WO2020261511A1 - アンテナシステム - Google Patents

アンテナシステム Download PDF

Info

Publication number
WO2020261511A1
WO2020261511A1 PCT/JP2019/025713 JP2019025713W WO2020261511A1 WO 2020261511 A1 WO2020261511 A1 WO 2020261511A1 JP 2019025713 W JP2019025713 W JP 2019025713W WO 2020261511 A1 WO2020261511 A1 WO 2020261511A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
housing
antenna system
thickness
reflected
Prior art date
Application number
PCT/JP2019/025713
Other languages
English (en)
French (fr)
Inventor
一政 千種
Original Assignee
株式会社ソニー・インタラクティブエンタテインメント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソニー・インタラクティブエンタテインメント filed Critical 株式会社ソニー・インタラクティブエンタテインメント
Priority to PCT/JP2019/025713 priority Critical patent/WO2020261511A1/ja
Priority to JP2021528806A priority patent/JPWO2020261511A1/ja
Publication of WO2020261511A1 publication Critical patent/WO2020261511A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome

Definitions

  • the present invention relates to an antenna system.
  • Mobile devices and game devices that have a wireless communication function include an antenna system that includes an antenna and a housing that covers the antenna.
  • the radio waves radiated from the antenna are reflected on the surface of the housing, so that reflected waves are generated.
  • the reflected wave returned to the inside of the housing deteriorates the radiation characteristics of the antenna system. Therefore, it is a problem to reduce the reflected wave as much as possible.
  • the frequency shift of the S-parameter of the antenna is increased by increasing the distance between the antenna and the housing. It can be suppressed, and thus deterioration of antenna characteristics can be suppressed.
  • the wavelength is the same as the thickness of the housing, so the combined wave between the reflected waves generated on the upper and lower surfaces of the housing has an effect on the antenna characteristics. growing. Therefore, it is not possible to sufficiently suppress the reflected wave only by increasing the distance between the antenna and the housing.
  • the present invention has been made in view of these problems, and an object of the present invention is to suppress reflected waves generated in a housing and to improve the radiation characteristics of an antenna system.
  • the antenna system of a certain aspect of the present invention includes an antenna and a housing that covers the antenna.
  • the reflected wave on the upper surface of the housing and the reflected wave on the lower surface of the radio wave radiated from the antenna are substantially in opposite phase.
  • the present invention it is possible to suppress the reflected wave generated in the housing and improve the radiation characteristics of the antenna system.
  • FIG. 1C It is a figure which shows the structure of the antenna system which concerns on 1st Embodiment.
  • A is a perspective view
  • (b) is a cross-sectional view taken along the line AA'of (a)
  • (c) is an enlarged view of (b).
  • A is a view in which the housing is removed from FIG. 1 (a)
  • (b) is an enlarged view of (a). It is an enlarged view of the part of the housing of FIG. 1C.
  • FIG. 6 (a), and (b) is an enlarged view of (a).
  • It is a graph of the cumulative distribution function (CDF) of the gain of the antenna system when there is no housing, when the thickness of the housing is 1.3 mm, and when the thickness of the housing is 0.7 mm.
  • CDF cumulative distribution function
  • FIG. 10 is a cross-sectional view of FIG. It is sectional drawing of the antenna system of another example of 3rd Embodiment. It is a top view of the antenna system which concerns on 4th Embodiment. It is sectional drawing of FIG. It is sectional drawing of the antenna system of another example of 4th Embodiment. It is sectional drawing of FIG. It is sectional drawing of the antenna system of another example of 4th Embodiment. It is sectional drawing of the modification of the antenna system of FIG. It is sectional drawing of the modification of the antenna system of FIG. It is sectional drawing of the modification of the antenna system of FIG.
  • FIG. 1 shows the configuration of the antenna system 1.
  • FIG. 2 shows the configuration of the antenna 10.
  • FIG. 2 shows the configuration of the antenna 10.
  • FIG. 2 (a) is a view in which the housing 11 is removed from FIG. 1 (a), and (b) is an enlarged view of (a).
  • the antenna system 1 includes an antenna 10 and a housing 11 that covers the antenna 10.
  • the antenna 10 is a planar patch antenna and has a frequency characteristic of 60.48 GHz.
  • the antenna 10 is configured on the surface of the printed circuit board 12.
  • the antenna 10 is provided with a feeding point 14 at the center of the front side of the antenna 10 in FIG. 2B.
  • the ground side of the printed circuit board 12 is connected to the metal heat radiating component 13.
  • the heat radiating component 13 is connected to a heat sink 15 extending under the antenna 10.
  • the housing 11 is made of ABS resin and has a relative permittivity of 3.7.
  • the housing 11 includes a lower surface 11d closer to the antenna 10 and an upper surface 11u farther from the antenna 10.
  • the thickness of the housing 11, that is, the distance between the upper surface 11u and the lower surface 11d is defined as D1.
  • FIG. 3 is an enlarged view of a portion of the housing 11 in FIG. 1 (c).
  • a part of the radio wave radiated from the antenna 10 is reflected by the lower surface 11d of the housing 11, becomes a reflected wave W1, and returns to the inside of the housing.
  • a part of the radio waves radiated from the antenna 10 that has passed through the housing is reflected by the upper surface 11u of the housing 11 and becomes reflected waves W2 to return to the inside of the housing.
  • these two reflected waves strengthen or weaken each other. Specifically, the two reflected waves strengthen each other most when they are in phase with each other, and weaken most when they are out of phase with each other.
  • the difference ⁇ ⁇ 2- ⁇ 1 between the phase ⁇ 2 of the reflected wave W2 and the phase ⁇ 1 of the reflected wave W1 is It is represented by.
  • D1 is the distance between the upper surface 11u and the lower surface 11d
  • ⁇ r is the relative permittivity of the housing 11
  • ⁇ 0 is the wavelength of the radio wave radiated from the antenna 10.
  • CDF Cumulative Distribution Function
  • the curve when the thickness of the housing is 0.7 mm
  • the characteristics when the two reflected waves are in phase are the most deteriorated.
  • the curve of the CDF changes between the curve when the thickness is 0.7 mm and the curve when the thickness is 1.3 mm.
  • the housing 11 of the antenna system 1 in the present embodiment is adjusted to have a thickness of 1.3 mm. That is, the antenna system 1 is characterized in that the reflected wave on the upper surface 11u and the reflected wave on the lower surface 11d of the housing 11 of the radio wave radiated from the antenna 10 are substantially out of phase.
  • FIG. 6 shows the configuration of the antenna system 2 including the dipole antenna 16.
  • (a) is a perspective view
  • (b) is a sectional view taken along the line AA'of (a)
  • (c) is an enlarged view of (b).
  • FIG. 7 shows the configuration of the dipole antenna 16.
  • 7A is an enlarged view of FIG. 6A with the housing 11 removed from FIG. 6A
  • FIG. 7B is an enlarged view of FIG. 6A.
  • the antenna system 2 includes a dipole antenna 16 and a housing 11 that covers the antenna.
  • the other configurations of the antenna system 2 are the same as those of the antenna system 1 of FIG.
  • the dipole antenna 16 is composed of a linear conducting wire.
  • the dipole antenna 16 is connected to a feeding point 17 provided at the center of the right side of the printed circuit board 12 in FIG. 7B.
  • the dipole antenna 16 extends symmetrically from the feeding point 17 to the front side and the back side of FIG. 7B in parallel with the right side of the printed circuit board 12.
  • FIG. 8 shows the millimeter wave of FIG. 4 when there is no housing (short broken line), when the housing thickness is 1.3 mm (long broken line), and when the housing thickness is 0.7 mm (solid line). ),
  • the characteristics when the thickness of the housing is 1.3 mm and the two reflected waves are in opposite phase are close to the characteristics when there is no housing and are the best.
  • the thickness of the housing is 0.7 mm and the two reflected waves are in phase, the characteristics with a gain of ⁇ 10 dBi or more are particularly deteriorated.
  • the curve of the CDF is the curve when the thickness is 0.7 mm and the curve when the thickness is 1.3 mm. Changes between and.
  • the thickness of the housing 11 is adjusted to 1.3 mm, and the radio waves radiated from the dipole antenna 16 are reflected on the upper surface 11u of the housing 11 and reflected on the lower surface 11d.
  • the characteristics can be optimized by making the phases substantially opposite to each other.
  • the difference ⁇ between the phase ⁇ 1 of the reflected wave W1 and the phase ⁇ 2 of the reflected wave W2 is determined by the thickness D1 of the housing 11 and the relative permittivity ⁇ r . Therefore, by adjusting either one or both of the thickness D1 of the housing 11 and the relative permittivity ⁇ r , the reflected wave W1 and the reflected wave W2 can be substantially out of phase.
  • the antenna system according to the second embodiment includes an antenna and a housing covering the antenna, and the thickness or dielectric constant of the housing is a reflected wave of radio waves radiated from the antenna on the upper surface of the housing. And the reflected wave on the lower surface are adjusted so that they are substantially out of phase.
  • the thickness or dielectric constant of the housing which is a parameter, it is possible to suppress the reflected wave generated in the housing and improve the radiation characteristics of the antenna system.
  • FIG. 9 shows the configuration of the antenna 18 used in the antenna system 3.
  • the antenna 18 includes a plurality of patch antennas 10a, a plurality of dipole antennas 16, an antenna substrate 19, and an RF module 20.
  • the patch antenna 10a is configured in an array at the center of the surface of the antenna substrate 19.
  • the dipole antenna 16 is arranged at the end of the antenna substrate 19 in parallel with each side of the antenna substrate 19.
  • the RF module 20 is integrally configured with the antenna board 19 under the antenna board 19. Such antenna modules are widely used in the millimeter wave band.
  • Antenna 18 has directivity. That is, the radio wave radiated from the patch antenna 10a configured on the antenna 18 is most strongly propagated upward in the direction perpendicular to the antenna substrate 19 (the positive direction of the z-axis shown in FIG. 9B). The intensity decreases as the angle ⁇ formed by the propagation direction and the positive direction of the z-axis increases.
  • the radio wave radiated from the dipole antenna 16 arranged on the antenna 18 has a donut-shaped radiation pattern that is rotationally symmetric with respect to the axis of the antenna element. Therefore, the radio wave radiated from the dipole antenna 16 is strongest in the direction perpendicular to the axis of the antenna element in the substantially xy plane shown in FIG. 9A, and the propagation direction and the antenna element. It attenuates as the angle between the shaft and the shaft decreases.
  • FIG. 10 is a top view of the antenna system 3.
  • the antenna system 3 includes an antenna 18 and a housing 11 that covers the antenna 18.
  • the antenna 18 is installed inside the housing 11 near the center of the left and right sides of the antenna system 3.
  • FIG. 11 is a cross-sectional view taken along the line AA'of FIG.
  • the antenna 18 is installed on a heat sink 15 provided inside the housing 11.
  • the housing 11 includes a first portion 11a having a thickness of D1 and a second portion 11b having a thickness of D2. D1> D2, and the first portion 11a protrudes from the second portion 11b inside the housing 11.
  • the first portion 11a is defined as a range in which the angle ⁇ formed by the propagation direction of the radio wave radiated from the antenna 18 and the positive direction of the z-axis satisfies 0 ⁇ ⁇ ⁇ ⁇ 0 .
  • the second part 11b is another part.
  • the first portion 11a is a portion in the direction in which the radio wave radiated from the antenna 18 has an intensity equal to or higher than the predetermined value.
  • the first portion 11a of the housing 11 includes a lower surface 11ad closer to the antenna 18 and an upper surface 11au farther from the antenna 18.
  • the thickness D1 is the distance between the upper surface 11au and the lower surface 11ad.
  • the thickness D1 is adjusted so that the reflected wave on the upper surface 11au and the reflected wave on the lower surface 11ad are substantially in opposite phase.
  • the thickness D2 is set to any suitable value.
  • the radiation characteristics of the antenna system 3 can be improved by adjusting the thickness of only the first portion 11a without adjusting the thickness of the entire housing 11. ..
  • the portion for adjusting the thickness of the housing to a part in this way, it is possible to obtain an advantage that the processing complexity and material cost associated with the adjustment of the thickness can be suppressed.
  • FIG. 12 is a cross-sectional view of the antenna system 4, which is another example of the third embodiment. Similar to the antenna system 3 of FIG. 11, the antenna system 4 includes an antenna 18 and a housing 11 that covers the antenna 18.
  • the housing 11 includes a first portion 11c made of a material having a relative permittivity of ⁇ r 1 and a second portion 11d made of a material having a relative permittivity of ⁇ r 2.
  • the first portion 11c of the housing 11 includes a lower surface 11cd closer to the antenna 18 and an upper surface 11cu farther from the antenna 18.
  • the relative permittivity ⁇ r 1 is adjusted so that the reflected wave on the upper surface 11 cu and the reflected wave on the lower surface 11 cd have substantially opposite phases.
  • the relative permittivity ⁇ r 2 is set to any suitable value. Similar to the antenna system 3 of FIG. 11, the first portion 11c is defined as a portion in the direction in which the radio wave radiated from the antenna 18 has an intensity equal to or higher than a predetermined value. Other configurations of the antenna system 4 are the same as those of the antenna system 3.
  • the antenna system 4 also adjusts the relative permittivity ⁇ r 1 only in the first portion 11c without adjusting the dielectric constant of the entire housing 11 by taking a predetermined value sufficiently large to improve the radiation characteristics. Can be improved.
  • This embodiment is particularly effective when a material having a relative permittivity ⁇ r 1 is expensive.
  • the antenna system is adjusted by adjusting the thickness and dielectric constant of the housing in the direction in which the radio waves radiated from the antenna have an intensity equal to or higher than a predetermined value, not the entire housing. Radiation characteristics can be improved.
  • FIG. 13 is a top view of the antenna system 5 according to the fourth embodiment.
  • the antenna system 5 includes an antenna 18 and a housing 11 that covers the antenna 18.
  • the antenna 18 is installed inside the housing 11 near the upper left corner 22 of the antenna system 5.
  • FIG. 14 is a cross-sectional view taken along the line AA'of FIG.
  • the antenna 18 is the same as the antenna 18 shown in FIG.
  • the antenna 18 is installed on a heat sink 15 provided inside the housing 11.
  • the housing 11 includes a first portion 11a having a thickness of D1 and a second portion 11b having a thickness of D2. D1> D2, and the first portion 11a protrudes from the second portion 11b inside the housing 11.
  • the first portion 11a is a portion near the antenna 18.
  • the second portion 11b is a portion far from the antenna 18. That is, the first portion 11a is the upper left surface, the left side surface, and the left lower surface of the housing 11 in FIG.
  • the second portion 11b is a right upper surface, a right side surface and a right lower surface of the housing 11 in FIG.
  • the patch antenna 10a has a directivity in the positive direction of the z-axis
  • the dipole antenna 16 has a directivity in the direction orthogonal to the antenna element axis. Therefore, the radio wave radiated from the antenna 18 is stronger on the left side of the housing 11 than on the right side. Therefore, the first portion 11a corresponds to the portion of the housing 11 where the radio wave radiated from the antenna 18 is strong.
  • the first portion 11a of the housing 11 includes a lower surface 11ad closer to the antenna 18 and an upper surface 11au farther from the antenna 18.
  • the thickness D1 is the distance between the upper surface 11au and the lower surface 11ad.
  • the thickness D1 is adjusted so that the reflected wave on the upper surface 11au and the reflected wave on the lower surface 11ad are substantially in opposite phase.
  • the thickness D2 is set to any suitable value.
  • the radiation characteristics of the antenna system 5 can be improved by adjusting only the thickness of the first portion 11a without adjusting the thickness of the entire housing 11. can do.
  • the portion for adjusting the thickness of the housing to a part in this way, it is possible to obtain an advantage that the processing complexity and material cost associated with the adjustment of the thickness can be suppressed.
  • FIG. 15 is a cross-sectional view of the antenna system 6, which is another example of the fourth embodiment. Similar to the antenna system 5 of FIG. 14, the antenna system 6 includes an antenna 18 and a housing 11 that covers the antenna 18.
  • the housing 11 includes a first portion 11c made of a material having a relative permittivity of ⁇ r 1 and a second portion 11d made of a material having a relative permittivity of ⁇ r 2.
  • the first portion 11c of the housing 11 includes a lower surface 11cd closer to the antenna 18 and an upper surface 11cu farther from the antenna 18.
  • the relative permittivity ⁇ r 1 is adjusted so that the reflected wave on the upper surface 11 cu and the reflected wave on the lower surface 11 cd have substantially opposite phases.
  • the relative permittivity ⁇ r 2 is set to any suitable value.
  • the first portion 11c is defined as a portion in the vicinity of the antenna 18, similar to the antenna system 5 of FIG. Other configurations of the antenna system 6 are the same as those of the antenna system 5.
  • the antenna system 6 also adjusts the relative permittivity ⁇ r 1 only by the first portion 11c by setting the first portion 11c in a range sufficiently close to the antenna 18 so that the dielectric constant of the entire housing 11 is not adjusted. Therefore, the radiation characteristics can be improved.
  • This embodiment is particularly effective when a material having a relative permittivity ⁇ r 1 is expensive.
  • the radiation characteristics of the antenna system can be improved by adjusting the thickness and the dielectric constant of the housing in the vicinity of the antenna instead of the entire housing.
  • the antenna system according to the fifth embodiment includes an antenna and a housing covering the antenna, and the reflected wave of the radio wave radiated from the antenna on the upper surface and the lower surface of the housing. It is substantially out of phase with the reflected wave in.
  • the radio waves radiated from the antenna are millimeter waves.
  • Millimeter waves are radio waves used in 5th generation mobile communication systems (5G) and IEEE802.11ad, and are expected to be used more and more in the future.
  • the deterioration of the antenna characteristics can be suppressed by suppressing the frequency deviation of the S parameter of the antenna by increasing the distance between the antenna and the housing.
  • the combined wave between the reflected waves generated on the upper and lower surfaces of the housing has a large effect on the antenna characteristics, so it is sufficient to separate the antenna from the housing. Waves cannot be suppressed.
  • FIG. 16 is a cross-sectional view of the antenna system 7, which is a modification of the antenna system 3 of FIG.
  • the first portion 11a having a thickness of D1 protrudes from the second portion 11b inside the housing 11.
  • the first portion 11a having a thickness of D1 protrudes from the second portion 11b outside the housing 11.
  • the first portion 11a can be formed by, for example, cutting out the housing 11 from the outside while improving the radiation characteristics, so that the processing can be facilitated.
  • FIG. 17 is a cross-sectional view of the antenna system 8 which is a modification of the antenna system 5 of FIG.
  • the first portion 11a having a thickness of D1 protrudes from the second portion 11b inside the housing 11.
  • the first portion 11a having a thickness of D1 protrudes from the second portion 11b outside the housing 11.
  • the first portion 11a can be formed by, for example, cutting out the housing 11 from the outside while improving the radiation characteristics, so that the processing can be facilitated.
  • antenna system 1 antenna system, 2 antenna system, 3 antenna system, 4 antenna system, 5 antenna system, 6 antenna system, 7 antenna system, 8 antenna system, 10 antenna, 11 housing, 11u housing upper surface, 11d housing lower surface , W1 reflected wave, W2 reflected wave.
  • the present invention can be used for mobile devices and game devices equipped with an antenna covered with a housing, an access point of IEEE802.11ad, an antenna for a base station, and the like.

Abstract

アンテナシステム1は、アンテナ10とアンテナ10を覆う筐体11とを備え、アンテナ10から放射される電波の筐体11の上面11uでの反射波と下面11dでの反射波とは実質的に逆位相である。筐体11の厚みまたは誘電率は、アンテナ10から放射される電波の筐体11の上面11uでの反射波と下面11dでの反射波とが実質的に逆位相となるように調整されていてよい。アンテナ10から放射される電波が所定の値以上の強度を持つ方向の筐体11の厚みまたは誘電率は、アンテナ10から放射される電波の筐体11の上面11uでの反射波と下面11dでの反射波とが実質的に逆位相となるように調整されていてよい。アンテナ10から放射される電波はミリ波であってよい。

Description

アンテナシステム
 本発明は、アンテナシステムに関する。
 無線通信機能を持ったモバイル機器やゲーム機器は、アンテナと当該アンテナを覆う筐体とを備えたアンテナシステムを含んでいる。
 このようなアンテナシステムでは、アンテナから放射された電波が筐体の表面で反射されることにより、反射波が発生する。筐体の内部に戻った反射波は、アンテナシステムの放射特性を悪化させる。従って反射波をできる限り低減することが課題となる。
 従来モバイル機器等で使用されてきた、筐体の厚さに比べて十分長い波長を用いるマイクロ波帯のアンテナシステムでは、アンテナと筐体との距離を離すことによってアンテナのSパラメータの周波数ずれを抑えることができ、これによってアンテナ特性の劣化を抑制することができる。これに対し、今後活用が見込まれるミリ波等のアンテナシステムでは、波長が筐体の厚さと同等であるため、筐体の上面と下面で発生する反射波間の合成波がアンテナ特性に及ぼす影響が大きくなる。このため、アンテナと筐体との距離を離すだけでは十分な反射波の抑制ができない。
 本発明はこうした課題に鑑みてなされたものであり、その目的は、筐体で発生する反射波を抑制し、アンテナシステムの放射特性を改善することにある。
 上記課題を解決するために、本発明のある態様のアンテナシステムは、アンテナとアンテナを覆う筐体とを備える。アンテナから放射される電波の筐体の上面での反射波と下面での反射波とは実質的に逆位相である。
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置などの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、筐体で発生する反射波を抑制し、アンテナシステムの放射特性を改善することができる。
第1実施形態に係るアンテナシステムの構成を示す図である。(a)は斜視図であり、(b)は(a)のA-A’断面図であり、(c)は(b)の拡大図である。 第1実施形態のアンテナシステムに備えられるアンテナの構成を示す図である。(a)は図1(a)から筐体を取り外した図であり、(b)は(a)の拡大図である。 図1(c)の筐体の部分を拡大した図である。 筐体の上面での反射波と下面での反射波の位相差のコサインの値を、筐体の厚みの関数としてプロットしたグラフである。 筐体がないとき、筐体の厚みが1.3mmのときおよび筐体の厚みが0.7mmのときの、アンテナシステムのゲインの累積分布関数(CDF)のグラフである。 ダイポールアンテナを備えるアンテナシステムの構成を示す図である。(a)は斜視図であり、(b)は(a)の断面図であり、(c)は(b)の拡大図である。 ダイポールアンテナ16の構成を示す図である。(a)は図6(a)から筐体を取り外した図であり、(b)は(a)の拡大図である。 筐体がないとき、筐体の厚みが1.3mmのときおよび筐体の厚みが0.7mmのときの、アンテナシステムのゲインの累積分布関数(CDF)のグラフである。 第3実施形態に使用するアンテナの構成を示す図である。(a)は上面図であり、(b)は(a)の断面図である。 第3実施形態に係るアンテナシステムの上面図である。 図10の断面図である。 第3実施形態の別の例のアンテナシステムの断面図である。 第4実施形態に係るアンテナシステムの上面図である。 図13の断面図である。 第4実施形態の別の例のアンテナシステムの断面図である。 図11のアンテナシステムの変形例の断面図である。 図14のアンテナシステムの変形例の断面図である。
[第1実施形態]
 図1および2を参照して、第1実施形態に係るアンテナシステム1を説明する。図1に、アンテナシステム1の構成を示す。図1において、(a)は斜視図であり、(b)は(a)のA-A’断面図であり、(c)は(b)の拡大図である。図2に、アンテナ10の構成を示す。図2において、(a)は図1(a)から筐体11を取り外した図であり、(b)は(a)の拡大図である。アンテナシステム1は、アンテナ10と、アンテナ10を覆う筐体11とを備える。アンテナ10は平面状のパッチアンテナであり、60.48GHzの周波数特性を持つ。アンテナ10は、プリント基板12の表面上に構成される。アンテナ10は、図2(b)におけるアンテナ10の手前側の辺の中央部に給電点14が設けられる。プリント基板12のグランド側は、金属製の放熱部品13に接続される。放熱部品13は、アンテナ10の下に広がるヒートシンク15に接続される。これにより、アンテナ10で発生した熱は、ヒートシンク15を通して放熱される。筐体11はABS樹脂で形成され、その比誘電率は3.7である。筐体11は、アンテナ10に近い方の下面11dと、アンテナ10から遠い方の上面11uとを備える。ここで筐体11の厚み、すなわち上面11uと下面11dとの間隔をD1とする。
 図3は、図1(c)の筐体11の部分を拡大した図である。アンテナ10から放射された電波は、その一部が筐体11の下面11dで反射され、反射波W1となって筐体の内部に戻る。一方、アンテナ10から放射された電波のうち筐体を透過したものは、その一部が筐体11の上面11uで反射され、反射波W2となって筐体の内部に戻る。反射波W1と反射波W2の位相差に応じて、これら2つの反射波は強め合ったり弱め合ったりする。具体的には2つの反射波は、互いに同位相のとき最も強め合い、互いに逆位相のとき最も弱め合う。反射波W2の位相Φ2と反射波W1の位相Φ1との差ΔΦ=Φ2-Φ1は、
Figure JPOXMLDOC01-appb-M000001
で表される。ここで、D1は上面11uと下面11dとの間隔、εは筐体11の比誘電率、λはアンテナ10から放射された電波の波長である。nを整数としたとき、式(1)で表されたΔΦが2nπを満たすとき、反射波W1と反射波W2とは同位相となる。一方、ΔΦが(2n+1)πを満たすとき、反射波W1と反射波W2とは逆位相となる。
 図4は、周波数60.48GHz(波長4.957mm)のミリ波に関し、本実施形態の筐体(ε=3.7)を用いたとき、式(1)で表される位相差のコサインの値を筐体の厚みD1の関数としてプロットしたグラフである。図示される通り、D1=0.7mmのときの点aで2つの反射波は同位相となり、反射波の合成波は最大となる。一方、D1=1.3mmのときの点bで2つの反射波は逆位相となり、反射波の合成波は最小となる。すなわち、D1=1.3mmで2つの反射波が逆位相となるとき、筐体で発生する反射波は最も抑制される。
 図5は、図4のミリ波に関し、それぞれ、筐体がないとき(短い破線)、筐体の厚みが1.3mmのとき(長い破線)および筐体の厚みが0.7mmのとき(実線)の、アンテナシステム1のθ=0°~60°、φ=0°~360°の範囲におけるゲインの累積分布関数(Cumulative Distribution Function、以下「CDF」という)のグラフである。筐体がないときの曲線は、アンテナ10自体の基本特性を表している。筐体の厚みが1.3mmのときの曲線で示されるように、2つの反射波が逆位相のときの特性は、基本特性に近く最も良好である。一方、筐体の厚みが0.7mmのときの曲線で示されるように、2つの反射波が同位相のときの特性は最も劣化する。筐体の厚みを0.7mmと1.3mmとの間で変化させると、CDFの曲線は、厚み0.7mmのときの曲線と厚み1.3mmのときの曲線との間で変化する。
 以上の知見に基づき、本実施形態におけるアンテナシステム1の筐体11は、厚みが1.3mmとなるように調整されている。すなわち、アンテナシステム1は、アンテナ10から放射される電波の筐体11の上面11uでの反射波と下面11dでの反射波とが実質的に逆位相であることを特徴とする。
 アンテナは前述のパッチアンテナに限らず、他のタイプのアンテナ、例えばダイポールアンテナであってもよい。図6に、ダイポールアンテナ16を備えるアンテナシステム2の構成を示す。図6において、(a)は斜視図であり、(b)は(a)のA-A’断面図であり、(c)は(b)の拡大図である。図7に、ダイポールアンテナ16の構成を示す。図7において、(a)は図6(a)から筐体11を取り外した図であり、(b)は(a)の拡大図である。アンテナシステム2は、ダイポールアンテナ16と、当該アンテナを覆う筐体11とを備える。アンテナシステム2のその他の構成は、図1のアンテナシステム1の構成を共通である。ダイポールアンテナ16は、直線状の導線で構成される。ダイポールアンテナ16は、図7(b)におけるプリント基板12の右側の辺の中央部に設けられた給電点17に接続される。ダイポールアンテナ16は、上記給電点17から、上記プリント基板12の右側の辺と平行に、図7(b)の手前側と奥側に対称に延びる。
 図8は、図4のミリ波に関し、それぞれ、筐体がないとき(短い破線)、筐体の厚みが1.3mmのとき(長い破線)および筐体の厚みが0.7mmのとき(実線)の、アンテナシステム2のθ=0°~90°、φ=0°~180°の範囲におけるゲインのCDFのグラフである。図8でも、筐体の厚みが1.3mmで2つの反射波が逆位相のときの特性は、筐体がないときの特性に近く最も良好である。一方、筐体の厚みが0.7mmで2つの反射波が同位相のときは、特にゲインが-10dBi以上の特性が大きく劣化する。図5の場合と同様に、筐体の厚みを0.7mmと1.3mmの間で変化させると、CDFの曲線は、厚み0.7mmのときの曲線と厚み1.3mmとのときの曲線との間で変化する。
 従って図6のアンテナシステム2でも、筐体11の厚みを1.3mmに調整して、ダイポールアンテナ16から放射される電波の筐体11の上面11uでの反射波と下面11dでの反射波とを実質的に逆位相にすることにより、特性を最適化することができる。
 以上述べたように本実施形態によれば、筐体で発生する反射波を抑制し、アンテナシステムの放射特性を改善することができる。
[第2実施形態]
 式(1)に示されるように、反射波W1の位相Φ1と反射波W2の位相Φ2との差ΔΦは、筐体11の厚みD1と比誘電率εとによって定まる。従って、筐体11の厚みD1もしくは比誘電率εのいずれか一方、または両方を調整することにより、反射波W1と反射波W2とを実質的に逆位相にすることができる。これに基づき、第2実施形態に係るアンテナシステムは、アンテナと当該アンテナを覆う筐体とを備え、筐体の厚みまたは誘電率は、アンテナから放射される電波の筐体の上面での反射波と下面での反射波とが実質的に逆位相となるように調整されている。
 本実施形態によれば、パラメータである筐体の厚みまたは誘電率を調整することにより、筐体で発生する反射波を抑制し、アンテナシステムの放射特性を改善することができる。
[第3実施形態]
 図9および10を参照して、第3実施形態に係るアンテナシステム3を説明する。図9に、アンテナシステム3に使用するアンテナ18の構成を示す。図9において、(a)は上面図であり、(b)は(a)のA-A’断面図である。アンテナ18は、複数のパッチアンテナ10aと、複数のダイポールアンテナ16と、アンテナ基板19と、RFモジュール20とを備える。パッチアンテナ10aは、アンテナ基板19の表面中央部にアレイ状に構成される。ダイポールアンテナ16は、アンテナ基板19の端部に、アンテナ基板19の各辺と平行に配置される。RFモジュール20は、アンテナ基板19の下部に、アンテナ基板19と一体に構成される。このようなアンテナモジュールは、ミリ波帯で広く使われる。
 アンテナ18は指向性を持つ。すなわち、アンテナ18に構成されたパッチアンテナ10aから放射される電波は、アンテナ基板19と直行する方向で上向き(図9(b)に示されるz軸の正方向)に伝播するものが最も強く、伝播方向とz軸の正方向とのなす角θが増えるほど強度が減衰する。一方、アンテナ18に配置されたダイポールアンテナ16から放射される電波は、アンテナエレメントの軸に対して回転対称なドーナツ状の放射パターンを持つ。従って、ダイポールアンテナ16から放射される電波は、図9(a)に示される略x-y平面内で、アンテナエレメントの軸と直行する方向に伝播するものが最も強く、伝搬方向とアンテナエレメントの軸とのなす角が減るほど減衰する。
 図10は、アンテナシステム3の上面図である。アンテナシステム3は、アンテナ18と、アンテナ18を覆う筐体11とを備える。アンテナ18は、アンテナシステム3の左右中央付近21で筐体11の内部に設置される。
 図11は、図10のA-A’断面図である。アンテナ18は、筐体11の内部に設けられたヒートシンク15の上に設置される。筐体11は、厚みがD1の第1部分11aと、厚みがD2の第2部分11bとを備える。D1>D2であり、第1部分11aは、筐体11の内部で第2部分11bから突出している。第1部分11aは、アンテナ18から放射される電波の伝播方向とz軸の正方向とのなす角θが0≦θ≦θを満たす範囲として定められる。第2部分11bは、その他の部分である。θは、アンテナ18から放射される電波の強度が所定の値を持つ方向として定められる。例えば所定の値を最大強度(z軸の正方向に伝播する電波の強度)の80%としたとき、θ=θの方向に伝播する電波は最大強度に対して80%の強度を持つ。このとき第1部分11aは、アンテナ18から放射される電波が当該所定の値以上の強度を持つ方向の部分となる。筐体11の第1部分11aは、アンテナ18に近い方の下面11adと、アンテナ18から遠い方の上面11auとを備える。すなわち厚みD1は、上面11auと下面11adとの間隔である。ここで厚みD1は、上面11auでの反射波と下面11adでの反射波とが実質的に逆位相となるように調整されている。厚みD2は任意の好適な値に設定される。
 前述の所定の値を十分大きく取ることにより、筐体11全体の厚みを調整しなくても、第1部分11aだけの厚みを調整することで、アンテナシステム3の放射特性を改善することができる。このように筐体の厚みを調整する部分を一部に限ることにより、厚みの調整に伴う加工の複雑さや材料コストを抑えることができるというメリットが得られる。
 図12は、第3実施形態の別の例であるアンテナシステム4の断面図である。アンテナシステム4は、図11のアンテナシステム3と同様に、アンテナ18と、アンテナ18を覆う筐体11とを備える。筐体11は、比誘電率がε1の材料で構成される第1部分11cと、比誘電率がε2の材料で構成される第2部分11dとを備える。筐体11の第1部分11cは、アンテナ18に近い方の下面11cdと、アンテナ18から遠い方の上面11cuとを備える。ここで比誘電率ε1は、上面11cuでの反射波と下面11cdでの反射波とが実質的に逆位相となるように調整されている。比誘電率ε2は任意の好適な値に設定される。第1部分11cは、図11のアンテナシステム3と同様に、アンテナ18から放射される電波が所定の値以上の強度を持つ方向の部分として定められる。アンテナシステム4のその他の構成は、アンテナシステム3の構成と同様である。
 アンテナシステム4も、所定の値を十分大きく取ることにより、筐体11全体の誘電率を調整しなくても、第1部分11cだけで比誘電率ε1を調整することで、放射特性を改善することができる。この実施形態は、比誘電率ε1を持つ材料が高価な場合などに特に有効である。
 以上述べたように本実施形態によれば、筐体全体でなく、アンテナから放射される電波が所定の値以上の強度を持つ方向の筐体の厚みや誘電率を調整することにより、アンテナシステムの放射特性を改善することができる。
[第4実施形態]
 図13は、第4実施形態に係るアンテナシステム5の上面図である。アンテナシステム5は、アンテナ18と、アンテナ18を覆う筐体11とを備える。アンテナ18は、アンテナシステム5の左上隅付近22で筐体11の内部に設置される。
 図14は、図13のA-A’断面図である。アンテナ18は、図9に示すアンテナ18と同じものである。アンテナ18は、筐体11の内部に設けられたヒートシンク15の上に設置される。筐体11は、厚みがD1の第1部分11aと、厚みがD2の第2部分11bとを備える。D1>D2であり、第1部分11aは、筐体11の内部で第2部分11bから突出している。第1部分11aは、アンテナ18の近辺の部分である。第2部分11bは、アンテナ18から遠方の部分である。すなわち第1部分11aは、図14において、筐体11の左上面、左側面および左下面である。一方第2部分11bは、図14において、筐体11の右上面、右側面および右下面である。前述のようにアンテナ18を構成するアンテナのうち、パッチアンテナ10aはz軸の正方向の指向性を持ち、ダイポールアンテナ16はアンテナエレメント軸と直行する方向の指向性を持つ。従って、アンテナ18から放射される電波は、筐体11の左側の方が右側より強い。従って第1部分11aは、アンテナ18から放射される電波が強いところにある筐体11の部分に相当する。筐体11の第1部分11aは、アンテナ18に近い方の下面11adと、アンテナ18から遠い方の上面11auとを備える。すなわち厚みD1は、上面11auと下面11adとの間隔である。ここで厚みD1は、上面11auでの反射波と下面11adでの反射波とが実質的に逆位相となるように調整されている。厚みD2は任意の好適な値に設定される。
 第1部分11aをアンテナ18に十分近い範囲に定めることにより、筐体11全体の厚みを調整しなくても、第1部分11aの厚みだけを調整することで、アンテナシステム5の放射特性を改善することができる。このように筐体の厚みを調整する部分を一部に限ることにより、厚みの調整に伴う加工の複雑さや材料コストを抑えることができるというメリットが得られる。
 図15は、第4実施形態の別の例であるアンテナシステム6の断面図である。アンテナシステム6は、図14のアンテナシステム5と同様に、アンテナ18と、アンテナ18を覆う筐体11とを備える。筐体11は、比誘電率がε1の材料で構成される第1部分11cと、比誘電率がε2の材料で構成される第2部分11dとを備える。筐体11の第1部分11cは、アンテナ18に近い方の下面11cdと、アンテナ18から遠い方の上面11cuとを備える。ここで比誘電率ε1は、上面11cuでの反射波と下面11cdでの反射波とが実質的に逆位相となるように調整されている。比誘電率ε2は任意の好適な値に設定される。第1部分11cは、図14のアンテナシステム5と同様に、アンテナ18の近辺の部分として定められる。アンテナシステム6のその他の構成は、アンテナシステム5の構成と同様である。
 アンテナシステム6も、第1部分11cをアンテナ18に十分近い範囲に定めることにより、筐体11全体の誘電率を調整しなくても、第1部分11cだけで比誘電率ε1を調整することで、放射特性を改善することができる。この実施形態は、比誘電率ε1を持つ材料が高価な場合などに特に有効である。
 以上述べたように本実施形態によれば、筐体全体でなく、アンテナの近辺における筐体の厚みや誘電率を調整することによりアンテナシステムの放射特性を改善することができる。
[第5実施形態]
 第5実施形態に係るアンテナシステムは、第1実施形態に係るアンテナシステムと同様に、アンテナとアンテナを覆う筐体とを備え、アンテナから放射される電波の筐体の上面での反射波と下面での反射波とは実質的に逆位相である。アンテナから放射される電波はミリ波である。
 ミリ波は、第5世代移動通信システム(5G)やIEEE802.11adで採用される電波であり、今後ますます利用が進むことが見込まれる。前述のように、マイクロ波帯のアンテナシステムでは、アンテナと筐体との距離を離すことによってアンテナのSパラメータの周波数ずれを抑えることで、アンテナ特性の劣化を抑制することができた。これに対し、ミリ波帯のアンテナシステムでは、筐体の上面と下面で発生する反射波間の合成波がアンテナ特性に及ぼす影響が大きいため、アンテナと筐体との距離を離すだけでは十分な反射波の抑制ができない。本実施形態によれば、ミリ波帯のアンテナシステムの筐体で発生する反射波を抑制し、当該アンテナシステムの放射特性を改善することができる。
 以上、本発明を実施の形態をもとに説明した。上記実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
[変形例1]
 図16は、図11のアンテナシステム3の変形例であるアンテナシステム7の断面図である。図11のアンテナシステム3では、厚みがD1の第1部分11aは、筐体11の内部で第2部分11bから突出している。これに対し、図16のアンテナシステム7では、厚みがD1の第1部分11aは、筐体11の外部で第2部分11bから突出している。本変形例によれば、放射特性の改善を実現しつつ、例えば筐体11を外部から削り出すことにより第1部分11aを形成することができるので、加工を容易にすることができる。
[変形例2]
 図17は、図14のアンテナシステム5の変形例であるアンテナシステム8の断面図である。図14のアンテナシステム5では、厚みがD1の第1部分11aは、筐体11の内部で第2部分11bから突出している。これに対し、図17のアンテナシステム8では、厚みがD1の第1部分11aは、筐体11の外部で第2部分11bから突出している。本変形例によれば、放射特性の改善を実現しつつ、例えば筐体11を外部から削り出すことにより第1部分11aを形成することができるので、加工を容易にすることができる。
 上述した各実施形態と変形例の任意の組み合わせもまた本発明の実施形態として有用である。組み合わせによって生じる新たな実施形態は、組み合わされる各実施形態および変形例それぞれの効果をあわせもつ。
 1 アンテナシステム、 2 アンテナシステム、 3 アンテナシステム、 4 アンテナシステム、 5 アンテナシステム、 6 アンテナシステム、 7 アンテナシステム、 8 アンテナシステム、 10 アンテナ、 11 筐体、 11u 筐体の上面、 11d 筐体の下面、 W1 反射波、 W2 反射波。
 以上のように本発明は、筐体で覆われたアンテナを備えたモバイル機器、ゲーム機器、IEEE802.11adのアクセスポイントや基地局用のアンテナなどに利用可能である。

Claims (5)

  1.  アンテナと前記アンテナを覆う筐体とを備え、
     前記アンテナから放射される電波の前記筐体の上面での反射波と下面での反射波とは実質的に逆位相であるアンテナシステム。
  2.  前記筐体の厚みまたは誘電率は、前記アンテナから放射される電波の前記筐体の上面での反射波と下面での反射波とが実質的に逆位相となるように調整されている請求項1に記載のアンテナシステム。
  3.  前記アンテナから放射される電波が所定の値以上の強度を持つ方向の前記筐体の厚みまたは誘電率は、前記アンテナから放射される電波の前記筐体の上面での反射波と下面での反射波とが実質的に逆位相となるように調整されている請求項1に記載のアンテナシステム。
  4.  前記アンテナの近辺における前記筐体の厚みまたは誘電率は、前記アンテナから放射される電波の前記筐体の上面での反射波と下面での反射波とが実質的に逆位相となるように調整されている請求項1に記載のアンテナシステム。
  5.  前記アンテナから放射される電波はミリ波である請求項1から4のいずれかに記載のアンテナシステム。
PCT/JP2019/025713 2019-06-27 2019-06-27 アンテナシステム WO2020261511A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/025713 WO2020261511A1 (ja) 2019-06-27 2019-06-27 アンテナシステム
JP2021528806A JPWO2020261511A1 (ja) 2019-06-27 2019-06-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/025713 WO2020261511A1 (ja) 2019-06-27 2019-06-27 アンテナシステム

Publications (1)

Publication Number Publication Date
WO2020261511A1 true WO2020261511A1 (ja) 2020-12-30

Family

ID=74061133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025713 WO2020261511A1 (ja) 2019-06-27 2019-06-27 アンテナシステム

Country Status (2)

Country Link
JP (1) JPWO2020261511A1 (ja)
WO (1) WO2020261511A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210359403A1 (en) * 2019-03-07 2021-11-18 Mitsubishi Electric Corporation Antenna device
US20230170608A1 (en) * 2021-11-30 2023-06-01 Corning Research & Development Corporation Radome cover design for beamforming antenna

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234614A (ja) * 2002-02-13 2003-08-22 Matsushita Electric Ind Co Ltd 誘電体アンテナ
JP2016219996A (ja) * 2015-05-19 2016-12-22 パナソニックIpマネジメント株式会社 アンテナ装置、無線通信装置、及びレーダ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044527A (ja) * 2015-08-25 2017-03-02 株式会社日本自動車部品総合研究所 レーダ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234614A (ja) * 2002-02-13 2003-08-22 Matsushita Electric Ind Co Ltd 誘電体アンテナ
JP2016219996A (ja) * 2015-05-19 2016-12-22 パナソニックIpマネジメント株式会社 アンテナ装置、無線通信装置、及びレーダ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210359403A1 (en) * 2019-03-07 2021-11-18 Mitsubishi Electric Corporation Antenna device
US11962081B2 (en) * 2019-03-07 2024-04-16 Mitsubishi Electric Corporation Antenna device
US20230170608A1 (en) * 2021-11-30 2023-06-01 Corning Research & Development Corporation Radome cover design for beamforming antenna

Also Published As

Publication number Publication date
JPWO2020261511A1 (ja) 2020-12-30

Similar Documents

Publication Publication Date Title
US9373892B2 (en) Dielectric waveguide slot antenna
Emadian et al. Very small dual band-notched rectangular slot antenna with enhanced impedance bandwidth
US8525741B2 (en) Multi-loop antenna system and electronic apparatus having the same
US10276943B2 (en) Antenna device including patch array antenna and conductive metal member
US9806419B2 (en) Array antenna device
CN108417995B (zh) 用于5g移动通信的天线单元及阵列天线
Guo et al. Design of series-fed, single-layer, and wideband millimeter-wave microstrip arrays
US20110043412A1 (en) Internal Wide Band Antenna Using Slow Wave Structure
WO2007066322A1 (en) Patch antenna element and application thereof in a phased array antenna
EP1193795A2 (en) Patch antenna with dielectric separated from patch plane to increase gain
WO2020261511A1 (ja) アンテナシステム
US11456526B2 (en) Antenna unit, antenna system and electronic device
JP2019103037A (ja) 円偏波共用平面アンテナ
JP2011142514A (ja) トリプレート型平面アンテナ
US6219001B1 (en) Tapered slot antenna having a corrugated structure
JP2007124346A (ja) アンテナ素子及びアレイ型アンテナ
Chen et al. A cross-polarization suppressed probe-fed patch antenna and its applications to wide-angle beam-scanning arrays
EP3972050A1 (en) Antenna assembly and electronic device
Karthikeya et al. Implementational aspects of various feeding techniques for mmWave 5G antennas
Wu et al. Design of a Ka-band high-gain antenna with the quasi-annular SIW corrugated technique
US7518559B2 (en) Inverted L-shaped antenna
WO2020246210A1 (ja) アンテナ素子
Kim et al. 1× 8 Slotted Array Antenna with Fan-Beam Characteristics for 28 GHz 5G Mobile Applications
US20230420858A1 (en) End-fire tapered slot antenna
JP2019097003A (ja) アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934997

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528806

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934997

Country of ref document: EP

Kind code of ref document: A1