WO2020259437A1 - 信号传输方法、通信设备及基站 - Google Patents

信号传输方法、通信设备及基站 Download PDF

Info

Publication number
WO2020259437A1
WO2020259437A1 PCT/CN2020/097431 CN2020097431W WO2020259437A1 WO 2020259437 A1 WO2020259437 A1 WO 2020259437A1 CN 2020097431 W CN2020097431 W CN 2020097431W WO 2020259437 A1 WO2020259437 A1 WO 2020259437A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
communication device
location information
frequency
transmission timing
Prior art date
Application number
PCT/CN2020/097431
Other languages
English (en)
French (fr)
Inventor
柯颋
徐珉
吴丹
杨博涵
王启星
刘光毅
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2020259437A1 publication Critical patent/WO2020259437A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset

Definitions

  • the present disclosure relates to the field of mobile communication technology, and in particular to a signal transmission method, communication equipment and base station.
  • ground-air interconnection With the development of aviation industry and Internet technology, the demand for ground-air interconnection applications is becoming more and more urgent. Through ground-air interconnection, passengers can access the Internet on the plane as if they are on the ground, and enjoy various Internet application services. Operators, airlines and all parties in the industry can also provide value-added services based on ground-air interconnection technology.
  • Ground-to-air (ATG, air-to-ground) communication technology uses mature land mobile communication technologies, such as 4G and 5G technologies, to build a dedicated base station on the ground with antennas that can cover the sky, and build a dedicated network with three-dimensional coverage of ground and air. Effectively solve high-altitude three-dimensional coverage and realize high-speed data transmission between ground and air.
  • ATG networks need to support a large coverage radius, such as 100-300km. For example, in inland areas, a coverage radius of 100km is typically required to reduce the number of ATG base stations and reduce network deployment costs.
  • the ATG network needs to support a coverage radius of 300km at the farthest.
  • the ATG network also needs to support a maximum terminal motion speed of 1200km/h.
  • LTE Long Term Evolution
  • NR 5G New Radio
  • At least one embodiment of the present disclosure provides a signal transmission method, communication device, and base station, which can effectively solve the signal transmission problem caused by excessive cell coverage radius and Doppler shift.
  • At least one embodiment provides a signal transmission method, including:
  • obtaining location information of a base station includes:
  • the transmission timing of the communication device is determined according to at least one of the following methods:
  • N TA the transmission timing of the communication device according to the N TA , where the transmission timing of the communication device is equal to (N TA + N TA_offset ) ⁇ T c , where , N TA_offset is the timing advance offset value, and T c is the basic time unit.
  • determining the transmission timing of the communication device and/or the carrier frequency of the communication device includes:
  • determining the transmission timing of the communication device includes:
  • determining the spatial propagation distance between the base station and the communication device according to the location information of the base station includes:
  • the first reference moment includes at least one of the following:
  • the time at which the communication device transmits the signal and/or channel is the time at which the communication device transmits the signal and/or channel.
  • determining the carrier frequency of the communication device includes:
  • f 0 is the base station transmitting signal frequency.
  • f′ 0 represents the frequency at which the communication device receives the signal sent by the base station.
  • determining the first frequency offset f d between the base station and the communication device according to the location information of the base station includes:
  • c is the speed of light
  • f 0 is the frequency at which the base station sends signals
  • Is the speed vector of the communication device, ⁇ , ⁇ > represents the scalar product of two vectors, and
  • determining the carrier frequency of the communication device includes:
  • the uplink frequency offset And/or downlink frequency offset Determine the carrier frequency f′′ 0 of the communication device:
  • f UL is the preset frequency for the terminal to send signals
  • f′ DL represents the frequency at which the communication device receives the signal sent by the base station
  • f DL is the preset frequency for the base station to send signals
  • f UL is the preset frequency for the terminal to send signals
  • f′ DL represents the frequency at which the communication device receives the signal sent by the base station
  • ⁇ f DL_UL represents the preset deviation between the frequency at which the base station sends the signal and the signal sent by the terminal.
  • the uplink frequency offset is determined according to the location information of the base station And/or downlink frequency offset include:
  • c is the speed of light
  • f UL is the preset frequency for the terminal to send signals
  • f DL is the preset frequency for the base station to send signals
  • the method further includes:
  • At least one of the following methods is adopted to modulate and up-convert the complex-valued OFDM baseband signal s(t) of the antenna port p, the sub-carrier spacing configuration ⁇ , and the OFDM symbol l:
  • f′′ 0 is the carrier frequency of the communication device
  • T c is the basic time unit
  • the location information of the base station includes at least one of the following information: longitude, latitude, and altitude of the base station.
  • the obtained location information of the base station is the actual location information of the base station; or, the difference between the obtained location information of the base station and the actual location information of the base station is less than or equal to the first The preset threshold, and/or greater than or equal to the second preset threshold.
  • a signal transmission method applied to a base station including:
  • At least one of system information SI and radio resource control RRC signaling is used to notify or configure the location information of the base station.
  • the location information of the base station includes at least one of the following information: longitude, latitude, and altitude of the base station.
  • the notified or configured location information of the base station is the actual location information of the base station; or, the notified or configured location information of the base station has a deviation less than the actual location information of the base station Or equal to the first preset threshold, and/or greater than or equal to the second preset threshold.
  • a communication device including:
  • the location acquisition module is used to acquire the location information of the base station
  • the parameter determination module is used to determine the transmission timing of the communication device and/or the carrier frequency of the communication device.
  • a communication device including a processor and a transceiver, wherein:
  • the transceiver is used to obtain location information of the base station
  • the processor is configured to determine the transmission timing of the communication device and/or the carrier frequency of the communication device.
  • a communication device including: a memory, a processor, and a program stored in the memory and capable of running on the processor.
  • the program is executed by the processor, the above The steps of the method described.
  • a base station including:
  • the location configuration module is used to notify and configure the location information of the base station through at least one of system information SI and radio resource control RRC signaling.
  • a base station including a processor and a transceiver, wherein
  • the transceiver is used to notify or configure location information of the base station through at least one of system information SI and radio resource control RRC signaling.
  • a base station including: a memory, a processor, and a program stored in the memory and capable of running on the processor.
  • the program is executed by the processor, the above Steps of the method.
  • At least one embodiment provides a readable storage medium with a program stored on the readable storage medium, and when the program is executed by a processor, the steps of the method described above are implemented.
  • the signal transmission method, communication device, and base station provided by some embodiments of the present disclosure can obtain the transmission timing of the communication device and/or the carrier frequency of the communication device based on the location information of the base station, thereby enabling communication
  • the device can autonomously perform the technology of uplink timing advance (TA, Timing Advance) adjustment and frequency offset compensation, thereby effectively solving the technical challenges caused by the super large area coverage radius and super Doppler frequency shift.
  • TA Timing Advance
  • FIG. 1 is an example diagram of uplink TA adjustment provided by some embodiments of the disclosure
  • FIG. 3 is an example diagram of Doppler frequency shift provided by some embodiments of the disclosure.
  • FIG. 4 is an example diagram of inter-subcarrier interference provided by some embodiments of the disclosure.
  • FIG. 5 is a flowchart of a signal transmission method provided by some embodiments of the disclosure.
  • FIG. 6 is another flowchart of a signal transmission method provided by some embodiments of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a communication device provided by some embodiments of the disclosure.
  • FIG. 8 is another schematic structural diagram of a communication device provided by some embodiments of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a base station provided by some embodiments of the disclosure.
  • FIG. 10 is a schematic diagram of another structure of a base station provided by some embodiments of the present disclosure.
  • LTE Long Time Evolution
  • LTE-A Long Time Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • the CDMA system can implement radio technologies such as CDMA2000 and Universal Terrestrial Radio Access (UTRA).
  • UTRA includes Wideband Code Division Multiple Access (WCDMA) and other CDMA variants.
  • the TDMA system can implement radio technologies such as the Global System for Mobile Communication (GSM).
  • OFDMA systems can implement radios such as UltraMobile Broadband (UMB), Evolved UTRA (Evolution-UTRA, E-UTRA), IEEE 802.16 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM, etc. technology.
  • UMB UltraMobile Broadband
  • Evolution-UTRA Evolved UTRA
  • E-UTRA Evolved UTRA
  • IEEE 802.16 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDM
  • Flash-OFDM Flash-OFDM
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3GPP).
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2" (3GPP2).
  • the technology described in this article can be used for the systems and radio technologies mentioned above as well as other systems and radio technologies.
  • the following description describes the NR system for exemplary purposes, and NR terminology is used in most of the description below, although these techniques can also be applied to applications other than NR system applications.
  • the ATG network needs to expand the coverage radius from 100km to 300km, and expand the movement speed from 500km/h to 1200km/h. This is difficult to support through simple adaptive modification of parameters, but requires key sexual technological breakthrough.
  • an important feature of uplink transmission is that different UEs have orthogonal multiple access in time and frequency, that is, different UEs from the same cell There is no interference between uplink transmissions.
  • the base station In order to ensure the orthogonality of uplink transmission and avoid intra-cell inter-symbol interference, the base station (eNB or gNB) requires different UEs from the same subframe but different frequency domain resources (different RBs) The arrival time of the signal at the base station is basically aligned. Note that as long as the base station receives the uplink data sent by the UE within the CP (Cyclic Prefix) range, it can decode the uplink data correctly. Therefore, uplink synchronization requires that the signals from different UEs in the same subframe arrive at the base station. Within the CP.
  • both LTE and NR adopt an uplink timing advance (Uplink Timing Advance) mechanism.
  • Uplink Timing Advance Uplink Timing Advance
  • the timing advance is essentially a negative offset (negative offset) between the start time of receiving the downlink subframe and the time of transmitting the uplink subframe.
  • the base station can control the time when uplink signals from different UEs arrive at the base station by appropriately controlling the offset of each UE. For UEs far away from the base station, due to a larger transmission delay, it is necessary to send uplink data earlier than UEs closer to the base station.
  • the left half of Figure 1 shows the impact of not performing uplink timing advance.
  • the timing of the uplink subframe and the downlink subframe on the base station side are the same, but there is an offset between the timing of the uplink subframe and the downlink subframe on the UE side.
  • the uplink TA is a UE-level configuration.
  • the UE has not yet obtained the TA adjustment value when sending a preamble signal.
  • the UE determines the timing of sending the preamble according to the downlink (DL) timing. Therefore, from the perspective of the receiving side (ie, the base station side), the preamble signal sent by the UE has a propagation distance delay of 2 times from the frame boundary.
  • the base station determines the uplink TA adjustment value by measuring the delay between the received preamble signal and the frame boundary, and sends the uplink TA adjustment value to the UE through RAR signaling.
  • Figure 2 shows an example of misalignment of preambles sent by terminals at different distances from the base station.
  • the cell coverage radius is 100km as an example.
  • LTE and NR systems support preamble code division multiplexing technology, that is, in the same preamble time-frequency resource (also referred to as RO, RACH occasion), multiple UEs are allowed to send preamble at the same time.
  • preamble time-frequency resource also referred to as RO, RACH occasion
  • These preambles Use the same or different pseudo-random sequences, and different pseudo-random sequences have low cross-correlation.
  • the time difference of all code division multiplexed OFDM signals is smaller than the size of the cyclic prefix (CP, Cyclic Prefix), and the receiver can receive it normally.
  • the CP length of the preamble must be greater than the propagation delay equivalent to 2 times the cell coverage radius to ensure that multiple UEs are in the same RO (time-frequency resource)
  • the code division multiplexed preamble sent on the base station can be correctly demodulated and received.
  • the GT length of the preamble must be greater than the propagation delay equivalent to 2 times the cell coverage radius.
  • Table 1 shows some of the preamble formats supported by the 5G NR system. It can be seen that the NR system only supports a cell coverage radius of up to 107km, which is far below the design requirement of 300km.
  • the UL channel duration of the ATG system cannot be less than 5ms. This puts greater constraints on the frame structure design of the ATG system.
  • the sub-carrier spacing (SCS: sub-carrier space) of the preamble signal is 1.25 kHz or 5 kHz, which is much lower than the maximum of 5.5 kHz. Puller frequency shift. This will bring greater challenges to the frequency offset estimation on the base station side;
  • Severe inter-subcarrier interference may be caused on the base station side:
  • the terminal does not perform uplink frequency offset correction. Therefore, when the UE receives the DL signal sent by the base station, it will experience a 1-fold Doppler frequency offset; when the UE sends a UL signal at a frequency with a 1-fold frequency shift frequency offset, the base station will experience a 2-fold frequency shift frequency offset . For a Doppler frequency shift of 5.5 kHz, the frequency shift of 2 times is 11 kHz.
  • the Doppler frequency shift is caused by the radial distance change, that is, if the UE is located at the edge of the cell, it will experience the largest Doppler frequency shift (such as 5.5kHz); and when the UE is located directly above the base station (that is, the cell center) , Doppler frequency shift is 0kHz. Therefore, the Doppler shift experienced by UEs in different locations is also different. As shown in Figure 4, if the uplink signal of Customer Premise Equipment (CPE) at the cell center and the cell edge occupies adjacent frequency domain resources, the Doppler frequency offset (maximum 11kHz) will cause this The uplink signals of two CPEs (such as using a 15kHz subcarrier spacing) will cause serious inter-subcarrier interference problems.
  • CPE Customer Premise Equipment
  • the related technology does not support the index requirements for the maximum cell coverage radius and Doppler shift in the ATG system scenario. At the same time, it is difficult to support it through simple adaptive modification of parameters and must rely on key technological breakthroughs.
  • some embodiments of the present disclosure provide a signal transmission method, which can effectively solve the technical challenges caused by the super large area coverage radius and super Doppler frequency shift in the ATG network.
  • FIG. 5 is a flowchart when the signal transmission method provided by some embodiments of the present disclosure is applied to a communication device.
  • the communication equipment may be various terminals (such as mobile phones, computers, etc.), customer terminal equipment (CPE, Customer Premise Equipment), integrated access and backhaul (IAB, Integrated Access and Backhaul) or relay (Relay) Nodes, etc.
  • the terminal may be installed on a carrying device, such as an airplane, automobile, train, etc.
  • the signal transmission method includes:
  • Step 51 Obtain location information of the base station.
  • the communication device acquires location information of the base station.
  • the location information of the base station may be characterized by at least one of the longitude, latitude, and altitude of the base station.
  • the communication device can obtain the location information of the base station through at least one of pre-appointment, System Information (SI, System Information), and Radio Resource Control (RRC) signaling.
  • SI System Information
  • RRC Radio Resource Control
  • the pre-agreed implementation manner may be: the communication device is configured at the factory, or the location information of all base stations is obtained through a background update program at regular intervals.
  • the RRC signaling may include at least one of cell handover signaling and mobility management signaling.
  • the communication device determines base station location information based on system information; and/or, when the communication device is in the connected state, it can use RRC such as cell handover (Handover) or mobility management.
  • the signaling obtains the location information of the base station (such as the target base station).
  • the communication device when the communication device obtains the location information of the target base station through RRC signaling, the communication device may ignore the base station location information broadcast in the system message of the target base station.
  • the obtained location information of the base station is the actual location information of the base station. At this time, the obtained location information of the base station is the real geographic location of the base station.
  • the deviation between the location information of the base station obtained in step 51 and the actual location information of the base station is less than or equal to the first preset threshold, and/or greater than or equal to the second preset threshold .
  • the location information of the base station obtained in step 51 may have a certain deviation from the actual location of the base station.
  • the operator does not want to reveal the accurate real location of the base station, or is restricted by policies and regulations, and cannot reveal the accurate real location of the base station.
  • the position information deviation is a 2D distance deviation, or a 3D distance deviation.
  • the position deviation is required to be less than or equal to a first preset threshold (such as several hundred meters to several kilometers) to ensure that the communication device determines the transmission timing of the communication device according to the position information of the base station with deviation And/or the working mechanism of the carrier frequency of the communication device can work normally.
  • a first preset threshold such as several hundred meters to several kilometers
  • the position deviation is required to be greater than or equal to a second preset threshold (for example, a few meters to a few hundred meters), which is used to meet the needs of operators that do not want to disclose the precise and true location of the base station, or to comply with policies and regulations. Claim.
  • Step 52 Determine the transmission timing of the communication device and/or the carrier frequency of the communication device.
  • the transmission timing of the communication device refers to the transmission timing used when the communication device sends a signal.
  • the carrier frequency of the communication device refers to the carrier frequency used when the communication device sends a signal.
  • the transmission timing of the communication device is sometimes collectively referred to as: terminal transmission timing (UE transmit timing).
  • the communication device can determine the transmission timing of the communication device and/or the carrier frequency of the communication device based on the location information broadcast by the base station and the positioning information of the communication device itself, and The technology of autonomously performing uplink TA adjustment and/or frequency offset compensation when sending uplink signals.
  • the communication device of some embodiments of the present disclosure can determine the transmission timing of the communication device and/or the carrier frequency of the communication device according to the obtained base station location information, which can be based on the determined transmission timing And/or carrier frequency, when sending uplink signals, it can independently perform uplink transmission timing adjustment and/or frequency offset compensation, which can effectively solve the technical challenges caused by the radius of super large area coverage (such as ATG network) and super Doppler frequency shift, Realize reliable signal transmission in the above environment.
  • the radius of super large area coverage such as ATG network
  • super Doppler frequency shift Realize reliable signal transmission in the above environment.
  • the transmission timing of the communication device may be determined according to at least one of the following methods:
  • A) Determine the spatial propagation distance between the base station and the communication device according to the location information of the base station; determine the transmission timing of the communication device according to the spatial propagation distance.
  • N TA the transmission timing of the communication device according to the N TA , wherein the transmission timing of the communication device is equal to (N TA +N TA_offset ) ⁇ T c , Where N TA_offset is the timing advance offset value, and T c is the basic time unit.
  • the transmission timing of the communication device 2 ⁇ the spatial propagation distance between the base station and the communication device ⁇ the speed of light.
  • N TA 2 ⁇ the space propagation distance between the base station and the communication device ⁇ light speed ⁇ T c .
  • determining the transmission timing of the communication device and/or the carrier frequency of the communication device may specifically be determining the physical random access channel (PRACH), the physical uplink shared channel (PUSCH), and the physical The transmission timing and/or carrier frequency of at least one channel or signal in the uplink control channel (PUCCH), sounding reference signal (SRS), and demodulation reference signal (DMRS).
  • PRACH physical random access channel
  • PUSCH physical uplink shared channel
  • DMRS demodulation reference signal
  • determining the transmission timing of the communication device may specifically include: determining the transmission time of the uplink frame from the communication device to the base station (that is, The uplink frame transmission).
  • the reception time of the first detected path in the corresponding downlink frame i.e. the reception of the first detected path (in time) of the corresponding downlink frame from the reference cell) is the timing advance of the communication device's transmission timing.
  • determining the spatial propagation distance between the base station and the communication device according to the location information of the base station may specifically include: determining the spatial propagation distance between the base station and the communication device at the first reference moment.
  • the first reference time includes at least one of the following:
  • the time at which the communication device transmits the signal and/or channel is the time at which the communication device transmits the signal and/or channel.
  • the time when the communication device obtains the location information of the base station may include at least one of the following:
  • the radio frame boundary of the higher layer signaling that carries the location information of the base station
  • the time unit boundary is the start time or end time of the time unit.
  • the time when the communication device sends a signal and/or channel may include at least one of the following:
  • the transmission time of the signal and/or channel resource is the transmission time of the signal and/or channel resource
  • the radio frame boundary of the signal and/or channel resource is defined by
  • determining the carrier frequency of the communication device may specifically include:
  • f 0 is the base station transmitting signal frequency.
  • f′ 0 represents the frequency at which the communication device receives the signal sent by the base station.
  • the physical meaning of the first frequency offset f d refers to the Doppler frequency shift between the communication device and the base station.
  • f 0 refers to the frequency used by the base station to send signals, and sometimes it may also be referred to as the nominal frequency or the rated frequency.
  • the receiving frequency at which the base station side receives the signal sent by the communication device is:
  • the above determining the first frequency offset f d between the base station and the communication device according to the location information of the base station may include:
  • c is the speed of light
  • f 0 is the frequency at which the base station sends signals
  • Is the speed vector of the communication device, ⁇ , ⁇ > represents the scalar product of two vectors, and
  • determining the carrier frequency of the communication device may specifically include:
  • the uplink frequency offset And/or downlink frequency offset Determine the carrier frequency f′′ 0 of the communication device:
  • f UL is the preset frequency for the terminal to send signals
  • f′ DL represents the frequency at which the communication device receives the signal sent by the base station
  • f DL is the preset frequency for the base station to send signals
  • f UL is the preset frequency for the terminal to send signals
  • f′ DL represents the frequency at which the communication device receives the signal sent by the base station
  • ⁇ f DL_UL represents the preset deviation between the frequency at which the base station sends the signal and the terminal sent signal.
  • the uplink frequency offset is determined according to the location information of the base station And/or downlink frequency offset Can include:
  • c is the speed of light
  • f UL is the preset frequency for the terminal to send signals
  • f DL is the preset frequency for the base station to send signals
  • the communication device may also perform uplink signal transmission in the following manner:
  • At least one of the following methods is adopted to modulate and up-convert the complex-valued OFDM baseband signal s(t) of the antenna port p, the sub-carrier spacing configuration ⁇ , and the OFDM symbol l:
  • f′′ 0 is the carrier frequency of the communication device
  • T c is the basic time unit
  • some embodiments of the present disclosure can perform frequency offset compensation processing based on the obtained carrier frequency to overcome the signal transmission problem caused by excessive Doppler frequency shift.
  • Some embodiments of the present disclosure also provide the flow of the above method when applied to the base station side, including:
  • Step 61 Notify or configure location information of the base station through at least one of system information (SI) and radio resource control (RRC) signaling.
  • SI system information
  • RRC radio resource control
  • the location information of the base station includes at least one of the following information: the longitude, latitude, and altitude of the base station.
  • the difference between the notified or configured location information of the base station and the actual location information of the base station is less than or equal to a first preset threshold, and/or greater than or equal to a second preset threshold.
  • the location information of the base station notified or configured in step 61 may be the actual location information of the base station.
  • the difference between the position information of the base station notified or configured in step 61 and the actual position information of the base station is less than or equal to the first preset threshold, and/or greater than or equal to the second preset Threshold. In other words, there is a certain deviation between the position information of the base station notified or configured in step 61 and the actual position of the base station.
  • the operator does not want to reveal the accurate real location of the base station, or is restricted by policies and regulations, and cannot reveal the accurate real location of the base station.
  • the position deviation is required to be less than or equal to a first preset threshold (such as several hundred meters to several kilometers) to ensure that the communication device determines the transmission timing of the communication device according to the position information of the base station with deviation And/or the working mechanism of the carrier frequency of the communication device can work normally.
  • a first preset threshold such as several hundred meters to several kilometers
  • the position deviation is required to be greater than or equal to a second preset threshold (for example, a few meters to a few hundred meters), which is used to meet the needs of operators that do not want to disclose the precise and true location of the base station, or to comply with policies and regulations. Claim.
  • the base station can send its own location information to the communication device, so that the communication device can determine the transmission timing of the communication device and/or the carrier frequency of the communication device according to the location information of the base station to overcome the cell Technical challenges caused by excessive coverage radius and Doppler frequency shift.
  • some embodiments of the present disclosure also provide a device for implementing the above method.
  • a communication device 70 including:
  • the location obtaining module 71 is used to obtain location information of the base station
  • the parameter determination module 72 is configured to determine the transmission timing of the communication device and/or the carrier frequency of the communication device.
  • the location obtaining module 71 is further configured to obtain location information of the base station through at least one of pre-appointment, system information SI, and radio resource control RRC signaling.
  • the parameter determination module 72 is further configured to determine the transmission timing of the communication device according to at least one of the following methods:
  • N TA the transmission timing of the communication device according to the N TA , where the transmission timing of the communication device is equal to (N TA + N TA_offset ) ⁇ T c , where , N TA_offset is the timing advance offset value, and T c is the basic time unit.
  • the parameter determination module 72 is further configured to determine the physical random access channel PRACH, the physical uplink shared channel PUSCH, the physical uplink control channel PUCCH, the sounding reference signal SRS, and the demodulation reference signal DMRS. At least one channel or signal transmission timing and/or carrier frequency.
  • the parameter determination module 72 is further configured to determine the transmission time of the uplink frame from the communication device to the base station, compared to the reception time of the first detected path of the corresponding downlink frame The timing advance of is the transmission timing of the communication device.
  • the parameter determination module 72 is further configured to determine the spatial propagation distance of the base station and the communication device at a first reference moment; the first reference moment includes at least one of the following: The time when the communication device obtains the location information of the base station; the time when the communication device sends a signal and/or channel.
  • the parameter determining module 72 is further configured to determine the first frequency offset f d between the base station and the communication device according to the location information of the base station; according to at least one of the following methods , According to the first frequency offset f d , determine the carrier frequency f′′ 0 of the communication device:
  • f 0 is the base station transmitting signal frequency.
  • f′ 0 represents the frequency at which the communication device receives the signal sent by the base station.
  • the parameter determination module 72 is further configured to determine the first frequency offset f d according to the following formula:
  • c is the speed of light
  • f 0 is the frequency at which the base station sends signals
  • Is the speed vector of the communication device, ⁇ , ⁇ > represents the scalar product of two vectors, and
  • the parameter determination module 72 is further configured to determine the uplink frequency offset according to the location information of the base station And/or downlink frequency offset
  • the uplink frequency offset And/or downlink frequency offset Determine the carrier frequency f′′ 0 of the communication device:
  • f UL is the preset frequency for the terminal to send signals
  • f′ DL represents the frequency at which the communication device receives the signal sent by the base station
  • f DL is the preset frequency for the base station to send signals
  • f UL is the preset frequency for the terminal to send signals
  • f′ DL represents the frequency at which the communication device receives the signal sent by the base station
  • ⁇ f DL_UL represents the preset deviation between the frequency at which the base station sends the signal and the signal sent by the terminal.
  • the parameter determination module 72 is further configured to:
  • c is the speed of light
  • f UL is the preset frequency for the terminal to send signals
  • f DL is the preset frequency for the base station to send signals
  • the communication device further includes:
  • the signal transmission module is used to determine the carrier frequency f′′ 0 of the communication device,
  • At least one of the following methods is adopted to modulate and up-convert the complex-valued OFDM baseband signal s(t) of the antenna port p, the sub-carrier spacing configuration ⁇ , and the OFDM symbol l:
  • f′′ 0 is the carrier frequency of the communication device
  • T c is the basic time unit
  • the location information of the base station includes at least one of the following information: longitude, latitude, and altitude of the base station.
  • the obtained position information of the base station is actual position information of the base station; or, the deviation of the obtained position information of the base station from the actual position information of the base station is less than or equal to the first preset Threshold, and/or greater than or equal to the second preset threshold.
  • the communication device 800 includes a processor 801, a transceiver 802, a memory 803, a user interface 804, and a bus interface, where:
  • the terminal 800 further includes: a program that is stored in the memory 803 and can run on the processor 801.
  • the program is executed by the processor 801, the following steps are implemented: obtain the location information of the base station; The transmission timing of the communication device and/or the carrier frequency of the communication device.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 801 and various circuits of the memory represented by the memory 803 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 802 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 804 may also be an interface capable of connecting externally and internally with the required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, etc.
  • the processor 801 is responsible for managing the bus architecture and general processing, and the memory 803 can store data used by the processor 801 when performing operations.
  • N TA the transmission timing of the communication device according to the N TA , where the transmission timing of the communication device is equal to (N TA + N TA_offset ) ⁇ T c , where , N TA_offset is the timing advance offset value, and T c is the basic time unit.
  • the first reference moment includes at least one of the following:
  • the time at which the communication device transmits the signal and/or channel is the time at which the communication device transmits the signal and/or channel.
  • f 0 is the base station transmitting signal frequency.
  • f′ 0 represents the frequency at which the communication device receives the signal sent by the base station.
  • c is the speed of light
  • f 0 is the frequency at which the base station sends signals
  • Is the speed vector of the communication device, ⁇ , ⁇ > represents the scalar product of two vectors, and
  • the uplink frequency offset And/or downlink frequency offset Determine the carrier frequency f′′ 0 of the communication device:
  • f UL is the preset frequency for the terminal to send signals
  • f′ DL represents the frequency at which the communication device receives the signal sent by the base station
  • f DL is the preset frequency for the base station to send signals
  • f UL is the preset frequency for the terminal to send signals
  • f′ DL represents the frequency at which the communication device receives the signal sent by the base station
  • ⁇ f DL_UL represents the preset deviation between the frequency at which the base station sends the signal and the terminal sent signal.
  • c is the speed of light
  • f UL is the preset frequency for the terminal to send signals
  • f DL is the preset frequency for the base station to send signals
  • At least one of the following methods is adopted to modulate and up-convert the complex-valued OFDM baseband signal s(t) of the antenna port p, the sub-carrier spacing configuration ⁇ , and the OFDM symbol l:
  • f′′ 0 is the carrier frequency of the communication device
  • T c is the basic time unit
  • the location information of the base station includes at least one of the following information: the longitude, latitude, and altitude of the base station.
  • the obtained location information of the base station is actual location information of the base station; or, the deviation of the obtained location information of the base station from the actual location information of the base station is less than or equal to a first preset threshold, and/or Greater than or equal to the second preset threshold.
  • a base station 90 including:
  • the location configuration module 91 is used to notify and configure the location information of the base station through at least one of the system information SI and the radio resource control RRC signaling.
  • the location information of the base station includes at least one of the following information: the longitude, latitude, and altitude of the base station.
  • the notified or configured location information of the base station is the actual location information of the base station; or, the difference between the notified or configured location information of the base station and the actual location information of the base station is less than or equal to a first preset threshold , And/or greater than or equal to the second preset threshold.
  • some embodiments of the present disclosure provide another schematic structural diagram of a base station, including: a processor 1001, a transceiver 1002, a memory 1003, and a bus interface, where:
  • the base station 1000 further includes: a program that is stored in the memory 1003 and can be run on the processor 1001. When the program is executed by the processor 1001, the following steps are implemented: through system information SI and wireless resource Control at least one of the RRC signaling, and notify or configure the location information of the base station.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1001 and various circuits of the memory represented by the memory 1003 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 1002 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 1001 is responsible for managing the bus architecture and general processing, and the memory 1003 can store data used by the processor 1001 when performing operations.
  • the location information of the base station includes at least one of the following information: the longitude, latitude, and altitude of the base station.
  • the notified or configured location information of the base station is the actual location information of the base station; or, the difference between the notified or configured location information of the base station and the actual location information of the base station is less than or equal to a first preset threshold , And/or greater than or equal to the second preset threshold.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of some embodiments of the present disclosure.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in this application.
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种信号传输方法、通信设备及基站,该方法包括:获得基站的位置信息;确定所述通信设备的传输定时和/或所述通信设备的载波频率。

Description

信号传输方法、通信设备及基站
相关申请的交叉引用
本申请主张在2019年6月28日在中国提交的中国专利申请号No.201910576782.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及移动通信技术领域,具体涉及一种信号传输方法、通信设备及基站。
背景技术
随着航空工业和互联网技术的发展,地空互联应用需求越来越迫切。通过地空互联,乘客在飞机上可以像在地面一样接入互联网,享受各种互联网应用服务,运营商、航空公司及行业各方也可基于地空互联技术提供增值服务。
地对空(ATG,air-to-ground)通信技术利用成熟的陆地移动通信技术,如4G、5G技术,在地面建设天线能够覆盖天空的专用基站,构建一张地空立体覆盖的专用网络,有效解决高空立体覆盖,实现地空高速数据传送。
与地面网络相比,ATG网络需要支持超大的覆盖半径,如100~300km。例如,在内陆地区,典型需要支持100km的覆盖半径,以减少ATG基站数目,降低网络部署成本。另外,为了让陆地(如大连)基站覆盖海湾(如渤海湾)上空的飞机,ATG网络最远需要支持300km的覆盖半径。另外,ATG网络还需要支持最大1200km/h的终端运动速度。而在地面网络中,通常最大只考虑100km的覆盖半径和500km/h的终端运动速度。因此,相关的为地面网络设计的4G长期演进(Long Term Evolution,LTE)和5G新空口(New Radio,NR)技术方案不能满足ATG网络对300km覆盖半径和1200km/h终端运动速度的技术指标需要。
发明内容
本公开的至少一个实施例提供了一种信号传输方法、通信设备及基站,可以有效解决小区覆盖半径和多普勒频移过大所带来的信号传输问题。
根据本公开的一个方面,至少一个实施例提供了一种信号传输方法,包括:
获得基站的位置信息;
确定所述通信设备的传输定时和/或所述通信设备的载波频率。
此外,根据本公开的至少一个实施例,获得基站的位置信息,包括:
通过预先约定、系统信息SI和无线资源控制RRC信令中的至少一种,获得所述基站的位置信息。
此外,根据本公开的至少一个实施例,按照以下至少一种方式,确定所述通信设备的传输定时:
根据基站位置信息,确定所述基站和所述通信设备的空间传播距离;根据所述空间传播距离,确定所述通信设备的传输定时;
和/或,
根据所述空间传播距离,确定初始时间校准值N TA;根据所述N TA,确定通信设备的传输定时,其中,所述通信设备的传输定时等于(N TA+N TA_offset)×T c,其中,N TA_offset为定时提前偏移值,T c为基本时间单位。
此外,根据本公开的至少一个实施例,确定所述通信设备的传输定时和/或所述通信设备的载波频率,包括:
确定物理随机接入信道PRACH、物理上行共享信道PUSCH、物理上行控制信道PUCCH、探测参考信号SRS、解调参考信号DMRS中至少一种信道或信号的传输定时和/或载波频率。
此外,根据本公开的至少一个实施例,确定所述通信设备的传输定时,包括:
确定所述通信设备到基站的上行帧的传输时间,相比于对应的下行帧的首个检测到的路径的接收时间的定时提前量为所述通信设备的传输定时。
此外,根据本公开的至少一个实施例,根据基站位置信息,确定所述基站和所述通信设备的空间传播距离,包括:
确定第一参考时刻所述基站和所述通信设备的空间传播距离;
所述第一参考时刻包括如下至少一种:
所述通信设备获得所述基站位置信息的时间;
所述通信设备发送信号和/或信道的时间。
此外,根据本公开的至少一个实施例,确定所述通信设备的载波频率,包括:
根据基站的位置信息,确定所述基站和所述通信设备的第一频率偏移量f d
按照以下至少一种方式,根据所述第一频率偏移量f d,确定所述通信设备的载波频率f″ 0
方式一:f″ 0=f 0-f d
其中,f 0为基站发送信号频率。
方式二:f″ 0=f′ 0-2·f d
其中,f′ 0表示所述通信设备接收到基站发送信号的频率。
此外,根据本公开的至少一个实施例,根据基站的位置信息,确定所述基站和所述通信设备的第一频率偏移量f d,包括:
根据以下公式,确定第一频率偏移量f d
Figure PCTCN2020097431-appb-000001
其中,c为光速;f 0为基站发送信号的频率;
Figure PCTCN2020097431-appb-000002
为基站和通信设备之间的距离向量;
Figure PCTCN2020097431-appb-000003
为通信设备的速度向量,<·,·>表示两个向量的标量积,|·|表示向量取模操作。
此外,根据本公开的至少一个实施例,确定所述通信设备的载波频率,包括:
根据基站的位置信息,确定上行频率偏移量
Figure PCTCN2020097431-appb-000004
和/或下行频率偏移量
Figure PCTCN2020097431-appb-000005
按照以下至少一种方式,根据所述上行频率偏移量
Figure PCTCN2020097431-appb-000006
和/或下行频率偏移量
Figure PCTCN2020097431-appb-000007
确定所述通信设备的载波频率f″ 0
方式一:
Figure PCTCN2020097431-appb-000008
其中,f UL为终端发送信号的预设频率;
方式二:
Figure PCTCN2020097431-appb-000009
其中,f′ DL表示所述通信设备接收到基站发送信号的频率,f DL为基站发 送信号的预设频率,f UL为终端发送信号的预设频率;
方式三:
Figure PCTCN2020097431-appb-000010
其中,f′ DL表示所述通信设备接收到基站发送信号的频率,Δf DL_UL表示基站发送信号的频率和终端发送信号的预设偏差。
此外,根据本公开的至少一个实施例,根据基站的位置信息,确定上行频率偏移量
Figure PCTCN2020097431-appb-000011
和/或下行频率偏移量
Figure PCTCN2020097431-appb-000012
包括:
根据第一公式,确定上行频率偏移量
Figure PCTCN2020097431-appb-000013
所述第一公式为:
Figure PCTCN2020097431-appb-000014
或者,根据第二公式,确定下行频率偏移量
Figure PCTCN2020097431-appb-000015
所述第二公式为:
Figure PCTCN2020097431-appb-000016
其中,c为光速;f UL为终端发送信号的预设频率;f DL为基站发送信号的预设频率;
Figure PCTCN2020097431-appb-000017
为基站和通信设备之间的距离向量;
Figure PCTCN2020097431-appb-000018
为通信设备的速度向量,<·,·>表示两个向量的标量积,|·|表示向量取模操作。
此外,根据本公开的至少一个实施例,在确定所述通信设备的载波频率f″ 0之后,所述方法还包括:
采用如下至少一种方式,对天线端口p,子载波间隔配置μ,OFDM符号l的复值OFDM基带信号s(t),进行调制和上变频处理:
方式一:
Figure PCTCN2020097431-appb-000019
方式二:
Figure PCTCN2020097431-appb-000020
其中,f″ 0为所述通信设备的载波频率;T c为基本时间单位;
Figure PCTCN2020097431-appb-000021
为OFDM符号l的起始位置;
Figure PCTCN2020097431-appb-000022
为OFDM符号l的循环前缀CP的长度。
此外,根据本公开的至少一个实施例,所述基站的位置信息,包括以下信息中的至少一种:基站的经度、纬度和海拔高度。
此外,根据本公开的至少一个实施例,所述获得的基站的位置信息为基站的实际位置信息;或者,所述获得的基站的位置信息,与基站的实际位置信息的偏差小于或等于第一预设阈值,和/或大于或等于第二预设阈值。
根据本公开的另一方面,还提供了一种信号传输方法,应用于基站,包括:
通过系统信息SI和无线资源控制RRC信令中的至少一种,通知或配置基站的位置信息。
此外,根据本公开的至少一个实施例,所述基站的位置信息,包括以下信息中的至少一种:基站的经度、纬度和海拔高度。
此外,根据本公开的至少一个实施例,所述通知或配置的基站的位置信息为基站的实际位置信息;或者,所述通知或配置的基站的位置信息,与基站的实际位置信息的偏差小于或等于第一预设阈值,和/或大于或等于第二预设阈值。
根据本公开的另一方面,还提供了一种通信设备,包括:
位置获取模块,用于获得基站的位置信息;
参数确定模块,用于确定所述通信设备的传输定时和/或所述通信设备的载波频率。
根据本公开的另一方面,还提供了一种通信设备,包括处理器和收发机,其中,
所述收发机,用于获得基站的位置信息;
所述处理器,用于确定所述通信设备的传输定时和/或所述通信设备的载波频率。
根据本公开的另一方面,还提供了一种通信设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述程序被所述处理器执行时实现如上所述的方法的步骤。
根据本公开的另一方面,还提供了一种基站,包括:
位置配置模块,用于通过系统信息SI和无线资源控制RRC信令中的至少一种,通知和配置基站的位置信息。
根据本公开的另一方面,还提供了一种基站,包括处理器和收发机,其 中,
所述收发机,用于通过系统信息SI和无线资源控制RRC信令中的至少一种,通知或配置基站的位置信息。
根据本公开的另一方面,还提供了一种基站,包括:存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述程序被所述处理器执行时实现如上所述的方法的步骤。
根据本公开的另一方面,至少一个实施例提供了一种可读存储介质,所述可读存储介质上存储有程序,所述程序被处理器执行时,实现如上所述的方法的步骤。
与相关技术相比,本公开的一些实施例提供的信号传输方法、通信设备及基站,可以基于基站的位置信息,获得通信设备的传输定时和/或所述通信设备的载波频率,从而使得通信设备在发送上行信号时可以自主执行上行定时提前(TA,Timing Advance)调整和频偏补偿的技术,从而有效解决超大小区覆盖半径和超大多普勒频移带来的技术挑战。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本公开的一些实施例提供的上行TA调整的示例图;
图2为本公开的一些实施例提供的距离远近不同的终端的前导码不对齐的一个示例图;
图3为本公开的一些实施例提供的多普勒频移的示例图;
图4为本公开的一些实施例提供的子载波间干扰的示例图;
图5为本公开的一些实施例提供的信号传输方法的流程图;
图6为本公开的一些实施例提供的信号传输方法的另一流程图;
图7为本公开的一些实施例提供的通信设备的结构示意图;
图8为本公开的一些实施例提供的通信设备的另一结构示意图;
图9为本公开的一些实施例提供的基站的结构示意图;以及
图10为本公开的一些实施例提供的基站的另一结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于5G NR系统和长期演进型(Long Time Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系 统可实现诸如超移动宽带(UltraMobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE 802.21(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
如背景技术所述的,ATG网络需要将覆盖半径从100km扩大到300km,和将运动速度从500km/h扩大到1200km/h,这很难通过简单的参数适应性修改予以支持,而需要通过关键性的技术突破。
1)覆盖半径的挑战:
对于TDD系统(如4G TD-LTD,和5G NR)而言,上行传输的一个重要特征是不同UE在时频上正交多址接入(orthogonal multiple access),即来自同一小区的不同UE的上行传输之间互不干扰。
为了保证上行传输的正交性,避免小区内(intra-cell)符号间(inter-symbol)干扰,基站(eNB或gNB)要求来自同一子帧但不同频域资源(不同的RB)的不同UE的信号到达基站的时间基本上是对齐的。注意到基站只要在CP(Cyclic Prefix)范围内接收到UE所发送的上行数据,就能够正确地解码上行数据,因此,上行同步要求来自同一子帧的不同UE的信号到达基站的时 间都落在CP之内。
为了保证接收侧(基站侧)的时间同步,LTE和NR都采用了上行定时提前(Uplink Timing Advance)的机制。
在UE侧看来,定时提前(TA,Timing Advance)本质上是接收到下行子帧的起始时间与传输上行子帧的时间之间的一个负偏移(negative offset)。基站通过适当地控制每个UE的偏移,可以控制来自不同UE的上行信号到达基站的时间。对于离基站较远的UE,由于有较大的传输延迟,就要比离基站较近的UE提前发送上行数据。
图1左半部分示出了不进行上行定时提前所造成的影响。
从图1右半部分可以看出,基站侧的上行子帧和下行子帧的定时(timing)是相同的,而UE侧的上行子帧和下行子帧的timing之间有偏移。同时可以看出:不同UE有各自不同的上行TA,也即上行TA是UE级的配置。
如图1左半部分所示,在随机接入过程中,UE在发送前导码(preamble)信号时,尚未获得TA调整值。UE根据下行(DL)定时确定发送preamble的定时,因此在接收侧(即基站侧)看来,该UE所发送的preamble信号距离帧边界之间具有2倍的传播距离延时。基站通过测量接收到的preamble信号距离帧边界的延时,确定上行TA调整值,并且将该上行TA调整值通过RAR信令发送给UE。
图2示出了距离基站远近不同的终端所发送的preamble未对齐的一个示例,该示例中小区覆盖半径以100km为例。
为了节省传输preamble的时频资源,LTE和NR系统支持preamble码分复用技术,即在同一个preamble时频资源(也可以简称RO,RACH occasion)内,允许多个UE同时发送preamble,这些preamble采用相同的或不同的伪随机序列,且不同的伪随机序列之间具有较低的互相关性。
注意到UE在发送preamble信号的时候,尚未做上行TA调整,因此与基站距离不同的UE所发送的preamble信号到达基站的时间也是不同的,即在基站看来,不同UE所发送的preamble信号到达基站的时间是未对齐的,且最近的UE和最远(小区覆盖半径处)的UE的preamble信号的到达时间最大相差2倍的小区覆盖半径所折合的传播延时(即传播时延=传播距离/光 速)。
注意到对于OFDMA系统而言,在同一个时频资源内,所有码分复用的OFDM信号的时间差小于循环前缀(CP,Cyclic Prefix)大小,接收机才能正常接收。
这也就意味着,在相关TD-LTE或5G NR系统中,preamble的CP长度必须大于2倍的小区覆盖半径所折合的传播时延,才能保证多个UE在同一个RO(时频资源)上所发送的码分复用的preamble能够被基站正确地解调接收。
另一方面,需要在preamble信号中预留一段空闲资源,以避免小区覆盖边缘的UE所发送的preamble对RO时频资源之后的OFDM符号造成符号间干扰。该段预留的空闲资源被称作保护时间(GT,guard time)。和CP一样,preamble的GT长度必须大于2倍的小区覆盖半径所折合的传播时延。
表1给出了5G NR系统所支持的部分preamble格式。可见,NR系统最大只支持107km的小区覆盖半径,远远低于300km的设计要求。
Figure PCTCN2020097431-appb-000023
表1
针对覆盖半径扩展问题,一种可能的解决手段是设计一种新的preamble格式,使其具有更大的CP和GT。
例如,为了支持300km的小区覆盖半径,CP和GT的长度都不能小于(2*300km)/(3*10^8m/s)=2ms。再加上伪随机序列本身的时域长度,preamble总长需要大于5ms。
由于preamble只在UL信道中承载,这也意味着ATG系统UL信道时长不能低于5ms。这会对ATG系统的帧结构设计提出较大的约束。
2)多普勒频移的挑战:
如图3所示,在ATG系统中,为了服务v=1200km/h的最大飞行速度,对于f c=4.9GHz的工作频点,最大可产生f d=f c·(v/c)=5.5kHz的多普勒频移。
较大的多普勒频移主要会带来两方面挑战。
a)影响基站侧preamble接收:注意到对于表1中的几种preamble格式,preamble信号的子载波间隔(SCS:sub-carrier space)为1.25kHz或5kHz,都远远低于5.5kHz的最大多普勒频移。这会对基站侧频偏估计带来较大挑战;
b)在基站侧可能造成严重子载波间干扰:在相关TD-LTE和NR系统中,终端不做上行频偏纠正。因此,UE接收基站发送的DL信号,会体验到1倍的多普勒频偏;UE在具有1倍频移频偏的频点上发送UL信号,基站将体验到2倍的频移频偏。对于5.5kHz的多普勒频移,2倍的频移频偏为11kHz。注意到多普勒频移由径向距离变化产生,即如果UE位于小区边缘,将体验到最大的多普勒频移(如5.5kHz);而当UE位于基站正上方(亦即小区中心),多普勒频移为0kHz。因此,不同位置的UE所体验到的多普勒频移也不同。如图4所示,如果小区中心和小区边缘的客户终端设备(CPE,Customer Premise Equipment)的上行信号占用毗邻的频域资源,那么由于2倍的多普勒频率偏移(最大11kHz),这两个CPE的上行信号(如采用15kHz的子载波间隔)之间将造成严重的子载波间干扰问题。
基于以上分析可以看出,相关技术中不支持ATG系统场景中对最大小区覆盖半径和多普勒频移的指标要求。同时,很难通过简单的参数适应性修改予以支持,必须依靠关键性的技术突破。
针对上述问题,本公开的一些实施例提供了一种信号传输方法,可以有效解决ATG网络中超大小区覆盖半径和超大多普勒频移带来的技术挑战。
请参照图5,本公开的一些实施例提供的信号传输方法应用于通信设备时的流程图。所述通信设备可以是各种终端(如手机、电脑等)、客户终端设备(CPE,Customer Premise Equipment)、接入和回传一体化基站(IAB,Integrated Access and Backhaul)或中继(Relay)节点等。在一些实施例中,所述终端可以安装在承载设备上,如飞机、汽车、火车等。如图5所示,该 信号传输方法包括:
步骤51,获得基站的位置信息。
这里,通信设备获取基站的位置信息。具体的,基站的位置信息可以通过基站的经度、纬度和海拔高度中的至少一种信息来表征。
根据本公开的至少一个实施例,通信设备可以通过预先约定、系统信息(SI,System Information)和无线资源控制(RRC)信令中的至少一种,获得所述基站的位置信息。
具体的,所述预先约定的实现方式可以为:通信设备在出厂时配置,或者每隔一段时间就通过后台更新程序,获得所有基站的位置信息。
具体的,所述RRC信令中可以包括小区切换信令、移动性管理信令中的至少一种。例如,当通信设备处于空闲(idea)态时,所述通信设备基于系统信息确定基站位置信息;和/或,当通信设备处于连接态时,可以通过小区切换(Handover)或移动性管理等RRC信令获得基站(如目标基站)的位置信息。
另外,在本公开的至少一个实施例中,当通信设备通过RRC信令获得了目标基站的位置信息时,所述通信设备可以忽略该目标基站的系统消息中广播的基站位置信息。
根据本公开的至少一个实施例,所述获得的基站的位置信息为基站的实际位置信息,此时,所获得的基站的位置信息即为基站真实的地理位置。
根据本公开的至少一个实施例,上述步骤51中所获得的基站的位置信息,与基站的实际位置信息的偏差小于或等于第一预设阈值,和/或,大于或等于第二预设阈值。也就是说,步骤51中获得的基站的位置信息,可能与基站的真实位置之间存在一定的偏差。
在一些实施例中,运营商不希望泄露基站精确的真实位置,或者受限于政策法规,而不能泄露基站精确的真实位置。在这种场景下,通信设备所获得的基站的位置信息与基站的真实位置之间需要存在一定的偏差,以便保护基站的精确位置坐标。所述位置信息偏差为2D距离偏差,或3D距离偏差。
在一些实施例中,要求所述位置偏差小于或等于第一预设阈值(如几百米到几km),以保证所述通信设备根据存在偏差的基站位置信息确定所述通 信设备的传输定时和/或所述通信设备的载波频率的工作机制能够正常工作。
在另外一些实施例中,要求所述位置偏差大于或等于第二预设阈值(如几米到几百米),用于满足运营商不希望泄露基站的精确真实位置的需求,或符合政策法规监管要求。
步骤52,确定所述通信设备的传输定时和/或所述通信设备的载波频率。
这里,所述通信设备的传输定时是指所述通信设备发送信号时所采用的传输定时。所述通信设备的载波频率是指所述通信设备发送信号时所采用的载波频率。在一些应用领域,所述通信设备的传输定时有时也被统称为:终端传输定时(UE transmit timing)。
这样,在采用图5所示的方法之后,通信设备可以基于基站广播的位置信息和通信设备自身的定位信息,确定所述通信设备的传输定时和/或所述通信设备的载波频率,并在发送上行信号时自主执行上行TA调整和/或频偏补偿的技术。
通过以上步骤,本公开的一些实施例的通信设备可以根据所获得的基站位置信息,确定出所述通信设备的传输定时和/或所述通信设备的载波频率,这样可以基于所确定的传输定时和/或载波频率,在发送上行信号时自主执行上行传输定时调整和/或频偏补偿,从而可以有效解决超大小区覆盖(如ATG网络)半径和超大多普勒频移带来的技术挑战,实现上述环境下的可靠信号传输。
下面对本公开的一些实施例如何确定通信设备的传输定时和载波频率进行说明。
根据本公开的至少一个实施例,上述步骤52中,可以按照以下至少一种方式,确定所述通信设备的传输定时:
A)根据基站位置信息,确定所述基站和所述通信设备的空间传播距离;根据所述空间传播距离,确定所述通信设备的传输定时。
B)根据所述空间传播距离,确定初始时间校准值N TA;根据所述N TA,确定通信设备的传输定时,其中,所述通信设备的传输定时等于(N TA+N TA_offset)×T c,其中,N TA_offset为定时提前偏移值,T c为基本时间单位。
当根据所述空间传播距离,确定所述通信设备的传输定时时,所述通信 设备的传输定时=2×所述基站和所述通信设备的空间传播距离÷光速。
当根据所述空间传播距离,确定初始时间校准值(initial time alignment value)N TA时,N TA=2×所述基站和所述通信设备的空间传播距离÷光速÷T c
在本公开的至少一种实施例中,T c=1/(Δf max·N f),其中,Δf max=480·10 3Hz,N f=4096。
具体的,在上述步骤52中,确定所述通信设备的传输定时和/或所述通信设备的载波频率,具体可以是确定物理随机接入信道(PRACH)、物理上行共享信道(PUSCH)、物理上行控制信道(PUCCH)、探测参考信号(SRS)、解调参考信号(DMRS)中至少一种信道或信号的传输定时和/或载波频率。
例如,在一种实施例中,确定PRACH信道的传输定时,可以包括:确定PRACH信道的N TA=2×所述基站和所述通信设备的空间传播距离÷光速÷T c
根据本公开的至少一个实施例,上述步骤52中,确定所述通信设备的传输定时,具体可以包括:确定所述通信设备到基站的上行帧的传输时间(即The uplink frame transmission),相比于对应的下行帧中的首个检测到的路径的接收时间(即the reception of the first detected path(in time)of the corresponding downlink frame from the reference cell)的定时提前量为所述通信设备的传输定时。
在以上步骤中,根据基站位置信息,确定所述基站和所述通信设备的空间传播距离,具体可以包括:确定第一参考时刻所述基站和所述通信设备的空间传播距离。这里,所述第一参考时刻包括如下至少一种:
所述通信设备获得所述基站位置信息的时间;
所述通信设备发送所述信号和/或信道的时间。
具体的,所述通信设备获得所述基站位置信息的时间,又可以包括如下至少一种:
承载基站位置信息的高层信令的发送时刻;
承载基站位置信息的高层信令的时隙边界;
承载基站位置信息的高层信令的子帧边界;
承载基站位置信息的高层信令的无线帧边界;
其中,所述时间单位边界为所述时间单位的起始时刻或结束时刻。
所述通信设备发送信号和/或信道的时间,又可以包括如下至少一种:
所述信号和/或信道资源的发送时刻;
所述信号和/或信道资源的时隙边界;
所述信号和/或信道资源的子帧边界;
所述信号和/或信道资源的无线帧边界。
根据本公开的至少一个实施例,在本公开的一些实施例以上方法应用于TDD系统时,上述步骤52中,确定所述通信设备的载波频率,具体可以包括:
根据基站的位置信息,确定所述基站和所述通信设备的第一频率偏移量f d
按照以下至少一种方式,根据所述第一频率偏移量f d,确定所述通信设备的载波频率f″ 0
方式一:f″ 0=f 0-f d
其中,f 0为基站发送信号频率。
方式二:f″ 0=f′ 0-2·f d
其中,f′ 0表示所述通信设备接收到基站发送信号的频率。
这里,第一频率偏移量f d的物理含义是指:通信设备和基站之间的多普勒频移。f 0是指基站侧发送信号所采用的频率,有时也可以称作标称频率、或额定频率。f′ 0是指通信设备侧的信号接收频率。注意到通信设备接收基站发送信号时,已经受到了多普勒频移的影响,即f′ 0=f 0+f d。f″ 0指的是通信设备发送信号时所采用的频率。注意到:
f″ 0=f′ 0-2·f d=f 0-f d
则基站侧接收所述通信设备所发送信号的接收频率为:
f″ 0+f d=f 0
即在基站侧看来,虽然可能处于不同空间位置的通信设备感受到的多普勒频移不同,其发送信号时所采用的载波频率也不同,但是,不同通信设备所发送的信号到达基站侧,却是频域同步的,因此可以避免子载波间干扰问题。
具体的,以上根据基站的位置信息,确定所述基站和所述通信设备的第一频率偏移量f d,可以包括:
根据以下公式,确定第一频率偏移量f d
Figure PCTCN2020097431-appb-000024
其中,c为光速;f 0为基站发送信号的频率;
Figure PCTCN2020097431-appb-000025
为基站和通信设备之间的距离向量;
Figure PCTCN2020097431-appb-000026
为通信设备的速度向量,<·,·>表示两个向量的标量积,|·|表示向量取模操作。
根据本公开的至少一个实施例,在本公开的一些实施例以上方法应用于FDD系统时,上述步骤52中,确定所述通信设备的载波频率,具体可以包括:
根据基站的位置信息,确定上行频率偏移量
Figure PCTCN2020097431-appb-000027
和/或下行频率偏移量
Figure PCTCN2020097431-appb-000028
按照以下至少一种方式,根据所述上行频率偏移量
Figure PCTCN2020097431-appb-000029
和/或下行频率偏移量
Figure PCTCN2020097431-appb-000030
确定所述通信设备的载波频率f″ 0
方式一:
Figure PCTCN2020097431-appb-000031
其中,f UL为终端发送信号的预设频率;
方式二:
Figure PCTCN2020097431-appb-000032
其中,f′ DL表示所述通信设备接收到基站发送信号的频率,f DL为基站发送信号的预设频率,f UL为终端发送信号的预设频率;
方式三:
Figure PCTCN2020097431-appb-000033
其中,f′ DL表示所述通信设备接收到基站发送信号的频率,Δf DL_UL表示基站发送信号的频率和终端发送信号的预设偏差。
具体的,以上根据基站的位置信息,确定上行频率偏移量
Figure PCTCN2020097431-appb-000034
和/或下行频率偏移量
Figure PCTCN2020097431-appb-000035
可以包括:
根据第一公式,确定上行频率偏移量
Figure PCTCN2020097431-appb-000036
所述第一公式为:
Figure PCTCN2020097431-appb-000037
或者,根据第二公式,确定下行频率偏移量
Figure PCTCN2020097431-appb-000038
所述第二公式为:
Figure PCTCN2020097431-appb-000039
其中,c为光速;f UL为终端发送信号的预设频率;f DL为基站发送信号的 预设频率;
Figure PCTCN2020097431-appb-000040
为基站和通信设备之间的距离向量;
Figure PCTCN2020097431-appb-000041
为通信设备的速度向量,<·,·>表示两个向量的标量积,|·|表示向量取模操作。
根据本公开的至少一个实施例,在获得了所述通信设备的载波频率f″ 0之后,所述通信设备还可以按照以下方式进行上行信号的传输:
采用如下至少一种方式,对天线端口p,子载波间隔配置μ,OFDM符号l的复值OFDM基带信号s(t),进行调制和上变频处理:
方式一:
Figure PCTCN2020097431-appb-000042
方式二:
Figure PCTCN2020097431-appb-000043
其中,f″ 0为所述通信设备的载波频率;T c为基本时间单位;
Figure PCTCN2020097431-appb-000044
为OFDM符号l的起始位置;
Figure PCTCN2020097431-appb-000045
为OFDM符号l的循环前缀CP的长度。
这样,本公开的一些实施例可以基于获得的载波频率,进行频偏补偿处理,以克服多普勒频移过大所带来的信号传输问题。
以上介绍了本公开的一些实施例在应用于通信设备侧的流程。下面请参照图6,本公开的一些实施例还给出了以上方法在应用于基站侧时的流程,包括:
步骤61,通过系统信息(SI)和无线资源控制(RRC)信令中的至少一种,通知或配置基站的位置信息。
这里,所述基站的位置信息,包括以下信息中的至少一种:基站的经度、纬度和海拔高度。步骤61中,所述通知或配置的基站的位置信息,与基站的实际位置信息的偏差小于或等于第一预设阈值,和/或大于或等于第二预设阈值。
根据本公开的至少一个实施例,上述步骤61中所通知或配置基站的位置信息,可以是基站的实际位置信息。
根据本公开的至少一个实施例,上述步骤61中所通知或配置基站的位置信息,与基站的实际位置信息的偏差小于或等于第一预设阈值,和/或,大于 或等于第二预设阈值。也就是说,步骤61中所通知或配置基站的位置信息,与基站的真实位置之间存在一定的偏差。
在一些实施例中,运营商不希望泄露基站精确的真实位置,或者受限于政策法规,而不能泄露基站精确的真实位置。在这种场景下,所述通知或配置基站的位置信息与基站的真实位置之间需要存在一定的偏差,以便保护基站的精确位置坐标。
在一些实施例中,要求所述位置偏差小于或等于第一预设阈值(如几百米到几km),以保证所述通信设备根据存在偏差的基站位置信息确定所述通信设备的传输定时和/或所述通信设备的载波频率的工作机制能够正常工作。
在另外一些实施例中,要求所述位置偏差大于或等于第二预设阈值(如几米到几百米),用于满足运营商不希望泄露基站的精确真实位置的需求,或符合政策法规监管要求。
通过以上步骤,基站可以将自身的位置信息发送给通信设备,以使通信设备可以根据获得基站的位置信息,确定所述通信设备的传输定时和/或所述通信设备的载波频率,以克服小区覆盖半径和多普勒频移过大所带来的技术挑战。
基于以上方法,本公开的一些实施例还提供了实施上述方法的设备。
请参照图7,本公开的一些实施例提供了一种通信设备70,包括:
位置获取模块71,用于获得基站的位置信息;
参数确定模块72,用于确定所述通信设备的传输定时和/或所述通信设备的载波频率。
根据本公开的至少一个实施例,所述位置获取模块71,还用于通过预先约定、系统信息SI和无线资源控制RRC信令中的至少一种,获得所述基站的位置信息。
根据本公开的至少一个实施例,所述参数确定模块72,还用于按照以下至少一种方式,确定所述通信设备的传输定时:
根据基站位置信息,确定所述基站和所述通信设备的空间传播距离;根据所述空间传播距离,确定所述通信设备的传输定时;
和/或,
根据所述空间传播距离,确定初始时间校准值N TA;根据所述N TA,确定通信设备的传输定时,其中,所述通信设备的传输定时等于(N TA+N TA_offset)×T c,其中,N TA_offset为定时提前偏移值,T c为基本时间单位。
根据本公开的至少一个实施例,所述参数确定模块72,还用于确定物理随机接入信道PRACH、物理上行共享信道PUSCH、物理上行控制信道PUCCH、探测参考信号SRS、解调参考信号DMRS中至少一种信道或信号的传输定时和/或载波频率。
根据本公开的至少一个实施例,所述参数确定模块72,还用于确定所述通信设备到基站的上行帧的传输时间,相比于对应的下行帧的首个检测到的路径的接收时间的定时提前量为所述通信设备的传输定时。
根据本公开的至少一个实施例,所述参数确定模块72,还用于确定第一参考时刻所述基站和所述通信设备的空间传播距离;所述第一参考时刻包括如下至少一种:所述通信设备获得所述基站位置信息的时间;所述通信设备发送信号和/或信道的时间。
根据本公开的至少一个实施例,所述参数确定模块72,还用于根据基站的位置信息,确定所述基站和所述通信设备的第一频率偏移量f d;按照以下至少一种方式,根据所述第一频率偏移量f d,确定所述通信设备的载波频率f″ 0
方式一:f″ 0=f 0-f d
其中,f 0为基站发送信号频率。
方式二:f″ 0=f′ 0-2·f d
其中,f′ 0表示所述通信设备接收到基站发送信号的频率。
根据本公开的至少一个实施例,所述参数确定模块72,还用于根据以下公式,确定第一频率偏移量f d
Figure PCTCN2020097431-appb-000046
其中,c为光速;f 0为基站发送信号的频率;
Figure PCTCN2020097431-appb-000047
为基站和通信设备之间的距离向量;
Figure PCTCN2020097431-appb-000048
为通信设备的速度向量,<·,·>表示两个向量的标量积,|·|表示向量取模操作。
根据本公开的至少一个实施例,所述参数确定模块72,还用于根据基站 的位置信息,确定上行频率偏移量
Figure PCTCN2020097431-appb-000049
和/或下行频率偏移量
Figure PCTCN2020097431-appb-000050
按照以下至少一种方式,根据所述上行频率偏移量
Figure PCTCN2020097431-appb-000051
和/或下行频率偏移量
Figure PCTCN2020097431-appb-000052
确定所述通信设备的载波频率f″ 0
方式一:
Figure PCTCN2020097431-appb-000053
其中,f UL为终端发送信号的预设频率;
方式二:
Figure PCTCN2020097431-appb-000054
其中,f′ DL表示所述通信设备接收到基站发送信号的频率,f DL为基站发送信号的预设频率,f UL为终端发送信号的预设频率;
方式三:
Figure PCTCN2020097431-appb-000055
其中,f′ DL表示所述通信设备接收到基站发送信号的频率,Δf DL_UL表示基站发送信号的频率和终端发送信号的预设偏差。
根据本公开的至少一个实施例,所述参数确定模块72,还用于:
根据第一公式,确定上行频率偏移量
Figure PCTCN2020097431-appb-000056
所述第一公式为:
Figure PCTCN2020097431-appb-000057
或者,根据第二公式,确定下行频率偏移量
Figure PCTCN2020097431-appb-000058
所述第二公式为:
Figure PCTCN2020097431-appb-000059
其中,c为光速;f UL为终端发送信号的预设频率;f DL为基站发送信号的预设频率;
Figure PCTCN2020097431-appb-000060
为基站和通信设备之间的距离向量;
Figure PCTCN2020097431-appb-000061
为通信设备的速度向量,<·,·>表示两个向量的标量积,|·|表示向量取模操作。
根据本公开的至少一个实施例,所述通信设备还包括:
信号传输模块,用于在确定所述通信设备的载波频率f″ 0之后,
采用如下至少一种方式,对天线端口p,子载波间隔配置μ,OFDM符号l的复值OFDM基带信号s(t),进行调制和上变频处理:
方式一:
Figure PCTCN2020097431-appb-000062
方式二:
Figure PCTCN2020097431-appb-000063
其中,f″ 0为所述通信设备的载波频率;T c为基本时间单位;
Figure PCTCN2020097431-appb-000064
为OFDM符号l的起始位置;
Figure PCTCN2020097431-appb-000065
为OFDM符号l的循环前缀CP的长度。
根据本公开的至少一个实施例,所述基站的位置信息,包括以下信息中的至少一种:基站的经度、纬度和海拔高度。
根据本公开的至少一个实施例,所述获得的基站的位置信息为基站的实际位置信息;或者,所述获得的基站的位置信息,与基站的实际位置信息的偏差小于或等于第一预设阈值,和/或大于或等于第二预设阈值。
请参照图8,本公开的一些实施例提供的通信设备的另一结构,该通信设备800包括:处理器801、收发机802、存储器803、用户接口804和总线接口,其中:
在本公开的一些实施例中,终端800还包括:存储在存储器上803并可在处理器801上运行的程序,程序被处理器801执行时实现如下步骤:获得基站的位置信息;确定所述通信设备的传输定时和/或所述通信设备的载波频率。
在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器801代表的一个或多个处理器和存储器803代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机802可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口804还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器801负责管理总线架构和通常的处理,存储器803可以存储处理器801在执行操作时所使用的数据。
可选的,所述程序被处理器803执行时还可实现如下步骤:
通过预先约定、系统信息SI和无线资源控制RRC信令中的至少一种,获得所述基站的位置信息。
可选的,所述程序被处理器803执行时还可实现如下步骤:
根据基站位置信息,确定所述基站和所述通信设备的空间传播距离;根据所述空间传播距离,确定所述通信设备的传输定时;
和/或,
根据所述空间传播距离,确定初始时间校准值N TA;根据所述N TA,确定通信设备的传输定时,其中,所述通信设备的传输定时等于(N TA+N TA_offset)×T c,其中,N TA_offset为定时提前偏移值,T c为基本时间单位。
可选的,所述程序被处理器803执行时还可实现如下步骤:
确定物理随机接入信道PRACH、物理上行共享信道PUSCH、物理上行控制信道PUCCH、探测参考信号SRS、解调参考信号DMRS中至少一种信道或信号的传输定时和/或载波频率。
可选的,所述程序被处理器803执行时还可实现如下步骤:
确定所述通信设备到基站的上行帧的传输时间,相比于对应的下行帧的首个检测到的路径的接收时间的定时提前量为所述通信设备的传输定时。
可选的,所述程序被处理器803执行时还可实现如下步骤:
确定第一参考时刻所述基站和所述通信设备的空间传播距离;
所述第一参考时刻包括如下至少一种:
所述通信设备获得所述基站位置信息的时间;
所述通信设备发送信号和/或信道的时间。
可选的,所述程序被处理器803执行时还可实现如下步骤:
根据基站的位置信息,确定所述基站和所述通信设备的第一频率偏移量f d
按照以下至少一种方式,根据所述第一频率偏移量f d,确定所述通信设备的载波频率f″ 0
方式一:f″ 0=f 0-f d
其中,f 0为基站发送信号频率。
方式二:f″ 0=f′ 0-2·f d
其中,f′ 0表示所述通信设备接收到基站发送信号的频率。
可选的,所述程序被处理器803执行时还可实现如下步骤:
根据以下公式,确定第一频率偏移量f d
Figure PCTCN2020097431-appb-000066
其中,c为光速;f 0为基站发送信号的频率;
Figure PCTCN2020097431-appb-000067
为基站和通信设备之间的距离向量;
Figure PCTCN2020097431-appb-000068
为通信设备的速度向量,<·,·>表示两个向量的标量积,|·|表示向量取模操作。
可选的,所述程序被处理器803执行时还可实现如下步骤:
根据基站的位置信息,确定上行频率偏移量
Figure PCTCN2020097431-appb-000069
和/或下行频率偏移量
Figure PCTCN2020097431-appb-000070
按照以下至少一种方式,根据所述上行频率偏移量
Figure PCTCN2020097431-appb-000071
和/或下行频率偏移量
Figure PCTCN2020097431-appb-000072
确定所述通信设备的载波频率f″ 0
方式一:
Figure PCTCN2020097431-appb-000073
其中,f UL为终端发送信号的预设频率;
方式二:
Figure PCTCN2020097431-appb-000074
其中,f′ DL表示所述通信设备接收到基站发送信号的频率,f DL为基站发送信号的预设频率,f UL为终端发送信号的预设频率;
方式三:
Figure PCTCN2020097431-appb-000075
其中,f′ DL表示所述通信设备接收到基站发送信号的频率,Δf DL_UL表示基站发送信号的频率和终端发送信号的预设偏差。
可选的,所述程序被处理器803执行时还可实现如下步骤:
根据第一公式,确定上行频率偏移量
Figure PCTCN2020097431-appb-000076
所述第一公式为:
Figure PCTCN2020097431-appb-000077
或者,根据第二公式,确定下行频率偏移量
Figure PCTCN2020097431-appb-000078
所述第二公式为:
Figure PCTCN2020097431-appb-000079
其中,c为光速;f UL为终端发送信号的预设频率;f DL为基站发送信号的预设频率;
Figure PCTCN2020097431-appb-000080
为基站和通信设备之间的距离向量;
Figure PCTCN2020097431-appb-000081
为通信设备的速度向量,<·,·>表示两个向量的标量积,|·|表示向量取模操作。
可选的,所述程序被处理器803执行时还可实现如下步骤:
采用如下至少一种方式,对天线端口p,子载波间隔配置μ,OFDM符号l的复值OFDM基带信号s(t),进行调制和上变频处理:
方式一:
Figure PCTCN2020097431-appb-000082
方式二:
Figure PCTCN2020097431-appb-000083
其中,f″ 0为所述通信设备的载波频率;T c为基本时间单位;
Figure PCTCN2020097431-appb-000084
为OFDM符号l的起始位置;
Figure PCTCN2020097431-appb-000085
为OFDM符号l的循环前缀CP的长度。
可选的,所述基站的位置信息,包括以下信息中的至少一种:基站的经度、纬度和海拔高度。
可选的,所述获得的基站的位置信息为基站的实际位置信息;或者,所述获得的基站的位置信息,与基站的实际位置信息的偏差小于或等于第一预设阈值,和/或大于或等于第二预设阈值。
请参照图9,本公开的一些实施例提供了一种基站90,包括:
位置配置模块91,用于通过系统信息SI和无线资源控制RRC信令中的至少一种,通知和配置基站的位置信息。
可选的,所述基站的位置信息,包括以下信息中的至少一种:基站的经度、纬度和海拔高度。
可选的,所述通知或配置的基站的位置信息为基站的实际位置信息;或者,所述通知或配置的基站的位置信息,与基站的实际位置信息的偏差小于或等于第一预设阈值,和/或大于或等于第二预设阈值。
请参考图10,本公开的一些实施例提供了基站的另一结构示意图,包括:处理器1001、收发机1002、存储器1003和总线接口,其中:
在本公开的一些实施例中,基站1000还包括:存储在存储器上1003并可在处理器1001上运行的程序,所述程序被处理器1001执行时实现如下步骤:通过系统信息SI和无线资源控制RRC信令中的至少一种,通知或配置基站的位置信息。
在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理 器1001代表的一个或多个处理器和存储器1003代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1002可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1001负责管理总线架构和通常的处理,存储器1003可以存储处理器1001在执行操作时所使用的数据。
可选的,所述基站的位置信息,包括以下信息中的至少一种:基站的经度、纬度和海拔高度。
可选的,所述通知或配置的基站的位置信息为基站的实际位置信息;或者,所述通知或配置的基站的位置信息,与基站的实际位置信息的偏差小于或等于第一预设阈值,和/或大于或等于第二预设阈值。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本公开的一些实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
可以理解的是,本公开的一些实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (23)

  1. 一种信号传输方法,应用于通信设备,包括:
    获得基站的位置信息;
    确定所述通信设备的传输定时和/或所述通信设备的载波频率。
  2. 如权利要求1所述的方法,其中,获得基站的位置信息,包括:
    通过预先约定、系统信息SI和无线资源控制RRC信令中的至少一种,获得所述基站的位置信息。
  3. 如权利要求1所述的方法,其中,按照以下至少一种方式,确定所述通信设备的传输定时:
    根据基站位置信息,确定所述基站和所述通信设备的空间传播距离;根据所述空间传播距离,确定所述通信设备的传输定时;
    和/或,
    根据所述空间传播距离,确定初始时间校准值N TA;根据所述N TA,确定通信设备的传输定时,其中,所述通信设备的传输定时等于(N TA+N TA_offset)×T c,其中,N TA_offset为定时提前偏移值,T c为基本时间单位。
  4. 如权利要求1所述的方法,其中,确定所述通信设备的传输定时和/或所述通信设备的载波频率,包括:
    确定物理随机接入信道PRACH、物理上行共享信道PUSCH、物理上行控制信道PUCCH、探测参考信号SRS、解调参考信号DMRS中至少一种信道或信号的传输定时和/或载波频率。
  5. 如权利要求1所述的方法,其中,确定所述通信设备的传输定时,包括:
    确定所述通信设备到基站的上行帧的传输时间,相比于对应的下行帧的首个检测到的路径的接收时间的定时提前量为所述通信设备的传输定时。
  6. 如权利要求3所述的方法,其中,根据基站位置信息,确定所述基站和所述通信设备的空间传播距离,包括:
    确定第一参考时刻所述基站和所述通信设备的空间传播距离;
    所述第一参考时刻包括如下至少一种:
    所述通信设备获得所述基站位置信息的时间;
    所述通信设备发送信号和/或信道的时间。
  7. 如权利要求1所述的方法,其中,确定所述通信设备的载波频率,包括:
    根据基站的位置信息,确定所述基站和所述通信设备的第一频率偏移量f d
    按照以下至少一种方式,根据所述第一频率偏移量f d,确定所述通信设备的载波频率f″ 0
    方式一:f″ 0=f 0-f d
    其中,f 0为基站发送信号频率;
    方式二:f″ 0=f′ 0-2·f d
    其中,f′ 0表示所述通信设备接收到基站发送信号的频率。
  8. 如权利要求7所述的方法,其中,根据基站的位置信息,确定所述基站和所述通信设备的第一频率偏移量f d,包括:
    根据以下公式,确定第一频率偏移量f d
    Figure PCTCN2020097431-appb-100001
    其中,c为光速;f 0为基站发送信号的频率;
    Figure PCTCN2020097431-appb-100002
    为基站和通信设备之间的距离向量;
    Figure PCTCN2020097431-appb-100003
    为通信设备的速度向量,<·,·>表示两个向量的标量积,|·|表示向量取模操作。
  9. 如权利要求1所述的方法,其中,确定所述通信设备的载波频率,包括:
    根据基站的位置信息,确定上行频率偏移量
    Figure PCTCN2020097431-appb-100004
    和/或下行频率偏移量
    Figure PCTCN2020097431-appb-100005
    按照以下至少一种方式,根据所述上行频率偏移量
    Figure PCTCN2020097431-appb-100006
    和/或下行频率偏移量
    Figure PCTCN2020097431-appb-100007
    确定所述通信设备的载波频率f″ 0
    方式一:
    Figure PCTCN2020097431-appb-100008
    其中,f UL为终端发送信号的预设频率;
    方式二:
    Figure PCTCN2020097431-appb-100009
    其中,f′ DL表示所述通信设备接收到基站发送信号的频率,f DL为基站发 送信号的预设频率,f UL为终端发送信号的预设频率;
    方式三:
    Figure PCTCN2020097431-appb-100010
    其中,f′ DL表示所述通信设备接收到基站发送信号的频率,Δf DL_UL表示基站发送信号的频率和终端发送信号的预设偏差。
  10. 如权利要求9所述的方法,其中,根据基站的位置信息,确定上行频率偏移量
    Figure PCTCN2020097431-appb-100011
    和/或下行频率偏移量
    Figure PCTCN2020097431-appb-100012
    包括:
    根据第一公式,确定上行频率偏移量
    Figure PCTCN2020097431-appb-100013
    所述第一公式为:
    Figure PCTCN2020097431-appb-100014
    或者,根据第二公式,确定下行频率偏移量
    Figure PCTCN2020097431-appb-100015
    所述第二公式为:
    Figure PCTCN2020097431-appb-100016
    其中,c为光速;f UL为终端发送信号的预设频率;f DL为基站发送信号的预设频率;
    Figure PCTCN2020097431-appb-100017
    为基站和通信设备之间的距离向量;
    Figure PCTCN2020097431-appb-100018
    为通信设备的速度向量,<·,·>表示两个向量的标量积,|·|表示向量取模操作。
  11. 如权利要求1所述的方法,其中,在确定所述通信设备的载波频率f″ 0之后,所述方法还包括:
    采用如下至少一种方式,对天线端口p,子载波间隔配置μ,OFDM符号l的复值OFDM基带信号s(t),进行调制和上变频处理:
    方式一:
    Figure PCTCN2020097431-appb-100019
    方式二:
    Figure PCTCN2020097431-appb-100020
    其中,f″ 0为所述通信设备的载波频率;T c为基本时间单位;
    Figure PCTCN2020097431-appb-100021
    为OFDM符号l的起始位置;
    Figure PCTCN2020097431-appb-100022
    为OFDM符号l的循环前缀CP的长度。
  12. 如权利要求1所述的方法,其中,所述基站的位置信息,包括以下 信息中的至少一种:基站的经度、纬度和海拔高度。
  13. 如权利要求1所述的方法,其中,
    所述获得的基站的位置信息为基站的实际位置信息;
    或者,
    所述获得的基站的位置信息,与基站的实际位置信息的偏差小于或等于第一预设阈值,和/或大于或等于第二预设阈值。
  14. 一种信号传输方法,应用于基站,包括:
    通过系统信息SI和无线资源控制RRC信令中的至少一种,通知或配置基站的位置信息。
  15. 如权利要求14所述的方法,其中,所述基站的位置信息,包括以下信息中的至少一种:基站的经度、纬度和海拔高度。
  16. 如权利要求14所述的方法,其中,
    所述通知或配置的基站的位置信息为基站的实际位置信息;
    或者,
    所述通知或配置的基站的位置信息,与基站的实际位置信息的偏差小于或等于第一预设阈值,和/或大于或等于第二预设阈值。
  17. 一种通信设备,包括:
    位置获取模块,用于获得基站的位置信息;
    参数确定模块,用于确定所述通信设备的传输定时和/或所述通信设备的载波频率。
  18. 一种通信设备,包括处理器和收发机,其中,
    所述收发机,用于获得基站的位置信息;
    所述处理器,用于确定所述通信设备的传输定时和/或所述通信设备的载波频率。
  19. 一种通信设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至13中任一项所述的方法的步骤。
  20. 一种基站,包括:
    位置配置模块,用于通过系统信息SI和无线资源控制RRC信令中的至 少一种,通知和配置基站的位置信息。
  21. 一种基站,包括处理器和收发机,其中,
    所述收发机,用于通过系统信息SI和无线资源控制RRC信令中的至少一种,通知或配置基站的位置信息。
  22. 一种基站,包括:存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求14至16中任一项所述的方法的步骤。
  23. 一种可读存储介质,其中,所述可读存储介质上存储有程序,所述程序被处理器执行时,实现如权利要求1至16中任一项所述的方法的步骤。
PCT/CN2020/097431 2019-06-28 2020-06-22 信号传输方法、通信设备及基站 WO2020259437A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910576782.6 2019-06-28
CN201910576782.6A CN112153556A (zh) 2019-06-28 2019-06-28 一种信号传输方法、通信设备及基站

Publications (1)

Publication Number Publication Date
WO2020259437A1 true WO2020259437A1 (zh) 2020-12-30

Family

ID=73869526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097431 WO2020259437A1 (zh) 2019-06-28 2020-06-22 信号传输方法、通信设备及基站

Country Status (2)

Country Link
CN (1) CN112153556A (zh)
WO (1) WO2020259437A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117897976A (zh) * 2021-09-08 2024-04-16 高通股份有限公司 使用atg连接的基于保留资源的sos消息中继
CN114389930B (zh) * 2021-12-29 2024-03-15 中电科思仪科技(安徽)有限公司 一种终端上行信号基带解调同步与频偏补偿装置及方法
CN115004781B (zh) * 2022-04-29 2024-01-30 北京小米移动软件有限公司 传输定时调整方法、装置及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103780330A (zh) * 2012-10-19 2014-05-07 华为技术有限公司 信号的传输方法和系统以及装置
CN107104721A (zh) * 2017-03-23 2017-08-29 北京小米移动软件有限公司 信息传输方法、装置及系统
CN107135528A (zh) * 2016-02-26 2017-09-05 中兴通讯股份有限公司 一种基站发现方法、接入方法、基站及用户设备
CN107422301A (zh) * 2017-06-27 2017-12-01 北京航空航天大学 一种可替代传统无线电导航系统的大区域高精度定位方法
US20180146329A1 (en) * 2015-02-18 2018-05-24 Nextnav, Llc Lte-based wireless communication system for the m-lms band
US10126407B1 (en) * 2007-01-20 2018-11-13 Centrak, Inc. Methods and systems for synchronized ultrasonic real time location
CN109845169A (zh) * 2016-10-10 2019-06-04 三星电子株式会社 用于在无线蜂窝通信系统中发送和接收多个定时传输方案的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3970467B2 (ja) * 1999-03-18 2007-09-05 富士通株式会社 無線通信システム
CN101268630A (zh) * 2005-07-20 2008-09-17 高通股份有限公司 用于在无线通信系统中支持时基和/或频率校正的方法和装置
CN103002577B (zh) * 2009-11-13 2016-03-16 北京三星通信技术研究有限公司 一种传输和接收定位参考信号的方法
US8977290B2 (en) * 2013-02-14 2015-03-10 Motorola Solutions, Inc. Method and device for consolidating location-dependent information in a radio access network
CN106888429A (zh) * 2017-03-31 2017-06-23 宇龙计算机通信科技(深圳)有限公司 一种移动终端、高精度定位方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10126407B1 (en) * 2007-01-20 2018-11-13 Centrak, Inc. Methods and systems for synchronized ultrasonic real time location
CN103780330A (zh) * 2012-10-19 2014-05-07 华为技术有限公司 信号的传输方法和系统以及装置
US20180146329A1 (en) * 2015-02-18 2018-05-24 Nextnav, Llc Lte-based wireless communication system for the m-lms band
CN107135528A (zh) * 2016-02-26 2017-09-05 中兴通讯股份有限公司 一种基站发现方法、接入方法、基站及用户设备
CN109845169A (zh) * 2016-10-10 2019-06-04 三星电子株式会社 用于在无线蜂窝通信系统中发送和接收多个定时传输方案的方法和装置
CN107104721A (zh) * 2017-03-23 2017-08-29 北京小米移动软件有限公司 信息传输方法、装置及系统
CN107422301A (zh) * 2017-06-27 2017-12-01 北京航空航天大学 一种可替代传统无线电导航系统的大区域高精度定位方法

Also Published As

Publication number Publication date
CN112153556A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2020259437A1 (zh) 信号传输方法、通信设备及基站
CN112469090B (zh) 一种无线通信方法、装置和系统
US9559822B2 (en) Method and mobile node for determining a point in time for transmissions
CN111630908B (zh) 在nr中信令发送ta偏移
EP2696517A2 (en) Method and device for carrier activation in carrier aggregation system
KR101899478B1 (ko) 상향링크 시간 동기 관리 방법 및 장치
WO2022078498A1 (en) Mac-ce command action timing control in non-terrestrial networks
CA3178192A1 (en) Timing advance reporting in non-terrestrial networks
US20220329975A1 (en) Method and apparatus for determination and reporting of ue position in an ntn
US20160065302A1 (en) Method and Apparatus for Communication
AU2012367384A1 (en) User equipment, network node and method for applying power scaling to uplink transmissions
CN112770384B (zh) 传输定时调整方法及装置
CN114158058B (zh) 一种被用于无线通信的通信节点中的方法和装置
CN116319189B (zh) 用于无线通信的方法及装置
WO2021243579A1 (en) Method and apparatus for slot format indication in ntn system
WO2022021075A1 (en) Method and apparatus for determining drx rtt timer
CN113038585B (zh) 一种被用于无线通信的节点中的方法和装置
EP4366206A1 (en) Control channel monitoring in non-terrestrial networks
WO2024000192A1 (en) Methods, devices, and medium for communication
CN114126077B (zh) 一种被用于无线通信的通信节点中的方法和装置
US20230344557A1 (en) Medium Access Control Application Timing in Non-Terrestrial Networks
CN116961849A (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024073126A1 (en) Conditional handover report
WO2016188273A1 (zh) 一种进行频偏估计的方法和设备装置
CN116938295A (zh) 一种被用于无线通信的通信节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832029

Country of ref document: EP

Kind code of ref document: A1