WO2020261669A1 - Vehicle driving device - Google Patents

Vehicle driving device Download PDF

Info

Publication number
WO2020261669A1
WO2020261669A1 PCT/JP2020/011425 JP2020011425W WO2020261669A1 WO 2020261669 A1 WO2020261669 A1 WO 2020261669A1 JP 2020011425 W JP2020011425 W JP 2020011425W WO 2020261669 A1 WO2020261669 A1 WO 2020261669A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
electric machine
rotary electric
axial direction
rotor
Prior art date
Application number
PCT/JP2020/011425
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤達也
前田拓洋
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Publication of WO2020261669A1 publication Critical patent/WO2020261669A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the first rotary electric machine and the second rotary electric machine an input member that is driven and connected to the internal combustion engine, a pair of output members that are driven and connected to the wheels, and a driving force of the internal combustion engine that is transmitted to the input member.
  • the present invention relates to a vehicle drive device including a distribution differential gear mechanism for distributing the input rotation and an output differential gear mechanism for distributing the input rotation to a pair of output members.
  • Patent Document 1 An example of such a vehicle drive device is disclosed in Patent Document 1 below.
  • the reference numerals in Patent Document 1 are quoted in parentheses.
  • the distribution differential gear mechanism (22) is driven and connected to the rotor of the first rotary electric machine (MG1) with the first rotary element (S1) and the input member (
  • the second rotating element (CA1) driven and connected to 20) is driven and connected to the second rotating electric machine (MG2) via the speed reducer (24), and the output difference is driven via the counter gear mechanism (36).
  • the first rotary electric machine (MG1), the second rotary electric machine (MG2), the differential gear mechanism for distribution (22), and the reduction gear (24) are arranged coaxially with the input member (20).
  • the output differential gear mechanism (40) and the pair of output members (38) are arranged on a shaft different from the input member (20).
  • the first rotary electric machine (MG1) is arranged coaxially with the input member (20). Therefore, the distance between the rotation axis of the first rotary electric machine (MG1) and the rotation axis of the pair of output members (38) depends on the positional relationship between the input member (20) and the output differential gear mechanism (40). It will be decided. Therefore, it is difficult to increase the radial dimension of the first rotary electric machine (MG1) while avoiding interference between the first rotary electric machine (MG1) and the pair of output members (38), and the first rotary electric machine (MG1) It was difficult to increase the torque of MG1) and improve the cooling performance.
  • the first rotary electric machine (MG1) and the distribution differential gear mechanism (22) are arranged coaxially with the input member (20). Therefore, while there are restrictions on the axial dimensions of the vehicle drive device (10), the planetary gear mechanism or the like shifts in the power transmission path from the distribution differential gear mechanism (22) to the first rotary electric machine (MG1). It was difficult to provide a mechanism, and the degree of freedom in setting the gear ratio of the power transmission path was low.
  • the characteristic configuration of the vehicle drive device is An input member arranged on the first side in the axial direction, which is one side in the axial direction with respect to the internal combustion engine, and driven and connected to the internal combustion engine. A pair of output members that are driven and connected to the wheels, respectively.
  • An output differential gear mechanism that distributes the input rotation to the pair of output members,
  • the second gear that meshes with the first gear and A first rotating element that is driven and connected to the second gear, a second rotating element that is driven and connected to the input member, and a third that is driven and connected to both the second rotor and the output differential gear mechanism.
  • a differential gear mechanism for distribution equipped with a rotating element
  • the input member, the distribution differential gear mechanism, and the second gear are coaxially arranged.
  • the output differential gear mechanism is arranged on a shaft separate from the input member. The point is that the first rotary electric machine is arranged on a shaft different from the input member.
  • each of the output differential gear mechanism and the first rotary electric machine is arranged on a shaft separate from the input member. Therefore, the degree of freedom in the positional relationship between the rotation axis of the output differential gear mechanism and the rotation axis of the first rotary electric machine is high, and it is easy to secure a large distance between them. As a result, it becomes easy to secure a large radial dimension of the first rotary electric machine while avoiding interference between the first rotary electric machine and the pair of output members.
  • the distribution differential gear mechanism is arranged coaxially with the input member, and the first rotary electric machine is arranged on a shaft different from the input member.
  • the first rotary electric machine and the distribution differential gear mechanism are arranged on different shafts. Then, the first gear and the second gear that mesh with each other are arranged in the power transmission path from the differential gear mechanism for distribution to the first rotary electric machine.
  • the gear ratio of the power transmission path from the differential gear mechanism for distribution to the first rotary electric machine can be easily set to an appropriate value by setting the gear ratio between the first gear and the second gear. it can.
  • the degree of freedom in setting the gear ratio of the power transmission path from the differential gear mechanism for distribution to the first rotary electric machine can be increased.
  • the vehicle drive device 100 includes a first rotary electric machine 1A and a second rotary electric machine 1B, a first rotor gear 2A, an input member 3, a distribution differential gear mechanism 4, and the like. It includes an input gear 5, an output differential gear mechanism 8, and a pair of output members 9.
  • the vehicle drive device 100 further includes a second rotor gear 2B, an idler gear 6, and a counter gear mechanism 7. Further, in the present embodiment, these are housed in the case CS. A part of the input member 3 and a part of the pair of output members 9 are exposed to the outside of the case CS.
  • Each of the input member 3, the distribution differential gear mechanism 4, and the input gear 5 is arranged on the first axis X1 as its rotation axis. That is, the input member 3, the distribution differential gear mechanism 4, and the input gear 5 are coaxially arranged.
  • the idler gear 6 is also arranged on the first axis X1.
  • the first rotary electric machine 1A is arranged on the second axis X2 as its rotation axis. That is, the first rotary electric machine 1A is arranged on a shaft different from the input member 3.
  • the second rotary electric machine 1B, the first rotor gear 2A, and the second rotor gear 2B are also arranged on the second shaft X2.
  • the first rotary electric machine 1A, the second rotary electric machine 1B, the first rotor gear 2A, and the second rotor gear 2B are coaxially arranged.
  • the counter gear mechanism 7 is arranged on the third axis X3 as its rotation axis.
  • Each of the output differential gear mechanism 8 and the pair of output members 9 is arranged on the fourth axis X4 as its rotation axis. That is, the output differential gear mechanism 8 is arranged on a shaft different from the input member 3.
  • These axes X1 to X4 are virtual axes that are different from each other and are arranged in parallel with each other.
  • the direction parallel to the above axes X1 to X4 is referred to as the "axial direction L" of the vehicle drive device 100.
  • the side where the input member 3 is arranged with respect to the internal combustion engine EG is referred to as "axial first side L1”
  • the opposite side is referred to as "axial second side L2”.
  • the direction orthogonal to each of the above axes X1 to X4 is defined as “diameter direction R" with respect to each axis.
  • the first space A1 and the second space A2 are formed inside the case CS.
  • the first space A1 is a space for accommodating the first rotary electric machine 1A and the second rotary electric machine 1B.
  • the second space A2 includes a first rotor gear 2A and a second rotor gear 2B, an input member 3, a distribution differential gear mechanism 4, an input gear 5, an idler gear 6, a counter gear mechanism 7, and an output differential.
  • This is a space for accommodating the gear mechanism 8 and the pair of output members 9.
  • the first space A1 is arranged adjacent to the first side L1 in the axial direction with respect to the second space A2.
  • the case CS has a first peripheral wall portion CSa1 and a second peripheral wall portion CSa2, a partition wall portion CSb, a first side wall portion CSc1, a second side wall portion CSc2, and a third side wall portion CSc3. There is.
  • the first peripheral wall portion CSa1 is formed in a tubular shape that surrounds the outside of the first rotary electric machine 1A and the second rotary electric machine 1B in the radial direction R.
  • the second peripheral wall portion CSa2 includes a first rotor gear 2A and a second rotor gear 2B, an input member 3, a distribution differential gear mechanism 4, an input gear 5, an idler gear 6, a counter gear mechanism 7, and an output difference.
  • the dynamic gear mechanism 8 and the pair of output members 9 are formed in a tubular shape that surrounds the outside in the radial direction R.
  • the partition wall portion CSb is formed so as to partition the first space A1 and the second space A2.
  • the first side wall portion CSc1 is formed so as to close the opening of the first peripheral wall portion CSa1 on the first side L1 in the axial direction.
  • the second side wall portion CSc2 is formed so as to close the opening of the second peripheral wall portion CSa2 on the first side L1 in the axial direction.
  • the third side wall portion CSc3 is formed so as to close the opening of the second peripheral wall portion CSa2 on the second side L2 in the axial direction.
  • the first space A1 is formed by the first peripheral wall portion CSa1, the first side wall portion CSc1, and the partition wall portion CSb. Further, the second space A2 is formed by the second peripheral wall portion CSa2, the partition wall portion CSb, the second side wall portion CSc2, and the third side wall portion CSc3.
  • the first rotary electric machine 1A has a function as a motor (electric motor) that receives power supply and generates power, and a function as a generator (generator) that receives power supply and generates power. .. Therefore, the first rotary electric machine 1A is electrically connected to a power storage device (not shown). As this power storage device, various known power storage devices such as batteries and capacitors can be used. In the present embodiment, the first rotary electric machine 1A functions as a generator that generates electric power by the torque of the internal combustion engine EG, charges the power storage device, or supplies electric power for driving the second rotary electric machine 1B.
  • the first rotary electric machine 1A may function as a motor that powers and generates a driving force (synonymous with "torque") when the vehicle is traveling at high speed or when the internal combustion engine EG is started.
  • the internal combustion engine EG is a prime mover (gasoline engine, diesel engine, etc.) that is driven by combustion of fuel to extract power.
  • the first rotary electric machine 1A includes a first stator 11A and a first rotor 12A.
  • the first stator 11A has a first stator core 111A fixed to a non-rotating member (here, case CS).
  • the first rotor 12A has a first rotor core 121A that is rotatable with respect to the first stator 11A.
  • the first rotary electric machine 1A is an inner rotor type rotary electric machine, the first rotor core 121A is arranged inside the radial direction R of the first stator core 111A.
  • the first rotary electric machine 1A is a rotating field type rotary electric machine. Therefore, as shown in FIG. 3, the first stator core 111A has coil end portions protruding from the first stator core 111A on both sides in the axial direction L (the first side L1 in the axial direction and the second side L2 in the axial direction), respectively.
  • the first stator coil 112A is wound so as to be formed.
  • a first permanent magnet 122A is provided on the first rotor core 121A.
  • the first terminal portion 113A which is the terminal portion of the first stator coil 112A, protrudes to the side of the second rotary electric machine 1B in the axial direction L (the second side L2 in the axial direction).
  • the first terminal portion 113A is included in the coil end portion of the first stator coil 112A on the second side L2 in the axial direction, and protrudes toward the second side L2 in the axial direction with respect to other portions in the coil end portion.
  • the first terminal portion 113A is arranged in a part of the circumferential direction of the first rotary electric machine 1A.
  • the second rotary electric machine 1B has a function as a motor (electric motor) that receives power supply and generates power, and a function as a generator (generator) that receives power supply and generates power. .. Therefore, the second rotary electric machine 1B is also electrically connected to the above-mentioned power storage device in the same manner as the first rotary electric machine 1A.
  • the second rotary electric machine 1B mainly functions as a motor that generates a driving force for traveling the vehicle.
  • the second rotary electric machine 1B may function as a generator that regenerates the inertial force of the vehicle as electric energy.
  • the second rotary electric machine 1B includes a second stator 11B and a second rotor 12B.
  • the second stator 11B has a second stator core 111B fixed to a non-rotating member (here, case CS).
  • the second rotor 12B has a second rotor core 121B that is rotatable with respect to the second stator 11B.
  • the second rotary electric machine 1B is an inner rotor type rotary electric machine
  • the second rotor core 121B is arranged inside the second stator core 111B in the radial direction R.
  • the second rotary electric machine 1B is a rotating field type rotary electric machine. Therefore, the second stator core 111B is formed with coil end portions protruding from the second stator core 111B on both sides in the axial direction L (the first side L1 in the axial direction and the second side L2 in the axial direction). The stator coil 112B is wound around it. A second permanent magnet 122B is provided on the second rotor core 121B.
  • the second terminal portion 113B which is the terminal portion of the second stator coil 112B, protrudes to the side of the first rotary electric machine 1A in the axial direction L (the first side L1 in the axial direction).
  • the second terminal portion 113B is included in the coil end portion of the second stator coil 112B on the first side L1 in the axial direction, and protrudes toward the first side L1 in the axial direction with respect to other portions in the coil end portion.
  • the second terminal portion 113B is arranged in a part of the circumferential direction of the second rotary electric machine 1B.
  • the coil end portion of the first stator coil 112A and the coil end portion of the second stator coil 112B are arranged so as to face each other in the axial direction L.
  • the first terminal portion 113A and the second terminal portion 113B are arranged at different positions in the circumferential direction with respect to the second axis X2, and the arrangement region of the first terminal portion 113A in the axial direction L and the first terminal portion 113A are arranged.
  • the two terminal portions 113B overlap with the arrangement region in the axial direction L.
  • the portion of the coil end portion of the first stator coil 112A excluding the first terminal portion 113A and the portion of the coil end portion of the second stator coil 112B excluding the second terminal portion 113B are in axial L directions with each other. It is separated.
  • the first rotor gear 2A corresponds to the "first gear” that rotates integrally with the first rotor 12A.
  • the first rotor gear 2A is integrally connected to the first rotor 12A via the first rotor shaft 21A.
  • the first rotor shaft 21A is formed in a tubular shape extending along the axial direction L.
  • the first rotor gear 2A is formed on the outer peripheral surface of the end portion of the second side L2 in the axial direction of the first rotor shaft 21A.
  • the first rotor shaft 21A is arranged so as to penetrate the partition wall portion CSb in the axial direction L.
  • the first rotor shaft 21A is rotatably supported with respect to the partition wall portion CSb via the first rotor shaft support bearing B1.
  • the first rotor shaft 21A is connected so as to rotate integrally with the first rotor support member 13A that supports the first rotor 12A.
  • the first rotor support member 13A has a first support portion 131A and a first connecting portion 132A.
  • the first support portion 131A is formed in a tubular shape extending along the axial direction L.
  • the first support portion 131A supports the first rotor 12A from the inside in the radial direction R.
  • the first connecting portion 132A is formed in a tubular shape extending along the axial direction L.
  • the first connecting portion 132A has a smaller diameter than the first supporting portion 131A and is formed to have a larger diameter than the first rotor shaft 21A.
  • the first connecting portion 132A is connected to the first supporting portion 131A so as to rotate integrally with the first supporting portion 131A in a state of being arranged inside the radial direction R. Further, the first connecting portion 132A is connected so as to rotate integrally with the first rotor shaft 21A in a state of being arranged outside the radial direction R with respect to the first rotor shaft 21A.
  • the first connecting portion 132A is integrally connected to the first rotor shaft 21A by spline engagement.
  • the first connecting portion 132A is rotatably supported with respect to the case CS by a pair of first rotor bearings B2.
  • the pair of first rotor bearings B2 are arranged on both sides in the axial direction L with the connecting portion between the first connecting portion 132A and the first supporting portion 131A interposed therebetween.
  • the first rotor bearing B2 on the second side L2 in the axial direction is supported by the partition wall portion CSb.
  • the first rotor bearing B2 on the first side L1 in the axial direction is supported by the first support wall portion CSd1.
  • the first support wall portion CSd1 is integrally connected to the second support wall portion CSd2 fixed to the first peripheral wall portion CSa1.
  • the first support wall portion CSd1 is adjacent to the second support wall portion CSd2 in the axial direction and is integrally connected to the second support wall portion CSd2 by bolt fastening.
  • the first support wall portion CSd1 and the second support wall portion CSd2 extend along the radial direction R with respect to the second axis X2.
  • the first support wall portion CSd1 and the second support wall portion CSd2 are arranged between the first rotor 12A and the second rotor 12B in the axial direction L.
  • the first support wall portion CSd1 is arranged inside the coil end portion of the first stator coil 112A and the coil end portion of the second stator coil 112B in the radial direction R.
  • the second support wall portion CSd2 has a diameter larger than that of the coil end portion through a portion in which the coil end portions of the first stator coil 112A and the second stator coil 112B are separated from each other in the axial direction L. It extends from the inside to the outside of the direction R. Then, the first stator core 111A and the second stator core 111B are connected to the outer portion of the second support wall portion CSd2 in the radial direction R from the coil end portion by bolt fastening.
  • the second rotor gear 2B corresponds to a "fourth gear” that rotates integrally with the second rotor 12B.
  • the second rotor gear 2B is integrally connected to the second rotor 12B via the second rotor shaft 21B. Further, in the present embodiment, the second rotor gear 2B has a smaller diameter than the first rotor gear 2A.
  • the second rotor shaft 21B is formed so as to extend along the axial direction L.
  • the second rotor shaft 21B is arranged so as to penetrate the inside of the first rotor shaft 21A in the radial direction R in the axial direction L.
  • the second rotor gear 2B is formed on the outer peripheral surface of the portion of the second rotor shaft 21B located on the second side L2 in the axial direction with respect to the first rotor shaft 21A.
  • the second rotor shaft 21B is rotatably supported with respect to the case CS by a pair of second rotor shaft support bearings B3 arranged at different positions in the axial direction L.
  • the second rotor shaft 21B extends from the first side wall portion CSc1 to the third side wall portion CSc3.
  • the second rotor shaft 21B is rotatably supported with respect to the first side wall portion CSc1 via the second rotor shaft support bearing B3 on the first side L1 in the axial direction.
  • the second rotor shaft 21B is rotatably supported with respect to the third side wall portion CSc3 via the second rotor shaft support bearing B3 on the second side L2 in the axial direction.
  • the second rotor shaft 21B is connected so as to rotate integrally with the second rotor support member 13B that supports the second rotor 12B.
  • the second rotor support member 13B has a second support portion 131B and a second connecting portion 132B.
  • the second support portion 131B is formed in a tubular shape extending along the axial direction L.
  • the second support portion 131B supports the second rotor 12B from the inside in the radial direction R.
  • the second connecting portion 132B is formed in a tubular shape extending along the axial direction L.
  • the second connecting portion 132B has a smaller diameter than the second supporting portion 131B and is formed to have a larger diameter than the second rotor shaft 21B.
  • the second connecting portion 132B is connected to the second supporting portion 131B so as to rotate integrally with the second supporting portion 131B in a state of being arranged inside the radial direction R. Further, the second connecting portion 132B is connected so as to rotate integrally with the second rotor shaft 21B in a state of being arranged outside the radial direction R with respect to the second rotor shaft 21B.
  • the second connecting portion 132B is integrally connected to the second rotor shaft 21B by spline engagement.
  • the second connecting portion 132B is rotatably supported with respect to the case CS by a pair of second rotor bearings B4.
  • the pair of second rotor bearings B4 are arranged on both sides in the axial direction L with the connecting portion between the second connecting portion 132B and the second supporting portion 131B interposed therebetween.
  • the second rotor bearing B4 on the first side L1 in the axial direction is supported by the first side wall portion CSc1.
  • the second rotor bearing B4 on the second side L2 in the axial direction is supported by the second support wall portion CSd2.
  • the first rotary electric machine 1A is arranged on the first side L1 in the axial direction with respect to the distribution differential gear mechanism 4. Further, in the present embodiment, the second rotor gear 2B, the first rotor gear 2A, the first rotary electric machine 1A, and the second rotary electric machine 1B are described in the order described from the second side L2 in the axial direction to the first side L1 in the axial direction. It is arranged in.
  • the input member 3 is formed so as to extend along the axial direction L. In the present embodiment, the input member 3 penetrates the third side wall portion CSc3 in the axial direction L so as to project from the third side wall portion CSc3 toward the second side L2 in the axial direction.
  • the input member 3 is drive-connected to the internal combustion engine EG. In the present embodiment, the input member 3 is driven and connected to the output shaft (crankshaft or the like) of the internal combustion engine EG via the damper device DP.
  • the damper device DP is a device that attenuates fluctuations in the transmitted torque. In the present embodiment, in order to limit the excessive load from acting on the power transmission path from the output member 9 to the internal combustion engine EG when an excessive torque is input to the damper device DP from the output side. Torque limiter is provided.
  • the “driving connection” refers to a state in which two rotating elements are connected so as to be able to transmit a driving force, and the two rotating elements are connected so as to rotate integrally, or the said. It includes a state in which two rotating elements are mutably connected so that a driving force can be transmitted via one or more transmission members.
  • Such transmission members include various members that transmit rotation at the same speed or at different speeds, such as shafts, gear mechanisms, belts, chains, and the like.
  • the transmission member may include an engaging device that selectively transmits rotation and driving force, for example, a friction engaging device, a meshing type engaging device, and the like.
  • each rotating element of the distribution differential gear mechanism 4 and the output differential gear mechanism 8 is referred to as "drive connection"
  • the distribution differential gear mechanism 4 and the output differential gear mechanism 8 are respectively used. It refers to a state in which at least three rotating elements provided in the above are driven and connected to each other without interposing other rotating elements.
  • the distribution differential gear mechanism 4 distributes the driving force of the internal combustion engine EG transmitted to the input member 3 to the first rotary electric machine 1A, the second rotary electric machine 1B, and the output differential gear mechanism 8. It is configured. In the present embodiment, the distribution differential gear mechanism 4 distributes to the input gear 5 and the idler gear 6. As described above, the vehicle drive device 100 according to the present embodiment is configured as a so-called split type hybrid vehicle drive device.
  • the distribution differential gear mechanism 4 is a single pinion type planetary gear mechanism. Specifically, the distribution differential gear mechanism 4 includes a carrier C4 that supports the pinion gear P4, a sun gear S4 that meshes with the pinion gear P4, and a ring gear that is arranged outside the sun gear S4 in the radial direction R and meshes with the pinion gear P4. It is equipped with R4.
  • the carrier C4 is an input element of the distribution differential gear mechanism 4, and is connected to the input member 3 so as to rotate integrally. That is, in the present embodiment, the carrier C4 corresponds to the "second rotating element” that is driven and connected to the input member 3.
  • the pinion gear P4 is rotatably supported by the carrier C4.
  • the pinion gear P4 rotates (rotates) around its axis and rotates (revolves) around the sun gear S4.
  • a plurality of pinion gears P4 are provided along the revolution trajectory.
  • the sun gear S4 is one of the rotating elements after distribution of the driving force in the distribution differential gear mechanism 4, and is connected so as to rotate integrally with the input gear 5. That is, in the present embodiment, the sun gear S4 corresponds to the "first rotating element” that is driven and connected to the second gear (input gear 5).
  • the ring gear R4 is the other of the rotating elements after the distribution of the driving force in the distribution differential gear mechanism 4.
  • the ring gear R4 corresponds to a "third rotating element" that is driven and connected to both the second rotor 12B of the second rotating electric machine 1B and the output differential gear mechanism 8.
  • the ring gear R4 is connected so as to rotate integrally with the cylindrical gear forming member 41 extending along the axial direction L.
  • the ring gear R4 is formed on the inner peripheral surface of the region of the gear forming member 41 on the first side L1 in the axial direction with respect to the idler gear 6.
  • the input gear 5 meshes with the first rotor gear 2A. That is, the input gear 5 corresponds to a "second gear” that meshes with the first gear (first rotor gear 2A).
  • the gear ratio between the first rotor gear 2A and the input gear 5 is such that the rotation of the first rotating element (here, the sun gear S4) of the differential gear mechanism 4 for distribution is accelerated and the first rotating electric machine is used. It is set to be transmitted to 1A.
  • the input gear 5 is rotatably supported from the inside in the radial direction R by the input bearing B5 supported by the partition wall portion CSb.
  • the idler gear 6 meshes with the second rotor gear 2B. Further, the idler gear 6 is driven and connected to the output differential gear mechanism 8. In the present embodiment, the idler gear 6 is driven and connected to the output differential gear mechanism 8 via the counter gear mechanism 7. Further, in the present embodiment, the idler gear 6 is connected via the gear forming member 41 so as to rotate integrally with the ring gear R4 of the distribution differential gear mechanism 4. That is, the idler gear 6 corresponds to a "third gear” that rotates integrally with the third rotating element (ring gear R4). In the illustrated example, the idler gear 6 is formed on the outer peripheral surface of the region of the gear forming member 41 on the second side L2 in the axial direction with respect to the ring gear R4.
  • the idler gear 6 is arranged coaxially with the input member 3, the second gear, and the distribution differential gear mechanism.
  • the idler gear 6 is rotatably supported from the inside of the radial direction R by the idler bearing B6 supported by the cylindrical cylindrical wall portion CSe extending along the axial direction L. That is, the idler bearing B6 is interposed between the inner peripheral surface of the idler gear 6 and the outer peripheral surface of the cylinder wall portion CSe.
  • the tubular wall portion CSe is formed so as to project from the third side wall portion CSc3 toward the first side L1 in the axial direction.
  • the counter gear mechanism 7 has a counter shaft 71, a first counter gear 72, and a second counter gear 73.
  • the counter shaft 71 is formed so as to extend along the axial direction L.
  • the counter shaft 71 is rotatably supported with respect to the case CS by a pair of counter bearings B7 arranged at different positions in the axial direction L.
  • the counter shaft 71 extends from the partition wall portion CSb to the third side wall portion CSc3.
  • the counter shaft 71 is rotatably supported with respect to the partition wall portion CSb via the counter bearing B7 on the first side L1 in the axial direction.
  • the counter shaft 71 is rotatably supported with respect to the third side wall portion CSc3 via the counter bearing B7 on the second side L2 in the axial direction.
  • the first counter gear 72 is an input element of the counter gear mechanism 7.
  • the first counter gear 72 meshes with the idler gear 6 at a position different from that of the second rotor gear 2B in the circumferential direction of the idler gear 6. That is, the first counter gear 72 corresponds to the "fifth gear” that meshes with the third gear (idler gear 6).
  • the first counter gear 72 is connected to the counter shaft 71 by spline engagement.
  • the second counter gear 73 is an output element of the counter gear mechanism 7.
  • the second counter gear 73 rotates integrally with the first counter gear 72 via the counter shaft 71. That is, the second counter gear 73 corresponds to the "sixth gear” that rotates integrally with the fifth gear (first counter gear 72).
  • the second counter gear 73 is arranged on the first side L1 in the axial direction with respect to the first counter gear 72. Further, in the present embodiment, the second counter gear 73 is formed to have a smaller diameter than the first counter gear 72.
  • the output differential gear mechanism 8 includes a differential input gear 81 which is an input element of the output differential gear mechanism 8.
  • the output differential gear mechanism 8 is configured to distribute the rotation input to the output differential gear mechanism 8, that is, the rotation of the differential input gear 81, to the pair of output members 9.
  • the differential input gear 81 meshes with the second counter gear 73 of the counter gear mechanism 7. That is, the differential input gear 81 corresponds to the "seventh gear” that meshes with the sixth gear (second counter gear 73).
  • the differential input gear 81 and the second counter gear 73 are arranged so that their axial L arrangement areas overlap with the axial L arrangement areas of the distribution differential gear mechanism 4. ..
  • the output differential gear mechanism 8 includes a differential case 82, a pair of differential pinion gears 83, and a pair of side gears 84, in addition to the above-mentioned differential input gear 81.
  • the pair of differential pinion gears 83 and the pair of side gears 84 are both bevel gears.
  • the differential case 82 is connected so as to rotate integrally with the differential input gear 81.
  • the differential case 82 is rotatably supported with respect to the case CS by a pair of differential bearings B8 arranged at different positions in the axial direction L.
  • the differential case 82 is arranged from the second side wall portion CSc2 to the third side wall portion CSc3.
  • the differential case 82 is rotatably supported with respect to the second side wall portion CSc2 via the differential bearing B8 on the first side L1 in the axial direction.
  • the differential case 82 is rotatably supported with respect to the third side wall portion CSc3 via the differential bearing B8 on the second side L2 in the axial direction.
  • the differential case 82 is a hollow member.
  • a pair of differential pinion gears 83 and a pair of side gears 84 are housed inside the differential case 82.
  • the pair of differential pinion gears 83 are arranged so as to face each other at intervals along the radial direction R with respect to the fourth axis X4.
  • Each of the pair of differential pinion gears 83 is attached to a differential pinion shaft 83a supported so as to rotate integrally with the differential case 82.
  • Each of the pair of differential pinion gears 83 is configured to be rotatable (rotated) about the differential pinion shaft 83a and rotatable (revolved) about the fourth axis X4.
  • the pair of side gears 84 are rotating elements after distribution of the driving force in the output differential gear mechanism 8.
  • the pair of side gears 84 are arranged so as to face each other with the pair of differential pinion shafts 83a interposed therebetween at intervals in the axial direction L.
  • the pair of side gears 84 mesh with the pair of differential pinion gears 83.
  • Each of the pair of side gears 84 is connected so as to rotate integrally with the output member 9.
  • Each of the pair of output members 9 is drive-connected to the wheel W.
  • the pair of output members 9 are formed so as to project from the output differential gear mechanism 8 on both sides in the axial direction L.
  • each of the pair of output members 9 is connected so as to rotate integrally with the side gear 84.
  • the output member 9 on the first side L1 in the axial direction is integrally connected to the side gear 84 so as to project from the side gear 84 on the first side L1 in the axial direction to L1 on the first side in the axial direction. ..
  • each of the pair of output members 9 is formed in a cylindrical shape in which the end faces on both sides in the axial direction L are open.
  • the output member 9 on the first side L1 in the axial direction is exposed to the outside of the case CS so that the end portion of the first side L1 in the axial direction penetrates the second side wall portion CSc2 in the axial direction L.
  • the output member 9 on the second side L2 in the axial direction is arranged so that the end portion of the second side L2 in the axial direction penetrates the third side wall portion CSc3 in the axial direction L and is exposed to the outside of the case CS.
  • drive shafts (not shown) that are drive-connected to the wheels W are arranged inside the radial direction R of each output member 9, and they are connected so as to rotate integrally. ..
  • corresponding splines are formed on the inner peripheral surface of the output member 9 and the outer peripheral surface of the drive shaft, and the splines are engaged with each other to integrally integrate the output member 9 and the drive shaft. It is connected so as to rotate.
  • the vehicle drive device 100 further includes a hydraulic pump OP that discharges oil.
  • the hydraulic pump OP includes a pump drive gear OPa for driving the hydraulic pump OP.
  • the pump drive gear OPa meshes with the first rotor gear 2A at a position different from the input gear 5 in the circumferential direction of the first rotor gear 2A.
  • the vehicle drive device 100 includes a first rotation sensor Se1 that detects the rotation of the first rotor 12A and a second rotation sensor that detects the rotation of the second rotor 12B. It also has Se2.
  • the first rotation sensor Se1 and the second rotation sensor Se2 are arranged between the first rotor 12A and the second rotor 12B in the axial direction L.
  • each of the first rotation sensor Se1 and the second rotation sensor Se2 is a resolver.
  • the stator of the first rotation sensor Se1 is supported by the first support wall portion CSd1
  • the rotor of the first rotation sensor Se1 is supported by the first connecting portion 132A of the first rotor support member 13A.
  • the stator of the second rotation sensor Se2 is supported by the second support wall portion CSd2
  • the rotor of the second rotation sensor Se2 is supported by the second connecting portion 132B of the second rotor support member 13B.
  • FIG. 5 shows the first rotary electric machine 1A and the second rotary electric machine 1B, the first rotor gear 2A and the second rotor gear 2B, the differential gear mechanism for distribution 4, the input gear 5, the idler gear 6, the first counter gear 72 and the second.
  • the outer shapes of the counter gear 73, the differential input gear 81, and the pump drive gear OPa are shown.
  • the outer diameter of the first rotary electric machine 1A (first stator 11A) and the outer diameter of the second rotary electric machine 1B (second stator 11B) are the same.
  • the rotation axis (second axis X2) of the first rotary electric machine 1A is the rotation axis (first axis) of the input member 3 in the axial view along the axial direction L. It is arranged on the side opposite to the side of the rotation axis (fourth axis X4) of the output differential gear mechanism 8 with respect to X1).
  • the second virtual plane IP1 including the first axis X1 and the fourth axis X4 is orthogonal to the first virtual plane IP1 including the first axis X1.
  • the second axis X2 is arranged on the side opposite to the fourth axis X4.
  • the rotation axis (third axis X3) of the counter gear mechanism 7 is the rotation axis (third axis X3) of the first rotary electric machine 1A with respect to the rotation axis (first axis X1) of the input member 3. It is arranged on the side opposite to the side of the second axis X2).
  • the third axis X3 is arranged between the first axis X1 and the fourth axis X4 in the direction along the first virtual plane IP1.
  • the counter gear mechanism 7 is arranged so as to overlap with the first rotary electric machine 1A in the axial direction along the axial direction L.
  • a part of the counter gear mechanism 7 (specifically, a part of the first counter gear 72 and a part of the second counter gear 73) is an axial view of the first rotary electric machine 1A and It overlaps with both of the second rotary electric machines 1B.
  • "overlapping in a specific direction” means that the virtual straight line is 2 when the virtual straight line parallel to the line-of-sight direction is moved in each direction orthogonal to the virtual straight line. It means that there is at least a part of the area where both of the two elements intersect.
  • the distribution differential gear mechanism 4 is also arranged so as to overlap with the first rotary electric machine 1A in the axial direction along the axial direction L.
  • the entire distribution differential gear mechanism 4 overlaps with both the first rotary electric machine 1A and the second rotary electric machine 1B in the axial direction.
  • the input gear 5, the idler gear 6, and the hydraulic pump OP are also arranged so as to overlap with the first rotary electric machine 1A in the axial direction along the axial direction L.
  • the input gear 5, the idler gear 6, and the hydraulic pump OP as a whole overlap with both the first rotary electric machine 1A and the second rotary electric machine 1B in the axial direction.
  • the configuration in which the second counter gear 73 is arranged on the first side L1 in the axial direction with respect to the first counter gear 72 has been described as an example, but the configuration is not limited to such a configuration.
  • the second counter gear 73 may be arranged on the second side L2 in the axial direction with respect to the first counter gear 72.
  • the ring gear R4 and the idler gear 6 are arranged so as to overlap each other in a radial direction along the radial direction R with respect to the first axis X1.
  • the arrangement area of the first counter gear 72 in the axial direction L overlaps with the arrangement area of the distribution differential gear mechanism 4 in the axial direction L.
  • the rotation axis (second axis X2) of the first rotary electric machine 1A becomes the rotation axis (first axis X1) of the input member 3 in the axial view along the axial direction L.
  • the rotation axis (second axis X2) of the first rotary electric machine 1A is the first virtual center with respect to the rotation axis (first axis X1) of the input member 3. It may be arranged on the same side as the rotation axis (fourth axis X4) side of the output differential gear mechanism 8 in the direction along the plane IP1.
  • the gear ratio between the first rotor gear 2A and the input gear 5 is increased by increasing the rotation of the first rotating element (sun gear S4) of the distribution differential gear mechanism 4 to make the first rotation.
  • the gear ratio of the first rotor gear 2A and the input gear 5 may be appropriately changed without being limited to such a configuration. Therefore, the gear ratio between the first rotor gear 2A and the input gear 5 is transmitted to the first rotating electric machine 1A while the rotation of the first rotating element remains at the same speed, or the rotation of the first rotating element is decelerated. It may be set to be transmitted to the first rotary electric machine 1A.
  • first rotary electric machine 1A and the second rotary electric machine 1B are arranged coaxially
  • first rotary electric machine 1A and the second rotary electric machine 1B may be arranged on different axes.
  • the configuration in which the idler gear 6 is arranged coaxially with the input member 3, the distribution differential gear mechanism 4, and the input gear 5 has been described as an example.
  • the idler gear 6 may be arranged on a shaft different from the input member 3, the distribution differential gear mechanism 4, and the input gear 5.
  • the second rotor gear 2B, the first rotor gear 2A, the first rotary electric machine 1A, and the second rotary electric machine 1B are described from the second side L2 in the axial direction to the first side L1 in the axial direction.
  • the configuration arranged in the order of is described as an example.
  • the first rotary electric machine 1A may be arranged on the first side L1 in the axial direction with respect to the second rotary electric machine 1B.
  • the first rotor gear 2A may be arranged on the second side L2 in the axial direction with respect to the second rotor gear 2B.
  • the arrangement area of both the second counter gear 73 and the differential input gear 81 in the axial direction L overlaps with the arrangement area of the distribution differential gear mechanism 4 in the axial direction L.
  • the arrangement area of both the second counter gear 73 and the differential input gear 81 in the axial direction L is the arrangement area of the distribution differential gear mechanism 4 in the axial direction L. It does not have to overlap.
  • the vehicle drive device (100) An input member (3) arranged on the first side (L1) in the axial direction, which is one side in the axial direction (L) with respect to the internal combustion engine (EG), and driven and connected to the internal combustion engine (EG).
  • a pair of output members (9) that are driven and connected to the wheels (W), respectively.
  • An output differential gear mechanism (8) that distributes the input rotation to the pair of output members (9).
  • a distribution differential gear mechanism (4) having a third rotating element (R4) driven and connected to both of the differential gear mechanism (8) is provided.
  • the input member (3), the distribution differential gear mechanism (4), and the second gear (5) are coaxially arranged.
  • the output differential gear mechanism (8) is arranged on a shaft separate from the input member (3).
  • the first rotary electric machine (1A) is arranged on a shaft different from the input member (3).
  • the output differential gear mechanism (8) and the first rotary electric machine (1A) are arranged on separate axes from the input member (3). Therefore, the degree of freedom in the positional relationship between the rotary axis (X4) of the output differential gear mechanism (8) and the rotary axis (X2) of the first rotary electric machine (1A) is high, and the distance between them is increased. , It is easy to secure a large size. As a result, it becomes easy to secure a large radial dimension (R) of the first rotary electric machine (1A) while avoiding interference between the first rotary electric machine (1A) and the pair of output members (9). ..
  • the distribution differential gear mechanism (4) is arranged coaxially with the input member (3), and the first rotary electric machine (1A) is on a different axis from the input member (3). Have been placed. That is, the first rotary electric machine (1A) and the distribution differential gear mechanism (4) are arranged on different axes.
  • the first gear (2A) and the second gear (5) that mesh with each other are arranged in the power transmission path from the distribution differential gear mechanism (4) to the first rotary electric machine (1A).
  • the gear ratio of the power transmission path from the differential gear mechanism for distribution (4) to the first rotary electric machine (1A) can be set by setting the gear ratio between the first gear (2A) and the second gear (5). Can be easily set to an appropriate value.
  • the degree of freedom in setting the gear ratio of the power transmission path from the distribution differential gear mechanism (4) to the first rotary electric machine (1A) can be increased.
  • the first rotary electric machine (1A) is arranged on the first side (L1) in the axial direction with respect to the distribution differential gear mechanism (4).
  • the first rotary electric machine (1A) is arranged at a position separated from the internal combustion engine (EG) in the axial direction (L).
  • the diameter of the connecting portion with the internal combustion engine (EG) is larger than that in which the first rotary electric machine (1A) is arranged on the internal combustion engine (EG) side with respect to the distribution differential gear mechanism (4). It becomes easy to secure a large radial dimension (R) of the first rotary electric machine (1A) without affecting the dimension in the direction (R).
  • the distribution differential gear mechanism (4) can be easily arranged close to the internal combustion engine (EG), and the output differential gear mechanism (8) can be easily arranged close to the internal combustion engine (EG).
  • the dimensional difference in the axial direction (L) of the pair of output members (9) arranged on both sides in the axial direction (L) with respect to the output differential gear mechanism (8) can be suppressed to be small. Therefore, when the vehicle drive device (100) is mounted on the vehicle, deterioration of the steerability of the vehicle due to the dimensional difference in the axial direction (L) of the pair of output members (9) can be suppressed.
  • the rotation axis (X2) of the first rotary electric machine (1A) is the rotation axis (X1) of the input member (3). It is preferable that the output differential gear mechanism (8) is arranged on the side opposite to the side of the rotation axis (X4).
  • the gear ratio between the first gear (2A) and the second gear (5) is transmitted to the first rotating electric machine (1A) by accelerating the rotation of the first rotating element (S4). It is preferable that it is set to be.
  • the first rotor (1A) since the rotation of the first rotating element (S4) is accelerated and transmitted to the first rotating electric machine (1A), the first rotor (1A) has a rotation speed higher than that of the internal combustion engine (EG). 12A) can be rotated. As a result, the torque of the first rotary electric machine (1A) required to generate the same electric power is reduced, so that the first rotary electric machine (1A) can be easily miniaturized. Therefore, it is easy to miniaturize the vehicle drive device (100).
  • a third gear (6) that rotates integrally with the third rotating element (R4) and A fourth gear (2B) that meshes with the third gear (6) and rotates integrally with the second rotor (12B) is further provided.
  • the first rotary electric machine (1A) and the second rotary electric machine (1B) are coaxially arranged.
  • the third gear (6) is arranged coaxially with the input member (3), the second gear (5), and the distribution differential gear mechanism (4), and the output differential gear mechanism (8). ) Is driven and connected.
  • the first rotary electric machine (1A) and the second rotary electric machine (1B) are coaxially arranged, and the input member (3), the differential gear mechanism for distribution (4), and the second The gear (5) and the third gear (6) are arranged coaxially.
  • the first rotary electric machine (1A), the second rotary electric machine (1B), the first gear (2A), and the fourth gear (2B) are coaxially arranged.
  • the side opposite to the axial first side (L1) in the axial direction (L) is defined as the axial second side (L2). From the axial second side (L2) to the axial first side (L1), the fourth gear (2B), the first gear (2A), the first rotary electric machine (1A), the first It is preferable that the two-rotating electric machine (1B) is arranged in this order.
  • the first rotary electric machine (1A) and the second rotary electric machine (1B) can be arranged away from the internal combustion engine (EG) in the axial direction (L). As a result, it becomes easy to secure a large radial dimension (R) of the first rotary electric machine (1A) and the second rotary electric machine (1B).
  • a counter gear mechanism (7) having a fifth gear (72) that meshes with the third gear (6) and a sixth gear (73) that rotates integrally with the fifth gear (72) is further provided.
  • the output differential gear mechanism (8) includes a seventh gear (81) that meshes with the sixth gear (73), and distributes the rotation of the seventh gear (81) to the pair of output members (9).
  • Configured to The axial direction (L) arrangement area of both the sixth gear (73) and the seventh gear (81) is the axial direction (L) arrangement area of the distribution differential gear mechanism (4). It is preferable that they overlap.
  • the arrangement area of both the sixth gear (73) and the seventh gear (81) in the axial direction (L) is the arrangement area of the differential gear mechanism (4) for distribution in the axial direction (L).
  • the size of the vehicle drive device (100) in the axial direction (L) can be easily reduced.
  • the counter gear mechanism (7) is arranged so as to overlap with the first rotary electric machine (1A) in the axial direction along the axial direction (L).
  • the counter gear mechanism (7) is arranged by utilizing the space overlapping with the first rotary electric machine (1A) in the axial direction. As a result, it is possible to suppress an increase in the radial dimension (R) of the vehicle drive device (100) due to the arrangement of the counter gear mechanism (7).
  • the distribution differential gear mechanism (4) is arranged so as to overlap with the first rotary electric machine (1A) in the axial direction along the axial direction (L).
  • the distribution differential gear mechanism (4) is arranged by utilizing the space overlapping with the first rotary electric machine (1A) in the axial direction. As a result, it is possible to suppress an increase in the radial dimension (R) of the vehicle drive device (100) due to the arrangement of the distribution differential gear mechanism (4).
  • a third gear (6) that rotates integrally with the third rotating element (R4) and A fourth gear (2B) that meshes with the third gear (6) and rotates integrally with the second rotor (12B) is further provided.
  • the first rotor (12A) and the first gear (2A) are connected by a first rotor shaft (21A).
  • the second rotor (12B) and the fourth gear (2B) are connected by a second rotor shaft (21B). It is preferable that the second rotor shaft (21B) is arranged so as to penetrate the inside of the first rotor shaft (21A) in the radial direction (R) in the axial direction (L).
  • the second rotor shaft (21B) is connected to the second rotor shaft (21B) as compared with the configuration in which the second rotor shaft (21B) is arranged outside the radial direction (R) of the first rotor shaft (21A). It becomes easy to reduce the outer diameter of the fourth gear (2B). Therefore, the gear ratio of the power transmission path from the second rotary electric machine (1B) to the output differential gear mechanism (8) can be freely set while keeping the radial (R) dimension of the vehicle drive device (100) small. It becomes easy to increase the degree.
  • a third gear (6) that rotates integrally with the third rotating element (R4) and A fourth gear (2B) that meshes with the third gear (6) and rotates integrally with the second rotor (12B) is further provided. It is preferable that the fourth gear (2B) has a smaller diameter than the first gear (2A).
  • the technology according to the present disclosure includes a first rotary electric machine, a second rotary electric machine, an input member that is driven and connected to an internal combustion engine, a pair of output members that are driven and connected to wheels, and an internal combustion engine that is transmitted to the input member. It can be used in a vehicle drive device including a distribution differential gear mechanism that distributes the driving force of the above and an output differential gear mechanism that distributes the input rotation to a pair of output members.
  • Vehicle drive device 1A 1st rotary electric machine 12A: 1st rotor 1B: 2nd rotary electric machine 12B: 2nd rotor 2A: 1st rotor gear (1st gear) 3: Input member 4: Differential gear mechanism for distribution S4: Sun gear (first rotating element) C4: Carrier (second rotating element) R4: Ring gear (third rotating element) 5: Input gear (second gear) 8: Differential gear mechanism for output 9: Output member EG: Internal combustion engine W: Wheel L: Axial direction L1: Axial direction first side L2: Axial direction second side

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A vehicle driving device (100) is provided with: an input member (3); a pair of output members (9); an output differential gear mechanism (8); a first rotary electrical machine (1A); a second rotary electrical machine (1B); a first gear (2A) that integrally rotates with a first rotor (12A) of the first rotary electrical machine (1A); a second gear (5) that meshes with the first gear (2A); and a distribution differential gear mechanism (4) provided with a first rotary element (S4) connected to the second gear (5) so as to be driven, a second rotary element (C4) connected to the input member (3) so as to be driven, and a third rotary element (R4) connected to both a second rotor (12B) and the output differential gear mechanism (8) so as to be driven, wherein the input member (3), the distribution differential gear mechanism (4), and the second gear (5) are coaxially arranged, the output differential gear mechanism (8) and the input member (3) are non-coaxially arranged, and the first rotary electrical machine (1A) and the input member (3) are non-coaxially arranged.

Description

車両用駆動装置Vehicle drive
 本発明は、第1回転電機及び第2回転電機と、内燃機関に駆動連結される入力部材と、それぞれ車輪に駆動連結される一対の出力部材と、入力部材に伝達される内燃機関の駆動力を分配する分配用差動歯車機構と、入力される回転を一対の出力部材に分配する出力用差動歯車機構と、を備えた車両用駆動装置に関する。 In the present invention, the first rotary electric machine and the second rotary electric machine, an input member that is driven and connected to the internal combustion engine, a pair of output members that are driven and connected to the wheels, and a driving force of the internal combustion engine that is transmitted to the input member. The present invention relates to a vehicle drive device including a distribution differential gear mechanism for distributing the input rotation and an output differential gear mechanism for distributing the input rotation to a pair of output members.
 このような車両用駆動装置の一例が、下記の特許文献1に開示されている。以下、この背景技術の説明では、特許文献1における符号を括弧内に引用する。 An example of such a vehicle drive device is disclosed in Patent Document 1 below. Hereinafter, in the description of this background technique, the reference numerals in Patent Document 1 are quoted in parentheses.
 特許文献1の車両用駆動装置(10)では、分配用差動歯車機構(22)が、第1回転電機(MG1)のロータに駆動連結された第1回転要素(S1)と、入力部材(20)に駆動連結された第2回転要素(CA1)と、減速機(24)を介して第2回転電機(MG2)に駆動連結されると共に、カウンタギヤ機構(36)を介して出力用差動歯車機構(40)に駆動連結された第3回転要素(R1)と、を備えている。そして、第1回転電機(MG1)と、第2回転電機(MG2)と、分配用差動歯車機構(22)と、減速機(24)とが、入力部材(20)と同軸に配置されている。一方、出力用差動歯車機構(40)及び一対の出力部材(38)が、入力部材(20)とは別軸に配置されている。 In the vehicle drive device (10) of Patent Document 1, the distribution differential gear mechanism (22) is driven and connected to the rotor of the first rotary electric machine (MG1) with the first rotary element (S1) and the input member ( The second rotating element (CA1) driven and connected to 20) is driven and connected to the second rotating electric machine (MG2) via the speed reducer (24), and the output difference is driven via the counter gear mechanism (36). It includes a third rotating element (R1) that is driven and connected to the moving gear mechanism (40). Then, the first rotary electric machine (MG1), the second rotary electric machine (MG2), the differential gear mechanism for distribution (22), and the reduction gear (24) are arranged coaxially with the input member (20). There is. On the other hand, the output differential gear mechanism (40) and the pair of output members (38) are arranged on a shaft different from the input member (20).
特開2012-159181号公報(図1)Japanese Unexamined Patent Publication No. 2012-159181 (Fig. 1)
 上記のように、特許文献1の車両用駆動装置(10)では、第1回転電機(MG1)が入力部材(20)と同軸に配置されている。そのため、第1回転電機(MG1)の回転軸心と一対の出力部材(38)の回転軸心との距離は、入力部材(20)と出力用差動歯車機構(40)との位置関係によって定まることになる。そのため、第1回転電機(MG1)と一対の出力部材(38)との干渉を回避しつつ、第1回転電機(MG1)の径方向寸法を大きくすることが困難であり、第1回転電機(MG1)のトルクの増大や冷却性能の向上を図ることが難しかった。 As described above, in the vehicle drive device (10) of Patent Document 1, the first rotary electric machine (MG1) is arranged coaxially with the input member (20). Therefore, the distance between the rotation axis of the first rotary electric machine (MG1) and the rotation axis of the pair of output members (38) depends on the positional relationship between the input member (20) and the output differential gear mechanism (40). It will be decided. Therefore, it is difficult to increase the radial dimension of the first rotary electric machine (MG1) while avoiding interference between the first rotary electric machine (MG1) and the pair of output members (38), and the first rotary electric machine (MG1) It was difficult to increase the torque of MG1) and improve the cooling performance.
 また、特許文献1の車両用駆動装置(10)では、第1回転電機(MG1)及び分配用差動歯車機構(22)が、入力部材(20)と同軸に配置されている。そのため、車両用駆動装置(10)の軸方向の寸法に制約がある中で、分配用差動歯車機構(22)から第1回転電機(MG1)までの動力伝達経路に遊星歯車機構等の変速機構を設けることが難しく、当該動力伝達経路の変速比の設定自由度が低かった。 Further, in the vehicle drive device (10) of Patent Document 1, the first rotary electric machine (MG1) and the distribution differential gear mechanism (22) are arranged coaxially with the input member (20). Therefore, while there are restrictions on the axial dimensions of the vehicle drive device (10), the planetary gear mechanism or the like shifts in the power transmission path from the distribution differential gear mechanism (22) to the first rotary electric machine (MG1). It was difficult to provide a mechanism, and the degree of freedom in setting the gear ratio of the power transmission path was low.
 そこで、第1回転電機の径方向の寸法を大きくし易く、分配用差動歯車機構から第1回転電機までの動力伝達経路の変速比の設定自由度も高い車両用駆動装置の実現が望まれる。 Therefore, it is desired to realize a vehicle drive device that can easily increase the radial dimension of the first rotary electric machine and has a high degree of freedom in setting the gear ratio of the power transmission path from the differential gear mechanism for distribution to the first rotary electric machine. ..
 上記に鑑みた、車両用駆動装置の特徴構成は、
 内燃機関に対して軸方向の一方側である軸方向第1側に配置され、前記内燃機関に駆動連結される入力部材と、
 それぞれ車輪に駆動連結される一対の出力部材と、
 入力される回転を一対の前記出力部材に分配する出力用差動歯車機構と、
 第1ロータを備えた第1回転電機と、
 第2ロータを備えた第2回転電機と、
 前記第1ロータと一体的に回転する第1ギヤと、
 前記第1ギヤに噛み合う第2ギヤと、
 前記第2ギヤに駆動連結された第1回転要素、前記入力部材に駆動連結された第2回転要素、及び前記第2ロータと前記出力用差動歯車機構との双方に駆動連結された第3回転要素を備えた分配用差動歯車機構と、を備え、
 前記入力部材と、前記分配用差動歯車機構と、前記第2ギヤとが、同軸に配置され、
 前記出力用差動歯車機構が、前記入力部材とは別軸に配置され、
 前記第1回転電機が、前記入力部材とは別軸に配置されている点にある。
In view of the above, the characteristic configuration of the vehicle drive device is
An input member arranged on the first side in the axial direction, which is one side in the axial direction with respect to the internal combustion engine, and driven and connected to the internal combustion engine.
A pair of output members that are driven and connected to the wheels, respectively.
An output differential gear mechanism that distributes the input rotation to the pair of output members,
The first rotary electric machine equipped with the first rotor and
A second rotary electric machine equipped with a second rotor,
A first gear that rotates integrally with the first rotor,
The second gear that meshes with the first gear and
A first rotating element that is driven and connected to the second gear, a second rotating element that is driven and connected to the input member, and a third that is driven and connected to both the second rotor and the output differential gear mechanism. With a differential gear mechanism for distribution, equipped with a rotating element,
The input member, the distribution differential gear mechanism, and the second gear are coaxially arranged.
The output differential gear mechanism is arranged on a shaft separate from the input member.
The point is that the first rotary electric machine is arranged on a shaft different from the input member.
 この特徴構成によれば、出力用差動歯車機構と第1回転電機とのそれぞれが、入力部材とは別軸に配置されている。そのため、出力用差動歯車機構の回転軸心と第1回転電機の回転軸心との位置関係の自由度が高くなっており、これらの距離を、大きく確保し易くなっている。その結果、第1回転電機と一対の出力部材との干渉を回避しつつ、第1回転電機の径方向の寸法を大きく確保することが容易となる。
 また、本構成によれば、分配用差動歯車機構が入力部材と同軸に配置されていると共に、第1回転電機が入力部材とは別軸に配置されている。つまり、第1回転電機と分配用差動歯車機構とが別軸に配置されている。そして、分配用差動歯車機構から第1回転電機までの動力伝達経路に、互いに噛み合う第1ギヤと第2ギヤとが配置されている。これにより、第1ギヤと第2ギヤとの歯数比の設定により、分配用差動歯車機構から第1回転電機までの動力伝達経路の変速比を、容易に適切な値に設定することができる。このように、本構成よれば、分配用差動歯車機構から第1回転電機までの動力伝達経路の変速比の設定自由度を高くすることができる。
According to this characteristic configuration, each of the output differential gear mechanism and the first rotary electric machine is arranged on a shaft separate from the input member. Therefore, the degree of freedom in the positional relationship between the rotation axis of the output differential gear mechanism and the rotation axis of the first rotary electric machine is high, and it is easy to secure a large distance between them. As a result, it becomes easy to secure a large radial dimension of the first rotary electric machine while avoiding interference between the first rotary electric machine and the pair of output members.
Further, according to this configuration, the distribution differential gear mechanism is arranged coaxially with the input member, and the first rotary electric machine is arranged on a shaft different from the input member. That is, the first rotary electric machine and the distribution differential gear mechanism are arranged on different shafts. Then, the first gear and the second gear that mesh with each other are arranged in the power transmission path from the differential gear mechanism for distribution to the first rotary electric machine. As a result, the gear ratio of the power transmission path from the differential gear mechanism for distribution to the first rotary electric machine can be easily set to an appropriate value by setting the gear ratio between the first gear and the second gear. it can. As described above, according to this configuration, the degree of freedom in setting the gear ratio of the power transmission path from the differential gear mechanism for distribution to the first rotary electric machine can be increased.
実施形態に係る車両用駆動装置の軸方向に沿う断面図Cross-sectional view along the axial direction of the vehicle drive device according to the embodiment 実施形態に係る車両用駆動装置のスケルトン図Skeleton diagram of the vehicle drive device according to the embodiment 実施形態に係る車両用駆動装置における第1回転電機及び第2回転電機の周辺の構成を示す断面図Sectional drawing which shows the peripheral structure of the 1st rotary electric machine and the 2nd rotary electric machine in the drive device for a vehicle which concerns on embodiment. 実施形態に係る車両用駆動装置における分配用差動歯車機構の周辺の構成を示す断面図Sectional drawing which shows the peripheral structure of the distribution differential gear mechanism in the vehicle drive device which concerns on embodiment. 実施形態に係る車両用駆動装置における各要素の軸方向視での位置関係を示す図The figure which shows the positional relationship in the axial direction of each element in the vehicle drive device which concerns on embodiment. 他の実施形態に係る車両用駆動装置のスケルトン図Skeleton diagram of vehicle drive device according to another embodiment
 以下では、実施形態に係る車両用駆動装置100について、図面を参照して説明する。図1及び図2に示すように、車両用駆動装置100は、第1回転電機1A及び第2回転電機1Bと、第1ロータギヤ2Aと、入力部材3と、分配用差動歯車機構4と、入力ギヤ5と、出力用差動歯車機構8と、一対の出力部材9と、を備えている。本実施形態では、車両用駆動装置100は、第2ロータギヤ2Bと、アイドラギヤ6と、カウンタギヤ機構7と、を更に備えている。また、本実施形態では、これらはケースCSに収容されている。なお、入力部材3の一部、及び一対の出力部材9の一部は、ケースCSの外部に露出している。 Hereinafter, the vehicle drive device 100 according to the embodiment will be described with reference to the drawings. As shown in FIGS. 1 and 2, the vehicle drive device 100 includes a first rotary electric machine 1A and a second rotary electric machine 1B, a first rotor gear 2A, an input member 3, a distribution differential gear mechanism 4, and the like. It includes an input gear 5, an output differential gear mechanism 8, and a pair of output members 9. In the present embodiment, the vehicle drive device 100 further includes a second rotor gear 2B, an idler gear 6, and a counter gear mechanism 7. Further, in the present embodiment, these are housed in the case CS. A part of the input member 3 and a part of the pair of output members 9 are exposed to the outside of the case CS.
 入力部材3と分配用差動歯車機構4と入力ギヤ5とのそれぞれは、その回転軸心としての第1軸X1上に配置されている。つまり、入力部材3と、分配用差動歯車機構4と、入力ギヤ5とが、同軸に配置されている。本実施形態では、アイドラギヤ6も第1軸X1上に配置されている。第1回転電機1Aは、その回転軸心としての第2軸X2上に配置されている。つまり、第1回転電機1Aが、入力部材3とは別軸に配置されている。本実施形態では、第2回転電機1B、第1ロータギヤ2A、及び第2ロータギヤ2Bも第2軸X2上に配置されている。つまり、本実施形態では、第1回転電機1Aと、第2回転電機1Bと、第1ロータギヤ2Aと、第2ロータギヤ2Bとが、同軸に配置されている。カウンタギヤ機構7は、その回転軸心としての第3軸X3上に配置されている。出力用差動歯車機構8と一対の出力部材9とのそれぞれは、その回転軸心としての第4軸X4上に配置されている。つまり、出力用差動歯車機構8が、入力部材3とは別軸に配置されている。これらの軸X1~X4は、互いに異なる仮想軸であり、互いに平行に配置されている。 Each of the input member 3, the distribution differential gear mechanism 4, and the input gear 5 is arranged on the first axis X1 as its rotation axis. That is, the input member 3, the distribution differential gear mechanism 4, and the input gear 5 are coaxially arranged. In this embodiment, the idler gear 6 is also arranged on the first axis X1. The first rotary electric machine 1A is arranged on the second axis X2 as its rotation axis. That is, the first rotary electric machine 1A is arranged on a shaft different from the input member 3. In the present embodiment, the second rotary electric machine 1B, the first rotor gear 2A, and the second rotor gear 2B are also arranged on the second shaft X2. That is, in the present embodiment, the first rotary electric machine 1A, the second rotary electric machine 1B, the first rotor gear 2A, and the second rotor gear 2B are coaxially arranged. The counter gear mechanism 7 is arranged on the third axis X3 as its rotation axis. Each of the output differential gear mechanism 8 and the pair of output members 9 is arranged on the fourth axis X4 as its rotation axis. That is, the output differential gear mechanism 8 is arranged on a shaft different from the input member 3. These axes X1 to X4 are virtual axes that are different from each other and are arranged in parallel with each other.
 以下の説明では、上記の軸X1~X4に平行な方向を、車両用駆動装置100の「軸方向L」とする。そして、軸方向Lにおいて、内燃機関EGに対して入力部材3が配置される側を「軸方向第1側L1」とし、その反対側を「軸方向第2側L2」とする。また、上記の軸X1~X4のそれぞれに直交する方向を、各軸を基準とした「径方向R」とする。なお、どの軸を基準とするかを区別する必要がない場合やどの軸を基準とするかが明らかである場合には、単に「径方向R」と記す場合がある。 In the following description, the direction parallel to the above axes X1 to X4 is referred to as the "axial direction L" of the vehicle drive device 100. Then, in the axial direction L, the side where the input member 3 is arranged with respect to the internal combustion engine EG is referred to as "axial first side L1", and the opposite side is referred to as "axial second side L2". Further, the direction orthogonal to each of the above axes X1 to X4 is defined as "diameter direction R" with respect to each axis. When it is not necessary to distinguish which axis is used as a reference, or when it is clear which axis is used as a reference, it may be simply described as "diameter direction R".
 図1に示すように、本実施形態では、ケースCSの内部には、第1空間A1と、第2空間A2と、が形成されている。第1空間A1は、第1回転電機1A及び第2回転電機1Bを収容する空間である。第2空間A2は、第1ロータギヤ2A及び第2ロータギヤ2Bと、入力部材3と、分配用差動歯車機構4と、入力ギヤ5と、アイドラギヤ6と、カウンタギヤ機構7と、出力用差動歯車機構8と、一対の出力部材9とを収容する空間である。本実施形態では、第1空間A1が、第2空間A2に対して軸方向第1側L1に隣接して配置されている。 As shown in FIG. 1, in the present embodiment, the first space A1 and the second space A2 are formed inside the case CS. The first space A1 is a space for accommodating the first rotary electric machine 1A and the second rotary electric machine 1B. The second space A2 includes a first rotor gear 2A and a second rotor gear 2B, an input member 3, a distribution differential gear mechanism 4, an input gear 5, an idler gear 6, a counter gear mechanism 7, and an output differential. This is a space for accommodating the gear mechanism 8 and the pair of output members 9. In the present embodiment, the first space A1 is arranged adjacent to the first side L1 in the axial direction with respect to the second space A2.
 本実施形態では、ケースCSは、第1周壁部CSa1及び第2周壁部CSa2と、隔壁部CSbと、第1側壁部CSc1、第2側壁部CSc2及び第3側壁部CSc3と、を有している。 In the present embodiment, the case CS has a first peripheral wall portion CSa1 and a second peripheral wall portion CSa2, a partition wall portion CSb, a first side wall portion CSc1, a second side wall portion CSc2, and a third side wall portion CSc3. There is.
 第1周壁部CSa1は、第1回転電機1A及び第2回転電機1Bの径方向Rの外側を囲む筒状に形成されている。第2周壁部CSa2は、第1ロータギヤ2A及び第2ロータギヤ2Bと、入力部材3と、分配用差動歯車機構4と、入力ギヤ5と、アイドラギヤ6と、カウンタギヤ機構7と、出力用差動歯車機構8と、一対の出力部材9との径方向Rの外側を囲む筒状に形成されている。隔壁部CSbは、第1空間A1と第2空間A2とを区画するように形成されている。第1側壁部CSc1は、第1周壁部CSa1の軸方向第1側L1の開口を閉塞するように形成されている。第2側壁部CSc2は、第2周壁部CSa2の軸方向第1側L1の開口を閉塞するように形成されている。第3側壁部CSc3は、第2周壁部CSa2の軸方向第2側L2の開口を閉塞するように形成されている。 The first peripheral wall portion CSa1 is formed in a tubular shape that surrounds the outside of the first rotary electric machine 1A and the second rotary electric machine 1B in the radial direction R. The second peripheral wall portion CSa2 includes a first rotor gear 2A and a second rotor gear 2B, an input member 3, a distribution differential gear mechanism 4, an input gear 5, an idler gear 6, a counter gear mechanism 7, and an output difference. The dynamic gear mechanism 8 and the pair of output members 9 are formed in a tubular shape that surrounds the outside in the radial direction R. The partition wall portion CSb is formed so as to partition the first space A1 and the second space A2. The first side wall portion CSc1 is formed so as to close the opening of the first peripheral wall portion CSa1 on the first side L1 in the axial direction. The second side wall portion CSc2 is formed so as to close the opening of the second peripheral wall portion CSa2 on the first side L1 in the axial direction. The third side wall portion CSc3 is formed so as to close the opening of the second peripheral wall portion CSa2 on the second side L2 in the axial direction.
 第1周壁部CSa1と、第1側壁部CSc1と、隔壁部CSbとによって、第1空間A1が形成されている。また、第2周壁部CSa2と、隔壁部CSbと、第2側壁部CSc2と、第3側壁部CSc3とによって、第2空間A2が形成されている。 The first space A1 is formed by the first peripheral wall portion CSa1, the first side wall portion CSc1, and the partition wall portion CSb. Further, the second space A2 is formed by the second peripheral wall portion CSa2, the partition wall portion CSb, the second side wall portion CSc2, and the third side wall portion CSc3.
 第1回転電機1Aは、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを有している。そのため、第1回転電機1Aは、蓄電装置(図示を省略)と電気的に接続されている。この蓄電装置としては、バッテリやキャパシタ等の公知の各種の蓄電装置を用いることができる。本実施形態では、第1回転電機1Aは、内燃機関EGのトルクにより発電を行い、蓄電装置を充電し、或いは第2回転電機1Bを駆動するための電力を供給するジェネレータとして機能する。ただし、第1回転電機1Aは、車両の高速走行時や内燃機関EGの始動時等には、力行して駆動力(「トルク」と同義)を発生するモータとして機能する場合もある。内燃機関EGは、燃料の燃焼により駆動されて動力を取り出す原動機(ガソリンエンジン、ディーゼルエンジン等)である。 The first rotary electric machine 1A has a function as a motor (electric motor) that receives power supply and generates power, and a function as a generator (generator) that receives power supply and generates power. .. Therefore, the first rotary electric machine 1A is electrically connected to a power storage device (not shown). As this power storage device, various known power storage devices such as batteries and capacitors can be used. In the present embodiment, the first rotary electric machine 1A functions as a generator that generates electric power by the torque of the internal combustion engine EG, charges the power storage device, or supplies electric power for driving the second rotary electric machine 1B. However, the first rotary electric machine 1A may function as a motor that powers and generates a driving force (synonymous with "torque") when the vehicle is traveling at high speed or when the internal combustion engine EG is started. The internal combustion engine EG is a prime mover (gasoline engine, diesel engine, etc.) that is driven by combustion of fuel to extract power.
 第1回転電機1Aは、第1ステータ11Aと、第1ロータ12Aと、を備えている。第1ステータ11Aは、非回転部材(ここでは、ケースCS)に固定された第1ステータコア111Aを有している。第1ロータ12Aは、第1ステータ11Aに対して回転可能な第1ロータコア121Aを有している。本実施形態では、第1回転電機1Aは、インナロータ型の回転電機であるため、第1ステータコア111Aよりも径方向Rの内側に第1ロータコア121Aが配置されている。 The first rotary electric machine 1A includes a first stator 11A and a first rotor 12A. The first stator 11A has a first stator core 111A fixed to a non-rotating member (here, case CS). The first rotor 12A has a first rotor core 121A that is rotatable with respect to the first stator 11A. In the present embodiment, since the first rotary electric machine 1A is an inner rotor type rotary electric machine, the first rotor core 121A is arranged inside the radial direction R of the first stator core 111A.
 また、本実施形態では、第1回転電機1Aは回転界磁型の回転電機である。そのため、図3に示すように、第1ステータコア111Aには、当該第1ステータコア111Aから軸方向Lの両側(軸方向第1側L1及び軸方向第2側L2)にそれぞれ突出するコイルエンド部が形成されるように第1ステータコイル112Aが巻装されている。そして、第1ロータコア121Aには、第1永久磁石122Aが設けられている。 Further, in the present embodiment, the first rotary electric machine 1A is a rotating field type rotary electric machine. Therefore, as shown in FIG. 3, the first stator core 111A has coil end portions protruding from the first stator core 111A on both sides in the axial direction L (the first side L1 in the axial direction and the second side L2 in the axial direction), respectively. The first stator coil 112A is wound so as to be formed. A first permanent magnet 122A is provided on the first rotor core 121A.
 また、本実施形態では、第1ステータコイル112Aの端子部である第1端子部113Aが、軸方向Lにおける第2回転電機1Bの側(軸方向第2側L2)に突出している。第1端子部113Aは、第1ステータコイル112Aの軸方向第2側L2のコイルエンド部に含まれ、当該コイルエンド部における他の部分よりも軸方向第2側L2に突出している。第1端子部113Aは、第1回転電機1Aの周方向の一部の領域に配置されている。 Further, in the present embodiment, the first terminal portion 113A, which is the terminal portion of the first stator coil 112A, protrudes to the side of the second rotary electric machine 1B in the axial direction L (the second side L2 in the axial direction). The first terminal portion 113A is included in the coil end portion of the first stator coil 112A on the second side L2 in the axial direction, and protrudes toward the second side L2 in the axial direction with respect to other portions in the coil end portion. The first terminal portion 113A is arranged in a part of the circumferential direction of the first rotary electric machine 1A.
 第2回転電機1Bは、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを有している。そのため、第2回転電機1Bも、第1回転電機1Aと同様に、上記の蓄電装置と電気的に接続されている。本実施形態では、第2回転電機1Bは、主に車両を走行させるための駆動力を発生するモータとして機能する。ただし、車両の減速時等には、第2回転電機1Bは、車両の慣性力を電気エネルギとして回生するジェネレータとして機能する場合もある。 The second rotary electric machine 1B has a function as a motor (electric motor) that receives power supply and generates power, and a function as a generator (generator) that receives power supply and generates power. .. Therefore, the second rotary electric machine 1B is also electrically connected to the above-mentioned power storage device in the same manner as the first rotary electric machine 1A. In the present embodiment, the second rotary electric machine 1B mainly functions as a motor that generates a driving force for traveling the vehicle. However, when the vehicle is decelerating or the like, the second rotary electric machine 1B may function as a generator that regenerates the inertial force of the vehicle as electric energy.
 第2回転電機1Bは、第2ステータ11Bと、第2ロータ12Bと、を備えている。第2ステータ11Bは、非回転部材(ここでは、ケースCS)に固定された第2ステータコア111Bを有している。第2ロータ12Bは、第2ステータ11Bに対して回転可能な第2ロータコア121Bを有している。本実施形態では、第2回転電機1Bは、インナロータ型の回転電機であるため、第2ステータコア111Bよりも径方向Rの内側に第2ロータコア121Bが配置されている。 The second rotary electric machine 1B includes a second stator 11B and a second rotor 12B. The second stator 11B has a second stator core 111B fixed to a non-rotating member (here, case CS). The second rotor 12B has a second rotor core 121B that is rotatable with respect to the second stator 11B. In the present embodiment, since the second rotary electric machine 1B is an inner rotor type rotary electric machine, the second rotor core 121B is arranged inside the second stator core 111B in the radial direction R.
 また、本実施形態では、第2回転電機1Bは回転界磁型の回転電機である。そのため、第2ステータコア111Bには、当該第2ステータコア111Bから軸方向Lの両側(軸方向第1側L1及び軸方向第2側L2)にそれぞれ突出するコイルエンド部が形成されるように第2ステータコイル112Bが巻装されている。そして、第2ロータコア121Bには、第2永久磁石122Bが設けられている。 Further, in the present embodiment, the second rotary electric machine 1B is a rotating field type rotary electric machine. Therefore, the second stator core 111B is formed with coil end portions protruding from the second stator core 111B on both sides in the axial direction L (the first side L1 in the axial direction and the second side L2 in the axial direction). The stator coil 112B is wound around it. A second permanent magnet 122B is provided on the second rotor core 121B.
 また、本実施形態では、第2ステータコイル112Bの端子部である第2端子部113Bが、軸方向Lにおける第1回転電機1Aの側(軸方向第1側L1)に突出している。第2端子部113Bは、第2ステータコイル112Bの軸方向第1側L1のコイルエンド部に含まれ、当該コイルエンド部における他の部分よりも軸方向第1側L1に突出している。第2端子部113Bは、第2回転電機1Bの周方向の一部の領域に配置されている。 Further, in the present embodiment, the second terminal portion 113B, which is the terminal portion of the second stator coil 112B, protrudes to the side of the first rotary electric machine 1A in the axial direction L (the first side L1 in the axial direction). The second terminal portion 113B is included in the coil end portion of the second stator coil 112B on the first side L1 in the axial direction, and protrudes toward the first side L1 in the axial direction with respect to other portions in the coil end portion. The second terminal portion 113B is arranged in a part of the circumferential direction of the second rotary electric machine 1B.
 本実施形態では、第1ステータコイル112Aのコイルエンド部と、第2ステータコイル112Bのコイルエンド部とが、軸方向Lに対向するように配置されている。そして、第1端子部113Aと第2端子部113Bとが、第2軸X2を基準とした周方向の異なる位置に配置されており、第1端子部113Aの軸方向Lの配置領域と、第2端子部113Bの軸方向Lの配置領域とが重なっている。なお、第1ステータコイル112Aのコイルエンド部における第1端子部113Aを除いた部分と、第2ステータコイル112Bのコイルエンド部における第2端子部113Bを除いた部分とは、互いに軸方向Lに離間している。 In the present embodiment, the coil end portion of the first stator coil 112A and the coil end portion of the second stator coil 112B are arranged so as to face each other in the axial direction L. The first terminal portion 113A and the second terminal portion 113B are arranged at different positions in the circumferential direction with respect to the second axis X2, and the arrangement region of the first terminal portion 113A in the axial direction L and the first terminal portion 113A are arranged. The two terminal portions 113B overlap with the arrangement region in the axial direction L. The portion of the coil end portion of the first stator coil 112A excluding the first terminal portion 113A and the portion of the coil end portion of the second stator coil 112B excluding the second terminal portion 113B are in axial L directions with each other. It is separated.
 図1に示すように、第1ロータギヤ2Aは、第1ロータ12Aと一体的に回転する「第1ギヤ」に相当する。本実施形態では、第1ロータギヤ2Aは、第1ロータ軸21Aを介して第1ロータ12Aと一体的に連結されている。 As shown in FIG. 1, the first rotor gear 2A corresponds to the "first gear" that rotates integrally with the first rotor 12A. In the present embodiment, the first rotor gear 2A is integrally connected to the first rotor 12A via the first rotor shaft 21A.
 第1ロータ軸21Aは、軸方向Lに沿って延在する筒状に形成されている。本実施形態では、第1ロータ軸21Aの軸方向第2側L2の端部の外周面に、第1ロータギヤ2Aが形成されている。また、本実施形態では、第1ロータ軸21Aは、隔壁部CSbを軸方向Lに貫通するように配置されている。そして、第1ロータ軸21Aは、第1ロータ軸支持軸受B1を介して、隔壁部CSbに対して回転可能に支持されている。 The first rotor shaft 21A is formed in a tubular shape extending along the axial direction L. In the present embodiment, the first rotor gear 2A is formed on the outer peripheral surface of the end portion of the second side L2 in the axial direction of the first rotor shaft 21A. Further, in the present embodiment, the first rotor shaft 21A is arranged so as to penetrate the partition wall portion CSb in the axial direction L. The first rotor shaft 21A is rotatably supported with respect to the partition wall portion CSb via the first rotor shaft support bearing B1.
 図3に示すように、本実施形態では、第1ロータ軸21Aは、第1ロータ12Aを支持する第1ロータ支持部材13Aと一体的に回転するように連結されている。第1ロータ支持部材13Aは、第1支持部131Aと、第1連結部132Aと、を有している。 As shown in FIG. 3, in the present embodiment, the first rotor shaft 21A is connected so as to rotate integrally with the first rotor support member 13A that supports the first rotor 12A. The first rotor support member 13A has a first support portion 131A and a first connecting portion 132A.
 第1支持部131Aは、軸方向Lに沿って延在する筒状に形成されている。第1支持部131Aは、第1ロータ12Aを径方向Rの内側から支持している。 The first support portion 131A is formed in a tubular shape extending along the axial direction L. The first support portion 131A supports the first rotor 12A from the inside in the radial direction R.
 第1連結部132Aは、軸方向Lに沿って延在する筒状に形成されている。第1連結部132Aは、第1支持部131Aよりも小径であって、第1ロータ軸21Aよりも大径に形成されている。第1連結部132Aは、第1支持部131Aに対して径方向Rの内側に配置された状態で、第1支持部131Aと一体的に回転するように連結されている。また、第1連結部132Aは、第1ロータ軸21Aに対して径方向Rの外側に配置された状態で、第1ロータ軸21Aと一体的に回転するように連結されている。図示の例では、第1連結部132Aは、スプライン係合によって第1ロータ軸21Aと一体的に連結されている。 The first connecting portion 132A is formed in a tubular shape extending along the axial direction L. The first connecting portion 132A has a smaller diameter than the first supporting portion 131A and is formed to have a larger diameter than the first rotor shaft 21A. The first connecting portion 132A is connected to the first supporting portion 131A so as to rotate integrally with the first supporting portion 131A in a state of being arranged inside the radial direction R. Further, the first connecting portion 132A is connected so as to rotate integrally with the first rotor shaft 21A in a state of being arranged outside the radial direction R with respect to the first rotor shaft 21A. In the illustrated example, the first connecting portion 132A is integrally connected to the first rotor shaft 21A by spline engagement.
 本実施形態では、第1連結部132Aは、一対の第1ロータ軸受B2によって、ケースCSに対して回転可能に支持されている。一対の第1ロータ軸受B2は、第1連結部132Aと第1支持部131Aとの連結部を挟んで軸方向Lの両側に配置されている。軸方向第2側L2の第1ロータ軸受B2は、隔壁部CSbに支持されている。軸方向第1側L1の第1ロータ軸受B2は、第1支持壁部CSd1に支持されている。 In the present embodiment, the first connecting portion 132A is rotatably supported with respect to the case CS by a pair of first rotor bearings B2. The pair of first rotor bearings B2 are arranged on both sides in the axial direction L with the connecting portion between the first connecting portion 132A and the first supporting portion 131A interposed therebetween. The first rotor bearing B2 on the second side L2 in the axial direction is supported by the partition wall portion CSb. The first rotor bearing B2 on the first side L1 in the axial direction is supported by the first support wall portion CSd1.
 第1支持壁部CSd1は、第1周壁部CSa1に固定された第2支持壁部CSd2に対して、一体的に連結されている。図示の例では、第1支持壁部CSd1は、第2支持壁部CSd2に対して軸方向第2側L2に隣接し、ボルト締結によって第2支持壁部CSd2と一体的に連結されている。第1支持壁部CSd1及び第2支持壁部CSd2は、第2軸X2を基準とした径方向Rに沿って延在している。第1支持壁部CSd1及び第2支持壁部CSd2は、軸方向Lにおける第1ロータ12Aと第2ロータ12Bとの間に配置されている。 The first support wall portion CSd1 is integrally connected to the second support wall portion CSd2 fixed to the first peripheral wall portion CSa1. In the illustrated example, the first support wall portion CSd1 is adjacent to the second support wall portion CSd2 in the axial direction and is integrally connected to the second support wall portion CSd2 by bolt fastening. The first support wall portion CSd1 and the second support wall portion CSd2 extend along the radial direction R with respect to the second axis X2. The first support wall portion CSd1 and the second support wall portion CSd2 are arranged between the first rotor 12A and the second rotor 12B in the axial direction L.
 図示の例では、第1支持壁部CSd1は、第1ステータコイル112Aのコイルエンド部及び第2ステータコイル112Bのコイルエンド部よりも、径方向Rの内側に配置されている。また、図示の例では、第2支持壁部CSd2は、第1ステータコイル112A及び第2ステータコイル112Bのコイルエンド部同士が軸方向Lに離間した部分を通って、当該コイルエンド部よりも径方向Rの内側から外側に亘って延在している。そして、第2支持壁部CSd2における上記コイルエンド部よりも径方向Rの外側部分に、第1ステータコア111A及び第2ステータコア111Bがボルト締結によって連結されている。 In the illustrated example, the first support wall portion CSd1 is arranged inside the coil end portion of the first stator coil 112A and the coil end portion of the second stator coil 112B in the radial direction R. Further, in the illustrated example, the second support wall portion CSd2 has a diameter larger than that of the coil end portion through a portion in which the coil end portions of the first stator coil 112A and the second stator coil 112B are separated from each other in the axial direction L. It extends from the inside to the outside of the direction R. Then, the first stator core 111A and the second stator core 111B are connected to the outer portion of the second support wall portion CSd2 in the radial direction R from the coil end portion by bolt fastening.
 図1に示すように、第2ロータギヤ2Bは、第2ロータ12Bと一体的に回転する「第4ギヤ」に相当する。本実施形態では、第2ロータギヤ2Bは、第2ロータ軸21Bを介して第2ロータ12Bと一体的に連結されている。また、本実施形態では、第2ロータギヤ2Bは、第1ロータギヤ2Aよりも小径である。 As shown in FIG. 1, the second rotor gear 2B corresponds to a "fourth gear" that rotates integrally with the second rotor 12B. In the present embodiment, the second rotor gear 2B is integrally connected to the second rotor 12B via the second rotor shaft 21B. Further, in the present embodiment, the second rotor gear 2B has a smaller diameter than the first rotor gear 2A.
 第2ロータ軸21Bは、軸方向Lに沿って延在するように形成されている。第2ロータ軸21Bは、第1ロータ軸21Aの径方向Rの内側を軸方向Lに貫通するように配置されている。本実施形態では、第2ロータ軸21Bにおける第1ロータ軸21Aよりも軸方向第2側L2に位置する部分の外周面に、第2ロータギヤ2Bが形成されている。また、本実施形態では、第2ロータ軸21Bは、軸方向Lの異なる位置に配置された一対の第2ロータ軸支持軸受B3によって、ケースCSに対して回転可能に支持されている。具体的には、第2ロータ軸21Bは、第1側壁部CSc1から第3側壁部CSc3に亘って延在している。そして、第2ロータ軸21Bは、軸方向第1側L1の第2ロータ軸支持軸受B3を介して、第1側壁部CSc1に対して回転可能に支持されている。更に、第2ロータ軸21Bは、軸方向第2側L2の第2ロータ軸支持軸受B3を介して、第3側壁部CSc3に対して回転可能に支持されている。 The second rotor shaft 21B is formed so as to extend along the axial direction L. The second rotor shaft 21B is arranged so as to penetrate the inside of the first rotor shaft 21A in the radial direction R in the axial direction L. In the present embodiment, the second rotor gear 2B is formed on the outer peripheral surface of the portion of the second rotor shaft 21B located on the second side L2 in the axial direction with respect to the first rotor shaft 21A. Further, in the present embodiment, the second rotor shaft 21B is rotatably supported with respect to the case CS by a pair of second rotor shaft support bearings B3 arranged at different positions in the axial direction L. Specifically, the second rotor shaft 21B extends from the first side wall portion CSc1 to the third side wall portion CSc3. The second rotor shaft 21B is rotatably supported with respect to the first side wall portion CSc1 via the second rotor shaft support bearing B3 on the first side L1 in the axial direction. Further, the second rotor shaft 21B is rotatably supported with respect to the third side wall portion CSc3 via the second rotor shaft support bearing B3 on the second side L2 in the axial direction.
 図3に示すように、本実施形態では、第2ロータ軸21Bは、第2ロータ12Bを支持する第2ロータ支持部材13Bと一体的に回転するように連結されている。第2ロータ支持部材13Bは、第2支持部131Bと、第2連結部132Bと、を有している。 As shown in FIG. 3, in the present embodiment, the second rotor shaft 21B is connected so as to rotate integrally with the second rotor support member 13B that supports the second rotor 12B. The second rotor support member 13B has a second support portion 131B and a second connecting portion 132B.
 第2支持部131Bは、軸方向Lに沿って延在する筒状に形成されている。第2支持部131Bは、第2ロータ12Bを径方向Rの内側から支持している。 The second support portion 131B is formed in a tubular shape extending along the axial direction L. The second support portion 131B supports the second rotor 12B from the inside in the radial direction R.
 第2連結部132Bは、軸方向Lに沿って延在する筒状に形成されている。第2連結部132Bは、第2支持部131Bよりも小径であって、第2ロータ軸21Bよりも大径に形成されている。第2連結部132Bは、第2支持部131Bに対して径方向Rの内側に配置された状態で、第2支持部131Bと一体的に回転するように連結されている。また、第2連結部132Bは、第2ロータ軸21Bに対して径方向Rの外側に配置された状態で、第2ロータ軸21Bと一体的に回転するように連結されている。図示の例では、第2連結部132Bは、スプライン係合によって第2ロータ軸21Bと一体的に連結されている。 The second connecting portion 132B is formed in a tubular shape extending along the axial direction L. The second connecting portion 132B has a smaller diameter than the second supporting portion 131B and is formed to have a larger diameter than the second rotor shaft 21B. The second connecting portion 132B is connected to the second supporting portion 131B so as to rotate integrally with the second supporting portion 131B in a state of being arranged inside the radial direction R. Further, the second connecting portion 132B is connected so as to rotate integrally with the second rotor shaft 21B in a state of being arranged outside the radial direction R with respect to the second rotor shaft 21B. In the illustrated example, the second connecting portion 132B is integrally connected to the second rotor shaft 21B by spline engagement.
 本実施形態では、第2連結部132Bは、一対の第2ロータ軸受B4によって、ケースCSに対して回転可能に支持されている。一対の第2ロータ軸受B4は、第2連結部132Bと第2支持部131Bとの連結部を挟んで軸方向Lの両側に配置されている。軸方向第1側L1の第2ロータ軸受B4は、第1側壁部CSc1に支持されている。軸方向第2側L2の第2ロータ軸受B4は、第2支持壁部CSd2に支持されている。 In the present embodiment, the second connecting portion 132B is rotatably supported with respect to the case CS by a pair of second rotor bearings B4. The pair of second rotor bearings B4 are arranged on both sides in the axial direction L with the connecting portion between the second connecting portion 132B and the second supporting portion 131B interposed therebetween. The second rotor bearing B4 on the first side L1 in the axial direction is supported by the first side wall portion CSc1. The second rotor bearing B4 on the second side L2 in the axial direction is supported by the second support wall portion CSd2.
 図1に示すように、本実施形態では、第1回転電機1Aは、分配用差動歯車機構4に対して軸方向第1側L1に配置されている。また、本実施形態では、軸方向第2側L2から軸方向第1側L1に向けて、第2ロータギヤ2B、第1ロータギヤ2A、第1回転電機1A、及び第2回転電機1Bが記載の順で配置されている。 As shown in FIG. 1, in the present embodiment, the first rotary electric machine 1A is arranged on the first side L1 in the axial direction with respect to the distribution differential gear mechanism 4. Further, in the present embodiment, the second rotor gear 2B, the first rotor gear 2A, the first rotary electric machine 1A, and the second rotary electric machine 1B are described in the order described from the second side L2 in the axial direction to the first side L1 in the axial direction. It is arranged in.
 入力部材3は、軸方向Lに沿って延在するように形成されている。本実施形態では、入力部材3は、第3側壁部CSc3から軸方向第2側L2に突出するように、第3側壁部CSc3を軸方向Lに貫通している。入力部材3は、内燃機関EGに駆動連結されている。本実施形態では、入力部材3は、ダンパ装置DPを介して、内燃機関EGの出力軸(クランクシャフト等)に駆動連結されている。ダンパ装置DPは、伝達されるトルクの変動を減衰する装置である。本実施形態では、ダンパ装置DPには、出力側から過大なトルクが入力される等した場合に、出力部材9から内燃機関EGまでの動力伝達経路に過大な負荷が作用することを制限するためのトルクリミッタが設けられている。 The input member 3 is formed so as to extend along the axial direction L. In the present embodiment, the input member 3 penetrates the third side wall portion CSc3 in the axial direction L so as to project from the third side wall portion CSc3 toward the second side L2 in the axial direction. The input member 3 is drive-connected to the internal combustion engine EG. In the present embodiment, the input member 3 is driven and connected to the output shaft (crankshaft or the like) of the internal combustion engine EG via the damper device DP. The damper device DP is a device that attenuates fluctuations in the transmitted torque. In the present embodiment, in order to limit the excessive load from acting on the power transmission path from the output member 9 to the internal combustion engine EG when an excessive torque is input to the damper device DP from the output side. Torque limiter is provided.
 ここで、本願において「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が1つ又は2つ以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。なお、伝動部材として、回転及び駆動力を選択的に伝達する係合装置、例えば、摩擦係合装置、噛み合い式係合装置等が含まれていても良い。ただし、分配用差動歯車機構4及び出力用差動歯車機構8のそれぞれの各回転要素について「駆動連結」という場合には、分配用差動歯車機構4及び出力用差動歯車機構8のそれぞれが備える少なくとも3つの回転要素に関して互いに他の回転要素を介することなく駆動連結されている状態を指すものとする。 Here, in the present application, the "driving connection" refers to a state in which two rotating elements are connected so as to be able to transmit a driving force, and the two rotating elements are connected so as to rotate integrally, or the said. It includes a state in which two rotating elements are mutably connected so that a driving force can be transmitted via one or more transmission members. Such transmission members include various members that transmit rotation at the same speed or at different speeds, such as shafts, gear mechanisms, belts, chains, and the like. The transmission member may include an engaging device that selectively transmits rotation and driving force, for example, a friction engaging device, a meshing type engaging device, and the like. However, when each rotating element of the distribution differential gear mechanism 4 and the output differential gear mechanism 8 is referred to as "drive connection", the distribution differential gear mechanism 4 and the output differential gear mechanism 8 are respectively used. It refers to a state in which at least three rotating elements provided in the above are driven and connected to each other without interposing other rotating elements.
 分配用差動歯車機構4は、入力部材3に伝達される内燃機関EGの駆動力を、第1回転電機1Aと、第2回転電機1B及び出力用差動歯車機構8とに分配するように構成されている。本実施形態では、分配用差動歯車機構4は、入力ギヤ5とアイドラギヤ6とに分配する。このように、本実施形態に係る車両用駆動装置100は、所謂、スプリット型のハイブリッド車両用駆動装置として構成されている。 The distribution differential gear mechanism 4 distributes the driving force of the internal combustion engine EG transmitted to the input member 3 to the first rotary electric machine 1A, the second rotary electric machine 1B, and the output differential gear mechanism 8. It is configured. In the present embodiment, the distribution differential gear mechanism 4 distributes to the input gear 5 and the idler gear 6. As described above, the vehicle drive device 100 according to the present embodiment is configured as a so-called split type hybrid vehicle drive device.
 図4に示すように、本実施形態では、分配用差動歯車機構4は、シングルピニオン型の遊星歯車機構である。具体的には、分配用差動歯車機構4は、ピニオンギヤP4を支持するキャリヤC4と、ピニオンギヤP4に噛み合うサンギヤS4と、当該サンギヤS4よりも径方向Rの外側に配置されてピニオンギヤP4に噛み合うリングギヤR4と、を備えている。 As shown in FIG. 4, in the present embodiment, the distribution differential gear mechanism 4 is a single pinion type planetary gear mechanism. Specifically, the distribution differential gear mechanism 4 includes a carrier C4 that supports the pinion gear P4, a sun gear S4 that meshes with the pinion gear P4, and a ring gear that is arranged outside the sun gear S4 in the radial direction R and meshes with the pinion gear P4. It is equipped with R4.
 本実施形態では、キャリヤC4は、分配用差動歯車機構4の入力要素であり、入力部材3と一体的に回転するように連結されている。つまり、本実施形態では、キャリヤC4は、入力部材3に駆動連結された「第2回転要素」に相当する。ピニオンギヤP4は、キャリヤC4により回転可能に支持されている。ピニオンギヤP4は、その軸心回りに回転(自転)すると共に、サンギヤS4を中心として回転(公転)する。ピニオンギヤP4は、その公転軌跡に沿って複数設けられている。 In the present embodiment, the carrier C4 is an input element of the distribution differential gear mechanism 4, and is connected to the input member 3 so as to rotate integrally. That is, in the present embodiment, the carrier C4 corresponds to the "second rotating element" that is driven and connected to the input member 3. The pinion gear P4 is rotatably supported by the carrier C4. The pinion gear P4 rotates (rotates) around its axis and rotates (revolves) around the sun gear S4. A plurality of pinion gears P4 are provided along the revolution trajectory.
 本実施形態では、サンギヤS4は、分配用差動歯車機構4における駆動力の分配後の回転要素の一方であり、入力ギヤ5と一体的に回転するように連結されている。つまり、本実施形態では、サンギヤS4は、第2ギヤ(入力ギヤ5)に駆動連結された「第1回転要素」に相当する。 In the present embodiment, the sun gear S4 is one of the rotating elements after distribution of the driving force in the distribution differential gear mechanism 4, and is connected so as to rotate integrally with the input gear 5. That is, in the present embodiment, the sun gear S4 corresponds to the "first rotating element" that is driven and connected to the second gear (input gear 5).
 本実施形態では、リングギヤR4は、分配用差動歯車機構4における駆動力の分配後の回転要素の他方である。本実施形態では、リングギヤR4は、第2回転電機1Bの第2ロータ12Bと出力用差動歯車機構8との双方に駆動連結された「第3回転要素」に相当する。また、本実施形態では、リングギヤR4は、軸方向Lに沿って延在する円筒状のギヤ形成部材41と一体的に回転するように連結されている。図示の例では、リングギヤR4は、ギヤ形成部材41におけるアイドラギヤ6よりも軸方向第1側L1の領域の内周面に形成されている。 In the present embodiment, the ring gear R4 is the other of the rotating elements after the distribution of the driving force in the distribution differential gear mechanism 4. In the present embodiment, the ring gear R4 corresponds to a "third rotating element" that is driven and connected to both the second rotor 12B of the second rotating electric machine 1B and the output differential gear mechanism 8. Further, in the present embodiment, the ring gear R4 is connected so as to rotate integrally with the cylindrical gear forming member 41 extending along the axial direction L. In the illustrated example, the ring gear R4 is formed on the inner peripheral surface of the region of the gear forming member 41 on the first side L1 in the axial direction with respect to the idler gear 6.
 入力ギヤ5は、第1ロータギヤ2Aに噛み合っている。つまり、入力ギヤ5は、第1ギヤ(第1ロータギヤ2A)に噛み合う「第2ギヤ」に相当する。本実施形態では、第1ロータギヤ2Aと入力ギヤ5との歯数比は、分配用差動歯車機構4の第1回転要素(ここでは、サンギヤS4)の回転が増速して第1回転電機1Aに伝達されるように設定されている。また、本実施形態では、入力ギヤ5は、隔壁部CSbに支持された入力軸受B5によって、径方向Rの内側から回転可能に支持されている。 The input gear 5 meshes with the first rotor gear 2A. That is, the input gear 5 corresponds to a "second gear" that meshes with the first gear (first rotor gear 2A). In the present embodiment, the gear ratio between the first rotor gear 2A and the input gear 5 is such that the rotation of the first rotating element (here, the sun gear S4) of the differential gear mechanism 4 for distribution is accelerated and the first rotating electric machine is used. It is set to be transmitted to 1A. Further, in the present embodiment, the input gear 5 is rotatably supported from the inside in the radial direction R by the input bearing B5 supported by the partition wall portion CSb.
 アイドラギヤ6は、第2ロータギヤ2Bに噛み合っている。また、アイドラギヤ6は、出力用差動歯車機構8に駆動連結されている。本実施形態では、アイドラギヤ6は、カウンタギヤ機構7を介して、出力用差動歯車機構8に駆動連結されている。また、本実施形態では、アイドラギヤ6は、ギヤ形成部材41を介して、分配用差動歯車機構4のリングギヤR4と一体的に回転するように連結されている。つまり、アイドラギヤ6は、第3回転要素(リングギヤR4)と一体的に回転する「第3ギヤ」に相当する。図示の例では、アイドラギヤ6は、ギヤ形成部材41におけるリングギヤR4よりも軸方向第2側L2の領域の外周面に形成されている。 The idler gear 6 meshes with the second rotor gear 2B. Further, the idler gear 6 is driven and connected to the output differential gear mechanism 8. In the present embodiment, the idler gear 6 is driven and connected to the output differential gear mechanism 8 via the counter gear mechanism 7. Further, in the present embodiment, the idler gear 6 is connected via the gear forming member 41 so as to rotate integrally with the ring gear R4 of the distribution differential gear mechanism 4. That is, the idler gear 6 corresponds to a "third gear" that rotates integrally with the third rotating element (ring gear R4). In the illustrated example, the idler gear 6 is formed on the outer peripheral surface of the region of the gear forming member 41 on the second side L2 in the axial direction with respect to the ring gear R4.
 本実施形態では、アイドラギヤ6は、入力部材3、前記第2ギヤ、及び前記分配用差動歯車機構と同軸に配置されている。そして、 In the present embodiment, the idler gear 6 is arranged coaxially with the input member 3, the second gear, and the distribution differential gear mechanism. And
 また、本実施形態では、アイドラギヤ6は、軸方向Lに沿って延在する円筒状の筒壁部CSeに支持されたアイドラ軸受B6によって、径方向Rの内側から回転可能に支持されている。つまり、アイドラギヤ6の内周面と筒壁部CSeの外周面との間に、アイドラ軸受B6が介装されている。筒壁部CSeは、第3側壁部CSc3から軸方向第1側L1に突出するように形成されている。 Further, in the present embodiment, the idler gear 6 is rotatably supported from the inside of the radial direction R by the idler bearing B6 supported by the cylindrical cylindrical wall portion CSe extending along the axial direction L. That is, the idler bearing B6 is interposed between the inner peripheral surface of the idler gear 6 and the outer peripheral surface of the cylinder wall portion CSe. The tubular wall portion CSe is formed so as to project from the third side wall portion CSc3 toward the first side L1 in the axial direction.
 図1に示すように、カウンタギヤ機構7は、カウンタ軸71と、第1カウンタギヤ72と、第2カウンタギヤ73とを有している。 As shown in FIG. 1, the counter gear mechanism 7 has a counter shaft 71, a first counter gear 72, and a second counter gear 73.
 カウンタ軸71は、軸方向Lに沿って延在するように形成されている。本実施形態では、カウンタ軸71は、軸方向Lの異なる位置に配置された一対のカウンタ軸受B7によって、ケースCSに対して回転可能に支持されている。具体的には、カウンタ軸71は、隔壁部CSbから第3側壁部CSc3に亘って延在している。そして、カウンタ軸71は、軸方向第1側L1のカウンタ軸受B7を介して、隔壁部CSbに対して回転可能に支持されている。更に、カウンタ軸71は、軸方向第2側L2のカウンタ軸受B7を介して、第3側壁部CSc3に対して回転可能に支持されている。 The counter shaft 71 is formed so as to extend along the axial direction L. In this embodiment, the counter shaft 71 is rotatably supported with respect to the case CS by a pair of counter bearings B7 arranged at different positions in the axial direction L. Specifically, the counter shaft 71 extends from the partition wall portion CSb to the third side wall portion CSc3. The counter shaft 71 is rotatably supported with respect to the partition wall portion CSb via the counter bearing B7 on the first side L1 in the axial direction. Further, the counter shaft 71 is rotatably supported with respect to the third side wall portion CSc3 via the counter bearing B7 on the second side L2 in the axial direction.
 第1カウンタギヤ72は、カウンタギヤ機構7の入力要素である。第1カウンタギヤ72は、アイドラギヤ6の周方向における第2ロータギヤ2Bとは異なる位置で、アイドラギヤ6と噛み合っている。つまり、第1カウンタギヤ72は、第3ギヤ(アイドラギヤ6)に噛み合う「第5ギヤ」に相当する。図示の例では、第1カウンタギヤ72は、カウンタ軸71に対してスプライン係合によって連結されている。 The first counter gear 72 is an input element of the counter gear mechanism 7. The first counter gear 72 meshes with the idler gear 6 at a position different from that of the second rotor gear 2B in the circumferential direction of the idler gear 6. That is, the first counter gear 72 corresponds to the "fifth gear" that meshes with the third gear (idler gear 6). In the illustrated example, the first counter gear 72 is connected to the counter shaft 71 by spline engagement.
 第2カウンタギヤ73は、カウンタギヤ機構7の出力要素である。第2カウンタギヤ73は、カウンタ軸71を介して、第1カウンタギヤ72と一体的に回転する。つまり、第2カウンタギヤ73は、第5ギヤ(第1カウンタギヤ72)と一体的に回転する「第6ギヤ」に相当する。本実施形態では、第2カウンタギヤ73は、第1カウンタギヤ72よりも軸方向第1側L1に配置されている。また、本実施形態では、第2カウンタギヤ73は、第1カウンタギヤ72よりも小径に形成されている。 The second counter gear 73 is an output element of the counter gear mechanism 7. The second counter gear 73 rotates integrally with the first counter gear 72 via the counter shaft 71. That is, the second counter gear 73 corresponds to the "sixth gear" that rotates integrally with the fifth gear (first counter gear 72). In the present embodiment, the second counter gear 73 is arranged on the first side L1 in the axial direction with respect to the first counter gear 72. Further, in the present embodiment, the second counter gear 73 is formed to have a smaller diameter than the first counter gear 72.
 出力用差動歯車機構8は、当該出力用差動歯車機構8の入力要素である差動入力ギヤ81を備えている。出力用差動歯車機構8は、当該出力用差動歯車機構8に入力される回転、つまり、差動入力ギヤ81の回転を、一対の出力部材9に分配するように構成されている。差動入力ギヤ81は、カウンタギヤ機構7の第2カウンタギヤ73に噛み合っている。つまり、差動入力ギヤ81は、第6ギヤ(第2カウンタギヤ73)に噛み合う「第7ギヤ」に相当する。本実施形態では、差動入力ギヤ81及び第2カウンタギヤ73は、それらの軸方向Lの配置領域が、分配用差動歯車機構4の軸方向Lの配置領域と重なるように配置されている。 The output differential gear mechanism 8 includes a differential input gear 81 which is an input element of the output differential gear mechanism 8. The output differential gear mechanism 8 is configured to distribute the rotation input to the output differential gear mechanism 8, that is, the rotation of the differential input gear 81, to the pair of output members 9. The differential input gear 81 meshes with the second counter gear 73 of the counter gear mechanism 7. That is, the differential input gear 81 corresponds to the "seventh gear" that meshes with the sixth gear (second counter gear 73). In the present embodiment, the differential input gear 81 and the second counter gear 73 are arranged so that their axial L arrangement areas overlap with the axial L arrangement areas of the distribution differential gear mechanism 4. ..
 本実施形態では、出力用差動歯車機構8は、上記の差動入力ギヤ81に加えて、差動ケース82と、一対の差動ピニオンギヤ83と、一対のサイドギヤ84と、を備えている。ここでは、一対の差動ピニオンギヤ83、及び一対のサイドギヤ84は、いずれも傘歯車である。 In the present embodiment, the output differential gear mechanism 8 includes a differential case 82, a pair of differential pinion gears 83, and a pair of side gears 84, in addition to the above-mentioned differential input gear 81. Here, the pair of differential pinion gears 83 and the pair of side gears 84 are both bevel gears.
 差動ケース82は、差動入力ギヤ81と一体的に回転するように連結されている。本実施形態では、差動ケース82は、軸方向Lの異なる位置に配置された一対の差動軸受B8によって、ケースCSに対して回転可能に支持されている。具体的には、差動ケース82は、第2側壁部CSc2から第3側壁部CSc3に亘って配置されている。そして、差動ケース82は、軸方向第1側L1の差動軸受B8を介して、第2側壁部CSc2に対して回転可能に支持されている。更に、差動ケース82は、軸方向第2側L2の差動軸受B8を介して、第3側壁部CSc3に対して回転可能に支持されている。 The differential case 82 is connected so as to rotate integrally with the differential input gear 81. In this embodiment, the differential case 82 is rotatably supported with respect to the case CS by a pair of differential bearings B8 arranged at different positions in the axial direction L. Specifically, the differential case 82 is arranged from the second side wall portion CSc2 to the third side wall portion CSc3. The differential case 82 is rotatably supported with respect to the second side wall portion CSc2 via the differential bearing B8 on the first side L1 in the axial direction. Further, the differential case 82 is rotatably supported with respect to the third side wall portion CSc3 via the differential bearing B8 on the second side L2 in the axial direction.
 差動ケース82は、中空の部材である。差動ケース82の内部には、一対の差動ピニオンギヤ83と、一対のサイドギヤ84と、が収容されている。 The differential case 82 is a hollow member. A pair of differential pinion gears 83 and a pair of side gears 84 are housed inside the differential case 82.
 一対の差動ピニオンギヤ83は、第4軸X4を基準とした径方向Rに沿って互いに間隔を空けて対向するように配置されている。そして、一対の差動ピニオンギヤ83のそれぞれは、差動ケース82と一体的に回転するように支持された差動ピニオンシャフト83aに取り付けられている。一対の差動ピニオンギヤ83のそれぞれは、差動ピニオンシャフト83aを中心として回転(自転)可能、かつ、第4軸X4を中心として回転(公転)可能に構成されている。 The pair of differential pinion gears 83 are arranged so as to face each other at intervals along the radial direction R with respect to the fourth axis X4. Each of the pair of differential pinion gears 83 is attached to a differential pinion shaft 83a supported so as to rotate integrally with the differential case 82. Each of the pair of differential pinion gears 83 is configured to be rotatable (rotated) about the differential pinion shaft 83a and rotatable (revolved) about the fourth axis X4.
 一対のサイドギヤ84は、出力用差動歯車機構8における駆動力の分配後の回転要素である。一対のサイドギヤ84は、互いに軸方向Lに間隔を空けて、一対の差動ピニオンシャフト83aを挟んで対向するように配置されている。一対のサイドギヤ84は、一対の差動ピニオンギヤ83と噛み合っている。一対のサイドギヤ84のそれぞれは、出力部材9と一体的に回転するように連結されている。 The pair of side gears 84 are rotating elements after distribution of the driving force in the output differential gear mechanism 8. The pair of side gears 84 are arranged so as to face each other with the pair of differential pinion shafts 83a interposed therebetween at intervals in the axial direction L. The pair of side gears 84 mesh with the pair of differential pinion gears 83. Each of the pair of side gears 84 is connected so as to rotate integrally with the output member 9.
 一対の出力部材9のそれぞれは、車輪Wに駆動連結されている。一対の出力部材9は、出力用差動歯車機構8から軸方向Lの両側に突出するように形成されている。本実施形態では、一対の出力部材9のそれぞれは、サイドギヤ84と一体的に回転するように連結されている。具体的には、軸方向第1側L1の出力部材9は、軸方向第1側L1のサイドギヤ84から軸方向第1側L1に突出するように、当該サイドギヤ84と一体的に連結されている。そして、軸方向第2側L2の出力部材9は、軸方向第2側L2のサイドギヤ84から軸方向第2側L2に突出するように、当該サイドギヤ84と一体的に連結されている。また、本実施形態では、一対の出力部材9のそれぞれは、軸方向Lの両側の端面が開放した円筒状に形成されている。 Each of the pair of output members 9 is drive-connected to the wheel W. The pair of output members 9 are formed so as to project from the output differential gear mechanism 8 on both sides in the axial direction L. In the present embodiment, each of the pair of output members 9 is connected so as to rotate integrally with the side gear 84. Specifically, the output member 9 on the first side L1 in the axial direction is integrally connected to the side gear 84 so as to project from the side gear 84 on the first side L1 in the axial direction to L1 on the first side in the axial direction. .. The output member 9 on the second side L2 in the axial direction is integrally connected to the side gear 84 so as to project from the side gear 84 on the second side L2 in the axial direction to the second side L2 in the axial direction. Further, in the present embodiment, each of the pair of output members 9 is formed in a cylindrical shape in which the end faces on both sides in the axial direction L are open.
 本実施形態では、軸方向第1側L1の出力部材9は、その軸方向第1側L1の端部が第2側壁部CSc2を軸方向Lに貫通してケースCSの外部に露出するように配置されている。そして、軸方向第2側L2の出力部材9は、その軸方向第2側L2の端部が第3側壁部CSc3を軸方向Lに貫通してケースCSの外部に露出するように配置されている。本実施形態では、各出力部材9の径方向Rの内側に、車輪Wに駆動連結されたドライブシャフト(図示を省略)が配置された状態で、それらが一体的に回転するように連結される。例えば、出力部材9の内周面とドライブシャフトの外周面とのそれぞれに、対応するスプラインが形成されており、それらのスプライン同士が係合することにより、出力部材9とドライブシャフトとが一体的に回転するように連結される。 In the present embodiment, the output member 9 on the first side L1 in the axial direction is exposed to the outside of the case CS so that the end portion of the first side L1 in the axial direction penetrates the second side wall portion CSc2 in the axial direction L. Have been placed. The output member 9 on the second side L2 in the axial direction is arranged so that the end portion of the second side L2 in the axial direction penetrates the third side wall portion CSc3 in the axial direction L and is exposed to the outside of the case CS. There is. In the present embodiment, drive shafts (not shown) that are drive-connected to the wheels W are arranged inside the radial direction R of each output member 9, and they are connected so as to rotate integrally. .. For example, corresponding splines are formed on the inner peripheral surface of the output member 9 and the outer peripheral surface of the drive shaft, and the splines are engaged with each other to integrally integrate the output member 9 and the drive shaft. It is connected so as to rotate.
 本実施形態では、車両用駆動装置100は、油を吐出する油圧ポンプOPを更に備えている。油圧ポンプOPは、当該油圧ポンプOPを駆動するためのポンプ駆動ギヤOPaを備えている。本実施形態では、ポンプ駆動ギヤOPaは、第1ロータギヤ2Aの周方向における入力ギヤ5とは異なる位置で、第1ロータギヤ2Aに噛み合っている。 In the present embodiment, the vehicle drive device 100 further includes a hydraulic pump OP that discharges oil. The hydraulic pump OP includes a pump drive gear OPa for driving the hydraulic pump OP. In the present embodiment, the pump drive gear OPa meshes with the first rotor gear 2A at a position different from the input gear 5 in the circumferential direction of the first rotor gear 2A.
 また、本実施形態では、図3に示すように、車両用駆動装置100は、第1ロータ12Aの回転を検出する第1回転センサSe1と、第2ロータ12Bの回転を検出する第2回転センサSe2と、を更に備えている。第1回転センサSe1及び第2回転センサSe2は、軸方向Lにおける第1ロータ12Aと第2ロータ12Bとの間に配置されている。本実施形態では、第1回転センサSe1と第2回転センサSe2とのそれぞれは、レゾルバである。図示の例では、第1回転センサSe1のステータが第1支持壁部CSd1に支持され、第1回転センサSe1のロータが第1ロータ支持部材13Aの第1連結部132Aに支持されている。そして、第2回転センサSe2のステータが第2支持壁部CSd2に支持され、第2回転センサSe2のロータが第2ロータ支持部材13Bの第2連結部132Bに支持されている。 Further, in the present embodiment, as shown in FIG. 3, the vehicle drive device 100 includes a first rotation sensor Se1 that detects the rotation of the first rotor 12A and a second rotation sensor that detects the rotation of the second rotor 12B. It also has Se2. The first rotation sensor Se1 and the second rotation sensor Se2 are arranged between the first rotor 12A and the second rotor 12B in the axial direction L. In the present embodiment, each of the first rotation sensor Se1 and the second rotation sensor Se2 is a resolver. In the illustrated example, the stator of the first rotation sensor Se1 is supported by the first support wall portion CSd1, and the rotor of the first rotation sensor Se1 is supported by the first connecting portion 132A of the first rotor support member 13A. Then, the stator of the second rotation sensor Se2 is supported by the second support wall portion CSd2, and the rotor of the second rotation sensor Se2 is supported by the second connecting portion 132B of the second rotor support member 13B.
 以下では、図5を参照して、軸方向Lに沿う軸方向視での、本実施形態に係る車両用駆動装置100の各要素の位置関係について説明する。図5には、第1回転電機1A及び第2回転電機1B、第1ロータギヤ2A及び第2ロータギヤ2B、分配用差動歯車機構4、入力ギヤ5、アイドラギヤ6、第1カウンタギヤ72及び第2カウンタギヤ73、差動入力ギヤ81、並びにポンプ駆動ギヤOPaのそれぞれの外形が示されている。なお、本実施形態では、第1回転電機1A(第1ステータ11A)の外径と、第2回転電機1B(第2ステータ11B)の外径とは同一とされる。 In the following, with reference to FIG. 5, the positional relationship of each element of the vehicle drive device 100 according to the present embodiment in the axial view along the axial direction L will be described. FIG. 5 shows the first rotary electric machine 1A and the second rotary electric machine 1B, the first rotor gear 2A and the second rotor gear 2B, the differential gear mechanism for distribution 4, the input gear 5, the idler gear 6, the first counter gear 72 and the second. The outer shapes of the counter gear 73, the differential input gear 81, and the pump drive gear OPa are shown. In this embodiment, the outer diameter of the first rotary electric machine 1A (first stator 11A) and the outer diameter of the second rotary electric machine 1B (second stator 11B) are the same.
 図5に示すように、本実施形態では、軸方向Lに沿う軸方向視で、第1回転電機1Aの回転軸心(第2軸X2)は、入力部材3の回転軸心(第1軸X1)に対して、出力用差動歯車機構8の回転軸心(第4軸X4)の側とは反対側に配置されている。説明を加えると、軸方向Lに沿う軸方向視で、第1軸X1と第4軸X4とを含む第1仮想平面IP1に直交し、かつ、第1軸X1を含む第2仮想平面IP2に対して、第4軸X4とは反対側に第2軸X2が配置されている。また、本実施形態では、カウンタギヤ機構7の回転軸心(第3軸X3)は、入力部材3の回転軸心(第1軸X1)に対して、第1回転電機1Aの回転軸心(第2軸X2)の側とは反対側に配置されている。ここでは、第3軸X3は、第1仮想平面IP1に沿う方向における、第1軸X1と第4軸X4との間に配置されている。 As shown in FIG. 5, in the present embodiment, the rotation axis (second axis X2) of the first rotary electric machine 1A is the rotation axis (first axis) of the input member 3 in the axial view along the axial direction L. It is arranged on the side opposite to the side of the rotation axis (fourth axis X4) of the output differential gear mechanism 8 with respect to X1). To add a description, in the axial view along the axial direction L, the second virtual plane IP1 including the first axis X1 and the fourth axis X4 is orthogonal to the first virtual plane IP1 including the first axis X1. On the other hand, the second axis X2 is arranged on the side opposite to the fourth axis X4. Further, in the present embodiment, the rotation axis (third axis X3) of the counter gear mechanism 7 is the rotation axis (third axis X3) of the first rotary electric machine 1A with respect to the rotation axis (first axis X1) of the input member 3. It is arranged on the side opposite to the side of the second axis X2). Here, the third axis X3 is arranged between the first axis X1 and the fourth axis X4 in the direction along the first virtual plane IP1.
 また、本実施形態では、カウンタギヤ機構7が、軸方向Lに沿う軸方向視で、第1回転電機1Aと重複するように配置されている。図示の例では、カウンタギヤ機構7の一部(具体的には、第1カウンタギヤ72の一部、及び第2カウンタギヤ73の一部)が、軸方向視で、第1回転電機1A及び第2回転電機1Bの双方と重複している。ここで、2つの要素の配置に関して、「特定方向視で重複する」とは、その視線方向に平行な仮想直線を当該仮想直線と直交する各方向に移動させた場合に、当該仮想直線が2つの要素の双方に交わる領域が少なくとも一部に存在することを指す。 Further, in the present embodiment, the counter gear mechanism 7 is arranged so as to overlap with the first rotary electric machine 1A in the axial direction along the axial direction L. In the illustrated example, a part of the counter gear mechanism 7 (specifically, a part of the first counter gear 72 and a part of the second counter gear 73) is an axial view of the first rotary electric machine 1A and It overlaps with both of the second rotary electric machines 1B. Here, regarding the arrangement of the two elements, "overlapping in a specific direction" means that the virtual straight line is 2 when the virtual straight line parallel to the line-of-sight direction is moved in each direction orthogonal to the virtual straight line. It means that there is at least a part of the area where both of the two elements intersect.
 また、本実施形態では、分配用差動歯車機構4も、軸方向Lに沿う軸方向視で、第1回転電機1Aと重複するように配置されている。図示の例では、分配用差動歯車機構4の全体が、軸方向視で、第1回転電機1A及び第2回転電機1Bの双方と重複している。 Further, in the present embodiment, the distribution differential gear mechanism 4 is also arranged so as to overlap with the first rotary electric machine 1A in the axial direction along the axial direction L. In the illustrated example, the entire distribution differential gear mechanism 4 overlaps with both the first rotary electric machine 1A and the second rotary electric machine 1B in the axial direction.
 また、本実施形態では、入力ギヤ5、アイドラギヤ6、及び油圧ポンプOPも、軸方向Lに沿う軸方向視で、第1回転電機1Aと重複するように配置されている。図示の例では、入力ギヤ5、アイドラギヤ6、及び油圧ポンプOPの全体が、軸方向視で、第1回転電機1A及び第2回転電機1Bの双方と重複している。 Further, in the present embodiment, the input gear 5, the idler gear 6, and the hydraulic pump OP are also arranged so as to overlap with the first rotary electric machine 1A in the axial direction along the axial direction L. In the illustrated example, the input gear 5, the idler gear 6, and the hydraulic pump OP as a whole overlap with both the first rotary electric machine 1A and the second rotary electric machine 1B in the axial direction.
〔その他の実施形態〕
(1)上記の実施形態では、第2カウンタギヤ73が第1カウンタギヤ72よりも軸方向第1側L1に配置された構成を例として説明したが、そのような構成に限定されない。例えば、図6に示すように、第2カウンタギヤ73が第1カウンタギヤ72よりも軸方向第2側L2に配置された構成としても良い。図6に示す例では、リングギヤR4とアイドラギヤ6とが、第1軸X1を基準とした径方向Rに沿う径方向視で、互いに重複するように配置されている。また、この例では、第1カウンタギヤ72の軸方向Lの配置領域が、分配用差動歯車機構4の軸方向Lの配置領域と重なっている。
[Other Embodiments]
(1) In the above embodiment, the configuration in which the second counter gear 73 is arranged on the first side L1 in the axial direction with respect to the first counter gear 72 has been described as an example, but the configuration is not limited to such a configuration. For example, as shown in FIG. 6, the second counter gear 73 may be arranged on the second side L2 in the axial direction with respect to the first counter gear 72. In the example shown in FIG. 6, the ring gear R4 and the idler gear 6 are arranged so as to overlap each other in a radial direction along the radial direction R with respect to the first axis X1. Further, in this example, the arrangement area of the first counter gear 72 in the axial direction L overlaps with the arrangement area of the distribution differential gear mechanism 4 in the axial direction L.
(2)上記の実施形態では、第1回転電機1Aが分配用差動歯車機構4に対して軸方向第1側L1に配置された構成を例として説明した。しかし、そのような構成に限定されることなく、第1回転電機1Aが分配用差動歯車機構4に対して軸方向第2側L2に配置されていても良い。 (2) In the above embodiment, a configuration in which the first rotary electric machine 1A is arranged on the first side L1 in the axial direction with respect to the distribution differential gear mechanism 4 has been described as an example. However, without being limited to such a configuration, the first rotary electric machine 1A may be arranged on the second side L2 in the axial direction with respect to the distribution differential gear mechanism 4.
(3)上記の実施形態では、軸方向Lに沿う軸方向視で、第1回転電機1Aの回転軸心(第2軸X2)が、入力部材3の回転軸心(第1軸X1)に対して、出力用差動歯車機構8の回転軸心(第4軸X4)の側とは反対側に配置された構成を例として説明した。しかし、そのような構成に限定されることなく、第1回転電機1Aの回転軸心(第2軸X2)が、入力部材3の回転軸心(第1軸X1)に対して、第1仮想平面IP1に沿う方向における出力用差動歯車機構8の回転軸心(第4軸X4)の側と同じ側に配置されていても良い。 (3) In the above embodiment, the rotation axis (second axis X2) of the first rotary electric machine 1A becomes the rotation axis (first axis X1) of the input member 3 in the axial view along the axial direction L. On the other hand, a configuration in which the output differential gear mechanism 8 is arranged on the side opposite to the rotation axis (fourth axis X4) side has been described as an example. However, without being limited to such a configuration, the rotation axis (second axis X2) of the first rotary electric machine 1A is the first virtual center with respect to the rotation axis (first axis X1) of the input member 3. It may be arranged on the same side as the rotation axis (fourth axis X4) side of the output differential gear mechanism 8 in the direction along the plane IP1.
(4)上記の実施形態では、第1ロータギヤ2Aと入力ギヤ5との歯数比が、分配用差動歯車機構4の第1回転要素(サンギヤS4)の回転が増速して第1回転電機1Aに伝達されるように設定された構成を例として説明した。しかし、そのような構成に限定されることなく、第1ロータギヤ2Aと入力ギヤ5との歯数比は適宜変更しても良い。したがって、第1ロータギヤ2Aと入力ギヤ5との歯数比は、前記第1回転要素の回転が同速のまま第1回転電機1Aに伝達され、或いは、前記第1回転要素の回転が減速して第1回転電機1Aに伝達されるように設定されていても良い。 (4) In the above embodiment, the gear ratio between the first rotor gear 2A and the input gear 5 is increased by increasing the rotation of the first rotating element (sun gear S4) of the distribution differential gear mechanism 4 to make the first rotation. An example of a configuration set to be transmitted to the electric machine 1A has been described. However, the gear ratio of the first rotor gear 2A and the input gear 5 may be appropriately changed without being limited to such a configuration. Therefore, the gear ratio between the first rotor gear 2A and the input gear 5 is transmitted to the first rotating electric machine 1A while the rotation of the first rotating element remains at the same speed, or the rotation of the first rotating element is decelerated. It may be set to be transmitted to the first rotary electric machine 1A.
(5)上記の実施形態では、第1回転電機1Aと第2回転電機1Bとが同軸に配置された構成を例として説明した。しかし、そのような構成に限定されることなく、第1回転電機1Aと第2回転電機1Bとが別軸に配置されていても良い。 (5) In the above embodiment, a configuration in which the first rotary electric machine 1A and the second rotary electric machine 1B are arranged coaxially has been described as an example. However, without being limited to such a configuration, the first rotary electric machine 1A and the second rotary electric machine 1B may be arranged on different axes.
(6)上記の実施形態では、アイドラギヤ6が、入力部材3、分配用差動歯車機構4、及び入力ギヤ5と同軸に配置された構成を例として説明した。しかし、そのような構成に限定されることなく、アイドラギヤ6が、入力部材3、分配用差動歯車機構4、及び入力ギヤ5とは別軸に配置されていても良い。 (6) In the above embodiment, the configuration in which the idler gear 6 is arranged coaxially with the input member 3, the distribution differential gear mechanism 4, and the input gear 5 has been described as an example. However, without being limited to such a configuration, the idler gear 6 may be arranged on a shaft different from the input member 3, the distribution differential gear mechanism 4, and the input gear 5.
(7)上記の実施形態では、軸方向第2側L2から軸方向第1側L1に向けて、第2ロータギヤ2B、第1ロータギヤ2A、第1回転電機1A、及び第2回転電機1Bが記載の順で配置された構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、第1回転電機1Aが第2回転電機1Bよりも軸方向第1側L1に配置されていても良い。また、第1ロータギヤ2Aが第2ロータギヤ2Bよりも軸方向第2側L2に配置されていても良い。 (7) In the above embodiment, the second rotor gear 2B, the first rotor gear 2A, the first rotary electric machine 1A, and the second rotary electric machine 1B are described from the second side L2 in the axial direction to the first side L1 in the axial direction. The configuration arranged in the order of is described as an example. However, without being limited to such a configuration, for example, the first rotary electric machine 1A may be arranged on the first side L1 in the axial direction with respect to the second rotary electric machine 1B. Further, the first rotor gear 2A may be arranged on the second side L2 in the axial direction with respect to the second rotor gear 2B.
(8)上記の実施形態では、第2カウンタギヤ73及び差動入力ギヤ81の双方の軸方向Lの配置領域が、分配用差動歯車機構4の軸方向Lの配置領域と重なっている構成を例として説明した。しかし、そのような構成に限定されることなく、第2カウンタギヤ73及び差動入力ギヤ81の双方の軸方向Lの配置領域が、分配用差動歯車機構4の軸方向Lの配置領域と重なっていなくても良い。 (8) In the above embodiment, the arrangement area of both the second counter gear 73 and the differential input gear 81 in the axial direction L overlaps with the arrangement area of the distribution differential gear mechanism 4 in the axial direction L. Was described as an example. However, without being limited to such a configuration, the arrangement area of both the second counter gear 73 and the differential input gear 81 in the axial direction L is the arrangement area of the distribution differential gear mechanism 4 in the axial direction L. It does not have to overlap.
(9)上記の実施形態では、カウンタギヤ機構7が、軸方向Lに沿う軸方向視で、第1回転電機1Aと重複するように配置された構成を例として説明した。しかし、そのような構成に限定されることなく、カウンタギヤ機構7が軸方向視で第1回転電機1Aと重複していなくても良い。 (9) In the above embodiment, the configuration in which the counter gear mechanism 7 is arranged so as to overlap with the first rotary electric machine 1A in the axial direction along the axial direction L has been described as an example. However, the counter gear mechanism 7 does not have to overlap with the first rotary electric machine 1A in the axial direction without being limited to such a configuration.
(10)上記の実施形態では、分配用差動歯車機構4が、軸方向Lに沿う軸方向視で、第1回転電機1Aと重複するように配置された構成を例として説明した。しかし、そのような構成に限定されることなく、分配用差動歯車機構4が軸方向視で第1回転電機1Aと重複していなくても良い。 (10) In the above embodiment, a configuration in which the distribution differential gear mechanism 4 is arranged so as to overlap the first rotary electric machine 1A in the axial direction along the axial direction L has been described as an example. However, the present invention is not limited to such a configuration, and the distribution differential gear mechanism 4 may not overlap with the first rotary electric machine 1A in the axial direction.
(11)なお、上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用することも可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。従って、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。 (11) The configurations disclosed in each of the above-described embodiments can be applied in combination with the configurations disclosed in other embodiments as long as there is no contradiction. With respect to other configurations, the embodiments disclosed herein are merely exemplary in all respects. Therefore, various modifications can be made as appropriate without departing from the gist of the present disclosure.
〔上記実施形態の概要〕
 以下では、上記において説明した車両用駆動装置(100)の概要について説明する。
[Outline of the above embodiment]
The outline of the vehicle drive device (100) described above will be described below.
 車両用駆動装置(100)は、
 内燃機関(EG)に対して軸方向(L)の一方側である軸方向第1側(L1)に配置され、前記内燃機関(EG)に駆動連結される入力部材(3)と、
 それぞれ車輪(W)に駆動連結される一対の出力部材(9)と、
 入力される回転を一対の前記出力部材(9)に分配する出力用差動歯車機構(8)と、
 第1ロータ(12A)を備えた第1回転電機(1A)と、
 第2ロータ(12B)を備えた第2回転電機(1B)と、
 前記第1ロータ(12A)と一体的に回転する第1ギヤ(2A)と、
 前記第1ギヤ(2A)に噛み合う第2ギヤ(5)と、
 前記第2ギヤ(5)に駆動連結された第1回転要素(S4)、前記入力部材(3)に駆動連結された第2回転要素(C4)、及び前記第2ロータ(12B)と前記出力用差動歯車機構(8)との双方に駆動連結された第3回転要素(R4)を備えた分配用差動歯車機構(4)と、を備え、
 前記入力部材(3)と、前記分配用差動歯車機構(4)と、前記第2ギヤ(5)とが、同軸に配置され、
 前記出力用差動歯車機構(8)が、前記入力部材(3)とは別軸に配置され、
 前記第1回転電機(1A)が、前記入力部材(3)とは別軸に配置されている。
The vehicle drive device (100)
An input member (3) arranged on the first side (L1) in the axial direction, which is one side in the axial direction (L) with respect to the internal combustion engine (EG), and driven and connected to the internal combustion engine (EG).
A pair of output members (9) that are driven and connected to the wheels (W), respectively.
An output differential gear mechanism (8) that distributes the input rotation to the pair of output members (9).
A first rotary electric machine (1A) equipped with a first rotor (12A) and
A second rotary electric machine (1B) equipped with a second rotor (12B) and
The first gear (2A) that rotates integrally with the first rotor (12A) and
The second gear (5) that meshes with the first gear (2A) and
The first rotating element (S4) driven and connected to the second gear (5), the second rotating element (C4) driven and connected to the input member (3), and the second rotor (12B) and the output. A distribution differential gear mechanism (4) having a third rotating element (R4) driven and connected to both of the differential gear mechanism (8) is provided.
The input member (3), the distribution differential gear mechanism (4), and the second gear (5) are coaxially arranged.
The output differential gear mechanism (8) is arranged on a shaft separate from the input member (3).
The first rotary electric machine (1A) is arranged on a shaft different from the input member (3).
 この構成によれば、出力用差動歯車機構(8)と第1回転電機(1A)とのそれぞれが、入力部材(3)とは別軸に配置されている。そのため、出力用差動歯車機構(8)の回転軸心(X4)と第1回転電機(1A)の回転軸心(X2)との位置関係の自由度が高くなっており、これらの距離を、大きく確保し易くなっている。その結果、第1回転電機(1A)と一対の出力部材(9)との干渉を回避しつつ、第1回転電機(1A)の径方向(R)の寸法を大きく確保することが容易となる。
 また、本構成によれば、分配用差動歯車機構(4)が入力部材(3)と同軸に配置されていると共に、第1回転電機(1A)が入力部材(3)とは別軸に配置されている。つまり、第1回転電機(1A)と分配用差動歯車機構(4)とが別軸に配置されている。そして、分配用差動歯車機構(4)から第1回転電機(1A)までの動力伝達経路に、互いに噛み合う第1ギヤ(2A)と第2ギヤ(5)とが配置されている。これにより、第1ギヤ(2A)と第2ギヤ(5)との歯数比の設定により、分配用差動歯車機構(4)から第1回転電機(1A)までの動力伝達経路の変速比を、容易に適切な値に設定することができる。このように、本構成よれば、分配用差動歯車機構(4)から第1回転電機(1A)までの動力伝達経路の変速比の設定自由度を高くすることができる。
According to this configuration, the output differential gear mechanism (8) and the first rotary electric machine (1A) are arranged on separate axes from the input member (3). Therefore, the degree of freedom in the positional relationship between the rotary axis (X4) of the output differential gear mechanism (8) and the rotary axis (X2) of the first rotary electric machine (1A) is high, and the distance between them is increased. , It is easy to secure a large size. As a result, it becomes easy to secure a large radial dimension (R) of the first rotary electric machine (1A) while avoiding interference between the first rotary electric machine (1A) and the pair of output members (9). ..
Further, according to this configuration, the distribution differential gear mechanism (4) is arranged coaxially with the input member (3), and the first rotary electric machine (1A) is on a different axis from the input member (3). Have been placed. That is, the first rotary electric machine (1A) and the distribution differential gear mechanism (4) are arranged on different axes. The first gear (2A) and the second gear (5) that mesh with each other are arranged in the power transmission path from the distribution differential gear mechanism (4) to the first rotary electric machine (1A). As a result, the gear ratio of the power transmission path from the differential gear mechanism for distribution (4) to the first rotary electric machine (1A) can be set by setting the gear ratio between the first gear (2A) and the second gear (5). Can be easily set to an appropriate value. As described above, according to this configuration, the degree of freedom in setting the gear ratio of the power transmission path from the distribution differential gear mechanism (4) to the first rotary electric machine (1A) can be increased.
 ここで、前記第1回転電機(1A)は、前記分配用差動歯車機構(4)に対して前記軸方向第1側(L1)に配置されていると好適である。 Here, it is preferable that the first rotary electric machine (1A) is arranged on the first side (L1) in the axial direction with respect to the distribution differential gear mechanism (4).
 車両用駆動装置(100)の車両への搭載の都合上、当該車両用駆動装置(100)における内燃機関(EG)との連結部分の径方向(R)の寸法を大きく確保することは難しい。本構成によれば、第1回転電機(1A)が、内燃機関(EG)から軸方向(L)に離れた位置に配置されている。これにより、分配用差動歯車機構(4)に対して内燃機関(EG)側に第1回転電機(1A)が配置された構成と比較して、内燃機関(EG)との連結部分の径方向(R)の寸法に影響を与えることなく、第1回転電機(1A)の径方向(R)の寸法を大きく確保することが容易となる。
 また、本構成によれば、分配用差動歯車機構(4)に対して内燃機関(EG)側に第1回転電機(1A)が配置された構成と比較して、軸方向(L)において分配用差動歯車機構(4)を内燃機関(EG)に近づけて配置し易く、延いては出力用差動歯車機構(8)を内燃機関(EG)に近付けて配置し易くなる。これにより、出力用差動歯車機構(8)に対して軸方向(L)の両側に配置される一対の出力部材(9)の軸方向(L)の寸法差を小さく抑えることができる。したがって、車両用駆動装置(100)を車両に搭載した場合において、一対の出力部材(9)の軸方向(L)の寸法差に起因する、車両の操舵性の悪化を抑制することができる。
Due to the convenience of mounting the vehicle drive device (100) on the vehicle, it is difficult to secure a large radial dimension (R) of the connecting portion of the vehicle drive device (100) with the internal combustion engine (EG). According to this configuration, the first rotary electric machine (1A) is arranged at a position separated from the internal combustion engine (EG) in the axial direction (L). As a result, the diameter of the connecting portion with the internal combustion engine (EG) is larger than that in which the first rotary electric machine (1A) is arranged on the internal combustion engine (EG) side with respect to the distribution differential gear mechanism (4). It becomes easy to secure a large radial dimension (R) of the first rotary electric machine (1A) without affecting the dimension in the direction (R).
Further, according to this configuration, in the axial direction (L), as compared with the configuration in which the first rotary electric machine (1A) is arranged on the internal combustion engine (EG) side with respect to the distribution differential gear mechanism (4). The distribution differential gear mechanism (4) can be easily arranged close to the internal combustion engine (EG), and the output differential gear mechanism (8) can be easily arranged close to the internal combustion engine (EG). As a result, the dimensional difference in the axial direction (L) of the pair of output members (9) arranged on both sides in the axial direction (L) with respect to the output differential gear mechanism (8) can be suppressed to be small. Therefore, when the vehicle drive device (100) is mounted on the vehicle, deterioration of the steerability of the vehicle due to the dimensional difference in the axial direction (L) of the pair of output members (9) can be suppressed.
 また、前記軸方向(L)に沿う軸方向視で、前記第1回転電機(1A)の回転軸心(X2)は、前記入力部材(3)の回転軸心(X1)に対して、前記出力用差動歯車機構(8)の回転軸心(X4)の側とは反対側に配置されていると好適である。 Further, in the axial view along the axial direction (L), the rotation axis (X2) of the first rotary electric machine (1A) is the rotation axis (X1) of the input member (3). It is preferable that the output differential gear mechanism (8) is arranged on the side opposite to the side of the rotation axis (X4).
 この構成によれば、軸方向視で、第1回転電機(1A)の回転軸心(X2)と出力用差動歯車機構(8)の回転軸心(X4)との距離を大きく確保することができる。これにより、第1回転電機(1A)と一対の出力部材(9)との干渉を回避しつつ、第1回転電機(1A)の径方向(R)の寸法を大きく確保することが更に容易となる。 According to this configuration, a large distance between the rotation axis (X2) of the first rotary electric machine (1A) and the rotation axis (X4) of the output differential gear mechanism (8) is secured in the axial direction. Can be done. As a result, it is easier to secure a large radial dimension (R) of the first rotating electric machine (1A) while avoiding interference between the first rotating electric machine (1A) and the pair of output members (9). Become.
 また、前記第1ギヤ(2A)と前記第2ギヤ(5)との歯数比は、前記第1回転要素(S4)の回転が増速して前記第1回転電機(1A)に伝達されるように設定されていると好適である。 Further, the gear ratio between the first gear (2A) and the second gear (5) is transmitted to the first rotating electric machine (1A) by accelerating the rotation of the first rotating element (S4). It is preferable that it is set to be.
 この構成によれば、第1回転要素(S4)の回転を増速して第1回転電機(1A)に伝達するため、内燃機関(EG)の回転速度よりも高い回転速度で第1ロータ(12A)を回転させることができる。その結果、同じ電力を発電する場合に必要な第1回転電機(1A)のトルクが減少するため、第1回転電機(1A)を小型化し易くなる。したがって、車両用駆動装置(100)を小型化することが容易となっている。 According to this configuration, since the rotation of the first rotating element (S4) is accelerated and transmitted to the first rotating electric machine (1A), the first rotor (1A) has a rotation speed higher than that of the internal combustion engine (EG). 12A) can be rotated. As a result, the torque of the first rotary electric machine (1A) required to generate the same electric power is reduced, so that the first rotary electric machine (1A) can be easily miniaturized. Therefore, it is easy to miniaturize the vehicle drive device (100).
 また、前記第3回転要素(R4)と一体的に回転する第3ギヤ(6)と、
 前記第3ギヤ(6)に噛み合い、前記第2ロータ(12B)と一体的に回転する第4ギヤ(2B)と、を更に備え、
 前記第1回転電機(1A)と前記第2回転電機(1B)とが同軸に配置され、
 前記第3ギヤ(6)は、前記入力部材(3)、前記第2ギヤ(5)、及び前記分配用差動歯車機構(4)と同軸に配置され、前記出力用差動歯車機構(8)に駆動連結されていると好適である。
Further, a third gear (6) that rotates integrally with the third rotating element (R4) and
A fourth gear (2B) that meshes with the third gear (6) and rotates integrally with the second rotor (12B) is further provided.
The first rotary electric machine (1A) and the second rotary electric machine (1B) are coaxially arranged.
The third gear (6) is arranged coaxially with the input member (3), the second gear (5), and the distribution differential gear mechanism (4), and the output differential gear mechanism (8). ) Is driven and connected.
 この構成によれば、第1回転電機(1A)と前記第2回転電機(1B)とが同軸に配置されていると共に、入力部材(3)と分配用差動歯車機構(4)と第2ギヤ(5)と第3ギヤ(6)とが同軸に配置されている。これにより、車両用駆動装置(100)の径方向(R)の寸法の大型化を抑制することが容易となっている。 According to this configuration, the first rotary electric machine (1A) and the second rotary electric machine (1B) are coaxially arranged, and the input member (3), the differential gear mechanism for distribution (4), and the second The gear (5) and the third gear (6) are arranged coaxially. This makes it easy to suppress an increase in the radial (R) dimension of the vehicle drive device (100).
 前記第3ギヤ(6)と前記第4ギヤ(2B)とを備えた構成において、
 前記第1回転電機(1A)と、前記第2回転電機(1B)と、前記第1ギヤ(2A)と、前記第4ギヤ(2B)とが、同軸に配置され、
 前記軸方向(L)における前記軸方向第1側(L1)とは反対側を軸方向第2側(L2)として、
 前記軸方向第2側(L2)から前記軸方向第1側(L1)に向けて、前記第4ギヤ(2B)、前記第1ギヤ(2A)、前記第1回転電機(1A)、前記第2回転電機(1B)の順で配置されていると好適である。
In the configuration including the third gear (6) and the fourth gear (2B),
The first rotary electric machine (1A), the second rotary electric machine (1B), the first gear (2A), and the fourth gear (2B) are coaxially arranged.
The side opposite to the axial first side (L1) in the axial direction (L) is defined as the axial second side (L2).
From the axial second side (L2) to the axial first side (L1), the fourth gear (2B), the first gear (2A), the first rotary electric machine (1A), the first It is preferable that the two-rotating electric machine (1B) is arranged in this order.
 この構成によれば、軸方向(L)において第1回転電機(1A)及び第2回転電機(1B)を内燃機関(EG)から離して配置することができる。これにより、第1回転電機(1A)及び第2回転電機(1B)の径方向(R)の寸法を大きく確保することが容易となる。 According to this configuration, the first rotary electric machine (1A) and the second rotary electric machine (1B) can be arranged away from the internal combustion engine (EG) in the axial direction (L). As a result, it becomes easy to secure a large radial dimension (R) of the first rotary electric machine (1A) and the second rotary electric machine (1B).
 ここで、前記第3ギヤ(6)に噛み合う第5ギヤ(72)、及び前記第5ギヤ(72)と一体的に回転する第6ギヤ(73)を有するカウンタギヤ機構(7)を更に備え、
 前記出力用差動歯車機構(8)は、前記第6ギヤ(73)に噛み合う第7ギヤ(81)を備え、前記第7ギヤ(81)の回転を一対の前記出力部材(9)に分配するように構成され、
 前記第6ギヤ(73)及び前記第7ギヤ(81)の双方の前記軸方向(L)の配置領域が、前記分配用差動歯車機構(4)の前記軸方向(L)の配置領域と重なっていると好適である。
Here, a counter gear mechanism (7) having a fifth gear (72) that meshes with the third gear (6) and a sixth gear (73) that rotates integrally with the fifth gear (72) is further provided. ,
The output differential gear mechanism (8) includes a seventh gear (81) that meshes with the sixth gear (73), and distributes the rotation of the seventh gear (81) to the pair of output members (9). Configured to
The axial direction (L) arrangement area of both the sixth gear (73) and the seventh gear (81) is the axial direction (L) arrangement area of the distribution differential gear mechanism (4). It is preferable that they overlap.
 この構成によれば、第6ギヤ(73)及び第7ギヤ(81)の双方の軸方向(L)の配置領域が、分配用差動歯車機構(4)の軸方向(L)の配置領域と重なっていない構成と比較して、車両用駆動装置(100)の軸方向(L)の寸法の小型化が容易となる。 According to this configuration, the arrangement area of both the sixth gear (73) and the seventh gear (81) in the axial direction (L) is the arrangement area of the differential gear mechanism (4) for distribution in the axial direction (L). Compared with the configuration that does not overlap with the above, the size of the vehicle drive device (100) in the axial direction (L) can be easily reduced.
 前記カウンタギヤ機構(7)を備えた構成において、
 前記カウンタギヤ機構(7)が、前記軸方向(L)に沿う軸方向視で、前記第1回転電機(1A)と重複するように配置されていると好適である。
In the configuration provided with the counter gear mechanism (7),
It is preferable that the counter gear mechanism (7) is arranged so as to overlap with the first rotary electric machine (1A) in the axial direction along the axial direction (L).
 この構成によれば、カウンタギヤ機構(7)が、軸方向視で第1回転電機(1A)と重複するスペースを利用して配置されている。これにより、カウンタギヤ機構(7)の配置による車両用駆動装置(100)の径方向(R)の寸法の大型化を抑制することができる。 According to this configuration, the counter gear mechanism (7) is arranged by utilizing the space overlapping with the first rotary electric machine (1A) in the axial direction. As a result, it is possible to suppress an increase in the radial dimension (R) of the vehicle drive device (100) due to the arrangement of the counter gear mechanism (7).
 また、前記分配用差動歯車機構(4)が、前記軸方向(L)に沿う軸方向視で、前記第1回転電機(1A)と重複するように配置されていると好適である。 Further, it is preferable that the distribution differential gear mechanism (4) is arranged so as to overlap with the first rotary electric machine (1A) in the axial direction along the axial direction (L).
 この構成によれば、分配用差動歯車機構(4)が、軸方向視で第1回転電機(1A)と重複するスペースを利用して配置されている。これにより、分配用差動歯車機構(4)の配置による車両用駆動装置(100)の径方向(R)の寸法の大型化を抑制することができる。 According to this configuration, the distribution differential gear mechanism (4) is arranged by utilizing the space overlapping with the first rotary electric machine (1A) in the axial direction. As a result, it is possible to suppress an increase in the radial dimension (R) of the vehicle drive device (100) due to the arrangement of the distribution differential gear mechanism (4).
 また、前記第3回転要素(R4)と一体的に回転する第3ギヤ(6)と、
 前記第3ギヤ(6)に噛み合い、前記第2ロータ(12B)と一体的に回転する第4ギヤ(2B)と、を更に備え、
 前記第1ロータ(12A)と前記第1ギヤ(2A)とが第1ロータ軸(21A)によって連結され、
 前記第2ロータ(12B)と前記第4ギヤ(2B)とが第2ロータ軸(21B)によって連結され、
 前記第2ロータ軸(21B)は、前記第1ロータ軸(21A)の径方向(R)の内側を前記軸方向(L)に貫通するように配置されていると好適である。
Further, a third gear (6) that rotates integrally with the third rotating element (R4) and
A fourth gear (2B) that meshes with the third gear (6) and rotates integrally with the second rotor (12B) is further provided.
The first rotor (12A) and the first gear (2A) are connected by a first rotor shaft (21A).
The second rotor (12B) and the fourth gear (2B) are connected by a second rotor shaft (21B).
It is preferable that the second rotor shaft (21B) is arranged so as to penetrate the inside of the first rotor shaft (21A) in the radial direction (R) in the axial direction (L).
 この構成によれば、第2ロータ軸(21B)が第1ロータ軸(21A)の径方向(R)の外側に配置されている構成と比較して、第2ロータ軸(21B)に連結された第4ギヤ(2B)の外径を小さくすることが容易となる。したがって、車両用駆動装置(100)の径方向(R)の寸法を小さく抑えつつ、第2回転電機(1B)から出力用差動歯車機構(8)までの動力伝達経路の変速比の設定自由度を高くすることが容易となる。 According to this configuration, the second rotor shaft (21B) is connected to the second rotor shaft (21B) as compared with the configuration in which the second rotor shaft (21B) is arranged outside the radial direction (R) of the first rotor shaft (21A). It becomes easy to reduce the outer diameter of the fourth gear (2B). Therefore, the gear ratio of the power transmission path from the second rotary electric machine (1B) to the output differential gear mechanism (8) can be freely set while keeping the radial (R) dimension of the vehicle drive device (100) small. It becomes easy to increase the degree.
 また、前記第3回転要素(R4)と一体的に回転する第3ギヤ(6)と、
 前記第3ギヤ(6)に噛み合い、前記第2ロータ(12B)と一体的に回転する第4ギヤ(2B)と、を更に備え、
 前記第4ギヤ(2B)は、前記第1ギヤ(2A)よりも小径であると好適である。
Further, a third gear (6) that rotates integrally with the third rotating element (R4) and
A fourth gear (2B) that meshes with the third gear (6) and rotates integrally with the second rotor (12B) is further provided.
It is preferable that the fourth gear (2B) has a smaller diameter than the first gear (2A).
 この構成によれば、第2回転電機(1B)の第2ロータ(12B)と一体的に回転する第4ギヤ(2B)の外径を小さく抑えることが容易となる。したがって、車両用駆動装置(100)の径方向(R)の寸法を小さく抑えつつ、第2回転電機(1B)から出力用差動歯車機構(8)までの動力伝達経路の変速比の設定自由度を高くすることが容易となる。 According to this configuration, it becomes easy to keep the outer diameter of the fourth gear (2B) that rotates integrally with the second rotor (12B) of the second rotating electric machine (1B) small. Therefore, the gear ratio of the power transmission path from the second rotary electric machine (1B) to the output differential gear mechanism (8) can be freely set while keeping the radial (R) dimension of the vehicle drive device (100) small. It becomes easy to increase the degree.
 本開示に係る技術は、第1回転電機及び第2回転電機と、内燃機関に駆動連結される入力部材と、それぞれ車輪に駆動連結される一対の出力部材と、入力部材に伝達される内燃機関の駆動力を分配する分配用差動歯車機構と、入力される回転を一対の出力部材に分配する出力用差動歯車機構と、を備えた車両用駆動装置に利用することができる。 The technology according to the present disclosure includes a first rotary electric machine, a second rotary electric machine, an input member that is driven and connected to an internal combustion engine, a pair of output members that are driven and connected to wheels, and an internal combustion engine that is transmitted to the input member. It can be used in a vehicle drive device including a distribution differential gear mechanism that distributes the driving force of the above and an output differential gear mechanism that distributes the input rotation to a pair of output members.
100 :車両用駆動装置
1A  :第1回転電機
12A :第1ロータ
1B  :第2回転電機
12B :第2ロータ
2A  :第1ロータギヤ(第1ギヤ)
3   :入力部材
4   :分配用差動歯車機構
S4  :サンギヤ(第1回転要素)
C4  :キャリヤ(第2回転要素)
R4  :リングギヤ(第3回転要素)
5   :入力ギヤ(第2ギヤ)
8   :出力用差動歯車機構
9   :出力部材
EG  :内燃機関
W   :車輪
L   :軸方向
L1  :軸方向第1側
L2  :軸方向第2側
100: Vehicle drive device 1A: 1st rotary electric machine 12A: 1st rotor 1B: 2nd rotary electric machine 12B: 2nd rotor 2A: 1st rotor gear (1st gear)
3: Input member 4: Differential gear mechanism for distribution S4: Sun gear (first rotating element)
C4: Carrier (second rotating element)
R4: Ring gear (third rotating element)
5: Input gear (second gear)
8: Differential gear mechanism for output 9: Output member EG: Internal combustion engine W: Wheel L: Axial direction L1: Axial direction first side L2: Axial direction second side

Claims (11)

  1.  内燃機関に対して軸方向の一方側である軸方向第1側に配置され、前記内燃機関に駆動連結される入力部材と、
     それぞれ車輪に駆動連結される一対の出力部材と、
     入力される回転を一対の前記出力部材に分配する出力用差動歯車機構と、
     第1ロータを備えた第1回転電機と、
     第2ロータを備えた第2回転電機と、
     前記第1ロータと一体的に回転する第1ギヤと、
     前記第1ギヤに噛み合う第2ギヤと、
     前記第2ギヤに駆動連結された第1回転要素、前記入力部材に駆動連結された第2回転要素、及び前記第2ロータと前記出力用差動歯車機構との双方に駆動連結された第3回転要素を備えた分配用差動歯車機構と、を備え、
     前記入力部材と、前記分配用差動歯車機構と、前記第2ギヤとが、同軸に配置され、
     前記出力用差動歯車機構が、前記入力部材とは別軸に配置され、
     前記第1回転電機が、前記入力部材とは別軸に配置されている、車両用駆動装置。
    An input member arranged on the first side in the axial direction, which is one side in the axial direction with respect to the internal combustion engine, and driven and connected to the internal combustion engine.
    A pair of output members that are driven and connected to the wheels, respectively.
    An output differential gear mechanism that distributes the input rotation to the pair of output members,
    The first rotary electric machine equipped with the first rotor and
    A second rotary electric machine equipped with a second rotor,
    A first gear that rotates integrally with the first rotor,
    The second gear that meshes with the first gear and
    A first rotating element that is driven and connected to the second gear, a second rotating element that is driven and connected to the input member, and a third that is driven and connected to both the second rotor and the output differential gear mechanism. With a differential gear mechanism for distribution, equipped with a rotating element,
    The input member, the distribution differential gear mechanism, and the second gear are coaxially arranged.
    The output differential gear mechanism is arranged on a shaft separate from the input member.
    A vehicle drive device in which the first rotary electric machine is arranged on a shaft different from the input member.
  2.  前記第1回転電機は、前記分配用差動歯車機構に対して前記軸方向第1側に配置されている、請求項1に記載の車両用駆動装置。 The vehicle drive device according to claim 1, wherein the first rotary electric machine is arranged on the first side in the axial direction with respect to the distribution differential gear mechanism.
  3.  前記軸方向に沿う軸方向視で、前記第1回転電機の回転軸心は、前記入力部材の回転軸心に対して、前記出力用差動歯車機構の回転軸心の側とは反対側に配置されている、請求項1又は2に記載の車両用駆動装置。 In the axial view along the axial direction, the rotation axis of the first rotary electric machine is on the side opposite to the rotation axis side of the output differential gear mechanism with respect to the rotation axis of the input member. The vehicle drive device according to claim 1 or 2, which is arranged.
  4.  前記第1ギヤと前記第2ギヤとの歯数比は、前記第1回転要素の回転が増速して前記第1回転電機に伝達されるように設定されている、請求項1から3のいずれか一項に記載の車両用駆動装置。 The gear ratio between the first gear and the second gear is set so that the rotation of the first rotating element is accelerated and transmitted to the first rotating electric machine, according to claims 1 to 3. The vehicle drive device according to any one item.
  5.  前記第3回転要素と一体的に回転する第3ギヤと、
     前記第3ギヤに噛み合い、前記第2ロータと一体的に回転する第4ギヤと、を更に備え、
     前記第1回転電機と前記第2回転電機とが同軸に配置され、
     前記第3ギヤは、前記入力部材、前記第2ギヤ、及び前記分配用差動歯車機構と同軸に配置され、前記出力用差動歯車機構に駆動連結されている、請求項1から4のいずれか一項に記載の車両用駆動装置。
    A third gear that rotates integrally with the third rotating element,
    A fourth gear that meshes with the third gear and rotates integrally with the second rotor is further provided.
    The first rotary electric machine and the second rotary electric machine are arranged coaxially.
    Any of claims 1 to 4, wherein the third gear is arranged coaxially with the input member, the second gear, and the distribution differential gear mechanism, and is driven and connected to the output differential gear mechanism. The vehicle drive device according to item 1.
  6.  前記第1回転電機と、前記第2回転電機と、前記第1ギヤと、前記第4ギヤとが、同軸に配置され、
     前記軸方向における前記軸方向第1側とは反対側を軸方向第2側として、
     前記軸方向第2側から前記軸方向第1側に向けて、前記第4ギヤ、前記第1ギヤ、前記第1回転電機、前記第2回転電機の順で配置されている、請求項5に記載の車両用駆動装置。
    The first rotary electric machine, the second rotary electric machine, the first gear, and the fourth gear are coaxially arranged.
    The side opposite to the first side in the axial direction in the axial direction is set as the second side in the axial direction.
    The fifth aspect of claim 5, wherein the fourth gear, the first gear, the first rotary electric machine, and the second rotary electric machine are arranged in this order from the second side in the axial direction to the first side in the axial direction. The vehicle drive device described.
  7.  前記第3ギヤに噛み合う第5ギヤ、及び前記第5ギヤと一体的に回転する第6ギヤを有するカウンタギヤ機構を更に備え、
     前記出力用差動歯車機構は、前記第6ギヤに噛み合う第7ギヤを備え、前記第7ギヤの回転を一対の前記出力部材に分配するように構成され、
     前記第6ギヤ及び前記第7ギヤの双方の前記軸方向の配置領域が、前記分配用差動歯車機構の前記軸方向の配置領域と重なっている、請求項5又は6に記載の車両用駆動装置。
    A counter gear mechanism having a fifth gear that meshes with the third gear and a sixth gear that rotates integrally with the fifth gear is further provided.
    The output differential gear mechanism includes a seventh gear that meshes with the sixth gear, and is configured to distribute the rotation of the seventh gear to the pair of output members.
    The vehicle drive according to claim 5 or 6, wherein the axially arranged regions of both the sixth gear and the seventh gear overlap with the axially arranged regions of the distribution differential gear mechanism. apparatus.
  8.  前記カウンタギヤ機構が、前記軸方向に沿う軸方向視で、前記第1回転電機と重複するように配置されている、請求項7に記載の車両用駆動装置。 The vehicle drive device according to claim 7, wherein the counter gear mechanism is arranged so as to overlap with the first rotary electric machine in an axial view along the axial direction.
  9.  前記分配用差動歯車機構が、前記軸方向に沿う軸方向視で、前記第1回転電機と重複するように配置されている、請求項1から8のいずれか一項に記載の車両用駆動装置。 The vehicle drive according to any one of claims 1 to 8, wherein the distribution differential gear mechanism is arranged so as to overlap the first rotary electric machine in an axial view along the axial direction. apparatus.
  10.  前記第3回転要素と一体的に回転する第3ギヤと、
     前記第3ギヤに噛み合い、前記第2ロータと一体的に回転する第4ギヤと、を更に備え、
     前記第1ロータと前記第1ギヤとが第1ロータ軸によって連結され、
     前記第2ロータと前記第4ギヤとが第2ロータ軸によって連結され、
     前記第2ロータ軸は、前記第1ロータ軸の径方向の内側を前記軸方向に貫通するように配置されている、請求項1から9のいずれか一項に記載の車両用駆動装置。
    A third gear that rotates integrally with the third rotating element,
    A fourth gear that meshes with the third gear and rotates integrally with the second rotor is further provided.
    The first rotor and the first gear are connected by a first rotor shaft, and the first rotor is connected to the first gear.
    The second rotor and the fourth gear are connected by a second rotor shaft, and the second rotor and the fourth gear are connected by a second rotor shaft.
    The vehicle drive device according to any one of claims 1 to 9, wherein the second rotor shaft is arranged so as to penetrate the inside of the first rotor shaft in the radial direction in the axial direction.
  11.  前記第3回転要素と一体的に回転する第3ギヤと、
     前記第3ギヤに噛み合い、前記第2ロータと一体的に回転する第4ギヤと、を更に備え、
     前記第4ギヤは、前記第1ギヤよりも小径である、請求項1から10のいずれか一項に記載の車両用駆動装置。
    A third gear that rotates integrally with the third rotating element,
    A fourth gear that meshes with the third gear and rotates integrally with the second rotor is further provided.
    The vehicle drive device according to any one of claims 1 to 10, wherein the fourth gear has a smaller diameter than the first gear.
PCT/JP2020/011425 2019-06-25 2020-03-16 Vehicle driving device WO2020261669A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019117440 2019-06-25
JP2019-117440 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020261669A1 true WO2020261669A1 (en) 2020-12-30

Family

ID=74061585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011425 WO2020261669A1 (en) 2019-06-25 2020-03-16 Vehicle driving device

Country Status (1)

Country Link
WO (1) WO2020261669A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011328A1 (en) * 2007-07-18 2009-01-22 Aisin Aw Co., Ltd. Drive device for hybrid vehicle
JP2013159212A (en) * 2012-02-03 2013-08-19 Toyota Motor Corp Power transmission device
JP2017154736A (en) * 2017-03-29 2017-09-07 三菱自動車工業株式会社 Transaxle device of vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011328A1 (en) * 2007-07-18 2009-01-22 Aisin Aw Co., Ltd. Drive device for hybrid vehicle
JP2013159212A (en) * 2012-02-03 2013-08-19 Toyota Motor Corp Power transmission device
JP2017154736A (en) * 2017-03-29 2017-09-07 三菱自動車工業株式会社 Transaxle device of vehicle

Similar Documents

Publication Publication Date Title
EP2507532B1 (en) Hybrid drive system
JP5216796B2 (en) Hybrid drive device
JP7437406B2 (en) Vehicle drive system
JP2018189192A (en) Drive device for vehicle
JP7215585B2 (en) Vehicle drive transmission device
JP2013166548A (en) Hybrid drive device
WO2019074119A1 (en) Drive device for vehicle
WO2019074118A1 (en) Drive device for vehicle
WO2021106349A1 (en) Driving device for vehicle
JP2009286367A (en) Hybrid drive unit
WO2020230441A1 (en) Vehicle drive device
WO2020261669A1 (en) Vehicle driving device
WO2019074120A1 (en) Drive device for vehicle
JP2019077203A (en) Power transmission for hybrid vehicle
JP5093601B2 (en) Hybrid drive unit
JP2022125649A (en) Vehicle drive device
WO2021085611A1 (en) Vehicle drive device
JP6380682B2 (en) Vehicle drive device
JP5747383B2 (en) Power transmission device
JP2020192912A (en) Vehicular drive device
JP2013060161A (en) Electrically-driven device
JP6964509B2 (en) Vehicle drive
JP7476761B2 (en) Vehicle drive device
JP2021075236A (en) Vehicular drive device
JP2022088875A (en) Vehicle drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP