作为DNA-PK抑制剂的喹啉和噌啉衍生物
本申请主张如下优先权
CN201910568738.0,申请日2019-06-27;
CN202010076183.0,申请日2020-01-23;
CN202010209372.0,申请日2020-03-23。
技术领域
本发明涉及一系列DNA-PK激酶抑制剂,其用途和合成方法,具体涉及式(I)所示化合物、其异构体或其药学上可接受的盐在制备DNA-PK激酶抑制剂相关药物中的应用。
背景技术
DNA双链断裂(DSBs)作为一种严重的DNA损伤,会造成遗传物质的丢失、基因重组,从而导致癌症或细胞死亡。生物体为维持基因稳定性与细胞活性进化出了DNA损伤应答(DDR)机制进行损伤的检测、信号传导以及损伤修复。DNA双链断裂修复主要包括两种:同源末端链接(HR)修复和非同源末端链接(NHEJ)修复。DDR初期损伤因子如MRN等会检测识别损伤位点,募集膦酯酰肌醇激酶家族成员(ATM、ATR、DNA-PK),磷酸化H2AX促进γH2AX形成,募集相关信号蛋白(如53BP1、Chk1、Chk2、BRCA1、NBS1)等传导损伤信号,使细胞进入细胞周期阻滞状态并募集相关修复蛋白,使损伤DNA修复。
DNA-PK作为DNA损伤修复的重要成员,主要针对非同源末端双链的断裂。由六个核心因子组成:KU70、KU80、DNA-PKcs、CRCC4、连接酶IV和Artemis,DNA双链损伤修复时,KU分子通过一个预先形成的通道特异性地连接到双链损伤处,分别识别并结合DNA链末端,然后以ATP依赖的方式沿DNA链分别向两端滑动一段距离,形成KU-DNA复合物,吸引DNA-PKcs到损伤部位,与之结合并激活激酶活性,进而磷酸化参与修复及损伤信号传导的一系列蛋白,完成修复。
目前,通过放疗和化疗(拓扑异构酶II、博来霉素、阿霉素、依托泊苷)等方式来诱导DNA损伤来是控制肿瘤的生长主要手段之一。但研究表明,经过放化疗后的肿瘤组织中DNA-PK高表达,不断修复放化疗损伤的肿瘤细胞,成为放化疗耐药的主要原因之一。
本发明旨在发现一种DNA-PK小分子抑制剂,通过与放化疗药物联用,抑制DNA-PK活性,从而大大减少肿瘤DNA修复,诱导细胞进入凋亡程序。可以在很大程度上克服放化疗耐药问题,增强对小细胞肺癌、头颈癌、结直肠癌、胰腺癌等各种肿瘤的抑制作用。此类化合物具有良好的活性,并表现出了优异的效果和作用,具有广阔的前景。
专利WO2018178133公开了化合物M3814,属于DNA-PK激酶抑制剂,抗肿瘤小分子化合物,其结构式如下:
发明内容
本发明提供了式(I)所示化合物、其异构体或其药学上可接受的盐,
其中,
T为CH、CR
3或N;
Z
1、Z
2、Z
3、Z
4和Z
5分别独立地为N或CR
4;
R
1和R
2分别独立地为H、F、Cl、Br、I、OH或NH
2;
R
3为F、Cl、Br、I、OH、NH
2、CN、C
1-6烷基或C
1-6烷氧基,所述C
1-6烷基和C
1-6烷氧基任选被1、2或3个R
a取代;
R
4为H、F、Cl、Br、I、OH、NH
2、CN、C
1-6烷基或C
1-6烷氧基,所述C
1-6烷基和C
1-6烷氧基任选被1、2或3个R
b取代;
R
a和R
b分别独立地为F、Cl、Br、I、OH、NH
2;
其中,当T为CH,R
2为F时,R
1为F、Cl、Br、I、OH或NH
2。
本发明的一些方案中,上述R
1和R
2分别独立地为H、Cl或F,其它变量如本发明所定义。
本发明的一些方案中,上述R
3为F、Cl、Br、I、OH、NH
2、CN、C
1-3烷基或C
1-3烷氧基,所述C
1-
3烷基和C
1-3烷氧基任选被1、2或3个R
a取代,其它变量如本发明所定义。
本发明的一些方案中,上述R
3为F、Cl、Br、I、OH、NH
2、CN、CH
3、CH
2CH
3或OCH
3,所述CH
3、CH
2CH
3和OCH
3任选被1、2或3个R
a取代,其它变量如本发明所定义。
本发明的一些方案中,上述R
3为F、Cl、Br、I、OH、NH
2、CN、CH
3、CH
2F、CHF
2、CF
3、CH
2CH
3或OCH
3,其它变量如本发明所定义。
本发明的一些方案中,上述R
4为H、F、Cl、Br、I、OH、NH
2、CN、C
1-3烷基或C
1-3烷氧基,所述C
1-3烷基和C
1-3烷氧基任选被1、2或3个R
b取代,其它变量如本发明所定义。
本发明的一些方案中,上述R
4为H、F、Cl、Br、I、OH、NH
2、CN、CH
3、CH
2CH
3或OCH
3。
本发明的一些方案中,上述T为CH、N、C(NH
2)、C(OCH
3)或C(CHF
2),其它变量如本发明所定义。
本发明的一些方案中,上述Z
1、Z
2、Z
3、Z
4和Z
5分别独立地为N、CH、C(OCH
3)或C(CH
3),其它变量如本发明所定义。
本发明的一些方案中,上述结构片段
为
其它变量如本发明所定义。
本发明的一些方案中,上述结构片段
为
其它变量如本发明所定义。
本发明的一些方案中,上述结构片段
为
其它变量如本发明所定义。
本发明还有一些方案中是由上述变量任意组合而来。
本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,其选自:
其中,
R
1、R
2、R
3和R
4如本发明所定义。
本发明还提供了下式化合物或其药学上可接受的盐,其选自
本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自:
本发明还提供了一种药物组合物,包括作为活性成分的治疗有效量的上述的化合物、其药学上可接受的盐或其异构体以及药学上可接受的载体。
本发明还提供了上述化合物、其异构体或其药学上可接受的盐在制备治疗与DNA-PK相关疾病的药物中的应用。
本发明的一些方案中,上述与DNA-PK相关药物是用于治疗肿瘤的药物。
技术效果
本发明化合物的都进行过DNA-PK激酶活性测试,数据显示部分化合物的活性优于或等同于目前的临床化合物M3814;PK结果显示,本发明的部分化合物药代动力学性质优于M3814,是很好的可开发口服给药的分子;在NCI-H69小细胞肺癌移植瘤模型上,与化疗药物依托泊苷(10mpk)联用协同 作用明显,与M3814相比,展现了相当的抑瘤效果,安全性更高。在FaDu头颈癌移植瘤模型上,与放疗联用,可使肿瘤完全消失,后期停药无反弹,本发明化合物有成为多种肿瘤抑制剂之潜力。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(+)”表示右旋,“(-)”表示左旋,“(±)”表示外消旋。
除非另有说明,用楔形实线键
和楔形虚线键
表示一个立体中心的绝对构型,用直形实线键
和直形虚线键
表示立体中心的相对构型,用波浪线
表示楔形实线键
或楔形虚线键
或用波浪线
表示直形实线键
和直形虚线键
除非另有说明,当化合物中存在双键结构,如碳碳双键、碳氮双键和氮氮双键,且双键上的各个原子均连接有两个不同的取代基时(包含氮原子的双键中,氮原子上的一对孤对电子视为其连接的一个取代基),如果该化合物中双键上的原子与其取代基之间用波浪线
连接,则表示该化合物的(Z)型异构体、(E)型异构体或两种异构体的混合物。例如下式(A)表示该化合物以式(A-1)或式(A-2)的单一异构体形式存在或以式(A-1)和式(A-2)两种异构体的混合物形式存在;下式(B)表示该化合物以式(B-1)或式(B-2)的单一异构体形式存在或以式(B-1)和式(B-2)两种异构体的混合物形式存在。下式(C)表示该化合物以式(C-1)或式(C-2)的单一异构体形式存在或以式(C-1)和式(C-2)两种异构体的混合物形式存在。
除非另有说明,术语“互变异构体”或“互变异构体形式”是指在室温下,不同官能团异构体处于动态平衡,并能很快的相互转化。若互变异构体是可能的(如在溶液中),则可以达到互变异构体的化学平衡。例如,质子互变异构体(proton tautomer)(也称质子转移互变异构体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键异构体(valence tautomer)包括一些成键电子的重组来进行的相互转化。其中酮-烯醇互变异构化的具体实例是戊烷-2,4-二酮与4-羟基戊-3-烯-2-酮两个互变异构体之间的互变。
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等 于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚(
3H),碘-125(
125I)或C-14(
14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
术语“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立地。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立地选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR)
0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。当该化学键的连接方式是不定位的,且可连接位点存在H原子时,则连接化学键时,该位点的H原子的个数会随所连接化学键的个数而对应减少变成相应价数的基团。所述位点与其他基团连接的化学键可以用直形实线键
直形虚线键
或波浪线
表示。例如-OCH
3中的直形实线键表示通过该基团中的氧原子与其他基团相连;
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连;
表示该哌啶基上的任意可连接位点可以通过1个化学键与其他基团相连,至少包括
这4种连接方式,即使-N-上画出了H原子,但是
仍包括
这种连接方式的基团,只是在连接1个化学键时,该位点的的H会对应减少1个变成相应的一价哌啶基。
除非另有规定,术语“C
1-6烷基”用于表示直链或支链的由1至6个碳原子组成的饱和碳氢基团。所述C
1-6烷基包括C
1-5、C
1-4、C
1-3、C
1-2、C
2-6、C
2-4、C
6和C
5烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C
1-6烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)、戊基(包括n-戊基,异戊基和新戊基)、己基等。
除非另有规定,术语“C
1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C
1-3烷基包括C
1-2和C
2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C
1-3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C
1-6烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至6个碳原子的烷基基团。所述C
1-6烷氧基包括C
1-4、C
1-3、C
1-2、C
2-6、C
2-4、C
6、C
5、C
4和C
3烷氧基等。C
1-
6烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)、丁氧基(包括n-丁氧基、异丁氧基、s-丁氧基和t-丁氧基)、戊氧基(包括n-戊氧基、异戊氧基和新戊氧基)、己氧基等。
除非另有规定,术语“C
1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个 碳原子的烷基基团。所述C
1-3烷氧基包括C
1-2、C
2-3、C
3和C
2烷氧基等。C
1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,C
n-n+m或C
n-C
n+m包括n至n+m个碳的任何一种具体情况,例如C
1-12包括C
1、C
2、C
3、C
4、C
5、C
6、C
7、C
8、C
9、C
10、C
11、和C
12,也包括n至n+m中的任何一个范围,例如C
1-12包括C
1-3、C
1-6、C
1-9、C
3-6、C
3-9、C
3-12、C
6-9、C
6-12、和C
9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
术语“离去基团”是指可以被另一种官能团或原子通过取代反应(例如亲核取代反应)所取代的官能团或原子。例如,代表性的离去基团包括三氟甲磺酸酯;氯、溴、碘;磺酸酯基,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯、对甲苯磺酸酯等;酰氧基,如乙酰氧基、三氟乙酰氧基等等。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4'-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:aq代表水;HATU代表O-(7-氮杂苯并三唑-1-基)-N,N,N',N'-四甲基脲六氟磷酸盐;EDC代表N-(3-二甲基氨基丙基)-N'-乙基碳二亚胺盐酸盐;m-CPBA代表3-氯过氧苯甲酸;eq代表当量、等量;CDI代表羰基二咪唑;DCM代表二氯甲烷;PE代表石油醚;DIAD代表偶氮二羧酸二异丙酯;DMF代表N,N-二甲基甲酰胺;DMSO代 表二甲亚砜;EtOAc代表乙酸乙酯;EtOH代表乙醇;MeOH代表甲醇;CBz代表苄氧羰基,是一种胺保护基团;BOC代表叔丁氧羰基是一种胺保护基团;HOAc代表乙酸;NaCNBH
3代表氰基硼氢化钠;r.t.代表室温;O/N代表过夜;THF代表四氢呋喃;Boc
2O代表二-叔丁基二碳酸酯;TFA代表三氟乙酸;DIPEA代表二异丙基乙基胺;SOCl
2代表氯化亚砜;CS
2代表二硫化碳;TsOH代表对甲苯磺酸;NFSI代表N-氟-N-(苯磺酰基)苯磺酰胺;NCS代表1-氯吡咯烷-2,5-二酮;n-Bu
4NF代表氟化四丁基铵;iPrOH代表2-丙醇;mp代表熔点;LDA代表二异丙基胺基锂;Pd
2(dba)
3代表三(二亚苄基丙酮)二钯;PO代表口服给药;QD代表一天一次给药;IP代表腹腔注射给药;BID代表一天两次给药;Gy代表放疗剂量的单位为戈瑞。
化合物依据本领域常规命名原则或者使用
软件命名,市售化合物采用供应商目录名称。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
实施例1&2
第一步
将化合物1a(5g,22.3mmol,1eq)加入到氧氯化磷(18.6g,121mmol,11.2mL,5.42eq)中,混合物在干燥条件110℃下搅拌2小时,反应完成后,混合物缓慢滴入饱和碳酸钾溶液(300mL)稀释,乙酸乙酯萃取(50mL*3),合并的有机相用无水硫酸钠干燥,过滤,得到化合物1b。
第二步
将对甲氧基苯甲醇(5.70g,41.2mmol,5.13mL,2eq)溶解到N,N-二甲基甲酰胺(50.0mL)中,混合物在0℃下搅拌并缓慢加入氢化钠(1.65g,41.2mmol,60%纯度,2eq),在该温度下持续反应0.5小时。然后再将化合物1b(5.00g,20.6mmol,1eq)加入,混合物在80℃下搅拌4.5小时,反应完成后,加水(250mL)稀释并过滤,滤饼减压浓缩后,得到化合物1c。
MS-ESI计算值[M+H]
+344,346实测值344,346。
第三步
将化合物1c(6g,17.4mmol,1eq),吗啡啉(7.59g,87.2mmol,7.67mL,5eq),叔丁醇钠(3.35g,34.9mmol,2eq),三(二苄基丙酮)二钯(798mg,872μmol,0.05eq),(±)-2,2-双(二苯膦基)-11-联萘(542mg,872μmol,0.05eq)加入到甲苯(60mL)中,混合物在氮气保护下100℃下搅拌3小时。反应完成后,减压浓缩,加水(80mL)稀释,乙酸乙酯萃取(50mL*3),柱层析得到化合物1d。
1H NMR(400MHz,DMSO-d
6)δ:8.57(d,J=5.2Hz,1H),7.95(d,J=9.2Hz,1H),7.47(d,J=8.4Hz,2H),7.36(dd,J=2.0,9.2Hz,1H),7.17(d,J=2.0Hz,1H),6.98(d,J=8.4Hz,2H),6.89(d,J=5.2Hz,1H),5.25(s,2H),3.78(br s,4H),3.34(s,3H),3.31-3.20(m,4H)。
第四步
将化合物1d(5.2g,14.9mmol,1eq)溶解到三氟乙酸(20.0mL)中,混合物在80℃搅拌20分钟,反应完成后,减压浓缩后,石油醚:乙酸乙酯20:1,打浆,过滤,干燥得到化合物1e。
MS-ESI计算值[M+H]
+231实测值231。
1H NMR(400MHz,DMSO-d
6)δ:13.58(br s,1H),8.40(d,J=6.8Hz,1H),8.06(d,J=9.2Hz,1H),7.45(dd,J=2.0,9.2Hz,1H),7.01(d,J=2.0Hz,1H),6.68(d,J=7.2Hz,1H),3.82-3.74(m,4H),3.34-3.42(m,4H)。
第五步
将化合物1e(6g,17.4mmol,1eq)加入到氧氯化磷(45.5g,297mmol,27.6mL,17.0eq)中,混合物在干燥条件110℃下搅拌1小时,反应完成后,减压浓缩掉大部分的氧氯化磷,剩余混合物缓慢滴入饱和碳酸钾溶液(200mL)稀释,乙酸乙酯萃取(50.0mL*3),合并的有机相用无水硫酸钠干燥,过滤,减压浓缩,石油醚:乙酸乙酯20:1打浆,得到化合物1f。
MS-ESI计算值[M+H]
+249,251实测值249,251。
1H NMR(400MHz,DMSO-d
6)δ:8.66(d,J=4.8Hz,1H),8.01(d,J=9.2Hz,1H),7.61(dd,J=2.4,9.6Hz,1H),7.44(d,J=4.8Hz,1H),7.29(d,J=2.4Hz,1H),3.76-3.82(m,4H),3.34(br s,4H)。
第六步
将化合物c(2.60g,10.5mmol,1eq),双联嚬哪醇硼酸酯(3.19g,12.6mmol,1.2eq)加入到无水二氧六环(20.0mL)中,再加入乙酸钾(2.05g,20.9mmol,2eq)和二氯双(三苯基膦)钯(II)(367mg,523μmol,0.05 eq),在氮气保护下130℃搅拌0.5小时,之后将化合物1f(1.56g,6.28mmol,0.6eq),1,1-双(二苯基磷)二茂铁氯化钯(383mg,523μmol,0.05eq),碳酸钠(2.22g,20.9mmol,2eq)和水(4.00mL)加入,氮气保护下90℃反应2小时,反应完成后,减压浓缩掉大部分的二氧六环,加水稀释后用乙酸乙酯萃取(50.0mL*3),合并的有机相用无水硫酸钠干燥,过滤,减压浓缩,柱层析纯化得化合物1h。
MS-ESI计算值[M+H]
+382,384实测值382,384。
第七步
将化合物1h(1.8g,4.71mmol,1eq)溶解到二甲亚砜(20.0mL)中,再加入氢氧化钾(688mg,12.3mmol,2.6eq)和3,6-二氯哒嗪(632mg,4.24mmol,0.9eq),40℃反应1小时,反应完成后,加水(30.0mL)稀释后用乙酸乙酯萃取(50.0mL*3),合并的有机相用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,减压旋干,得化合物1i。
MS-ESI计算值[M+H]
+494,495,496实测值494,495,496。
第八步
将化合物1i(1.8g,3.64mmol,1eq)溶解到乙腈(15.0mL)中,在加入碳酸钾(688mg,12.3mmol,2.6eq)和30%过氧化氢水溶液(2.00mL),20℃反应20分钟,反应完成后,0℃下加饱和硫代硫酸钠溶液(150mL)淬灭,然后加水(50.0mL)稀释后用乙酸乙酯萃取(50.0mL*3),合并的有机相用饱和食盐水(20.0mL)洗涤,无水硫酸钠干燥,过滤,减压旋干,得化合物1j。
MS-ESI计算值[M+H]
+483,484,485实测值483,484,485。
第九步
将化合物1j(1.75g,3.62mmol,1eq)溶解到甲醇(10.0mL)中,再加入碳酸钾(1.00g,7.24mmol,2eq),40℃反应30分钟,反应完成后,加水(100mL)稀释,过滤。滤饼减压旋干,得化合物1k。
MS-ESI计算值[M+H]
+479,481实测值479,481。
第十步
将化合物1k(1.6g,3.34mmol,1eq)溶解到甲醇(20.0mL)中,再缓慢加入硼氢化钠(1.90g,50.1mmol,15eq),25℃反应1小时,反应完成后,减压浓缩掉大部分的甲醇,加水(30.0mL)稀释后用乙酸乙酯萃取(50.0mL*3),合并的有机相用饱和食盐水(20.0mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩,柱层析纯化后,经高效液相色谱法分离制备后,经手性分离(色谱柱:Chiralcel OJ-3 100×4.6mm I.D.,3μm);流动相:[A相:二氧化碳,B相:乙醇(含0.05%二乙胺);梯度:4.5分钟内B相从5%升至40%,在40%保持2.5分钟,然后5%的B相保持1分钟];流速:2.8毫升每分钟;柱温:40℃;洗脱时间:8分钟)分离得到化合物1(保留时间:3.406分钟)和2(保留时间:3.913分钟)。
MS-ESI计算值[M+H]
+481,483实测值481,483。
化合物1(保留时间:3.406分钟)
1H NMR(400MHz,DMSO-d
6)δ:8.83(d,J=4.4Hz,1H),7.77(d,J=8.0Hz,1H),7.73-7.62(m,2H),7.47(br s,2H),7.33(s,1H),7.26(d,J=4.4Hz,1H),7.21(d,J=9.2Hz,1H),6.61(br s,1H),6.22(br s,1H),4.00(s,3H),3.76-3.81(m,4H),3.32-3.30(m,4H)。
化合物2(保留时间:3.913分钟)
1H NMR(400MHz,DMSO-d
6)δ:8.83(d,J=4.4Hz,1H),7.77(br d,J=8.0Hz,1H),7.74-7.64(m,2H),7.47(br s,2H),7.34(s,1H),7.27(d,J=4.4Hz,1H),7.21(d,J=9.2Hz,1H),6.62(br s,1H),6.23(br s,1H),4.01(s,3H),3.74-3.86(m,4H),3.26-3.32(m,4H)。
实施例3&4
第一步
将化合物a(48g,215mmol,1.00eq)、N-溴代丁二酰亚胺(42.1g,236mmol,1.10eq)、过氧化苯甲酰(1.04g,4.30mmol,0.02eq)溶于乙腈(80.0mL),90℃反应4小时,反应完成后,减压旋干,过滤,乙酸 乙酯(50.0mL)洗涤滤饼,滤液加饱和食盐水(100mL)稀释后用乙酸乙酯萃取(200mL),有机相用饱和食盐水(100mL)洗涤2次,用无水硫酸钠干燥,过滤,减压旋干,得化合物b。
1H NMR(400MHz,CDCl
3)δ:7.63(d,J=7.2Hz,1H),7.18(d,J=8.0Hz,1H),4.49(s,2H)。
第二步
将化合物b(73.4g,243mmol,1.00eq)溶于N,N-二甲基甲酰胺(100mL)和水(30.0mL)中,向反应液中分批加入氰化钾(25.3g,389mmol,1.60eq),25℃反应2小时,反应完成后,加水(500mL)稀释,用乙酸乙酯萃取(300mL),有机相用饱和食盐水(150mL)洗涤2次,用无水硫酸钠干燥,过滤,减压旋干,柱层析得化合物c。
1H NMR(400MHz,CDCl
3)δ:7.72(d,J=7.2Hz,1H),7.24(s,1H),3.79(s,2H)。
第三步
将化合物c(10g,40.2mmol,1.00eq)、3,6-二氯哒嗪(8.99g,60.4mmol,1.5eq)溶于二甲亚砜(50.0mL),向反应液中分批加入氢氧化钾(3.39g,60.4mmol,1.5eq)于30℃反应2小时。反应结束后,加水(250mL)稀释,用乙酸乙酯(500mL)萃取,有机相用饱和食盐水(400mL)洗涤2次,用无水硫酸钠干燥,过滤,减压旋干,柱层析纯化得化合物d。
MS-ESI计算值[M+H]
+360,362,364实测值360,362,364。
1H NMR(400MHz,DMSO-d
6)δ:8.00(s,1H),7.97(s,1H),7.84(d,J=4.0Hz,1H),7.82(d,J=4.0Hz,1H),6.49(s,1H)。
第四步
将化合物d(6.00g,16.6mmol,1.00eq)、碳酸钾(2.99g,21.6mmol,1.30eq)溶于乙腈(18.0mL),向反应液中分批加入30%质量分数的双氧水(6.01g,53.0mmol,3.19eq)于20℃反应20分钟。反应结束后,反应液缓慢滴加至冰冷的饱和硫代硫酸钠溶液(15.0mL)中,加水(20.0mL)稀释,用乙酸乙酯(40.0mL)萃取,有机相用饱和食盐水(40.0mL)洗涤2次,用无水硫酸钠干燥,过滤,减压旋干,得化合物e。
MS-ESI计算值[M+H]
+349,351,353实测值349,351,353。
1H NMR(400MHz,CDCl
3)δ:8.19(d,J=8.8Hz,1H),7.81(d,J=7.2Hz,1H),7.76(d,J=8.8Hz,1H),7.28(s,1H)。
第五步
将化合物e(5.75g,16.4mmol,1.00eq)、碳酸钾(2.50g,18.1mmol,1.10eq)溶于甲醇(50.0mL),于20℃反应6小时。反应结束后,加水(200mL)稀释,过滤,滤饼用水(40.0mL)洗涤两次,用乙酸乙酯(300mL)稀释,无水硫酸钠干燥,过滤,减压旋干,得化合物f。
MS-ESI计算值[M+H]
+345,347,349实测值345,347,349。
1H NMR(400MHz,CDCl
3)δ:8.17(d,J=9.2Hz,1H),7.73(d,J=7.2Hz,1H),7.24(s,1H),7.15(d,J=9.2Hz,1H),4.24(s,3H)。
第六步
将化合物f(10.0g,28.9mmol,1.00eq)溶于甲醇(100mL),向反应液中分批加入硼氢化钠(1.3g,34.4mmol,1.19eq),于15℃反应1小时。反应结束后,加水(20.0mL)淬灭,二氯甲烷(500mL)稀释,饱和食盐水(200mL)洗涤两次,无水硫酸钠干燥,过滤,减压旋干,经柱层析纯化,得化合物g。
MS-ESI计算值[M+H]
+345,347,349实测值345,347,349。
1H NMR(400MHz,DMSO-d
6)δ:7.95(d,J=7.6Hz,1H),7.70(d,J=8.8Hz,1H),7.65-7.59(m,1H),7.21(d,J=8.8Hz,1H),6.66(d,J=4.8Hz,1H),6.10(d,J=4.8Hz,1H),3.99(s,3H)。
第七步
往化合物g(409mg,1.18mmol,1eq)和双联嚬哪醇硼酸酯(448mg,1.77mmol,1.5eq)的二氧六环(20mL)溶液中加入Pd(PPh
3)
2Cl
2(41.31mg,58.86μmol,0.05eq)和乙酸钾(346.6mg,3.53mmol,3eq)。得到的反应液在130℃下搅拌4个小时。反应完全,浓缩反应液,残渣经高效液相色谱法分离纯化得化合物3e。MS-ESI计算值[M+H]
+313,315实测值313,315。
第八步
将化合物3a(288mg,1.35mmol,1eq)加入到盐酸(5.00mL)和水(1.00mL),然后0℃下滴加亚硝酸钠(102mg,1.48mmol,1.1eq)的水(1.00mL)溶液,该温度下搅拌反应30分钟,升温至70℃下搅拌12小时,反应完成后,加水(20.0mL)稀释,过滤,滤饼减压浓缩得到化合物3b。
MS-ESI计算值[M+H]
+225,227实测值225,227。
1H NMR(400MHz,DMSO-d
6)δ:13.53(br s,1H),7.95(d,J=8.8Hz,1H),7.80-7.73(m,2H),7.56(dd,J=1.6,8.7Hz,1H)。
第九步
将化合物3b(70mg,311μmol,1eq),吗啡啉(54.2mg,622μmol,54.8μL,2eq),甲磺酸(2-二环己基膦基-2,6-二异丙氧基-1,1-联苯基)(2-氨基-1,1-联苯-2-基)钯(II)(43.8mg,52.3μmol,1.68e-1eq),叔丁醇钾(105mg,933μmol,3eq),加入到无水四氢呋喃(1.00mL),混合物在80℃下搅拌12小时。反应完成后,过滤并减压浓缩,柱层析(20:1二氯甲烷:甲醇)纯化得到化合物3c。
MS-ESI计算值[M+H]
+232实测值232。
1H NMR(400MHz,DMSO-d
6)δ:7.84(d,J=9.2Hz,1H),7.57(s,1H),7.20(br d,J=9.2Hz,1H),6.67(s,1H),3.77-3.75(m,4H),3.30-2.29(m,4H)。
第十步
将化合物3c(70.0mg,303μmol,1eq)溶解到氧氯化磷(2.18mL)中,混合物在110℃下搅拌30分钟。 反应完成后,减压浓缩掉氧氯化磷,再用无水二氧六环(20.0mL)稀释,减压浓缩后得到化合物3d。
MS-ESI计算值[M+H]
+250,252实测值250,252。
第十一步
将化合物3e(250mg,801μmol,2eq),化合物3d(100mg,401μmol,1eq),1,1-双(二苯基磷)二茂铁氯化钯(23.4mg,32.0μmol,0.08eq),碳酸钠(127mg,1.20mmol,3eq)加入到无水二氧六环(5.00mL)中和水(1.00mL)中,氮气保护下80℃反应2小时,反应完成后,减压浓缩掉大部分的二氧六环,加水(20.0mL)稀释后用二氯甲烷萃取(25.0mL*2),合并的有机相用饱和食盐水洗涤,无水硫酸钠干燥,过滤,减压浓缩。柱层析纯化后经手性分离(色谱柱:Chiralpak AD-3 50*4.6mm I.D.,3μm);流动相:[40%的(含0.05%二乙胺)乙醇二氧化碳溶液];流速:4毫升每分钟;柱温:40℃;洗脱时间:3分钟)得化合物3(保留时间:0.845分钟)和化合物4(保留时间:1.890分钟)。
MS-ESI计算值[M+H]
+482,484实测值482,484。
化合物3(保留时间:0.845分钟)
1H NMR(400MHz,氘代乙腈)δ:9.03(s,1H),7.77(d,J=7.8Hz,1H),7.67(s,1H),7.65-7.56(m,3H),7.47(d,J=9.2Hz,1H),7.06(d,J=9.2Hz,1H),6.35(d,J=4.4Hz,1H),4.68(br d,J=4.4Hz,1H),4.05(s,3H),3.87-3.83(m,4H),3.44-3.39(m,4H)。
化合物4(保留时间:1.890分钟)
1H NMR(400MHz,氘代乙腈)δ:9.04(s,1H),7.77(d,J=8.0Hz,1H),7.67(s,1H),7.64-7.57(m,3H),7.49-7.45(m,1H),7.06(d,J=9.2Hz,1H),6.35(d,J=4.4Hz,1H),4.68(br s,1H),4.05(s,3H),3.87-3.83(m,4H),3.43-3.40(m,4H)。
实施例5&6
第一步
往化合物5a(3.3g,14.0mmol,1eq)和吗啡啉(1.22g,14.0mmol,1.23mL,1eq)的二氧六环(40.0 mL)溶液中加入碳酸铯(9.09g,27.9mmol,2eq),Pd
2(dba)
3(639mg,698μmol,0.05eq)和4,5-双二苯基膦-9,9-二甲基氧杂蒽(808mg,1.40mmol,0.1eq)后在氮气保护下,85℃搅拌16个小时。减压浓缩除去溶剂后用水(30.0mL)水稀释,乙酸乙酯(50.0mL)萃取。分离的有机相用饱和食盐水(50.0mL)洗涤,无水硫酸钠干燥,过滤,浓缩得到粗品。柱层析得到化合物5c。
MS-ESI计算值[M+H]
+243,245实测值243,245。
第二步
往化合物5c(900mg,3.71mmol,1eq)的乙醇(10.0mL)和水(2.00mL)溶液中加入铁粉(1.24g,22.2mmol,6eq)和氯化铵(1.19g,22.3mmol,778μL,6eq),得到的混合物在85℃下搅拌2个小时。反应液冷却至室温后用硅藻土过滤,减压浓缩。残余物用水(50.0mL)稀释,再用乙酸乙酯(50.0mL)萃取,合并的有机相用饱和食盐水(50.0mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到粗品,粗品经过柱层析得到化合物5d。MS-ESI计算值[M+H]
+213,215实测值213,215。
第三步
化合物5e(610mg,4.23mmol,1.5eq)的原甲酸三乙酯(4.46g,30.1mmol,5.00mL,10.66eq)溶液在135℃下回流一个小时。冷却到室温(10~20℃)后将化合物5d(600mg,2.82mmol,1eq)加入到反应液中,继续在135℃下回流两个小时。减压浓缩除去溶剂后得到化合物5f。
MS-ESI计算值[M+H]
+367,369实测值367,369。
1H NMR(400MHz,DMSO-d
6)δ:11.65(br d,J=13.6Hz,1H),8.74(d,J=13.6Hz,1H),7.60(d,J=8.0Hz,1H),7.41(t,J=8.0Hz,1H),7.11-7.01(m,1H),3.78-7.738(m,4H),3.01-2.95(m,4H),1.69(s,6H)。
第四步
化合物5f(1.3g,3.54mmol,1eq)在联苯联苯醚(3.54mmol,13.0mL,1eq)的溶液中加热到260℃反应一个小时。反应液冷却到室温(10~20℃),随着冷却形成的沉淀过滤出来,并用石油醚(5.00mL*3)洗涤,得到化合物5g。
MS-ESI计算值[M+H]
+265,268实测值265,268。
1HNMR(400MHz,DMSO-d
6)δ:11.18(br d,J=5.6Hz,1H),8.03(d,J=8.8Hz,1H),7.19(d,J=8.8Hz,1H),7.01(d,J=7.8Hz,1H),6.03(d,J=6.8Hz,1H),3.81-3.76(m,4H),3.14-3.09(m,4H)。
第五步
化合物5g(0.5g,1.89mmol,1eq)和氧氯化磷(19.2g,125mmol,11.6mL,66.3eq)的混合物在110℃下搅拌一个小时。反应液冷却到10~20℃后滴加到饱和碳酸氢钠水溶液(200mL)中,并用乙酸乙酯(150mL)萃取三次。合并的有机相用饱和食盐水(30.0mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到粗品。粗品经过柱层析得到化合物5h。
MS-ESI计算值[M+H]
+283,284,285实测值283,284,285。
1HNMR(400MHz,CDCl
3)δ:8.88(d,J=4.8Hz,1H),8.17(d,J=9.2Hz,1H),7.50-7.44(m,2H),3.99-3.94(m,4H),3.31-3.26(m,4H)。
第六步
往化合物g(409mg,1.18mmol,1eq)和双联嚬哪醇硼酸酯(448mg,1.77mmol,1.5eq)的二氧六环(20mL)溶液中加入Pd(PPh
3)
2Cl
2(41.3mg,58.9μmol,0.05eq)和乙酸钾(347mg,3.53mmol,3eq)。得到的反应液在130℃下搅拌4个小时。冷却到10~20℃后,加入化合物5h(200mg,706μmol,0.6eq),碳酸钠(250mg,2.35mmol,2eq),Pd(dppf)Cl
2(68.9mg,94.2μmol,0.08eq)和H
2O(4.00mL)。反应液用氮气置换3次后在90℃反应两个小时。减压浓缩除去溶剂,用水稀释残余物,再用乙酸乙酯(150mL)萃取三次。合并的有机相用饱和食盐水(20.0mL)洗涤,无水硫酸钠干燥,过滤,浓缩得到粗品。粗品经过高效液相色谱法纯化后再经过SFC(色谱柱:Chiralcel OJ-3 150×4.6mm I.D.,3μm;流动相:A:二氧化碳B:乙醇(0.05%二乙胺);梯度:五分钟内从5%到40%,保持40%2.5分钟,5%保持2.5分钟;流速:2.5毫升/分钟;柱温:35摄氏度。洗脱时间:10分钟)制备纯化得到化合物5(保留时间5.118分钟)和化合物6(保留时间5.569分钟)。
化合物5(保留时间5.118分钟)
MS-ESI计算值[M+H]
+515,516,517实测值515,516,51。
1H NMR(400MHz,CDCl
3)δ:9.02(br s,1H),7.55(br d,J=7.6Hz,1H),7.47-7.29(m,4H),7.21(br s,1H),6.99(d,J=9.2Hz,1H),6.42(br s,1H),5.12(br s,1H),4.13(s,3H),3.96(br s,4H),3.25(br s,4H)。
化合物6(保留时间5.569分钟)
MS-ESI计算值[M+H]
+515,516,51实测值515,516,51。
1H NMR(400MHz,CDCl
3)δ:8.96(br d,J=4.4Hz,1H),7.47(d,J=7.6Hz,1H),7.37-7.21(m,4H),7.18-7.08(m,1H),6.92(d,J=9.2Hz,1H),6.35(s,1H),4.97(br s,1H),4.05(s,3H),3.91-3.86(m,4H),3.18(br s,4H)。
实施例7&8
第一步
将化合物7a(7.00g,31.8mmol,1eq),吗啡啉(5.54g,63.6mmol,5.60mL,2eq),碳酸铯(20.7g,63.6mmol,2eq),三(二亚苄基丙酮)二钯(1.46g,1.59mmol,0.05eq)加入到无水二氧六环中,混合后在氮气保护下加热至85℃下搅拌3小时,反应完成后,减压浓缩,加水(100mL)稀释,乙酸乙酯(100mL*3)萃取,有机相用饱和食盐水(30.0mL)洗涤,无水硫酸钠干燥,减压浓缩,柱层析(石油醚/乙酸乙酯10:1)纯化得到化合物7b。
MS-ESI计算值[M+H]
+227实测值227。
1H NMR(400MHz,CDCl
3)δ:7.58-7.56(m,1H),7.19-7.16(m,2H),3.91-3.851(m,4H),3.16-3.10(m,4H)。
第二步
将化合物7b(2.5g,11.1mmol,1eq)加入到乙醇(25.0mL)和水(5.00mL)中。再加入铁粉(6.17g,111mmol,10eq)和氯化铵(8.87g,166mmol,5.80mL,15eq),混合物在85℃下搅拌1小时。反应完成后,减压浓缩,加水(50.0mL)稀释,乙酸乙酯(50.0mL*3)萃取,有机相用饱和食盐水(30.0mL)洗涤,无水硫酸钠干燥,减压浓缩,柱层析纯化得到化合物7c。
MS-ESI计算值[M+H]
+197实测值197。
1H NMR(400MHz,DMSO-d
6)δ:6.78-6.718(m,1H),6.42-6.40(m,1H),6.19-6.16(m,1H),4.97(s,2H),3.78-3.66(m,4H),2.96-2.87(m,4H)。
第三步
将化合物7c(420mg,2.14mmol,1eq)溶解到无水四氢呋喃(15.0mL)中,再加入N-碘代丁二酰亚胺(578mg,2.57mmol,1.2eq)。混合物在20℃下搅拌2小时。反应完成后,过滤,得到的滤液柱通过柱层析纯化得到化合物7d。
MS-ESI计算值[M+H]
+323实测值323。
第四步
将化合物7d(432mg,1.34mmol,1eq),三甲基硅乙炔(527mg,5.36mmol,743μL,4eq),碘化亚铜(25.5mg,134μmol,0.1eq),二氯双(三苯基膦)钯(II)(47.1mg,67.1μmol,0.05eq)加入到三乙胺(5.00mL)中,混合物在氮气保护下50℃搅拌5小时。反应完成后,减压浓缩,柱层析纯化得到化合物7e。
MS-ESI计算值[M+H]
+293实测值293。
第五步
将化合物7e(350mg,1.20mmol,1eq),溶于稀盐酸(3.00mL)中,然后在0℃缓慢滴加亚硝酸钠(124mg,1.80mmol,1.5eq)的水(1.00mL)溶液,在该温度下搅拌30分钟后,升温至20℃反应2小时。反应完成后,倒入饱和的碳酸氢钠溶液(200mL)中,乙酸乙酯(50mL*3)萃取,有机相用饱和食盐水(20.0mL)洗涤,无水硫酸钠干燥,减压浓缩,柱层析纯化得到化合物7f。
MS-ESI计算值[M+H]
+268,270实测值268,270。
第六步
将化合物g(100mg,288μmol,1eq),双联嚬哪醇硼酸酯(110mg,432μmol,1.5eq)加入到无水二氧六环(10.0mL)中,再加入乙酸钾(84.7mg,863μmol,3eq)和二氯双(三苯基膦)钯(II)(10.1mg,14.4μmol,0.05eq),在氮气保护下130℃搅拌2小时,之后将将化合物7f(69.3mg,259μmol,0.9eq),1,1-双(二苯基磷)二茂铁氯化钯(16.8mg,23.0μmol,0.08eq),碳酸钠(61.0mg,575μmol,2eq)和水(2.00mL)加入,氮气保护下90℃反应2小时,反应完成后,减压浓缩掉大部分的二氧六环,加水(40.0mL)稀释后用乙酸乙酯萃取(50mL*3),合并的有机相用饱和食盐水(20.0mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。经高效液相色谱法纯化后经手性分离(色谱柱:Chiralpak AD-3 50*4.6mm I.D.,3μm);流动相:[40%的(含0.05%二乙胺)乙醇二氧化碳溶液];流速:4毫升每分钟;柱温:40℃;洗脱时间:3分钟)分离得化合物7(保留时间:0.586分钟)和化合物8(保留时间:0.830分钟)。
化合物7(保留时间:0.586分钟)
MS-ESI计算值[M+H]
+500,502实测值500,502。
1H NMR(400MHz,DMSO-d
6)δ:9.33(s,1H),7.90(d,J=7.8Hz,1H),7.80(t,J=8.8Hz,1H),7.74-7.72(m,2H),7.55-7.50(m,1H),7.21(d,J=9.2Hz,1H),6.65(d,J=4.8Hz,1H),6.23(d,J=4.8Hz,1H),4.00(s,3H),3.85-3.78(m,4H),3.39-3.36(m,4H)。
化合物8(保留时间:0.830分钟)
MS-ESI计算值[M+H]
+500,502实测值500,502。
1H NMR(400MHz,DMSO-d
6)δ:9.33(s,1H),7.90(d,J=8.0Hz,1H),7.81(t,J=8.8Hz,1H),7.73-7.71(m,2H),7.55-7.50(m,1H),7.21(d,J=9.2Hz,1H),6.64(d,J=4.8Hz,1H),6.23(d,J=4.8Hz,1H),4.00(s,3H),3.87-3.73(m,4H),3.39-3.32(m,Hz,4H)。
实施例9&10
第一步
将化合物9a(2.00g,10.7mmol,1eq)和吗啡啉(6.60g,75.8mmol,6.67mL,7.09eq)混合后加热至 100℃,搅拌12小时,反应完成后,减压浓缩,柱层析纯化得到化合物9b。
MS-ESI计算值[M+H]
+255实测值255。
1H NMR(400MHz,DMSO-d
6)δ:7.47(dd,J=1.6,8.8Hz,1H),6.40(s,2H),6.26(t,J=8.8Hz,1H),3.77(s,3H),3.74-3.64(m,4H),3.14-3.06(m,4H)。
第二步
将化合物9b(730mg,2.87mmol,1eq)加入到四氢呋喃(3.00mL)和水(2.00mL)中。再加入氢氧化钠(230mg,5.74mmol,2eq)的水溶液(1.00mL),混合物在40℃下搅拌12小时。反应完成后,滴加乙酸使得反应液至中性,减压浓缩得到化合物9c。
MS-ESI计算值[M+H]
+241实测值241。
第三步
将化合物9c(1.10g,4.58mmol,1eq)溶解到四氢呋喃(10.0mL)中,再将三光气(2.11g,35.8mmol,2.05mL,5eq)加入到反应中。混合物在80℃下搅拌40分钟。反应完成后,缓慢倒入水(50.0mL)中,过滤,得到固体减压浓缩后,石油醚(20.0mL)打浆,得到化合物9d。
MS-ESI计算值[M+H]
+267实测值267。
1H NMR(400MHz,DMSO-d
6)δ:11.73(s,1H),7.62(d,J=8.4Hz,1H),6.88(t,J=8.4Hz,1H),3.81-3.69(m,4H),3.30-3.17(m,4H)。
第四步
将化合物9d(720mg,2.70mmol,1eq)加入到N,N-二甲基甲酰胺(2mL)中,然后滴加丙二腈(312mg,3.25mmol,1.2eq)和三乙胺(328mg,3.25mmol,452μL,1.2eq)的N,N-二甲基甲酰胺溶液(2mL),混合物在60℃下搅拌0.4小时,然后倒入冰冷的0.2摩尔的稀盐酸(14.9mL)中,过滤,得到的滤饼减压浓缩后,加入到8摩尔的氢氧化钾溶液(15.0mL)中,在120℃下搅拌40小时。反应完成后,用12摩尔的盐酸中和至中性,过滤得到固体,干燥后得到化合物9e。
MS-ESI计算值[M+H]
+264实测值264。
第五步
将化合物9e(650mg,2.47mmol,1eq)溶于氧氯化磷(9.22g,60.1mmol,5.59mL,24.4eq)中,混合物在125℃反应12小时。然后,减压浓缩掉氧氯化磷,得到的固体混合物加入水(10.0mL)中,混合物在125℃反应4小时,反应完成后,滴加1摩尔的氢氧化钠溶液中和到中性,过滤,得到的固体减压浓缩,得到化合物9f。
MS-ESI计算值[M+H]
+282,284实测值282,284。
第六步
将化合物g(200mg,575μmol,1eq),双联嚬哪醇硼酸酯(219mg,863μmol,1.5eq)加入到无水二氧 六环(10.0mL)中,再加入乙酸钾(169mg,1.73mmol,3eq)和二氯双(三苯基膦)钯(II)(20.2mg,28.8μmol,0.05eq),在氮气保护下130℃搅拌2小时,之后将将化合物9f(250mg,887μmol,1.54eq),1,1-双(二苯基磷)二茂铁氯化钯(33.7mg,46.0μmol,0.08eq),碳酸钠(244mg,2.30mmol,4eq)和水(2.00mL)加入,氮气保护下90℃反应2小时,反应完成后,减压浓缩掉大部分的二氧六环,加水(40.0mL)稀释后用乙酸乙酯萃取(50.0mL*3),合并的有机相用饱和食盐水(20.0mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。高效液相色谱法制备纯化后经手性分离(色谱柱:Chiralcel OJ-H 150*4.6mm I.D.,5μm);流动相:[A相:二氧化碳,B相:甲醇(含0.05%二乙胺);梯度:5%B相保持0.5分钟,3.5分钟内B相从5%升至40%,在40%保持2.5分钟,然后5%的B相保持1.5分钟];流速:3毫升每分钟;柱温:40℃;洗脱时间:8分钟)分离得化合物9(保留时间:4.607分钟)和化合物10(保留时间:5.167分钟)。
化合物9(保留时间:4.607分钟)
MS-ESI计算值[M+H]
+514,516实测值514,516。
1H NMR(400MHz,DMSO-d
6)δ:7.69(br d,J=8.8Hz,2H),7.62(br d,J=8.8Hz,1H),7.21(br d,J=8.8Hz,1H),7.06-6.87(m,2H),6.78(br s,2H),6.69-6.55(m,2H),6.21(br s,1H),4.00(s,3H),3.77(br s,4H),3.11(br s,4H)。
化合物10(保留时间:5.167分钟)
MS-ESI计算值[M+H]
+514,516实测值514,516。
1H NMR(400MHz,DMSO-d
6)δ:7.70(dd,J=5.2,8.4Hz,2H),7.62(d,J=9.2Hz,1H),7.21(d,J=9.2Hz,1H),7.03-6.87(m,2H),6.78(br s,2H),6.67-6.54(m,2H),6.20(s,1H),4.00(s,3H),3.82-3.73(m,4H),3.17-3.00(m,4H)。
实施例11&12
第一步
将化合物11a(500mg,2.25mmol,1eq)溶解到四氢呋喃(10.0mL)中,再将三光气(1.45g,4.89mmol,2.17eq)缓慢加入到反应中。混合物在80℃下搅拌40分钟。反应完成后,缓慢倒入水(50.0mL)中,过滤,得到的固体减压浓缩后得到化合物11b。
MS-ESI计算值[M+H]
+249实测值249。
第二步
将化合物11b(496mg,2.00mmol,1eq)加入到N,N-二甲基甲酰胺(2.00mL)中,然后滴加丙二腈(230mg,2.40mmol,1.2eq)和三乙胺(243mg,2.40mmol,334μL,1.2eq)的N,N-二甲基甲酰胺溶液(1.00mL),混合物在60℃下搅拌0.6小时,然后倒入冰冷的0.2摩尔的稀盐酸(11.0mL)中,过滤,得到的滤饼减压浓缩后,加入到8摩尔的氢氧化钾溶液(11.1mL)中,在120℃下搅拌40小时。反应完成后,用12摩尔的盐酸中和至中性,过滤得到固体,干燥后得到化合物11c。
MS-ESI计算值[M+H]
+246实测值246。
第三步
将化合物11c(500mg,2.04mmol,1eq)溶解到氧氯化磷(4.95g,32.3mmol,3mL,15.8eq)中,混合物在125℃反应12小时。然后,减压浓缩掉氧氯化磷,得到的固体混合物加入水(10.0mL)中,混合物在125℃反应4小时,反应完成后,滴加1摩尔的氢氧化钠溶液中和到中性,过滤,得到的固体减压浓缩,得到化合物11d。
MS-ESI计算值[M+H]
+264,266实测值264,266。
第四步
将化合物g(200mg,575μmol,1eq),双联嚬哪醇硼酸酯(219mg,863μmol,1.5eq)加入到无水二氧 六环(10.0mL)中,再加入乙酸钾(169mg,1.73mmol,3eq)和二氯双(三苯基膦)钯(II)(20.2mg,28.8μmol,0.05eq),在氮气保护下130℃搅拌2小时,之后将将化合物11d(273mg,1.04mmol,1.8eq),1,1-双(二苯基磷)二茂铁氯化钯(33.7mg,46.0μmol,0.08eq),碳酸钠(122mg,1.15mmol,2eq)和水(2.00mL)加入,氮气保护下90℃反应2小时,反应完成后,减压浓缩掉大部分的二氧六环,加水(40.0mL)稀释后用乙酸乙酯萃取(50.0mL*3),合并的有机相用饱和食盐水(20.0mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。高效液相色谱法制备纯化后经手性分离(色谱柱:Chiralpak AD-3 50*4.6mm I.D.,3μm);流动相:[40%的(含0.05%二乙胺)异丙醇二氧化碳溶液];流速:4毫升每分钟;柱温:40℃;洗脱时间:3分钟)分离得化合物11(保留时间:0.793分钟)和化合物12(保留时间:1.203分钟)。
化合物11(保留时间:0.793分钟)
MS-ESI计算值[M+H]
+496,498实测值496,498。
1H NMR(400MHz,DMSO-d
6)δ:7.69(d,J=9.2Hz,2H),7.61(d,J=9.6Hz,1H),7.21(d,J=9.2Hz,1H),7.10(s,1H),6.96(s,1H),6.86(s,1H),6.59(d,J=5.2Hz,1H),6.50(s,1H),6.36(br s,2H),6.20(d,J=5.2Hz,1H),4.00(s,3H),3.76(br s,4H),3.21(br s,4H)。
化合物12(保留时间:1.203分钟)
MS-ESI计算值[M+H]
+496,498实测值496,498。
1H NMR(400MHz,DMSO-d
6)δ:7.69(br d,J=9.2Hz,2H),7.60(d,J=9.2Hz,1H),7.21(d,J=9.2Hz,1H),7.14-7.07(m,1H),6.97-6.92(m,1H),6.85(s,1H),6.59(d,J=5.2Hz,1H),6.49(s,1H),6.36(br s,2H),6.20(d,J=5.2Hz,1H),4.00(s,3H),3.76(br s,4H),3.20(br s,4H)。
实施例13&14
第一步
将化合物13a(10.0g,39.8mmol,1eq.)溶解到N,N-二甲基甲酰胺(30.0mL)中,然后依次加入2,4-二甲氧基苄胺(6.66g,39.8mmol,6.00mL,1eq.)和碳酸铯(26.0g,79.7mmol,2eq.)。混合后加热至60℃下搅拌反应2小时。反应完成后,加水稀释,乙酸乙酯萃取,合并有机相饱和食盐水洗涤,无水硫酸钠干燥。减压浓缩,石油醚乙酸乙酯混合溶液(20:1)(100mL)打浆得到化合物13b。
1H NMR(400MHz,DMSO-d
6)δ:7.85(br t,J=5.2Hz,1H),7.16(d,J=8.4Hz,1H),6.75(s,1H),6.65(dd,J=1.6,11.2Hz,1H),6.59(d,J=2.0Hz,1H),6.50(dd,J=2.8,8.8Hz,1H),4.28(d,J=5.6Hz,2H),3.83(s,3H),3.81(s,3H),3.75(s,3H)。
第二步
将化合物13b(6.8g,17.1mmol,1eq.),吗啡啉(7.44g,85.4mmol,7.51mL,5eq.),碳酸铯(11.1g,34.1mmol,2eq.),三(二亚苄基丙酮)二钯(469mg,512μmol,0.03eq.)和4,5-双(二苯基磷)-9,9-二甲基氧杂蒽(593mg,1.02mmol,0.06eq.)加入到甲苯(40.0mL)中,氮气保护下加热至110℃搅拌4小时,反应完成后,减压浓缩。快速硅胶色谱法(
80g
快速硅胶柱,洗脱剂0~30%乙酸乙酯/石油醚@30mL/min)纯化得到化合物13c。
第三步
将化合物13c(6g,14.8mmol,1eq.)溶解到甲醇(100mL)和四氢呋喃(100mL)的混合溶液中,然后氮气氛围下加入湿钯碳(1g,10%纯度),氢气置换3次后,保持氢气压力50Psi下50℃下搅拌12小时,然后过滤,滤液减压浓缩后的到的固体用二氯甲烷(150mL)溶解,再加入三氟乙酸(23.10g,202.59mmol, 15mL,13.66eq.),混合物25℃搅拌反应2小时。反应完成后,减压浓缩,饱和碳酸钠溶液稀释,乙酸乙酯萃取,合并有机相饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩。快速硅胶色谱法(
40g
快速硅胶柱,洗脱剂0~35%乙酸乙酯/石油醚@30mL/min)纯化得到化合物13d。
1H NMR(400MHz,DMSO-d
6)δ:6.66(s,2H),6.04(dd,J=2.0,16.0Hz,1H),5.98(d,J=2.0Hz,1H),3.72(s,3H),3.64-3.70(m,4H),3.09-3.20(m,4H)。
第四步
将化合物13d((3.00g,11.80mmol,1eq.)加入到甲醇(10.0mL)和水(10.0mL)混合溶液中。再加入氢氧化钠(2.36g,59.0mmol,5eq.),混合物在80℃下搅拌4小时。反应完成后,减压浓缩掉大部分的甲醇,剩余混合液用1摩尔的盐酸调节PH=5,过滤。滤饼减压浓缩得到化合物13e。
1H NMR(400MHz,DMSO-d
6)δ:5.97-6.06(m,1H),5.95(d,J=2.4Hz,1H),3.60-3.73(m,4H),3.02-3.18(m,4H)。
第五步
将化合物13e(1g,4.16mmol,1eq.)溶解到四氢呋喃(25.0mL)中,再将三光气(2.55g,8.59mmol,2.06eq.)加入到反应中。混合物在80℃下搅拌2小时。反应完成后,减压浓缩除去大部分的四氢呋喃,剩余混合物缓慢倒入水中,过滤,滤饼减压浓缩得到化合物13f。
1H NMR(400MHz,DMSO-d
6)δ:11.54(s,1H),6.70(dd,J=2.4,15.2Hz,1H),6.21(d,J=1.6Hz,1H),3.65-3.75(m,4H),3.25-3.35(m,4H)。
第六步
将化合物13f(430mg,1.62mmol,1eq.)溶解到N,N-二甲基甲酰胺(3mL)中,然后滴加丙二腈(186mg,1.94mmol,1.2eq.)和三乙胺(196mg,1.94mmol,269μL,1.2eq.)的N,N-二甲基甲酰胺溶液(1mL),混合物在60℃下搅拌0.6小时,然后倒入冰冷的0.2摩尔的稀盐酸(8.80mL)中,过滤,得到的滤饼减压浓缩后,加入到8摩尔的氢氧化钾溶液(20.0mL)中,120℃下搅拌12小时。反应完成后,用6摩尔的盐酸中和至中性,过滤,滤饼减压浓缩得到化合物13g。
MS-ESI计算值[M+H]
+264实测值264。
第七步
将化合物13g(320mg,1.22mmol,1eq.)溶于氧氯化磷(11.2g,73.2mmol,6.81mL,60.26eq.)中,混合物在125℃反应4小时。然后,减压浓缩除去氧氯化磷,得到的固体混合物加入水(20mL)中,混合物在80℃反应0.5小时。反应完成后,饱和碳酸氢钠水溶液稀释,乙酸乙酯萃取,合并有机相用饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩得到化合物13h。
MS-ESI计算值[M+H]
+282,284实测值282,284。
第八步
将化合物13h(50mg,177μmol,1eq.),化合物3e(49.92mg,160μmol,0.9eq.),1,1-双(二苯基磷)二茂铁氯化钯(6.49mg,8.87μmol,0.05eq.)和碳酸钠(37.6mg,355μmol,2eq.)加入到二氧六环(2.5mL)和水(0.5mL)混合溶液中,氮气保护下96℃搅拌反应3小时,反应完成后,过滤,减压浓缩。高效液相色谱法(HPLC)(分离柱:Xtimate C18 150x25mmx5μm;流动相:[水(0.225%甲酸)-乙腈];B%:30%-60%,7min)制备纯化,超临界流体(色谱柱:Chiralcel OD-3 100x4.6mm I.D.,3μm);流动相:[40%的(含0.05%二乙胺)乙醇二氧化碳溶液];流速:2.8毫升每分钟;柱温:40℃;洗脱时间:8分钟)化合物13(保留时间:5.171分钟)和化合物14(保留时间:5.765分钟)。
化合物13(保留时间:5.171分钟)
MS-ESI计算值[M+H]
+514,516实测值514,516。
1H NMR(400MHz,DMSO-d
6)δ:7.60-7.75(m,2H),7.48(br d,J=8.4Hz,1H),7.15-7.27(m,1H),6.74(s,1H),6.68(s,1H),6.59(br d,J=4.4Hz,2H),6.55(br s,1H),6.40(d,J=6.4Hz,1H),6.18(s,1H),4.00(d,J=6.0Hz,3H),3.74(s,4H),3.21(s,4H)。
化合物14(保留时间:5.765分钟)
MS-ESI计算值[M+H]
+514,516实测值514,516。
1H NMR(400MHz,DMSO-d
6)δ:7.61-7.72(m,2H),7.48(br d,J=8.0Hz,1H),7.17-7.25(m,1H),6.74(s,1H),6.68(s,1H),6.58-6.64(m,2H),6.56(br s,1H),6.40(d,J=6.4Hz,1H),6.18(s,1H),4.00(d,J=6.0Hz,3H),3.73(s,4H),3.21(s,4H)。
实施例15&16
第一步
向化合物15a(0.5g,2.81mmol,1eq.)和15b(475mg,3.65mmol,461μL,1.3eq.)的甲烷磺酸(2mL)的混合体系中加入五氧化二磷(796mg,5.61mmol,346μL,2eq.).反应体系在135℃下反应2小时。反应 结束后将反应液缓慢倒入30mL冰水中,再用2M的碳酸氢钠溶液调节体系至Ph>7,过滤,收集滤饼,减压干燥后得到化合物15c。
MS-ESI计算值[M+H]
+245实测值245。
1H NMR(400MHz,CDCl
3)δ:7.69-7.67(m,1H),7.55-7.53(m,1H),7.23(s,1H),7.11-7.09(m,1H),3.97-3.89(m,2H),3.88-3.82(m,2H),3.06-3.04(m,2H),2.88-2.86(m,2H),2.60(s,3H)。
第二步
将化合物15c(8.5g,34.8mmol,1eq)的三氯氧磷(8.55g,512mmol,47.6mL,14.7eq)混合体系在110℃反应1小时。反应完成后,减压浓缩除去大部分的三氯氧磷,加水(300mL)稀释并用饱和碳酸钠溶液调节体系pH>7,二氯甲烷萃取,有机相用饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。快速硅胶色谱法(
80g
快速硅胶柱,洗脱剂0~100%-石油醚/乙酸乙酯@20mL/min)纯化得到化合物15d。
MS-ESI计算值[M+H]
+263,265实测值263,265。
1H NMR(400MHz,CDCl
3)δ:8.05-7.99(m,1H),7.31-7.27(m,2H),7.17(s,1H),3.93-3.87(m,4H),3.38-3.30(m,4H),2.69-2.62(s,3H)。
第三步
向化合物15d(2g,7.61mmol,1eq.)的二甲苯(50mL)溶液中加入二氧化硒(2.11g,19mmol,2.07mL,2.5eq.),反应体系在100℃、氮气氛围下反应5小时,反应完成后,过滤,滤饼减压浓缩,快速硅胶色谱法(
20g快速硅胶柱,洗脱剂0~100%-石油醚/乙酸乙酯流速10mL/min)得到混合物15e。
1H NMR(400MHz,CDCl
3)δ:10.05(s,1H),8.08(d,J=9.2Hz,1H),7.80(s,1H),7.47-7.37(m,2H),3.89-3.83(m,4H),3.38-3.30(m,4H)。
第四步
向化合物15e(0.32g,1.16mmol,1eq.)的二氯甲烷(8mL)溶液中加入二乙氨基三氟化硫(373mg,2.31mmol,306μL,2eq.)。反应体系在25℃反应2小时。反应完成后,向反应液中加入水10mL,二氯甲烷萃取,有机相用饱和食盐水20mL洗涤,无水硫酸钠干燥,减压浓缩。快速硅胶色谱法(
12g快速硅胶柱,洗脱剂0~100%-石油醚/乙酸乙酯,流速10mL/min)纯化得到化合物15f。
MS-ESI计算值[M+H]
+299,301实测值299,301。
第五步
将化合物g(0.05g,144μmol,1eq.)、15g(54.8mg,216μmol,1.5eq.)、醋酸钾(42.4mg,432μmol,3eq.)和二氯双(三苯基膦)钯(II)(5.05mg,7.19μmol,0.05eq.)的二氧六环2mL混合液在130℃、氮气氛围下反应4小时,冷至室温后再加入15f(25.8mg,86.3μmol,0.6eq.)、碳酸钾(59.7mg,432μmol,3eq.)、1,1-二(叔丁基磷)二茂铁氯化钯(4.69mg,7.19μmol,0.05eq)和水0.4mL中,混合物在115℃、氮气氛围 下反应14小时。反应完成后,过滤,滤液减压浓缩。高效液相色谱法(HPLC)(分离柱:超限柱C18 150x25mmx5μm;流动相:[水(0.225%甲酸)-乙腈];B%:42%-72%,7min)制备纯化,超临界流体色谱(SFC)(色谱柱:Chiralpak AD-3 50*4.6mm I.D.,3um);流动相:[40%(含0.05%二乙胺)乙醇二氧化碳溶液];流速:4毫升每分钟;柱温:40℃;洗脱时间:3分钟)分离得化合物15(保留时间:0.487分钟)和化合物16(保留时间:0.756分钟)。
化合物15(保留时间:0.487分钟)
MS-ESI计算值[M+H]
+531,533实测值531,533。
1H NMR(400MHz,氘代乙腈)δ:7.74(d,J=7.6Hz,1H),7.61(d,J=9.2Hz,2H),7.52-7.45(m,3H),7.40(d,J=2.4Hz,1H),7.08(d,J=9.2Hz,1H),7.00-6.70(m,1H),6.37(d,J=5.2Hz,1H),4.62(d,J=4.8Hz,1H),4.08(s,3H),3.88-3.83(m,4H),3.41-3.36(m,4H)。
化合物16(保留时间:0.756分钟)
MS-ESI计算值[M+H]
+531,533实测值531,533。
1H NMR(400MHz,氘代乙腈)δ:7.74(d,J=8.0Hz,1H),7.61(d,J=9.2Hz,2H),7.52-7.44(m,3H),7.40(d,J=2.4Hz,1H),7.08(d,J=9.2Hz,1H),7.00-6.70(m,1H),6.37(d,J=4.8Hz,1H),4.63(d,J=5.2Hz,1H),4.08(s,3H),3.88-3.83(m,4H),3.42-3.36(m,4H)。
实施例17&18
将化合物19g(80mg,280μmol,1eq.),化合物17a(351mg,1.18mmol,3.9eq.),双(三环己基膦基)二氯化钯(II)(16.5mg,22.4μmol,0.08eq.),碳酸铯(183mg,560μmol,2eq.)加入到二氧六环(10mL)和水(2mL)混合溶剂中,氮气保护下90℃反应5小时,反应完成后,减压浓缩,高效液相色谱法(分离柱:Xtimate C
18 150x25mm,5μm;流动相:[水(0.225%甲酸)-乙腈];B%:42%-62%,7min)制备纯化,超临界流体色谱(SFC)((色谱柱:Chiralpak AD-3 50x4.6mm I.D.,3μm);流动相:[40%的(含0.05%二乙胺)乙醇二氧化碳溶液];流速:4毫升每分钟;柱温:35℃;洗脱时间:2分钟))分离得化合物17(保留时间:0.538分钟)和化合物18(保留时间:1.008分钟)。
化合物17(保留时间:0.538分钟)
MS-ESI计算值[M+H]
+502,504实测值502,504。
1H NMR(400MHz,DMSO-d
6)δ:9.24(br d,J=4.0Hz,1H),8.48-8.29(m,2H),7.90(br t,J=7.2Hz,1H),7.76- 7.67(m,1H),7.60(br d,J=9.6Hz,1H),6.47(br s,1H),6.26-6.20(m,1H),3.83-3.76(m,4H),3.45-3.40(m,4H),2.71(br d,J=17.2Hz,3H)。
化合物18(保留时间:1.008分钟)
MS-ESI计算值[M+H]
+502,504实测值502,504。
1H NMR(400MHz,DMSO-d
6)δ:9.25(br d,J=3.6Hz,1H),8.51-8.28(m,2H),7.91(br t,J=7.6Hz,1H),7.80-7.68(m,1H),7.61(br d,J=9.6Hz,1H),6.48(br s,1H),6.24(br s,1H),3.83-3.76(m,4H),3.44-3.41(m,4H),2.72(br d,J=17.6Hz,3H)。
实施例19&20
第一步
19a(26g,95.6mmol,1eq),二苯甲酮亚胺(17.3g,95.6mmol,16.1mL,1eq),Pd
2(dba)
3(2.63g,2.87mmol,0.03eq),BINAP(5.95g,9.56mmol,0.1eq)和t-BuONa(13.8g,143mmol,1.5eq)的甲苯混合溶液(260mL)泳氮气置换三次后在此氛围中80℃下反应16个小时。减压浓缩除去溶剂后经硅胶柱纯化(石油醚:乙酸乙酯=10:1)得到化合物19b。
MS-ESI计算值[M+H]
+372,374实测值372,374。
1HNMR(400MHz,CDCl
3)δ:7.79-7.74(m,2H),7.56-7.50(m,1H),7.47-7.41(m,2H),7.34(d,J=7.6Hz,2H),7.18-7.13(m,2H),6.86-6.84(m,1H),6.48-6.45(m,1H)。
第二步
化合物19b(21g,56.4mmol,1eq),吗啡啉(9.83g,113mmol,9.93mL,2eq),BINAP(3.51g,5.64mmol,0.1eq),t-BuONa(8.13g,84.6mmol,1.5eq)和Pd
2(dba)
3(1.55g,1.69mmol,0.03eq)的210mL甲苯溶液用氮气置换三次后在此氛围中120℃下反应16个小时。减压浓缩除去溶剂后,用200mL水稀释,再 用200mL乙酸乙酯萃取两次。合并的有机相用200mL饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩得到粗品。经过硅胶柱纯化(石油醚:乙酸乙酯=10:1)后得到19c。
MS-ESI计算值[M+H]
+379实测值379。
第三步
在氮气氛围中往化合物19c(21g,55.5mmol,1eq)的300mL甲醇溶液中加入Pd/C(10%,6.8g).反应液用氢气置换三次后在氢气氛围下(50Psi),60℃下搅拌16个小时。反应液经过硅藻土过滤后减压浓缩得到粗品,粗品经过硅胶柱纯化(石油醚:乙酸乙酯=3:1)后得到19d。
MS-ESI计算值[M+H]
+215实测值215。
1HNMR(400MHz,CDCl
3)δ:6.17-6.15(m,1H),6.08-6.03(m,1H),3.85-3.88(m,4H),3.79(s,2H),3.04-3.08(m,4H)。
第四步
将化合物19d(5.5g,25.7mmol,1eq.)溶解到无水四氢呋喃(50mL)中,再加入N-碘代丁二酰亚胺(6.07g,27.0mmol,1.05eq.)。混合物在25℃下搅拌1小时。反应完成后,减压浓缩。快速硅胶色谱法(
80g快速硅胶柱,洗脱剂0~8%乙酸乙酯/石油醚流速60mL/min)纯化得到化合物19e。
MS-ESI计算值[M+H]
+341实测值341。
1H NMR(400MHz,DMSO-d
6)δ:6.24(dd,J=6.8,10.0Hz,1H),5.32(s,2H),3.75-3.66(m,4H),3.01-2.90(m,4H)。
第五步
将化合物19e(2g,5.88mmol,1eq.),三甲基硅乙炔(1.73g,17.6mmol,2.44mL,3eq.),碘化亚铜(112mg,588μmol,0.1eq.),二氯双(三苯基膦)钯(II)(206mg,294μmol,0.05eq.)加入到三乙胺(60mL)中,混合物在氮气保护下50℃搅拌2小时。反应完成后,减压浓缩。快速硅胶色谱法(
40g快速硅胶柱,洗脱剂0~10%乙酸乙酯/石油醚流速35mL/min)纯化得到化合物19f。
MS-ESI计算值[M+H]
+311实测值311。
第六步
将化合物19f(1.6g,5.15mmol,1eq.),溶于浓盐酸(10mL)中,然后在0℃缓慢滴加亚硝酸钠(533mg,7.73mmol,1.5eq.)的水(2mL)溶液,在该温度下搅拌30分钟后,升温至20℃反应1小时。反应完成后,倒入饱和的碳酸氢钠溶液中调碱至pH=8,二氯甲烷萃取,有机相用饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩。快速硅胶色谱法(
12g快速硅胶柱,洗脱剂0~50%乙酸乙酯/二氯甲烷流速30mL/min)纯化得到化合物19g。
MS-ESI计算值[M+H]
+286,288实测值286,288。
1H NMR(400MHz,DMSO-d
6)δ:9.43(s,1H),7.80(dd,J=6.8,14.4Hz,1H),3.81-3.76(m,4H),3.40-3.43(m, 4H)。
第七步
将化合物19g(0.65g,2.28mmol,1eq.),化合物3e(2.5g,8.00mmol,3.52eq.),1,1-双(二苯基磷)二茂铁氯化钯(83.2mg,114μmol,0.05eq.),碳酸钠(723mg,6.83mmol,3eq.)加入到二氧六环(30mL)和水(5mL)混合溶剂中,氮气保护下95℃反应3小时,反应完成后,过滤,减压浓缩。高效液相色谱法(HPLC)(分离柱:Xtimate C18 150x25mm,5μm;流动相:[水(10mM碳酸氢铵)-乙腈];B%:42%-62%,7min)制备纯化,超临界流体色谱(SFC)(色谱柱:Chiralpak AD-3 50x4.6mm I.D.,3μm);流动相:[40%的(含0.05%二乙胺)乙醇二氧化碳溶液];流速:4毫升每分钟;柱温:35℃;洗脱时间:2分钟)分离得化合物19(保留时间:0.671分钟)和化合物20(保留时间:1.128分钟)。
化合物19(保留时间:0.671分钟)
MS-ESI计算值[M+H]
+518,520实测值518,520。
1H NMR(400MHz,DMSO-d
6)δ:9.35-9.18(m,1H),7.91(br t,J=7.6Hz,1H),7.82-7.61(m,3H),7.28-7.17(m,1H),6.65(br s,1H),6.23(br s,1H),4.01(br d,J=10.4Hz,3H),3.81(m,4H),3.41(m,4H)。
化合物20(保留时间:1.128分钟)
MS-ESI计算值[M+H]
+518,520实测值518,520。
1H NMR(400MHz,DMSO-d
6)δ:9.35-9.18(m,1H),7.91(br t,J=8.4Hz,1H),7.80-7.59(m,3H),7.28-7.17(m,1H),6.65(br s,1H),6.23(br s,1H),4.01(br d,J=10.4Hz,3H),3.81(m,4H),3.41(m,4H)。
实施例21&22
第一步
将化合物19d(7g,32.7mmol,1eq.)溶解到原甲酸三乙酯(71.3g,481mmol,80mL,14.7eq.)中,再加入丙二酸亚异丙酯(12.5g,86.7mmol,2.65eq.)。升高温度至145℃搅拌3小时。反应完成后,冷却至室 温,过滤,滤饼用异丙醚洗涤,减压干燥得到化合物21a。
MS-ESI计算值[M+H]
+369实测值369。
1H NMR(400MHz,DMSO-d
6)δ:11.39(br d,J=13.6Hz,1H),8.72(d,J=13.6Hz,1H),7.49-7.44(m,1H),6.79-6.74(m,1H),3.81-3.67(m,4H),3.14-3.00(m,4H),1.68(s,6H)。
第二步
将化合物21a(8g,21.7mmol,1eq.)和二苯醚(107g,629mmol,100mL,28.94eq.)在240℃搅拌1小时。反应完成后,冷却至室温,异丙醚稀释后过滤,滤饼减压干燥得到化合物21b。
MS-ESI计算值[M+H]
+267实测值267。
1H NMR(400MHz,DMSO-d
6)δ:11.44(br d,J=4.0Hz,1H),7.66(dd,J=6.0,7.2Hz,1H),6.75(dd,J=6.8,14.0Hz,1H),5.87(d,J=8.0Hz,1H),3.80-3.67(m,4H),3.26-3.05(m,4H)。
第三步
将化合物21b(5.45g,20.5mmol,1eq.)溶于无水N,N-二甲基甲酰胺(100mL)中,然后缓慢滴加三溴化磷(8.31g,30.7mmol,1.5eq.),混合物在25℃搅拌反应0.5小时。反应完成后,倒入(200mL)饱和的碳酸钠溶液,二氯甲烷萃取,有机相用饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩。石油醚打浆得到化合物21c。
MS-ESI计算值[M+H]
+329,331实测值329,331。
1H NMR(400MHz,DMSO-d
6)δ:8.63(d,J=4.4Hz,1H),7.80(d,J=4.8Hz,1H),7.44(dd,J=7.2,4.8Hz,1H),3.80-3.75(m,4H),3.31-3.26(m,4H)。
第四步
将化合物21c(1g,3.04mmol,1eq.),化合物3e(3.5g,11.2mmol,3.68eq.),1,1-双(二苯基磷)二茂铁氯化钯(111mg,152μmol,0.05eq.),碳酸钠(644mg,6.08mmol,2eq.)加入到二氧六环(30mL)和水(5mL)混合溶剂中,氮气保护下95℃反应3小时,反应完成后,减压浓缩,加水稀释,乙酸乙酯萃取,合并有机相饱和食盐水洗涤,无水硫酸钠干燥。减压浓缩,快速硅胶色谱法(
20g快速硅胶柱,洗脱剂0~100%乙酸乙酯/石油醚流速35mL/min)纯化,超临界流体色谱(SFC)(色谱柱:Chiralpak AD-3 50x4.6mm I.D.,3μm);流动相:[40%的(含0.05%二乙胺)乙醇二氧化碳溶液];流速:4毫升每分钟;柱温:35℃;洗脱时间:2.5分钟)分离得化合物21(保留时间:0.806分钟)和化合物22(保留时间:1.224分钟)。
化合物21(保留时间:0.806分钟)
MS-ESI计算值[M+H]
+517,519实测值517,519。
1H NMR(400MHz,DMSO-d
6)δ:8.97(br s,1H),7.79(br s,1H),7.75-7.60(m,1H),7.56(br d,J=8.8Hz,1H),7.38(br s,2H),7.21(br s,1H),6.60(br s,1H),6.21(br s,1H),4.01(br d,J=6.4Hz,3H),3.87-3.70(m,4H), 3.37-3.20(m,4H)。
化合物22(保留时间:1.224分钟)
MS-ESI计算值[M+H]
+517,519实测值517,519。
1H NMR(400MHz,DMSO-d
6)δ:8.92-9.03(m,1H),7.82-7.77(m,1H),7.73-7.60(m,1H),7.56(d,J=9.2Hz,1H),7.42-7.28(m,2H),7.20(dd,J=5.2,9.6Hz,1H),6.63-6.57(m,1H),6.21(br d,J=3.6Hz,1H),4.01(d,J=7.6Hz,3H),3.83-3.73(m,4H),3.33-3.22(m,4H)。
实施例23&24
第一步
将化合物21c(100mg,304μmol,1eq.),化合物17a(351mg,1.18mmol,3.9eq.),1,1-双(二苯基磷)二茂铁氯化钯(17.8mg,24.3μmol,0.08eq.),碳酸钠(96.6mg,911μmol,3eq.)加入到二氧六环(5mL)和水(1mL)混合溶剂中,氮气保护下95℃反应3小时,反应完成后,减压浓缩,高效液相色谱法(HPLC)(分离柱:Xtimate C18 150x25mm,5μm;流动相:[水(0.225%甲酸)-乙腈];B%:42%-62%,7min)制备纯化,超临界流体色谱(SFC)((色谱柱:Chiralpak IG-3 50x4.6mm I.D.,3μm);流动相:[40%的(含0.05%二乙胺)乙醇二氧化碳溶液];流速:4毫升每分钟;柱温:35℃;洗脱时间:3分钟))分离得化合物23(保留时间:0.926分钟)和化合物24(保留时间:1.512分钟)。
化合物23(保留时间:0.926分钟)
MS-ESI计算值[M+H]
+501,503实测值501,503。
1H NMR(400MHz,DMSO-d
6)δ:8.99(d,J=4.0Hz,1H),8.43(dd,J=2.4,9.6Hz,1H),8.35(dd,J=2.4,11.6Hz,1H),7.81(t,J=8.8Hz,1H),7.52(d,J=9.2Hz,1H),7.41-7.29(m,2H),6.45(br s,1H),6.21(d,J=4.4Hz,1H),3.76-3.82(m,4H),3.30-3.25(m,4H),2.74-2.67(m,3H)。
化合物24(保留时间:1.512分钟)
MS-ESI计算值[M+H]
+501,503实测值501,503。
1H NMR(400MHz,DMSO-d
6)δ:8.98(d,J=4.0Hz,1H),8.48-8.29(m,2H),7.81(t,J=8.8Hz,1H),7.52(br d,J=9.2Hz,1H),7.42-7.27(m,2H),6.44(br s,1H),6.21(br s,1H),3.83-3.73(m,4H),3.33-3.23(m,4H),2.75-2.67(m,3H)。
实施例25&26
第一步
将化合物15a(500mg,2.25mmol,1eq)溶解到四氢呋喃(10.0mL)中,再将25b(1.45g,4.89mmol,2.17eq)加入到反应中。混合物在80℃下搅拌40分钟。反应完成后,缓慢倒入水(50.0mL)中,过滤,得到25c。MS-ESI计算值[M+H]
+279,实测值279。
第二步
将化合物25c(496mg,2.00mmol,1eq)加入到N,N-二甲基甲酰胺(2.00mL)中,然后滴加丙二腈(230mg,2.40mmol,1.2eq)和三乙胺(243mg,2.40mmol,334μL,1.2eq)的N,N-二甲基甲酰胺溶液(1.00mL),混合物在60℃下搅拌0.6小时,然后倒入冰冷的0.2摩尔的稀盐酸(11.0mL)中,过滤,得到的滤饼减压浓缩后,加入到8摩尔的氢氧化钾溶液(11.1mL)中,在120℃下搅拌40小时。反应完成后,用12摩尔的盐酸中和至中性,过滤得干燥后得到化合物25d。
MS-ESI计算值[M+H]
+247,实测值247。
第三步
将化合物25d(500mg,2.04mmol,1eq)溶于氧氯化磷(4.95g,32.3mmol,3mL)中,混合物在125℃反应12小时。然后,减压浓缩掉氧氯化磷,得到的固体混合物加入水(10.0mL)中,混合物在125℃反应4小时,反应完成后,滴加1摩尔的氢氧化钠溶液中和到中性,过滤得到化合物25e。
MS-ESI计算值[M+H]
+283,284,285实测值283,284,285。
第四步
将化合物25e(50mg,0.177mmol)溶解于浓盐酸(510mg,4.76mmol)中,反应液于65℃反应。反应完全,过滤反应液,干燥得化合物25f。
MS-ESI计算值[M+H]
+265,267实测值265,267
第五步
将化合物25f(40mg,151μmol,1eq)溶于N,N-二甲基甲酰胺(2.00mL)中,再加入氧化银(37.4mg,302 μmol,5.00μL,2eq),碘甲烷(0.4g,2.82mmol,175μL,18.7eq),碳酸钾(41.8mg,302μmol,2eq)和N,N-二异丙基乙胺(58.6mg,453μmol,78.9μL,3eq),混合物在60℃反应12小时。然后继续补加碘甲烷(2.19g,15.4mmol,961μL,102eq),继续反应1小时。反应完成,得到的固体混合物加入水(30.0mL)中,乙酸乙酯(20mL*3)萃取,饱和食盐水(10mL)洗,无水硫酸钠干燥,得到化合物25g。
MS-ESI计算值[M+H]
+279,281实测值279,281。
第六步
将化合物25g(374mg,1.20mmol,5eq),化合物3e(40mg,144μmol,0.6eq)加入到无水二氧六环(2.5mL)和水(0.5mL)中,再加入碳酸钠(50.7mg,478μmol,2eq)和1,1-双(二苯基磷)二茂铁氯化钯(14.0mg,19.1μmol,0.08eq),氮气保护下90℃反应1小时,反应完成后,减压浓缩掉大部分的二氧六环,加水(20.0mL)稀释后用乙酸乙酯萃取(50.0mL*3),合并的有机相用饱和食盐水(20.0mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。残渣经薄层层析法(1:1石油醚:乙酸乙酯)纯化,进一步经超临界流体色谱(SFC)(色谱柱:YMC CHIRAL,Amylose-C(250mm*30mm,5μm);流动相:[45%的(含0.1%氨水)乙醇二氧化碳溶液];流速:4毫升每分钟;柱温:35℃;洗脱时间:4分钟)分离得化合物25(保留时间:0.729分钟)和化合物26(保留时间:2.168分钟)。
化合物25(保留时间:0.729分钟)
MS-ESI计算值[M+H]
+511,513实测值511,513。
1H NMR(400MHz,DMSO-d
6)δ:7.69(d,J=9.2Hz,2H),7.61(d,J=9.2Hz,1H),7.20(br d,J=8.0Hz,1H),7.06(br s,1H),6.91(br s,1H),6.85(s,1H),6.58(d,J=5.2Hz,1H),6.36-6.32(m,1H),6.19(d,J=5.2Hz,1H),4.00(s,3H),3.77(br s,4H),3.65(s,3H),3.36-3.33(m,4H)。
化合物26(保留时间:2.168分钟)
MS-ESI计算值[M+H]
+511,513实测值511,513。
1H NMR(400MHz,DMSO-d6)δ:7.69(d,J=9.2Hz,2H),7.61(d,J=9.2Hz,1H),7.20(br d,J=8.0Hz,1H),7.07(br s,1H),6.91(br s,1H),6.85(s,1H),6.59(d,J=5.2Hz,1H),6.36-6.34(m,1H),6.19(d,J=5.2Hz,1H),4.00(s,3H),3.77(br s,4H),3.65(s,3H),3.34(br s,4H)。
实验例1:体外评价DNA-PK、PI3K(p110α/p85α)、PI3K(p110β/p85α)、PI3K(p110σ/p85α)、PI3K(p120γ)激酶抑制活性
本实验测试于Eurofins Pharma Discovery Service,Reaction Biology Corp.(RBC)
实验材料及方法:
人源DNA-PK;Mg/ATP;GST-cMyc-p53;EDTA;Ser15抗体;ATP:10μM;生物素化磷脂酰肌醇-3,4,5-三磷酸;GST标签的GRP1PH域;链霉亲和素别藻蓝蛋白;铕标记的GST单克隆抗体。
实验方法(Eurofins Pharma Discovery Service):
将DNA-PK(h)在含有50nM GST-cMyc-p53和Mg/ATP(根据需要的浓度)的测定缓冲液中温育。通过添加Mg/ATP混合物引发反应。在室温下温育30分钟后,加入含有EDTA的终止溶液终止反应。最后,添加检测缓冲液(含有标记的抗GST单克隆抗体和针对磷酸化p53的铕标记的抗磷酸Ser15抗体)。然后以时间分辨荧光模式读板,并根据公式HTRF=10000×(Em665nm/Em620nm)测定均匀时间分辨荧光(HTRF)信号。
将PI3K(p110α/p85α)在含有磷脂酰肌醇4,5-二磷酸和Mg/ATP(根据需要的浓度)的测定缓冲液中温育。通过添加ATP溶液引发反应。在室温下温育30分钟后,加入含有EDTA和生物素化磷脂酰肌醇-3,4,5-三磷酸的终止溶液终止反应。最后,添加检测缓冲液(含有铕标记的GST单克隆抗体、带有GST标签的GRP1PH域和链霉亲和素别藻蓝蛋白)针对磷酸化p53的铕标记的抗磷酸Ser15抗体)。然后以时间分辨荧光模式读板,并根据公式HTRF=10000×(Em665nm/Em620nm)测定均匀时间分辨荧光(HTRF)信号。
将PI3K(p110β/p85α)在含有磷脂酰肌醇4,5-二磷酸和Mg/ATP(根据需要的浓度)的测定缓冲液中温育。通过添加Mg/ATP混合物引发反应。在室温下温育30分钟后,加入含有EDTA和生物素化磷脂酰肌醇-3,4,5-三磷酸的终止溶液终止反应。最后,添加检测缓冲液(含有铕标记的GST单克隆抗体、带有GST标签的GRP1PH域和链霉亲和素别藻蓝蛋白)针对磷酸化p53的铕标记的抗磷酸Ser15抗体)。然后以时间分辨荧光模式读板,并根据公式HTRF=10000×(Em665nm/Em620nm)测定均匀时间分辨荧光(HTRF)信号。
将PI3K(p110σ/p85α)在含有磷脂酰肌醇4,5-二磷酸和Mg/ATP(根据需要的浓度)的测定缓冲液中温育。通过添加Mg/ATP混合物引发反应。在室温下温育30分钟后,加入含有EDTA和生物素化磷脂酰肌醇-3,4,5-三磷酸的终止溶液终止反应。最后,添加检测缓冲液(含有铕标记的GST单克隆抗体、带有GST标签的GRP1PH域和链霉亲和素别藻蓝蛋白)针对磷酸化p53的铕标记的抗磷酸Ser15抗体)。然后以时间分辨荧光模式读板,并根据公式HTRF=10000×(Em665nm/Em620nm)测定均匀时间分辨荧光(HTRF)信号。
将PI3K(p120γ)在含有磷脂酰肌醇4,5-二磷酸和Mg/ATP(根据需要的浓度)的测定缓冲液中温育。通过添加Mg/ATP混合物引发反应。在室温下温育30分钟后,加入含有EDTA和生物素化磷脂酰肌醇-3,4,5-三磷酸的终止溶液终止反应。最后,添加检测缓冲液(含有铕标记的GST单克隆抗体、带有GST标签的GRP1PH域和链霉亲和素别藻蓝蛋白)针对磷酸化p53的铕标记的抗磷酸Ser15抗体)。然后以时间分辨荧光模式读板,并根据公式HTRF=10000×(Em665nm/Em620nm)测定均匀时间分辨荧光(HTRF)信号。
实验结果:
表1 DNA-PK激酶活性测试结果
结论:本发明化合物具有显著甚至意料不到的DNA-PK激酶抑制活性,并且具有更高的DNA-PK激酶选择性。
注:
“ND”表示未检测到IC
50
“-”表示未检测
实验例2:药代动力学评价
1.实验方法
受试化合物与10%DMSO/50%PEG400/40%水混合,涡旋并超声,制备得到0.2mg/mL或0.4mg/mL近似澄清溶液,微孔滤膜过滤后备用。选取18至20克的Balb/c雌性小鼠,静脉注射给予候选化合物溶液,剂量为1或2mg/kg。受试化合物与10%DMSO/50%PEG400/40%水混合,涡旋并超声,制备得到0.2mg/mL或1mg/mL近似澄清溶液,微孔滤膜过滤后备用。选取18至20克的Balb/c雌性小鼠,口服给予候选化合物溶液,剂量为2或10mg/kg。收集一定时间的全血,制备得到血浆,以LC-MS/MS方 法分析药物浓度,并用Phoenix WinNonlin软件(美国Pharsight公司)计算药代参数。
各参数定义:
C
0:静脉注射后瞬时的需要浓度;C
max:给药后出现的血药浓度最高值;T
max:给药后达到药峰浓度所需的时间;T
1/2:血药浓度下降一半所需的时间;V
dss:表观分布容积,指药物在体内达到动态平衡时体内药量与血药浓度的比例常数。Cl:清除率,指单位时间从体内清除的药物表观分布容积数;T
last:最后一个检测点的时间;AUC
0-last:药时曲线下面积,指血药浓度曲线对时间轴所包围的面积;Bioavailability:药物被吸收进入血液循环的速度和程度的一种量度,是评价药物吸收程度的重要指标。测试结果:
测试结果见表2~表6。
表2实施例化合物血浆中的药物代谢动力学(PK)参数
表3实施例化合物血浆中的PK参数
表4实施例化合物血浆中的PK参数
表5实施例化合物血浆中的药物代谢动力学(PK)参数
表6实施例化合物血浆中的PK参数
“--”是指未测试或未获得数据。
试验结论:受试化合物展现了更长的半衰期、更低的清除率和更高的药物暴露量,较参考化合物具有更优的体内药物代谢动力学性质。
实验例3:人小细胞肺癌NCI-H69细胞皮下异种移植肿瘤BALB/c裸小鼠模型的体内药效学研究:
实验目的:研究待测化合物对人小细胞肺癌NCI-H69细胞皮下异种移植肿瘤BALB/c裸小鼠模型的体内药效学
实验动物:雌性BALB/c裸小鼠,6-8周龄,体重15-22克;供应商:上海灵暢生物科技有限公司(灵暢,上海)
实验方法与步骤:
3.1细胞培养
人小细胞肺癌NCI-H69细胞(ATCC,货号:HTB-119和ECACC-95111733)体外悬浮培养,培养条件为RPMI-1640培养基中加10%胎牛血清,100U/mL青霉素和100μg/mL链霉素,37℃,5%CO
2孵箱培养。一周两次进行常规传代。当细胞饱和度为80%-90%,数量到达要求时,收取细胞,计数,接种。
3.2肿瘤细胞接种(肿瘤接种)
将0.2mL(10×10
6个)NCI-H69细胞(加基质胶,体积比为1:1)皮下接种于每只小鼠的右后背,肿瘤平均体积达到约110-120mm
3时开始分组给药。
3.3受试物的配制:
受试化合物配制成5mg/mL的澄清溶液,溶媒为10%DMSO+50%聚乙二醇400+40%水。
3.4肿瘤测量和实验指标
实验指标是考察肿瘤生长是否被抑制、延缓或治愈。每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5a×b
2,a和b分别表示肿瘤的长径和短径。
化合物的抑瘤疗效用TGI(%)或相对肿瘤增殖率T/C(%)评价。TGI(%),反映肿瘤生长抑制率。TGI(%)的计算:TGI(%)=【1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积)/(溶剂对照组治 疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)】×对照组。
相对肿瘤增殖率T/C(%):计算公式如下:T/C%=TRTV/CRTV组开始治疗时平(TRTV:治疗组RTV;CRTV:阴性对照组RTV)。根据肿瘤测量的结果计算出相对肿瘤体积(relative tumor volume,RTV),计算公式为RTV=V
t/V
0,其中V
0是分组给药时(即d
0)测量所得平均肿瘤体积,V
t为某一次测量时的平均肿瘤体积,TRTV与CRTV取同一天数据。
在实验结束后将检测肿瘤重量,并计算T/重量百分比,T重量和C重量分别表示给药组和溶媒对照组的瘤重。
3.5统计分析
统计分析,包括每个组的每个时间点的肿瘤体积的平均值和标准误(SEM)。治疗组在试验结束时给药后第21天表现出最好的治疗效果,因此基于此数据进行统计学分析评估组间差异。两组间比较用T-test进行分析,三组或多组间比较用one-way ANOVA进行分析,如果F值有显著性差异,应用Games-Howell法进行检验。如果F值无显著性差异,应用Dunnet(2-sided)法进行分析。用SPSS 17.0进行所有数据分析。p<0.05认为有显著性差异。
3.6试验结论和讨论
1)与溶媒组相比,在人乳腺癌裸鼠移植瘤模型中,M3814(40mg/kg,口服,每日一次)+依托泊苷(10mg/kg,IP,3天给药,4天停药),实施例2(40mg/kg,口服,每日一次)+依托泊苷(10mg/kg,腹腔注射给药,3天给药,4天停药),实施例19(40mg/kg,口服,每日一次)+依托泊苷(10mg/kg,IP,3天给药,4天停药),和实施例19(80mg/kg,口服,每日一次)+依托泊苷(10mg/kg,IP,3天给药,4天停药)与溶剂对照组相比有显著性差异,TGI分别为74%、89%、64%和80%。各组体重变化分别为:M3814(40mg/kg,-16.00%),实施例2(40mg/kg,-16.66%),实施例19(40mg/kg,-5.88%),和实施例19(80mg/kg,0.13%)。实施例19具有显著的抑瘤效果和更高的安全性。
表7受试化合物对人小细胞肺癌NCI-H69细胞皮下异种移植肿瘤抑瘤效果
注:
“--”不需计算
a.平均值±SEM。
b.肿瘤生长抑制由T/C和TGI(TGI(%)=[1-(T
21-T
0)/(V
21-V
0)]×100)计算。
c.p值根据肿瘤体积。
2)给药24天时,M3814(40mg/kg,口服,每日一次)+依托泊苷(10mg/kg,IP,3天给药,4天停药),实施例19(40mg/kg,口服,每日一次)+依托泊苷(10mg/kg,IP,3天给药,4天停药)和实施例19(40mg/kg,PO,BID)+依托泊苷(10mg/kg,IP,3天给药,4天停药)的T/C分别为43.1%、38.6%和28.4%,TGI分别为66.1%、70.5%和81.5%,均有明显的抑制肿瘤生长的作用,与溶剂对照组相比均为p<0.05。M3814(40mg/kg,QD),依托泊苷(10mg/kg),实施例19(40mg/kg,BID),实施例19(10mg/kg,BID)+依托泊苷(10mg/kg,IP,3天给药,4天停药),实施例19(20mg/kg,QD)+依托泊苷(10mg/kg,IP,3天给药,4天停药)的T/C分别为84.1%、75.6%、85.8%、61.2%和50.6%,TGI分别为19.8%、33.4%、16.8%、46.5%和56.8%,与溶剂对照相比p值分别为0.603、0.570、0.471、0.005和<0.001,具有一定的抑瘤作用。
根据瘤重与根据体积计算出的T/C值接近,并且趋势一致。上述结果提示在人小细胞肺癌NCI-H69裸鼠移植瘤模型中,M3814(40mg/kg,口服,每日一次)+依托泊苷(10mg/kg,IP,3天给药,4天停药)联用组具有显著抗肿瘤作用;此外,实施例19(40mg/kg,口服,每日一次)+依托泊苷(10mg/kg,IP,3天给药,4天停药)和实施例19(40mg/kg,PO,BID)+依托泊苷(10mg/kg,IP,3天给药,4天停药)联用组也具有显著抗肿瘤作用,并且后者的抗肿瘤作用具有量效依赖的趋势(高剂量组与低剂量组相比p<0.05)。实施例19(40mg/kg,PO,BID)+依托泊苷(10mg/kg,IP,一周前三天给药,后四天停药)与两个对应单药组相比p值均<0.05,有协同效应。
表8受试化合物对人小细胞肺癌NCI-H69异种移植瘤模型的抑瘤效果
注:a.平均值±SEM,n=9。
结论:两次体内药效试验结果显示,实施例19化合物联用依托泊苷具有明显的协同作用,且抑瘤效果显著。
实验例4:人头颈癌FaDu细胞皮下异种移植肿瘤BALB/c裸小鼠模型的体内药效学研究:
实验目的:本试验使用人头颈癌FaDu细胞皮下异种移植肿瘤裸小鼠模型评价受试化合物的抗肿瘤作用实验动物:雌性BALB/c裸小鼠,6-8周龄,体重17-23克;供应商:上海西普尔-必凯实验动物有限公司
实验方法与步骤:
4.1细胞培养
人头颈癌FaDu细胞(ATCC,马纳萨斯,弗吉尼亚州,货号:HTB-43),体外单层培养,培养条件为EMEM培养基中加10%胎牛血清,100U/mL青霉素和100μg/mL链霉素,37℃,5%CO
2孵箱培养。一周两次用胰酶-EDTA进行常规消化处理传代。
4.2肿瘤细胞接种(肿瘤接种)
每只小鼠于右后背位置皮下接种0.1mL(5×10
6)FaDu细胞,肿瘤平均体积达到约106mm
3时,采用随机分组,开始给药。
4.3受试物的配制:
受试化合物配制成5mg/mL的澄清溶液,溶媒为10%DMSO+50%聚乙二醇400+40%水;每三天配制一次。
4.4肿瘤测量和实验指标
实验指标是考察肿瘤生长是否被抑制、延缓或治愈。每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5a×b
2,a和b分别表示肿瘤的长径和短径。
化合物的抑瘤疗效用TGI(%)或相对肿瘤增殖率T/C(%)评价。TGI(%),反映肿瘤生长抑制率。TGI(%)的计算:TGI(%)=【1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积)/(溶剂对照组治 疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)】×对照组。
相对肿瘤增殖率T/C(%):计算公式如下:T/C%=TRTV/CRTV组开始治疗时平(TRTV:治疗组RTV;CRTV:阴性对照组RTV)。根据肿瘤测量的结果计算出相对肿瘤体积(relative tumor volume,RTV),计算公式为RTV=V
t/V
0,其中V
0是分组给药时(即d
0)测量所得平均肿瘤体积,V
t为某一次测量时的平均肿瘤体积,TRTV与CRTV取同一天数据。
在实验结束后将检测肿瘤重量,并计算T/重量百分比,T重量和C重量分别表示给药组和溶媒对照组的瘤重。
4.5统计分析
统计分析,包括每个组的每个时间点的肿瘤体积的平均值和标准误(SEM)。治疗组在试验结束时给药后第21天表现出最好的治疗效果,因此基于此数据进行统计学分析评估组间差异。两组间比较用T-test进行分析,三组或多组间比较用one-way ANOVA进行分析,如果F值有显著性差异,应用Games-Howell法进行检验。如果F值无显著性差异,应用Dunnet(2-sided)法进行分析。用SPSS 17.0进行所有数据分析。p<0.05认为有显著性差异。
4.6试验结论和讨论
1)本实验评价了实施例19化合物在人头颈癌FaDu细胞异种移植瘤模型中的药效,以溶媒组为参照。给药21天时,放疗组(2Gy,放疗5天,停两天),M3814(50mg/kg,口服,每日一次)+放疗组(2Gy,放疗5天,停两天),实施例19(25mg/kg,口服,每日一次)+放疗组(2Gy,放疗5天,停两天)和实施例19(50mg/kg,口服,每日一次)+放疗组(2Gy,放疗5天,停两天)的T/C值分别为4.35%,0.24%,0.08%和0.08%,TGI分别为103.91%,108.46%,108.61%和108.64%,均有明显的抑制肿瘤生长的作用,与溶剂对照组相比均为均为p<0.001。M3814(50mg/kg,口服,每日一次)和实施例19(50mg/kg,口服,每日一次)的T/C值分别为99.60%和114.35%,TGI分别为-0.43%和-15.37%,与溶剂对照组相比p=1.000和0.990,无明显抑瘤作用。
上述结果提示在人头颈癌FaDu细胞裸鼠移植瘤模型中,放疗组(2Gy,放疗5天,停两天)和M3814(50mg/kg,口服,每日一次)+放疗组(2Gy,放疗5天,停两天)联用组均具有显著抗肿瘤作用;此外,实施例19(25mg/kg,口服,每日一次)+放疗组(2Gy,放疗5天,停两天)和实施例19(50mg/kg,口服,每日一次)+放疗组(2Gy,放疗5天,停两天)联用组均具有显著抗肿瘤作用。详见表9和表10。
2)在此模型中所有给药组动物的体重均未见明显下降,而进行辐照的4组动物的体重略有下降,但平均值均低于10%。未进行辐照的动物肿瘤在分组给药后第21天半数出现破溃和结痂,其中Group3(M3814,50mg/kg)一只动物动物在分组给药后第23天发现死亡;Group 4(实施例19,50mg/kg)的一只动物因肿瘤破溃达到安乐死标准,在开始给药后第22天执行安乐死。Group 1(Vehicle)、Group 3(M3814, 50mg/kg)和Group 4(实施例19,50mg/kg)因平均肿瘤体积接近2000mm3,三组所有剩余动物均于开始给药后24天执行安乐死。
表9人头颈癌FaDu细胞异种移植瘤模型的抑瘤效果
注:a.平均值±SEM,n=8。
表10各组不同时间点的瘤体积
注:a.平均值±SEM,n=8。
讨论:在本次试验中,单独辐照组与联用组对肿瘤生长均有显著抑制作用,在治疗期间,联用组的平均肿瘤体积始终小于单独辐照组,且所有联用组的平均肿瘤体积均在分组后第31天降至零,而同日单独辐照组的平均肿瘤体积达到最小值24mm
3。停药后7周时间中观察到单独辐照组动物的肿瘤开始反弹,而联用组的肿瘤均完全消失且均未反弹,表明较低剂量的DNA-PK抑制剂即可以增强放疗的治疗效果,且联用具有长久的抑瘤效果。