WO2017094282A1 - Transparent resin laminate - Google Patents

Transparent resin laminate Download PDF

Info

Publication number
WO2017094282A1
WO2017094282A1 PCT/JP2016/069856 JP2016069856W WO2017094282A1 WO 2017094282 A1 WO2017094282 A1 WO 2017094282A1 JP 2016069856 W JP2016069856 W JP 2016069856W WO 2017094282 A1 WO2017094282 A1 WO 2017094282A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mass
thermoplastic resin
acrylic
hardness
Prior art date
Application number
PCT/JP2016/069856
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 平林
Original Assignee
三菱瓦斯化学株式会社
Mgcフィルシート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Mgcフィルシート株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020187017949A priority Critical patent/KR20180088681A/en
Priority to CN201680068388.6A priority patent/CN108290404A/en
Priority to JP2017553644A priority patent/JP6787925B2/en
Publication of WO2017094282A1 publication Critical patent/WO2017094282A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens

Definitions

  • the present invention is used for transparent base materials and protective materials, and has a polycarbonate resin layer and a thermoplastic resin layer containing a specific copolymer and a specific acrylic resin, and has excellent surface hardness and high temperature and high temperature.
  • the present invention relates to a resin laminate having excellent warpage and deformation resistance even when exposed to moisture.
  • Acrylic resin is excellent in surface hardness, transparency, scratch resistance and weather resistance.
  • polycarbonate resin is excellent in impact resistance and the like. Therefore, a laminate having an acrylic resin layer and a polycarbonate resin layer is excellent in surface hardness, transparency, scratch resistance, weather resistance, impact resistance, and the like, and is used for automobile parts, home appliances, electronic devices, and portable information terminals. Used for display windows.
  • a laminate having an acrylic resin layer and a polycarbonate resin layer has a problem of warping when used outdoors or in a car under high temperature and high humidity.
  • Patent Document 1 Japanese Patent Laid-Open No. 2014-198454
  • Patent Document 2 International Publication No. 2015/133530
  • a vinyl aromatic monomer unit a methacrylic acid ester monomer unit
  • a laminate comprising a copolymer comprising a cyclic acid anhydride monomer unit, a layer composed of a resin composition obtained by polymer alloying an acrylic resin, and a layer composed of a polycarbonate resin
  • Such a laminate suppresses warpage under high temperature and high humidity of 85 ° C. and 85%, but has a lower surface hardness than an acrylic resin used for polymer alloy, and as a resin laminate used as a substitute for glass in recent years, the surface hardness is low. There may have been insufficient.
  • the present invention provides a resin laminate that can be used as a transparent base material and a transparent protective material, has shape stability that can prevent warpage even in a high-temperature and high-humidity environment, and is excellent in surface hardness. With the goal.
  • thermoplastic resin (B) laminated a thermoplastic resin (B) on at least one surface of a polycarbonate-based resin (A) sheet mainly composed of a polycarbonate resin,
  • This thermoplastic resin (B) has an aromatic vinyl monomer unit of 50 to 80% by mass, an unsaturated dicarboxylic acid anhydride monomer unit of 10 to 25% by mass, and an acrylic compound monomer unit of 5 to 24% by mass.
  • thermoplastic resin (B) A resin laminate in which a thermoplastic resin (B) is laminated on at least one surface of a polycarbonate resin (A) sheet mainly composed of a polycarbonate resin
  • the thermoplastic resin (B) It contains 50 to 80% by weight of aromatic vinyl monomer units, 10 to 25% by weight of unsaturated dicarboxylic acid anhydride monomer units, 5 to 24% by weight of acrylic compound monomer units
  • the copolymer (b1) contains a copolymer (b1) in which the mass% of the saturated dicarboxylic acid anhydride monomer unit is larger than the mass% of the acrylic compound monomer unit, or the acrylic compound monomer It is a resin laminated body characterized by including the acrylic resin (b2) which contains a unit as a main component.
  • the copolymer (b1) is 55 to 90 parts by mass based on 100 parts by mass in total of the contents of the copolymer (b1) and the acrylic resin (b2) in the thermoplastic resin (B).
  • the resin (b2) is 45 to 10 parts by mass, and the acrylic resin (b2) containing an acrylic compound monomer unit as a main component contains 80% by mass or more of the acrylic compound monomer unit [1] It is a resin laminated body as described in above.
  • the copolymer (b1) is 10 to 40 parts by mass based on the total content of the copolymer (b1) and the acrylic resin (b2) in the thermoplastic resin (B) being 100 to 40 parts by mass.
  • the resin (b2) is 90 to 60 parts by mass, and the acrylic resin (b2) containing an acrylic compound monomer unit as a main component contains an acrylic compound monomer unit of less than 80% by mass [1] It is a resin laminated body as described in above. [4] The resin laminate according to any one of [1] to [3], wherein the thermoplastic resin (B) is a polymer alloy of the copolymer (b1) and the acrylic resin (b2).
  • the HIT hardness ⁇ thermoplastic resin ⁇ Is a resin divided by HIT hardness ⁇ acrylic resin ⁇ (HIT hardness ⁇ thermoplastic resin ⁇ / HIT hardness ⁇ acrylic resin ⁇ ) of 1.01 or more. It is a laminate.
  • thermoplastic resin (B) layer has a thickness of 10 to 250 ⁇ m and the total thickness of the resin laminate is in the range of 0.05 to 3.0 mm. It is a resin laminated body of a crab.
  • thermoplastic resin (B) layer contains an ultraviolet absorber.
  • thermoplastic resin (B) layer contains an ultraviolet absorber.
  • A) layer contains an ultraviolet absorber.
  • One or more of the anti-fingerprint treatment, antireflection treatment, antiglare treatment, weather resistance treatment, antistatic treatment and antifouling treatment are applied to one or both surfaces of the resin laminate.
  • a transparent substrate material comprising the resin laminate according to any one of [1] to [16].
  • a transparent protective material comprising the resin laminate according to any one of [1] to [17].
  • a touch panel front protective plate including the resin laminate according to any one of [1] to [18].
  • a front plate for an OA device or a portable electronic device comprising the resin laminate according to any one of [1] to [16].
  • thermoplastic resin (B) contains 50 to 80% by weight of aromatic vinyl monomer units, 10 to 30% by weight of unsaturated dicarboxylic anhydride monomer units, 5 to 25% by weight of acrylic compound monomer units, and
  • the copolymer (b1) contains a copolymer (b1) in which the mass% of the saturated dicarboxylic acid anhydride monomer unit is larger than the mass% of the acrylic compound monomer unit, or the acrylic compound monomer It is a resin laminated body characterized by including the acrylic resin (b2) which contains a unit as a main component.
  • a resin laminate having shape stability such as warpage prevention in a high-temperature and high-humidity environment, and a surface hardness equal to or greater than that of a single acrylic resin
  • the resin laminate is a transparent substrate material.
  • a transparent protective material such as notebook PCs, desktop PC liquid crystal monitors, liquid crystal televisions, etc. It can be suitably used as a front plate for protecting the device.
  • the present invention relates to a resin laminate in which a thermoplastic resin (B) is laminated on at least one surface of a polycarbonate-based resin sheet (A) containing a polycarbonate resin as a main component, and this thermoplastic resin (B ) Comprises 50-80% by weight of aromatic vinyl monomer units, 10-25% by weight of unsaturated dicarboxylic acid anhydride monomer units, and 5-24% by weight of acrylic compound monomer units,
  • the copolymer (b1) in which the mass% of the unsaturated dicarboxylic acid anhydride monomer unit is larger than the mass% of the acrylic compound monomer unit, or the copolymer (b1) and the acrylic compound
  • the present invention relates to a resin laminate comprising an acrylic resin (b2) containing a monomer unit as a main component.
  • the polycarbonate resin (A) used in the present invention is a polycarbonate resin (A) mainly composed of a polycarbonate resin.
  • “having a polycarbonate resin as a main component” means that the content of the polycarbonate resin exceeds 50 mass%.
  • the polycarbonate-based resin (A) preferably contains 75% by mass or more of polycarbonate resin, more preferably 90% by mass or more of polycarbonate resin, and further preferably substantially consists of polycarbonate resin. .
  • the polycarbonate resin (A) contains a carbonate ester bond in the molecular main chain.
  • — [O—R—OCO] — unit (wherein R includes an aliphatic group, an aromatic group, or both an aliphatic group and an aromatic group, and further has a linear structure or a branched structure)
  • a polycarbonate containing a structural unit of the following formula [1] By using such a polycarbonate, a resin laminate excellent in impact resistance can be obtained.
  • an aromatic polycarbonate resin for example, Iupilon S-2000, Iupilon S-1000, Iupilon E-2000 commercially available from Mitsubishi Engineering Plastics Co., Ltd.
  • the polycarbonate resin (A) can be synthesized using a monohydric phenol represented by the following formula [2] as a terminal stopper. preferable.
  • R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms
  • R 2 to R 5 each represent hydrogen, halogen, or an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms which may have a substituent.
  • the monohydric phenol of the general formula [2] is more preferably a monohydric phenol represented by the following formula [3].
  • R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms.
  • the carbon number of R 1 is more preferably within a specific numerical range. Specifically, 22 is more preferable as the upper limit value of the carbon number of R 1 , and 18 is particularly preferable. Moreover, 12 is more preferable as the lower limit of the carbon number of R 1 .
  • terminal terminators represented by general formula [2] or general formula [3]
  • parahydroxybenzoic acid hexadecyl ester and parahydroxybenzoic acid 2-hexyldecyl ester are terminated. It is particularly preferable to use it as an agent.
  • R 1 is a monohydric phenol (termination terminator) having an alkyl group having 16 carbon atoms, glass transition temperature, melt fluidity, moldability, draw-down resistance, monovalent during the production of polycarbonate resin
  • the solvent solubility of phenol is excellent, and it is particularly preferable as a terminal terminator used in the polycarbonate resin used in the present invention.
  • the polyester resin only needs to contain terephthalic acid as a main component as the dicarboxylic acid component, and may contain a dicarboxylic acid component other than terephthalic acid.
  • a polyester resin obtained by polycondensation of a glycol component containing 20 to 40 (molar ratio, total 100) of 1,4-cyclohexanedimethanol with respect to ethylene glycol 80 to 60 (molar ratio) as a main component So-called “PETG” is preferred.
  • the polycarbonate resin (A) may contain a polyester carbonate resin having an ester bond and a carbonate bond in the polymer skeleton.
  • the weight average molecular weight of the polycarbonate resin (A) affects the impact resistance and molding conditions of the resin laminate. That is, when the weight average molecular weight is too small, the impact resistance of the resin laminate is lowered, which is not preferable. When the weight average molecular weight is too high, an excessive heat source may be required when laminating the resin layer containing the polycarbonate resin (A), which is not preferable. Further, since a high temperature is required depending on the molding method, the polycarbonate resin (A) is exposed to a high temperature, which may adversely affect its thermal stability.
  • the weight-average molecular weight of the polycarbonate resin (A) is preferably 15,000 to 75,000, more preferably 20,000 to 70,000. More preferably, it is 25,000 to 65,000.
  • the weight average molecular weight of the polycarbonate resin (A) can be measured based on the description in paragraphs 0061 to 0064 of JP-A-2007-179018. Details of the measurement method are shown below.
  • the relationship between the elution time and the molecular weight of the polycarbonate (PC) is obtained by a universal calibration method to obtain a calibration curve. Then, the PC elution curve (chromatogram) is measured under the same conditions as in the calibration curve, and each average molecular weight is determined from the elution time (molecular weight) and the peak area (number of molecules) of the elution time.
  • the weight average molecular weight is expressed as follows. Moreover, the following formula was used for the conversion formula.
  • MPC 0.47822MPS 1.01470 MPC represents the molecular weight of PC, and MPS represents the molecular weight of PS.
  • the production method of the polycarbonate-based resin (A) used in the present invention can be appropriately selected depending on the monomers used, such as a known phosgene method (interfacial polymerization method) and transesterification method (melting method).
  • thermoplastic resin (B) used in the present invention contains a copolymer (b1) described later, or an acrylic resin (b2) containing the copolymer (b1) and an acrylic compound monomer unit as main components. ). Each component will be described below.
  • the copolymer (b1) contained in the thermoplastic resin (B) according to the present invention contains 50 to 80% by mass of an aromatic vinyl monomer unit, preferably 50 to 75% by mass, more preferably 50 to 70% by mass.
  • the unsaturated dicarboxylic acid anhydride monomer unit is 10 to 30% by mass, preferably 10 to 25% by mass, more preferably 15 to 25% by mass, and the acrylic compound monomer unit is 5 to 25% by mass, preferably Is a copolymer comprising 5 to 24% by weight, more preferably 8 to 21% by weight, and the unsaturated dicarboxylic acid anhydride monomer unit is more than the acrylic compound monomer unit. b1).
  • the aromatic vinyl monomer is not particularly limited, and any known aromatic vinyl monomer can be used. From the viewpoint of availability, styrene, ⁇ -methylstyrene, o-methylstyrene. M-methylstyrene, p-methylstyrene, t-butylstyrene and the like. Among these, styrene is particularly preferable from the viewpoint of compatibility. Two or more of these aromatic vinyl monomers may be mixed.
  • Examples of the unsaturated dicarboxylic acid anhydride monomer include maleic acid, itaconic acid, citraconic acid, aconitic acid and other acid anhydrides, and maleic anhydride is preferred from the viewpoint of compatibility with acrylic resins. Two or more of these unsaturated dicarboxylic acid anhydride monomers may be mixed.
  • acrylic compound monomer includes acrylonitrile, methacrylonitrile, acrylic acid, methacrylic acid and (meth) acrylic acid ester.
  • (meth) acrylic acid esters include methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, and 2-ethylhexyl methacrylate. It is done.
  • methyl methacrylate (MMA) is preferable from the viewpoint of compatibility with the acrylic resin. Two or more of these acrylic compound monomers may be mixed.
  • the weight average molecular weight (Mw) of the copolymer (b1) is preferably 50,000 to 300,000, and more preferably 100,000 to 200,000. When the weight average molecular weight is 50,000 to 300,000, the compatibility with the acrylic resin (b2) is good.
  • a weight average molecular weight (Mw), a number average molecular weight (Mn), and molecular weight distribution (Mw / Mn) can be measured using the gel permeation chromatography which used THF and chloroform as a solvent.
  • the thermoplastic resin (B) used in the present invention preferably contains an acrylic resin (b2) containing an acrylic compound monomer unit as a main component in addition to the copolymer (b1).
  • “comprising an acrylic compound monomer unit as a main component” means that the content of the acrylic compound monomer unit exceeds 50 mass%.
  • the acrylic resin (b2) preferably contains 60% by mass or more of acrylic compound monomer units, and more preferably contains 75% by mass or more of acrylic compound monomer units.
  • the acrylic resin (b2) may be a homopolymer substantially consisting of an acrylic compound monomer unit or a copolymer containing other monomer units.
  • acrylic compound monomer used in the present invention examples include acrylonitrile, methacrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methacrylic acid, methyl methacrylate, and methacrylic acid.
  • examples include (meth) acrylic acid ester monomer units such as ethyl, n-butyl methacrylate, and 2-ethylhexyl methacrylate, and methyl methacrylate is particularly preferable.
  • the acrylic resin (b2) may be a polymer obtained by homopolymerizing these monomer units, but may also be a copolymer containing two or more types of monomer units.
  • the acrylic resin (b2) may be a copolymer containing a monomer other than the acrylic compound monomer as long as the acrylic compound monomer is the main component.
  • the monomer other than the acrylic compound monomer is not particularly limited, but an unsaturated dicarboxylic acid anhydride monomer such as an acid anhydride such as maleic acid, itaconic acid, citraconic acid, and aconitic acid, Aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene, N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide N-substituted maleimides such as N-arylmaleimide, N-naphthylmaleimide, N-hydroxyphenylmaleimide, N-methoxyphenylmaleimi
  • Examples include a polymer.
  • Examples of the copolymer containing such a monomer include 16% by mass of an aromatic vinyl monomer unit, 8% by mass of an unsaturated dicarboxylic acid anhydride monomer unit, and an acrylic compound monomer unit. Copolymer containing 76% by mass, copolymer containing 4% by mass of aromatic vinyl monomer units, 15% by mass of N-substituted maleimide monomer units, and 81% by mass of acrylic compound monomer units. Coalescence etc. can be used.
  • the weight-average molecular weight of the acrylic resin (b2) containing an acrylic compound monomer unit as a main component is easy to mix (disperse) with the copolymer (b1), and the heat of these polymer alloys. It is determined by the ease of production of the plastic resin (B) layer. That is, if the weight average molecular weight of the acrylic resin (b2) containing the acrylic compound monomer unit as a main component is too large, the difference in melt viscosity between the acrylic resin (b2) and the copolymer (b1) becomes too large.
  • the mixing (dispersing) of the polymer becomes worse, and the transparency of the polymer-alloyed thermoplastic resin (B) layer may be deteriorated, or a problem that stable melt-kneading cannot be continued may occur.
  • the weight average molecular weight of the acrylic resin (b2) containing the acrylic compound monomer unit as a main component is too small, the strength of the polymer-alloyed thermoplastic resin (B) layer is lowered. There is a possibility that a problem such as a decrease in impact resistance of the steel may occur.
  • the weight average molecular weight of the acrylic resin (b2) containing an acrylic compound monomer unit as a main component is preferably in the range of 50,000 to 700,000, and more preferably in the range of 60,000 to 550,000. More preferably, it is in the range of 70,000 to 500,000.
  • the copolymer (b1) On the basis of the total content of the copolymer (b1) and the acrylic resin (b2) being 100 parts by mass, the copolymer (b1) is 5 to 100 parts by mass and the acrylic resin (b2) is 95 to 0 parts by mass. Part. More preferably, the acrylic resin (b2) is 90 to 0 parts by mass with respect to 10 to 100 parts by mass, and still more preferably the acrylic resin (b2) with respect to 10 to 95 parts by mass of the copolymer (b1). ) Is 90 to 5 parts by mass. When the acrylic resin (b2) containing an acrylic compound monomer unit as a main component contains less than 80% by mass of an acrylic compound monomer unit, the copolymer (b1) is acrylic with respect to 10 to 40 parts by mass.
  • the resin (b2) is 90 to 60 parts by mass. Further, when the acrylic resin (b2) containing the acrylic compound monomer unit as a main component contains 80% by mass or more of the acrylic compound monomer unit, the copolymer (b1) is 55 to 90 parts by mass. The acrylic resin (b2) is more preferably 45 to 10 parts by mass. By making it within this weight ratio, thermoplasticity having a surface hardness equal to or higher than that of the acrylic resin (b2) alone and having shape stability such as warpage prevention in a high temperature and high humidity environment while maintaining transparency. Resin (B).
  • the thermoplastic resin (B) is preferably a polymer alloy of a copolymer (b1) and an acrylic resin (b2).
  • the polymer alloy refers to a composite material obtained by mixing two or more kinds of polymers. Such a polymer alloy can be obtained by mechanical mixing, melt mixing, or solution mixing of polymers.
  • the content of the copolymer (b1) and the acrylic resin (b2) is such that the copolymer (b1) is 5 parts by mass or more and less than 100 parts by mass with respect to 100 parts by mass in total. Yes, the acrylic resin (b2) is more than 0 parts by mass and 95 parts by mass or less.
  • the copolymer (b1) is 10 parts by mass or more and less than 100 parts by mass, and the acrylic resin (b2) is more than 0 part by mass and 90 parts by mass or less. More preferably, the acrylic resin (b2) is 90 to 5 parts by mass with respect to the copolymer (b1) of 10 to 95 parts by mass.
  • the copolymer (b1) is acrylic with respect to 10 to 40 parts by mass. More preferably, the resin (b2) is 90 to 60 parts by mass.
  • the acrylic resin (b2) containing the acrylic compound monomer unit as a main component contains 80% by mass or more of the acrylic compound monomer unit
  • the copolymer (b1) is 55 to 90 parts by mass.
  • the acrylic resin (b2) is more preferably 45 to 10 parts by mass.
  • the hardness of the thermoplastic resin (B) can be evaluated by indentation hardness and pencil hardness.
  • the indentation hardness of the thermoplastic resin (B) is HIT hardness ⁇ thermoplastic resin ⁇
  • the indentation hardness of the acrylic resin (b2) is HIT hardness ⁇ acrylic resin ⁇
  • the HIT hardness ⁇ thermoplastic resin ⁇ is HIT hardness.
  • the value divided by ⁇ acrylic resin ⁇ (HIT hardness ⁇ thermoplastic resin ⁇ / HIT hardness ⁇ acrylic resin ⁇ ) is preferably 1.01 or more, and more preferably 1.04 or more.
  • the pencil hardness of the thermoplastic resin (B) is preferably equal to or higher than the pencil hardness of the acrylic resin (b1) alone.
  • the method for producing the synthetic resin laminate of the present invention is not particularly limited.
  • a method of laminating (A) and bonding them together with an adhesive a method of co-extrusion molding of a thermoplastic resin (B) layer and a polycarbonate-based resin (A) layer, a thermoplastic resin formed in advance
  • a method of in-mold molding and integrating the polycarbonate resin (A) using the (B) layer but from the viewpoint of production cost and productivity, a method of co-extrusion molding is preferable. .
  • the production method of the thermoplastic resin (B) is not particularly limited, and necessary components are mixed in advance using a mixer such as a tumbler, a Henschel mixer, or a super mixer, and then a Banbury mixer, A known method such as melt kneading by a machine such as a roll, a brabender, a single screw extruder, a twin screw extruder, or a pressure kneader can be applied.
  • a mixer such as a tumbler, a Henschel mixer, or a super mixer
  • a Banbury mixer A known method such as melt kneading by a machine such as a roll, a brabender, a single screw extruder, a twin screw extruder, or a pressure kneader can be applied.
  • the thickness of the thermoplastic resin (B) layer affects the surface hardness and impact resistance of the resin laminate. That is, when the thickness of the thermoplastic resin (B) layer is too thin, the surface hardness is lowered, which is not preferable. If the thickness of the thermoplastic resin (B) layer is too large, the impact resistance deteriorates, which is not preferable.
  • the thickness of the thermoplastic resin (B) layer is preferably 10 to 250 ⁇ m, more preferably 30 to 200 ⁇ m. More preferably, it is 60 to 150 ⁇ m.
  • the total thickness of the resin laminate (sheet), the thickness of the thermoplastic resin (B) layer, and the composition of the thermoplastic resin (B) layer are warped in a high temperature and high humidity environment of the resin laminate. Affect. In other words, if the overall thickness is too thin, the warpage in a high-temperature and high-humidity environment increases. Further, if the thickness of the thermoplastic resin (B) layer is too thin, warpage in a high-temperature and high-humidity environment is reduced, but the hardness is reduced.
  • the weight ratio of the copolymer (b1) and the acrylic resin (b2) of the thermoplastic resin (B) layer matched to the total thickness of each and the thickness of the thermoplastic resin (B) layer is set. Need to find out.
  • the total thickness of the polycarbonate resin (A) layer and the thermoplastic resin (B) layer is preferably 0.05 to 3.0 mm, more preferably 0.1 to 2.0 mm, still more preferably 0.00. 12 to 1.5 mm.
  • the total light transmittance is preferably 75% or more, more preferably 80% or more, and still more preferably 85% or more.
  • the upper limit of the total light transmittance is preferably 95%.
  • the haze of the resin laminate (sheet) is preferably 30% or less, more preferably 25% or less, and still more preferably 20% or less.
  • the lower limit of Haze is preferably 0.1%.
  • the polycarbonate-based resin (A) that forms the base layer and / or the thermoplastic resin (B) that forms the surface layer can contain components other than the main components described above.
  • a polycarbonate resin (A) and / or a thermoplastic resin (B) can be used by mixing an ultraviolet absorber. If the content of the UV absorber is too high, depending on the molding method, excessive UV absorber may be scattered due to the high temperature applied, which may cause problems because it contaminates the molding environment. Accordingly, the content of the ultraviolet absorber is preferably 0 to 5% by mass, more preferably 0 to 3% by mass, and still more preferably 0 to 1% by mass.
  • Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, 2-hydroxy -4-octadecyloxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, etc.
  • Benzophenone UV absorber 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, 2- (2-hydroxy-3 -T-Butyl-5-methylphenyl) benzotriazo , Benzotriazole ultraviolet absorbers such as (2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol, phenyl salicylate, 2,4-di-t-butyl Benzoate UV absorbers such as phenyl-3,5-di-t-butyl-4-hydroxybenzoate, and hindered amine UV absorbers such as bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-ethoxy
  • the polycarbonate resin (A) for forming the base material layer and / or the thermoplastic resin (B) for forming the surface layer may be used by mixing various additives in addition to the ultraviolet absorber.
  • additives include antioxidants and anti-coloring agents, antistatic agents, mold release agents, lubricants, dyes, pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, organic fillers, Examples thereof include reinforcing materials such as inorganic fillers.
  • the method of mixing is not particularly limited, and a method of compounding the whole amount, a method of dry blending the master batch, a method of dry blending the whole amount, and the like can be used.
  • the surface of the thermoplastic resin (B) layer or the surface of the polycarbonate resin (A) layer may be subjected to a hard coat treatment.
  • the hard coat layer is formed by a hard coat process using a hard coat paint that is cured using thermal energy and / or light energy.
  • the hard coat paint that is cured using thermal energy include polyorganosiloxane-based and cross-linked acrylic-based thermosetting resin compositions.
  • a hard coat paint that is cured using light energy for example, a photocurable resin in which a photopolymerization initiator is added to a resin composition composed of monofunctional and / or polyfunctional acrylate monomers and / or oligomers. Examples thereof include a composition.
  • Examples of the hard coat paint to be cured using light energy applied on the surface of the thermoplastic resin (B) layer or the surface of the polycarbonate resin (A) layer in the present invention include 1,9-nonanediol diacrylate.
  • the photopolymerization initiator is contained in 100 parts by mass of a resin composition comprising 40 to 80% by mass of a compound comprising a polyfunctional polyester (meth) acrylate oligomer and / or a polyfunctional epoxy (meth) acrylate oligomer having two or more functions. Examples thereof include a photocurable resin composition to which 10 parts by mass is added.
  • the method for applying the hard coat paint in the present invention is not particularly limited, and a known method can be used. Examples include spin coating, dipping, spraying, slide coating, bar coating, roll coating, gravure coating, meniscus coating, flexographic printing, screen printing, beat coating, and blurring. .
  • pretreatment of the coated surface may be performed before the hard coat.
  • treatment include known methods such as sandblasting, solvent treatment, corona discharge treatment, chromic acid treatment, flame treatment, hot air treatment, ozone treatment, ultraviolet treatment, and primer treatment with a resin composition. Can be mentioned.
  • thermoplastic resin (B) layer, the polycarbonate resin (A) layer, and the hard coat materials in the present invention for example, the thermoplastic resin (B) and the polycarbonate resin (A) are filtered and purified by filtering. It is preferable. By producing or laminating through a filter, it is possible to obtain a synthetic resin laminate having few appearance defects such as foreign matters and defects. There is no restriction
  • the filter to be used is not particularly limited, and known filters can be used, and are appropriately selected depending on the use temperature, viscosity, and filtration accuracy of each material.
  • the filter medium is not particularly limited, but polypropylene, cotton, polyester, viscose rayon or glass fiber nonwoven fabric or roving yarn roll, phenol resin impregnated cellulose, metal fiber nonwoven fabric sintered body, metal powder sintered body, breaker plate, Alternatively, any combination of these can be used. In view of heat resistance, durability, and pressure resistance, a type in which a metal fiber nonwoven fabric is sintered is preferable.
  • the filtration accuracy for the polycarbonate resin (A) is 50 ⁇ m or less, preferably 30 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the filtration accuracy of the hard coat agent is 20 ⁇ m or less, preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less because it is applied to the outermost layer of the resin laminate.
  • thermoplastic resin (B) and the polycarbonate resin (A) it is preferable to use, for example, a polymer filter used for thermoplastic resin melt filtration.
  • the polymer filter is classified into a leaf disk filter, a candle filter, a pack disk filter, a cylindrical filter and the like depending on its structure, and a leaf disk filter having a large effective filtration area is particularly suitable.
  • the resin laminate of the present invention can be subjected to one or more of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment on one side or both sides.
  • the methods of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment are not particularly limited, and known methods can be used. For example, a method of applying a reflection reducing coating, a method of depositing a dielectric thin film, a method of applying an antistatic coating, and the like can be mentioned.
  • HIT hardness ⁇ Indentation hardness (HIT hardness)> Using an ultra-micro hardness meter HM2000 (manufactured by Fischer Instruments Co., Ltd.), it was pressed against the thermoplastic resin (B) layer under a pressing pressure of 3 mN, and the HIT hardness (N / mm 2 ) was measured. As a comparison object, the indentation hardness was similarly measured for a layer (Comparative Example 5 or Comparative Example 8 described later) formed of the acrylic resin (b2) alone. Then, the indentation hardness of the thermoplastic resin (B) was HIT hardness ⁇ thermoplastic resin ⁇ , and the indentation hardness of the acrylic resin (b2) was HIT hardness ⁇ acrylic resin ⁇ .
  • thermoplastic resin (B) layer is a layer containing the copolymer (b1) and the acrylic resin (b2)
  • the indentation hardness of the acrylic resin (B2-1 or B2-2) used is used. And evaluated. Further, when the thermoplastic resin (B) layer was composed only of the copolymer (b1), it was evaluated using the indentation hardness of the acrylic resin (B2-1).
  • X (fail) Outside the above range
  • ⁇ Pencil scratch hardness test> In accordance with JIS K 5600-5-4, a layer formed of a thermoplastic resin (B) layer or an acrylic resin (b2) alone at an angle of 45 degrees with respect to the surface and a load of 750 g (Comparative Example 5 or Comparative Example 8 described later) ) The hardness was gradually increased on the surface and the pencil was pressed, and the hardness of the hardest pencil that did not cause scars was evaluated as the pencil hardness. The pencil hardness is indicated by 2B, B, HB, F, H, 2H, 3H, and 4H in order of rank.
  • the pencil hardness of the surface of the thermoplastic resin (B) is equal to or higher than the pencil hardness of the surface of the acrylic resin (b2) alone” means that the pencil hardness of the surface of the thermoplastic resin (B) is the surface of the acrylic resin (b2) alone. It means that it is the same rank as pencil hardness or higher than that. For example, when the pencil hardness of the surface of the acrylic resin (b2) is 2H, the pencil hardness of the surface of the thermoplastic resin (B) is 2H or 3H or more.
  • ⁇ (Pass) The pencil hardness on the surface of the thermoplastic resin (B) is equal to or higher than the pencil hardness on the surface of the acrylic resin (b2)
  • ⁇ (Fail) Other than the above range
  • test piece of the resin laminate was cut into a 10 cm ⁇ 6 cm square.
  • the test piece was set in a two-point support type holder, placed in an environmental testing machine set at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours or more, and after adjusting the state, the warpage was measured. The value at this time was taken as the value of the amount of warp before processing.
  • the test piece was set in a holder, put into an environmental test machine set at a temperature of 85 ° C. and a relative humidity of 85%, and kept in that state for 120 hours. Further, the holder was moved into an environmental testing machine set to a temperature of 23 ° C.
  • Total light transmittance measurement> The total light transmittance of the resin laminate was measured according to JIS K7361-1, using a reflection / transmittance meter HR-100 (manufactured by Murakami Color Research Laboratory Co., Ltd.), and the total light transmittance test was performed according to the following criteria. A pass / fail decision was made. ⁇ (Pass): Total light transmittance of the resin laminate ⁇ 75% X (fail): Outside the above range
  • Examples of the polycarbonate resin (A), the copolymer (b1), and the acrylic resin (b2) include the following materials, but are not limited thereto.
  • A-1 Polycarbonate resin: Iupilon E-2000 manufactured by Mitsubishi Engineering Plastics Co., Ltd.
  • b1-1 Copolymer: KX-406 manufactured by Denka Co., Ltd.
  • b1-2 Copolymer: KX-407 manufactured by Denka Co., Ltd.
  • b1-3 Copolymer: KX-422 manufactured by DENKA CORPORATION
  • b1-4 Copolymer: KX-435 manufactured by Denka Co., Ltd.
  • b1-5 Copolymer: R100 manufactured by DENKA CORPORATION b1-6: Copolymer: R200 manufactured by DENKA CORPORATION b2-1: Acrylic resin: Methyl methacrylate resin manufactured by Kuraray Co., Ltd.
  • Production Example 4 [Production of Resin (B14) Pellets] Phosphoric additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2 mass%) were added to 100 parts by mass of KX-406 (b1-1) as copolymer (b1), and mixed and pelleted in the same manner as in Production Example 1. Made. The pellets could be manufactured stably.
  • Production Example 5 [Production of Resin (B15) Pellets] A total of 100 parts by mass of 25 parts by mass of KX-406 (b1-1) as copolymer (b1) and 75 parts by mass of Delpet 980N (b2-3) as methyl methacrylate resin as acrylic resin (b2) On the other hand, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 7 [Production of Resin (B17) Pellets] A total of 100 parts by mass of 50 parts by mass of KX-406 (b1-1) as the copolymer (b1) and 50 parts by mass of Delpet 980N (b2-3) as the methyl methacrylate resin as the acrylic resin (b2) On the other hand, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 8 [Production of resin (B18) pellets] A total of 100 parts by mass of 60 parts by mass of KX-406 (b1-1) as copolymer (b1) and 40 parts by mass of Delpet 980N (b2-3) as methyl methacrylate resin as acrylic resin (b2) On the other hand, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 10 [Production of Resin (B20) Pellets] For a total of 100 parts by mass of 40 parts by mass of KX-406 (b1-1) as copolymer (b1) and 60 parts by mass of PLEXIGLAS hw55 (b2-4) as methyl methacrylate resin as acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 12 [Production of resin (B22) pellets] For a total of 100 parts by mass of 60 parts by mass of KX-406 (b1-1) as the copolymer (b1) and 40 parts by mass of PLEXIGLAS hw55 (b2-4) as the methyl methacrylate resin as the acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 14 [Production of Resin (B24) Pellets] 100 parts by mass in total of 50 parts by mass of KX-407 (b1-2) as copolymer (b1) and 50 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin as acrylic resin (b2)
  • the phosphorus-based additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 15 [Production of resin (B25) pellets] 100 parts by mass in total of 75 parts by mass of KX-407 (b1-2) as copolymer (b1) and 25 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin as acrylic resin (b2)
  • the phosphorus-based additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1.
  • the pellets could be manufactured stably.
  • Production Example 16 [Production of resin (B26) pellets] To 100 parts by mass of KX-407 (b1-2) as copolymer (b1), 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added and mixed in the same manner as in Production Example 1. Pelletization was performed. The pellets could be manufactured stably.
  • Production Example 18 [Production of resin (B28) pellets] 100 parts by mass in total of 50 parts by mass of KX-422 (b1-3) as copolymer (b1) and 50 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin as acrylic resin (b2)
  • the phosphorus-based additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1.
  • the pellets could be manufactured stably.
  • Production Example 19 [Production of resin (B29) pellets] 100 parts by mass in total of 55 parts by mass of KX-422 (b1-3) as copolymer (b1) and 45 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin as acrylic resin (b2)
  • the phosphorus-based additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1.
  • the pellets could be manufactured stably.
  • Production Example 20 [Production of resin (B30) pellets] 100 parts by mass in total of 60 parts by mass of KX-422 (b1-3) as copolymer (b1) and 40 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin as acrylic resin (b2)
  • the phosphorus-based additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1.
  • the pellets could be manufactured stably.
  • Production Example 21 [Production of Resin (B31) Pellets] 100 parts by mass in total of 65 parts by mass of KX-422 (b1-3) as copolymer (b1) and 35 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin as acrylic resin (b2)
  • the phosphorus-based additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 22 [Production of resin (B32) pellets] 100 parts by mass in total of 75 parts by mass of KX-422 (b1-3) as copolymer (b1) and 25 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin as acrylic resin (b2)
  • the phosphorus-based additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1.
  • the pellets could be manufactured stably.
  • Production Example 23 [Production of resin (B33) pellet] Phosphorous additive PEP36 500 ppm and stearic acid monoglyceride 0.2% to 100 parts by mass of KX-422 (b1-3) as copolymer (b1), mixed and pelletized in the same manner as in Production Example 1. Went. The pellets could be manufactured stably.
  • Production Example 24 [Production of Resin (B34) Pellets] Phosphorus based on a total of 100 parts by mass of 50 parts by mass of KX-422 (b1-3) as copolymer (b1) and 50 parts by mass of Delpet PM120N (b2-2) as acrylic resin (b2) Additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 25 [Production of resin (B35) pellets] Phosphorus based on a total of 100 parts by mass of 55 parts by mass of KX-422 (b1-3) as copolymer (b1) and 45 parts by mass of Delpet PM120N (b2-2) as acrylic resin (b2) Additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 26 [Production of resin (B36) pellets] Phosphorus based on a total of 100 parts by mass of 60 parts by mass of KX-422 (b1-3) as copolymer (b1) and 40 parts by mass of Delpet PM120N (b2-2) as acrylic resin (b2) Additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 27 [Production of resin (B37) pellets] Phosphorus based on a total of 100 parts by mass of 55 parts by mass of KX-422 (b1-3) as copolymer (b1) and 45 parts by mass of Delpet 980N (b2-3) being acrylic resin (b2) Additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 28 [Production of resin (B38) pellets] For a total of 100 parts by mass of 60 parts by mass of KX-422 (b1-3) as copolymer (b1) and 40 parts by mass of Delpet 980N (b2-3) as acrylic resin (b2) Additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 29 [Production of resin (B39) pellets] Phosphorus-based addition to 100 parts by mass in total of 60 parts by mass of KX-422 (b1-3) as copolymer (b1) and 40 parts by mass of PLEXIGLAS hw55 (b2-4) as acrylic resin (b2) Agent PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 32 [Production of Resin (B42) Pellets] 30 parts by mass of KX-435 (b1-4) as copolymer (b1) and 70 parts by mass of Delpet 980N (b2-3) as methyl methacrylate resin as acrylic resin (b2) On the other hand, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 33 [Production of Resin (B43) Pellets] 40 parts by mass of KX-435 (b1-4) as copolymer (b1) and 60 parts by mass of Delpet 980N (b2-3) as methyl methacrylate resin as acrylic resin (b2) On the other hand, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 34 [Production of Resin (B44) Pellets] A total of 100 parts by mass of 50 parts by mass of KX-435 (b1-4) as copolymer (b1) and 50 parts by mass of Delpet 980N (b2-3) as methyl methacrylate resin as acrylic resin (b2) On the other hand, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 35 [Production of resin (B45) pellet] A total of 100 parts by mass of 60 parts by mass of KX-435 (b1-4) as copolymer (b1) and 40 parts by mass of Delpet 980N (b2-3) as methyl methacrylate resin as acrylic resin (b2) On the other hand, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 36 [Production of Resin (B46) Pellets] For a total of 100 parts by mass of 15 parts by mass of KX-435 (b1-4) as copolymer (b1) and 85 parts by mass of Plexiglas hw55 (b2-4) as methyl methacrylate resin as acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 37 [Production of Resin (B47) Pellets] For a total of 100 parts by mass of 25 parts by mass of KX-435 (b1-4) as copolymer (b1) and 75 parts by mass of PLEXIGLAS hw55 (b2-4) as methyl methacrylate resin as acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 38 [Production of resin (B48) pellets] For a total of 100 parts by mass of 30 parts by mass of KX-435 (b1-4) as copolymer (b1) and 70 parts by mass of PLEXIGLAS hw55 (b2-4) as methyl methacrylate resin as acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 39 [Production of resin (B49) pellets] For a total of 100 parts by mass of 40 parts by mass of KX-435 (b1-4) as copolymer (b1) and 60 parts by mass of PLEXIGLAS hw55 (b2-4) as methyl methacrylate resin as acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Production Example 40 [Production of Resin (B50) Pellets] For a total of 100 parts by mass of 50 parts by mass of KX-435 (b1-4) as copolymer (b1) and 50 parts by mass of Plexiglas hw55 (b2-4) as methyl methacrylate resin as acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
  • Comparative Production Example 18 [Production of Resin (D28) Pellets] To 100 parts by mass of Delpet PM120N (b2-2), which is an acrylic resin (b2), 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride are added and mixed in the same manner as in Production Example 1, pellets Made. The pellets could be manufactured stably.
  • Comparative Production Example 19 [Production of Resin (D29) Pellets] To 100 parts by mass of Delpet 980N (b2-3), which is an acrylic resin (b2), 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride are added and mixed in the same manner as in Production Example 1 and pellets Made. The pellets could be manufactured stably.
  • Example 1 Each extruder in a multi-layer extruder having a single-screw extruder with a shaft diameter of 32 mm, a single-screw extruder with a shaft diameter of 65 mm, a feed block connected to all the extruders, and a T die connected to the feed block
  • the resin laminate was molded using a multi-layer extrusion apparatus having connected multi-manifold dies.
  • the resin (B11) obtained in Production Example 1 was continuously introduced into a single-screw extruder having a shaft diameter of 32 mm, and extruded under conditions of a cylinder temperature of 240 ° C. and a discharge rate of 2.1 kg / h.
  • Polycarbonate resin (A-1) (manufactured by Mitsubishi Engineering Plastics, product name: Iupilon E-2000, weight average molecular weight: 34,000) was continuously introduced into a single screw extruder with a shaft diameter of 65 mm, and the cylinder Extrusion was performed at a temperature of 280 ° C. and a discharge rate of 30.0 kg / h.
  • the feed block connected to the entire extruder was provided with two types and two layers of distribution pins, and the temperature was set to 270 ° C. and (B11) and (A-1) were introduced and laminated.
  • thermoplastic resin (B11) layer ⁇ thermoplastic resin ⁇ 275 N / mm 2
  • HIT hardness ⁇ thermoplastic resin ⁇ / HIT hardness ⁇ acrylic resin ⁇ 1.022, which was passed, and the pencil scratch hardness test
  • the result is 2H
  • the warp change amount in a high temperature and high humidity environment is 472 ⁇ m
  • the total light transmittance is 91.3%
  • the haze is 0.2%
  • pass 0.2%. It was a pass in the judgment.
  • Example 2 A laminate (E12) of (B12) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B12) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E12) was 1000 ⁇ m, and the thickness of the layer made of B12 was 60 ⁇ m near the center.
  • thermoplastic resin (B12) layer ⁇ thermoplastic resin ⁇ 280 N / mm 2
  • the result is 2H
  • the warp change amount under high temperature and high humidity environment is 34 ⁇ m
  • the total light transmittance is 91.2%
  • the haze is 0.2%
  • the pass 0.2%. It was a pass in the judgment.
  • Example 3 A laminate (E13) of (B13) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B13) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E13) was 1000 ⁇ m, and the thickness of the layer made of B13 was 60 ⁇ m near the center.
  • Example 4 A laminate (E14) of (B14) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B14) was used instead of the resin (B11).
  • the overall thickness of the obtained laminate (E14) was 1000 ⁇ m, and the thickness of the layer made of B14 was 60 ⁇ m near the center.
  • thermoplastic resin (B14) layer ⁇ thermoplastic resin ⁇ 276 N / mm 2
  • Example 5 A laminate (E15) of (B15) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B15) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E15) was 1000 ⁇ m, and the thickness of the layer made of B15 was 60 ⁇ m near the center.
  • Example 6 A laminate (E16) of (B16) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B16) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E16) was 1000 ⁇ m, and the thickness of the layer made of B16 was 60 ⁇ m near the center.
  • Example 7 A laminate (E17) of (B17) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B17) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E17) was 1000 ⁇ m, and the thickness of the layer composed of B17 was 60 ⁇ m near the center.
  • Example 8 A laminate (E18) of (B18) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B18) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E18) was 1000 ⁇ m, and the thickness of the layer made of B18 was 60 ⁇ m near the center.
  • Example 9 A laminate (E19) of (B19) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B19) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E19) was 1000 ⁇ m, and the thickness of the layer made of B19 was 60 ⁇ m near the center.
  • the result is 2H
  • the warp change amount in a high temperature and high humidity environment is 183 ⁇ m
  • the total light transmittance is 91.0%
  • the haze is 0.1%
  • the pass 0.1%. It was a pass in the judgment.
  • Example 10 A laminate (E20) of (B20) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B20) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E20) was 1000 ⁇ m, and the thickness of the layer made of B20 was 60 ⁇ m near the center.
  • thermoplastic resin (B20) layer ⁇ thermoplastic resin ⁇ 280 N / mm 2
  • HIT hardness ⁇ thermoplastic resin ⁇ / HIT hardness ⁇ acrylic resin ⁇ 1.049
  • passed and the pencil scratch hardness test
  • the result is 2H
  • the warp change amount under high temperature and high humidity environment is 397 ⁇ m
  • the total light transmittance is 91.0%
  • the haze 0.1%
  • the pass 0.1%. It was a pass in the judgment.
  • Example 11 A laminate (E21) of (B21) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B21) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E21) was 1000 ⁇ m, and the thickness of the layer made of B21 was 60 ⁇ m near the center.
  • Example 12 A laminate (E22) of (B22) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B22) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E22) was 1000 ⁇ m, and the thickness of the layer made of B22 was 60 ⁇ m near the center.
  • Example 13 A laminate (E23) of (B23) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B23) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E23) was 1000 ⁇ m, and the thickness of the layer made of B23 was 60 ⁇ m near the center.
  • thermoplastic resin (B23) layer ⁇ thermoplastic resin ⁇ 275 N / mm 2
  • HIT hardness ⁇ thermoplastic resin ⁇ / HIT hardness ⁇ acrylic resin ⁇ 1.022, which was passed, and the pencil scratch hardness test
  • the result is 2H
  • the warp change amount in the high temperature and high humidity environment is 649 ⁇ m
  • the total light transmittance is 91.4%
  • the haze is 0.1%
  • the pass 0.1%. It was a pass in the judgment.
  • Example 14 A laminate (E24) of (B24) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B24) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E24) was 1000 ⁇ m, and the thickness of the layer made of B16 was 60 ⁇ m near the center.
  • Example 15 A laminate (E25) of (B25) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B25) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E25) was 1000 ⁇ m, and the thickness of the layer made of B25 was 60 ⁇ m near the center.
  • Example 16 A laminate (E26) of (B26) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B26) was used instead of the resin (B11).
  • the overall thickness of the obtained laminate (E26) was 1000 ⁇ m, and the thickness of the layer made of B26 was 60 ⁇ m near the center.
  • Example 17 A laminate (E27) of (B27) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B27) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E27) was 1000 ⁇ m, and the thickness of the layer made of B27 was 60 ⁇ m near the center.
  • thermoplastic resin (B27) layer ⁇ thermoplastic resin ⁇ 275 N / mm 2
  • HIT hardness ⁇ thermoplastic resin ⁇ / HIT hardness ⁇ acrylic resin ⁇ 1.022, which was passed, and the pencil scratch hardness test
  • the result is 2H
  • the warp change amount in a high temperature and high humidity environment is 524 ⁇ m
  • the total light transmittance is 91.3%
  • the haze 0.1%
  • the pass It was a pass in the judgment.
  • Example 18 A laminate (E28) of (B28) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B28) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E28) was 1000 ⁇ m, and the thickness of the layer made of B28 was 60 ⁇ m near the center.
  • Example 19 A laminate (E29) of (B29) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B29) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E29) was 1000 ⁇ m, and the thickness of the layer composed of B29 was 60 ⁇ m near the center.
  • thermoplastic resin (B21) layer ⁇ thermoplastic resin ⁇ 287 N / mm 2
  • HIT hardness ⁇ thermoplastic resin ⁇ / HIT hardness ⁇ acrylic resin ⁇ 1.067
  • the pencil scratch hardness test The result is 3H
  • the warp change amount in a high temperature and high humidity environment is 104 ⁇ m
  • the total light transmittance is 91.1%
  • the haze 0.2%
  • the pass 0.2%. It was a pass in the judgment.
  • Example 20 A laminate (E30) of (B30) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B30) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E30) was 1000 ⁇ m, and the thickness of the layer made of B30 was 60 ⁇ m near the center.
  • thermoplastic resin (B30) layer ⁇ thermoplastic resin ⁇ 289 N / mm 2
  • HIT hardness ⁇ thermoplastic resin ⁇ / HIT hardness ⁇ acrylic resin ⁇ 1.004
  • pencil scratch hardness test The result is 3H
  • the warp change amount in the high temperature and high humidity environment is 29 ⁇ m
  • the total light transmittance is 91.0%
  • the haze 0.2%
  • the pass 0.2%. It was a pass in the judgment.
  • Example 21 A laminate (E31) of (B31) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B31) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E31) was 1000 ⁇ m, and the thickness of the layer made of B31 was 60 ⁇ m near the center.
  • Example 22 A laminate (E32) of (B32) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B32) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E32) was 1000 ⁇ m, and the thickness of the layer made of B32 was 60 ⁇ m near the center.
  • Example 23 A laminate (E33) of (B33) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B33) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E33) was 1000 ⁇ m, and the thickness of the layer made of B33 was 60 ⁇ m near the center.
  • Example 24 A laminate (E34) of (B34) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B34) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E34) was 1000 ⁇ m, and the thickness of the layer made of B34 was 60 ⁇ m near the center.
  • the result is acceptable at 3H, the amount of warpage change under a high temperature and high humidity environment is acceptable at 151 ⁇ m, the total light transmittance is acceptable at 91.1%, and the haze is acceptable at 0.2%. It was a pass in the judgment.
  • Example 25 A laminate (E35) of (B35) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B35) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E35) was 1000 ⁇ m, and the thickness of the layer made of B35 was 60 ⁇ m near the center.
  • Example 26 A laminate (E36) of (B36) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B36) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E36) was 1000 ⁇ m, and the thickness of the layer made of B36 was 60 ⁇ m near the center.
  • thermoplastic resin (B36) layer ⁇ thermoplastic resin ⁇ 291 N / mm 2
  • the result is acceptable at 3H
  • the amount of warpage change under a high temperature and high humidity environment is acceptable at 7 ⁇ m
  • the total light transmittance is acceptable at 91.0%
  • the haze is acceptable at 0.2%. It was a pass in the judgment.
  • Example 27 A laminate (E37) of (B37) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B37) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E37) was 1000 ⁇ m, and the thickness of the layer made of B37 was 60 ⁇ m near the center.
  • the result is 2H, the warp change amount in a high temperature and high humidity environment is 529 ⁇ m, the total light transmittance is 91.2%, the haze is 0.2%, and the pass is 0.2%. It was a pass in the judgment.
  • Example 28 A laminate (E38) of (B38) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B38) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E38) was 1000 ⁇ m, and the thickness of the layer made of B38 was 60 ⁇ m near the center.
  • thermoplastic resin (B38) layer ⁇ thermoplastic resin ⁇ 284 N / mm 2
  • the result is 2H
  • the warp change amount in a high temperature and high humidity environment is 605 ⁇ m
  • the total light transmittance is 91.2%
  • the haze 0.2%
  • the pass It was a pass in the judgment.
  • Example 29 A laminate (E39) of (B39) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B39) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E39) was 1000 ⁇ m, and the thickness of the layer made of B39 was 60 ⁇ m near the center.
  • Example 30 A laminate (E40) of (B40) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B40) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E40) was 1000 ⁇ m, and the thickness of the layer made of B40 was 60 ⁇ m near the center.
  • Example 31 A laminate (E41) of (B41) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B41) was used instead of the resin (B11).
  • the overall thickness of the obtained laminate (E41) was 1000 ⁇ m, and the thickness of the layer made of B41 was 60 ⁇ m near the center.
  • Example 32 A laminate (E42) of (B42) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B42) was used instead of the resin (B11).
  • the overall thickness of the obtained laminate (E42) was 1000 ⁇ m, and the thickness of the layer made of B42 was 60 ⁇ m near the center.
  • Example 33 A laminate (E43) of (B43) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B43) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E43) was 1000 ⁇ m, and the thickness of the layer made of B43 was 60 ⁇ m near the center.
  • Example 34 A laminate (E44) of (B44) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B44) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E44) was 1000 ⁇ m, and the thickness of the layer made of B44 was 60 ⁇ m near the center.
  • Example 35 A laminate (E45) of (B45) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B45) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E45) was 1000 ⁇ m, and the thickness of the layer made of B45 was 60 ⁇ m near the center.
  • thermoplastic resin (B45) layer ⁇ thermoplastic resin ⁇ 277 N / mm 2
  • HIT hardness ⁇ thermoplastic resin ⁇ / HIT hardness ⁇ acrylic resin ⁇ 1.041
  • pencil scratch hardness test The result is 2H
  • the warp change amount in a high temperature and high humidity environment is 508 ⁇ m
  • the total light transmittance is 91.0%
  • the haze 0.2%
  • the pass is 0.2%. It was a pass in the judgment.
  • Example 36 A laminate (E46) of (B46) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B46) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E46) was 1000 ⁇ m, and the thickness of the layer made of B46 was 60 ⁇ m near the center.
  • Example 37 A laminate (E47) of (B47) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B47) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E47) was 1000 ⁇ m, and the thickness of the layer composed of B47 was 60 ⁇ m near the center.
  • the result is 2H, the warp change amount in a high temperature and high humidity environment is 106 ⁇ m, the total light transmittance is 91.2%, the haze is 0.2%, and the pass is It was a pass in the judgment.
  • Example 38 A laminate (E48) of (B48) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B48) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E48) was 1000 ⁇ m, and the thickness of the layer composed of B48 was 60 ⁇ m near the center.
  • thermoplastic resin (B48) layer ⁇ thermoplastic resin ⁇ 273 N / mm 2
  • HIT hardness ⁇ thermoplastic resin ⁇ / HIT hardness ⁇ acrylic resin ⁇ 1.022, which was passed, and the pencil scratch hardness test
  • the result is 2H
  • the warp change under high temperature and high humidity environment is 175 ⁇ m
  • the total light transmittance is 91.2%
  • the haze 0.2%
  • the pass It was a pass in the judgment.
  • Example 39 A laminate (E49) of (B49) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B49) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E49) was 1000 ⁇ m, and the thickness of the layer made of B49 was 60 ⁇ m near the center.
  • Example 40 A laminate (E50) of (B50) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B50) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (E50) was 1000 ⁇ m, and the thickness of the layer composed of B50 was 60 ⁇ m near the center.
  • Example 41 A laminate (E51) of (B51) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B51) was used instead of the resin (B11).
  • the overall thickness of the obtained laminate (E51) was 1000 ⁇ m, and the thickness of the layer made of B51 was 60 ⁇ m near the center.
  • the result is 2H, the warp change amount in a high temperature and high humidity environment is 534 ⁇ m, the total light transmittance is 91.1%, the haze is 0.2%, and the pass is 0.2%. It was a pass in the judgment.
  • Comparative Example 1 A laminate (F11) of (D11) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D11) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F11) was 1000 ⁇ m, and the thickness of the layer made of D11 was 60 ⁇ m near the center.
  • the result of the test is F, the warp change amount in a high temperature and high humidity environment is 359 ⁇ m, the total light transmittance is 91.2%, and the haze is 0.2%. It was rejected by the comprehensive judgment.
  • Comparative Example 2 A laminate (F12) of (D12) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D12) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F12) was 1000 ⁇ m, and the thickness of the layer composed of D12 was 60 ⁇ m near the center.
  • thermoplastic resin (D12) layer ⁇ thermoplastic resin ⁇ 253 N / mm 2
  • HIT hardness ⁇ thermoplastic resin ⁇ / HIT hardness ⁇ acrylic resin ⁇ 0.941
  • pencil scratch hardness test The result of F is rejected with F, the amount of warpage change under a high temperature and high humidity environment is 121 ⁇ m, the total light transmittance is 91.1%, and the haze is 0.2%. It was rejected by the comprehensive judgment.
  • Comparative Example 3 A laminate (F13) of (D13) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D13) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F13) was 1000 ⁇ m, and the thickness of the layer made of D13 was 60 ⁇ m near the center.
  • Comparative Example 4 A laminate (F14) of (D14) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D14) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F14) was 1000 ⁇ m, and the thickness of the layer composed of D14 was 60 ⁇ m near the center.
  • the result of is rejected with H, the amount of warpage change under high temperature and high humidity environment is 65 ⁇ m, it is passed, the total light transmittance is passed with 91.0%, and the haze is passed with 0.1%. It was rejected by the comprehensive judgment.
  • Comparative Example 5 A laminate (F15) of (D15) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D15) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F15) was 1000 ⁇ m, and the thickness of the layer made of D15 was 60 ⁇ m near the center.
  • Comparative Example 6 A laminate (F16) of (D16) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D16) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F16) was 1000 ⁇ m, and the thickness of the layer made of D16 was 60 ⁇ m near the center.
  • thermoplastic resin (D16) layer ⁇ thermoplastic resin ⁇ 261 N / mm 2
  • Comparative Example 7 A laminate (F17) of (D17) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D17) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F17) was 1000 ⁇ m, and the thickness of the layer composed of D17 was 60 ⁇ m near the center.
  • Comparative Example 8 A laminate (F18) of (D18) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D18) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F18) was 1000 ⁇ m, and the thickness of the layer composed of D18 was 60 ⁇ m near the center.
  • Comparative Example 9 A laminate (F19) of (D19) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D19) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F19) was 1000 ⁇ m, and the thickness of the layer composed of D19 was 60 ⁇ m near the center.
  • thermoplastic resin (D19) layer ⁇ thermoplastic resin ⁇ 265 N / mm 2
  • Comparative Example 10 A laminate (F20) of (D20) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D20) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F20) was 1000 ⁇ m, and the thickness of the layer composed of D20 was 60 ⁇ m near the center.
  • Comparative Example 11 A laminate (F21) of (D21) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D21) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F21) was 1000 ⁇ m, and the thickness of the layer composed of D21 was 60 ⁇ m near the center.
  • Comparative Example 12 A laminate (F22) of (D22) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D22) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F22) was 1000 ⁇ m, and the thickness of the layer made of D22 was 60 ⁇ m near the center.
  • Comparative Example 13 A laminate (F23) of (D23) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D23) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F23) was 1000 ⁇ m, and the thickness of the layer composed of D23 was 60 ⁇ m near the center.
  • Comparative Example 14 A laminate (F24) of (D24) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D24) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F24) was 1000 ⁇ m, and the thickness of the layer composed of D24 was 60 ⁇ m near the center.
  • Comparative Example 15 A laminate (F25) of (D25) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D25) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F25) was 1000 ⁇ m, and the thickness of the layer composed of D25 was 60 ⁇ m near the center.
  • the result of is rejected with H, the amount of warpage change under high temperature and high humidity environment is 24 ⁇ m, the total light transmittance is passed with 91.2%, and the haze is passed with 0.2%. It was rejected by the comprehensive judgment.
  • Comparative Example 16 A laminate (F26) of (D26) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D26) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F26) was 1000 ⁇ m, and the thickness of the layer composed of D26 was 60 ⁇ m near the center.
  • the result of is rejected with H, the amount of warp change under high temperature and high humidity environment is 422 ⁇ m, passed, the total light transmittance is passed with 91.2%, and the haze is passed with 0.2%. It was rejected by the comprehensive judgment.
  • Comparative Example 17 A laminate (F27) of (D27) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D27) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F27) was 1000 ⁇ m, and the thickness of the layer composed of D27 was 60 ⁇ m near the center.
  • thermoplastic resin (D27) layer ⁇ thermoplastic resin ⁇ 269 N / mm 2
  • HIT hardness ⁇ thermoplastic resin ⁇ / HIT hardness ⁇ acrylic resin ⁇ 1.000 was rejected, and the pencil scratch hardness test
  • the result of is acceptable at 2H, the amount of warpage change under high-temperature and high-humidity environment is 952 ⁇ m, is rejected, the total light transmittance is 91.6%, and the haze is 0.1%. It was rejected by the comprehensive judgment.
  • Comparative Example 18 A laminate (F28) of (D28) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D28) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F28) was 1000 ⁇ m, and the thickness of the layer composed of D28 was 60 ⁇ m near the center.
  • thermoplastic resin (D28) layer ⁇ thermoplastic resin ⁇ 274 N / mm 2
  • the result of 2 is acceptable at 2H
  • the amount of warpage change under high temperature and high humidity environment is 552 ⁇ m
  • the total light transmittance is acceptable at 91.3%
  • the haze is acceptable at 0.2%, It was rejected by the comprehensive judgment.
  • Comparative Example 19 A laminate (F29) of (D29) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D29) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F29) was 1000 ⁇ m, and the thickness of the layer composed of D29 was 60 ⁇ m near the center.
  • thermoplastic resin (D29) layer ⁇ thermoplastic resin ⁇ 266 N / mm 2
  • Comparative Example 20 A laminate (F30) of (D30) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D30) was used instead of the resin (B11).
  • the total thickness of the obtained laminate (F30) was 1000 ⁇ m, and the thickness of the layer made of D30 was 60 ⁇ m near the center.
  • thermoplastic resin (D30) layer ⁇ thermoplastic resin ⁇ 267 N / mm 2
  • the result of 2 is acceptable at 2H, the warpage change amount in a high temperature and high humidity environment is 356 ⁇ m, the total light transmittance is 91.2%, and the haze is 0.3%. It was rejected by the comprehensive judgment.
  • thermoplastic resin is laminated on a polycarbonate resin layer, and an aromatic vinyl monomer unit, an unsaturated dicarboxylic anhydride monomer unit, and a thermoplastic resin are laminated on the thermoplastic resin.
  • unit for a thermoplastic resin has not been able to suppress the curvature variation in a high temperature, high humidity environment.
  • the laminates (Examples 1 to 41) containing a copolymer in which the mass% of the unsaturated dicarboxylic acid anhydride monomer unit is larger than the mass% of the acrylic compound monomer unit are acrylic resin alone.
  • the HIT hardness ⁇ thermoplastic resin ⁇ is higher than that of the laminates (Comparative Examples 17 to 20) using No. 1 as the thermoplastic resin, and the amount of change in warpage in a high temperature and high humidity environment is also suppressed.
  • the laminate according to the present invention can improve the surface hardness while suppressing the amount of warpage change in the high temperature and high humidity environment of the conventional laminate of acrylic resin and polycarbonate.
  • the resin laminate according to the present invention that improves the surface hardness and suppresses the amount of warpage change under a high-temperature and high-humidity environment is suitable as a transparent base material or a transparent protective material as a substitute for glass.
  • it can be suitably used as a touch panel front protective plate, a front plate for OA devices or portable electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a resin laminate which exhibits excellent warping deformation resistance even if exposed to high temperature and high humidity conditions, while having excellent surface hardness. A resin laminate which is obtained by laminating a thermoplastic resin (B) on at least one surface of a polycarbonate resin sheet (A) that is mainly composed of a polycarbonate resin, and which is characterized in that the thermoplastic resin (B) contains either a copolymer (b1) that contains 50-80% by mass of an aromatic vinyl monomer unit, 10-25% by mass of an unsaturated dicarboxylic acid anhydride monomer unit and 5-24% by mass of an acrylic compound monomer unit, with the mass content of the unsaturated dicarboxylic acid anhydride monomer unit being larger than the mass content of the acrylic compound monomer unit, or the copolymer (b1) and an acrylic resin (b2) that contains an acrylic compound monomer unit as a main component.

Description

透明樹脂積層体Transparent resin laminate
 本発明は、透明な基材材料や保護材料に使用され、ポリカーボネート系樹脂層と特定の共重合体及び特定のアクリル樹脂を含む熱可塑性樹脂層とを有し、表面硬度に優れ、且つ高温高湿下に曝されても耐反り変形性に優れる樹脂積層体に関する。 The present invention is used for transparent base materials and protective materials, and has a polycarbonate resin layer and a thermoplastic resin layer containing a specific copolymer and a specific acrylic resin, and has excellent surface hardness and high temperature and high temperature. The present invention relates to a resin laminate having excellent warpage and deformation resistance even when exposed to moisture.
 アクリル樹脂は表面硬度、透明性、耐擦傷性および耐候性などに優れる。一方、ポリカーボネート樹脂は耐衝撃性などに優れる。このことからアクリル樹脂層とポリカーボネート樹脂層を有する積層体は、表面硬度、透明性、耐擦傷性、耐候性および耐衝撃性などに優れ、自動車部品、家電製品、電子機器および携帯型情報端末の表示窓に用いられている。しかし、アクリル樹脂層とポリカーボネート樹脂層を有する積層体は、高温高湿下である屋外や車中で使用される場合に、反りが発生する問題を抱えている。 Acrylic resin is excellent in surface hardness, transparency, scratch resistance and weather resistance. On the other hand, polycarbonate resin is excellent in impact resistance and the like. Therefore, a laminate having an acrylic resin layer and a polycarbonate resin layer is excellent in surface hardness, transparency, scratch resistance, weather resistance, impact resistance, and the like, and is used for automobile parts, home appliances, electronic devices, and portable information terminals. Used for display windows. However, a laminate having an acrylic resin layer and a polycarbonate resin layer has a problem of warping when used outdoors or in a car under high temperature and high humidity.
 上記の問題を解決すべく、特許文献1(特開2014‐198454号公報)および特許文献2(国際公開第2015/133530号)ではビニル芳香族単量体単位、メタクリル酸エステル単量体単位、および環状酸無水単量体単位を含む共重合体とアクリル樹脂をポリマーアロイした樹脂組成物からなる層とポリカーボネート樹脂からなる層とを備える積層体が報告されている。かかる積層体は、85℃85%の高温高湿下で反りを抑えるが、ポリマーアロイに用いるアクリル樹脂よりも表面硬度が低く、近年、ガラスの代替品として使用される樹脂積層体としては表面硬度が不十分である可能性があった。 In order to solve the above problem, in Patent Document 1 (Japanese Patent Laid-Open No. 2014-198454) and Patent Document 2 (International Publication No. 2015/133530), a vinyl aromatic monomer unit, a methacrylic acid ester monomer unit, A laminate comprising a copolymer comprising a cyclic acid anhydride monomer unit, a layer composed of a resin composition obtained by polymer alloying an acrylic resin, and a layer composed of a polycarbonate resin has been reported. Such a laminate suppresses warpage under high temperature and high humidity of 85 ° C. and 85%, but has a lower surface hardness than an acrylic resin used for polymer alloy, and as a resin laminate used as a substitute for glass in recent years, the surface hardness is low. There may have been insufficient.
特開2014‐198454号公報JP 2014-198454 A 国際公開第2015/133530号International Publication No. 2015/133530
 本発明は、透明基材材料や透明保護材料に使用できる、高温高湿な環境においても反りを防止することができる形状安定性を有し、且つ、表面硬度に優れる樹脂積層体を提供することを目的とする。 The present invention provides a resin laminate that can be used as a transparent base material and a transparent protective material, has shape stability that can prevent warpage even in a high-temperature and high-humidity environment, and is excellent in surface hardness. With the goal.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、ポリカーボネート樹脂を主成分とするポリカーボネート系樹脂(A)シートの少なくとも一方の面に、熱可塑性樹脂(B)を積層させ、この熱可塑性樹脂(B)が芳香族ビニル単量体単位を50~80質量%、不飽和ジカルボン酸無水物単量体単位を10~25質量%、アクリル化合物単量体単位を5~24質量%含んでなり、且つ、不飽和ジカルボン酸無水物単量体単位の質量%がアクリル化合物単量体単位の質量%よりも大きい共重合体(b1)を含むか、または該共重合体(b1)とアクリル化合物単量体単位を主成分として含むアクリル樹脂(b2)とを含むことにより、高温高湿下での形状安定性を有し、且つ、表面硬度に優れた樹脂積層体が得られることを見出し、本発明に到達した。 As a result of intensive studies to solve the above problems, the present inventors laminated a thermoplastic resin (B) on at least one surface of a polycarbonate-based resin (A) sheet mainly composed of a polycarbonate resin, This thermoplastic resin (B) has an aromatic vinyl monomer unit of 50 to 80% by mass, an unsaturated dicarboxylic acid anhydride monomer unit of 10 to 25% by mass, and an acrylic compound monomer unit of 5 to 24% by mass. And a copolymer (b1) in which the mass% of unsaturated dicarboxylic acid anhydride monomer units is larger than the mass% of acrylic compound monomer units, or the copolymer (b1 ) And an acrylic resin (b2) containing an acrylic compound monomer unit as a main component, a resin laminate having shape stability under high temperature and high humidity and excellent surface hardness can be obtained. Heading that And it reached the present invention.
 すなわち、本発明は、以下に記載する特徴を有するものである。
[1] ポリカーボネート樹脂を主成分とするポリカーボネート系樹脂(A)シートの少なくとも一方の面に、熱可塑性樹脂(B)が積層されてなる樹脂積層体であって、
 熱可塑性樹脂(B)が、
 芳香族ビニル単量体単位を50~80質量%、不飽和ジカルボン酸無水物単量体単位を10~25質量%、アクリル化合物単量体単位を5~24質量%含んでなり、且つ、不飽和ジカルボン酸無水物単量体単位の質量%がアクリル化合物単量体単位の質量%よりも大きい共重合体(b1)を含むか、または
 該共重合体(b1)と、アクリル化合物単量体単位を主成分として含むアクリル樹脂(b2)とを含むことを特徴とする、樹脂積層体である。
[2]熱可塑性樹脂(B)における共重合体(b1)とアクリル樹脂(b2)の含有量の合計100質量部を基準として、共重合体(b1)は55~90質量部であり、アクリル樹脂(b2)は45~10質量部であり、アクリル化合物単量体単位を主成分として含むアクリル樹脂(b2)が80質量%以上のアクリル化合物単量体単位を含んでいる、上記[1]に記載の樹脂積層体である。
[3]熱可塑性樹脂(B)における共重合体(b1)とアクリル樹脂(b2)の含有量の合計100質量部を基準として、共重合体(b1)は10~40質量部であり、アクリル樹脂(b2)は90~60質量部であり、アクリル化合物単量体単位を主成分として含むアクリル樹脂(b2)が80質量%未満のアクリル化合物単量体単位を含んでいる、上記[1]に記載の樹脂積層体である。
[4]熱可塑性樹脂(B)が、共重合体(b1)とアクリル樹脂(b2)とのポリマーアロイである、上記[1]~[3]のいずれかに記載の樹脂積層体である。
[5]熱可塑性樹脂(B)のインデンテーション硬度をHIT硬度{熱可塑性樹脂}とし、アクリル樹脂(b2)のインデンテーション硬度をHIT硬度{アクリル樹脂}とした場合、HIT硬度{熱可塑性樹脂}をHIT硬度{アクリル樹脂}で除した値(HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂})が1.01以上である、上記[1]~[4]のいずれかに記載の樹脂積層体である。
[6]熱可塑性樹脂(B)の表面の鉛筆硬度が、アクリル樹脂(b2)単体の表面の鉛筆硬度と同等以上である、上記[1]~[5]のいずれかに記載の樹脂積層体である。
[7]共重合体(b1)に含まれる芳香族ビニル単量体単位が、スチレンである、上記[1]~[6]のいずれかに記載の樹脂積層体である。
[8]共重合体(b1)に含まれる不飽和ジカルボン酸無水物単量体単位が、無水マレイン酸である、上記[1]~[7]のいずれかに記載の樹脂積層体である。
[9]共重合体(b1)に含まれるアクリル化合物単量体単位が、メタクリル酸エステルである、上記[1]~[8]のいずれかに記載の樹脂積層体である。
[10]共重合体(b1)の重量平均分子量(Mw)が5万~30万である、上記[1]~[9]のいずれかに記載の樹脂積層体である。
[11]熱可塑性樹脂(B)の層の厚さが10~250μmであり、樹脂積層体の全体厚みが0.05~3.0mmの範囲である、上記[1]~[10]のいずれかに記載の樹脂積層体である。
[12]ポリカーボネート系樹脂(A)の重量平均分子量が25,000~75,000である、[1]~[11]のいずれかに記載の樹脂積層体である。
[13]樹脂積層体の全光線透過率が75%以上であり、Hazeが30%以下である、上記[1]~[12]のいずれかに記載の樹脂積層体である。
[14]熱可塑性樹脂(B)の層およびポリカーボネート系樹脂(A)の層の少なくとも一方が紫外線吸収剤を含有する、上記[1]~[13]のいずれかに記載の樹脂積層体である。
[15]熱可塑性樹脂(B)の層の表面にハードコート層をさらに備える、上記[1]~[14]のいずれかに記載の樹脂積層体である。
[16]樹脂積層体の片面または両面に、耐指紋処理、反射防止処理、防眩処理、耐候性処理、帯電防止処理および防汚処理のいずれか一つ以上が施されてなる、[1]~[15]のいずれかに記載の樹脂積層体である。
[17]上記[1]~[16]のいずれかに記載の樹脂積層体を含む透明基板材料である。
[18]上記[1]~[17]のいずれかに記載の樹脂積層体を含む透明保護材料である。
[19]上記[1]~[18]のいずれかに記載の樹脂積層体を含むタッチパネル前面保護板である。
[20]上記[1]~[16]のいずれかに記載の樹脂積層体を含む、OA機器用または携帯電子機器用の前面板である。
[21] ポリカーボネート樹脂を主成分とするポリカーボネート系樹脂(A)シートの少なくとも一方の面に、熱可塑性樹脂(B)が積層されてなる樹脂積層体であって、
 熱可塑性樹脂(B)が、
 芳香族ビニル単量体単位を50~80質量%、不飽和ジカルボン酸無水物単量体単位を10~30質量%、アクリル化合物単量体単位を5~25質量%含んでなり、且つ、不飽和ジカルボン酸無水物単量体単位の質量%がアクリル化合物単量体単位の質量%よりも大きい共重合体(b1)を含むか、または
 該共重合体(b1)と、アクリル化合物単量体単位を主成分として含むアクリル樹脂(b2)とを含むことを特徴とする、樹脂積層体である。
That is, the present invention has the characteristics described below.
[1] A resin laminate in which a thermoplastic resin (B) is laminated on at least one surface of a polycarbonate resin (A) sheet mainly composed of a polycarbonate resin,
The thermoplastic resin (B)
It contains 50 to 80% by weight of aromatic vinyl monomer units, 10 to 25% by weight of unsaturated dicarboxylic acid anhydride monomer units, 5 to 24% by weight of acrylic compound monomer units, and The copolymer (b1) contains a copolymer (b1) in which the mass% of the saturated dicarboxylic acid anhydride monomer unit is larger than the mass% of the acrylic compound monomer unit, or the acrylic compound monomer It is a resin laminated body characterized by including the acrylic resin (b2) which contains a unit as a main component.
[2] The copolymer (b1) is 55 to 90 parts by mass based on 100 parts by mass in total of the contents of the copolymer (b1) and the acrylic resin (b2) in the thermoplastic resin (B). The resin (b2) is 45 to 10 parts by mass, and the acrylic resin (b2) containing an acrylic compound monomer unit as a main component contains 80% by mass or more of the acrylic compound monomer unit [1] It is a resin laminated body as described in above.
[3] The copolymer (b1) is 10 to 40 parts by mass based on the total content of the copolymer (b1) and the acrylic resin (b2) in the thermoplastic resin (B) being 100 to 40 parts by mass. The resin (b2) is 90 to 60 parts by mass, and the acrylic resin (b2) containing an acrylic compound monomer unit as a main component contains an acrylic compound monomer unit of less than 80% by mass [1] It is a resin laminated body as described in above.
[4] The resin laminate according to any one of [1] to [3], wherein the thermoplastic resin (B) is a polymer alloy of the copolymer (b1) and the acrylic resin (b2).
[5] When the indentation hardness of the thermoplastic resin (B) is HIT hardness {thermoplastic resin} and the indentation hardness of the acrylic resin (b2) is HIT hardness {acrylic resin}, the HIT hardness {thermoplastic resin} Is a resin divided by HIT hardness {acrylic resin} (HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin}) of 1.01 or more. It is a laminate.
[6] The resin laminate according to any one of [1] to [5], wherein the pencil hardness of the surface of the thermoplastic resin (B) is equal to or greater than the pencil hardness of the surface of the acrylic resin (b2) alone. It is.
[7] The resin laminate according to any one of [1] to [6], wherein the aromatic vinyl monomer unit contained in the copolymer (b1) is styrene.
[8] The resin laminate according to any one of [1] to [7], wherein the unsaturated dicarboxylic acid anhydride monomer unit contained in the copolymer (b1) is maleic anhydride.
[9] The resin laminate according to any one of [1] to [8], wherein the acrylic compound monomer unit contained in the copolymer (b1) is a methacrylic acid ester.
[10] The resin laminate according to any one of [1] to [9], wherein the copolymer (b1) has a weight average molecular weight (Mw) of 50,000 to 300,000.
[11] Any of [1] to [10] above, wherein the thermoplastic resin (B) layer has a thickness of 10 to 250 μm and the total thickness of the resin laminate is in the range of 0.05 to 3.0 mm. It is a resin laminated body of a crab.
[12] The resin laminate according to any one of [1] to [11], wherein the polycarbonate resin (A) has a weight average molecular weight of 25,000 to 75,000.
[13] The resin laminate according to any one of [1] to [12], wherein the resin laminate has a total light transmittance of 75% or more and a Haze of 30% or less.
[14] The resin laminate according to any one of [1] to [13], wherein at least one of the thermoplastic resin (B) layer and the polycarbonate-based resin (A) layer contains an ultraviolet absorber. .
[15] The resin laminate according to any one of [1] to [14], further comprising a hard coat layer on the surface of the thermoplastic resin (B) layer.
[16] One or more of the anti-fingerprint treatment, antireflection treatment, antiglare treatment, weather resistance treatment, antistatic treatment and antifouling treatment are applied to one or both surfaces of the resin laminate. [1] -The resin laminate according to any one of [15].
[17] A transparent substrate material comprising the resin laminate according to any one of [1] to [16].
[18] A transparent protective material comprising the resin laminate according to any one of [1] to [17].
[19] A touch panel front protective plate including the resin laminate according to any one of [1] to [18].
[20] A front plate for an OA device or a portable electronic device, comprising the resin laminate according to any one of [1] to [16].
[21] A resin laminate in which a thermoplastic resin (B) is laminated on at least one surface of a polycarbonate-based resin (A) sheet mainly composed of a polycarbonate resin,
The thermoplastic resin (B)
It contains 50 to 80% by weight of aromatic vinyl monomer units, 10 to 30% by weight of unsaturated dicarboxylic anhydride monomer units, 5 to 25% by weight of acrylic compound monomer units, and The copolymer (b1) contains a copolymer (b1) in which the mass% of the saturated dicarboxylic acid anhydride monomer unit is larger than the mass% of the acrylic compound monomer unit, or the acrylic compound monomer It is a resin laminated body characterized by including the acrylic resin (b2) which contains a unit as a main component.
 本発明によれば、高温高湿な環境下における反り防止性などの形状安定性、且つ、アクリル樹脂単体と同等以上の表面硬度を有する樹脂積層体が提供され、該樹脂積層体は透明基板材料や透明保護材料として用いることができる。具体的には携帯電話端末、携帯型電子遊具、携帯情報端末、モバイルPCといった携帯型のディスプレイデバイスや、ノート型PC、デスクトップ型PC液晶モニター、液晶テレビといった設置型のディスプレイデバイスなどにおいて、例えばこれらの機器を保護する前面板として、好適に使用することができる。 According to the present invention, there is provided a resin laminate having shape stability such as warpage prevention in a high-temperature and high-humidity environment, and a surface hardness equal to or greater than that of a single acrylic resin, and the resin laminate is a transparent substrate material. Or as a transparent protective material. Specifically, in portable display devices such as mobile phone terminals, portable electronic play equipment, portable information terminals, and mobile PCs, and stationary display devices such as notebook PCs, desktop PC liquid crystal monitors, liquid crystal televisions, etc. It can be suitably used as a front plate for protecting the device.
 以下、本発明について製造例や実施例等を例示して詳細に説明するが、本発明は例示される製造例や実施例等に限定されるものではなく、本発明の内容を大きく逸脱しない範囲であれば任意の方法に変更して行うこともできる。 Hereinafter, the present invention will be described in detail with reference to production examples and examples, but the present invention is not limited to the illustrated production examples and examples, and the scope of the present invention is not greatly deviated. If so, it can be changed to any method.
 本発明は、ポリカーボネート樹脂を主成分とするポリカーボネート系樹脂シート(A)の少なくとも一方の面に、熱可塑性樹脂(B)が積層されてなる樹脂積層体に関するものであり、この熱可塑性樹脂(B)が、芳香族ビニル単量体単位を50~80質量%、不飽和ジカルボン酸無水物単量体単位を10~25質量%、アクリル化合物単量体単位を5~24質量%含んでなり、且つ、不飽和ジカルボン酸無水物単量体単位の質量%がアクリル化合物単量体単位の質量%よりも大きい共重合体(b1)を含むか、または該共重合体(b1)と、アクリル化合物単量体単位を主成分として含むアクリル樹脂(b2)とを含むことを特徴とする樹脂積層体に関するものである。 The present invention relates to a resin laminate in which a thermoplastic resin (B) is laminated on at least one surface of a polycarbonate-based resin sheet (A) containing a polycarbonate resin as a main component, and this thermoplastic resin (B ) Comprises 50-80% by weight of aromatic vinyl monomer units, 10-25% by weight of unsaturated dicarboxylic acid anhydride monomer units, and 5-24% by weight of acrylic compound monomer units, In addition, the copolymer (b1), in which the mass% of the unsaturated dicarboxylic acid anhydride monomer unit is larger than the mass% of the acrylic compound monomer unit, or the copolymer (b1) and the acrylic compound The present invention relates to a resin laminate comprising an acrylic resin (b2) containing a monomer unit as a main component.
<ポリカーボネート系樹脂(A)>
 本発明に使用されるポリカーボネート系樹脂(A)はポリカーボネート樹脂を主成分とするポリカーボネート系樹脂(A)である。ここで、「ポリカーボネート樹脂を主成分とする」とは、ポリカーボネート樹脂の含有量が50質量%を超えることを意味する。ポリカーボネート系樹脂(A)は、75質量%以上のポリカーボネート樹脂を含んでいるのが好ましく、90質量%以上のポリカーボネート樹脂を含んでいるのがより好ましく、実質的にポリカーボネート樹脂からなるのがさらに好ましい。ポリカーボネート系樹脂(A)は分子主鎖中に炭酸エステル結合を含む。即ち、-[O-R-OCO]-単位(式中、Rが脂肪族基、芳香族基、又は脂肪族基と芳香族基の双方を含むもの、さらに直鎖構造あるいは分岐構造を持つものを示す)を含むものであれば特に限定されるものではないが、特に下記式[1]の構造単位を含むポリカーボネートを使用することが好ましい。このようなポリカーボネートを使用することで、耐衝撃性に優れた樹脂積層体を得ることができる。
Figure JPOXMLDOC01-appb-C000001
 
 具体的には、ポリカーボネート系樹脂(A)として、芳香族ポリカーボネート樹脂(例えば、三菱エンジニアリングプラスチックス株式会社から市販されている、ユーピロンS-2000、ユーピロンS-1000、ユーピロンE-2000)等が使用可能である。
<Polycarbonate resin (A)>
The polycarbonate resin (A) used in the present invention is a polycarbonate resin (A) mainly composed of a polycarbonate resin. Here, “having a polycarbonate resin as a main component” means that the content of the polycarbonate resin exceeds 50 mass%. The polycarbonate-based resin (A) preferably contains 75% by mass or more of polycarbonate resin, more preferably 90% by mass or more of polycarbonate resin, and further preferably substantially consists of polycarbonate resin. . The polycarbonate resin (A) contains a carbonate ester bond in the molecular main chain. That is, — [O—R—OCO] — unit (wherein R includes an aliphatic group, an aromatic group, or both an aliphatic group and an aromatic group, and further has a linear structure or a branched structure) In particular, it is preferable to use a polycarbonate containing a structural unit of the following formula [1]. By using such a polycarbonate, a resin laminate excellent in impact resistance can be obtained.
Figure JPOXMLDOC01-appb-C000001

Specifically, as the polycarbonate resin (A), an aromatic polycarbonate resin (for example, Iupilon S-2000, Iupilon S-1000, Iupilon E-2000 commercially available from Mitsubishi Engineering Plastics Co., Ltd.) is used. Is possible.
 近年、前面板にも曲げ加工を行うような要望が増えていることから、ポリカーボネート系樹脂(A)は、下記式[2]で表わされる1価フェノールを末端停止剤として用いて合成することが好ましい。
Figure JPOXMLDOC01-appb-C000002
 
(式中、Rは、炭素数8~36のアルキル基、又は炭素数8~36のアルケニル基を表し、
 R~Rはそれぞれ水素、ハロゲン、又は置換基を有してもよい炭素数1~20のアルキル基若しくは炭素数6~12のアリール基を表し、置換基は、ハロゲン、炭素数1~20のアルキル基、又は炭素数6~12のアリール基である。)
In recent years, since there is an increasing demand for bending the front plate, the polycarbonate resin (A) can be synthesized using a monohydric phenol represented by the following formula [2] as a terminal stopper. preferable.
Figure JPOXMLDOC01-appb-C000002

(Wherein R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms;
R 2 to R 5 each represent hydrogen, halogen, or an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms which may have a substituent. An alkyl group having 20 carbon atoms, or an aryl group having 6 to 12 carbon atoms. )
 一般式[2]の1価フェノールは、下記式[3]で表わされる1価フェノールであることがより好ましい。
Figure JPOXMLDOC01-appb-C000003
 
(式中、Rは、炭素数8~36のアルキル基、又は、炭素数8~36のアルケニル基を表す。)
The monohydric phenol of the general formula [2] is more preferably a monohydric phenol represented by the following formula [3].
Figure JPOXMLDOC01-appb-C000003

(In the formula, R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms.)
 一般式[2]又は一般式[3]におけるRの炭素数は特定の数値範囲内であることがより好ましい。具体的には、Rの炭素数の上限値として22がより好ましく、18が特に好ましい。また、Rの炭素数の下限値として、12がより好ましい。 In general formula [2] or general formula [3], the carbon number of R 1 is more preferably within a specific numerical range. Specifically, 22 is more preferable as the upper limit value of the carbon number of R 1 , and 18 is particularly preferable. Moreover, 12 is more preferable as the lower limit of the carbon number of R 1 .
 一般式[2]又は一般式[3]で示される1価フェノール(末端停止剤)の中でも、パラヒドロキシ安息香酸ヘキサデシルエステル、パラヒドロキシ安息香酸2-ヘキシルデシルエステルのいずれかもしくは両方を末端停止剤として使用することが特に好ましい。 Among the monohydric phenols (terminal terminators) represented by general formula [2] or general formula [3], either or both of parahydroxybenzoic acid hexadecyl ester and parahydroxybenzoic acid 2-hexyldecyl ester are terminated. It is particularly preferable to use it as an agent.
 Rとして、例えば、炭素数16のアルキル基を有する1価フェノール(末端停止剤)を使用した場合、ガラス転移温度、溶融流動性、成形性、耐ドローダウン性、ポリカーボネート樹脂製造時の1価フェノールの溶剤溶解性が優れており、本発明に用いるポリカーボネート樹脂に使用する末端停止剤として、特に好ましい。 For example, when R 1 is a monohydric phenol (termination terminator) having an alkyl group having 16 carbon atoms, glass transition temperature, melt fluidity, moldability, draw-down resistance, monovalent during the production of polycarbonate resin The solvent solubility of phenol is excellent, and it is particularly preferable as a terminal terminator used in the polycarbonate resin used in the present invention.
 一方、一般式[2]又は一般式[3]におけるRの炭素数が増加しすぎると、1価フェノール(末端停止剤)の有機溶剤溶解性が低下する傾向があり、ポリカーボネート樹脂製造時の生産性が低下することがある。
 一例として、Rの炭素数が36以下であれば、ポリカーボネート樹脂を製造するにあたって生産性が高く、経済性も良い。Rの炭素数が22以下であれば、1価フェノールは、特に有機溶剤溶解性に優れており、ポリカーボネート樹脂を製造するにあたって生産性を非常に高くすることができ、経済性も向上する。
 一般式[2]又は一般式[3]におけるRの炭素数が小さすぎると、ポリカーボネート樹脂のガラス転移温度が十分に低い値とはならず、熱成形性が低下することがある。
On the other hand, when the carbon number of R 1 in the general formula [2] or the general formula [3] is excessively increased, the solubility of the monohydric phenol (terminal stopper) in the organic solvent tends to decrease, and the polycarbonate resin is produced. Productivity may be reduced.
As an example, if the carbon number of R 1 is 36 or less, the productivity is high and the economy is good in producing a polycarbonate resin. If the carbon number of R 1 is 22 or less, monohydric phenol is particularly excellent in organic solvent solubility, and can be very productive in producing a polycarbonate resin, and economical efficiency is also improved.
When the carbon number of R 1 in the general formula [2] or the general formula [3] is too small, the glass transition temperature of the polycarbonate resin does not become a sufficiently low value, and the thermoformability may be lowered.
 ポリカーボネート系樹脂(A)に含まれる他の樹脂としては、ポリエステル系樹脂がある。ポリエステル系樹脂は、ジカルボン酸成分として、テレフタル酸を主成分として含んでいればよく、テレフタル酸以外のジカルボン酸成分を含んでいてもよい。
例えば、主成分であるエチレングリコール80~60(モル比率)に対して1,4-シクロヘキサンジメタノールを20~40(モル比率、合計100)含むグリコール成分とが重縮合してなるポリエステル系樹脂、所謂「PETG」が好ましい。また、ポリカーボネート系樹脂(A)には、エステル結合とカーボネート結合をポリマー骨格中に有するポリエステルカーボネート系樹脂が含まれていてもよい。
Another resin contained in the polycarbonate resin (A) is a polyester resin. The polyester resin only needs to contain terephthalic acid as a main component as the dicarboxylic acid component, and may contain a dicarboxylic acid component other than terephthalic acid.
For example, a polyester resin obtained by polycondensation of a glycol component containing 20 to 40 (molar ratio, total 100) of 1,4-cyclohexanedimethanol with respect to ethylene glycol 80 to 60 (molar ratio) as a main component, So-called “PETG” is preferred. The polycarbonate resin (A) may contain a polyester carbonate resin having an ester bond and a carbonate bond in the polymer skeleton.
本発明において、ポリカーボネート系樹脂(A)の重量平均分子量は、樹脂積層体の耐衝撃性および成形条件に影響する。つまり、重量平均分子量が小さすぎる場合は、樹脂積層体の耐衝撃性が低下するので好ましくない。重量平均分子量が高すぎる場合は、ポリカーボネート系樹脂(A)を含む樹脂層を積層させる時に過剰な熱源を必要とする場合があり、好ましくない。また成形法によっては高い温度が必要になるので、ポリカーボネート系樹脂(A)が高温にさらされることになり、その熱安定性に悪影響を及ぼすことがある。ポリカーボネート系樹脂(A)の重量平均分子量は、15,000~75,000が好ましく、20,000~70,000がより好ましい。さらに好ましくは25,000~65,000である。 In the present invention, the weight average molecular weight of the polycarbonate resin (A) affects the impact resistance and molding conditions of the resin laminate. That is, when the weight average molecular weight is too small, the impact resistance of the resin laminate is lowered, which is not preferable. When the weight average molecular weight is too high, an excessive heat source may be required when laminating the resin layer containing the polycarbonate resin (A), which is not preferable. Further, since a high temperature is required depending on the molding method, the polycarbonate resin (A) is exposed to a high temperature, which may adversely affect its thermal stability. The weight-average molecular weight of the polycarbonate resin (A) is preferably 15,000 to 75,000, more preferably 20,000 to 70,000. More preferably, it is 25,000 to 65,000.
<ポリカーボネート系樹脂(A)の重量平均分子量の測定法>
 ポリカーボネート系樹脂(A)の重量平均分子量は、特開2007-179018号公報の段落0061~0064の記載に基づいて測定することができる。測定法の詳細を以下に示す。
Figure JPOXMLDOC01-appb-T000004
 
<Measurement method of weight average molecular weight of polycarbonate resin (A)>
The weight average molecular weight of the polycarbonate resin (A) can be measured based on the description in paragraphs 0061 to 0064 of JP-A-2007-179018. Details of the measurement method are shown below.
Figure JPOXMLDOC01-appb-T000004
 標準ポリマーとしてポリスチレン(PS)を使用して測定を行った後、ユニバーサルキャリブレーション法により、溶出時間とポリカーボネート(PC)の分子量との関係を求めて検量線とする。そして、PCの溶出曲線(クロマトグラム)を検量線の場合と同一の条件で測定し、溶出時間(分子量)とその溶出時間のピーク面積(分子数)とから各平均分子量を求める。分子量Miの分子数をNiとすると、重量平均分子量は、以下のように表される。また換算式は以下の式を使用した。
(重量平均分子量)
Mw=Σ(NiMi)/Σ(NiMi)
(換算式)
MPC=0.47822MPS1.01470
なお、MPCはPCの分子量、MPSはPSの分子量を示す。
After measuring using polystyrene (PS) as the standard polymer, the relationship between the elution time and the molecular weight of the polycarbonate (PC) is obtained by a universal calibration method to obtain a calibration curve. Then, the PC elution curve (chromatogram) is measured under the same conditions as in the calibration curve, and each average molecular weight is determined from the elution time (molecular weight) and the peak area (number of molecules) of the elution time. When the number of molecules of the molecular weight Mi is Ni, the weight average molecular weight is expressed as follows. Moreover, the following formula was used for the conversion formula.
(Weight average molecular weight)
Mw = Σ (NiMi 2 ) / Σ (NiMi)
(Conversion formula)
MPC = 0.47822MPS 1.01470
MPC represents the molecular weight of PC, and MPS represents the molecular weight of PS.
 本発明に使用されるポリカーボネート系樹脂(A)の製造方法は、公知のホスゲン法(界面重合法)、エステル交換法(溶融法)等、使用するモノマーにより適宜選択できる。 The production method of the polycarbonate-based resin (A) used in the present invention can be appropriately selected depending on the monomers used, such as a known phosgene method (interfacial polymerization method) and transesterification method (melting method).
<熱可塑性樹脂(B)>
 本発明に使用される熱可塑性樹脂(B)は、後述の共重合体(b1)を含むか、または 該共重合体(b1)とアクリル化合物単量体単位を主成分として含むアクリル樹脂(b2)とを含む。それぞれの構成要素について以下に説明する。
<Thermoplastic resin (B)>
The thermoplastic resin (B) used in the present invention contains a copolymer (b1) described later, or an acrylic resin (b2) containing the copolymer (b1) and an acrylic compound monomer unit as main components. ). Each component will be described below.
[共重合体(b1)]
 本発明による熱可塑性樹脂(B)に含まれる共重合体(b1)は、芳香族ビニル単量体単位を50~80質量%、好ましくは50~75質量%、より好ましくは50~70質量%、不飽和ジカルボン酸無水物単量体単位を10~30質量%、好ましくは10~25質量%、より好ましくは15~25質量%、およびアクリル化合物単量体単位を5~25質量%、好ましくは5~24質量%、より好ましくは8~21質量%含んでなり、且つ不飽和ジカルボン酸無水物単量体単位の質量%がアクリル化合物単量体単位の質量%よりも大きい共重合体(b1)である。
[Copolymer (b1)]
The copolymer (b1) contained in the thermoplastic resin (B) according to the present invention contains 50 to 80% by mass of an aromatic vinyl monomer unit, preferably 50 to 75% by mass, more preferably 50 to 70% by mass. The unsaturated dicarboxylic acid anhydride monomer unit is 10 to 30% by mass, preferably 10 to 25% by mass, more preferably 15 to 25% by mass, and the acrylic compound monomer unit is 5 to 25% by mass, preferably Is a copolymer comprising 5 to 24% by weight, more preferably 8 to 21% by weight, and the unsaturated dicarboxylic acid anhydride monomer unit is more than the acrylic compound monomer unit. b1).
 芳香族ビニル単量体としては、特に限定されず、任意の公知の芳香族ビニル単量体を用いる事が出来るが、入手の容易性の観点から、スチレン、α―メチルスチレン、o―メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン等が挙げられる。これらの中でも、相溶性の観点からスチレンが特に好ましい。これらの芳香族ビニル単量体は2種以上を混合してもよい。 The aromatic vinyl monomer is not particularly limited, and any known aromatic vinyl monomer can be used. From the viewpoint of availability, styrene, α-methylstyrene, o-methylstyrene. M-methylstyrene, p-methylstyrene, t-butylstyrene and the like. Among these, styrene is particularly preferable from the viewpoint of compatibility. Two or more of these aromatic vinyl monomers may be mixed.
 不飽和ジカルボン酸無水物単量体としては、マレイン酸、イタコン酸、シトラコン酸、アコニット酸等の酸無水物が挙げられ、アクリル樹脂との相溶性の観点から無水マレイン酸が好ましい。これらの不飽和ジカルボン酸無水物単量体は2種以上を混合してもよい。 Examples of the unsaturated dicarboxylic acid anhydride monomer include maleic acid, itaconic acid, citraconic acid, aconitic acid and other acid anhydrides, and maleic anhydride is preferred from the viewpoint of compatibility with acrylic resins. Two or more of these unsaturated dicarboxylic acid anhydride monomers may be mixed.
 本明細書において、「アクリル化合物単量体」には、アクリロニトリル、メタアクリロニトリル、アクリル酸、メタクリル酸および(メタ)アクリル酸エステルが含まれるものとする。(メタ)アクリル酸エステルとしては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸2エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル及びメタクリル酸2エチルヘキシル等が挙げられる。その中でも、アクリル樹脂との相溶性の観点からメタクリル酸メチル(MMA)が好ましい。これらのアクリル化合物単量体は2種以上を混合してもよい。 In the present specification, “acrylic compound monomer” includes acrylonitrile, methacrylonitrile, acrylic acid, methacrylic acid and (meth) acrylic acid ester. Examples of (meth) acrylic acid esters include methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, and 2-ethylhexyl methacrylate. It is done. Among these, methyl methacrylate (MMA) is preferable from the viewpoint of compatibility with the acrylic resin. Two or more of these acrylic compound monomers may be mixed.
 共重合体(b1)の重量平均分子量(Mw)は5万~30万であるのが好ましく、10万~20万であるのがより好ましい。重量平均分子量が5万~30万である場合において、アクリル樹脂(b2)との相溶性が良好である。なお、重量平均分子量(Mw)、数平均分子量(Mn)、及び分子量分布(Mw/Mn)は、溶媒としてTHFやクロロホルムを用いたゲルパーミエーションクロマトグラフィーを用いて測定を行うことができる。 The weight average molecular weight (Mw) of the copolymer (b1) is preferably 50,000 to 300,000, and more preferably 100,000 to 200,000. When the weight average molecular weight is 50,000 to 300,000, the compatibility with the acrylic resin (b2) is good. In addition, a weight average molecular weight (Mw), a number average molecular weight (Mn), and molecular weight distribution (Mw / Mn) can be measured using the gel permeation chromatography which used THF and chloroform as a solvent.
[アクリル樹脂(b2)]
 本発明に使用される熱可塑性樹脂(B)は、好ましくは上記共重合体(b1)に加えて、アクリル化合物単量体単位を主成分として含むアクリル樹脂(b2)を含む。ここで、「アクリル化合物単量体単位を主成分として含む」とは、アクリル化合物単量体単位の含有量が50質量%を超えることを意味する。アクリル樹脂(b2)は、60質量%以上のアクリル化合物単量体単位を含んでいるのが好ましく、75質量%以上のアクリル化合物単量体単位を含んでいるのがより好ましい。また、アクリル樹脂(b2)は、実質的にアクリル化合物単量体単位からなる単独重合体であってもよく、他の単量体単位を含む共重合体であってもよい。
[Acrylic resin (b2)]
The thermoplastic resin (B) used in the present invention preferably contains an acrylic resin (b2) containing an acrylic compound monomer unit as a main component in addition to the copolymer (b1). Here, “comprising an acrylic compound monomer unit as a main component” means that the content of the acrylic compound monomer unit exceeds 50 mass%. The acrylic resin (b2) preferably contains 60% by mass or more of acrylic compound monomer units, and more preferably contains 75% by mass or more of acrylic compound monomer units. Further, the acrylic resin (b2) may be a homopolymer substantially consisting of an acrylic compound monomer unit or a copolymer containing other monomer units.
 本発明で用いられるアクリル化合物単量体としては、例えばアクリロニトリル、メタアクリロニトリル、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n―ブチル、アクリル酸2エチルヘキシル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2エチルヘキシル等の(メタ)アクリル酸エステル単量体単位が挙げられ、特にメタクリル酸メチルが好ましい。また、アクリル樹脂(b2)はこれらの単量体単位を単独重合したものでもよいが、2種類以上の単量体単位を含んだ共重合体でもよい。 Examples of the acrylic compound monomer used in the present invention include acrylonitrile, methacrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methacrylic acid, methyl methacrylate, and methacrylic acid. Examples include (meth) acrylic acid ester monomer units such as ethyl, n-butyl methacrylate, and 2-ethylhexyl methacrylate, and methyl methacrylate is particularly preferable. The acrylic resin (b2) may be a polymer obtained by homopolymerizing these monomer units, but may also be a copolymer containing two or more types of monomer units.
 アクリル樹脂(b2)は、アクリル化合物単量体が主成分でありさえすれば、アクリル化合物単量体以外の単量体を含む共重合体であってもよい。そのようなアクリル化合物単量体以外の単量体としては、特に限定されないが、マレイン酸、イタコン酸、シトラコン酸、アコニット酸等の酸無水物等の不飽和ジカルボン酸無水物単量体や、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン等の芳香族ビニル単量体、N-フェニルマレイミド、N-クロロフェニルマレイミド、N-メチルフェニルマレイミド、N-ナフチルマレイミド、N-ヒドロキシフェニルマレイミド、N-メトキシフェニルマレイミド、N-カルボキシフェニルマレイミド、N-ニトロフェニルマレイミド、N-トリブロモフェニルマレイミドなどのN-アリールマレイミド等のN-置換型マレイミド単量体等が挙げられる。そのような単量体を含む共重合体としては、例えば、芳香族ビニル単量体単位を16質量%、不飽和ジカルボン酸無水物単量体単位を8質量%、およびアクリル化合物単量体単位を76質量%含む共重合体や、芳香族ビニル単量体単位を4質量%、N-置換型マレイミド単量体単位を15質量%、およびアクリル化合物単量体単位を81質量%含む共重合体等を使用することができる。 The acrylic resin (b2) may be a copolymer containing a monomer other than the acrylic compound monomer as long as the acrylic compound monomer is the main component. The monomer other than the acrylic compound monomer is not particularly limited, but an unsaturated dicarboxylic acid anhydride monomer such as an acid anhydride such as maleic acid, itaconic acid, citraconic acid, and aconitic acid, Aromatic vinyl monomers such as styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene, N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide N-substituted maleimides such as N-arylmaleimide, N-naphthylmaleimide, N-hydroxyphenylmaleimide, N-methoxyphenylmaleimide, N-carboxyphenylmaleimide, N-nitrophenylmaleimide, N-tribromophenylmaleimide, etc. Examples include a polymer. Examples of the copolymer containing such a monomer include 16% by mass of an aromatic vinyl monomer unit, 8% by mass of an unsaturated dicarboxylic acid anhydride monomer unit, and an acrylic compound monomer unit. Copolymer containing 76% by mass, copolymer containing 4% by mass of aromatic vinyl monomer units, 15% by mass of N-substituted maleimide monomer units, and 81% by mass of acrylic compound monomer units. Coalescence etc. can be used.
 本発明において、アクリル化合物単量体単位を主成分として含むアクリル樹脂(b2)の重量平均分子量は、共重合体(b1)との混合(分散)のしやすさ、およびこれらのポリマーアロイした熱可塑性樹脂(B)層の製造の容易さで決定される。つまり、アクリル化合物単量体単位を主成分として含むアクリル樹脂(b2)の重量平均分子量が大きすぎるとアクリル樹脂(b2)と共重合体(b1)の溶融粘度差が大きくなりすぎる為に、両者の混合(分散)が悪くなって、これらのポリマーアロイした熱可塑性樹脂(B)層の透明性が悪化する可能性や、あるいは安定した溶融混練が継続できないといった不具合が起こる可能性がある。逆に、アクリル化合物単量体単位を主成分として含むアクリル樹脂(b2)の重量平均分子量が小さすぎると、これらのポリマーアロイした熱可塑性樹脂(B)層の強度が低下するので、樹脂積層体の耐衝撃性が低下するといった問題が発生する可能性がある。アクリル化合物単量体単位を主成分として含むアクリル樹脂(b2)の重量平均分子量は、50,000~700,000の範囲が好ましく、60,000~550,000の範囲がより好ましい。さらに好ましくは70,000~500,000の範囲である。 In the present invention, the weight-average molecular weight of the acrylic resin (b2) containing an acrylic compound monomer unit as a main component is easy to mix (disperse) with the copolymer (b1), and the heat of these polymer alloys. It is determined by the ease of production of the plastic resin (B) layer. That is, if the weight average molecular weight of the acrylic resin (b2) containing the acrylic compound monomer unit as a main component is too large, the difference in melt viscosity between the acrylic resin (b2) and the copolymer (b1) becomes too large. The mixing (dispersing) of the polymer becomes worse, and the transparency of the polymer-alloyed thermoplastic resin (B) layer may be deteriorated, or a problem that stable melt-kneading cannot be continued may occur. On the contrary, if the weight average molecular weight of the acrylic resin (b2) containing the acrylic compound monomer unit as a main component is too small, the strength of the polymer-alloyed thermoplastic resin (B) layer is lowered. There is a possibility that a problem such as a decrease in impact resistance of the steel may occur. The weight average molecular weight of the acrylic resin (b2) containing an acrylic compound monomer unit as a main component is preferably in the range of 50,000 to 700,000, and more preferably in the range of 60,000 to 550,000. More preferably, it is in the range of 70,000 to 500,000.
 共重合体(b1)とアクリル樹脂(b2)の含有量の合計100質量部を基準として、共重合体(b1)が5~100質量部に対して、アクリル樹脂(b2)が95~0質量部であることが好ましい。より好ましくは10~100質量部に対して、アクリル樹脂(b2)が90~0質量部であり、さらに好ましくは、共重合体(b1)が10~95質量部に対して、アクリル樹脂(b2)が90~5質量部である。アクリル化合物単量体単位を主成分として含むアクリル樹脂(b2)が80質量%未満のアクリル化合物単量体単位を含んでいる場合、共重合体(b1)が10~40質量部に対してアクリル樹脂(b2)が90~60質量部であるのがさらに好ましい。また、アクリル化合物単量体単位を主成分として含むアクリル樹脂(b2)が80質量%以上のアクリル化合物単量体単位を含んでいる場合、共重合体(b1)55~90質量部に対して、アクリル樹脂(b2)が45~10質量部であるのがさらに好ましい。この重量比内にすることにより、透明性を維持しつつ、アクリル樹脂(b2)単体と同等以上の表面硬度を有し、高温高湿な環境下における反り防止性などの形状安定性を有する熱可塑性樹脂(B)となる。 On the basis of the total content of the copolymer (b1) and the acrylic resin (b2) being 100 parts by mass, the copolymer (b1) is 5 to 100 parts by mass and the acrylic resin (b2) is 95 to 0 parts by mass. Part. More preferably, the acrylic resin (b2) is 90 to 0 parts by mass with respect to 10 to 100 parts by mass, and still more preferably the acrylic resin (b2) with respect to 10 to 95 parts by mass of the copolymer (b1). ) Is 90 to 5 parts by mass. When the acrylic resin (b2) containing an acrylic compound monomer unit as a main component contains less than 80% by mass of an acrylic compound monomer unit, the copolymer (b1) is acrylic with respect to 10 to 40 parts by mass. More preferably, the resin (b2) is 90 to 60 parts by mass. Further, when the acrylic resin (b2) containing the acrylic compound monomer unit as a main component contains 80% by mass or more of the acrylic compound monomer unit, the copolymer (b1) is 55 to 90 parts by mass. The acrylic resin (b2) is more preferably 45 to 10 parts by mass. By making it within this weight ratio, thermoplasticity having a surface hardness equal to or higher than that of the acrylic resin (b2) alone and having shape stability such as warpage prevention in a high temperature and high humidity environment while maintaining transparency. Resin (B).
[共重合体とアクリル樹脂のポリマーアロイ]
 本発明において、熱可塑性樹脂(B)が、共重合体(b1)とアクリル樹脂(b2)とのポリマーアロイであることが好ましい。ここで、ポリマーアロイとは二種類以上のポリマーを混合して得た複合材料をいう。このようなポリマーアロイは、ポリマーの機械的混合、溶融混合、または溶液混合等で得ることができる。ポリマーアロイを形成する場合、共重合体(b1)とアクリル樹脂(b2)の含有量は、これらの合計100重量部に対して、共重合体(b1)が5質量部以上100質量部未満であり、アクリル樹脂(b2)が0質量部を超え、95質量部以下である。好ましくは、共重合体(b1)が10質量部以上100質量部未満であり、アクリル樹脂(b2)が0質量部を超え、90質量部以下である。より好ましくは、共重合体(b1)が10~95質量部に対して、アクリル樹脂(b2)が90~5質量部である。アクリル化合物単量体単位を主成分として含むアクリル樹脂(b2)が80質量%未満のアクリル化合物単量体単位を含んでいる場合、共重合体(b1)が10~40質量部に対してアクリル樹脂(b2)が90~60質量部であるのがさらに好ましい。また、アクリル化合物単量体単位を主成分として含むアクリル樹脂(b2)が80質量%以上のアクリル化合物単量体単位を含んでいる場合、共重合体(b1)55~90質量部に対して、アクリル樹脂(b2)が45~10質量部であるのがさらに好ましい。
[Polymer alloy of copolymer and acrylic resin]
In the present invention, the thermoplastic resin (B) is preferably a polymer alloy of a copolymer (b1) and an acrylic resin (b2). Here, the polymer alloy refers to a composite material obtained by mixing two or more kinds of polymers. Such a polymer alloy can be obtained by mechanical mixing, melt mixing, or solution mixing of polymers. When the polymer alloy is formed, the content of the copolymer (b1) and the acrylic resin (b2) is such that the copolymer (b1) is 5 parts by mass or more and less than 100 parts by mass with respect to 100 parts by mass in total. Yes, the acrylic resin (b2) is more than 0 parts by mass and 95 parts by mass or less. Preferably, the copolymer (b1) is 10 parts by mass or more and less than 100 parts by mass, and the acrylic resin (b2) is more than 0 part by mass and 90 parts by mass or less. More preferably, the acrylic resin (b2) is 90 to 5 parts by mass with respect to the copolymer (b1) of 10 to 95 parts by mass. When the acrylic resin (b2) containing an acrylic compound monomer unit as a main component contains less than 80% by mass of an acrylic compound monomer unit, the copolymer (b1) is acrylic with respect to 10 to 40 parts by mass. More preferably, the resin (b2) is 90 to 60 parts by mass. Further, when the acrylic resin (b2) containing the acrylic compound monomer unit as a main component contains 80% by mass or more of the acrylic compound monomer unit, the copolymer (b1) is 55 to 90 parts by mass. The acrylic resin (b2) is more preferably 45 to 10 parts by mass.
 熱可塑性樹脂(B)の硬度については、インデンテーション硬度および鉛筆硬度で評価することができる。熱可塑性樹脂(B)のインデンテーション硬度をHIT硬度{熱可塑性樹脂}とし、アクリル樹脂(b2)のインデンテーション硬度をHIT硬度{アクリル樹脂}とするとき、HIT硬度{熱可塑性樹脂}をHIT硬度{アクリル樹脂}で除した値(HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂})が1.01以上であることが好ましく、より好ましくは1.04以上である。また、熱可塑性樹脂(B)の鉛筆硬度はアクリル樹脂(b1)単体の鉛筆硬度と同等以上であることが好ましい。 The hardness of the thermoplastic resin (B) can be evaluated by indentation hardness and pencil hardness. When the indentation hardness of the thermoplastic resin (B) is HIT hardness {thermoplastic resin} and the indentation hardness of the acrylic resin (b2) is HIT hardness {acrylic resin}, the HIT hardness {thermoplastic resin} is HIT hardness. The value divided by {acrylic resin} (HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin}) is preferably 1.01 or more, and more preferably 1.04 or more. The pencil hardness of the thermoplastic resin (B) is preferably equal to or higher than the pencil hardness of the acrylic resin (b1) alone.
<各種材料製造方法>
 本発明の合成樹脂積層体の製造方法は、特に限定されない。例えば、個別に形成した熱可塑性樹脂層(B)と、ポリカーボネート系樹脂層(A)とを積層して両者を加熱圧着する方法、個別に形成した熱可塑性樹脂層(B)とポリカーボネート系樹脂層(A)とを積層して、両者を接着剤によって接着する方法、熱可塑性樹脂(B)層とポリカーボネート系樹脂(A)層とを共押出成形する方法、予め形成しておいた熱可塑性樹脂(B)層を用いて、ポリカーボネート系樹脂(A)をインモールド成形して一体化する方法、などの各種方法があるが、製造コストや生産性の観点からは、共押出成形する方法が好ましい。
<Various material manufacturing methods>
The method for producing the synthetic resin laminate of the present invention is not particularly limited. For example, a method of laminating a separately formed thermoplastic resin layer (B) and a polycarbonate resin layer (A) and thermocompression bonding the two, a separately formed thermoplastic resin layer (B) and a polycarbonate resin layer A method of laminating (A) and bonding them together with an adhesive, a method of co-extrusion molding of a thermoplastic resin (B) layer and a polycarbonate-based resin (A) layer, a thermoplastic resin formed in advance There are various methods such as a method of in-mold molding and integrating the polycarbonate resin (A) using the (B) layer, but from the viewpoint of production cost and productivity, a method of co-extrusion molding is preferable. .
 本発明において、熱可塑性樹脂(B)の製造方法には特に制限はなく、必要な成分を、例えばタンブラーやヘンシェルミキサー、スーパーミキサーなどの混合機を用いて予め混合しておき、その後バンバリーミキサー、ロール、ブラベンダー、単軸押出機、二軸押出機、加圧ニーダーなどの機械で溶融混練するといった公知の方法が適用できる。 In the present invention, the production method of the thermoplastic resin (B) is not particularly limited, and necessary components are mixed in advance using a mixer such as a tumbler, a Henschel mixer, or a super mixer, and then a Banbury mixer, A known method such as melt kneading by a machine such as a roll, a brabender, a single screw extruder, a twin screw extruder, or a pressure kneader can be applied.
<樹脂積層体>
 本発明において、熱可塑性樹脂(B)層の厚さは、樹脂積層体の表面硬度や耐衝撃性に影響する。つまり、熱可塑性樹脂(B)層の厚さが薄すぎると表面硬度が低くなり、好ましくない。熱可塑性樹脂(B)層の厚さが大きすぎると耐衝撃性が悪くなり好ましくない。熱可塑性樹脂(B)層の厚さは10~250μmが好ましく、30~200μmがより好ましい。さらに好ましくは60~150μmである。
<Resin laminate>
In the present invention, the thickness of the thermoplastic resin (B) layer affects the surface hardness and impact resistance of the resin laminate. That is, when the thickness of the thermoplastic resin (B) layer is too thin, the surface hardness is lowered, which is not preferable. If the thickness of the thermoplastic resin (B) layer is too large, the impact resistance deteriorates, which is not preferable. The thickness of the thermoplastic resin (B) layer is preferably 10 to 250 μm, more preferably 30 to 200 μm. More preferably, it is 60 to 150 μm.
 本発明において、樹脂積層体(シート)の全体厚さ、熱可塑性樹脂(B)層の厚さ、熱可塑性樹脂(B)層の組成が、樹脂積層体の高温高湿な環境下における反りに影響する。つまり、全体厚さが薄すぎると高温高湿な環境下における反りが大きくなり、全体厚さが厚い時には高温高湿な環境下における反りが小さくなる。また、熱可塑性樹脂(B)層の厚さが薄すぎると高温高湿な環境下における反りが小さくなるが硬度が低下し、熱可塑性樹脂(B)層の厚さが厚い時には高温高湿な環境下における反り大きくなるため、各々の全体厚さと熱可塑性樹脂(B)層の厚さに合わせた熱可塑性樹脂(B)層の共重合体(b1)とアクリル樹脂(b2)の重量比を見出す必要がある。具体的には、ポリカーボネート系樹脂(A)層と熱可塑性樹脂(B)層の合計厚みは好ましくは0.05~3.0mm、より好ましくは0.1~2.0mm、さらに好ましくは0.12~1.5mmである。 In the present invention, the total thickness of the resin laminate (sheet), the thickness of the thermoplastic resin (B) layer, and the composition of the thermoplastic resin (B) layer are warped in a high temperature and high humidity environment of the resin laminate. Affect. In other words, if the overall thickness is too thin, the warpage in a high-temperature and high-humidity environment increases. Further, if the thickness of the thermoplastic resin (B) layer is too thin, warpage in a high-temperature and high-humidity environment is reduced, but the hardness is reduced. When the thermoplastic resin (B) layer is thick, Since the warpage in the environment increases, the weight ratio of the copolymer (b1) and the acrylic resin (b2) of the thermoplastic resin (B) layer matched to the total thickness of each and the thickness of the thermoplastic resin (B) layer is set. Need to find out. Specifically, the total thickness of the polycarbonate resin (A) layer and the thermoplastic resin (B) layer is preferably 0.05 to 3.0 mm, more preferably 0.1 to 2.0 mm, still more preferably 0.00. 12 to 1.5 mm.
 本発明において、樹脂積層体(シート)の外観上、全光線透過率は好ましくは75%以上、より好ましくは80%以上、さらに好ましくは85%以上である。全光線透過率の上限値は、好ましくは95%である。樹脂積層体(シート)のHazeは好ましくは30%以下、より好ましくは25%以下、さらに好ましくは20%以下である。Hazeの下限値は好ましくは0.1%である。 In the present invention, from the appearance of the resin laminate (sheet), the total light transmittance is preferably 75% or more, more preferably 80% or more, and still more preferably 85% or more. The upper limit of the total light transmittance is preferably 95%. The haze of the resin laminate (sheet) is preferably 30% or less, more preferably 25% or less, and still more preferably 20% or less. The lower limit of Haze is preferably 0.1%.
<任意の添加剤>
 本発明において、基材層を形成するポリカーボネート系樹脂(A)および/または表層を形成する熱可塑性樹脂(B)には、上述の主たる成分以外の成分を含めることができる。
<Optional additives>
In the present invention, the polycarbonate-based resin (A) that forms the base layer and / or the thermoplastic resin (B) that forms the surface layer can contain components other than the main components described above.
 例えば、ポリカーボネート系樹脂(A)および/または熱可塑性樹脂(B)には、紫外線吸収剤を混合して使用することができる。紫外線吸収剤の含有量が含有量が多過ぎると、成形法によっては過剰な紫外線吸収剤が高い温度がかかることによって飛散し、成形環境を汚染するため不具合を起こすことがある。このことから紫外線吸収剤の含有割合は0~5質量%が好ましく、0~3質量%がより好ましく、さらに好ましくは0~1質量%である。紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-4-ドデシロキシベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノンなどのベンゾフェノン系紫外線吸収剤、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)ベンゾトリアゾール、(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノールなどのベンゾトリアゾール系紫外線吸収剤、サリチル酸フェニル、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエートなどのベンゾエート系紫外線吸収剤、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケートなどのヒンダードアミン系紫外線吸収剤、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジンなどのトリアジン系紫外線吸収剤などが挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。 For example, a polycarbonate resin (A) and / or a thermoplastic resin (B) can be used by mixing an ultraviolet absorber. If the content of the UV absorber is too high, depending on the molding method, excessive UV absorber may be scattered due to the high temperature applied, which may cause problems because it contaminates the molding environment. Accordingly, the content of the ultraviolet absorber is preferably 0 to 5% by mass, more preferably 0 to 3% by mass, and still more preferably 0 to 1% by mass. Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, 2-hydroxy -4-octadecyloxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, etc. Benzophenone UV absorber, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, 2- (2-hydroxy-3 -T-Butyl-5-methylphenyl) benzotriazo , Benzotriazole ultraviolet absorbers such as (2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol, phenyl salicylate, 2,4-di-t-butyl Benzoate UV absorbers such as phenyl-3,5-di-t-butyl-4-hydroxybenzoate, and hindered amine UV absorbers such as bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-ethoxyphenyl) -1,3 , 5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-dipheni -(2-hydroxy-4-butoxyphenyl) 1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4- Diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5- Triazine, 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl)- Examples include triazine-based ultraviolet absorbers such as 1,3,5-triazine. The method of mixing is not particularly limited, and a method of compounding the whole amount, a method of dry blending the master batch, a method of dry blending the whole amount, and the like can be used.
 本発明において、基材層を形成するポリカーボネート系樹脂(A)および/または表層を形成する熱可塑性樹脂(B)には、上記紫外線吸収剤以外にも、各種添加剤を混合して使用することができる。そのような添加剤としては、例えば、抗酸化剤や抗着色剤、抗帯電剤、離型剤、滑剤、染料、顔料、可塑剤、難燃剤、樹脂改質剤、相溶化剤、有機フィラーや無機フィラーといった強化材などが挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。 In the present invention, the polycarbonate resin (A) for forming the base material layer and / or the thermoplastic resin (B) for forming the surface layer may be used by mixing various additives in addition to the ultraviolet absorber. Can do. Examples of such additives include antioxidants and anti-coloring agents, antistatic agents, mold release agents, lubricants, dyes, pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, organic fillers, Examples thereof include reinforcing materials such as inorganic fillers. The method of mixing is not particularly limited, and a method of compounding the whole amount, a method of dry blending the master batch, a method of dry blending the whole amount, and the like can be used.
<任意の処理>
 本発明において、熱可塑性樹脂(B)層の表面、またはポリカーボネート系樹脂(A)層の表面にハードコート処理を施してもよい。例えば、熱エネルギーおよび/または光エネルギーを用いて硬化させるハードコート塗料を用いるハードコート処理によりハードコート層を形成する。熱エネルギーを用いて硬化させるハードコート塗料としては、例えば、ポリオルガノシロキサン系、架橋型アクリル系などの熱硬化性樹脂組成物が挙げられる。また、光エネルギーを用いて硬化させるハードコート塗料としては、例えば、1官能および/または多官能であるアクリレートモノマーおよび/またはオリゴマーからなる樹脂組成物に光重合開始剤が加えられた光硬化性樹脂組成物などが挙げられる。
<Arbitrary processing>
In the present invention, the surface of the thermoplastic resin (B) layer or the surface of the polycarbonate resin (A) layer may be subjected to a hard coat treatment. For example, the hard coat layer is formed by a hard coat process using a hard coat paint that is cured using thermal energy and / or light energy. Examples of the hard coat paint that is cured using thermal energy include polyorganosiloxane-based and cross-linked acrylic-based thermosetting resin compositions. In addition, as a hard coat paint that is cured using light energy, for example, a photocurable resin in which a photopolymerization initiator is added to a resin composition composed of monofunctional and / or polyfunctional acrylate monomers and / or oligomers. Examples thereof include a composition.
 本発明における熱可塑性樹脂(B)層の表面、またはポリカーボネート系樹脂(A)層の表面上に施す、光エネルギーを用いて硬化させるハードコート塗料としては、例えば、1,9-ノナンジオールジアクリレート20~60質量%と、1,9-ノナンジオールジアクリレートと共重合可能な2官能以上の多官能(メタ)アクリレートモノマーならびに2官能以上の多官能ウレタン(メタ)アクリレートオリゴマーおよび/または2官能以上の多官能ポリエステル(メタ)アクリレートオリゴマーおよび/または2官能以上の多官能エポキシ(メタ)アクリレートオリゴマーからなる化合物40~80質量%とからなる樹脂組成物の100質量部に、光重合開始剤が1~10質量部添加された光硬化性樹脂組成物などが挙げられる。 Examples of the hard coat paint to be cured using light energy applied on the surface of the thermoplastic resin (B) layer or the surface of the polycarbonate resin (A) layer in the present invention include 1,9-nonanediol diacrylate. Bifunctional or higher polyfunctional (meth) acrylate monomer and bifunctional or higher polyfunctional urethane (meth) acrylate oligomer and / or bifunctional or higher that can be copolymerized with 20 to 60% by mass and 1,9-nonanediol diacrylate The photopolymerization initiator is contained in 100 parts by mass of a resin composition comprising 40 to 80% by mass of a compound comprising a polyfunctional polyester (meth) acrylate oligomer and / or a polyfunctional epoxy (meth) acrylate oligomer having two or more functions. Examples thereof include a photocurable resin composition to which 10 parts by mass is added.
 本発明におけるハードコート塗料を塗布する方法は特に限定されず、公知の方法を用いることができる。例えば、スピンコート法、ディップ法、スプレー法、スライドコート法、バーコート法、ロールコート法、グラビアコート法、メニスカスコート法、フレキソ印刷法、スクリーン印刷法、ビートコート法、捌け法などが挙げられる。 The method for applying the hard coat paint in the present invention is not particularly limited, and a known method can be used. Examples include spin coating, dipping, spraying, slide coating, bar coating, roll coating, gravure coating, meniscus coating, flexographic printing, screen printing, beat coating, and blurring. .
 ハードコートの密着性を向上させる目的で、ハードコート前に塗布面の前処理を行うことがある。処理例として、サンドブラスト法、溶剤処理法、コロナ放電処理法、クロム酸処理法、火炎処理法、熱風処理法、オゾン処理法、紫外線処理法、樹脂組成物によるプライマー処理法などの公知の方法が挙げられる。 In order to improve the adhesion of the hard coat, pretreatment of the coated surface may be performed before the hard coat. Examples of treatment include known methods such as sandblasting, solvent treatment, corona discharge treatment, chromic acid treatment, flame treatment, hot air treatment, ozone treatment, ultraviolet treatment, and primer treatment with a resin composition. Can be mentioned.
 本発明における熱可塑性樹脂(B)層、ポリカーボネート系樹脂(A)層及びハードコートの各材料、例えば、熱可塑性樹脂(B)およびポリカーボネート系樹脂(A)等は、フィルター処理によりろ過精製されることが好ましい。フィルターを通して生成あるいは積層する事により異物や欠点といった外観不良が少ない合成樹脂積層体を得ることが出来る。ろ過方法に特に制限はなく、溶融ろ過、溶液ろ過、あるいはその組み合わせ等を使うことが出来る。 The thermoplastic resin (B) layer, the polycarbonate resin (A) layer, and the hard coat materials in the present invention, for example, the thermoplastic resin (B) and the polycarbonate resin (A) are filtered and purified by filtering. It is preferable. By producing or laminating through a filter, it is possible to obtain a synthetic resin laminate having few appearance defects such as foreign matters and defects. There is no restriction | limiting in particular in the filtration method, Melt filtration, solution filtration, or those combinations can be used.
 使用するフィルターに特に制限はなく、公知のものが使用でき、各材料の使用温度、粘度、ろ過精度により適宜選ばれる。フィルターの濾材としては、特に限定されないがポリプロピレン、コットン、ポリエステル、ビスコースレイヨンやグラスファイバーの不織布あるいはロービングヤーン巻物、フェノール樹脂含浸セルロース、金属繊維不織布焼結体、金属粉末焼結体、ブレーカープレート、あるいはこれらの組み合わせなど、いずれも使用可能である。特に耐熱性や耐久性、耐圧力性を考えると金属繊維不織布を焼結したタイプが好ましい。 The filter to be used is not particularly limited, and known filters can be used, and are appropriately selected depending on the use temperature, viscosity, and filtration accuracy of each material. The filter medium is not particularly limited, but polypropylene, cotton, polyester, viscose rayon or glass fiber nonwoven fabric or roving yarn roll, phenol resin impregnated cellulose, metal fiber nonwoven fabric sintered body, metal powder sintered body, breaker plate, Alternatively, any combination of these can be used. In view of heat resistance, durability, and pressure resistance, a type in which a metal fiber nonwoven fabric is sintered is preferable.
 ろ過精度は、ポリカーボネート系樹脂(A)については、50μm以下、好ましくは30μm以下、さらに好ましくは10μm以下である。またハードコート剤のろ過精度は、樹脂積層体の最表層に塗布される事から、20μm以下、好ましくは10μm以下、さらに好ましくは5μm以下である。 The filtration accuracy for the polycarbonate resin (A) is 50 μm or less, preferably 30 μm or less, and more preferably 10 μm or less. The filtration accuracy of the hard coat agent is 20 μm or less, preferably 10 μm or less, and more preferably 5 μm or less because it is applied to the outermost layer of the resin laminate.
 熱可塑性樹脂(B)とポリカーボネート系樹脂(A)のろ過については、例えば熱可塑性樹脂溶融ろ過に用いられているポリマーフィルターを使うことが好ましい。ポリマーフィルターは、その構造によりリーフディスクフィルター、キャンドルフィルター、パックディスクフィルター、円筒型フィルターなどに分類されるが、特に有効ろ過面積が大きいリーフディスクフィルターが好適である。 Regarding the filtration of the thermoplastic resin (B) and the polycarbonate resin (A), it is preferable to use, for example, a polymer filter used for thermoplastic resin melt filtration. The polymer filter is classified into a leaf disk filter, a candle filter, a pack disk filter, a cylindrical filter and the like depending on its structure, and a leaf disk filter having a large effective filtration area is particularly suitable.
 本発明の樹脂積層体には、その片面または両面に反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上を施すことができる。反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理の方法は、特に限定されず、公知の方法を用いることができる。例えば、反射低減塗料を塗布する方法、誘電体薄膜を蒸着する方法、帯電防止塗料を塗布する方法などが挙げられる。 The resin laminate of the present invention can be subjected to one or more of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment on one side or both sides. The methods of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment are not particularly limited, and known methods can be used. For example, a method of applying a reflection reducing coating, a method of depositing a dielectric thin film, a method of applying an antistatic coating, and the like can be mentioned.
 以下、実施例により本発明を具体的に説明する。ただし、本発明はこれらの実施例により何ら制限されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, this invention is not restrict | limited at all by these Examples.
 製造例で得られた積層樹脂の物性測定および実施例ならびに比較例で得られた合成樹脂積層体の評価は以下のように行った。 Measurement of physical properties of the laminated resin obtained in the production examples and evaluation of the synthetic resin laminated bodies obtained in the examples and comparative examples were performed as follows.
<インデンテーション硬度(HIT硬度)>
 超微小硬度計 HM2000(株式会社フィッシャー・インストルメンツ製)を使用し、押し圧3mN条件で熱可塑性樹脂(B)層に押し付け、HIT硬度(N/mm)を測定した。比較対象として、アクリル樹脂(b2)単体で形成した層(後述の比較例5または比較例8)についても同様にインデンテーション硬度を測定した。そして、熱可塑性樹脂(B)のインデンテーション硬度をHIT硬度{熱可塑性樹脂}とし、アクリル樹脂(b2)のインデンテーション硬度をHIT硬度{アクリル樹脂}として、下記のように評価した。その際、熱可塑性樹脂(B)層が共重合体(b1)とアクリル樹脂(b2)を含む層である場合は、用いたアクリル樹脂(B2-1またはB2-2)のインデンテーション硬度を用いて評価した。また、熱可塑性樹脂(B)層が共重合体(b1)のみからなる場合は、アクリル樹脂(B2-1)のインデンテーション硬度を用いて評価した。
○(合格):HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}≧1.01
×(不合格):上記の範囲以外
<Indentation hardness (HIT hardness)>
Using an ultra-micro hardness meter HM2000 (manufactured by Fischer Instruments Co., Ltd.), it was pressed against the thermoplastic resin (B) layer under a pressing pressure of 3 mN, and the HIT hardness (N / mm 2 ) was measured. As a comparison object, the indentation hardness was similarly measured for a layer (Comparative Example 5 or Comparative Example 8 described later) formed of the acrylic resin (b2) alone. Then, the indentation hardness of the thermoplastic resin (B) was HIT hardness {thermoplastic resin}, and the indentation hardness of the acrylic resin (b2) was HIT hardness {acrylic resin}. At that time, when the thermoplastic resin (B) layer is a layer containing the copolymer (b1) and the acrylic resin (b2), the indentation hardness of the acrylic resin (B2-1 or B2-2) used is used. And evaluated. Further, when the thermoplastic resin (B) layer was composed only of the copolymer (b1), it was evaluated using the indentation hardness of the acrylic resin (B2-1).
○ (Pass): HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} ≧ 1.01
X (fail): Outside the above range
<鉛筆引っかき硬度試験>
 JIS K 5600-5-4に準拠し、表面に対して角度45度、荷重750gで熱可塑性樹脂(B)層またはアクリル樹脂(b2)単体で形成した層(後述の比較例5または比較例8)表面に次第に硬度を増して鉛筆を押し付け、傷跡を生じなかった最も硬い鉛筆の硬度を鉛筆硬度として評価した。鉛筆硬度は、ランクが低い順に、2B、B、HB、F、H、2H、3Hおよび4Hで示される。ここで、「熱可塑性樹脂(B)表面の鉛筆硬度がアクリル樹脂(b2)単体表面の鉛筆硬度と同等以上」とは、熱可塑性樹脂(B)表面の鉛筆硬度がアクリル樹脂(b2)単体表面の鉛筆硬度と同じランクかそれよりも高いランクであることをいう。例えば、アクリル樹脂(b2)単体表面の鉛筆硬度が2Hであった場合に、熱可塑性樹脂(B)表面の鉛筆硬度が2Hや3H以上であるような場合をいう。
○(合格):熱可塑性樹脂(B)表面の鉛筆硬度がアクリル樹脂(b2)単体表面の鉛筆硬度と同等以上
×(不合格):上記の範囲以外
<Pencil scratch hardness test>
In accordance with JIS K 5600-5-4, a layer formed of a thermoplastic resin (B) layer or an acrylic resin (b2) alone at an angle of 45 degrees with respect to the surface and a load of 750 g (Comparative Example 5 or Comparative Example 8 described later) ) The hardness was gradually increased on the surface and the pencil was pressed, and the hardness of the hardest pencil that did not cause scars was evaluated as the pencil hardness. The pencil hardness is indicated by 2B, B, HB, F, H, 2H, 3H, and 4H in order of rank. Here, “the pencil hardness of the surface of the thermoplastic resin (B) is equal to or higher than the pencil hardness of the surface of the acrylic resin (b2) alone” means that the pencil hardness of the surface of the thermoplastic resin (B) is the surface of the acrylic resin (b2) alone. It means that it is the same rank as pencil hardness or higher than that. For example, when the pencil hardness of the surface of the acrylic resin (b2) is 2H, the pencil hardness of the surface of the thermoplastic resin (B) is 2H or 3H or more.
○ (Pass): The pencil hardness on the surface of the thermoplastic resin (B) is equal to or higher than the pencil hardness on the surface of the acrylic resin (b2) × (Fail): Other than the above range
<高温高湿環境下の反り試験>
 樹脂積層体の試験片を10cm×6cm四方に切り出した。試験片を2点支持型のホルダーにセットして温度23℃、相対湿度50%に設定した環境試験機に24時間以上投入して状態調整した後、反りを測定した。このときの値を処理前反り量の値とした。次に試験片をホルダーにセットして温度85℃、相対湿度85%に設定した環境試験機の中に投入し、その状態で120時間保持した。さらに温度23℃、相対湿度50%に設定した環境試験機の中にホルダーごと移動し、その状態で4時間保持後に再度反りを測定した。このときの値を処理後反り量の値とした。反りの測定には、電動ステージ具備の3次元形状測定機を使用し、取り出した試験片を上に凸の状態で水平に静置し、1mm間隔でスキャンし、中央部の盛り上がりを反りとして計測した。処理前後の反り量の差の絶対値、すなわち|(処理後反り量)-(処理前反り量)|を反り変化量として評価した。その際、反り変化量が700μmを超えると、肉眼でも反りが認識できるようになる場合があるため、下記の基準で反り試験の合否判定を行った。
○(合格):樹脂積層体の反り変化量≦700μm
×(不合格):上記の範囲以外
<Warp test under high temperature and high humidity>
A test piece of the resin laminate was cut into a 10 cm × 6 cm square. The test piece was set in a two-point support type holder, placed in an environmental testing machine set at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours or more, and after adjusting the state, the warpage was measured. The value at this time was taken as the value of the amount of warp before processing. Next, the test piece was set in a holder, put into an environmental test machine set at a temperature of 85 ° C. and a relative humidity of 85%, and kept in that state for 120 hours. Further, the holder was moved into an environmental testing machine set to a temperature of 23 ° C. and a relative humidity of 50%, and the warpage was measured again after being held in that state for 4 hours. The value at this time was taken as the value of the warp amount after processing. To measure the warpage, use a 3D shape measuring machine equipped with an electric stage. Place the removed specimen horizontally in a convex state, scan it at 1 mm intervals, and measure the bulge at the center as a warp. did. The absolute value of the difference between the warpage amounts before and after the treatment, that is, | (warping amount after processing) − (warping amount before processing) || was evaluated as the amount of warpage change. At that time, if the amount of warpage change exceeds 700 μm, the warpage may be recognized even with the naked eye.
○ (Pass): Warpage change amount of resin laminate ≦ 700 μm
X (fail): Outside the above range
<全光線透過率測定>
 反射・透過率計HR-100型(株式会社村上色彩技術研究所製)を用いて樹脂積層体の全光線透過率をJIS K7361-1に準じて測定し、下記の基準で全光線透過率試験の合否判定を行った。
○(合格):樹脂積層体の全光線透過率≧75%
×(不合格):上記の範囲以外
<Total light transmittance measurement>
The total light transmittance of the resin laminate was measured according to JIS K7361-1, using a reflection / transmittance meter HR-100 (manufactured by Murakami Color Research Laboratory Co., Ltd.), and the total light transmittance test was performed according to the following criteria. A pass / fail decision was made.
○ (Pass): Total light transmittance of the resin laminate ≧ 75%
X (fail): Outside the above range
<Haze測定>
 反射・透過率計HR-100型(株式会社村上色彩技術研究所製)を用いて樹脂積層体のHazeをJIS K7136に準じて測定し、下記の基準でHaze試験の合否判定を行った。
○(合格):樹脂積層体のHaze≦30%
×(不合格):上記の範囲以外
<Haze measurement>
Using a reflection / transmittance meter HR-100 (manufactured by Murakami Color Research Laboratory Co., Ltd.), the haze of the resin laminate was measured according to JIS K7136, and the pass / fail judgment of the haze test was performed based on the following criteria.
○ (Pass): Haze ≦ 30% of resin laminate
X (fail): Outside the above range
<各種材料例>
 ポリカーボネート系樹脂(A)、共重合体(b1)およびアクリル樹脂(b2)について、下記に示す材料を例示するが、これらに限定されるわけではない。
A-1:ポリカーボネート樹脂:三菱エンジニアリングプラスチックス株式会社製ユーピロンE-2000
b1-1:共重合体:デンカ株式会社製 KX-406
b1-2:共重合体:デンカ株式会社製 KX-407
b1-3:共重合体:デンカ株式会社製 KX-422
b1-4:共重合体:デンカ株式会社製 KX-435
b1-5:共重合体:デンカ株式会社製 R100
b1-6:共重合体:デンカ株式会社製 R200
b2-1:アクリル樹脂:株式会社クラレ製メチルメタクリレート樹脂 パラペットHR-L(HIT硬度{アクリル樹脂}=269N/mmであった。)
b2-2:アクリル樹脂:旭化成ケミカルズ株式会社製アクリル樹脂 デルペットPM120N(スチレン:N-フェニルマレイミド:MMAの質量比=4:15:81、HIT硬度{アクリル樹脂}=274N/mmであった。)
b2-3:アクリル樹脂:旭化成ケミカルズ株式会社製アクリル樹脂 デルペット980N(スチレン:無水マレイン酸:MMAの質量比=16:8:76、HIT硬度{アクリル樹脂}=266N/mmであった。)
b2-4:アクリル樹脂:ダイセル・エボニック株式会社製アクリル樹脂 PLEXIGLAS hw55(スチレン:無水マレイン酸:MMAの質量比=15:9:76、HIT硬度{アクリル樹脂}=266N/mmであった。)
<Examples of various materials>
Examples of the polycarbonate resin (A), the copolymer (b1), and the acrylic resin (b2) include the following materials, but are not limited thereto.
A-1: Polycarbonate resin: Iupilon E-2000 manufactured by Mitsubishi Engineering Plastics Co., Ltd.
b1-1: Copolymer: KX-406 manufactured by Denka Co., Ltd.
b1-2: Copolymer: KX-407 manufactured by Denka Co., Ltd.
b1-3: Copolymer: KX-422 manufactured by DENKA CORPORATION
b1-4: Copolymer: KX-435 manufactured by Denka Co., Ltd.
b1-5: Copolymer: R100 manufactured by DENKA CORPORATION
b1-6: Copolymer: R200 manufactured by DENKA CORPORATION
b2-1: Acrylic resin: Methyl methacrylate resin manufactured by Kuraray Co., Ltd. Parapet HR-L (HIT hardness {acrylic resin} = 269 N / mm 2 )
b2-2: Acrylic resin: Acrylic resin manufactured by Asahi Kasei Chemicals Corporation Delpet PM120N (styrene: N-phenylmaleimide: MMA ratio by mass = 4: 15: 81, HIT hardness {acrylic resin} = 274 N / mm 2 .)
b2-3: Acrylic resin: Acrylic resin manufactured by Asahi Kasei Chemicals Corporation Delpet 980N (mass ratio of styrene: maleic anhydride: MMA = 16: 8: 76, HIT hardness {acrylic resin} = 266 N / mm 2 . )
b2-4: Acrylic resin: acrylic resin PLEXIGLAS hw55 (mass ratio of styrene: maleic anhydride: MMA = 15: 9: 76, HIT hardness {acrylic resin} = 266 N / mm 2 )
製造例1〔樹脂(B11)ペレットの製造〕
 共重合体(b1)としてのKX-406(b1-1)(重量平均分子量:155,000、スチレン:無水マレイン酸:MMAの質量比=69:22:9)25質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR-L(b2-1)75質量部の合計100質量部に対して、リン系添加剤PEP-36(株式会社ADEKA製) 500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン株式会社製) 0.2質量%を加え、ブレンダーで20分混合後、スクリュー径26mmの2軸押出機(東芝機械株式会社製、TEM-26SS、L/D≒40)を用い、シリンダー温度240℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化した。ペレットは安定して製造できた。
Production Example 1 [Production of Resin (B11) Pellets]
25 parts by mass of KX-406 (b1-1) (weight average molecular weight: 155,000, mass ratio of styrene: maleic anhydride: MMA = 69: 22: 9) as copolymer (b1) and acrylic resin ( b2) 500 ppm of phosphorus-based additive PEP-36 (manufactured by ADEKA Corporation) and stearic acid monoglyceride (based on 75 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin) (Product name: H-100, manufactured by Riken Vitamin Co., Ltd.) After adding 0.2% by mass and mixing with a blender for 20 minutes, a twin screw extruder with a screw diameter of 26 mm (Toshiba Machine Co., Ltd., TEM-26SS, L / D) ≈40), melt kneaded at a cylinder temperature of 240 ° C., extruded into a strand, and pelletized with a pelletizer. The pellets could be manufactured stably.
製造例2〔樹脂(B12)ペレットの製造〕
 共重合体(b1)としてのKX-406(b1-1)50質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR-L(b2-1)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 2 [Production of Resin (B12) Pellets]
100 parts by mass in total of 50 parts by mass of KX-406 (b1-1) as copolymer (b1) and 50 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin as acrylic resin (b2) The phosphorus-based additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例3〔樹脂(B13)ペレットの製造〕
 共重合体(b1)としてのKX-406(b1-1)75質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR-L(b2-1)25質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 3 [Production of Resin (B13) Pellets]
100 parts by mass in total of 75 parts by mass of KX-406 (b1-1) as copolymer (b1) and 25 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin as acrylic resin (b2) The phosphorus-based additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例4〔樹脂(B14)ペレットの製造〕
 共重合体(b1)としてのKX-406(b1-1)100質量部に対してリン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 4 [Production of Resin (B14) Pellets]
Phosphoric additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2 mass%) were added to 100 parts by mass of KX-406 (b1-1) as copolymer (b1), and mixed and pelleted in the same manner as in Production Example 1. Made. The pellets could be manufactured stably.
製造例5〔樹脂(B15)ペレットの製造〕
 共重合体(b1)としてのKX-406(b1-1)25質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2-3)75質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 5 [Production of Resin (B15) Pellets]
A total of 100 parts by mass of 25 parts by mass of KX-406 (b1-1) as copolymer (b1) and 75 parts by mass of Delpet 980N (b2-3) as methyl methacrylate resin as acrylic resin (b2) On the other hand, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例6〔樹脂(B16)ペレットの製造〕
 共重合体(b1)としてのKX-406(b1-1)40質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2-3)60質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 6 [Production of Resin (B16) Pellets]
40 parts by mass of KX-406 (b1-1) as copolymer (b1) and 60 parts by mass of Delpet 980N (b2-3) as methyl methacrylate resin as acrylic resin (b2) On the other hand, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例7〔樹脂(B17)ペレットの製造〕
 共重合体(b1)としてのKX-406(b1-1)50質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2-3)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 7 [Production of Resin (B17) Pellets]
A total of 100 parts by mass of 50 parts by mass of KX-406 (b1-1) as the copolymer (b1) and 50 parts by mass of Delpet 980N (b2-3) as the methyl methacrylate resin as the acrylic resin (b2) On the other hand, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例8〔樹脂(B18)ペレットの製造〕
 共重合体(b1)としてのKX-406(b1-1)60質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2-3)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 8 [Production of resin (B18) pellets]
A total of 100 parts by mass of 60 parts by mass of KX-406 (b1-1) as copolymer (b1) and 40 parts by mass of Delpet 980N (b2-3) as methyl methacrylate resin as acrylic resin (b2) On the other hand, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例9〔樹脂(B19)ペレットの製造〕
 共重合体(b1)としてのKX-406(b1-1)25質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2-4)75質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 9 [Production of Resin (B19) Pellets]
For a total of 100 parts by mass of 25 parts by mass of KX-406 (b1-1) as copolymer (b1) and 75 parts by mass of PLEXIGLAS hw55 (b2-4) as methyl methacrylate resin as acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例10〔樹脂(B20)ペレットの製造〕
 共重合体(b1)としてのKX-406(b1-1)40質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2-4)60質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 10 [Production of Resin (B20) Pellets]
For a total of 100 parts by mass of 40 parts by mass of KX-406 (b1-1) as copolymer (b1) and 60 parts by mass of PLEXIGLAS hw55 (b2-4) as methyl methacrylate resin as acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例11〔樹脂(B21)ペレットの製造〕
 共重合体(b1)としてのKX-406(b1-1)50質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2-4)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 11 [Production of Resin (B21) Pellets]
For a total of 100 parts by mass of 50 parts by mass of KX-406 (b1-1) as copolymer (b1) and 50 parts by mass of PLEXIGLAS hw55 (b2-4) as methyl methacrylate resin as acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例12〔樹脂(B22)ペレットの製造〕
 共重合体(b1)としてのKX-406(b1-1)60質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2-4)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 12 [Production of resin (B22) pellets]
For a total of 100 parts by mass of 60 parts by mass of KX-406 (b1-1) as the copolymer (b1) and 40 parts by mass of PLEXIGLAS hw55 (b2-4) as the methyl methacrylate resin as the acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例13〔樹脂(B23)ペレットの製造〕
 共重合体(b1)としてのKX-407(b1-2)(重量平均分子量:165,000、スチレン:無水マレイン酸:MMAの質量比=57:23:20)25質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR-L(b2-1)75質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 13 [Production of Resin (B23) Pellets]
25 parts by mass of KX-407 (b1-2) (weight average molecular weight: 165,000, mass ratio of styrene: maleic anhydride: MMA = 57: 23: 20) as copolymer (b1) and acrylic resin ( b2) To 100 parts by mass of 75 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added to produce Mixing and pelletization were carried out in the same manner as in Example 1. The pellets could be manufactured stably.
製造例14〔樹脂(B24)ペレットの製造〕
 共重合体(b1)としてのKX-407(b1-2)50質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR-L(b2-1)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 14 [Production of Resin (B24) Pellets]
100 parts by mass in total of 50 parts by mass of KX-407 (b1-2) as copolymer (b1) and 50 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin as acrylic resin (b2) The phosphorus-based additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例15〔樹脂(B25)ペレットの製造〕
 共重合体(b1)としてのKX-407(b1-2)75質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR-L(b2-1)25質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 15 [Production of resin (B25) pellets]
100 parts by mass in total of 75 parts by mass of KX-407 (b1-2) as copolymer (b1) and 25 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin as acrylic resin (b2) The phosphorus-based additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例16〔樹脂(B26)ペレットの製造〕
 共重合体(b1)としてのKX-407(b1-2)100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 16 [Production of resin (B26) pellets]
To 100 parts by mass of KX-407 (b1-2) as copolymer (b1), 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added and mixed in the same manner as in Production Example 1. Pelletization was performed. The pellets could be manufactured stably.
製造例17〔樹脂(B27)ペレットの製造〕
 共重合体(b1)としてのKX-422(b1-3)(重量平均分子量:119,000、スチレン:無水マレイン酸:MMAの質量比=57:23:20)25質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR-L(b2-1)75質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 17 [Production of Resin (B27) Pellets]
25 parts by mass of KX-422 (b1-3) (weight average molecular weight: 119,000, mass ratio of styrene: maleic anhydride: MMA = 57: 23: 20) as copolymer (b1) and acrylic resin ( b2) To 100 parts by mass of 75 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added to produce Mixing and pelletization were carried out in the same manner as in Example 1. The pellets could be manufactured stably.
製造例18〔樹脂(B28)ペレットの製造〕
 共重合体(b1)としてのKX-422(b1-3)50質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR-L(b2-1)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 18 [Production of resin (B28) pellets]
100 parts by mass in total of 50 parts by mass of KX-422 (b1-3) as copolymer (b1) and 50 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin as acrylic resin (b2) The phosphorus-based additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例19〔樹脂(B29)ペレットの製造〕
 共重合体(b1)としてのKX-422(b1-3)55質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR-L(b2-1)45質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 19 [Production of resin (B29) pellets]
100 parts by mass in total of 55 parts by mass of KX-422 (b1-3) as copolymer (b1) and 45 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin as acrylic resin (b2) The phosphorus-based additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例20〔樹脂(B30)ペレットの製造〕
 共重合体(b1)としてのKX-422(b1-3)60質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR-L(b2-1)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 20 [Production of resin (B30) pellets]
100 parts by mass in total of 60 parts by mass of KX-422 (b1-3) as copolymer (b1) and 40 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin as acrylic resin (b2) The phosphorus-based additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例21〔樹脂(B31)ペレットの製造〕
 共重合体(b1)としてのKX-422(b1-3)65質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR-L(b2-1)35質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 21 [Production of Resin (B31) Pellets]
100 parts by mass in total of 65 parts by mass of KX-422 (b1-3) as copolymer (b1) and 35 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin as acrylic resin (b2) The phosphorus-based additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例22〔樹脂(B32)ペレットの製造〕
 共重合体(b1)としてのKX-422(b1-3)75質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR-L(b2-1)25質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 22 [Production of resin (B32) pellets]
100 parts by mass in total of 75 parts by mass of KX-422 (b1-3) as copolymer (b1) and 25 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin as acrylic resin (b2) The phosphorus-based additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例23〔樹脂(B33)ペレットの製造〕
 共重合体(b1)としてのKX-422(b1-3)100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2%にし、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 23 [Production of resin (B33) pellet]
Phosphorous additive PEP36 500 ppm and stearic acid monoglyceride 0.2% to 100 parts by mass of KX-422 (b1-3) as copolymer (b1), mixed and pelletized in the same manner as in Production Example 1. Went. The pellets could be manufactured stably.
製造例24〔樹脂(B34)ペレットの製造〕
 共重合体(b1)としてのKX-422(b1-3)50質量部と、アクリル樹脂(b2)であるデルペットPM120N(b2-2)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 24 [Production of Resin (B34) Pellets]
Phosphorus based on a total of 100 parts by mass of 50 parts by mass of KX-422 (b1-3) as copolymer (b1) and 50 parts by mass of Delpet PM120N (b2-2) as acrylic resin (b2) Additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例25〔樹脂(B35)ペレットの製造〕
 共重合体(b1)としてのKX-422(b1-3)55質量部と、アクリル樹脂(b2)であるデルペットPM120N(b2-2)45質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 25 [Production of resin (B35) pellets]
Phosphorus based on a total of 100 parts by mass of 55 parts by mass of KX-422 (b1-3) as copolymer (b1) and 45 parts by mass of Delpet PM120N (b2-2) as acrylic resin (b2) Additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例26〔樹脂(B36)ペレットの製造〕
 共重合体(b1)としてのKX-422(b1-3)60質量部と、アクリル樹脂(b2)であるデルペットPM120N(b2-2)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 26 [Production of resin (B36) pellets]
Phosphorus based on a total of 100 parts by mass of 60 parts by mass of KX-422 (b1-3) as copolymer (b1) and 40 parts by mass of Delpet PM120N (b2-2) as acrylic resin (b2) Additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例27〔樹脂(B37)ペレットの製造〕
 共重合体(b1)としてのKX-422(b1-3)55質量部と、アクリル樹脂(b2)であるデルペット980N(b2-3)45質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 27 [Production of resin (B37) pellets]
Phosphorus based on a total of 100 parts by mass of 55 parts by mass of KX-422 (b1-3) as copolymer (b1) and 45 parts by mass of Delpet 980N (b2-3) being acrylic resin (b2) Additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例28〔樹脂(B38)ペレットの製造〕
 共重合体(b1)としてのKX-422(b1-3)60質量部と、アクリル樹脂(b2)であるデルペット980N(b2-3)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 28 [Production of resin (B38) pellets]
For a total of 100 parts by mass of 60 parts by mass of KX-422 (b1-3) as copolymer (b1) and 40 parts by mass of Delpet 980N (b2-3) as acrylic resin (b2) Additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例29〔樹脂(B39)ペレットの製造〕
 共重合体(b1)としてのKX-422(b1-3)60質量部と、アクリル樹脂(b2)であるPLEXIGLAS hw55(b2-4)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 29 [Production of resin (B39) pellets]
Phosphorus-based addition to 100 parts by mass in total of 60 parts by mass of KX-422 (b1-3) as copolymer (b1) and 40 parts by mass of PLEXIGLAS hw55 (b2-4) as acrylic resin (b2) Agent PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例30〔樹脂(B40)ペレットの製造〕
 共重合体(b1)としてのKX-435(b1-4)(重量平均分子量:124,000、スチレン:無水マレイン酸:MMAの質量比=71:23:6)15質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2-3)85質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 30 [Production of Resin (B40) Pellets]
15 parts by mass of KX-435 (b1-4) (weight average molecular weight: 124,000, styrene: maleic anhydride: MMA mass ratio = 71: 23: 6) as a copolymer (b1) and an acrylic resin ( b2) To 100 parts by mass of Delpet 980N (b2-3) 85 parts by mass as methyl methacrylate resin, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added. In the same manner as in No. 1, mixing and pelletization were performed. The pellets could be manufactured stably.
製造例31〔樹脂(B41)ペレットの製造〕
 共重合体(b1)としてのKX-435(b1-4)25質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2-3)75質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 31 [Production of Resin (B41) Pellets]
A total of 100 parts by mass of 25 parts by mass of KX-435 (b1-4) as copolymer (b1) and 75 parts by mass of Delpet 980N (b2-3) as methyl methacrylate resin as acrylic resin (b2) On the other hand, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例32〔樹脂(B42)ペレットの製造〕
 共重合体(b1)としてのKX-435(b1-4)30質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2-3)70質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 32 [Production of Resin (B42) Pellets]
30 parts by mass of KX-435 (b1-4) as copolymer (b1) and 70 parts by mass of Delpet 980N (b2-3) as methyl methacrylate resin as acrylic resin (b2) On the other hand, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例33〔樹脂(B43)ペレットの製造〕
 共重合体(b1)としてのKX-435(b1-4)40質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2-3)60質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 33 [Production of Resin (B43) Pellets]
40 parts by mass of KX-435 (b1-4) as copolymer (b1) and 60 parts by mass of Delpet 980N (b2-3) as methyl methacrylate resin as acrylic resin (b2) On the other hand, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例34〔樹脂(B44)ペレットの製造〕
 共重合体(b1)としてのKX-435(b1-4)50質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2-3)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 34 [Production of Resin (B44) Pellets]
A total of 100 parts by mass of 50 parts by mass of KX-435 (b1-4) as copolymer (b1) and 50 parts by mass of Delpet 980N (b2-3) as methyl methacrylate resin as acrylic resin (b2) On the other hand, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例35〔樹脂(B45)ペレットの製造〕
 共重合体(b1)としてのKX-435(b1-4)60質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2-3)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 35 [Production of resin (B45) pellet]
A total of 100 parts by mass of 60 parts by mass of KX-435 (b1-4) as copolymer (b1) and 40 parts by mass of Delpet 980N (b2-3) as methyl methacrylate resin as acrylic resin (b2) On the other hand, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例36〔樹脂(B46)ペレットの製造〕
 共重合体(b1)としてのKX-435(b1-4)15質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2-4)85質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 36 [Production of Resin (B46) Pellets]
For a total of 100 parts by mass of 15 parts by mass of KX-435 (b1-4) as copolymer (b1) and 85 parts by mass of Plexiglas hw55 (b2-4) as methyl methacrylate resin as acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例37〔樹脂(B47)ペレットの製造〕
 共重合体(b1)としてのKX-435(b1-4)25質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2-4)75質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 37 [Production of Resin (B47) Pellets]
For a total of 100 parts by mass of 25 parts by mass of KX-435 (b1-4) as copolymer (b1) and 75 parts by mass of PLEXIGLAS hw55 (b2-4) as methyl methacrylate resin as acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例38〔樹脂(B48)ペレットの製造〕
 共重合体(b1)としてのKX-435(b1-4)30質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2-4)70質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 38 [Production of resin (B48) pellets]
For a total of 100 parts by mass of 30 parts by mass of KX-435 (b1-4) as copolymer (b1) and 70 parts by mass of PLEXIGLAS hw55 (b2-4) as methyl methacrylate resin as acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例39〔樹脂(B49)ペレットの製造〕
 共重合体(b1)としてのKX-435(b1-4)40質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2-4)60質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 39 [Production of resin (B49) pellets]
For a total of 100 parts by mass of 40 parts by mass of KX-435 (b1-4) as copolymer (b1) and 60 parts by mass of PLEXIGLAS hw55 (b2-4) as methyl methacrylate resin as acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例40〔樹脂(B50)ペレットの製造〕
 共重合体(b1)としてのKX-435(b1-4)50質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2-4)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 40 [Production of Resin (B50) Pellets]
For a total of 100 parts by mass of 50 parts by mass of KX-435 (b1-4) as copolymer (b1) and 50 parts by mass of Plexiglas hw55 (b2-4) as methyl methacrylate resin as acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
製造例41〔樹脂(B51)ペレットの製造〕
 共重合体(b1)としてのKX-435(b1-4)60質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2-4)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Production Example 41 [Production of Resin (B51) Pellets]
For a total of 100 parts by mass of 60 parts by mass of KX-435 (b1-4) as copolymer (b1) and 40 parts by mass of PLEXIGLAS hw55 (b2-4) as methyl methacrylate resin as acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
比較製造例1〔樹脂(D11)ペレットの製造〕
 共重合体(b1)としてのR100(b1-5)(重量平均分子量:170,000、スチレン:無水マレイン酸:MMAの質量比=65:15:20)50質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR-L(b2-1)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative Production Example 1 [Production of Resin (D11) Pellets]
50 parts by mass of R100 (b1-5) (weight average molecular weight: 170,000, mass ratio of styrene: maleic anhydride: MMA = 65: 15: 20) as copolymer (b1), and acrylic resin (b2) To 100 parts by mass of a total of 50 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added. Production Example 1 In the same manner, mixing and pelletization were performed. The pellets could be manufactured stably.
比較製造例2〔樹脂(D12)ペレットの製造〕
 共重合体(b1)としてのR100(b1-5)75質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR-L(b2-1)25質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative Production Example 2 [Production of Resin (D12) Pellets]
For a total of 100 parts by mass of 75 parts by mass of R100 (b1-5) as copolymer (b1) and 25 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin as acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
比較製造例3〔樹脂(D13)ペレットの製造〕
 共重合体(b1)としてのR100(b1-5)70質量部と、アクリル樹脂(b2)であるデルペットPM120N(b2-2)30質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative Production Example 3 [Production of Resin (D13) Pellets]
Phosphorous additive for 100 parts by mass in total of 70 parts by mass of R100 (b1-5) as copolymer (b1) and 30 parts by mass of Delpet PM120N (b2-2) as acrylic resin (b2) PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
比較製造例4〔樹脂(D14)ペレットの製造〕
 共重合体(b1)としてのR100(b1-5)75質量部と、アクリル樹脂(b2)であるデルペットPM120N(b2-2)25質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative Production Example 4 [Production of Resin (D14) Pellets]
Phosphorous additive to 100 parts by mass in total of 75 parts by mass of R100 (b1-5) as copolymer (b1) and 25 parts by mass of Delpet PM120N (b2-2) as acrylic resin (b2) PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
比較製造例5〔樹脂(D15)ペレットの製造〕
 共重合体(b1)としてのR100(b1-5)50質量部と、アクリル樹脂(b2)であるデルペット980N(b2-3)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative Production Example 5 [Production of Resin (D15) Pellets]
Phosphorous additive for 100 parts by mass in total of 50 parts by mass of R100 (b1-5) as copolymer (b1) and 50 parts by mass of Delpet 980N (b2-3) as acrylic resin (b2) PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
比較製造例6〔樹脂(D16)ペレットの製造〕
 共重合体(b1)としてのR100(b1-5)75質量部と、アクリル樹脂(b2)であるデルペット980N(b2-3)25質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative Production Example 6 [Production of Resin (D16) Pellets]
Phosphorous additive for 100 parts by mass in total of 75 parts by mass of R100 (b1-5) as copolymer (b1) and 25 parts by mass of Delpet 980N (b2-3) as acrylic resin (b2) PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
比較製造例7〔樹脂(D17)ペレットの製造〕
 共重合体(b1)としてのR100(b1-5)50質量部と、アクリル樹脂(b2)であるPLEXIGLAS hw55(b2-4)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative Production Example 7 [Production of Resin (D17) Pellets]
Phosphorous additive PEP36 with respect to a total of 100 parts by mass of R100 (b1-5) as a copolymer (b1) and 50 parts by mass of Plexiglas hw55 (b2-4) as an acrylic resin (b2) 500 ppm and 0.2 mass% of stearic acid monoglyceride were added, and mixing and pelletizing were performed in the same manner as in Production Example 1. The pellets could be manufactured stably.
比較製造例8〔樹脂(D18)ペレットの製造〕
 共重合体(b1)としてのR100(b1-5)75質量部と、アクリル樹脂(b2)であるPLEXIGLAS hw55(b2-4)25質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative Production Example 8 [Production of Resin (D18) Pellets]
Phosphorous additive PEP36 with respect to a total of 100 parts by mass of 75 parts by mass of R100 (b1-5) as copolymer (b1) and 25 parts by mass of Plexiglas hw55 (b2-4) as acrylic resin (b2) 500 ppm and 0.2 mass% of stearic acid monoglyceride were added, and mixing and pelletizing were performed in the same manner as in Production Example 1. The pellets could be manufactured stably.
比較製造例9〔樹脂(D19)ペレットの製造〕
 共重合体(b1)としてのR200(b1-6)(重量平均分子量:185,000、スチレン:無水マレイン酸:MMAの質量比=55:20:25)50質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR-L(b2-1)50質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative production example 9 [Production of resin (D19) pellets]
50 parts by mass of R200 (b1-6) (weight average molecular weight: 185,000, mass ratio of styrene: maleic anhydride: MMA = 55: 20: 25) as copolymer (b1), and acrylic resin (b2) To 100 parts by mass of 50 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin, 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added, and Production Example 1 In the same manner, mixing and pelletization were performed. The pellets could be manufactured stably.
比較製造例10〔樹脂(D20)ペレットの製造〕
 共重合体(b1)としてのR200(b1-6)75質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR-L(b2-1)25質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative Production Example 10 [Production of Resin (D20) Pellets]
For a total of 100 parts by mass of 75 parts by mass of R200 (b1-6) as copolymer (b1) and 25 parts by mass of parapet HR-L (b2-1) as methyl methacrylate resin as acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
比較製造例11〔樹脂(D21)ペレットの製造〕
 共重合体(b1)としてのR200(b1-6)20質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2-3)80質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative Production Example 11 [Production of Resin (D21) Pellets]
Based on 100 parts by mass in total of 20 parts by mass of R200 (b1-6) as copolymer (b1) and 80 parts by mass of Delpet 980N (b2-3) as methyl methacrylate resin as acrylic resin (b2) Then, phosphorus-based additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
比較製造例12〔樹脂(D22)ペレットの製造〕
 共重合体(b1)としてのR200(b1-6)40質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2-3)60質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative Production Example 12 [Production of Resin (D22) Pellets]
For a total of 100 parts by mass of 40 parts by mass of R200 (b1-6) as the copolymer (b1) and 60 parts by mass of Delpet 980N (b2-3) as the methyl methacrylate resin as the acrylic resin (b2) Then, phosphorus-based additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
比較製造例13〔樹脂(D23)ペレットの製造〕
 共重合体(b1)としてのR200(b1-6)60質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのデルペット980N(b2-3)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative Production Example 13 [Production of Resin (D23) Pellets]
100 parts by mass in total of 60 parts by mass of R200 (b1-6) as copolymer (b1) and 40 parts by mass of Delpet 980N (b2-3) as methyl methacrylate resin as acrylic resin (b2) Then, phosphorus-based additive PEP36 500 ppm and stearic acid monoglyceride 0.2% by mass were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
比較製造例14〔樹脂(D24)ペレットの製造〕
 共重合体(b1)としてのR200(b1-6)20質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2-4)80質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative Production Example 14 [Production of Resin (D24) Pellets]
For a total of 100 parts by mass of 20 parts by mass of R200 (b1-6) as the copolymer (b1) and 80 parts by mass of PLEXIGLAS hw55 (b2-4) as the methyl methacrylate resin as the acrylic resin (b2), Phosphorous additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
比較製造例15〔樹脂(D25)ペレットの製造〕
 共重合体(b1)としてのR200(b1-6)40質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2-4)60質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative Production Example 15 [Production of Resin (D25) Pellets]
For a total of 100 parts by mass of 40 parts by mass of R200 (b1-6) as the copolymer (b1) and 60 parts by mass of PLEXIGLAS hw55 (b2-4) as the methyl methacrylate resin as the acrylic resin (b2), Phosphorus additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
比較製造例16〔樹脂(D26)ペレットの製造〕
 共重合体(b1)としてのR200(b1-6)60質量部と、アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのPLEXIGLAS hw55(b2-4)40質量部の合計100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative Production Example 16 [Production of Resin (D26) Pellets]
For a total of 100 parts by mass of R200 (b1-6) 60 parts by mass as a copolymer (b1) and PLEXIGLAS hw55 (b2-4) 40 parts by mass as an acrylic resin (b2) methyl methacrylate resin, Phosphorous additive PEP36 (500 ppm) and stearic acid monoglyceride (0.2% by mass) were added and mixed and pelletized in the same manner as in Production Example 1. The pellets could be manufactured stably.
比較製造例17〔樹脂(D27)ペレットの製造〕
 アクリル樹脂(b2)であるメチルメタクリレート樹脂としてのパラペットHR-L(b2-1)100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative Production Example 17 [Production of Resin (D27) Pellets]
To 100 parts by mass of Parapet HR-L (b2-1) as methyl methacrylate resin which is an acrylic resin (b2), 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride were added, and Production Example 1 In the same manner, mixing and pelletization were performed. The pellets could be manufactured stably.
比較製造例18〔樹脂(D28)ペレットの製造〕
 アクリル樹脂(b2)であるデルペットPM120N(b2-2)100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative Production Example 18 [Production of Resin (D28) Pellets]
To 100 parts by mass of Delpet PM120N (b2-2), which is an acrylic resin (b2), 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride are added and mixed in the same manner as in Production Example 1, pellets Made. The pellets could be manufactured stably.
比較製造例19〔樹脂(D29)ペレットの製造〕
 アクリル樹脂(b2)であるデルペット980N(b2-3)100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative Production Example 19 [Production of Resin (D29) Pellets]
To 100 parts by mass of Delpet 980N (b2-3), which is an acrylic resin (b2), 500 ppm of phosphorus-based additive PEP36 and 0.2% by mass of stearic acid monoglyceride are added and mixed in the same manner as in Production Example 1 and pellets Made. The pellets could be manufactured stably.
比較製造例20〔樹脂(D30)ペレットの製造〕
 アクリル樹脂(b2)であるPLEXIGLAS hw55(b2-4)100質量部に対して、リン系添加剤PEP36 500ppm、およびステアリン酸モノグリセリド 0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
Comparative Production Example 20 [Production of Resin (D30) Pellets]
Phosphoric additive PEP36 500 ppm and stearic acid monoglyceride 0.2 mass% are added to 100 parts by mass of PLEXIGLAS hw55 (b2-4) which is an acrylic resin (b2), and mixed and pelletized in the same manner as in Production Example 1. Went. The pellets could be manufactured stably.
実施例1
 軸径32mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出機に各押出機と連結したマルチマニホールドダイとを有する多層押出装置を用いて樹脂積層体を成形した。軸径32mmの単軸押出機に製造例1で得た樹脂(B11)を連続的に導入し、シリンダー温度240℃、吐出量を2.1kg/hの条件で押し出した。また軸径65mmの単軸押出機にポリカーボネート樹脂(A-1)(三菱エンジニアリングプラスチックス株式会社製、製品名:ユーピロンE-2000、重量平均分子量:34,000)を連続的に導入し、シリンダー温度280℃、吐出量を30.0kg/hで押し出した。全押出機に連結されたフィードブロックは2種2層の分配ピンを備え、温度270℃にして(B11)と(A-1)を導入し積層した。その先に連結された温度270℃のTダイでシート状に押し出し、上流側から温度130℃、140℃、180℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却し、(B11)と(A-1)の積層体(E11)を得た。得られた積層体(E11)の全体厚みは1000μm、B11から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B11)層のHIT硬度{熱可塑性樹脂}=275N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.022で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は472μmで合格であり、全光線透過率は91.3%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 1
Each extruder in a multi-layer extruder having a single-screw extruder with a shaft diameter of 32 mm, a single-screw extruder with a shaft diameter of 65 mm, a feed block connected to all the extruders, and a T die connected to the feed block The resin laminate was molded using a multi-layer extrusion apparatus having connected multi-manifold dies. The resin (B11) obtained in Production Example 1 was continuously introduced into a single-screw extruder having a shaft diameter of 32 mm, and extruded under conditions of a cylinder temperature of 240 ° C. and a discharge rate of 2.1 kg / h. Polycarbonate resin (A-1) (manufactured by Mitsubishi Engineering Plastics, product name: Iupilon E-2000, weight average molecular weight: 34,000) was continuously introduced into a single screw extruder with a shaft diameter of 65 mm, and the cylinder Extrusion was performed at a temperature of 280 ° C. and a discharge rate of 30.0 kg / h. The feed block connected to the entire extruder was provided with two types and two layers of distribution pins, and the temperature was set to 270 ° C. and (B11) and (A-1) were introduced and laminated. Extruded into a sheet shape with a T-die with a temperature of 270 ° C connected to the tip, and cooled while transferring the mirror surface with three mirror finish rolls at temperatures of 130 ° C, 140 ° C and 180 ° C from the upstream side (B11) And a laminate (E11) of (A-1) was obtained. The total thickness of the obtained laminate (E11) was 1000 μm, and the thickness of the layer made of B11 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B11) layer {thermoplastic resin} = 275 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.022, which was passed, and the pencil scratch hardness test The result is 2H, the warp change amount in a high temperature and high humidity environment is 472μm, the total light transmittance is 91.3%, the haze is 0.2%, and the pass is 0.2%. It was a pass in the judgment.
実施例2
 樹脂(B11)の代わりに樹脂(B12)を使用した以外は、実施例1と同様にして(B12)と(A-1)の積層体(E12)を得た。得られた積層体(E12)の全体厚みは1000μm、B12から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B12)層のHIT硬度{熱可塑性樹脂}=280N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.041で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は34μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 2
A laminate (E12) of (B12) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B12) was used instead of the resin (B11). The total thickness of the obtained laminate (E12) was 1000 μm, and the thickness of the layer made of B12 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B12) layer {thermoplastic resin} = 280 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.041 is passed, and the pencil scratch hardness test The result is 2H, the warp change amount under high temperature and high humidity environment is 34μm, the total light transmittance is 91.2%, the haze is 0.2%, and the pass is 0.2%. It was a pass in the judgment.
実施例3
 樹脂(B11)の代わりに樹脂(B13)を使用した以外は、実施例1と同様にして(B13)と(A-1)の積層体(E13)を得た。得られた積層体(E13)の全体厚みは1000μm、B13から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B13)層のHIT硬度{熱可塑性樹脂}=282N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.048で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は307μmで合格であり、全光線透過率は90.9%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 3
A laminate (E13) of (B13) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B13) was used instead of the resin (B11). The total thickness of the obtained laminate (E13) was 1000 μm, and the thickness of the layer made of B13 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B13) layer {thermoplastic resin} = 282 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.048 is passed, and the pencil scratch hardness test The result is 2H, the warp change amount in a high temperature and high humidity environment is 307μm, the total light transmittance is 90.9%, the haze is 0.2%, and the pass is 0.2%. It was a pass in the judgment.
実施例4
 樹脂(B11)の代わりに樹脂(B14)を使用した以外は、実施例1と同様にして(B14)と(A-1)の積層体(E14)を得た。得られた積層体(E14)の全体厚みは1000μm、B14から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B14)層のHIT硬度{熱可塑性樹脂}=276N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.026で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は445μmで合格であり、全光線透過率は90.7%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 4
A laminate (E14) of (B14) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B14) was used instead of the resin (B11). The overall thickness of the obtained laminate (E14) was 1000 μm, and the thickness of the layer made of B14 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B14) layer {thermoplastic resin} = 276 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.026 was passed, and the pencil scratch hardness test The result is 2H, the warp change amount in a high temperature and high humidity environment is 445μm, the total light transmittance is 90.7%, the haze is 0.2%, and the pass is 0.2%. It was a pass in judgment.
実施例5
 樹脂(B11)の代わりに樹脂(B15)を使用した以外は、実施例1と同様にして(B15)と(A-1)の積層体(E15)を得た。得られた積層体(E15)の全体厚みは1000μm、B15から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B15)層のHIT硬度{熱可塑性樹脂}=280N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.053で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は155μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
Example 5
A laminate (E15) of (B15) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B15) was used instead of the resin (B11). The total thickness of the obtained laminate (E15) was 1000 μm, and the thickness of the layer made of B15 was 60 μm near the center. The HIT hardness {thermoplastic resin} of the thermoplastic resin (B15) layer is 280 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.053 is passed, and the pencil scratch hardness test The result is 2H, the warp change amount in a high temperature and high humidity environment is 155 μm, the total light transmittance is 91.1%, the haze is 0.1%, and the pass is 0.1%. It was a pass in the judgment.
実施例6
 樹脂(B11)の代わりに樹脂(B16)を使用した以外は、実施例1と同様にして(B16)と(A-1)の積層体(E16)を得た。得られた積層体(E16)の全体厚みは1000μm、B16から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B16)層のHIT硬度{熱可塑性樹脂}=282N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.060で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は352μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
Example 6
A laminate (E16) of (B16) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B16) was used instead of the resin (B11). The total thickness of the obtained laminate (E16) was 1000 μm, and the thickness of the layer made of B16 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B16) layer {thermoplastic resin} = 282 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.060 was passed, and the pencil scratch hardness test The result is 2H, the warp change amount in the high temperature and high humidity environment is 352μm, the total light transmittance is 91.0%, the haze is 0.1%, and the pass is 0.1%. It was a pass in judgment.
実施例7
 樹脂(B11)の代わりに樹脂(B17)を使用した以外は、実施例1と同様にして(B17)と(A-1)の積層体(E17)を得た。得られた積層体(E17)の全体厚みは1000μm、B17から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B17)層のHIT硬度{熱可塑性樹脂}=283N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.064で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は493μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
Example 7
A laminate (E17) of (B17) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B17) was used instead of the resin (B11). The total thickness of the obtained laminate (E17) was 1000 μm, and the thickness of the layer composed of B17 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B17) layer {thermoplastic resin} = 283 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.064 was passed, and the pencil scratch hardness test The result is 2H, the warp change amount in the high temperature and high humidity environment is 493μm, the total light transmittance is 91.0%, the haze is 0.1%, and the pass is 0.1%. It was a pass in the judgment.
実施例8
 樹脂(B11)の代わりに樹脂(B18)を使用した以外は、実施例1と同様にして(B18)と(A-1)の積層体(E18)を得た。得られた積層体(E18)の全体厚みは1000μm、B18から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B18)層のHIT硬度{熱可塑性樹脂}=285N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.071で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は630μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
Example 8
A laminate (E18) of (B18) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B18) was used instead of the resin (B11). The total thickness of the obtained laminate (E18) was 1000 μm, and the thickness of the layer made of B18 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B18) layer {thermoplastic resin} = 285 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.071 is passed, and the pencil scratch hardness test The result is 2H, the warp change amount in a high temperature and high humidity environment is 630 μm, the total light transmittance is 91.0%, the haze is 0.1%, and the pass is 0.1%. It was a pass in the judgment.
実施例9
 樹脂(B11)の代わりに樹脂(B19)を使用した以外は、実施例1と同様にして(B19)と(A-1)の積層体(E19)を得た。得られた積層体(E19)の全体厚みは1000μm、B19から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B19)層のHIT硬度{熱可塑性樹脂}=278N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.041で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は183μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
Example 9
A laminate (E19) of (B19) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B19) was used instead of the resin (B11). The total thickness of the obtained laminate (E19) was 1000 μm, and the thickness of the layer made of B19 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B19) layer {thermoplastic resin} = 278 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.041 is passed, and the pencil scratch hardness test The result is 2H, the warp change amount in a high temperature and high humidity environment is 183μm, the total light transmittance is 91.0%, the haze is 0.1%, and the pass is 0.1%. It was a pass in the judgment.
実施例10
 樹脂(B11)の代わりに樹脂(B20)を使用した以外は、実施例1と同様にして(B20)と(A-1)の積層体(E20)を得た。得られた積層体(E20)の全体厚みは1000μm、B20から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B20)層のHIT硬度{熱可塑性樹脂}=280N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.049で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は397μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
Example 10
A laminate (E20) of (B20) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B20) was used instead of the resin (B11). The total thickness of the obtained laminate (E20) was 1000 μm, and the thickness of the layer made of B20 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B20) layer {thermoplastic resin} = 280 N / mm 2 , the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.049, and passed, and the pencil scratch hardness test The result is 2H, the warp change amount under high temperature and high humidity environment is 397μm, the total light transmittance is 91.0%, the haze is 0.1%, and the pass is 0.1%. It was a pass in the judgment.
実施例11
 樹脂(B11)の代わりに樹脂(B21)を使用した以外は、実施例1と同様にして(B21)と(A-1)の積層体(E21)を得た。得られた積層体(E21)の全体厚みは1000μm、B21から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B21)層のHIT硬度{熱可塑性樹脂}=282N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.056で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は501μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
Example 11
A laminate (E21) of (B21) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B21) was used instead of the resin (B11). The total thickness of the obtained laminate (E21) was 1000 μm, and the thickness of the layer made of B21 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B21) layer {thermoplastic resin} = 282 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.068 was passed, and the pencil scratch hardness test The result is 2H, the warp change amount in a high temperature and high humidity environment is 501 μm, the total light transmittance is 91.0%, the haze is 0.1%, and the pass is 0.1%. It was a pass in the judgment.
実施例12
 樹脂(B11)の代わりに樹脂(B22)を使用した以外は、実施例1と同様にして(B22)と(A-1)の積層体(E22)を得た。得られた積層体(E22)の全体厚みは1000μm、B22から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B22)層のHIT硬度{熱可塑性樹脂}=282N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.056で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は635μmで合格であり、全光線透過率は90.9%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
Example 12
A laminate (E22) of (B22) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B22) was used instead of the resin (B11). The total thickness of the obtained laminate (E22) was 1000 μm, and the thickness of the layer made of B22 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B22) layer {thermoplastic resin} = 282 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.056 is passed, and the pencil scratch hardness test The result is 2H, the warp change in a high temperature and high humidity environment is 635μm, the total light transmittance is 90.9%, the haze is 0.1%, and the pass is 0.1%. It was a pass in the judgment.
実施例13
 樹脂(B11)の代わりに樹脂(B23)を使用した以外は、実施例1と同様にして(B23)と(A-1)の積層体(E23)を得た。得られた積層体(E23)の全体厚みは1000μm、B23から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B23)層のHIT硬度{熱可塑性樹脂}=275N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.022で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は649μmで合格であり、全光線透過率は91.4%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
Example 13
A laminate (E23) of (B23) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B23) was used instead of the resin (B11). The total thickness of the obtained laminate (E23) was 1000 μm, and the thickness of the layer made of B23 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B23) layer {thermoplastic resin} = 275 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.022, which was passed, and the pencil scratch hardness test The result is 2H, the warp change amount in the high temperature and high humidity environment is 649μm, the total light transmittance is 91.4%, the haze is 0.1%, and the pass is 0.1%. It was a pass in the judgment.
実施例14
 樹脂(B11)の代わりに樹脂(B24)を使用した以外は、実施例1と同様にして(B24)と(A-1)の積層体(E24)を得た。得られた積層体(E24)の全体厚みは1000μm、B16から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B24)層のHIT硬度{熱可塑性樹脂}=282N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.048で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は69μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
Example 14
A laminate (E24) of (B24) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B24) was used instead of the resin (B11). The total thickness of the obtained laminate (E24) was 1000 μm, and the thickness of the layer made of B16 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B24) layer {thermoplastic resin} = 282 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.048 is passed, and the pencil scratch hardness test The result is 2H, the warp change amount in a high temperature and high humidity environment is 69μm, the total light transmittance is 91.2%, the haze is 0.1%, and the pass is 0.1%. It was a pass in the judgment.
実施例15
 樹脂(B11)の代わりに樹脂(B25)を使用した以外は、実施例1と同様にして(B25)と(A-1)の積層体(E25)を得た。得られた積層体(E25)の全体厚みは1000μm、B25から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B25)層のHIT硬度{熱可塑性樹脂}=291N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.082で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は643μmで合格であり、全光線透過率は90.9%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 15
A laminate (E25) of (B25) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B25) was used instead of the resin (B11). The total thickness of the obtained laminate (E25) was 1000 μm, and the thickness of the layer made of B25 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B25) layer {thermoplastic resin} = 291 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.082 is passed, and the pencil scratch hardness test The result is 3H, the warp change amount under high temperature and high humidity environment is 643μm, the total light transmittance is 90.9%, the haze is 0.2%, and the pass is 0.2%. It was a pass in the judgment.
実施例16
 樹脂(B11)の代わりに樹脂(B26)を使用した以外は、実施例1と同様にして(B26)と(A-1)の積層体(E26)を得た。得られた積層体(E26)の全体厚みは1000μm、B26から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B26)層のHIT硬度{熱可塑性樹脂}=286N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.063で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は686μmで合格であり、全光線透過率は90.7%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 16
A laminate (E26) of (B26) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B26) was used instead of the resin (B11). The overall thickness of the obtained laminate (E26) was 1000 μm, and the thickness of the layer made of B26 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B26) layer {thermoplastic resin} = 286 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.063 was passed, and the pencil scratch hardness test The result is acceptable at 3H, the amount of warpage change under high temperature and high humidity environment is acceptable at 686 μm, the total light transmittance is acceptable at 90.7%, and the haze is acceptable at 0.2%. It was a pass in the judgment.
実施例17
 樹脂(B11)の代わりに樹脂(B27)を使用した以外は、実施例1と同様にして(B27)と(A-1)の積層体(E27)を得た。得られた積層体(E27)の全体厚みは1000μm、B27から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B27)層のHIT硬度{熱可塑性樹脂}=275N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.022で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は524μmで合格であり、全光線透過率は91.3%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
Example 17
A laminate (E27) of (B27) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B27) was used instead of the resin (B11). The total thickness of the obtained laminate (E27) was 1000 μm, and the thickness of the layer made of B27 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B27) layer {thermoplastic resin} = 275 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.022, which was passed, and the pencil scratch hardness test The result is 2H, the warp change amount in a high temperature and high humidity environment is 524μm, the total light transmittance is 91.3%, the haze is 0.1%, and the pass is It was a pass in the judgment.
実施例18
 樹脂(B11)の代わりに樹脂(B28)を使用した以外は、実施例1と同様にして(B28)と(A-1)の積層体(E28)を得た。得られた積層体(E28)の全体厚みは1000μm、B28から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B20)層のHIT硬度{熱可塑性樹脂}=281N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.045で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は117μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
Example 18
A laminate (E28) of (B28) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B28) was used instead of the resin (B11). The total thickness of the obtained laminate (E28) was 1000 μm, and the thickness of the layer made of B28 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B20) layer {thermoplastic resin} = 281 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.045 is passed, and the pencil scratch hardness test The result is 2H, the warp change amount under high temperature and high humidity environment is 117μm, the total light transmittance is 91.2%, the haze is 0.1%, and the pass is 0.1%. It was a pass in the judgment.
実施例19
 樹脂(B11)の代わりに樹脂(B29)を使用した以外は、実施例1と同様にして(B29)と(A-1)の積層体(E29)を得た。得られた積層体(E29)の全体厚みは1000μm、B29から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B21)層のHIT硬度{熱可塑性樹脂}=287N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.067で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は104μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 19
A laminate (E29) of (B29) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B29) was used instead of the resin (B11). The total thickness of the obtained laminate (E29) was 1000 μm, and the thickness of the layer composed of B29 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B21) layer {thermoplastic resin} = 287 N / mm 2 , the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.067, and passed, and the pencil scratch hardness test The result is 3H, the warp change amount in a high temperature and high humidity environment is 104μm, the total light transmittance is 91.1%, the haze is 0.2%, and the pass is 0.2%. It was a pass in the judgment.
実施例20
 樹脂(B11)の代わりに樹脂(B30)を使用した以外は、実施例1と同様にして(B30)と(A-1)の積層体(E30)を得た。得られた積層体(E30)の全体厚みは1000μm、B30から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B30)層のHIT硬度{熱可塑性樹脂}=289N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.074で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は29μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 20
A laminate (E30) of (B30) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B30) was used instead of the resin (B11). The total thickness of the obtained laminate (E30) was 1000 μm, and the thickness of the layer made of B30 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B30) layer {thermoplastic resin} = 289 N / mm 2 , the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.004, and it passed, and the pencil scratch hardness test The result is 3H, the warp change amount in the high temperature and high humidity environment is 29μm, the total light transmittance is 91.0%, the haze is 0.2%, and the pass is 0.2%. It was a pass in the judgment.
実施例21
 樹脂(B11)の代わりに樹脂(B31)を使用した以外は、実施例1と同様にして(B31)と(A-1)の積層体(E31)を得た。得られた積層体(E31)の全体厚みは1000μm、B31から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B31)層のHIT硬度{熱可塑性樹脂}=289N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.074で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は264μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 21
A laminate (E31) of (B31) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B31) was used instead of the resin (B11). The total thickness of the obtained laminate (E31) was 1000 μm, and the thickness of the layer made of B31 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B31) layer {thermoplastic resin} = 289 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.004 was passed, and the pencil scratch hardness test The result is acceptable at 3H, the amount of warpage change under a high temperature and high humidity environment is 264 μm, the total light transmittance is acceptable at 91.0%, and the haze is acceptable at 0.2%. It was a pass in the judgment.
実施例22
 樹脂(B11)の代わりに樹脂(B32)を使用した以外は、実施例1と同様にして(B32)と(A-1)の積層体(E32)を得た。得られた積層体(E32)の全体厚みは1000μm、B32から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B32)層のHIT硬度{熱可塑性樹脂}=289N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.074で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は360μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 22
A laminate (E32) of (B32) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B32) was used instead of the resin (B11). The total thickness of the obtained laminate (E32) was 1000 μm, and the thickness of the layer made of B32 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B32) layer {thermoplastic resin} = 289 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.004 was passed, and the pencil scratch hardness test The result is acceptable at 3H, the amount of warpage change under high temperature and high humidity environment is acceptable at 360μm, the total light transmittance is acceptable at 91.0%, and the haze is acceptable at 0.2%. It was a pass in the judgment.
実施例23
 樹脂(B11)の代わりに樹脂(B33)を使用した以外は、実施例1と同様にして(B33)と(A-1)の積層体(E33)を得た。得られた積層体(E33)の全体厚みは1000μm、B33から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B33)層のHIT硬度{熱可塑性樹脂}=295N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.097で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は695μmで合格であり、全光線透過率は90.8%で合格であり、Hazeは0.1%で合格であり、総合判定で合格であった。
Example 23
A laminate (E33) of (B33) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B33) was used instead of the resin (B11). The total thickness of the obtained laminate (E33) was 1000 μm, and the thickness of the layer made of B33 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B33) layer {thermoplastic resin} = 295 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.097 is passed, and the pencil scratch hardness test The result is acceptable at 3H, the amount of warpage change under high-temperature and high-humidity environment is acceptable at 695 μm, the total light transmittance is acceptable at 90.8%, and the haze is acceptable at 0.1%. It was a pass in the judgment.
実施例24
 樹脂(B11)の代わりに樹脂(B34)を使用した以外は、実施例1と同様にして(B34)と(A-1)の積層体(E34)を得た。得られた積層体(E34)の全体厚みは1000μm、B34から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B34)層のHIT硬度{熱可塑性樹脂}=290N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.058で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は151μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 24
A laminate (E34) of (B34) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B34) was used instead of the resin (B11). The total thickness of the obtained laminate (E34) was 1000 μm, and the thickness of the layer made of B34 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B34) layer {thermoplastic resin} = 290 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.058 is passed, and the pencil scratch hardness test The result is acceptable at 3H, the amount of warpage change under a high temperature and high humidity environment is acceptable at 151 μm, the total light transmittance is acceptable at 91.1%, and the haze is acceptable at 0.2%. It was a pass in the judgment.
実施例25
 樹脂(B11)の代わりに樹脂(B35)を使用した以外は、実施例1と同様にして(B35)と(A-1)の積層体(E35)を得た。得られた積層体(E35)の全体厚みは1000μm、B35から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B27)層のHIT硬度{熱可塑性樹脂}=292N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.066で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は68μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 25
A laminate (E35) of (B35) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B35) was used instead of the resin (B11). The total thickness of the obtained laminate (E35) was 1000 μm, and the thickness of the layer made of B35 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B27) layer {thermoplastic resin} = 292 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.066 was passed, and the pencil scratch hardness test The result is acceptable at 3H, the amount of warp change under high temperature and high humidity environment is acceptable at 68μm, the total light transmittance is acceptable at 91.0%, and the haze is acceptable at 0.2%. It was a pass in the judgment.
実施例26
 樹脂(B11)の代わりに樹脂(B36)を使用した以外は、実施例1と同様にして(B36)と(A-1)の積層体(E36)を得た。得られた積層体(E36)の全体厚みは1000μm、B36から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B36)層のHIT硬度{熱可塑性樹脂}=291N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.062で合格であり、鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下の反り変化量は7μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 26
A laminate (E36) of (B36) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B36) was used instead of the resin (B11). The total thickness of the obtained laminate (E36) was 1000 μm, and the thickness of the layer made of B36 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B36) layer {thermoplastic resin} = 291 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.062, which was passed, and the pencil scratch hardness test The result is acceptable at 3H, the amount of warpage change under a high temperature and high humidity environment is acceptable at 7 μm, the total light transmittance is acceptable at 91.0%, and the haze is acceptable at 0.2%. It was a pass in the judgment.
実施例27
 樹脂(B11)の代わりに樹脂(B37)を使用した以外は、実施例1と同様にして(B37)と(A-1)の積層体(E37)を得た。得られた積層体(E37)の全体厚みは1000μm、B37から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B37)層のHIT硬度{熱可塑性樹脂}=284N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.068で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は529μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 27
A laminate (E37) of (B37) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B37) was used instead of the resin (B11). The total thickness of the obtained laminate (E37) was 1000 μm, and the thickness of the layer made of B37 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B37) layer {thermoplastic resin} = 284 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.068. The result is 2H, the warp change amount in a high temperature and high humidity environment is 529μm, the total light transmittance is 91.2%, the haze is 0.2%, and the pass is 0.2%. It was a pass in the judgment.
実施例28
 樹脂(B11)の代わりに樹脂(B38)を使用した以外は、実施例1と同様にして(B38)と(A-1)の積層体(E38)を得た。得られた積層体(E38)の全体厚みは1000μm、B38から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B38)層のHIT硬度{熱可塑性樹脂}=284N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.068で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は605μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 28
A laminate (E38) of (B38) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B38) was used instead of the resin (B11). The total thickness of the obtained laminate (E38) was 1000 μm, and the thickness of the layer made of B38 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B38) layer {thermoplastic resin} = 284 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.068 passed, and the pencil scratch hardness test The result is 2H, the warp change amount in a high temperature and high humidity environment is 605 μm, the total light transmittance is 91.2%, the haze is 0.2%, and the pass is It was a pass in the judgment.
実施例29
 樹脂(B11)の代わりに樹脂(B39)を使用した以外は、実施例1と同様にして(B39)と(A-1)の積層体(E39)を得た。得られた積層体(E39)の全体厚みは1000μm、B39から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B39)層のHIT硬度{熱可塑性樹脂}=281N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.052で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は679μmで合格であり、全光線透過率は90.9%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 29
A laminate (E39) of (B39) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B39) was used instead of the resin (B11). The total thickness of the obtained laminate (E39) was 1000 μm, and the thickness of the layer made of B39 was 60 μm near the center. The HIT hardness {thermoplastic resin} of the thermoplastic resin (B39) layer is 281 N / mm 2 and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.052 is passed, and the pencil scratch hardness test The result is acceptable at 2H, the amount of warpage change under high temperature and high humidity environment is acceptable at 679 μm, the total light transmittance is acceptable at 90.9%, and the haze is acceptable at 0.2%. It was a pass in the judgment.
実施例30
 樹脂(B11)の代わりに樹脂(B40)を使用した以外は、実施例1と同様にして(B40)と(A-1)の積層体(E40)を得た。得られた積層体(E40)の全体厚みは1000μm、B40から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B40)層のHIT硬度{熱可塑性樹脂}=272N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.023で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は13μmで合格であり、全光線透過率は91.3%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 30
A laminate (E40) of (B40) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B40) was used instead of the resin (B11). The total thickness of the obtained laminate (E40) was 1000 μm, and the thickness of the layer made of B40 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B40) layer {thermoplastic resin} = 272 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.024 was passed, and the pencil scratch hardness test The result is 2H, the warp change amount in the high temperature and high humidity environment is 13μm, the total light transmittance is 91.3%, the haze is 0.2%, and the pass is 0.2%. It was a pass in the judgment.
実施例31
 樹脂(B11)の代わりに樹脂(B41)を使用した以外は、実施例1と同様にして(B41)と(A-1)の積層体(E41)を得た。得られた積層体(E41)の全体厚みは1000μm、B41から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B41)層のHIT硬度{熱可塑性樹脂}=274N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.030で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は126μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 31
A laminate (E41) of (B41) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B41) was used instead of the resin (B11). The overall thickness of the obtained laminate (E41) was 1000 μm, and the thickness of the layer made of B41 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B41) layer {thermoplastic resin} = 274 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.030 was passed, and the pencil scratch hardness test The result is 2H, the warp change amount in the high temperature and high humidity environment is 126μm, the total light transmittance is 91.2%, the haze is 0.2%, and the pass is 0.2%. It was a pass in the judgment.
実施例32
 樹脂(B11)の代わりに樹脂(B42)を使用した以外は、実施例1と同様にして(B42)と(A-1)の積層体(E42)を得た。得られた積層体(E42)の全体厚みは1000μm、B42から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B42)層のHIT硬度{熱可塑性樹脂}=274N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.030で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は171μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 32
A laminate (E42) of (B42) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B42) was used instead of the resin (B11). The overall thickness of the obtained laminate (E42) was 1000 μm, and the thickness of the layer made of B42 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B42) layer {thermoplastic resin} = 274 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.030 is passed, and the pencil scratch hardness test The result is 2H, the warp change amount in a high temperature and high humidity environment is 171μm, the total light transmittance is 91.2%, the haze is 0.2%, and the pass is 0.2%. It was a pass in the judgment.
実施例33
 樹脂(B11)の代わりに樹脂(B43)を使用した以外は、実施例1と同様にして(B43)と(A-1)の積層体(E43)を得た。得られた積層体(E43)の全体厚みは1000μm、B43から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B43)層のHIT硬度{熱可塑性樹脂}=275N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.034で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は296μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 33
A laminate (E43) of (B43) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B43) was used instead of the resin (B11). The total thickness of the obtained laminate (E43) was 1000 μm, and the thickness of the layer made of B43 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B43) layer {thermoplastic resin} = 275 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.034 was passed, and the pencil scratch hardness test The result is 2H, the warp change amount in the high temperature and high humidity environment is 296μm, the total light transmittance is 91.1%, the haze is 0.2%, and the pass is 0.2%. It was a pass in the judgment.
実施例34
 樹脂(B11)の代わりに樹脂(B44)を使用した以外は、実施例1と同様にして(B44)と(A-1)の積層体(E44)を得た。得られた積層体(E44)の全体厚みは1000μm、B44から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B44)層のHIT硬度{熱可塑性樹脂}=277N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.041で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は458μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 34
A laminate (E44) of (B44) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B44) was used instead of the resin (B11). The total thickness of the obtained laminate (E44) was 1000 μm, and the thickness of the layer made of B44 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B44) layer {thermoplastic resin} = 277 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.041 is passed, and the pencil scratch hardness test The result is 2H, the warp change amount in a high temperature and high humidity environment is 458μm, the total light transmittance is 91.1%, the haze is 0.2%, and the pass is 0.2%. It was a pass in the judgment.
実施例35
 樹脂(B11)の代わりに樹脂(B45)を使用した以外は、実施例1と同様にして(B45)と(A-1)の積層体(E45)を得た。得られた積層体(E45)の全体厚みは1000μm、B45から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B45)層のHIT硬度{熱可塑性樹脂}=277N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.041で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は508μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 35
A laminate (E45) of (B45) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B45) was used instead of the resin (B11). The total thickness of the obtained laminate (E45) was 1000 μm, and the thickness of the layer made of B45 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B45) layer {thermoplastic resin} = 277 N / mm 2 , the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.041, and the pencil scratch hardness test The result is 2H, the warp change amount in a high temperature and high humidity environment is 508 μm, the total light transmittance is 91.0%, the haze is 0.2%, and the pass is 0.2%. It was a pass in the judgment.
実施例36
 樹脂(B11)の代わりに樹脂(B46)を使用した以外は、実施例1と同様にして(B46)と(A-1)の積層体(E46)を得た。得られた積層体(E46)の全体厚みは1000μm、B46から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B46)層のHIT硬度{熱可塑性樹脂}=271N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.015で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は25μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 36
A laminate (E46) of (B46) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B46) was used instead of the resin (B11). The total thickness of the obtained laminate (E46) was 1000 μm, and the thickness of the layer made of B46 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B46) layer {thermoplastic resin} = 271 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.015 was passed, and the pencil scratch hardness test The result is 2H, the warp change amount in a high temperature and high humidity environment is 25μm, the total light transmittance is 91.2%, the haze is 0.2%, and the pass is It was a pass in the judgment.
実施例37
 樹脂(B11)の代わりに樹脂(B47)を使用した以外は、実施例1と同様にして(B47)と(A-1)の積層体(E47)を得た。得られた積層体(E47)の全体厚みは1000μm、B47から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B47)層のHIT硬度{熱可塑性樹脂}=272N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.019で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は106μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 37
A laminate (E47) of (B47) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B47) was used instead of the resin (B11). The total thickness of the obtained laminate (E47) was 1000 μm, and the thickness of the layer composed of B47 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B47) layer {thermoplastic resin} = 272 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.919. The result is 2H, the warp change amount in a high temperature and high humidity environment is 106μm, the total light transmittance is 91.2%, the haze is 0.2%, and the pass is It was a pass in the judgment.
実施例38
 樹脂(B11)の代わりに樹脂(B48)を使用した以外は、実施例1と同様にして(B48)と(A-1)の積層体(E48)を得た。得られた積層体(E48)の全体厚みは1000μm、B48から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B48)層のHIT硬度{熱可塑性樹脂}=273N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.022で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は175μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 38
A laminate (E48) of (B48) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B48) was used instead of the resin (B11). The total thickness of the obtained laminate (E48) was 1000 μm, and the thickness of the layer composed of B48 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B48) layer {thermoplastic resin} = 273 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.022, which was passed, and the pencil scratch hardness test The result is 2H, the warp change under high temperature and high humidity environment is 175μm, the total light transmittance is 91.2%, the haze is 0.2%, and the pass is It was a pass in the judgment.
実施例39
 樹脂(B11)の代わりに樹脂(B49)を使用した以外は、実施例1と同様にして(B49)と(A-1)の積層体(E49)を得た。得られた積層体(E49)の全体厚みは1000μm、B49から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B49)層のHIT硬度{熱可塑性樹脂}=274N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.026で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は313μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 39
A laminate (E49) of (B49) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B49) was used instead of the resin (B11). The total thickness of the obtained laminate (E49) was 1000 μm, and the thickness of the layer made of B49 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B49) layer {thermoplastic resin} = 274 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.026 was passed, and the pencil scratch hardness test The result is 2H, the warp change amount in the high temperature and high humidity environment is 313μm, the total light transmittance is 91.1%, the haze is 0.2%, and the pass is 0.2%. It was a pass in the judgment.
実施例40
 樹脂(B11)の代わりに樹脂(B50)を使用した以外は、実施例1と同様にして(B50)と(A-1)の積層体(E50)を得た。得られた積層体(E50)の全体厚みは1000μm、B50から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B48)層のHIT硬度{熱可塑性樹脂}=275N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.030で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は464μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 40
A laminate (E50) of (B50) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B50) was used instead of the resin (B11). The total thickness of the obtained laminate (E50) was 1000 μm, and the thickness of the layer composed of B50 was 60 μm near the center. The HIT hardness {thermoplastic resin} of the thermoplastic resin (B48) layer is 275 N / mm 2 and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.030 is passed, and the pencil scratch hardness test The result is 2H, the warp change amount in the high temperature and high humidity environment is 464μm, the total light transmittance is 91.1%, the haze is 0.2%, and the pass is It was a pass in the judgment.
実施例41
 樹脂(B11)の代わりに樹脂(B51)を使用した以外は、実施例1と同様にして(B51)と(A-1)の積層体(E51)を得た。得られた積層体(E51)の全体厚みは1000μm、B51から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(B51)層のHIT硬度{熱可塑性樹脂}=275N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.030で合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は534μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で合格であった。
Example 41
A laminate (E51) of (B51) and (A-1) was obtained in the same manner as in Example 1 except that the resin (B51) was used instead of the resin (B11). The overall thickness of the obtained laminate (E51) was 1000 μm, and the thickness of the layer made of B51 was 60 μm near the center. The HIT hardness of the thermoplastic resin (B51) layer {thermoplastic resin} = 275 N / mm 2 and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.030. The result is 2H, the warp change amount in a high temperature and high humidity environment is 534 μm, the total light transmittance is 91.1%, the haze is 0.2%, and the pass is 0.2%. It was a pass in the judgment.
比較例1
 樹脂(B11)の代わりに樹脂(D11)を使用した以外は、実施例1と同様にして(D11)と(A-1)の積層体(F11)を得た。得られた積層体(F11)の全体厚みは1000μm、D11から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D11)層のHIT硬度{熱可塑性樹脂}=255N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.948で不合格であり、鉛筆引っかき硬度試験の結果はFで不合格であり、高温高湿環境下の反り変化量は359μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
Comparative Example 1
A laminate (F11) of (D11) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D11) was used instead of the resin (B11). The total thickness of the obtained laminate (F11) was 1000 μm, and the thickness of the layer made of D11 was 60 μm near the center. HIT hardness of the thermoplastic resin (D11) layer {thermoplastic resin} = 255 N / mm 2 , HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 0.948, rejected, pencil scratch hardness test The result of the test is F, the warp change amount in a high temperature and high humidity environment is 359 μm, the total light transmittance is 91.2%, and the haze is 0.2%. It was rejected by the comprehensive judgment.
比較例2
 樹脂(B11)の代わりに樹脂(D12)を使用した以外は、実施例1と同様にして(D12)と(A-1)の積層体(F12)を得た。得られた積層体(F12)の全体厚みは1000μm、D12から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D12)層のHIT硬度{熱可塑性樹脂}=253N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.941で不合格であり、鉛筆引っかき硬度試験の結果はFで不合格であり、高温高湿環境下の反り変化量は121μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
Comparative Example 2
A laminate (F12) of (D12) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D12) was used instead of the resin (B11). The total thickness of the obtained laminate (F12) was 1000 μm, and the thickness of the layer composed of D12 was 60 μm near the center. HIT hardness of the thermoplastic resin (D12) layer {thermoplastic resin} = 253 N / mm 2 , HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 0.941, rejected, pencil scratch hardness test The result of F is rejected with F, the amount of warpage change under a high temperature and high humidity environment is 121 μm, the total light transmittance is 91.1%, and the haze is 0.2%. It was rejected by the comprehensive judgment.
比較例3
 樹脂(B11)の代わりに樹脂(D13)を使用した以外は、実施例1と同様にして(D13)と(A-1)の積層体(F13)を得た。得られた積層体(F13)の全体厚みは1000μm、D13から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D13)層のHIT硬度{熱可塑性樹脂}=264N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.964で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は43μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
Comparative Example 3
A laminate (F13) of (D13) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D13) was used instead of the resin (B11). The total thickness of the obtained laminate (F13) was 1000 μm, and the thickness of the layer made of D13 was 60 μm near the center. The HIT hardness of the thermoplastic resin (D13) layer {thermoplastic resin} = 264 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 0.964 was rejected, and the pencil scratch hardness test The result of is rejected with H, the amount of warpage change under high temperature and high humidity environment is 43 μm, the total light transmittance is passed with 91.1%, and the haze is passed with 0.2%. It was rejected by the comprehensive judgment.
比較例4
 樹脂(B11)の代わりに樹脂(D14)を使用した以外は、実施例1と同様にして(D14)と(A-1)の積層体(F14)を得た。得られた積層体(F14)の全体厚みは1000μm、D14から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D14)層のHIT硬度{熱可塑性樹脂}=264N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.964で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は65μmで合格であり、全光線透過率は91.0%で合格であり、Hazeは0.1%で合格であり、総合判定で不合格であった。
Comparative Example 4
A laminate (F14) of (D14) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D14) was used instead of the resin (B11). The total thickness of the obtained laminate (F14) was 1000 μm, and the thickness of the layer composed of D14 was 60 μm near the center. The HIT hardness of the thermoplastic resin (D14) layer {thermoplastic resin} = 264 N / mm 2 , HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 0.964, rejected, pencil scratch hardness test The result of is rejected with H, the amount of warpage change under high temperature and high humidity environment is 65 μm, it is passed, the total light transmittance is passed with 91.0%, and the haze is passed with 0.1%. It was rejected by the comprehensive judgment.
比較例5
 樹脂(B11)の代わりに樹脂(D15)を使用した以外は、実施例1と同様にして(D15)と(A-1)の積層体(F15)を得た。得られた積層体(F15)の全体厚みは1000μm、D15から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D15)層のHIT硬度{熱可塑性樹脂}=263N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.989で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は238μmで合格であり、全光線透過率は89.9%で合格であり、Hazeは2.1%で合格であり、総合判定で不合格であった。
Comparative Example 5
A laminate (F15) of (D15) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D15) was used instead of the resin (B11). The total thickness of the obtained laminate (F15) was 1000 μm, and the thickness of the layer made of D15 was 60 μm near the center. The HIT hardness of the thermoplastic resin (D15) layer {thermoplastic resin} = 263 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 0.989 was rejected, and the pencil scratch hardness test The result of is rejected with H, the amount of warpage change under high temperature and high humidity environment is 238 μm, the total light transmittance is passed with 89.9%, and the haze is passed with 2.1%. It was rejected by the comprehensive judgment.
比較例6
 樹脂(B11)の代わりに樹脂(D16)を使用した以外は、実施例1と同様にして(D16)と(A-1)の積層体(F16)を得た。得られた積層体(F16)の全体厚みは1000μm、D16から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D16)層のHIT硬度{熱可塑性樹脂}=261N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.981で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は286μmで合格であり、全光線透過率は89.4%で合格であり、Hazeは0.9%で合格であり、総合判定で不合格であった。
Comparative Example 6
A laminate (F16) of (D16) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D16) was used instead of the resin (B11). The total thickness of the obtained laminate (F16) was 1000 μm, and the thickness of the layer made of D16 was 60 μm near the center. The HIT hardness of the thermoplastic resin (D16) layer {thermoplastic resin} = 261 N / mm 2 , the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 0.981 was rejected, and the pencil scratch hardness test The result of is rejected with H, the amount of warpage change under high temperature and high humidity environment is 286 μm, the total light transmittance is passed with 89.4%, and the haze is passed with 0.9%. It was rejected by the comprehensive judgment.
比較例7
 樹脂(B11)の代わりに樹脂(D17)を使用した以外は、実施例1と同様にして(D17)と(A-1)の積層体(F17)を得た。得られた積層体(F17)の全体厚みは1000μm、D17から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D17)層のHIT硬度{熱可塑性樹脂}=262N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.981で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は164μmで合格であり、全光線透過率は89.0%で合格であり、Hazeは2.3%で合格であり、総合判定で不合格であった。
Comparative Example 7
A laminate (F17) of (D17) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D17) was used instead of the resin (B11). The total thickness of the obtained laminate (F17) was 1000 μm, and the thickness of the layer composed of D17 was 60 μm near the center. The HIT hardness of the thermoplastic resin (D17) layer {thermoplastic resin} = 262 N / mm 2 and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 0.981 was rejected, and the pencil scratch hardness test The result of is rejected with H, the amount of warpage change under a high temperature and high humidity environment is 164 μm, the total light transmittance is passed with 89.0%, and the haze is passed with 2.3%. It was rejected by the comprehensive judgment.
比較例8
 樹脂(B11)の代わりに樹脂(D18)を使用した以外は、実施例1と同様にして(D18)と(A-1)の積層体(F18)を得た。得られた積層体(F18)の全体厚みは1000μm、D18から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D18)層のHIT硬度{熱可塑性樹脂}=261N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.978で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は207μmで合格であり、全光線透過率は88.6%で合格であり、Hazeは1.9%で合格であり、総合判定で不合格であった。
Comparative Example 8
A laminate (F18) of (D18) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D18) was used instead of the resin (B11). The total thickness of the obtained laminate (F18) was 1000 μm, and the thickness of the layer composed of D18 was 60 μm near the center. The HIT hardness of the thermoplastic resin (D18) layer {thermoplastic resin} = 261 N / mm 2 and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 0.978 was rejected, and the pencil scratch hardness test The result of is rejected with H, the amount of warpage change under high temperature and high humidity environment is 207 μm, the total light transmittance is passed with 88.6%, and the haze is passed with 1.9%. It was rejected by the comprehensive judgment.
比較例9
 樹脂(B11)の代わりに樹脂(D19)を使用した以外は、実施例1と同様にして(D19)と(A-1)の積層体(F19)を得た。得られた積層体(F19)の全体厚みは1000μm、D19から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D19)層のHIT硬度{熱可塑性樹脂}=265N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.985で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は159μmで合格であり、全光線透過率は91.4%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
Comparative Example 9
A laminate (F19) of (D19) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D19) was used instead of the resin (B11). The total thickness of the obtained laminate (F19) was 1000 μm, and the thickness of the layer composed of D19 was 60 μm near the center. The HIT hardness of the thermoplastic resin (D19) layer {thermoplastic resin} = 265 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 0.985 was rejected, and the pencil scratch hardness test The result of is rejected with H, the amount of warp change in a high temperature and high humidity environment is 159 μm, the total light transmittance is 91.4%, and the haze is 0.2%. It was rejected by the comprehensive judgment.
比較例10
 樹脂(B11)の代わりに樹脂(D20)を使用した以外は、実施例1と同様にして(D20)と(A-1)の積層体(F20)を得た。得られた積層体(F20)の全体厚みは1000μm、D20から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D20)層のHIT硬度{熱可塑性樹脂}=264N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.981で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は275μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
Comparative Example 10
A laminate (F20) of (D20) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D20) was used instead of the resin (B11). The total thickness of the obtained laminate (F20) was 1000 μm, and the thickness of the layer composed of D20 was 60 μm near the center. The HIT hardness of the thermoplastic resin (D20) layer {thermoplastic resin} = 264 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 0.981 was rejected, and the pencil scratch hardness test The result of is rejected with H, the amount of warpage change under a high temperature and high humidity environment is 275 μm, it is passed, the total light transmittance is passed with 91.2%, and the haze is passed with 0.2%. It was rejected by the comprehensive judgment.
比較例11
 樹脂(B11)の代わりに樹脂(D21)を使用した以外は、実施例1と同様にして(D21)と(A-1)の積層体(F21)を得た。得られた積層体(F21)の全体厚みは1000μm、D21から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D21)層のHIT硬度{熱可塑性樹脂}=265N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.996で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は1μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
Comparative Example 11
A laminate (F21) of (D21) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D21) was used instead of the resin (B11). The total thickness of the obtained laminate (F21) was 1000 μm, and the thickness of the layer composed of D21 was 60 μm near the center. The HIT hardness of the thermoplastic resin (D21) layer {thermoplastic resin} = 265 N / mm 2 and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 0.996 was rejected, and the pencil scratch hardness test The result of is rejected with H, the amount of warpage change under high temperature and high humidity environment is 1 μm, the total light transmittance is passed with 91.2%, and the haze is passed with 0.2%. It was rejected by the comprehensive judgment.
比較例12
 樹脂(B11)の代わりに樹脂(D22)を使用した以外は、実施例1と同様にして(D22)と(A-1)の積層体(F22)を得た。得られた積層体(F22)の全体厚みは1000μm、D22から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D22)層のHIT硬度{熱可塑性樹脂}=264N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.992で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は167μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
Comparative Example 12
A laminate (F22) of (D22) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D22) was used instead of the resin (B11). The total thickness of the obtained laminate (F22) was 1000 μm, and the thickness of the layer made of D22 was 60 μm near the center. The HIT hardness of the thermoplastic resin (D22) layer {thermoplastic resin} = 264 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 0.992 is rejected, and the pencil scratch hardness test The result of is rejected with H, the amount of warp change under a high temperature and high humidity environment is 167 μm, the total light transmittance is 91.1%, and the haze is 0.2%. It was rejected by the comprehensive judgment.
比較例13
 樹脂(B11)の代わりに樹脂(D23)を使用した以外は、実施例1と同様にして(D23)と(A-1)の積層体(F23)を得た。得られた積層体(F23)の全体厚みは1000μm、D23から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D23)層のHIT硬度{熱可塑性樹脂}=264N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.992で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は309μmで合格であり、全光線透過率は91.1%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
Comparative Example 13
A laminate (F23) of (D23) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D23) was used instead of the resin (B11). The total thickness of the obtained laminate (F23) was 1000 μm, and the thickness of the layer composed of D23 was 60 μm near the center. The HIT hardness of the thermoplastic resin (D23) layer {thermoplastic resin} = 264 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 0.992 is rejected, and the pencil scratch hardness test The result of is rejected with H, the amount of warpage change under a high temperature and high humidity environment is 309 μm, the total light transmittance is passed with 91.1%, and the haze is passed with 0.2%. It was rejected by the comprehensive judgment.
比較例14
 樹脂(B11)の代わりに樹脂(D24)を使用した以外は、実施例1と同様にして(D24)と(A-1)の積層体(F24)を得た。得られた積層体(F24)の全体厚みは1000μm、D24から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D24)層のHIT硬度{熱可塑性樹脂}=265N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.993で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は35μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
Comparative Example 14
A laminate (F24) of (D24) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D24) was used instead of the resin (B11). The total thickness of the obtained laminate (F24) was 1000 μm, and the thickness of the layer composed of D24 was 60 μm near the center. The HIT hardness of the thermoplastic resin (D24) layer {thermoplastic resin} = 265 N / mm 2 and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 0.993 was rejected, and the pencil scratch hardness test The result of is rejected with H, the amount of warp change under a high temperature and high humidity environment is 35 μm, the total light transmittance is 91.2%, and Haze is 0.2%. It was rejected by the comprehensive judgment.
比較例15
 樹脂(B11)の代わりに樹脂(D25)を使用した以外は、実施例1と同様にして(D25)と(A-1)の積層体(F25)を得た。得られた積層体(F25)の全体厚みは1000μm、D25から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D25)層のHIT硬度{熱可塑性樹脂}=264N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.989で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は24μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
Comparative Example 15
A laminate (F25) of (D25) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D25) was used instead of the resin (B11). The total thickness of the obtained laminate (F25) was 1000 μm, and the thickness of the layer composed of D25 was 60 μm near the center. HIT hardness of the thermoplastic resin (D25) layer {thermoplastic resin} = 264 N / mm 2 , HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 0.989, rejected, pencil scratch hardness test The result of is rejected with H, the amount of warpage change under high temperature and high humidity environment is 24 μm, the total light transmittance is passed with 91.2%, and the haze is passed with 0.2%. It was rejected by the comprehensive judgment.
比較例16
 樹脂(B11)の代わりに樹脂(D26)を使用した以外は、実施例1と同様にして(D26)と(A-1)の積層体(F26)を得た。得られた積層体(F26)の全体厚みは1000μm、D26から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D26)層のHIT硬度{熱可塑性樹脂}=263N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=0.985で不合格であり、鉛筆引っかき硬度試験の結果はHで不合格であり、高温高湿環境下の反り変化量は422μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
Comparative Example 16
A laminate (F26) of (D26) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D26) was used instead of the resin (B11). The total thickness of the obtained laminate (F26) was 1000 μm, and the thickness of the layer composed of D26 was 60 μm near the center. The HIT hardness of the thermoplastic resin (D26) layer {thermoplastic resin} = 263 N / mm 2 , HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 0.985, rejected, pencil scratch hardness test The result of is rejected with H, the amount of warp change under high temperature and high humidity environment is 422 μm, passed, the total light transmittance is passed with 91.2%, and the haze is passed with 0.2%. It was rejected by the comprehensive judgment.
比較例17
 樹脂(B11)の代わりに樹脂(D27)を使用した以外は、実施例1と同様にして(D27)と(A-1)の積層体(F27)を得た。得られた積層体(F27)の全体厚みは1000μm、D27から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D27)層のHIT硬度{熱可塑性樹脂}=269N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.000で不合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は952μmで不合格であり、全光線透過率は91.6%で合格であり、Hazeは0.1%で合格であり、総合判定で不合格であった。
Comparative Example 17
A laminate (F27) of (D27) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D27) was used instead of the resin (B11). The total thickness of the obtained laminate (F27) was 1000 μm, and the thickness of the layer composed of D27 was 60 μm near the center. The HIT hardness of the thermoplastic resin (D27) layer {thermoplastic resin} = 269 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.000 was rejected, and the pencil scratch hardness test The result of is acceptable at 2H, the amount of warpage change under high-temperature and high-humidity environment is 952μm, is rejected, the total light transmittance is 91.6%, and the haze is 0.1%. It was rejected by the comprehensive judgment.
比較例18
 樹脂(B11)の代わりに樹脂(D28)を使用した以外は、実施例1と同様にして(D28)と(A-1)の積層体(F28)を得た。得られた積層体(F28)の全体厚みは1000μm、D28から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D28)層のHIT硬度{熱可塑性樹脂}=274N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.000で不合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は552μmで合格であり、全光線透過率は91.3%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
Comparative Example 18
A laminate (F28) of (D28) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D28) was used instead of the resin (B11). The total thickness of the obtained laminate (F28) was 1000 μm, and the thickness of the layer composed of D28 was 60 μm near the center. The HIT hardness of the thermoplastic resin (D28) layer {thermoplastic resin} = 274 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.000 was rejected, and the pencil scratch hardness test The result of 2 is acceptable at 2H, the amount of warpage change under high temperature and high humidity environment is 552 μm, the total light transmittance is acceptable at 91.3%, and the haze is acceptable at 0.2%, It was rejected by the comprehensive judgment.
比較例19
 樹脂(B11)の代わりに樹脂(D29)を使用した以外は、実施例1と同様にして(D29)と(A-1)の積層体(F29)を得た。得られた積層体(F29)の全体厚みは1000μm、D29から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D29)層のHIT硬度{熱可塑性樹脂}=266N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.000で不合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は378μmで合格であり、全光線透過率は91.4%で合格であり、Hazeは0.2%で合格であり、総合判定で不合格であった。
Comparative Example 19
A laminate (F29) of (D29) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D29) was used instead of the resin (B11). The total thickness of the obtained laminate (F29) was 1000 μm, and the thickness of the layer composed of D29 was 60 μm near the center. The HIT hardness of the thermoplastic resin (D29) layer {thermoplastic resin} = 266 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.000 was rejected, and the pencil scratch hardness test The result of the test is 2H, the warp change amount in a high temperature and high humidity environment is 378 μm, the total light transmittance is 91.4%, and the haze is 0.2%. It was rejected by the comprehensive judgment.
比較例20
 樹脂(B11)の代わりに樹脂(D30)を使用した以外は、実施例1と同様にして(D30)と(A-1)の積層体(F30)を得た。得られた積層体(F30)の全体厚みは1000μm、D30から成る層の厚みは中央付近で60μmであった。熱可塑性樹脂(D30)層のHIT硬度{熱可塑性樹脂}=267N/mmで、HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂}=1.000で不合格であり、鉛筆引っかき硬度試験の結果は2Hで合格であり、高温高湿環境下の反り変化量は356μmで合格であり、全光線透過率は91.2%で合格であり、Hazeは0.3%で合格であり、総合判定で不合格であった。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Comparative Example 20
A laminate (F30) of (D30) and (A-1) was obtained in the same manner as in Example 1 except that the resin (D30) was used instead of the resin (B11). The total thickness of the obtained laminate (F30) was 1000 μm, and the thickness of the layer made of D30 was 60 μm near the center. The HIT hardness of the thermoplastic resin (D30) layer {thermoplastic resin} = 267 N / mm 2 , and the HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin} = 1.000 was rejected, and the pencil scratch hardness test The result of 2 is acceptable at 2H, the warpage change amount in a high temperature and high humidity environment is 356 μm, the total light transmittance is 91.2%, and the haze is 0.3%. It was rejected by the comprehensive judgment.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 以上のように、本発明による樹脂積層体はポリカーボネート系樹脂層に熱可塑性樹脂が積層されていて、この熱可塑性樹脂に芳香族ビニル単量体単位、不飽和ジカルボン酸無水物単量体単位およびアクリル化合物単量体単位を所定の比率で含み、且つ、不飽和ジカルボン酸無水物単量体単位の質量%がアクリル化合物単量体単位の質量%よりも大きい共重合体を含むか、または該共重合体とアクリル化合物単量体単位を主成分として含むアクリル樹脂とを含む熱可塑性樹脂を使用することで、アクリル樹脂単体よりも表面硬度に優れ、且つ高温高湿下に曝されても耐反り変形性に優れる特徴を有する。
 例えば、不飽和ジカルボン酸無水物単量体単位の質量%がアクリル化合物単量体単位の質量%よりも小さい共重合体を含む積層体(比較例1~16)のHIT硬度{熱可塑性樹脂}は、アクリル樹脂単体を熱可塑性樹脂に用いた積層体(比較例17~20)のHIT硬度{アクリル樹脂}よりも低く、鉛筆硬度が十分ではない。また、アクリル樹脂単体を熱可塑性樹脂に用いた積層体(比較例17)は、高温高湿環境下の反り変化量の抑制ができていない。
 これと比較し、不飽和ジカルボン酸無水物単量体単位の質量%がアクリル化合物単量体単位の質量%よりも大きい共重合体を含む積層体(実施例1~41)は、アクリル樹脂単体を熱可塑性樹脂に用いた積層体(比較例17~20)よりHIT硬度{熱可塑性樹脂}が高く、高温高湿環境下の反り変化量も抑制している。
 このように本発明による積層体は、従来のアクリル樹脂とポリカーボネートの積層体の高温高湿環境下の反り変化量を抑制しつつ、表面硬度を向上させることができる。
As described above, in the resin laminate according to the present invention, a thermoplastic resin is laminated on a polycarbonate resin layer, and an aromatic vinyl monomer unit, an unsaturated dicarboxylic anhydride monomer unit, and a thermoplastic resin are laminated on the thermoplastic resin. A copolymer containing acrylic compound monomer units in a predetermined ratio, and containing a copolymer in which the mass% of unsaturated dicarboxylic anhydride monomer units is larger than the mass% of acrylic compound monomer units, or By using a thermoplastic resin containing a copolymer and an acrylic resin containing an acrylic compound monomer unit as a main component, it has a surface hardness superior to that of an acrylic resin alone and is resistant to exposure to high temperatures and high humidity. It has the characteristics which are excellent in curvature deformability.
For example, HIT hardness {thermoplastic resin} of a laminate (Comparative Examples 1 to 16) containing a copolymer in which the mass% of unsaturated dicarboxylic acid anhydride monomer units is smaller than the mass% of acrylic compound monomer units Is lower than the HIT hardness {acrylic resin} of the laminates (Comparative Examples 17 to 20) using a single acrylic resin as the thermoplastic resin, and the pencil hardness is not sufficient. Moreover, the laminated body (comparative example 17) which used the acrylic resin single-piece | unit for a thermoplastic resin has not been able to suppress the curvature variation in a high temperature, high humidity environment.
In comparison with this, the laminates (Examples 1 to 41) containing a copolymer in which the mass% of the unsaturated dicarboxylic acid anhydride monomer unit is larger than the mass% of the acrylic compound monomer unit are acrylic resin alone. The HIT hardness {thermoplastic resin} is higher than that of the laminates (Comparative Examples 17 to 20) using No. 1 as the thermoplastic resin, and the amount of change in warpage in a high temperature and high humidity environment is also suppressed.
As described above, the laminate according to the present invention can improve the surface hardness while suppressing the amount of warpage change in the high temperature and high humidity environment of the conventional laminate of acrylic resin and polycarbonate.
 以上のように、表面硬度を向上させ、且つ、高温高湿環境下の反り変化量を抑制する本発明による樹脂積層体は、ガラスの代替品として、透明基材材料や透明保護材料などとして好適に用いられ、特にタッチパネル前面保護板、OA機器用または携帯電子機器用の前面板として好適に用いられることができる。 As described above, the resin laminate according to the present invention that improves the surface hardness and suppresses the amount of warpage change under a high-temperature and high-humidity environment is suitable as a transparent base material or a transparent protective material as a substitute for glass. In particular, it can be suitably used as a touch panel front protective plate, a front plate for OA devices or portable electronic devices.

Claims (20)

  1.  ポリカーボネート樹脂を主成分とするポリカーボネート系樹脂(A)シートの少なくとも一方の面に、熱可塑性樹脂(B)が積層されてなる樹脂積層体であって、
     前記熱可塑性樹脂(B)が、
     芳香族ビニル単量体単位を50~80質量%、不飽和ジカルボン酸無水物単量体単位を10~25質量%、アクリル化合物単量体単位を5~24質量%含んでなり、且つ、前記不飽和ジカルボン酸無水物単量体単位の質量%が前記アクリル化合物単量体単位の質量%よりも大きい共重合体(b1)を含むか、または
     該共重合体(b1)と、アクリル化合物単量体単位を主成分として含むアクリル樹脂(b2)とを含む
     ことを特徴とする、樹脂積層体。
    A resin laminate in which a thermoplastic resin (B) is laminated on at least one surface of a polycarbonate resin (A) sheet mainly composed of a polycarbonate resin,
    The thermoplastic resin (B) is
    50 to 80% by mass of an aromatic vinyl monomer unit, 10 to 25% by mass of an unsaturated dicarboxylic acid anhydride monomer unit, 5 to 24% by mass of an acrylic compound monomer unit, and A copolymer (b1) in which the mass% of the unsaturated dicarboxylic acid anhydride monomer unit is larger than the mass% of the acrylic compound monomer unit, or the copolymer (b1) and the acrylic compound unit A resin laminate comprising an acrylic resin (b2) containing a monomer unit as a main component.
  2.  前記熱可塑性樹脂(B)における前記共重合体(b1)と前記アクリル樹脂(b2)の含有量の合計100質量部を基準として、前記共重合体(b1)は55~90質量部であり、前記アクリル樹脂(b2)は45~10質量部であり、アクリル化合物単量体単位を主成分として含むアクリル樹脂(b2)が80質量%以上のアクリル化合物単量体単位を含んでいる、請求項1に記載の樹脂積層体。 Based on a total of 100 parts by mass of the copolymer (b1) and the acrylic resin (b2) in the thermoplastic resin (B), the copolymer (b1) is 55 to 90 parts by mass, The acrylic resin (b2) is 45 to 10 parts by mass, and the acrylic resin (b2) containing an acrylic compound monomer unit as a main component contains 80% by mass or more of an acrylic compound monomer unit. 1. The resin laminate according to 1.
  3.  前記熱可塑性樹脂(B)における前記共重合体(b1)と前記アクリル樹脂(b2)の含有量の合計100質量部を基準として、前記共重合体(b1)は10~40質量部であり、前記アクリル樹脂(b2)は90~60質量部であり、アクリル化合物単量体単位を主成分として含むアクリル樹脂(b2)が80質量%未満のアクリル化合物単量体単位を含んでいる、請求項1に記載の樹脂積層体。 Based on 100 parts by mass of the total content of the copolymer (b1) and the acrylic resin (b2) in the thermoplastic resin (B), the copolymer (b1) is 10 to 40 parts by mass, The acrylic resin (b2) is 90 to 60 parts by mass, and the acrylic resin (b2) containing an acrylic compound monomer unit as a main component contains an acrylic compound monomer unit of less than 80% by mass. 1. The resin laminate according to 1.
  4.  前記熱可塑性樹脂(B)が、前記共重合体(b1)と前記アクリル樹脂(b2)とのポリマーアロイである、請求項1~3のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 3, wherein the thermoplastic resin (B) is a polymer alloy of the copolymer (b1) and the acrylic resin (b2).
  5.  前記熱可塑性樹脂(B)のインデンテーション硬度をHIT硬度{熱可塑性樹脂}とし、前記アクリル樹脂(b2)単体のインデンテーション硬度をHIT硬度{アクリル樹脂}とした場合、HIT硬度{熱可塑性樹脂}をHIT硬度{アクリル樹脂}で除した値(HIT硬度{熱可塑性樹脂}/HIT硬度{アクリル樹脂})が1.01以上である、請求項1~4のいずれかに記載の樹脂積層体。 When the indentation hardness of the thermoplastic resin (B) is HIT hardness {thermoplastic resin} and the indentation hardness of the acrylic resin (b2) is HIT hardness {acrylic resin}, the HIT hardness {thermoplastic resin} The resin laminate according to any one of claims 1 to 4, wherein a value obtained by dividing the value by HIT hardness {acrylic resin} (HIT hardness {thermoplastic resin} / HIT hardness {acrylic resin}) is 1.01 or more.
  6.  前記熱可塑性樹脂(B)の表面の鉛筆硬度が、前記アクリル樹脂(b2)単体の表面の鉛筆硬度と同等以上である、請求項1~5のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 5, wherein a pencil hardness of the surface of the thermoplastic resin (B) is equal to or greater than a pencil hardness of the surface of the acrylic resin (b2) alone.
  7.  前記共重合体(b1)に含まれる前記芳香族ビニル単量体単位が、スチレンである、請求項1~6のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 6, wherein the aromatic vinyl monomer unit contained in the copolymer (b1) is styrene.
  8.  前記共重合体(b1)に含まれる前記不飽和ジカルボン酸無水物単量体単位が、無水マレイン酸である、請求項1~7のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 7, wherein the unsaturated dicarboxylic anhydride monomer unit contained in the copolymer (b1) is maleic anhydride.
  9.  前記共重合体(b1)に含まれる前記アクリル化合物単量体単位が、メタクリル酸エステルである、請求項1~8のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 8, wherein the acrylic compound monomer unit contained in the copolymer (b1) is a methacrylic ester.
  10.  前記共重合体(b1)の重量平均分子量(Mw)が5万~30万である、請求項1~9のいずれかに記載の樹脂積層体。 The resin laminate according to any one of Claims 1 to 9, wherein the copolymer (b1) has a weight average molecular weight (Mw) of 50,000 to 300,000.
  11.  前記熱可塑性樹脂(B)の層の厚さが10~250μmであり、前記樹脂積層体の全体厚みが0.05~3.0mmの範囲である、請求項1~10のいずれかに記載の樹脂積層体。 The thickness of the thermoplastic resin (B) layer is 10 to 250 µm, and the total thickness of the resin laminate is in the range of 0.05 to 3.0 mm. Resin laminate.
  12.  前記ポリカーボネート系樹脂(A)の重量平均分子量が25,000~75,000である、請求項1~11のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 11, wherein the polycarbonate-based resin (A) has a weight average molecular weight of 25,000 to 75,000.
  13.  前記樹脂積層体の全光線透過率が75%以上であり、Hazeが30%以下である、請求項1~12のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 12, wherein the resin laminate has a total light transmittance of 75% or more and a Haze of 30% or less.
  14.  前記熱可塑性樹脂(B)の層および前記ポリカーボネート系樹脂(A)の層の少なくとも一方が紫外線吸収剤を含有する、請求項1~13のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 13, wherein at least one of the thermoplastic resin (B) layer and the polycarbonate-based resin (A) layer contains an ultraviolet absorber.
  15.  前記熱可塑性樹脂(B)の層の表面にハードコート層をさらに備える、請求項1~14のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 14, further comprising a hard coat layer on a surface of the thermoplastic resin (B) layer.
  16.  前記樹脂積層体の片面または両面に、耐指紋処理、反射防止処理、防眩処理、耐候性処理、帯電防止処理および防汚処理のいずれか一つ以上が施されてなる、請求項1~15のいずれかに記載の樹脂積層体。 One or more of fingerprint resistance treatment, antireflection treatment, antiglare treatment, weather resistance treatment, antistatic treatment and antifouling treatment are performed on one or both surfaces of the resin laminate. The resin laminate according to any one of the above.
  17.  請求項1~16のいずれかに記載の樹脂積層体を含む透明基板材料。 A transparent substrate material comprising the resin laminate according to any one of claims 1 to 16.
  18.  請求項1~16のいずれかに記載の樹脂積層体を含む透明保護材料。 A transparent protective material comprising the resin laminate according to any one of claims 1 to 16.
  19.  請求項1~16のいずれかに記載の樹脂積層体を含むタッチパネル前面保護板。 A touch panel front protective plate comprising the resin laminate according to any one of claims 1 to 16.
  20.  請求項1~16のいずれかに記載の樹脂積層体を含む、OA機器用または携帯電子機器用の前面板。
     
    A front plate for an OA device or a portable electronic device, comprising the resin laminate according to any one of claims 1 to 16.
PCT/JP2016/069856 2015-12-01 2016-07-05 Transparent resin laminate WO2017094282A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187017949A KR20180088681A (en) 2015-12-01 2016-07-05 The transparent resin laminate
CN201680068388.6A CN108290404A (en) 2015-12-01 2016-07-05 Transparent resin laminate body
JP2017553644A JP6787925B2 (en) 2015-12-01 2016-07-05 Transparent resin laminate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015234872 2015-12-01
JP2015-234872 2015-12-01
JP2016027060 2016-02-16
JP2016-027060 2016-02-16

Publications (1)

Publication Number Publication Date
WO2017094282A1 true WO2017094282A1 (en) 2017-06-08

Family

ID=58796703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069856 WO2017094282A1 (en) 2015-12-01 2016-07-05 Transparent resin laminate

Country Status (5)

Country Link
JP (1) JP6787925B2 (en)
KR (1) KR20180088681A (en)
CN (1) CN108290404A (en)
TW (1) TWI740834B (en)
WO (1) WO2017094282A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3418051A4 (en) * 2016-02-15 2019-06-19 Mitsubishi Gas Chemical Company, Inc. Transparent resin laminate
WO2020261783A1 (en) * 2019-06-26 2020-12-30 三菱瓦斯化学株式会社 Resin layered body, and transparent substrate material and transparent protective material material containing the same
CN113518701A (en) * 2019-03-07 2021-10-19 三菱瓦斯化学株式会社 Resin sheet for high-hardness molding and molded article using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101759945A (en) * 2008-12-26 2010-06-30 金发科技股份有限公司 Thermoplastic composition, and preparation method and application thereof
WO2012117897A1 (en) * 2011-02-28 2012-09-07 日本ゼオン株式会社 Multilayered film and method of manufacturing multilayered film
JP2014198454A (en) * 2013-03-13 2014-10-23 住友化学株式会社 Resin laminate and scratch-resistant resin laminate using the same
WO2014187500A1 (en) * 2013-05-24 2014-11-27 Evonik Industries Ag Composite system with high impact strength and a high softening point
JP2015128899A (en) * 2013-12-02 2015-07-16 住友化学株式会社 Resin laminate and scratch-resistant resin laminate using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4440219A1 (en) * 1994-11-10 1996-05-15 Roehm Gmbh Process for the preparation of copolymers from alkyl methacrylate, vinyl aromatics and maleic anhydride
CN105745075B (en) * 2013-11-26 2018-12-04 三菱瓦斯化学株式会社 Transparent resin laminate body
CN103665815A (en) * 2013-12-19 2014-03-26 上海锦湖日丽塑料有限公司 Low-warpage reinforced polycarbonate alloy and preparation method thereof
WO2015133530A1 (en) 2014-03-07 2015-09-11 株式会社クラレ Laminate body
KR102244204B1 (en) * 2014-05-22 2021-04-26 덴카 주식회사 Copolymer for transparent, scratch-resistant plate, and laminate for transparent, scratch-resistant plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101759945A (en) * 2008-12-26 2010-06-30 金发科技股份有限公司 Thermoplastic composition, and preparation method and application thereof
WO2012117897A1 (en) * 2011-02-28 2012-09-07 日本ゼオン株式会社 Multilayered film and method of manufacturing multilayered film
JP2014198454A (en) * 2013-03-13 2014-10-23 住友化学株式会社 Resin laminate and scratch-resistant resin laminate using the same
WO2014187500A1 (en) * 2013-05-24 2014-11-27 Evonik Industries Ag Composite system with high impact strength and a high softening point
JP2015128899A (en) * 2013-12-02 2015-07-16 住友化学株式会社 Resin laminate and scratch-resistant resin laminate using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3418051A4 (en) * 2016-02-15 2019-06-19 Mitsubishi Gas Chemical Company, Inc. Transparent resin laminate
CN113518701A (en) * 2019-03-07 2021-10-19 三菱瓦斯化学株式会社 Resin sheet for high-hardness molding and molded article using same
EP3936303A4 (en) * 2019-03-07 2022-04-06 Mitsubishi Gas Chemical Company, Inc. Resin sheet for high hardness molding and molded article using same
JP7497337B2 (en) 2019-03-07 2024-06-10 三菱瓦斯化学株式会社 High-hardness molding resin sheet and molded product using same
WO2020261783A1 (en) * 2019-06-26 2020-12-30 三菱瓦斯化学株式会社 Resin layered body, and transparent substrate material and transparent protective material material containing the same
JPWO2020261783A1 (en) * 2019-06-26 2020-12-30

Also Published As

Publication number Publication date
CN108290404A (en) 2018-07-17
JPWO2017094282A1 (en) 2018-09-20
TW201736131A (en) 2017-10-16
JP6787925B2 (en) 2020-11-18
TWI740834B (en) 2021-10-01
KR20180088681A (en) 2018-08-06

Similar Documents

Publication Publication Date Title
JP6832334B2 (en) Transparent resin laminate
JP6571528B2 (en) Transparent resin laminate
JP6068433B2 (en) Synthetic resin laminate
JP6068456B2 (en) Synthetic resin laminate
JP6472385B2 (en) Synthetic resin laminate
JP6630670B2 (en) Synthetic resin laminate
JP6787925B2 (en) Transparent resin laminate
JP6712926B2 (en) Transparent resin laminate
JP7356304B2 (en) Resin laminates, transparent substrate materials containing the same, and transparent protective materials
JP5237506B1 (en) Scratch-resistant resin laminate, display front cover material, and image display device
JP7239314B2 (en) Resin laminate, transparent substrate material and transparent protective material containing the resin laminate
JP7231466B2 (en) transparent resin laminate
JP2017071150A (en) Laminate and method for producing the same
JP2023137992A (en) Multilayer body, transparent substrate, transparent protective film, protective film for front surface of touch panel and front plate for display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553644

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187017949

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16870223

Country of ref document: EP

Kind code of ref document: A1