脂(A)を含む層を積層させる時に過剰な熱源を必要とする場合があり、好ましくない。また、成形法によっては高い温度が必要になるので、ポリカーボネート系樹脂(A)が高温にさらされることになり、その熱安定性に悪影響を及ぼすことがある。ポリカーボネート系樹脂(A)の重量平均分子量は、15,000~75,000が好ましく、20,000~70,000がより好ましい。さらに好ましくは25,000~65,000である。 In the present invention, the weight average molecular weight of the polycarbonate resin (A) affects the impact resistance and molding conditions of the resin laminate. That is, if the weight average molecular weight is too small, the impact resistance of the resin laminate is lowered, which is not preferable. If the weight average molecular weight is too high, an excessive heat source may be required when laminating the layer containing the polycarbonate resin (A), which is not preferable. In addition, since a high temperature is required depending on the molding method, the polycarbonate resin (A) is exposed to a high temperature, which may adversely affect its thermal stability. The weight average molecular weight of the polycarbonate resin (A) is preferably 15,000 to 75,000, more preferably 20,000 to 70,000. More preferably, it is 25,000 to 65,000.
<ポリカーボネート系樹脂(A)の重量平均分子量の測定法>
 ポリカーボネート系樹脂(A)の重量平均分子量は、特開2007-179018号公報の段落0061~0064の記載に基づいて測定することができる。測定法の詳細を以下に示す。
Figure JPOXMLDOC01-appb-T000008
<Measurement method of weight average molecular weight of polycarbonate resin (A)>
The weight average molecular weight of the polycarbonate resin (A) can be measured based on the description in paragraphs 0061 to 0064 of JP-A-2007-179018. The details of the measurement method are shown below.
Figure JPOXMLDOC01-appb-T000008
 標準ポリマーとしてポリスチレン(PS)を使用して測定を行った後、ユニバーサルキャリブレーション法により、溶出時間とポリカーボネート(PC)の分子量との関係を求めて検量線とする。そして、PCの溶出曲線(クロマトグラム)を検量線の場合と同一の条件で測定し、溶出時間(分子量)とその溶出時間のピーク面積(分子数)とから各平均分子量を求める。分子量Miの分子数をNiとすると、重量平均分子量は、以下のように表される。また換算式は以下の式を使用した。
(重量平均分子量)
Mw=Σ(NiMi)/Σ(NiMi)
(換算式)
MPC=0.47822MPS1.01470
なお、MPCはPCの分子量、MPSはPSの分子量を示す。
After the measurement is performed using polystyrene (PS) as a standard polymer, the relationship between the elution time and the molecular weight of polycarbonate (PC) is obtained by a universal calibration method and used as a calibration curve. Then, the elution curve (chromatogram) of PC is measured under the same conditions as in the case of the calibration curve, and each average molecular weight is obtained from the elution time (molecular weight) and the peak area (molecular number) of the elution time. Assuming that the number of molecules of the molecular weight Mi is Ni, the weight average molecular weight is expressed as follows. The following formula was used as the conversion formula.
(Weight average molecular weight)
Mw = Σ (NiMi 2 ) / Σ (NiMi)
(Conversion formula)
MPC = 0.47822MPS 1.01470
MPC indicates the molecular weight of PC, and MPS indicates the molecular weight of PS.
 本発明に使用されるポリカーボネート系樹脂(A)の製造方法は、公知のホスゲン法(界面重合法)、エステル交換法(溶融法)等、使用するモノマーにより適宜選択できる。 The method for producing the polycarbonate resin (A) used in the present invention can be appropriately selected depending on the monomer used, such as a known phosgene method (interfacial polymerization method) or transesterification method (melting method).
<熱可塑性樹脂(B)>
 本発明に使用される熱可塑性樹脂(B)は、後述のビニル共重合体(C)とスチレン共重合体(D)とを含む。それぞれの構成要素について以下に説明する。
<Thermoplastic resin (B)>
The thermoplastic resin (B) used in the present invention contains a vinyl copolymer (C) and a styrene copolymer (D), which will be described later. Each component will be described below.
<ビニル共重合体(C)>
 本発明による熱可塑性樹脂(B)に含まれるビニル共重合体(C)は、下記一般式(1)で表される(メタ)アクリル酸エステル単量体単位(c1)と、下記一般式(2)で表される脂肪族ビニル単量体単位(c2)とを含み、前記(メタ)アクリル酸エステル単量体単位(c1)と前記脂肪族ビニル単量体単位(c2)との合計割合が前記ビニル共重合体(C)中の全単量体単位の合計に対して90~100モル%であり、前記(メタ)アクリル酸エステル単量体単位(c1)の割合が前記ビニル共重合体(C)中の全単量体単位の合計に対して60~80モル%であり、下記一般式(2)で表される脂肪族ビニル単量体単位(c2)の割合が前記ビニル共重合体(C)中の全単量体単位の合計に対して40~20モル%であることを特徴とするものである。
<Vinyl copolymer (C)>
The vinyl copolymer (C) contained in the thermoplastic resin (B) according to the present invention has the (meth) acrylic acid ester monomer unit (c1) represented by the following general formula (1) and the following general formula (c1). The total ratio of the (meth) acrylic acid ester monomer unit (c1) and the aliphatic vinyl monomer unit (c2) including the aliphatic vinyl monomer unit (c2) represented by 2). Is 90 to 100 mol% with respect to the total of all the monomer units in the vinyl copolymer (C), and the ratio of the (meth) acrylic acid ester monomer unit (c1) is the vinyl common weight. The ratio of the aliphatic vinyl monomer unit (c2) represented by the following general formula (2) is 60 to 80 mol% with respect to the total of all the monomer units in the coalescence (C). It is characterized in that it is 40 to 20 mol% with respect to the total of all the monomer units in the polymer (C).
Figure JPOXMLDOC01-appb-C000009
(式中、R1は水素原子又はメチル基を表し、R2は炭素数1~18のアルキル基を表す 。) 
Figure JPOXMLDOC01-appb-C000009
(In the formula, R1 represents a hydrogen atom or a methyl group, and R2 represents an alkyl group having 1 to 18 carbon atoms.)
Figure JPOXMLDOC01-appb-C000010
(式中、R3は水素原子又はメチル基を表し、R4は炭素数1~4の炭化水素置換基を有することのあるシクロヘキシル基を表す。)
Figure JPOXMLDOC01-appb-C000010
(In the formula, R3 represents a hydrogen atom or a methyl group, and R4 represents a cyclohexyl group which may have a hydrocarbon substituent having 1 to 4 carbon atoms.)
 前記一般式(1)で表される(メタ)アクリル酸エステル単量体単位(c1)において、R2は炭素数1~18のアルキル基であり、好ましくは炭素数1~2のアルキル基であり、具体的にはメチル基、エチル基、ブチル基、ラウリル基、ステアリル基、シクロヘキシル基、イソボルニル基などが挙げられる。前記(メタ)アクリル酸エステル単量体単位(c1)のうち、好ましいのはR2がメチル基及び/又はエチル基である(メタ)アクリル酸エステル単量体単位であり、更に好ましいのはR1がメチル基であり、R2がメチル基であるメタクリル酸メチル単量体単位である。 In the (meth) acrylic acid ester monomer unit (c1) represented by the general formula (1), R2 is an alkyl group having 1 to 18 carbon atoms, preferably an alkyl group having 1 to 2 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a butyl group, a lauryl group, a stearyl group, a cyclohexyl group, and an isobornyl group. Among the (meth) acrylic acid ester monomer units (c1), the (meth) acrylic acid ester monomer unit in which R2 is a methyl group and / or an ethyl group is preferable, and R1 is more preferable. It is a methyl methacrylate monomer unit in which R2 is a methyl group.
 前記一般式(2)で表される脂肪族ビニル単量体単位(c2)としては、R3が水素原子又はメチル基であり、R4がシクロヘキシル基又は炭素数1~4の炭化水素置換基を有するシクロヘキシル基であるものが挙げられる。前記脂肪族ビニル単量体単位(c2)のうち、好ましいのはR3が水素原子であり、R4がシクロヘキシル基である脂肪族ビニル単量体単位である。 As the aliphatic vinyl monomer unit (c2) represented by the general formula (2), R3 is a hydrogen atom or a methyl group, and R4 has a cyclohexyl group or a hydrocarbon substituent having 1 to 4 carbon atoms. Examples thereof include those having a cyclohexyl group. Among the aliphatic vinyl monomer units (c2), an aliphatic vinyl monomer unit in which R3 is a hydrogen atom and R4 is a cyclohexyl group is preferable.
 本発明で用いるビニル共重合体(C)は、主として前記一般式(1)で表される(メタ)アクリル酸エステル単量体単位(c1)と、前記一般式(2)で表される脂肪族ビニル単量体単位(c2)とからなる。ビニル共重合体(C)は、前記(メタ)アクリル酸エステル単量体単位(c1)を1種又は2種以上含有していてもよく、前記脂肪族ビニル単量体単位(c2)を1種又は2種以上含有していてもよい。前記(メタ)アクリル酸エステル単量体単位(c1)と前記脂肪族ビニル単量体単位(c2)との合計割合は、前記ビニル共重合体(C)中の全単量体単位の合計に対して90~100モル%であり、好ましくは95~100モル%であり、より好ましくは98~100モル%である。すなわち、前記ビニル共重合体(C)は、全単量体単位の合計に対して10モル%以下の範囲で、前記(メタ)アクリル酸エステル単量体単位(c1)及び前記脂肪族ビニル単量体単位(c2)以外の単量体単位を含有していてもよい。
 前記(メタ)アクリル酸エステル単量体単位(c1)及び前記脂肪族ビニル単量体単位(c2)以外の単量体単位としては、例えば、(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを重合した後に芳香族ビニルモノマー由来の芳香族二重結合を水素化して得られたビニル共重合体(C)における、水素化されていない芳香族二重結合を含む芳香族ビニルモノマー由来の単量体単位などが挙げられる。また、前記一般式(1)で表される(メタ)アクリル酸エステル単量体単位(c1)の割合は、前記ビニル共重合体(C)中の全単量体単位の合計に対して60~80モル%であり、好ましくは70~80モル%であり、前記一般式(2)で表される脂肪族ビニル単量体単位(c2)の割合は、前記ビニル共重合体(C)中の全単量体単位の合計に対して40~20モル%であり、好ましくは30~20モル%である。ビニル共重合体(C)中の全単量体単位の合計に対する(メタ)アクリル酸エステル単量体単位(c1)の割合が60モル%未満であると、ポリカーボネート系樹脂(A)との密着性や表面硬度が低下し、実用的でない場合がある。また80モル%を超えると、積層体の吸水による反りが発生し、実用的でない場合がある。また、ビニル共重合体(C)中の全単量体単位の合計に対する脂肪族ビニル単量体単位(c2)の割合が20モル%未満であると、ガラス転移温度が低く、耐熱寸法安定性に劣り、実用的でない場合がある。一方、40モル%を超えると、耐溶剤性に劣り、実用的でない場合がある。
The vinyl copolymer (C) used in the present invention mainly contains the (meth) acrylic acid ester monomer unit (c1) represented by the general formula (1) and the fat represented by the general formula (2). It is composed of a group vinyl monomer unit (c2). The vinyl copolymer (C) may contain one or more of the (meth) acrylic acid ester monomer unit (c1), and the aliphatic vinyl monomer unit (c2) is 1 type. It may contain seeds or two or more kinds. The total ratio of the (meth) acrylic acid ester monomer unit (c1) and the aliphatic vinyl monomer unit (c2) is the total of all the monomer units in the vinyl copolymer (C). On the other hand, it is 90 to 100 mol%, preferably 95 to 100 mol%, and more preferably 98 to 100 mol%. That is, the vinyl copolymer (C) contains the (meth) acrylic acid ester monomer unit (c1) and the aliphatic vinyl monomer in a range of 10 mol% or less with respect to the total of all the monomer units. It may contain a monomer unit other than the metric unit (c2).
Examples of the monomer unit other than the (meth) acrylic acid ester monomer unit (c1) and the aliphatic vinyl monomer unit (c2) include (meth) acrylic acid ester monomer and aromatic vinyl monomer. In the vinyl copolymer (C) obtained by hydrogenating the aromatic double bond derived from the aromatic vinyl monomer after polymerizing the above, a simple substance derived from the aromatic vinyl monomer containing the non-hydrogenated aromatic double bond. Examples include a monomer unit. The ratio of the (meth) acrylic acid ester monomer unit (c1) represented by the general formula (1) is 60 with respect to the total of all the monomer units in the vinyl copolymer (C). It is -80 mol%, preferably 70-80 mol%, and the ratio of the aliphatic vinyl monomer unit (c2) represented by the general formula (2) is in the vinyl copolymer (C). It is 40 to 20 mol%, preferably 30 to 20 mol%, based on the total of all the monomer units of. When the ratio of the (meth) acrylic acid ester monomer unit (c1) to the total of all the monomer units in the vinyl copolymer (C) is less than 60 mol%, the adhesion to the polycarbonate resin (A) is achieved. It may be impractical due to reduced properties and surface hardness. On the other hand, if it exceeds 80 mol%, warpage occurs due to water absorption of the laminated body, which may not be practical. Further, when the ratio of the aliphatic vinyl monomer unit (c2) to the total of all the monomer units in the vinyl copolymer (C) is less than 20 mol%, the glass transition temperature is low and the heat-resistant dimensional stability is low. It may be inferior and impractical. On the other hand, if it exceeds 40 mol%, the solvent resistance is poor and it may not be practical.
 ビニル共重合体(C)の製造方法は、特に限定されないが、少なくとも1種の(メタ)アクリル酸エステルモノマーと少なくとも1種の芳香族ビニルモノマーとを重合した後、芳香族ビニルモノマー由来の芳香族二重結合を水素化して得られたものが好適である。なお、(メタ)アクリル酸とは、メタクリル酸及び/又はアクリル酸を示す。この際に使用される芳香族ビニルモノマーとしては、具体的にはスチレン、α-メチルスチレン、p-ヒドロキシスチレン、アルコキシスチレン、クロロスチレン、及びそれらの誘導体などが挙げられる。これらの中で好ましいのはスチレンである。 The method for producing the vinyl copolymer (C) is not particularly limited, but after polymerizing at least one (meth) acrylic acid ester monomer and at least one aromatic vinyl monomer, the fragrance derived from the aromatic vinyl monomer is used. Those obtained by hydrogenating the group double bond are preferable. The (meth) acrylic acid means methacrylic acid and / or acrylic acid. Specific examples of the aromatic vinyl monomer used at this time include styrene, α-methylstyrene, p-hydroxystyrene, alkoxystyrene, chlorostyrene, and derivatives thereof. Of these, styrene is preferred.
 (メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーの重合には、公知の方法を用いることができるが、例えば、塊状重合法や溶液重合法などにより製造することができる。塊状重合法は、上記モノマー、重合開始剤を含むモノマー組成物を完全混合槽に連続的に供給し、100~180℃で連続重合する方法などにより行われる。上記モノマー組成物は、必要に応じて連鎖移動剤を含んでもよい。 A known method can be used for the polymerization of the (meth) acrylic acid ester monomer and the aromatic vinyl monomer, and for example, it can be produced by a massive polymerization method, a solution polymerization method, or the like. The massive polymerization method is carried out by a method in which a monomer composition containing the above-mentioned monomer and a polymerization initiator is continuously supplied to a complete mixing tank and continuously polymerized at 100 to 180 ° C. The monomer composition may contain a chain transfer agent, if necessary.
 重合開始剤は特に限定されないが、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、過酸化ベンゾイル、1,1-ジ(t-ヘキシルペルオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ヘキシルペルオキシ)シクロヘキサン、1,1-ジ(t-ブチルペルオキシ)シクロヘキサン、t-ヘキシルプロポキシイソプロピルモノカーボネート、t-アミルパーオキシノルマルオクトエート、t-ブチルペルオキシイソプロピルモノカーボネート、ジ-t-ブチルパーオキサイド等の有機過酸化物、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 The polymerization initiator is not particularly limited, but t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, 1,1-di (t-hexylperoxy). -3,3,5-trimethylcyclohexane, 1,1-di (t-hexylperoxy) cyclohexane, 1,1-di (t-butylperoxy) cyclohexane, t-hexylpropoxyisopropyl monocarbonate, t-amylperoxynormal Organic peroxides such as octoate, t-butylperoxyisopropyl monocarbonate, di-t-butyl peroxide, 2,2'-azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile) ), 2,2'-Azobis (2,4-dimethylvaleronitrile) and other azo compounds. These can be used alone or in combination of two or more.
 連鎖移動剤は必要に応じて使用し、例えば、α-メチルスチレンダイマーが挙げられる。 The chain transfer agent is used as needed, and examples thereof include α-methylstyrene dimer.
 溶液重合法に用いられる溶媒としては、例えば、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチル、イソ酪酸メチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、イソプロパノールなどのアルコール系溶媒などが挙げられる。 Examples of the solvent used in the solution polymerization method include hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate and methyl isobutyrate, ketone solvents such as acetone and methyl ethyl ketone, tetrahydrofuran, and the like. Examples thereof include ether solvents such as dioxane and alcohol solvents such as methanol and isopropanol.
 (メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーを重合した後の水素化反応に用いられる溶媒は、前記の重合溶媒と同じであっても異なっていてもよい。例えば、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチル、イソ酪酸メチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、イソプロパノールなどのアルコール系溶媒などが挙げられる。 The solvent used for the hydrogenation reaction after polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer may be the same as or different from the above-mentioned polymerization solvent. For example, hydrocarbon solvents such as cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate and methyl isobutyrate, ketone solvents such as acetone and methyl ethyl ketone, ether solvents such as tetrahydrofuran and dioxane, alcohol solvents such as methanol and isopropanol. Examples include solvents.
 上記のようにして(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを重合した後、芳香族ビニルモノマー由来の芳香族二重結合を水素化することにより、本発明に用いられるビニル共重合体(C)が得られる。水素化の方法は特に限定されず、公知の方法を用いることができる。例えば、水素圧力3~30MPa、反応温度60~250℃でバッチ式あるいは連続流通式で行うことができる。温度を60℃以上とすることにより反応時間がかかり過ぎることがなく、また250℃以下とすることにより分子鎖の切断やエステル部位の水素化を起こすことが少ない。 The vinyl copolymer used in the present invention is obtained by polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer as described above, and then hydrogenating the aromatic double bond derived from the aromatic vinyl monomer. (C) is obtained. The method of hydrogenation is not particularly limited, and a known method can be used. For example, it can be carried out in a batch system or a continuous flow system at a hydrogen pressure of 3 to 30 MPa and a reaction temperature of 60 to 250 ° C. When the temperature is 60 ° C. or higher, the reaction time does not take too long, and when the temperature is 250 ° C. or lower, the molecular chain is less likely to be cleaved or the ester site is hydrogenated.
 水素化反応に用いられる触媒としては、例えば、ニッケル、パラジウム、白金、コバルト、ルテニウム、ロジウムなどの金属又はそれら金属の酸化物あるいは塩あるいは錯体化合物を、カーボン、アルミナ、シリカ、シリカ・アルミナ、珪藻土などの多孔性担体に担持した固体触媒などが挙げられる。 Examples of the catalyst used in the hydrogenation reaction include metals such as nickel, palladium, platinum, cobalt, ruthenium, and rhodium, or oxides, salts, or complex compounds of those metals, and carbon, alumina, silica, silica-alumina, and diatomaceous earth. Examples thereof include a solid catalyst supported on a porous carrier such as.
 前記ビニル共重合体(C)は、芳香族ビニルモノマー由来の芳香族二重結合の70%以上が水素化されたものであることが好ましい。即ち、芳香族ビニルモノマー由来の単量体単位中の芳香族二重結合の未水素化部位の割合は30%以下であることが好ましい。30%を超える範囲であるとビニル共重合樹脂(C)の透明性が低下する場合がある。より好ましくは10%未満の範囲であり、さらに好ましくは5%未満の範囲である。 The vinyl copolymer (C) is preferably one in which 70% or more of the aromatic double bonds derived from the aromatic vinyl monomer are hydrogenated. That is, the ratio of the unhydrogenated portion of the aromatic double bond in the monomer unit derived from the aromatic vinyl monomer is preferably 30% or less. If it exceeds 30%, the transparency of the vinyl copolymer resin (C) may decrease. It is more preferably in the range of less than 10%, and even more preferably in the range of less than 5%.
 前記ビニル共重合体(C)の重量平均分子量は、特に制限はないが、強度及び成型性の観点から、50,000~400,000であることが好ましく、70,000~300,000であることがより好ましい。上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定される、標準ポリスチレン換算の重量平均分子量である。 The weight average molecular weight of the vinyl copolymer (C) is not particularly limited, but is preferably 50,000 to 400,000, preferably 70,000 to 300,000 from the viewpoint of strength and moldability. Is more preferable. The weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
 前記ビニル共重合体(C)には、透明性を損なわない範囲で他の樹脂をブレンドすることができる。例えば、メタクリル酸メチル-スチレン共重合樹脂、ポリメタクリル酸メチル、ポリスチレン、ポリカーボネート、シクロオレフィン(コ)ポリマー樹脂、アクリロニトリル-スチレン共重合樹脂、アクリロニトリル-ブタジエン-スチレン共重合樹脂、各種エラストマーなどが挙げられる。 The vinyl copolymer (C) can be blended with other resins as long as the transparency is not impaired. Examples thereof include methyl methacrylate-styrene copolymer resin, polymethyl methacrylate, polystyrene, polycarbonate, cycloolefin (co) polymer resin, acrylonitrile-styrene copolymer resin, acrylonitrile-butadiene-styrene copolymer resin, and various elastomers. ..
 前記ビニル共重合体(C)のガラス転移温度は、110~190℃の範囲であることが好ましく、110~160℃の範囲であることがさらに好ましい。ガラス転移温度が110℃以上であることにより本発明で提供される積層体が熱環境あるいは湿熱環境において変形や割れを生じることが少なく、また190℃以下であることにより鏡面ロールや賦形ロールによる連続式熱賦形、あるいは鏡面金型や賦形金型によるバッチ式熱賦形などの加工性に優れる。なお、本発明におけるガラス転移温度とは、示差走査熱量測定装置を用い、昇温速度10℃/分で測定し中点法で算出したときの温度である。 The glass transition temperature of the vinyl copolymer (C) is preferably in the range of 110 to 190 ° C, and more preferably in the range of 110 to 160 ° C. When the glass transition temperature is 110 ° C. or higher, the laminate provided in the present invention is less likely to be deformed or cracked in a thermal environment or a moist heat environment, and when it is 190 ° C. or lower, it depends on a mirror roll or a shaping roll. It has excellent workability such as continuous heat shaping, or batch type heat shaping using a mirror surface mold or a shaping die. The glass transition temperature in the present invention is a temperature measured by a differential scanning calorimetry device at a heating rate of 10 ° C./min and calculated by the midpoint method.
<スチレン共重合体(D)>
 本発明による熱可塑性樹脂(B)に含まれるスチレン共重合体(D)は、ビニル芳香族単量体単位(d1)と、環状酸無水物単量体単位(d2)と、メタクリル酸エステル単量体単位(d3)とを含み、ビニル芳香族単量体単位(d1)と環状酸無水物単量体単位(d2)とメタクリル酸エステル単量体単位(d3)との合計割合が前記スチレン共重合体(D)中の全単量体単位の合計に対して90~100モル%であり、前記ビニル芳香族単量体単位(d1)の割合が前記スチレン共重合体(D)中の全単量体単位の合計に対して60~90モル%であり、前記環状酸無水物単量体単位(d2)の割合が前記スチレン共重合体(D)中の全単量体単位の合計に対して10~20モル%であり、前記メタクリル酸エステル単量体単位(d3)の割合が前記スチレン共重合体(D)中の全単量体単位の合計に対して0~20モル%であることを特徴とするものである。
<Styrene copolymer (D)>
The styrene copolymer (D) contained in the thermoplastic resin (B) according to the present invention contains a vinyl aromatic monomer unit (d1), a cyclic acid anhydride monomer unit (d2), and a methacrylic acid ester simple substance. The total ratio of the vinyl aromatic monomer unit (d1), the cyclic acid anhydride monomer unit (d2), and the methacrylic acid ester monomer unit (d3) is the styrene, including the metric unit (d3). It is 90 to 100 mol% with respect to the total of all the monomer units in the copolymer (D), and the ratio of the vinyl aromatic monomer unit (d1) is in the styrene copolymer (D). It is 60 to 90 mol% with respect to the total of all monomer units, and the ratio of the cyclic acid anhydride monomer unit (d2) is the total of all monomer units in the styrene copolymer (D). 10 to 20 mol% with respect to the total of all the monomer units in the styrene copolymer (D), and the ratio of the methacrylic acid ester monomer unit (d3) is 0 to 20 mol%. It is characterized by being.
 前記スチレン共重合体(D)の前記ビニル芳香族単量体単位(d1)としては、特に限定されず、任意の公知の芳香族ビニル単量体を用いる事が出来るが、入手の容易性の観点から、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン等が挙げられる。これらの中でも、相溶性の観点からスチレンが特に好ましい。これらの芳香族ビニル単量体は2種以上を混合してもよい。 The vinyl aromatic monomer unit (d1) of the styrene copolymer (D) is not particularly limited, and any known aromatic vinyl monomer can be used, but it is easily available. From the viewpoint, styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene and the like can be mentioned. Of these, styrene is particularly preferable from the viewpoint of compatibility. Two or more kinds of these aromatic vinyl monomers may be mixed.
 前記スチレン共重合体(D)の前記環状酸無水物単量体単位(d2)としては、マレイン酸、イタコン酸、シトラコン酸、アコニット酸等の酸無水物が挙げられ、アクリル樹脂との相溶性の観点から無水マレイン酸が好ましい。これらの不飽和ジカルボン酸無水物単量体は2種以上を混合してもよい。 Examples of the cyclic acid anhydride monomer unit (d2) of the styrene copolymer (D) include acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid, which are compatible with acrylic resins. Maleic anhydride is preferable from the viewpoint of. Two or more kinds of these unsaturated dicarboxylic acid anhydride monomers may be mixed.
 前記スチレン共重合体(D)の前記メタクリル酸エステル単量体単位(d3)としては、アクリロニトリル、メタアクリロニトリル、アクリル酸、メタクリル酸、(メタ)アクリル酸エステル等が挙げられる。(メタ)アクリル酸エステルとしては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸2エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル及びメタクリル酸2エチルヘキシル等が挙げられる。その中でも、アクリル樹脂との相溶性の観点からメタクリル酸メチル(MMA)が好ましい。これらのアクリル化合物単量体は2種以上を混合してもよい。 Examples of the methacrylic acid ester monomer unit (d3) of the styrene copolymer (D) include acrylonitrile, metaacrylonitrile, acrylic acid, methacrylic acid, and (meth) acrylic acid ester. Examples of the (meth) acrylic acid ester include methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate and 2-ethylhexyl methacrylate. Be done. Among them, methyl methacrylate (MMA) is preferable from the viewpoint of compatibility with acrylic resin. Two or more kinds of these acrylic compound monomers may be mixed.
 本発明で用いる前記スチレン共重合体(D)において、前記ビニル芳香族単量体単位(d1)と前記環状酸無水物単量体単位(d2)と前記メタクリル酸エステル単量体単位(d3)との合計割合は、前記スチレン共重合体(D)中の全単量体単位の合計に対して90~100モル%であり、好ましくは95~100モル%であり、より好ましくは98~100モル%である。
 すなわち、前記スチレン共重合体(D)は、全単量体単位の合計に対して10モル%以下の範囲で、前記ビニル芳香族単量体単位(d1)と前記環状酸無水物単量体単位(d2)と前記メタクリル酸エステル単量体単位(d3)以外の単量体単位を含有していてもよい。前記ビニル芳香族単量体単位(d1)と前記環状酸無水物単量体単位(d2)と前記メタクリル酸エステル単量体単位(d3)以外の単量体単位としては、例えば、N-置換型マレイミド単量体などが挙げられる。N-置換型マレイミド単量体としては、N-フェニルマレイミド、N-クロロフェニルマレイミド、N-メチルフェニルマレイミド、N-ナフチルマレイミド、N-ヒドロキシフェニルマレイミド、N-メトキシフェニルマレイミド、N-カルボキシフェニルマレイミド、N-ニトロフェニルマレイミド、N-トリブロモフェニルマレイミドなどのN-アリールマレイミド等が挙げられ、アクリル樹脂との相溶性の観点からN-フェニルマレイミドが好ましい。これらのN-置換型マレイミド単量体は2種以上を混合してもよい。
In the styrene copolymer (D) used in the present invention, the vinyl aromatic monomer unit (d1), the cyclic acid anhydride monomer unit (d2), and the methacrylic acid ester monomer unit (d3). The total ratio with and from is 90 to 100 mol%, preferably 95 to 100 mol%, and more preferably 98 to 100 mol% with respect to the total of all the monomer units in the styrene copolymer (D). Mol%.
That is, the styrene copolymer (D) contains the vinyl aromatic monomer unit (d1) and the cyclic acid anhydride monomer in a range of 10 mol% or less with respect to the total of all the monomer units. It may contain a monomer unit other than the unit (d2) and the methacrylic acid ester monomer unit (d3). Examples of the monomer unit other than the vinyl aromatic monomer unit (d1), the cyclic acid anhydride monomer unit (d2), and the methacrylate ester monomer unit (d3) include N-substituted. Examples include type maleimide monomers. Examples of the N-substituted maleimide monomer include N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-naphthylmaleimide, N-hydroxyphenylmaleimide, N-methoxyphenylmaleimide, and N-carboxyphenylmaleimide. Examples thereof include N-arylmaleimide such as N-nitrophenylmaleimide and N-tribromophenylmaleimide, and N-phenylmaleimide is preferable from the viewpoint of compatibility with acrylic resin. Two or more kinds of these N-substituted maleimide monomers may be mixed.
 前記ビニル芳香族単量体単位(d1)の割合は、前記スチレン共重合体(D)中の全単量体単位の合計に対して60~90モル%であり、好ましくは65~90モル%であり、より好ましくは70~90モル%であり、さらに好ましくは、72~88モル%、特に好ましくは74~86モル%である。前記環状酸無水物単量体単位(d2)の割合は、前記スチレン共重合体(D)中の全単量体単位の合計に対して10~20モル%であり、好ましくは12~18モル%であり、より好ましくは14~16モル%である。前記メタクリル酸エステル単量体単位(d3)の割合は、前記スチレン共重合体(D)中の全単量体単位の合計に対して0~20モル%であり、好ましくは0~15モル%であり、より好ましくは0~10モル%である。
 前記スチレン共重合体(D)中の全単量体単位の合計に対する前記ビニル芳香族単量体単位(d1)の割合が60モル%未満であると、ビニル共重合体(C)との相溶性が悪くなる。また90モル%を超えると、十分な耐熱性が付与できない。スチレン共重合体(D)中の全単量体単位の合計に対する前記環状酸無水物単量体単位(d2)の割合が10モル%未満であると、耐熱性が不十分である。また20モル%を超えると、ビニル共重合体(C)との相溶性が悪くなる
The ratio of the vinyl aromatic monomer unit (d1) is 60 to 90 mol%, preferably 65 to 90 mol%, based on the total of all the monomer units in the styrene copolymer (D). It is more preferably 70 to 90 mol%, further preferably 72 to 88 mol%, and particularly preferably 74 to 86 mol%. The ratio of the cyclic acid anhydride monomer unit (d2) is 10 to 20 mol%, preferably 12 to 18 mol%, based on the total of all the monomer units in the styrene copolymer (D). %, More preferably 14 to 16 mol%. The ratio of the methacrylic acid ester monomer unit (d3) is 0 to 20 mol%, preferably 0 to 15 mol%, based on the total of all the monomer units in the styrene copolymer (D). It is more preferably 0 to 10 mol%.
When the ratio of the vinyl aromatic monomer unit (d1) to the total of all the monomer units in the styrene copolymer (D) is less than 60 mol%, the phase with the vinyl copolymer (C) Poor solubility. Further, if it exceeds 90 mol%, sufficient heat resistance cannot be imparted. If the ratio of the cyclic acid anhydride monomer unit (d2) to the total of all the monomer units in the styrene copolymer (D) is less than 10 mol%, the heat resistance is insufficient. If it exceeds 20 mol%, the compatibility with the vinyl copolymer (C) deteriorates.
 前記スチレン共重合体(D)の製造方法は、特に限定されないが、公知の溶液重合法、塊状重合法等、適宜選択できる。 The method for producing the styrene copolymer (D) is not particularly limited, but a known solution polymerization method, massive polymerization method, or the like can be appropriately selected.
 前記スチレン共重合体(D)の重量平均分子量は、特に制限はないが、ビニル共重合体(C)との相溶性の観点から、50,000~400,000であることが好ましく、70,000~300,000であることがより好ましい。上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定される、標準ポリスチレン換算の重量平均分子量である。 The weight average molecular weight of the styrene copolymer (D) is not particularly limited, but is preferably 50,000 to 400,000 from the viewpoint of compatibility with the vinyl copolymer (C), 70, More preferably, it is 000 to 300,000. The weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
 前記スチレン共重合体(D)のガラス転移温度は、前記ビニル共重合体(C)のガラス転移温度より高いことが好ましく、120~190℃の範囲であることが好ましく、125~185℃の範囲であることがさらに好ましい。ガラス転移温度が120℃以上であることにより本発明で提供される積層体が熱環境あるいは湿熱環境において変形や割れを生じることが少ない。また190℃以下であることにより鏡面ロールや賦形ロールによる連続式熱賦形、あるいは鏡面金型や賦形金型によるバッチ式熱賦形などの加工性に優れる。なお、本発明におけるガラス転移温度とは、示差走査熱量測定装置を用い、昇温速度10℃/分で測定し中点法で算出したときの温度である。 The glass transition temperature of the styrene copolymer (D) is preferably higher than the glass transition temperature of the vinyl copolymer (C), preferably in the range of 120 to 190 ° C, and preferably in the range of 125 to 185 ° C. Is more preferable. When the glass transition temperature is 120 ° C. or higher, the laminate provided in the present invention is less likely to be deformed or cracked in a thermal environment or a moist thermal environment. Further, when the temperature is 190 ° C. or lower, the workability is excellent such as continuous heat shaping by a mirror surface roll or a shaping roll, or batch type heat shaping by a mirror surface mold or a shaping die. The glass transition temperature in the present invention is a temperature measured by a differential scanning calorimetry device at a heating rate of 10 ° C./min and calculated by the midpoint method.
 前記スチレン共重合体(D)は、ビニル芳香族単量体単位(d1)と環状酸無水物単量体単位(d2)とを含む二元共重合体、または、ビニル芳香族単量体単位(d1)と環状酸無水物単量体単位(d2)とメタクリル酸エステル単量体単位(d3)とを含む三元共重合体であるが、ビニル共重合体(C)を組み合わせて用いることで、スチレン共重合体(D)のみを用いた場合よりも硬度が高く、ビニル共重合体(C)のみを用いた場合よりも高温高湿下での形状安定性を有した樹脂積層体が得られる。 The styrene copolymer (D) is a binary copolymer containing a vinyl aromatic monomer unit (d1) and a cyclic acid anhydride monomer unit (d2), or a vinyl aromatic monomer unit. It is a ternary copolymer containing (d1), a cyclic acid anhydride monomer unit (d2), and a methacrylic acid ester monomer unit (d3), but a vinyl copolymer (C) may be used in combination. Therefore, the resin laminate has higher hardness than the case where only the styrene copolymer (D) is used, and has shape stability under high temperature and high humidity as compared with the case where only the vinyl copolymer (C) is used. can get.
 本発明において、前記ビニル共重合体(C)と前記スチレン共重合体(D)の質量比は、ビニル共重合体(C)とスチレン共重合体(D)との含有量の合計100質量部を基準として、前記ビニル共重合体(C)が5~95質量部に対して前記スチレン共重合体(D)が95~5質量部であることが好ましい。より好ましくは、前記ビニル共重合体(C)が15~85質量部に対して前記スチレン共重合体(D)が85~15質量部であり、更に好ましくは、前記ビニル共重合体(C)が25~75質量部に対して前記スチレン共重合体(D)が75~25質量部であり、特に好ましくは、前記ビニル共重合体(C)が40~60質量部に対して前記スチレン共重合体(D)が60~40質量部である。この質量比内にすることにより、透明性を維持しつつ、高温高湿下に曝されても耐反り変形性、耐熱性に優れ、屈折率が高く、且つ、外観良好な優れた熱可塑性樹脂(B)となる。 In the present invention, the mass ratio of the vinyl copolymer (C) to the styrene copolymer (D) is 100 parts by mass in total of the contents of the vinyl copolymer (C) and the styrene copolymer (D). It is preferable that the vinyl copolymer (C) is 5 to 95 parts by mass and the styrene copolymer (D) is 95 to 5 parts by mass based on the above. More preferably, the vinyl copolymer (C) is 15 to 85 parts by mass, and the styrene copolymer (D) is 85 to 15 parts by mass, and more preferably, the vinyl copolymer (C). The styrene copolymer (D) is 75 to 25 parts by mass with respect to 25 to 75 parts by mass, and particularly preferably, the vinyl copolymer (C) is 40 to 60 parts by mass with the styrene. The copolymer (D) is 60 to 40 parts by mass. By keeping the mass ratio within this range, an excellent thermoplastic resin having excellent warp deformation resistance and heat resistance, a high refractive index, and a good appearance even when exposed to high temperature and high humidity while maintaining transparency ( B).
 前記ビニル共重合体(C)と前記スチレン共重合体(D)とをアロイする温度は、230~320℃の範囲であることが好ましく、240~300℃の範囲であることがさらに好ましい。アロイ温度が230℃未満であると相溶性が悪くなり、Hazeが高くなる傾向がある。また、320℃を超えるとビニル共重合体(C)または/且つ、前記スチレン共重合体(D)が熱分解する。 The temperature at which the vinyl copolymer (C) and the styrene copolymer (D) are alloyed is preferably in the range of 230 to 320 ° C, and more preferably in the range of 240 to 300 ° C. If the alloy temperature is less than 230 ° C., the compatibility tends to be poor and the haze tends to be high. Further, when the temperature exceeds 320 ° C., the vinyl copolymer (C) and / and the styrene copolymer (D) are thermally decomposed.
 本発明において、熱可塑性樹脂(B)の製造方法には特に制限はなく、必要な成分を、例えばタンブラーやヘンシェルミキサー、スーパーミキサーなどの混合機を用いて予め混合しておき、その後バンバリーミキサー、ロール、ブラベンダー、単軸押出機、二軸押出機、加圧ニーダーなどの機械で溶融混練するといった公知の方法が適用できる。
 本発明に使用される熱可塑性樹脂(B)のガラス転移温度は、比較的高いことが特徴の一つであり、122~185℃の範囲であることが好ましく、123~160℃の範囲であることがより好ましく、125~140℃の範囲であることが特に好ましい。本発明に使用される熱可塑性樹脂(B)のガラス転移温度は比較的高く、前記ポリカーボネート系樹脂(A)のガラス転移温度との差が少ないため、熱プレス成形や熱曲げ加工時にポリカーボネート系樹脂(A)のガラス転移温度に近づけても、熱可塑性樹脂(B)を含む層に外観不良が発生するという問題が少ないというメリットがある。ポリカーボネート系樹脂(A)のガラス転移温度と熱可塑性樹脂(B)のガラス転移温度との差は、0~25℃の範囲であることが好ましく、0~20℃の範囲であることがより好ましく、10~20℃の範囲であることが特に好ましい。
In the present invention, the method for producing the thermoplastic resin (B) is not particularly limited, and necessary components are mixed in advance using a mixer such as a tumbler, a Henschel mixer, or a super mixer, and then a Banbury mixer, Known methods such as melt-kneading with a machine such as a roll, a brabender, a single-screw extruder, a twin-screw extruder, or a pressure kneader can be applied.
One of the characteristics of the thermoplastic resin (B) used in the present invention is that the glass transition temperature is relatively high, preferably in the range of 122 to 185 ° C, and preferably in the range of 123 to 160 ° C. It is more preferable, and the range of 125 to 140 ° C. is particularly preferable. Since the glass transition temperature of the thermoplastic resin (B) used in the present invention is relatively high and the difference from the glass transition temperature of the polycarbonate resin (A) is small, the polycarbonate resin is used during hot press molding or heat bending. Even if the temperature approaches the glass transition temperature of (A), there is an advantage that there is little problem that the layer containing the thermoplastic resin (B) has a poor appearance. The difference between the glass transition temperature of the polycarbonate resin (A) and the glass transition temperature of the thermoplastic resin (B) is preferably in the range of 0 to 25 ° C, more preferably in the range of 0 to 20 ° C. It is particularly preferably in the range of 10 to 20 ° C.
<樹脂積層体>
 本発明の樹脂積層体は、Haze≦1.0%であり、Haze≦0.8%が好ましく、Haze≦0.7%がより好ましい。Hazeが1.0%を超えると、目視で樹脂積層体が白っぽく見える場合がある。
 また、本発明の樹脂積層体は、後述する実施例における<高温高湿環境下の反り試験>に従って測定した反り変化量が、絶対値で200μm以下であることが好ましく、150μm以下であることがより好ましく、100μm以下であることが特に好ましい。上記反り変化量の絶対値が200μmを超えると、目視で樹脂積層体の変形が確認できる場合がある。
 本発明において、熱可塑性樹脂(B)を含む層の厚さは、樹脂積層体の表面硬度や耐衝撃性に影響する。つまり、熱可塑性樹脂(B)を含む層の厚さが薄すぎると表面硬度が低くなり、好ましくない。熱可塑性樹脂(B)を含む層の厚さが大きすぎると耐衝撃性が悪くなり、好ましくない。熱可塑性樹脂(B)を含む層の厚さは10~250μmが好ましく、20~200μmがより好ましい。さらに好ましくは30~150μmである。
<Resin laminate>
The resin laminate of the present invention has Haze ≦ 1.0%, preferably Haze ≦ 0.8%, and more preferably Haze ≦ 0.7%. If Haze exceeds 1.0%, the resin laminate may appear whitish visually.
Further, in the resin laminate of the present invention, the amount of change in warpage measured according to the <warp test in a high temperature and high humidity environment> in Examples described later is preferably 200 μm or less in absolute value, and is 150 μm or less. It is more preferably 100 μm or less, and particularly preferably 100 μm or less. When the absolute value of the amount of change in warpage exceeds 200 μm, deformation of the resin laminate may be visually confirmed.
In the present invention, the thickness of the layer containing the thermoplastic resin (B) affects the surface hardness and impact resistance of the resin laminate. That is, if the thickness of the layer containing the thermoplastic resin (B) is too thin, the surface hardness becomes low, which is not preferable. If the thickness of the layer containing the thermoplastic resin (B) is too large, the impact resistance deteriorates, which is not preferable. The thickness of the layer containing the thermoplastic resin (B) is preferably 10 to 250 μm, more preferably 20 to 200 μm. More preferably, it is 30 to 150 μm.
 本発明において、ポリカーボネート系樹脂(A)を含む層と熱可塑性樹脂(B)を含む層の合計厚みは、薄すぎても、厚すぎても成形が難しい。ポリカーボネート系樹脂(A)を含む層と熱可塑性樹脂(B)を含む層の合計厚みは、好ましくは0.04~4.0mm、より好ましくは0.05~3.5mm、さらに好ましくは0.5~3.0mmである。 In the present invention, if the total thickness of the layer containing the polycarbonate resin (A) and the layer containing the thermoplastic resin (B) is too thin or too thick, molding is difficult. The total thickness of the layer containing the polycarbonate resin (A) and the layer containing the thermoplastic resin (B) is preferably 0.04 to 4.0 mm, more preferably 0.05 to 3.5 mm, still more preferably 0. It is 5 to 3.0 mm.
<任意の添加剤>
 本発明において、基材層を形成するポリカーボネート系樹脂(A)および/または表層を形成する熱可塑性樹脂(B)には、上述の主たる成分以外の成分を含めることができる。
<Arbitrary additive>
In the present invention, the polycarbonate resin (A) forming the base material layer and / or the thermoplastic resin (B) forming the surface layer may contain components other than the above-mentioned main components.
 例えば、ポリカーボネート系樹脂(A)および/または熱可塑性樹脂(B)には、紫外線吸収剤を混合して使用することができる。紫外線吸収剤の含有量が多過ぎると、成形法によっては過剰な紫外線吸収剤が高い温度がかかることによって飛散し、成形環境を汚染するため不具合を起こすことがある。このことから紫外線吸収剤の含有割合は0~5質量%が好ましく、0~3質量%がより好ましく、さらに好ましくは0~1質量%である。紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-4-ドデシロキシベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノンなどのベンゾフェノン系紫外線吸収剤、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)ベンゾトリアゾール、(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノールなどのベンゾトリアゾール系紫外線吸収剤、サリチル酸フェニル、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエートなどのベンゾエート系紫外線吸収剤、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケートなどのヒンダードアミン系紫外線吸収剤、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジンなどのトリアジン系紫外線吸収剤、2-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]エチルメタクリレート、2-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]エチルアクリレート、3-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]プロピルメタクリレート、3-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]プロピルアクリレート、4-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]ブチルメタクリレート、4-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]ブチルアクリレート、2-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イルオキシ]エチルメタクリレート、2-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イルオキシ]エチルアクリレート、2-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]エチルメタクリレート、2-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]エチルアクリレート、4-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]ブチルメタクリレート、4-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]ブチルアクリレート、2-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]エチルメタクリレート、2-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]エチルアクリレート、2-(メタクリロイルオキシ)エチル2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5カルボキシレート、2-(アクリロイルオキシ)エチル2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-カルボキシレート、4-(メタクリロイルオキシ)ブチル2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-カルボキシレート、4-(アクリロイルオキシ)ブチル2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-カルボキシレート等などのセサモール型ベンゾトリアゾール系紫外線吸収剤などが挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。 For example, the polycarbonate resin (A) and / or the thermoplastic resin (B) can be mixed with an ultraviolet absorber and used. If the content of the UV absorber is too large, depending on the molding method, the excess UV absorber may be scattered due to the high temperature and pollute the molding environment, which may cause a problem. From this, the content ratio of the ultraviolet absorber is preferably 0 to 5% by mass, more preferably 0 to 3% by mass, and even more preferably 0 to 1% by mass. Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, and 2-hydroxy. -4-octadecyloxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2', 4,4'-tetrahydroxybenzophenone, etc. Benzophenone UV absorber, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, 2- (2-hydroxy-3) Bentriazole-based UV absorbers such as -t-butyl-5-methylphenyl) benzotriazole, (2H-benzotriazole-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol, salicylic acid Phenyl, benzoate-based UV absorbers such as 2,4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, bis (2,2,6,6-tetramethylpiperidine-4) -Il) Hindered amine-based ultraviolet absorbers such as sebacate, 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-) Hydroxy-4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-) Hydroxy-4-butoxyphenyl) 1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2, 4-Diphenyl-6- (2-Hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl) -1,3, Triazine-based UV absorbers such as 5-triazine, 2- [2- (6-hydroxybenzo [1,3] dioxol-5-yl) -2H-benzotriazole-5 -Il] ethyl methacrylate, 2- [2- (6-hydroxybenzo [1,3] dioxotol-5-yl) -2H-benzotriazole-5-yl] ethyl acrylate, 3- [2- (6-hydroxybenzo [1,3] Dioxotol-5-yl) -2H-benzotriazole-5-yl] propyl methacrylate, 3- [2- (6-hydroxybenzo [1,3] dioxotri-5-yl) -2H-benzotriazole -5-yl] propyl acrylate, 4- [2- (6-hydroxybenzo [1,3] dioxol-5-yl) -2H-benzotriazole-5-yl] butyl methacrylate, 4- [2- (6--) Hydroxybenzo [1,3] dioxotol-5-yl) -2H-benzotriazole-5-yl] butyl acrylate, 2- [2- (6-hydroxybenzo [1,3] dioxotol-5-yl) -2H- Benzotriazole-5-yloxy] ethyl methacrylate, 2- [2- (6-hydroxybenzo [1,3] dioxol-5-yl) -2H-benzotriazole-5-yloxy] ethyl acrylate, 2- [3-{ 2- (6-Hydroxybenzo [1,3] dioxotol-5-yl) -2H-benzotriazole-5-yl} propanoyloxy] ethyl methacrylate, 2- [3- {2- (6-hydroxybenzo [1] , 3] Dioxol-5-yl) -2H-benzotriazole-5-yl} propanoyloxy] ethyl acrylate, 4- [3- {2- (6-hydroxybenzo [1,3] dioxol-5-yl) -2H-benzotriazole-5-yl} propanoyloxy] butyl methacrylate, 4- [3- {2- (6-hydroxybenzo [1,3] dioxotol-5-yl) -2H-benzotriazole-5-yl) } Propanoyloxy] butyl acrylate, 2- [3- {2- (6-hydroxybenzo [1,3] dioxotol-5-yl) -2H-benzotriazole-5-yl} propanoyloxy] ethyl methacrylate, 2 -[3- {2- (6-Hydroxybenzo [1,3] dioxotol-5-yl) -2H-benzotriazole-5-yl} propanoyloxy] ethyl acrylate, 2- (methacryloyloxy) ethyl 2- ( 6-Hydroxybenzo [1,3] dioxotol-5-yl) -2H-benzotriazole-5 carboxylate, 2- (acryloyloxy) ethyl 2- (6-Hydroxybenzo [1,3] dioxotol-5-yl) -2H-benzotriazole-5-carboxylate, 4- (methacryloyloxy) butyl 2- (6-hydroxybenzo [1,3] dioxol- 5-Il) -2H-benzotriazole-5-carboxylate, 4- (acryloyloxy) butyl 2-(6-hydroxybenzo [1,3] dioxotol-5-yl) -2H-benzotriazole-5-carboxylate Examples thereof include sesamole-type benzotriazole-based ultraviolet absorbers. The mixing method is not particularly limited, and a method of total compounding, a method of dry blending the masterbatch, a method of total dry blending, and the like can be used.
 本発明において、基材層を形成するポリカーボネート系樹脂(A)および/または表層を形成する熱可塑性樹脂(B)には、上記紫外線吸収剤以外にも、各種添加剤を混合して使用することができる。そのような添加剤としては、例えば、抗酸化剤や抗着色剤、抗帯電剤、離型剤、滑剤、染料、顔料、可塑剤、難燃剤、樹脂改質剤、相溶化剤、有機フィラーや無機フィラーといった強化材などが挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。 In the present invention, the polycarbonate resin (A) forming the base material layer and / or the thermoplastic resin (B) forming the surface layer may be mixed with various additives in addition to the above-mentioned ultraviolet absorber. Can be done. Such additives include, for example, antioxidants and colorants, antioxidants, mold release agents, lubricants, dyes, pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, organic fillers and the like. Reinforcing materials such as inorganic fillers can be mentioned. The mixing method is not particularly limited, and a method of total compounding, a method of dry blending the masterbatch, a method of total dry blending, and the like can be used.
<任意の処理>
 本発明において、熱可塑性樹脂(B)を含む層の表面、またはポリカーボネート系樹脂(A)を含む層の表面にハードコート処理を施してもよい。例えば、熱エネルギーおよび/または光エネルギーを用いて硬化させるハードコート塗料を用いるハードコート処理によりハードコート層を形成する。熱エネルギーを用いて硬化させるハードコート塗料としては、例えば、ポリオルガノシロキサン系、架橋型アクリル系などの熱硬化性樹脂組成物が挙げられる。また、光エネルギーを用いて硬化させるハードコート塗料としては、例えば、1官能および/または多官能であるアクリレートモノマーおよび/またはオリゴマーからなる樹脂組成物に光重合開始剤が加えられた光硬化性樹脂組成物などが挙げられる。
<Arbitrary processing>
In the present invention, the surface of the layer containing the thermoplastic resin (B) or the surface of the layer containing the polycarbonate resin (A) may be subjected to a hard coat treatment. For example, a hard coat layer is formed by a hard coat treatment using a hard coat paint that cures using heat energy and / or light energy. Examples of the hard coat paint to be cured by using heat energy include thermosetting resin compositions such as polyorganosiloxane-based and crosslinked acrylic-based. Further, as a hard coat coating material to be cured using light energy, for example, a photocurable resin obtained by adding a photopolymerization initiator to a resin composition composed of a monofunctional and / or polyfunctional acrylate monomer and / or oligomer. Examples include compositions.
 本発明におけるハードコート塗料を塗布する方法は特に限定されず、公知の方法を用いることができる。例えば、スピンコート法、ディップ法、スプレー法、スライドコート法、バーコート法、ロールコート法、グラビアコート法、メニスカスコート法、フレキソ印刷法、スクリーン印刷法、ビートコート法、捌け法などが挙げられる。 The method of applying the hard coat paint in the present invention is not particularly limited, and a known method can be used. For example, spin coating method, dip method, spray method, slide coating method, bar coating method, roll coating method, gravure coating method, meniscus coating method, flexographic printing method, screen printing method, beat coating method, and handling method can be mentioned. ..
 ハードコートの密着性を向上させる目的で、ハードコート前に塗布面の前処理を行うことがある。処理例として、サンドブラスト法、溶剤処理法、コロナ放電処理法、クロム酸処理法、火炎処理法、熱風処理法、オゾン処理法、紫外線処理法、樹脂組成物によるプライマー処理法などの公知の方法が挙げられる。 For the purpose of improving the adhesion of the hard coat, the coated surface may be pretreated before the hard coat. Known treatment examples include sandblasting, solvent treatment, corona discharge treatment, chromic acid treatment, flame treatment, hot air treatment, ozone treatment, ultraviolet treatment, and primer treatment with a resin composition. Can be mentioned.
 本発明におけるポリカーボネート系樹脂(A)を含む層、熱可塑性樹脂(B)を含む層及びハードコートの各材料、例えば、ポリカーボネート系樹脂(A)および熱可塑性樹脂(B)等は、フィルター処理によりろ過精製されることが好ましい。フィルターを通して生成あるいは積層する事により異物や欠点といった外観不良が少ない樹脂積層体を得ることが出来る。ろ過方法に特に制限はなく、溶融ろ過、溶液ろ過、あるいはその組み合わせ等を使うことが出来る。 Each material of the layer containing the polycarbonate resin (A), the layer containing the thermoplastic resin (B), and the hard coat in the present invention, for example, the polycarbonate resin (A) and the thermoplastic resin (B), is filtered. It is preferably filtered and purified. By forming or laminating through a filter, it is possible to obtain a resin laminate having few appearance defects such as foreign substances and defects. The filtration method is not particularly limited, and melt filtration, solution filtration, or a combination thereof can be used.
 使用するフィルターに特に制限はなく、公知のものが使用でき、各材料の使用温度、粘度、ろ過精度により適宜選ばれる。フィルターの濾材としては、特に限定されないがポリプロピレン、コットン、ポリエステル、ビスコースレイヨンやグラスファイバーの不織布あるいはロービングヤーン巻物、フェノール樹脂含浸セルロース、金属繊維不織布焼結体、金属粉末焼結体、ブレーカープレート、あるいはこれらの組み合わせなど、いずれも使用可能である。特に耐熱性や耐久性、耐圧力性を考えると金属繊維不織布を焼結したタイプが好ましい。 There are no particular restrictions on the filter used, known ones can be used, and they are appropriately selected according to the operating temperature, viscosity, and filtration accuracy of each material. The filter medium of the filter is not particularly limited, but is a polypropylene, cotton, polyester, viscose rayon or glass fiber non-woven fabric or roving yarn roll, phenol resin impregnated cellulose, metal fiber non-woven fabric sintered body, metal powder sintered body, breaker plate, etc. Alternatively, any combination of these can be used. In particular, considering heat resistance, durability, and pressure resistance, a type obtained by sintering a metal fiber non-woven fabric is preferable.
 ろ過精度は、ポリカーボネート系樹脂(A)および熱可塑性樹脂(B)については、50μm以下、好ましくは30μm以下、さらに好ましくは10μm以下である。また、ハードコート剤のろ過精度は、樹脂積層体の最表層に塗布される事から、20μm以下、好ましくは10μm以下、さらに好ましくは2μm以下である。 The filtration accuracy of the polycarbonate resin (A) and the thermoplastic resin (B) is 50 μm or less, preferably 30 μm or less, and more preferably 10 μm or less. Further, the filtration accuracy of the hard coating agent is 20 μm or less, preferably 10 μm or less, and more preferably 2 μm or less because it is applied to the outermost layer of the resin laminate.
 ポリカーボネート系樹脂(A)と熱可塑性樹脂(B)のろ過については、例えば熱可塑性樹脂溶融ろ過に用いられているポリマーフィルターを使うことが好ましい。ポリマーフィルターは、その構造によりリーフディスクフィルター、キャンドルフィルター、パックディスクフィルター、円筒型フィルターなどに分類されるが、特に有効ろ過面積が大きいリーフディスクフィルターが好適である。 For the filtration of the polycarbonate resin (A) and the thermoplastic resin (B), for example, it is preferable to use the polymer filter used for the thermoplastic resin melt filtration. The polymer filter is classified into a leaf disc filter, a candle filter, a pack disc filter, a cylindrical filter and the like according to its structure, and a leaf disc filter having a large effective filtration area is particularly preferable.
 本発明の樹脂積層体には、その片面または両面に耐指紋処理、反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上を施すことができる。反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理の方法は、特に限定されず、公知の方法を用いることができる。例えば、反射低減塗料を塗布する方法、誘電体薄膜を蒸着する方法、帯電防止塗料を塗布する方法などが挙げられる。 The resin laminate of the present invention can be subjected to any one or more of anti-fingerprint treatment, anti-reflection treatment, anti-fouling treatment, anti-static treatment, weather resistance treatment and anti-glare treatment on one or both sides thereof. The methods of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment are not particularly limited, and known methods can be used. For example, a method of applying antireflection paint, a method of depositing a dielectric thin film, a method of applying antistatic paint, and the like can be mentioned.
 以下、実施例により本発明を具体的に説明する。ただし、本発明はこれらの実施例により何ら制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to these examples.
 製造例で得られた共重合体の外観評価ならびに実施例および比較例で得られた樹脂積層体の外観評価は以下のように行った。 The appearance evaluation of the copolymer obtained in the production example and the appearance evaluation of the resin laminate obtained in the examples and the comparative examples were performed as follows.
<全光線透過率測定>
 (株)村上色彩技術研究所製 反射・透過率計HR-100型を用いて全光線透過率を測定した。
<Measurement of total light transmittance>
The total light transmittance was measured using a reflection / transmittance meter HR-100 manufactured by Murakami Color Technology Laboratory Co., Ltd.
<Haze測定>
 日本電色工業(株)製 COH-400を用いてHazeを測定した。
<Haze measurement>
Haze was measured using COH-400 manufactured by Nippon Denshoku Kogyo Co., Ltd.
<共重合体中の単量体単位のモル比>
 日本電子(株)製 JNM-AL400を用いて、H-NMR及び13C-NMR(400MHz:溶媒はCDCl3)の測定値から計算した。
<Mole ratio of monomer unit in copolymer>
It was calculated from the measured values of 1 H-NMR and 13 C-NMR (400 MHz: solvent is CDCl3) using JNM-AL400 manufactured by JEOL Ltd.
<共重合体の水素化率>
 水素化反応前後のUVスペクトル測定における260nmの吸収の減少率により求めた。各種共重合体をテトラヒドロフランに任意の割合で溶解させ、水素化反応前の樹脂の濃度C1における吸光度A1、水素化反応後の樹脂の濃度C2における吸光度A2から、以下の式より算出した。水素化率=100×[1-(A2×C1)/(A1×C2)]
<Hydrogenation rate of copolymer>
It was determined by the reduction rate of absorption at 260 nm in the UV spectrum measurement before and after the hydrogenation reaction. Various copolymers were dissolved in tetrahydrofuran at an arbitrary ratio, and calculated from the absorbance A1 at the resin concentration C1 before the hydrogenation reaction and the absorbance A2 at the resin concentration C2 after the hydrogenation reaction from the following formulas. Hydrogenation rate = 100 x [1- (A2 x C1) / (A1 x C2)]
<ガラス転移温度>
 セイコーインスツルメンツ(株)製 示差走査熱量測定装置DSC6200を用いた。窒素30ml/min.流通下、10℃/min.で30℃から200℃まで昇温し、次に50℃/min.で200℃から30℃まで降温し、再度10℃/min.で30℃から200℃まで昇温した。2回目の昇温における中間点ガラス転移温度(Tmg)をガラス転移温度として用いた。
<Glass transition temperature>
A differential scanning calorimetry device DSC6200 manufactured by Seiko Instruments Inc. was used. Nitrogen 30 ml / min. Under circulation, 10 ° C./min. The temperature was raised from 30 ° C. to 200 ° C., and then 50 ° C./min. The temperature was lowered from 200 ° C. to 30 ° C., and again at 10 ° C./min. The temperature was raised from 30 ° C. to 200 ° C. The midpoint glass transition temperature (Tmg) in the second temperature rise was used as the glass transition temperature.
<屈折率測定>
 (株)アタゴ製 多波長アッベ屈折計DR-M2で測定した。測定温度は20℃、測定波長は589nmであり、中間液にはモノブロモナフタレンを使用した。
<Refractive index measurement>
The measurement was performed with a multi-wavelength Abbe refractometer DR-M2 manufactured by Atago Co., Ltd. The measurement temperature was 20 ° C., the measurement wavelength was 589 nm, and monobromonaphthalene was used as the intermediate solution.
<高温高湿環境下の反り試験>
 樹脂積層体の中央付近から縦100mm、横60mmの試験片を切り出した。試験片を2点支持型のホルダーにセットして温度23℃、相対湿度50%に設定した環境試験機に24時間以上投入して状態調整した後、反りを測定した。このときの値を処理前反り量の値とした。次に試験片をホルダーにセットして温度85℃、相対湿度85%に設定した環境試験機の中に投入し、その状態で120時間保持した。さらに温度23℃、相対湿度50%に設定した環境試験機の中にホルダーごと移動し、その状態で4時間保持後に再度反りを測定した。このときの値を処理後反り量の値とした。反りの測定には、電動ステージ具備の3次元形状測定機を使用し、取り出した試験片を上に凸の状態で水平に静置し、1mm間隔でスキャンし、中央部の盛り上がりを反りとして計測した。処理前後の反り量の差、すなわち、(処理後反り量)-(処理前反り量)を反り変化量として評価した。その際、熱可塑性樹脂(B)を含む層側が凸の場合は「-」符号、ポリカーボネート系樹脂(A)を含む層側が凸の場合は「+」符号で評価した。
<Warp test in high temperature and high humidity environment>
A test piece having a length of 100 mm and a width of 60 mm was cut out from the vicinity of the center of the resin laminate. The test piece was set in a two-point support type holder and placed in an environmental tester set at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours or more to adjust the state, and then the warp was measured. The value at this time was taken as the value of the amount of warpage before processing. Next, the test piece was set in a holder and placed in an environmental tester set at a temperature of 85 ° C. and a relative humidity of 85%, and held in that state for 120 hours. Further, the holder was moved into an environmental tester set at a temperature of 23 ° C. and a relative humidity of 50%, and the warp was measured again after holding for 4 hours in that state. The value at this time was taken as the value of the amount of warpage after processing. To measure the warp, a three-dimensional shape measuring machine equipped with an electric stage is used, and the taken-out test piece is placed horizontally in a convex state and scanned at 1 mm intervals, and the swelling in the center is measured as the warp. did. The difference in the amount of warpage before and after the treatment, that is, (the amount of warpage after treatment)-(the amount of warpage before treatment) was evaluated as the amount of change in warpage. At that time, when the layer side containing the thermoplastic resin (B) was convex, it was evaluated with a “−” code, and when the layer side containing the polycarbonate resin (A) was convex, it was evaluated with a “+” code.
<鉛筆引っかき硬度試験>
 JIS K 5600-5-4に準拠し、樹脂積層体の中央付近の熱可塑性樹脂(B)を含む層の表面に対して角度45度、荷重750gで熱可塑性樹脂(B)を含む層の表面に次第に硬度を増して鉛筆を押し付け、傷跡を生じなかった最も硬い鉛筆の硬度を鉛筆硬度として評価した。
<Pencil scratch hardness test>
In accordance with JIS K 5600-5-4, the surface of the layer containing the thermoplastic resin (B) near the center of the resin laminate at an angle of 45 degrees with respect to the surface of the layer containing the thermoplastic resin (B) at a load of 750 g. The hardness was gradually increased and the pencil was pressed against it, and the hardness of the hardest pencil that did not cause scars was evaluated as the pencil hardness.
<干渉縞>
 樹脂積層体のポリカーボネート系樹脂(A)を含む層側に黒テープ(3Mジャパン(株)製 黒色ビニールテープ型番117BLA)を貼り付け、熱可塑性樹脂(B)を含む層の表面から三波長型蛍光ランプ((有)テクニカ インバータライト60 AL-60231)で照らし、干渉縞を評価した。下記の基準で干渉縞の合否判定を行い、〇を合格とした。
○:干渉縞が見えないか、干渉縞が弱く見える
×:干渉縞が強く見える
<Interference fringes>
A black tape (black vinyl tape model number 117BLA manufactured by 3M Japan Co., Ltd.) is attached to the layer side of the resin laminate containing the polycarbonate resin (A), and three-wavelength fluorescent light is applied from the surface of the layer containing the thermoplastic resin (B). The interference fringes were evaluated by illuminating with a lamp (Technica Inverter Light 60 AL-60231). The pass / fail judgment of the interference fringes was made according to the following criteria, and 〇 was judged as a pass.
○: Interference fringes are not visible or interference fringes appear weak ×: Interference fringes appear strong
 実施例のために、ポリカーボネート系樹脂(A-1)、熱可塑性樹脂(B-1)~(B-4)、ビニル共重合体(C-1)、及びスチレン共重合体(D-1)~(D-2)として、下記に示す材料を使用したが、これらに限定されるわけではない。一方、比較例のために、それぞれ下記に示すスチレン共重合体(E-1)~(E-5)を使用した熱可塑性樹脂(F-1)~(F-5)を使用した。 For examples, polycarbonate resins (A-1), thermoplastic resins (B-1) to (B-4), vinyl copolymers (C-1), and styrene copolymers (D-1). As (D-2), the following materials were used, but the present invention is not limited thereto. On the other hand, for comparative examples, thermoplastic resins (F-1) to (F-5) using the styrene copolymers (E-1) to (E-5) shown below were used.
<ポリカーボネート系樹脂(A-1)、スチレン共重合体(D-1)~(D-2)及びスチレン共重合体(E-1)~(E-5)>
 ポリカーボネート系樹脂(A-1):三菱エンジニアリングプラスチックス株式会社製ユーピロンS-1000(重量平均分子量:33,000、ガラス転移温度:147℃、屈折率1.586)
 スチレン共重合体(D-1):Polyscope社製XIBOND140(重量平均分子量:114,000、ガラス転移温度:134℃、(d1)/(d2)=スチレン/無水マレイン酸=85モル%/15モル%)
 スチレン共重合体(D-2):デンカ株式会社製KX-454(重量平均分子量:184,000、ガラス転移温度:130℃、(d1)/(d2)/(d3)=スチレン/無水マレイン酸/メチルメタクリレート=77モル%/15モル%/8モル%)
 スチレン共重合体(E-1):Polyscope社製XiranSZ08250(重量平均分子量:250,000、ガラス転移温度:115℃、(d1)/(d2)=スチレン/無水マレイン酸=92モル%/8モル%)
 スチレン共重合体(E-2):デンカ株式会社製R-100(重量平均分子量:155,000、ガラス転移温度:128℃、(d1)/(d2)/(d3)=スチレン/無水マレイン酸/メチルメタクリレート=63モル%/15モル%/22モル%)
 スチレン共重合体(E-3):デンカ株式会社製R-200(重量平均分子量:190,000、ガラス転移温度:132℃、(d1)/(d2)/(d3)=スチレン/無水マレイン酸/メチルメタクリレート=54モル%/20モル%/26モル%)
 スチレン共重合体(E-4):デンカ株式会社製KX-406(重量平均分子量:120,000、ガラス転移温度:142℃、(d1)/(d2)/(d3)=スチレン/無水マレイン酸/メチルメタクリレート=69モル%/24モル%/7モル%)
 スチレン共重合体(E-5):デンカ株式会社製KX-420(重量平均分子量:63,000、ガラス転移温度:141℃、(d1)/(d2)/(d3)=スチレン/無水マレイン酸/メチルメタクリレート=54モル%/24モル%/22モル%)
<Polycarbonate resin (A-1), styrene copolymers (D-1) to (D-2) and styrene copolymers (E-1) to (E-5)>
Polycarbonate resin (A-1): Iupiron S-1000 manufactured by Mitsubishi Engineering Plastics Co., Ltd. (weight average molecular weight: 33,000, glass transition temperature: 147 ° C., refractive index 1.586)
Styrene copolymer (D-1): XIBOND140 manufactured by Polyscape (weight average molecular weight: 114,000, glass transition temperature: 134 ° C., (d1) / (d2) = styrene / maleic anhydride = 85 mol% / 15 mol %)
Styrene copolymer (D-2): KX-454 manufactured by Denka Co., Ltd. (weight average molecular weight: 184,000, glass transition temperature: 130 ° C., (d1) / (d2) / (d3) = styrene / maleic anhydride / Methyl methacrylate = 77 mol% / 15 mol% / 8 mol%)
Styrene copolymer (E-1): XiranSZ08250 manufactured by Polyscape (weight average molecular weight: 250,000, glass transition temperature: 115 ° C., (d1) / (d2) = styrene / maleic anhydride = 92 mol% / 8 mol %)
Styrene copolymer (E-2): R-100 manufactured by Denka Co., Ltd. (weight average molecular weight: 155,000, glass transition temperature: 128 ° C., (d1) / (d2) / (d3) = styrene / maleic anhydride / Methyl methacrylate = 63 mol% / 15 mol% / 22 mol%)
Styrene copolymer (E-3): R-200 manufactured by Denka Co., Ltd. (weight average molecular weight: 190,000, glass transition temperature: 132 ° C., (d1) / (d2) / (d3) = styrene / maleic anhydride / Methyl methacrylate = 54 mol% / 20 mol% / 26 mol%)
Styrene copolymer (E-4): KX-406 manufactured by Denka Co., Ltd. (weight average molecular weight: 120,000, glass transition temperature: 142 ° C., (d1) / (d2) / (d3) = styrene / maleic anhydride / Methyl methacrylate = 69 mol% / 24 mol% / 7 mol%)
Styrene copolymer (E-5): KX-420 manufactured by Denka Co., Ltd. (weight average molecular weight: 63,000, glass transition temperature: 141 ° C., (d1) / (d2) / (d3) = styrene / maleic anhydride / Methyl methacrylate = 54 mol% / 24 mol% / 22 mol%)
合成例1〔ビニル共重合体(C-1)の製造〕
 モノマー成分として、精製したメタクリル酸メチル(三菱ガス化学社製)75.000モル%、及び精製したスチレン(和光純薬工業社製)24.998モル%、並びに重合開始剤としてt-アミルパーオキシ-2-エチルヘキサノエート(アルケマ吉富社製、商品名:ルペロックス575)0.002モル%からなるモノマー組成物を、ヘリカルリボン翼付き10L完全混合槽に1kg/hで連続的に供給し、平均滞留時間2.5時間、重合温度150℃で連続重合を行った。重合槽の液面が一定となるよう底部から連続的に抜き出し、脱溶剤装置に導入してペレット状の共重合体を得た。得られた共重合体のメタクリル酸メチル由来の(メタ)アクリル酸エステル単量体単位(c1)の割合は73モル%であった。また、ゲル浸透クロマトグラフィーにより測定した重量平均分子量(標準ポリスチレン換算)は124,000であった。この共重合体をイソ酪酸メチル(関東化学社製)に溶解し、10質量%イソ酪酸メチル溶液を調製した。1000mLオートクレーブ装置に、この共重合体の10質量%イソ酪酸メチル溶液を500質量部、水素化触媒として10質量%Pd/C(NEケムキャット社製)を1質量部仕込み、水素圧9MPa、200℃で15時間保持して、共重合体のスチレン部位の芳香族二重結合を水素化した。スチレン部位の水素化反応率は99%であった。また、得られたビニル共重合体(C-1)において、メタクリル酸メチル由来の構成単位の割合は73モル%であり、ビニル共重合体(C-1)はガラス転移温度:121℃であった。
Synthesis Example 1 [Production of Vinyl Copolymer (C-1)]
Purified methyl methacrylate (manufactured by Mitsubishi Gas Chemical Industries, Ltd.) 75,000 mol% and purified styrene (manufactured by Wako Pure Chemical Industries, Ltd.) 24.998 mol% as monomer components, and t-amylperoxy as a polymerization initiator. A monomer composition consisting of 0.002 mol% of -2-ethylhexanoate (manufactured by Alchema Yoshitomi, trade name: Luperox 575) was continuously supplied to a 10 L complete mixing tank with helical ribbon wings at 1 kg / h. Continuous polymerization was carried out at an average residence time of 2.5 hours and a polymerization temperature of 150 ° C. The liquid level in the polymerization tank was continuously extracted from the bottom so as to be constant, and introduced into a solvent removing device to obtain a pellet-shaped copolymer. The proportion of the (meth) acrylic acid ester monomer unit (c1) derived from methyl methacrylate in the obtained copolymer was 73 mol%. The weight average molecular weight (standard polystyrene equivalent) measured by gel permeation chromatography was 124,000. This copolymer was dissolved in methyl isobutyrate (manufactured by Kanto Chemical Co., Inc.) to prepare a 10 mass% methyl isobutyrate solution. In a 1000 mL autoclave device, 500 parts by mass of a 10 mass% methyl isobutyrate solution of this copolymer and 1 mass% Pd / C (manufactured by NE Chemcat) as a hydrogenation catalyst were charged, and the hydrogen pressure was 9 MPa and 200 ° C. The aromatic double bond at the styrene moiety of the copolymer was hydrogenated. The hydrogenation reaction rate of the styrene moiety was 99%. Further, in the obtained vinyl copolymer (C-1), the ratio of the structural unit derived from methyl methacrylate was 73 mol%, and the vinyl copolymer (C-1) had a glass transition temperature of 121 ° C. It was.
製造例1A〔熱可塑性樹脂(B-1)の単層フィルムの製造〕
 ビニル共重合体(C-1)を25質量部と、スチレン共重合体(D-1)を75質量部とをブレンダーで20分混合後、280mm幅の単層ダイスを取り付けた軸径32mmφの単軸押出機に投入し、シリンダー温度220℃~290℃、アダプター温度:290℃、ダイス温度:290℃、吐出速度9.0kg/hの条件で混練し、第1チルロール温度:115℃、第2チルロール温度:90℃で冷却して、厚み70μmの熱可塑性樹脂(B-1)の単層フィルムを作製した。
 上記熱可塑性樹脂(B-1)の単層フィルムはHaze:0.4%、ガラス転移温度:131℃、屈折率:1.568であった。
Production Example 1A [Production of a single-layer film of a thermoplastic resin (B-1)]
After mixing 25 parts by mass of vinyl copolymer (C-1) and 75 parts by mass of styrene copolymer (D-1) with a blender for 20 minutes, a shaft diameter of 32 mmφ with a 280 mm wide single layer die attached. It was put into a single-screw extruder and kneaded under the conditions of a cylinder temperature of 220 ° C. to 290 ° C., an adapter temperature of 290 ° C., a die temperature of 290 ° C., and a discharge rate of 9.0 kg / h. 2 Chill roll temperature: Cooled at 90 ° C. to prepare a single-layer film of a thermoplastic resin (B-1) having a thickness of 70 μm.
The single-layer film of the thermoplastic resin (B-1) had Haze: 0.4%, a glass transition temperature: 131 ° C., and a refractive index: 1.568.
製造例2A〔熱可塑性樹脂(B-2)の単層フィルムの製造〕
 ビニル共重合体(C-1)を40質量部と、スチレン共重合体(D-1)を60質量部とをブレンダーで20分混合後、製造例1Aと同様に厚み70μmの熱可塑性樹脂(B-2)の単層フィルムを作製した。
 上記熱可塑性樹脂(B-2)の単層フィルムはHaze:0.4%、ガラス転移温度:129℃、屈折率:1.551であった。
Production Example 2A [Production of a single-layer film of thermoplastic resin (B-2)]
After mixing 40 parts by mass of the vinyl copolymer (C-1) and 60 parts by mass of the styrene copolymer (D-1) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 μm (similar to Production Example 1A). A single-layer film of B-2) was prepared.
The single-layer film of the thermoplastic resin (B-2) had Haze: 0.4%, a glass transition temperature of 129 ° C., and a refractive index of 1.551.
製造例3A〔熱可塑性樹脂(B-3)の単層フィルムの製造〕
 ビニル共重合体(C-1)を50質量部と、スチレン共重合体(D-1)を50質量部とをブレンダーで20分混合後、製造例1Aと同様に厚み70μmの熱可塑性樹脂(B-3)の単層フィルムを作製した。
 上記熱可塑性樹脂(B-3)の単層フィルムはHaze:0.5%、ガラス転移温度:128℃、屈折率:1.543であった。
Production Example 3A [Production of a single-layer film of thermoplastic resin (B-3)]
After mixing 50 parts by mass of the vinyl copolymer (C-1) and 50 parts by mass of the styrene copolymer (D-1) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 μm (similar to Production Example 1A). A single-layer film of B-3) was prepared.
The monolayer film of the thermoplastic resin (B-3) had Haze: 0.5%, a glass transition temperature: 128 ° C., and a refractive index: 1.543.
製造例4A〔熱可塑性樹脂(B-4)の単層フィルムの製造〕
 ビニル共重合体(C-1)を60質量部と、スチレン共重合体(D-1)を40質量部とをブレンダーで20分混合後、製造例1Aと同様に厚み70μmの熱可塑性樹脂(B-4)の単層フィルムを作製した。
 上記熱可塑性樹脂(B-4)の単層フィルムはHaze:0.4%、ガラス転移温度:127℃、屈折率:1.524であった。
Production Example 4A [Production of a single-layer film of thermoplastic resin (B-4)]
After mixing 60 parts by mass of the vinyl copolymer (C-1) and 40 parts by mass of the styrene copolymer (D-1) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 μm (similar to Production Example 1A). A single-layer film of B-4) was prepared.
The single-layer film of the thermoplastic resin (B-4) had Haze: 0.4%, a glass transition temperature of 127 ° C., and a refractive index of 1.524.
製造例5A〔熱可塑性樹脂(B-5)の単層フィルムの製造〕
 ビニル共重合体(C-1)を75質量部と、スチレン共重合体(D-1)を25質量部とをブレンダーで20分混合後、製造例1Aと同様に厚み70μmの熱可塑性樹脂(B-5)の単層フィルムを作製した。
 上記熱可塑性樹脂(B-5)の単層フィルムはHaze:0.3%、ガラス転移温度:125℃、屈折率:1.519であった。
Production Example 5A [Production of a single-layer film of a thermoplastic resin (B-5)]
After mixing 75 parts by mass of the vinyl copolymer (C-1) and 25 parts by mass of the styrene copolymer (D-1) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 μm (similar to Production Example 1A). A single-layer film of B-5) was prepared.
The single-layer film of the thermoplastic resin (B-5) had Haze: 0.3%, a glass transition temperature: 125 ° C., and a refractive index: 1.519.
製造例6A〔熱可塑性樹脂(B-6)の単層フィルムの製造〕
 ビニル共重合体(C-1)を50質量部と、スチレン共重合体(D-2)を50質量部とをブレンダーで20分混合後、製造例1Aと同様に厚み70μmの熱可塑性樹脂(B-6)の単層フィルムを作製した。
 上記熱可塑性樹脂(B-6)の単層フィルムはHaze:0.9%、ガラス転移温度:128℃、屈折率:1.536であった。
Production Example 6A [Production of a single-layer film of thermoplastic resin (B-6)]
After mixing 50 parts by mass of the vinyl copolymer (C-1) and 50 parts by mass of the styrene copolymer (D-2) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 μm (similar to Production Example 1A). A single-layer film of B-6) was prepared.
The single-layer film of the thermoplastic resin (B-6) had Haze: 0.9%, a glass transition temperature: 128 ° C., and a refractive index: 1.536.
製造比較例1A〔熱可塑性樹脂(F-1)の単層フィルムの製造〕
 ビニル共重合体(C-1)を50質量部と、スチレン共重合体(E-1)を50質量部とをブレンダーで20分混合後、製造例1Aと同様に厚み70μmの熱可塑性樹脂(F-1)の単層フィルムを作製した。
 上記熱可塑性樹脂(F-1)の単層フィルムはHaze:0.1%、ガラス転移温度:118℃、屈折率:1.537であった。
Production Comparative Example 1A [Production of a single-layer film of a thermoplastic resin (F-1)]
After mixing 50 parts by mass of the vinyl copolymer (C-1) and 50 parts by mass of the styrene copolymer (E-1) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 μm (similar to Production Example 1A). A single-layer film of F-1) was produced.
The single-layer film of the thermoplastic resin (F-1) had Haze: 0.1%, a glass transition temperature of 118 ° C., and a refractive index of 1.537.
製造比較例2A〔熱可塑性樹脂(F-2)の単層フィルムの製造〕
 ビニル共重合体(C-1)を50質量部と、スチレン共重合体(E-2)を50質量部とをブレンダーで20分混合後、製造例1Aと同様に厚み70μmの熱可塑性樹脂(F-2)の単層フィルムを作製した。
 上記熱可塑性樹脂(F-2)の単層フィルムはHaze:1.9%、ガラス転移温度:124℃、屈折率:1.532であった。
Production Comparative Example 2A [Manufacture of a single-layer film of thermoplastic resin (F-2)]
After mixing 50 parts by mass of the vinyl copolymer (C-1) and 50 parts by mass of the styrene copolymer (E-2) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 μm (similar to Production Example 1A). A single layer film of F-2) was prepared.
The monolayer film of the thermoplastic resin (F-2) had Haze: 1.9%, a glass transition temperature of 124 ° C., and a refractive index of 1.532.
製造比較例3A〔熱可塑性樹脂(F-3)の単層フィルムの製造〕
 ビニル共重合体(C-1)を50質量部と、スチレン共重合体(E-3)を50質量部とをブレンダーで20分混合後、製造例1Aと同様に厚み70μmの熱可塑性樹脂(F-3)の単層フィルムを作製した。
 上記熱可塑性樹脂(F-3)の単層フィルムはHaze:34.8%、ガラス転移温度:非相溶のため2つのピーク発生、屈折率:非相溶のため測定不可能であった。
Production Comparative Example 3A [Manufacture of Single Layer Film of Thermoplastic Resin (F-3)]
After mixing 50 parts by mass of the vinyl copolymer (C-1) and 50 parts by mass of the styrene copolymer (E-3) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 μm (similar to Production Example 1A). A single-layer film of F-3) was prepared.
The single-layer film of the thermoplastic resin (F-3) had Haze: 34.8%, glass transition temperature: two peaks due to incompatibility, and refractive index: incompatible, so that measurement was impossible.
製造比較例4A〔熱可塑性樹脂(F-4)の単層フィルムの製造〕
 ビニル共重合体(C-1)を50質量部と、スチレン共重合体(E-4)を50質量部とをブレンダーで20分混合後、製造例1Aと同様に厚み70μmの熱可塑性樹脂(F-4)の単層フィルムを作製した。
 上記熱可塑性樹脂(F-4)の単層フィルムはHaze:25.5%、ガラス転移温度:非相溶のため2つのピーク発生、屈折率:非相溶のため測定不可能であった。
Production Comparative Example 4A [Manufacture of Single Layer Film of Thermoplastic Resin (F-4)]
After mixing 50 parts by mass of the vinyl copolymer (C-1) and 50 parts by mass of the styrene copolymer (E-4) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 μm (similar to Production Example 1A). A single-layer film of F-4) was prepared.
The monolayer film of the thermoplastic resin (F-4) had Haze: 25.5%, glass transition temperature: two peaks were generated due to incompatibility, and refractive index: could not be measured because of incompatibility.
製造比較例5A〔熱可塑性樹脂(F-5)の単層フィルムの製造〕
 ビニル共重合体(C-1)を50質量部と、スチレン共重合体(E-5)を50質量部とをブレンダーで20分混合後、製造例1Aと同様に厚み70μmの熱可塑性樹脂(F-5)の単層フィルムを作製した。
 上記熱可塑性樹脂(F-5)の単層フィルムはHaze:54.6%、ガラス転移温度:非相溶のため2つのピーク発生、屈折率:非相溶のため測定不可能であった。
Production Comparative Example 5A [Production of a single-layer film of a thermoplastic resin (F-5)]
After mixing 50 parts by mass of the vinyl copolymer (C-1) and 50 parts by mass of the styrene copolymer (E-5) with a blender for 20 minutes, a thermoplastic resin having a thickness of 70 μm (similar to Production Example 1A). A single layer film of F-5) was prepared.
The single-layer film of the thermoplastic resin (F-5) had Haze: 54.6%, the glass transition temperature: two peaks were generated due to incompatibility, and the refractive index was incompatible, so measurement was impossible.
製造比較例6A〔熱可塑性樹脂(F-6)の単層フィルムの製造〕
 ビニル共重合体(C-1)を100質量部用い(スチレン共重合体はなし)、製造例1Aと同様に厚み70μmの熱可塑性樹脂(F-6)の単層フィルムを作製した。
 上記熱可塑性樹脂(F-6)の単層フィルムはHaze:0.1%、ガラス転移温度:121℃、屈折率:1.494であった。
Production Comparative Example 6A [Production of a single-layer film of a thermoplastic resin (F-6)]
Using 100 parts by mass of the vinyl copolymer (C-1) (without the styrene copolymer), a single-layer film of a thermoplastic resin (F-6) having a thickness of 70 μm was prepared in the same manner as in Production Example 1A.
The single-layer film of the thermoplastic resin (F-6) had Haze: 0.1%, a glass transition temperature of 121 ° C., and a refractive index of 1.494.
製造比較例7A〔熱可塑性樹脂(F-7)の単層フィルムの製造〕
 スチレン共重合体(D-1)を100質量部用い(ビニル共重合体はなし)、製造例1Aと同様に厚み70μmの熱可塑性樹脂(F-7)の単層フィルムを作製した。
 上記熱可塑性樹脂(F-7)の単層フィルムはHaze:0.3%、ガラス転移温度:134℃、屈折率:1.590であった。
Production Comparative Example 7A [Manufacturing of Single Layer Film of Thermoplastic Resin (F-7)]
Using 100 parts by mass of the styrene copolymer (D-1) (without the vinyl copolymer), a single-layer film of a thermoplastic resin (F-7) having a thickness of 70 μm was prepared in the same manner as in Production Example 1A.
The single-layer film of the thermoplastic resin (F-7) had Haze: 0.3%, a glass transition temperature of 134 ° C., and a refractive index of 1.590.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
製造例1B〔ペレット(B-1-1)の製造〕
 製造例1Aと同様のドライブレンド比である、ビニル共重合体(C-1)を25質量部と、スチレン共重合体(D-1)を75質量部の合計100質量部に対して、リン系添加剤PEP-36(株式会社ADEKA製)500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン株式会社製)0.2質量%を加え、ブレンダーで20分混合後、目開き10μmのポリマーフィルターを取り付けたスクリュー径26mmの2軸押出機(東芝機械株式会社製、TEM-26SS、L/D≒40)を用い、シリンダー温度240℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化した。ペレットは安定して製造できた。
Production Example 1B [Production of pellets (B-1-1)]
The dry blend ratio of Production Example 1A is 25 parts by mass of vinyl copolymer (C-1) and 75 parts by mass of styrene copolymer (D-1), for a total of 100 parts by mass of phosphorus. Add 500 ppm of the system additive PEP-36 (manufactured by ADEKA Co., Ltd.) and 0.2% by mass of stearate monoglyceride (product name: H-100, manufactured by Riken Vitamin Co., Ltd.), mix for 20 minutes with a blender, and then open 10 μm. Using a twin-screw extruder with a screw diameter of 26 mm (manufactured by Toshiba Machine Co., Ltd., TEM-26SS, L / D≈40) equipped with the above polymer filter, melt-kneaded at a cylinder temperature of 240 ° C. and extruded into strands. It was pelletized with a pelletizer. The pellets could be produced stably.
製造例2B〔ペレット(B-2-1)の製造〕
 製造例2Aと同様のドライブレンド比である、ビニル共重合体(C-1)を40質量部と、スチレン共重合体(D-1)を60質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1Bと同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 2B [Production of pellets (B-2-1)]
The dry blend ratio is the same as in Production Example 2A, with respect to 40 parts by mass of the vinyl copolymer (C-1) and 60 parts by mass of the styrene copolymer (D-1), for a total of 100 parts by mass. The system additive PEP-36 500 ppm and 0.2% by mass of stearate monoglyceride were added, and the mixture and pelletization were carried out in the same manner as in Production Example 1B. The pellets could be produced stably.
製造例3B〔ペレット(B-3-1)の製造〕
 製造例3Aと同様のドライブレンド比である、ビニル共重合体(C-1)を50質量部と、スチレン共重合体(D-1)を50質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1Bと同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 3B [Production of pellets (B-3-1)]
Lynn with respect to 50 parts by mass of vinyl copolymer (C-1) and 50 parts by mass of styrene copolymer (D-1), which is the same dry blend ratio as in Production Example 3A, for a total of 100 parts by mass. The system additive PEP-36 500 ppm and 0.2% by mass of stearate monoglyceride were added, and the mixture and pelletization were carried out in the same manner as in Production Example 1B. The pellets could be produced stably.
製造例4B〔ペレット(B-4-1)の製造〕
 製造例4Aと同様のドライブレンド比である、ビニル共重合体(C-1)を60質量部と、スチレン共重合体(D-1)を40質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1Bと同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 4B [Production of pellets (B-4-1)]
The dry blend ratio is the same as in Production Example 4A, with respect to 60 parts by mass of the vinyl copolymer (C-1) and 40 parts by mass of the styrene copolymer (D-1), for a total of 100 parts by mass. The system additive PEP-36 500 ppm and 0.2% by mass of stearate monoglyceride were added, and the mixture and pelletization were carried out in the same manner as in Production Example 1B. The pellets could be produced stably.
製造例5B〔ペレット(B-5-1)の製造〕
 製造例5Aと同様のドライブレンド比である、ビニル共重合体(C-1)を75質量部と、スチレン共重合体(D-1)を25質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1Bと同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 5B [Production of pellets (B-5-1)]
The dry blend ratio is the same as in Production Example 5A, with respect to 75 parts by mass of the vinyl copolymer (C-1) and 25 parts by mass of the styrene copolymer (D-1), for a total of 100 parts by mass. The system additive PEP-36 500 ppm and 0.2% by mass of stearate monoglyceride were added, and the mixture and pelletization were carried out in the same manner as in Production Example 1B. The pellets could be produced stably.
製造例6B〔ペレット(B-6-1)の製造〕
 製造例6Aと同様のドライブレンド比である、ビニル共重合体(C-1)を50質量部と、スチレン共重合体(D-2)を50質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1Bと同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 6B [Production of pellets (B-6-1)]
Lynn with respect to 50 parts by mass of the vinyl copolymer (C-1) and 50 parts by mass of the styrene copolymer (D-2), which is the same dry blend ratio as in Production Example 6A, for a total of 100 parts by mass. The system additive PEP-36 500 ppm and 0.2% by mass of stearate monoglyceride were added, and the mixture and pelletization were carried out in the same manner as in Production Example 1B. The pellets could be produced stably.
製造比較例6B〔ペレット(F-6-1)の製造〕
 製造比較例6Aと同様であるビニル共重合体(C-1)100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1Bと同様にペレット化を行った。ペレットは安定して製造できた。
Production Comparative Example 6B [Production of pellets (F-6-1)]
To 100 parts by mass of the vinyl copolymer (C-1) which is the same as in Production Comparative Example 6A, 500 ppm of phosphorus-based additive PEP-36 and 0.2% by mass of stearic acid monoglyceride are added, and the same as in Production Example 1B. Was pelletized. The pellets could be produced stably.
製造比較例7B〔ペレット(F-7-1)の製造〕
 製造比較例7Aと同様であるスチレン共重合体(D-1)100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1Bと同様にペレット化を行った。ペレットは安定して製造できた。
Production Comparative Example 7B [Production of pellets (F-7-1)]
To 100 parts by mass of the styrene copolymer (D-1) which is the same as in Production Comparative Example 7A, 500 ppm of phosphorus-based additive PEP-36 and 0.2% by mass of stearic acid monoglyceride are added, and the same as in Production Example 1B. Was pelletized. The pellets could be produced stably.
実施例1〔樹脂積層体(G-1)の製造〕
 軸径32mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結された650mm幅のTダイとを有する多層押出機に各押出機と連結したマルチマニホールドダイとを有する多層押出装置を用いて樹脂積層体を成形した。軸径32mmの単軸押出機に製造例1Bで得たペレット(B-1-1)を連続的に導入し、シリンダー温度240℃、吐出量を2.4kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート系樹脂(A-1)(三菱エンジニアリングプラスチックス株式会社製、製品名:ユーピロンS-1000)を連続的に導入し、シリンダー温度280℃、吐出量を31.8kg/hで押し出した。全押出機に連結されたフィードブロックは2種2層の分配ピンを備え、温度270℃にしてペレット(B-1-1)とポリカーボネート系樹脂(A-1)を導入し積層した。その先に連結された温度270℃のTダイでシート状に押し出し、上流側から温度130℃、140℃、180℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却し、ペレット(B-1-1)とポリカーボネート系樹脂(A-1)の樹脂積層体(G-1)を得た。得られた樹脂積層体(G-1)の中央部の全体厚みは1000μm、表層(熱可塑性樹脂(B)を含む層)の厚みは70μmであった。この樹脂積層体(G-1)は全光線透過率:91.0%、Haze:0.4%、鉛筆硬度:H、高温高湿環境下の反り変化量:-187μm、干渉縞:〇であった。
Example 1 [Manufacturing of resin laminate (G-1)]
Each is a multi-layer extruder having a single-screw extruder with a shaft diameter of 32 mm, a single-screw extruder with a shaft diameter of 65 mm, a feed block connected to all extruders, and a 650 mm wide T-die connected to the feed block. The resin laminate was molded using a multi-layer extruder having a multi-manifold die connected to the extruder. The pellets (B-1-1) obtained in Production Example 1B were continuously introduced into a single-screw extruder having a shaft diameter of 32 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 2.4 kg / h. In addition, a polycarbonate resin (A-1) (manufactured by Mitsubishi Engineering Plastics Co., Ltd., product name: Iupiron S-1000) is continuously introduced into a single-screw extruder with a shaft diameter of 65 mm, and the cylinder temperature is 280 ° C. and the discharge amount is Was extruded at 31.8 kg / h. The feed block connected to the full extruder was equipped with two types and two layers of distribution pins, and the pellet (B-1-1) and the polycarbonate resin (A-1) were introduced and laminated at a temperature of 270 ° C. It is extruded into a sheet with a T-die with a temperature of 270 ° C connected to the tip, and cooled while transferring the mirror surface with three mirror-finishing rolls with temperatures of 130 ° C, 140 ° C, and 180 ° C from the upstream side, and pellets (B). A resin laminate (G-1) of 1-1) and a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (G-1) was 1000 μm, and the thickness of the surface layer (layer containing the thermoplastic resin (B)) was 70 μm. This resin laminate (G-1) has total light transmittance: 91.0%, haze: 0.4%, pencil hardness: H, warp change amount under high temperature and high humidity environment: -187 μm, interference fringes: 〇. there were.
実施例2〔樹脂積層体(G-2)の製造〕
 軸径32mmの単軸押出機の吐出量を1.4kg/h、軸径65mmの単軸押出機の吐出量を32.8kg/hに変更した以外は、実施例1の樹脂積層体(G-1)と同様にしてペレット(B-1-1)とポリカーボネート系樹脂(A-1)の樹脂積層体(G-2)を得た。得られた樹脂積層体(G-2)の中央部の全体厚みは1000μm、表層厚みは40μmであった。この樹脂積層体(G-2)は全光線透過率:90.9%、Haze:0.7%、鉛筆硬度:H、高温高湿環境下の反り変化量:-76μm、干渉縞:〇であった。
Example 2 [Manufacturing of resin laminate (G-2)]
The resin laminate (G) of Example 1 except that the discharge amount of the single-screw extruder having a shaft diameter of 32 mm was changed to 1.4 kg / h and the discharge amount of the single-screw extruder having a shaft diameter of 65 mm was changed to 32.8 kg / h. A resin laminate (G-2) of pellets (B-1-1) and a polycarbonate-based resin (A-1) was obtained in the same manner as in -1). The total thickness of the central portion of the obtained resin laminate (G-2) was 1000 μm, and the surface layer thickness was 40 μm. This resin laminate (G-2) has total light transmittance: 90.9%, haze: 0.7%, pencil hardness: H, amount of change in warpage under high temperature and high humidity environment: -76 μm, interference fringes: 〇. there were.
実施例3〔樹脂積層体(G-3)の製造〕
 ペレット(B-1-1)の代わりにペレット(B-2-1)を使用した以外は、実施例1の樹脂積層体(G-1)と同様にしてペレット(B-2-1)とポリカーボネート系樹脂(A-1)の樹脂積層体(G-3)を得た。得られた樹脂積層体(G-3)の中央部の全体厚みは1000μm、表層厚みは70μmであった。この樹脂積層体(G-3)は全光線透過率:91.0%、Haze:0.3%、鉛筆硬度:H、高温高湿環境下の反り変化量:-161μm、干渉縞:〇であった。
Example 3 [Manufacturing of resin laminate (G-3)]
With the pellet (B-2-1) in the same manner as the resin laminate (G-1) of Example 1 except that the pellet (B-2-1) was used instead of the pellet (B-1-1). A resin laminate (G-3) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (G-3) was 1000 μm, and the surface layer thickness was 70 μm. This resin laminate (G-3) has total light transmittance: 91.0%, haze: 0.3%, pencil hardness: H, amount of change in warpage under high temperature and high humidity environment: -161 μm, interference fringes: 〇. there were.
実施例4〔樹脂積層体(G-4)の製造〕
 ペレット(B-1-1)の代わりにペレット(B-2-1)を使用した以外は、実施例2の樹脂積層体(G-2)と同様にしてペレット(B-2-1)とポリカーボネート系樹脂(A-1)の樹脂積層体(G-4)を得た。得られた樹脂積層体(G-4)の中央部の全体厚みは1000μm、表層厚みは40μmであった。この樹脂積層体(G-4)は全光線透過率:91.0%、Haze:0.3%、鉛筆硬度:H、高温高湿環境下の反り変化量:-38μm、干渉縞:〇であった。
Example 4 [Manufacturing of resin laminate (G-4)]
With the pellet (B-2-1) in the same manner as the resin laminate (G-2) of Example 2 except that the pellet (B-2-1) was used instead of the pellet (B-1-1). A resin laminate (G-4) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (G-4) was 1000 μm, and the surface layer thickness was 40 μm. This resin laminate (G-4) has total light transmittance: 91.0%, haze: 0.3%, pencil hardness: H, amount of change in warpage under high temperature and high humidity environment: -38 μm, interference fringes: 〇. there were.
実施例5〔樹脂積層体(G-5)の製造〕
 ペレット(B-1-1)の代わりにペレット(B-3-1)を使用した以外は、実施例1の樹脂積層体(G-1)と同様にしてペレット(B-3-1)とポリカーボネート系樹脂(A-1)の樹脂積層体(G-5)を得た。得られた樹脂積層体(G-5)の中央部の全体厚みは1000μm、表層厚みは70μmであった。この樹脂積層体(G-5)は全光線透過率:91.2%、Haze:0.3%、鉛筆硬度:H、高温高湿環境下の反り変化量:-141μm、干渉縞:〇であった。
Example 5 [Manufacturing of resin laminate (G-5)]
With the pellet (B-3-1) in the same manner as the resin laminate (G-1) of Example 1 except that the pellet (B-3-1) was used instead of the pellet (B-1-1). A resin laminate (G-5) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (G-5) was 1000 μm, and the surface layer thickness was 70 μm. This resin laminate (G-5) has total light transmittance: 91.2%, haze: 0.3%, pencil hardness: H, amount of change in warpage under high temperature and high humidity environment: -141 μm, interference fringes: 〇. there were.
実施例6〔樹脂積層体(G-6)の製造〕
 ペレット(B-1-1)の代わりにペレット(B-3-1)を使用した以外は、実施例2の樹脂積層体(G-2)と同様にしてペレット(B-3-1)とポリカーボネート系樹脂(A-1)の樹脂積層体(G-6)を得た。得られた樹脂積層体(G-6)の中央部の全体厚みは1000μm、表層厚みは40μmであった。この樹脂積層体(G-6)は全光線透過率:91.2%、Haze:0.2%、鉛筆硬度:H、高温高湿環境下の反り変化量:-1μm、干渉縞:〇であった。
Example 6 [Manufacturing of resin laminate (G-6)]
With the pellet (B-3-1) in the same manner as the resin laminate (G-2) of Example 2 except that the pellet (B-3-1) was used instead of the pellet (B-1-1). A resin laminate (G-6) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (G-6) was 1000 μm, and the surface layer thickness was 40 μm. This resin laminate (G-6) has total light transmittance: 91.2%, haze: 0.2%, pencil hardness: H, amount of change in warpage under high temperature and high humidity environment: -1 μm, interference fringes: 〇. there were.
実施例7〔樹脂積層体(G-7)の製造〕
 ペレット(B-1-1)の代わりにペレット(B-4-1)を使用した以外は、実施例1の樹脂積層体(G-1)と同様にしてペレット(B-4-1)とポリカーボネート系樹脂(A-1)の樹脂積層体(G-7)を得た。得られた樹脂積層体(G-7)の中央部の全体厚みは1000μm、表層厚みは70μmであった。この樹脂積層体(G-7)は全光線透過率:91.4%、Haze:0.3%、鉛筆硬度:H、高温高湿環境下の反り変化量:-67μm、干渉縞:〇であった。
Example 7 [Manufacturing of resin laminate (G-7)]
With the pellet (B-4-1) in the same manner as the resin laminate (G-1) of Example 1 except that the pellet (B-4-1) was used instead of the pellet (B-1-1). A resin laminate (G-7) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (G-7) was 1000 μm, and the surface layer thickness was 70 μm. This resin laminate (G-7) has total light transmittance: 91.4%, haze: 0.3%, pencil hardness: H, amount of change in warpage under high temperature and high humidity environment: -67 μm, interference fringes: 〇. there were.
実施例8〔樹脂積層体(G-8)の製造〕
 ペレット(B-1-1)の代わりにペレット(B-4-1)を使用した以外は、実施例2の樹脂積層体(G-2)と同様にしてペレット(B-4-1)とポリカーボネート系樹脂(A-1)の樹脂積層体(G-8)を得た。得られた樹脂積層体(G-8)の中央部の全体厚みは1000μm、表層厚みは40μmであった。この樹脂積層体(G-8)は全光線透過率:91.3%、Haze:0.3%、鉛筆硬度:H、高温高湿環境下の反り変化量:+77μm、干渉縞:〇であった。
Example 8 [Manufacturing of resin laminate (G-8)]
With the pellet (B-4-1) in the same manner as the resin laminate (G-2) of Example 2 except that the pellet (B-4-1) was used instead of the pellet (B-1-1). A resin laminate (G-8) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (G-8) was 1000 μm, and the surface layer thickness was 40 μm. This resin laminate (G-8) has total light transmittance: 91.3%, haze: 0.3%, pencil hardness: H, warpage change amount under high temperature and high humidity environment: + 77 μm, interference fringes: 〇. It was.
実施例9〔樹脂積層体(G-9)の製造〕
 ペレット(B-1-1)の代わりにペレット(B-5-1)を使用した以外は、実施例1の樹脂積層体(G-1)と同様にしてペレット(B-5-1)とポリカーボネート系樹脂(A-1)の樹脂積層体(G-9)を得た。得られた樹脂積層体(G-9)の中央部の全体厚みは1000μm、表層厚みは70μmであった。この樹脂積層体(G-9)は全光線透過率:91.2%、Haze:0.3%、鉛筆硬度:2H、高温高湿環境下の反り変化量:+56μm、干渉縞:〇であった。
Example 9 [Manufacturing of resin laminate (G-9)]
With the pellet (B-5-1) in the same manner as the resin laminate (G-1) of Example 1 except that the pellet (B-5-1) was used instead of the pellet (B-1-1). A resin laminate (G-9) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (G-9) was 1000 μm, and the surface layer thickness was 70 μm. This resin laminate (G-9) has total light transmittance: 91.2%, haze: 0.3%, pencil hardness: 2H, warp change amount under high temperature and high humidity environment: +56 μm, interference fringes: 〇. It was.
実施例10〔樹脂積層体(G-10)の製造〕
 ペレット(B-1-1)の代わりにペレット(B-5-1)を使用した以外は、実施例2の樹脂積層体(G-2)と同様にしてペレット(B-5-1)とポリカーボネート系樹脂(A-1)の樹脂積層体(G-10)を得た。得られた樹脂積層体(G-10)の中央部の全体厚みは1000μm、表層厚みは40μmであった。この樹脂積層体(G-10)は全光線透過率:91.3%、Haze:0.3%、鉛筆硬度:2H、高温高湿環境下の反り変化量:+16μm、干渉縞:〇であった。
Example 10 [Manufacturing of resin laminate (G-10)]
With the pellet (B-5-1) in the same manner as the resin laminate (G-2) of Example 2 except that the pellet (B-5-1) was used instead of the pellet (B-1-1). A resin laminate (G-10) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (G-10) was 1000 μm, and the surface layer thickness was 40 μm. This resin laminate (G-10) has total light transmittance: 91.3%, haze: 0.3%, pencil hardness: 2H, warp change amount under high temperature and high humidity environment: +16 μm, interference fringes: 〇. It was.
実施例11〔樹脂積層体(G-11)の製造〕
 ペレット(B-1-1)の代わりにペレット(B-6-1)を使用した以外は、実施例1の樹脂積層体(G-1)と同様にしてペレット(B-6-1)とポリカーボネート系樹脂(A-1)の樹脂積層体(G-11)を得た。得られた樹脂積層体(G-11)の中央部の全体厚みは1000μm、表層厚みは70μmであった。この樹脂積層体(G-11)は全光線透過率:90.9%、Haze:1.0%、鉛筆硬度:H、高温高湿環境下の反り変化量:+132μm、干渉縞:〇であった。
Example 11 [Manufacturing of Resin Laminated Body (G-11)]
With the pellet (B-6-1) in the same manner as the resin laminate (G-1) of Example 1 except that the pellet (B-6-1) was used instead of the pellet (B-1-1). A resin laminate (G-11) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (G-11) was 1000 μm, and the surface layer thickness was 70 μm. This resin laminate (G-11) has total light transmittance: 90.9%, haze: 1.0%, pencil hardness: H, warp change amount under high temperature and high humidity environment: +132 μm, interference fringes: 〇. It was.
実施例12〔樹脂積層体(G-12)の製造〕
 ペレット(B-1-1)の代わりにペレット(B-6-1)を使用した以外は、実施例2の樹脂積層体(G-2)と同様にしてペレット(B-6-1)とポリカーボネート系樹脂(A-1)の樹脂積層体(G-12)を得た。得られた樹脂積層体(G-12)の中央部の全体厚みは1000μm、表層厚みは40μmであった。この樹脂積層体(G-12)は全光線透過率:91.0%、Haze:0.8%、鉛筆硬度:H、高温高湿環境下の反り変化量:+56μm、干渉縞:〇であった。
Example 12 [Manufacturing of resin laminate (G-12)]
With the pellet (B-6-1) in the same manner as the resin laminate (G-2) of Example 2 except that the pellet (B-6-1) was used instead of the pellet (B-1-1). A resin laminate (G-12) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (G-12) was 1000 μm, and the surface layer thickness was 40 μm. This resin laminate (G-12) has total light transmittance: 91.0%, haze: 0.8%, pencil hardness: H, warpage change amount under high temperature and high humidity environment: +56 μm, interference fringes: 〇. It was.
比較例1〔樹脂積層体(H-1)の製造〕
 ペレット(B-1-1)の代わりにペレット(F-6-1)を使用した以外は、実施例1の樹脂積層体(G-1)と同様にしてペレット(F-6-1)とポリカーボネート系樹脂(A-1)の樹脂積層体(H-1)を得た。得られた樹脂積層体(H-1)の中央部の全体厚みは1000μm、表層厚みは70μmであった。この樹脂積層体(H-1)は全光線透過率:91.5%、Haze:0.3%、鉛筆硬度:2H、高温高湿環境下の反り変化量:+220μm、干渉縞:×であった。
Comparative Example 1 [Manufacturing of Resin Laminated Body (H-1)]
With the pellet (F-6-1) in the same manner as the resin laminate (G-1) of Example 1 except that the pellet (F-6-1) was used instead of the pellet (B-1-1). A resin laminate (H-1) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (H-1) was 1000 μm, and the surface layer thickness was 70 μm. This resin laminate (H-1) has total light transmittance: 91.5%, haze: 0.3%, pencil hardness: 2H, amount of change in warpage under high temperature and high humidity environment: + 220 μm, interference fringes: ×. It was.
比較例2〔樹脂積層体(H-2)の製造〕
 ペレット(B-1-1)の代わりにペレット(F-6-1)を使用した以外は、実施例2の樹脂積層体(G-2)と同様にしてペレット(F-6-1)とポリカーボネート系樹脂(A-1)の樹脂積層体(H-2)を得た。得られた樹脂積層体(H-2)の中央部の全体厚みは1000μm、表層厚みは40μmであった。この樹脂積層体(H-2)は全光線透過率:91.5%、Haze:0.3%、鉛筆硬度:2H、高温高湿環境下の反り変化量:+303μm、干渉縞:×であった。
Comparative Example 2 [Manufacturing of Resin Laminated Body (H-2)]
With the pellet (F-6-1) in the same manner as the resin laminate (G-2) of Example 2 except that the pellet (F-6-1) was used instead of the pellet (B-1-1). A resin laminate (H-2) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (H-2) was 1000 μm, and the surface layer thickness was 40 μm. This resin laminate (H-2) has total light transmittance: 91.5%, haze: 0.3%, pencil hardness: 2H, amount of change in warpage under high temperature and high humidity environment: +303 μm, interference fringes: ×. It was.
比較例3〔樹脂積層体(H-3)の製造〕
 ペレット(B-1-1)の代わりにペレット(F-7-1)を使用した以外は、実施例1の樹脂積層体(G-1)と同様にしてペレット(F-7-1)とポリカーボネート系樹脂(A-1)の樹脂積層体(H-3)を得た。得られた樹脂積層体(H-3)の中央部の全体厚みは1000μm、表層厚みは70μmであった。この樹脂積層体(H-3)は全光線透過率:90.8%、Haze:0.3%、鉛筆硬度:F、高温高湿環境下の反り変化量:-205μm、干渉縞:〇であった。
Comparative Example 3 [Manufacturing of Resin Laminated Body (H-3)]
With the pellet (F-7-1) in the same manner as the resin laminate (G-1) of Example 1 except that the pellet (F-7-1) was used instead of the pellet (B-1-1). A resin laminate (H-3) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (H-3) was 1000 μm, and the surface layer thickness was 70 μm. This resin laminate (H-3) has total light transmittance: 90.8%, haze: 0.3%, pencil hardness: F, amount of change in warpage under high temperature and high humidity environment: -205 μm, interference fringes: 〇. there were.
比較例4〔樹脂積層体(H-4)の製造〕
 ペレット(B-1-1)の代わりにペレット(F-7-1)を使用した以外は、実施例2の樹脂積層体(G-2)と同様にしてペレット(F-7-1)とポリカーボネート系樹脂(A-1)の樹脂積層体(H-4)を得た。得られた樹脂積層体(H-4)の中央部の全体厚みは1000μm、表層厚みは40μmであった。この樹脂積層体(H-4)は全光線透過率:90.7%、Haze:0.4%、鉛筆硬度:F、高温高湿環境下の反り変化量:-135μm、干渉縞:〇であった。
Comparative Example 4 [Manufacturing of Resin Laminated Body (H-4)]
With the pellet (F-7-1) in the same manner as the resin laminate (G-2) of Example 2 except that the pellet (F-7-1) was used instead of the pellet (B-1-1). A resin laminate (H-4) of a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (H-4) was 1000 μm, and the surface layer thickness was 40 μm. This resin laminate (H-4) has total light transmittance: 90.7%, Haze: 0.4%, pencil hardness: F, amount of change in warpage under high temperature and high humidity environment: -135 μm, interference fringes: 〇. there were.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 以上のように、本発明の条件を満たすことで、高温高湿下に曝されても耐反り変形性と耐熱性に優れ、屈折率が高く、且つ、外観良好な樹脂積層体を得ることができるという有利な効果を奏する。 As described above, by satisfying the conditions of the present invention, it is possible to obtain a resin laminate having excellent warp deformation resistance and heat resistance, a high refractive index, and a good appearance even when exposed to high temperature and high humidity. It has the advantageous effect of being able to do it.
 即ち、表2に示すように、熱可塑性樹脂(B)について、特定のビニル共重合体(C)と特定のスチレン共重合体(D)とをブレンドした製造例1A~6Aと、特定のビニル共重合体(C)単体の製造比較例6Aとを比較すると、製造例1A~6Aの方が、ガラス転移温度が高く耐熱性に優れ、且つ、屈折率が高かった。
 また、製造例1A~6Aと、特定のビニル共重合体(C)と特定のスチレン共重合体(D)以外のスチレン共重合体(E)とをブレンドした製造比較例1Aとを比較すると、製造例1A~6Aの方が耐熱性に優れていた。
 さらに、製造例1A~6Aと、特定のビニル共重合体(C)と特定のスチレン共重合体(D)以外のスチレン共重合体(E)とをブレンドした製造比較例2A~5Aとを比較すると、製造例1A~6Aの方が、Hazeが低く外観が良好であった。
That is, as shown in Table 2, with respect to the thermoplastic resin (B), Production Examples 1A to 6A in which a specific vinyl copolymer (C) and a specific styrene copolymer (D) are blended, and specific vinyl. Comparing with Comparative Example 6A for the production of the copolymer (C) alone, Production Examples 1A to 6A had a higher glass transition temperature, excellent heat resistance, and a higher refractive index.
Further, when Production Examples 1A to 6A are compared with Production Comparative Example 1A in which a specific vinyl copolymer (C) and a styrene copolymer (E) other than the specific styrene copolymer (D) are blended, Production Examples 1A to 6A were superior in heat resistance.
Further, Production Examples 1A to 6A are compared with Production Comparative Examples 2A to 5A in which a specific vinyl copolymer (C) and a styrene copolymer (E) other than the specific styrene copolymer (D) are blended. Then, Production Examples 1A to 6A had a lower haze and a better appearance.
 表3に示すように、樹脂積層体について、ガラス転移温度が高く、且つ、屈折率が高いことを特徴とする特定のビニル共重合体(C)と特定のスチレン共重合体(D)とをブレンドし、ペレット化した熱可塑性樹脂(B)とポリカーボネート系樹脂(A)とを積層した実施例1~12と、特定のビニル共重合体(C)単体をペレット化した熱可塑性樹脂とポリカーボネート系樹脂(A)とを積層した比較例1~2とを比較すると、実施例1~12の樹脂積層体の方が高温高湿環境下の反り変化量が小さく、干渉縞が良好であった。
 また、実施例1~12と、特定のスチレン共重合体(D)単体をペレット化した熱可塑性樹脂とポリカーボネート系樹脂(A)とを積層した比較例3~4とを比較すると、実施例1~12の樹脂積層体の方が、鉛筆硬度が良好であった。
 
As shown in Table 3, the resin laminate has a specific vinyl copolymer (C) and a specific styrene copolymer (D) characterized by a high glass transition temperature and a high refractive index. Examples 1 to 12 in which a blended and pelletized thermoplastic resin (B) and a polycarbonate resin (A) are laminated, and a thermoplastic resin in which a specific vinyl copolymer (C) is pelletized and a polycarbonate resin are used. Comparing with Comparative Examples 1 and 2 in which the resin (A) was laminated, the resin laminates of Examples 1 to 12 had a smaller amount of change in warpage under a high temperature and high humidity environment, and had better interference fringes.
Further, when Examples 1 to 12 are compared with Comparative Examples 3 to 4 in which a thermoplastic resin obtained by pelletizing a specific styrene copolymer (D) alone and a polycarbonate resin (A) are laminated, Example 1 The resin laminates of ~ 12 had better pencil hardness.

Claims (19)

  1.  ポリカーボネート樹脂を主成分とするポリカーボネート系樹脂(A)を含む層の少なくとも一方の面に、熱可塑性樹脂(B)を含む層を有する樹脂積層体であって、
     前記熱可塑性樹脂(B)がビニル共重合体(C)とスチレン共重合体(D)を含み、
     前記ビニル共重合体(C)が下記一般式(1)で表される(メタ)アクリル酸エステル単量体単位(c1)を60~80モル%と、下記一般式(2)で表される脂肪族ビニル単量体単位(c2)を40~20モル%とを含む共重合体であり、
     前記スチレン共重合体(D)がビニル芳香族単量体単位(d1)を60~90モル%と、環状酸無水物単量体単位(d2)を10~20モル%と、メタクリル酸エステル単量体単位(d3)を0~20モル%とを含む共重合体であり、
     Haze≦1.0%である、前記樹脂積層体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は水素原子又はメチル基を表し、R2は炭素数1~18のアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R3は水素原子又はメチル基を表し、R4は炭素数1~4の炭化水素置換基を有することのあるシクロヘキシル基を表す。)
    A resin laminate having a layer containing a thermoplastic resin (B) on at least one surface of a layer containing a polycarbonate resin (A) containing a polycarbonate resin as a main component.
    The thermoplastic resin (B) contains a vinyl copolymer (C) and a styrene copolymer (D).
    The vinyl copolymer (C) has a (meth) acrylic acid ester monomer unit (c1) represented by the following general formula (1) in an amount of 60 to 80 mol% and is represented by the following general formula (2). A copolymer containing 40 to 20 mol% of an aliphatic vinyl monomer unit (c2).
    The styrene copolymer (D) contains 60 to 90 mol% of the vinyl aromatic monomer unit (d1), 10 to 20 mol% of the cyclic acid anhydride monomer unit (d2), and a methacrylic acid ester simple substance. It is a copolymer containing 0 to 20 mol% of the monomer unit (d3).
    The resin laminate in which Haze ≦ 1.0%.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R1 represents a hydrogen atom or a methyl group, and R2 represents an alkyl group having 1 to 18 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R3 represents a hydrogen atom or a methyl group, and R4 represents a cyclohexyl group which may have a hydrocarbon substituent having 1 to 4 carbon atoms.)
  2.  温度85℃、相対湿度85%の環境下に120時間保持した後の反り変化量が、絶対値で200μm以下である、請求項1に記載の樹脂積層体。 The resin laminate according to claim 1, wherein the amount of change in warpage after being held in an environment of a temperature of 85 ° C. and a relative humidity of 85% for 120 hours is 200 μm or less in absolute value.
  3.  ポリカーボネート系樹脂(A)のガラス転移温度と熱可塑性樹脂(B)のガラス転移温度との差が、0~25℃の範囲である、請求項1または2に記載の樹脂積層体。 The resin laminate according to claim 1 or 2, wherein the difference between the glass transition temperature of the polycarbonate resin (A) and the glass transition temperature of the thermoplastic resin (B) is in the range of 0 to 25 ° C.
  4.  熱可塑性樹脂(B)が、ビニル共重合体(C)とスチレン共重合体(D)とのポリマーアロイである、請求項1または2に記載の樹脂積層体。 The resin laminate according to claim 1 or 2, wherein the thermoplastic resin (B) is a polymer alloy of a vinyl copolymer (C) and a styrene copolymer (D).
  5.  熱可塑性樹脂(B)におけるビニル共重合体(C)とスチレン共重合体(D)との含有量の合計100質量部を基準として、ビニル共重合体(C)の含有量は5~95質量部であり、スチレン共重合体(D)の含有量は95~5質量部である、請求項1~4のいずれかに記載の樹脂積層体。 The content of the vinyl copolymer (C) is 5 to 95 mass based on the total content of 100 parts by mass of the vinyl copolymer (C) and the styrene copolymer (D) in the thermoplastic resin (B). The resin laminate according to any one of claims 1 to 4, wherein the content of the styrene copolymer (D) is 95 to 5 parts by mass.
  6.  ビニル共重合体(C)が、少なくとも1種の(メタ)アクリル酸エステル単量体と少なくとも1種の芳香族ビニル単量体とを重合した後、芳香族ビニル単量体由来の芳香族二重結合の70%以上を水素化して得られたものである、請求項1~5のいずれかに記載の樹脂積層体。  After the vinyl copolymer (C) polymerizes at least one (meth) acrylic acid ester monomer and at least one aromatic vinyl monomer, the aromatic vinyl double is derived from the aromatic vinyl monomer. The resin laminate according to any one of claims 1 to 5, which is obtained by hydrogenating 70% or more of the double bonds.
  7.  前記一般式(1)におけるR1及びR2がメチル基を表す、請求項1~6のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 6, wherein R1 and R2 in the general formula (1) represent a methyl group.
  8.  前記一般式(2)におけるR3が水素原子を表し、R4がシクロヘキシル基を表す、請求項1~7のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 7, wherein R3 in the general formula (2) represents a hydrogen atom and R4 represents a cyclohexyl group.
  9.  スチレン共重合体(D)に含まれるビニル芳香族単量体単位(d1)が、スチレンである、請求項1~8のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 8, wherein the vinyl aromatic monomer unit (d1) contained in the styrene copolymer (D) is styrene.
  10.  スチレン共重合体(D)に含まれる環状酸無水物単量体単位(d2)が、無水マレイン酸である、請求項1~9のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 9, wherein the cyclic acid anhydride monomer unit (d2) contained in the styrene copolymer (D) is maleic anhydride.
  11.  スチレン共重合体(D)に含まれるメタクリル酸エステル単量体単位(d3)が、メタクリル酸エステルである、請求項1~10のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 10, wherein the methacrylic acid ester monomer unit (d3) contained in the styrene copolymer (D) is a methacrylic acid ester.
  12.  熱可塑性樹脂(B)を含む層の厚さが10~250μmであり、樹脂積層体の全体厚みが0.04~4.0mmの範囲である、請求項1~11のいずれかに記載の樹脂積層体。 The resin according to any one of claims 1 to 11, wherein the thickness of the layer containing the thermoplastic resin (B) is 10 to 250 μm, and the total thickness of the resin laminate is in the range of 0.04 to 4.0 mm. Laminated body.
  13.  ポリカーボネート系樹脂(A)を含む層および熱可塑性樹脂(B)を含む層の少なくとも一方が紫外線吸収剤を含有する、請求項1~12のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 12, wherein at least one of the layer containing the polycarbonate resin (A) and the layer containing the thermoplastic resin (B) contains an ultraviolet absorber.
  14.  熱可塑性樹脂(B)を含む層の表面にハードコート層をさらに備える、請求項1~13のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 13, further comprising a hard coat layer on the surface of the layer containing the thermoplastic resin (B).
  15.  樹脂積層体の片面または両面に、耐指紋処理、反射防止処理、防眩処理、耐候性処理、帯電防止処理および防汚処理のいずれか一つ以上が施されてなる、請求項1~14のいずれかに記載の樹脂積層体。 Claims 1 to 14, wherein one or both sides of the resin laminate is subjected to any one or more of anti-fingerprint treatment, anti-reflection treatment, anti-glare treatment, weather resistance treatment, anti-static treatment and anti-fouling treatment. The resin laminate according to any one.
  16.  請求項1~15のいずれかに記載の樹脂積層体を含む透明基板材料。 A transparent substrate material containing the resin laminate according to any one of claims 1 to 15.
  17.  請求項1~15のいずれかに記載の樹脂積層体を含む透明保護材料。 A transparent protective material containing the resin laminate according to any one of claims 1 to 15.
  18.  請求項1~15のいずれかに記載の樹脂積層体を含むタッチパネル前面保護板。 A touch panel front protective plate containing the resin laminate according to any one of claims 1 to 15.
  19.  請求項1~15のいずれかに記載の樹脂積層体を含む、OA機器用または携帯電子機器用の前面板。
     
    A front plate for an OA device or a portable electronic device, which comprises the resin laminate according to any one of claims 1 to 15.
PCT/JP2020/018929 2019-06-26 2020-05-12 Resin layered body, and transparent substrate material and transparent protective material material containing the same WO2020261783A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021527450A JPWO2020261783A1 (en) 2019-06-26 2020-05-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019118870 2019-06-26
JP2019-118870 2019-06-26

Publications (1)

Publication Number Publication Date
WO2020261783A1 true WO2020261783A1 (en) 2020-12-30

Family

ID=74061406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018929 WO2020261783A1 (en) 2019-06-26 2020-05-12 Resin layered body, and transparent substrate material and transparent protective material material containing the same

Country Status (3)

Country Link
JP (1) JPWO2020261783A1 (en)
TW (1) TW202108382A (en)
WO (1) WO2020261783A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145630A1 (en) * 2010-05-21 2011-11-24 三菱瓦斯化学株式会社 Synthetic resin laminate
WO2017094282A1 (en) * 2015-12-01 2017-06-08 三菱瓦斯化学株式会社 Transparent resin laminate
WO2017141787A1 (en) * 2016-02-15 2017-08-24 三菱瓦斯化学株式会社 Transparent resin laminate
WO2018034315A1 (en) * 2016-08-18 2018-02-22 三菱瓦斯化学株式会社 Two-stage curable laminate
WO2019049704A1 (en) * 2017-09-06 2019-03-14 三菱瓦斯化学株式会社 High-hardness molding resin sheet and molded article using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145630A1 (en) * 2010-05-21 2011-11-24 三菱瓦斯化学株式会社 Synthetic resin laminate
WO2017094282A1 (en) * 2015-12-01 2017-06-08 三菱瓦斯化学株式会社 Transparent resin laminate
WO2017141787A1 (en) * 2016-02-15 2017-08-24 三菱瓦斯化学株式会社 Transparent resin laminate
WO2018034315A1 (en) * 2016-08-18 2018-02-22 三菱瓦斯化学株式会社 Two-stage curable laminate
WO2019049704A1 (en) * 2017-09-06 2019-03-14 三菱瓦斯化学株式会社 High-hardness molding resin sheet and molded article using same

Also Published As

Publication number Publication date
JPWO2020261783A1 (en) 2020-12-30
TW202108382A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
TWI548518B (en) Synthetic resin laminate
JP6832334B2 (en) Transparent resin laminate
EP3425448B1 (en) Front plate for onboard lcd device
KR20150003731A (en) Laminate body
US8647739B2 (en) Transparent flat article made of nanostructured acrylic materials
JP6712926B2 (en) Transparent resin laminate
JP6787925B2 (en) Transparent resin laminate
JP7356304B2 (en) Resin laminates, transparent substrate materials containing the same, and transparent protective materials
WO2020261783A1 (en) Resin layered body, and transparent substrate material and transparent protective material material containing the same
EP2568010B1 (en) Thermoplastic transparent resin composition
JP7265960B2 (en) Transparent resin laminate, transparent substrate material and transparent protective material using the same
KR101968378B1 (en) Thermoplastic resin
WO2021014915A1 (en) Transparent resin multilayer body, and transparent substrate material and transparent protective material each using same
JP7470597B2 (en) Transparent resin laminate, and transparent substrate material and transparent protective material using the same
JP7239314B2 (en) Resin laminate, transparent substrate material and transparent protective material containing the resin laminate
JP7231466B2 (en) transparent resin laminate
JP6524760B2 (en) Thermoplastic transparent resin composition
JP2024008420A (en) Uniaxially oriented sheet and application for the same
JP2023137992A (en) Multilayer body, transparent substrate, transparent protective film, protective film for front surface of touch panel and front plate for display device
JP2023063089A (en) resin sheet
WO2023048054A1 (en) Resin layered body
WO2021241426A1 (en) Resin multilayer body
WO2022034837A1 (en) Layered resin product, and transparent substrate material and transparent protective material using same
JP2023088417A (en) Resin composition, flat plate-shaped molding, multilayer body, and molded article
JP2021130275A (en) Transparent resin laminate, and transparent substrate material and transparent protective material each using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527450

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831558

Country of ref document: EP

Kind code of ref document: A1