WO2020259246A1 - 一种高温合金无缝管及其制备方法 - Google Patents

一种高温合金无缝管及其制备方法 Download PDF

Info

Publication number
WO2020259246A1
WO2020259246A1 PCT/CN2020/094389 CN2020094389W WO2020259246A1 WO 2020259246 A1 WO2020259246 A1 WO 2020259246A1 CN 2020094389 W CN2020094389 W CN 2020094389W WO 2020259246 A1 WO2020259246 A1 WO 2020259246A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
heat treatment
temperature
solution heat
preparation
Prior art date
Application number
PCT/CN2020/094389
Other languages
English (en)
French (fr)
Inventor
罗锐
袁志钟
程晓农
高佩
陈乐利
刘天
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US17/251,935 priority Critical patent/US20210292879A1/en
Publication of WO2020259246A1 publication Critical patent/WO2020259246A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/30Finishing tubes, e.g. sizing, burnishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/003Selecting material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/10Piercing billets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon

Definitions

  • the invention relates to the technical field of high-temperature alloys, in particular to a high-temperature alloy seamless pipe and a preparation method thereof.
  • Iron-nickel-based precipitation hardening deformation superalloys are widely used in aerospace, nuclear power, petrochemical, metallurgy and other fields because of their good high-temperature strength, structural stability, high-temperature oxidation resistance and corrosion resistance, such as aviation and aerospace engines High temperature anti-oxidation parts of the combustion chamber, industrial furnace rolls, transmission devices, thermowells and other high temperature resistant parts.
  • the purpose of the present invention is to provide a high-temperature alloy seamless pipe and a preparation method thereof, so that the high-temperature alloy seamless pipe has high temperature resistance, oxidation corrosion resistance, high tensile strength and high yield strength, small surface roughness, and good
  • the dimensional accuracy and surface quality can meet the requirements of the use of iron-nickel-based precipitation hardening deformation superalloy seamless pipes for space engines.
  • the present invention provides a high-temperature alloy seamless pipe, which comprises the following components by weight percentage: C: 0.01-0.06%, Si: 0.40-1.00%, Mn: 0.30-1.00%, P ⁇ 0.025%, S ⁇ 0.020 %, Cr: 15.00 ⁇ 17.00%, Ni: 44.00 ⁇ 46.00%, Al: 2.90 ⁇ 3.90%, Ce: 0.01 ⁇ 0.03%, Ti: 0.10 ⁇ 0.30%, N: 0.03 ⁇ 0.08%, the balance is Fe and non Impurities to avoid.
  • the inner surface roughness of the high-temperature alloy seamless pipe is Ra ⁇ 1.6 ⁇ m, the outer surface roughness Ra ⁇ 1.0 ⁇ m, the outer diameter is 25 ⁇ 0.05mm, the wall thickness is 3 ⁇ 0.05mm, and the curvature is ⁇ 0.8mm /m; grain size ⁇ 5.
  • the room temperature mechanical properties of the high-temperature alloy seamless pipe are: R m ⁇ 600MPa, R p0.2 ⁇ 210MPa, and A 50 ⁇ 35%;
  • the high-temperature mechanical properties of the high-temperature alloy seamless pipe are: at 100°C, R m ⁇ 540MPa, R p0.2 ⁇ 195MPa, A ⁇ 35%; at 200°C, R m ⁇ 530MPa, R p0.2 ⁇ 190MPa, A ⁇ 35%; at 300°C, R m ⁇ 520MPa, R p0.2 ⁇ 170MPa, A ⁇ 40%; at 400°C, R m ⁇ 510MPa, R p0.2 ⁇ 160MPa, A ⁇ 40%; at 500°C , R m ⁇ 480MPa, R p0.2 ⁇ 150MPa, A ⁇ 45%; at 600°C, R m ⁇ 420MPa, R p0.2 ⁇ 150MPa, A ⁇ 25%; at 700°C, R m ⁇ 320MPa, R p0 .2 ⁇ 150MPa, A ⁇ 10%; at 800°C, R m ⁇ 150MPa, R p0.2 ⁇ 140MPa, A ⁇ 50%;
  • the present invention provides a method for preparing the high-temperature alloy seamless pipe described in the above solution, which includes the following steps:
  • the outer diameter of the tube blank is 70mm;
  • the size of the waste pipe is ⁇ 70 ⁇ 7mm, the deviation of the pipe outer diameter is (-1.50, +1.00) mm, and the wall thickness deviation is ⁇ 0.50mm;
  • the size of the intermediate tube blank is ⁇ 38 ⁇ 4mm, the deviation of the tube outer diameter is ⁇ 0.15mm, and the deviation of the wall thickness is ⁇ 0.1mm;
  • the size of the preliminary alloy tube is ⁇ 25 ⁇ 3mm
  • the outer diameter deviation of the alloy tube is ⁇ 0.05mm
  • the wall thickness deviation is ⁇ 0.05mm.
  • the temperature of the first solution heat treatment in the step (3) is 1000-1060°C
  • the time is 25-30 minutes
  • the cooling method is water cooling.
  • the feed rate of cold rolling in the step (3) and step (4) is independently 2 to 3 mm/time, and the cold rolling speed is independently 20 to 30 times/min.
  • the temperature of the second solution heat treatment in the step (4) is 1000-1060°C
  • the time is 8-12 minutes
  • the cooling method is water cooling.
  • the step (4) before the second solution heat treatment of the intermediate tube blank, it further includes the first pickling of the intermediate tube blank; after the second solution heat treatment, it also includes the The intermediate tube is subjected to the second pickling.
  • the acid liquid used in the first pickling is a mixed liquid of hydrofluoric acid and nitric acid; the mass concentration of hydrofluoric acid in the mixed liquid is 1 to 3%; the mass concentration of nitric acid in the mixed liquid is 10-15%.
  • the acid liquid used in the second pickling is preferably a mixed liquid of hydrofluoric acid and nitric acid; the mass concentration of hydrofluoric acid in the mixed liquid is 5-8%; the mass concentration of nitric acid in the mixed liquid It is 10-15%.
  • the temperature of the third solution heat treatment in the step (5) is 1000-1060°C
  • the time is 5-10 minutes
  • the cooling method is water cooling.
  • the step (5) before performing the third solution heat treatment on the preliminary alloy tube, it further includes performing a third acid wash on the preliminary alloy tube, and the acid solution used in the third pickling is The mixed liquid of hydrofluoric acid and nitric acid; the mass concentration of hydrofluoric acid in the mixed liquid is 1 to 3%; the mass concentration of nitric acid in the mixed liquid is 10 to 15%.
  • the third solution heat treatment further includes post-treatment and inspection of the alloy tube after the third solution heat treatment;
  • the post-treatment includes sequential straightening and fine polishing;
  • the inspection includes ultrasonic inspection , Eddy current inspection, water pressure inspection, surface inspection, size inspection and physical and chemical inspection.
  • the present invention provides a high-temperature alloy seamless pipe, which comprises the following components by weight percentage: C: 0.01-0.06%, Si: 0.40-1.00%, Mn: 0.30-1.00%, P ⁇ 0.025%, S ⁇ 0.020 %, Cr: 15.00 ⁇ 17.00%, Ni: 44.00 ⁇ 46.00%, Al: 2.90 ⁇ 3.90%, Ce: 0.01 ⁇ 0.03%, Ti: 0.10 ⁇ 0.30%, N: 0.03 ⁇ 0.08%, the balance is Fe and non Impurities to avoid.
  • the present invention reduces the C content to improve its intergranular corrosion resistance; controls the Si and Mn content within a certain range, and increases a certain content of the N element to compensate for the decrease in strength caused by the reduced C content; in addition, at high temperatures
  • the addition of appropriate amounts of Al and Ti to the alloy seamless tube and other ingredients can reduce the precipitation of the grain boundary, and at the same time produce a certain amount of Ti carbide, thereby reducing the C content in the matrix and improving the crystal resistance of the seamless tube Inter-corrosion performance; adding a small amount of rare earth Ce together with other components can reduce the number of non-metallic inclusions in the alloy and reduce their size, purify the melt, and help improve the processing and use performance; the combination of the components of the present invention results in
  • the high-temperature alloy seamless tube has high temperature resistance, oxidation corrosion resistance, high tensile strength and high yield strength, which can fully meet the mechanical performance requirements of aerospace engines for high-temperature alloy seamless tubes.
  • the present invention provides a method for preparing the high-temperature alloy seamless pipe described in the above technical scheme.
  • the preparation method of the present invention can ensure that the seamless pipe has good dimensional accuracy and surface quality under the premise of ensuring the performance of the seamless pipe, and can achieve Industrial production.
  • inner and outer surface roughness Ra ⁇ 3.2 ⁇ m small diameter precision pipe outer diameter generally requires ⁇ 0.10mm, wall thickness deviation ⁇ 10%, curvature ⁇ 1.5mm/m; and the seamless pipe of the present invention
  • the inner surface roughness Ra is ⁇ 1.6 ⁇ m
  • the outer surface roughness Ra is ⁇ 1.0 ⁇ m
  • the outer diameter deviation is ⁇ 0.05mm
  • the wall thickness deviation is ⁇ 0.05mm
  • the curvature is ⁇ 0.8mm/m, which significantly improves the seamlessness
  • the present invention provides a high-temperature alloy seamless pipe, which comprises the following components by weight percentage: C: 0.01-0.06%, Si: 0.40-1.00%, Mn: 0.30-1.00%, P ⁇ 0.025%, S ⁇ 0.020 %, Cr: 15.00 ⁇ 17.00%, Ni: 44.00 ⁇ 46.00%, Al: 2.90 ⁇ 3.90%, Ce: 0.01 ⁇ 0.03%, Ti: 0.10 ⁇ 0.30%, N: 0.03 ⁇ 0.08%, the balance is Fe and non Impurities to avoid.
  • the high-temperature alloy seamless tube provided by the present invention contains 0.01-0.06% of C, preferably 0.03-0.06%, more preferably 0.04-0.05%.
  • the high-temperature alloy seamless pipe provided by the present invention includes 0.40-1.00% Si, preferably 0.50-0.90%, more preferably 0.60-0.80%.
  • the high-temperature alloy seamless pipe provided by the present invention includes 0.30-1.00% Mn, preferably 0.40-0.90%, more preferably 0.50-0.80%.
  • the high-temperature alloy seamless tube provided by the present invention includes P ⁇ 0.025%, preferably 0.005 to 0.02%, more preferably 0.01 to 0.015%.
  • the high-temperature alloy seamless pipe provided by the present invention includes S ⁇ 0.020%, preferably 0.005 to 0.015%, more preferably 0.07 to 0.012%.
  • the high-temperature alloy seamless tube provided by the present invention includes 15.00-17.00% Cr, preferably 15.5-16.5%, and more preferably 15.8-16.2%.
  • the high-temperature alloy seamless tube provided by the present invention includes 44.00-46.00% of Ni, preferably 45.00-46.00%, more preferably 45.50-46.00%.
  • the high-temperature alloy seamless tube provided by the present invention includes 2.90-3.90% Al, preferably 2.95-3.50%, more preferably 3.00-3.30%.
  • the high-temperature alloy seamless tube provided by the present invention includes 0.01-0.03% Ce, preferably 0.015-0.025%, more preferably 0.017-0.023%.
  • the high-temperature alloy seamless tube provided by the present invention includes 0.10-0.300% Ti, preferably 0.15-0.25%, more preferably 0.18-0.23%.
  • the high-temperature alloy seamless tube provided by the present invention contains 0.03-0.08% of N, preferably 0.03-0.07%, more preferably 0.05-0.07%.
  • the superalloy seamless pipe provided by the present invention includes the balance Fe and unavoidable impurities.
  • the present invention reduces the C content to improve its intergranular corrosion resistance; controls the Si and Mn content within a certain range, and increases a certain content of the N element to compensate for the decrease in strength caused by the reduced C content; in addition, at high temperatures
  • the addition of appropriate amounts of Al and Ti to the alloy seamless tube and other ingredients can reduce the precipitation of the grain boundary, and at the same time produce a certain amount of Ti carbide, thereby reducing the C content in the matrix and improving the crystal resistance of the seamless tube Inter-corrosion performance; adding a small amount of rare earth Ce together with other components can reduce the number of non-metallic inclusions in the alloy and reduce their size, purify the melt, and help improve the processing and use performance; the combination of the components of the present invention results in
  • the high-temperature alloy seamless tube has high temperature resistance, oxidation corrosion resistance, high tensile strength and high yield strength, which can fully meet the mechanical performance requirements of aerospace engines for high-temperature alloy seamless tubes.
  • the inner surface roughness Ra of the high-temperature alloy seamless tube is preferably ⁇ 1.6 ⁇ m
  • the outer surface roughness Ra is preferably ⁇ 1.0 ⁇ m
  • the outer diameter is preferably 25 ⁇ 0.05mm, more preferably 25mm
  • the wall thickness is preferably It is 3 ⁇ 0.05mm, more preferably 3mm
  • the curvature is preferably ⁇ 0.8mm/m
  • the grain size is ⁇ 5.
  • the room temperature mechanical properties of the high-temperature alloy seamless pipe are preferably: R m ⁇ 600MPa, R p0.2 ⁇ 210MPa, A 50 ⁇ 35%; more preferably R m is 650MPa, R p0.2 is 280MPa , A 50 is 45%.
  • the high-temperature mechanical properties of the high-temperature alloy seamless pipe are preferably: at 100°C, R m ⁇ 540 MPa, R p 0.2 ⁇ 195 MPa, A ⁇ 35%, more preferably R m is 590 MPa, R p 0.2 is 235 MPa, A 50 is 45%;
  • R m ⁇ 520 MPa, R p0.2 ⁇ 170 MPa, A ⁇ 40%; more preferably, R m is 570 MPa, R p 0.2 is 180 MPa, and A 50 is 48%;
  • R m ⁇ 480MPa, R p0.2 ⁇ 150MPa, A ⁇ 45%; more preferably R m is 540MPa, R p0.2 is 160MPa, A 50 to 50%;
  • R m ⁇ 420MPa, R p0.2 ⁇ 150MPa, A ⁇ 25%; more preferably R m is 450MPa, R p0.2 is 180MPa, A 50 to 20%;
  • R m ⁇ 320MPa, R p0.2 ⁇ 150MPa, A ⁇ 10%; more preferably R m is 350MPa, R p0.2 is 210MPa, A 50 of 10%;
  • R m ⁇ 150MPa, R p0.2 ⁇ 140MPa, A ⁇ 50%; more preferably R m is 180MPa, R p0.2 is 160MPa, A 50 to 60%;
  • R m ⁇ 80MPa, R p0.2 ⁇ 70MPa, A ⁇ 50%; more preferably R m is 90MPa, R p0.2 is 80MPa, A 50 of 65%.
  • R m represents tensile strength
  • R p0.2 represents yield strength
  • a 50 represents elongation after fracture.
  • the present invention provides a method for preparing the high-temperature alloy seamless pipe described in the above technical solution, which includes the following steps:
  • the alloy corresponding to the components of the high-temperature alloy seamless tube described in the above scheme is smelted and forged to obtain a tube blank.
  • the present invention has no special requirements on the source of the alloy corresponding to the components of the high-temperature alloy seamless pipe described in the above solution, and it can be prepared by a preparation method known in the art.
  • the smelting includes vacuum induction smelting and electroslag remelting smelting in sequence.
  • the present invention has no special requirements for the specific implementation of the vacuum induction smelting and electroslag remelting smelting, and vacuum induction smelting and electroslag remelting smelting well known in the art can be used.
  • the size of the tube material obtained after the vacuum induction smelting is 430 ⁇ 2800 mm; the outer diameter of the electroslag ingot obtained after the electroslag remelting smelting is preferably 510 mm.
  • the invention adopts methods well-known in the art to obtain tube materials and electroslag ingots.
  • the present invention has no special requirements for the forging method, and the tube blank forging method well known in the art can be used.
  • the electroslag ingots obtained after electroslag remelting and smelting are quickly forged into 220 octagonal blanks, the rapid forging compression ratio is ⁇ 5, the head is cut off 3%, and the tail part is cut off 8%. Then it can be forged into a tube blank.
  • the outer diameter of the tube blank is preferably 70 mm.
  • the present invention performs thermal perforation on the tube blank to obtain a waste tube.
  • the present invention preferably further includes performing fine peeling of the tube blank to remove oxide scale and surface defects on the surface of the tube blank.
  • the present invention has no special requirements for the specific implementation of the fine peeling, and the fine peeling method well known in the art can be used.
  • the present invention preferably cuts the tube blank after fine stripping in sections, and drills a ⁇ 12 ⁇ 1mm centering hole at one end of each section of the blank to prevent uneven wall thickness during thermal perforation.
  • the present invention does not specifically limit the length of each section of the blank, and those skilled in the art can adjust it according to actual needs. In a specific embodiment of the present invention, the length of each section of the blank is preferably 1200-1300 mm.
  • the present invention has no special requirements for the specific implementation of the thermal perforation, and the thermal perforation method well known in the art can be used.
  • the size of the waste pipe is preferably ⁇ 70 ⁇ 7mm.
  • the invention drills a ⁇ 12 ⁇ 1mm centering hole at one end of each blank, which can control the deviation of tube outer diameter within (-1.50, +1.00) mm and the deviation of wall thickness within the range of ⁇ 0.50mm.
  • the present invention sequentially performs the first solution heat treatment and cold rolling on the waste tube to obtain an intermediate tube blank.
  • the temperature of the first solution heat treatment is preferably 1000 to 1060°C, more preferably 1050°C; the time is preferably 25 to 30 minutes, more preferably 30 minutes; the cooling method is preferably water cooling.
  • the first solution treatment of the present invention can improve the plasticity and toughness of the waste pipe, and is beneficial to the later cold rolling deformation.
  • the deformation of the cold rolling is preferably 60 to 70%, and the feed rate of the cold rolling is preferably 2 to 3 mm/time, and more preferably It is 3 mm/time; the rolling speed is preferably 20 to 30 times/min, more preferably 22 to 28 times.
  • the cold rolling of the invention can reduce the diameter, reduce the wall and extend the waste pipe, make its outer diameter and wall thickness close to the size of the finished pipe, eliminate the uneven longitudinal wall thickness, improve the quality of the inner and outer surface of the alloy pipe, and control the outer diameter and unevenness.
  • the size of the intermediate tube blank is preferably ⁇ 38 ⁇ 4mm.
  • the present invention is beneficial to control the deviation of the tube outer diameter within ⁇ 0.15mm and the wall thickness deviation within ⁇ 0.1mm. Within range.
  • the present invention sequentially performs the second solution heat treatment and cold rolling on the intermediate tube blank to obtain a preliminary alloy tube.
  • the present invention Before performing the second solution heat treatment, the present invention preferably performs a first pickling on the intermediate tube.
  • the acid liquid used in the first pickling is preferably a mixed liquid of hydrofluoric acid and nitric acid; the mass concentration of hydrofluoric acid in the mixed liquid is preferably 1 to 3%, more preferably 1%; The mass concentration of nitric acid in the mixed solution is preferably 10-15%, and more preferably 11-14%.
  • the first pickling of the present invention can remove oil stains on the surface of the intermediate tube blank.
  • the temperature of the second solution heat treatment is preferably 1000-1060°C, more preferably 1050°C; the time is preferably 8-12 min, more preferably 10 min; and the cooling method is preferably water cooling.
  • the second solution heat treatment of the present invention can improve the plasticity and toughness of the intermediate tube blank, eliminate work hardening caused by cold rolling, and facilitate further cold working.
  • the present invention performs cold rolling on the heat-treated intermediate tube blank to obtain a preliminary alloy tube.
  • the amount of deformation of the cold rolling is preferably 50-60%
  • the feed rate of the cold rolling is preferably 2 to 3 mm/time, more preferably 2 mm/time;
  • the cold rolling speed is preferably 20 to 30 Times/min, more preferably 22-28 times.
  • the cold rolling of the invention can reduce the diameter, wall thickness and extension of the intermediate tube blank, make the outer diameter and wall thickness of the finished tube size, eliminate the uneven longitudinal wall thickness, improve the inner and outer surface quality of the alloy tube, and control the outer diameter And out of roundness.
  • the size of the primary alloy tube is preferably ⁇ 25 ⁇ 3mm.
  • the hole type and the mandrel of the present invention are precisely matched, and by controlling the cold rolling parameters in the above range, the deviation of the outer diameter of the alloy tube can be controlled within ⁇ 0.05mm, and the deviation of the wall thickness can be controlled within the range of ⁇ 0.05mm.
  • the present invention preferably further includes performing straightening, second pickling, surface inspection, grinding, and cleaning on the heat-treated intermediate tube in sequence.
  • the present invention has no special requirements for the specific implementations of straightening, second pickling, surface inspection, grinding and cleaning, and straightening, pickling, surface inspection, grinding and cleaning methods well known to those skilled in the art can be used.
  • a multi-roll straightening machine is preferably used for straightening, and the straightness of the intermediate tube blank is preferably controlled below 1.0 mm/m.
  • the acid liquid used in the second pickling is preferably a mixed liquid of hydrofluoric acid and nitric acid; the mass concentration of hydrofluoric acid in the mixed liquid is preferably 5-8%, more preferably 6-7 %; The mass concentration of nitric acid in the mixed solution is preferably 10-15%, more preferably 11-14%.
  • the present invention adopts two cold rolling. Through the first cold rolling, the uneven wall thickness will be greatly improved, but there is still a certain deviation. Then the second cold rolling is adopted, the deformation is small, and the wall thickness is uneven The phenomenon is further improved, and the deviation range of the finished product size can be reached.
  • the present invention subjects the primary alloy tube to a third solution heat treatment to obtain a high-temperature alloy seamless tube.
  • the third solution heat treatment before the third solution heat treatment, it preferably further includes performing a third pickling on the preliminary alloy tube.
  • the pickling liquid used in the third pickling is preferably the same as the pickling liquid used in the first pickling. The same, I won't repeat them here.
  • the third pickling of the present invention can remove oil stains on the surface of the alloy pipe.
  • the temperature of the third solution heat treatment is preferably 1000 to 1060°C, more preferably 1020°C; the time is preferably 5 to 10 min, more preferably 8 min; the cooling method is preferably water cooling.
  • the third solution heat treatment of the present invention causes the alloy tube to recrystallize, thereby improving the plasticity and toughness of the alloy tube, and finally obtaining good comprehensive performance.
  • the present invention preferably further includes post-treatment and inspection of the alloy tube after the third solution heat treatment.
  • the post-treatment includes straightening and finishing polishing sequentially.
  • the present invention has no special requirements for the specific implementation of the straight and fine polishing, and the straight and fine polishing methods well known to those skilled in the art can be used.
  • the post-processed finished pipe is preferably straightened by a multi-roll straightening machine, and the straightness of the finished pipe after straightening is below 0.8 mm/m.
  • the inspection includes ultrasonic inspection, eddy current inspection, water pressure inspection, surface inspection, dimensional inspection and physical and chemical inspection.
  • the specific implementations of the inspection in the present invention are all methods known in the art, and will not be repeated here.
  • the preparation method of the invention can ensure that the seamless pipe has good dimensional accuracy and surface quality, and can realize industrialized production.
  • High temperature alloy seamless pipe including the following components by weight percentage: C: 0.036%, Si: 0.56%, Mn: 0.42%, P: 0.014%, S: 0.012%, Cr: 16.02%, Ni: 45.92%, Al : 3.11%, Ce: 0.023%, Ti: 0.18%, N: 0.05%, Fe: 33.52% and other inevitable impurity elements.
  • the preparation method of high temperature alloy seamless pipe is as follows:
  • step (2) The forging blank obtained in step (1) is finely peeled, and then cut into a certain length, namely 1200 ⁇ 1250mm, one end of each blank is drilled with a centering hole of ⁇ 12 ⁇ 1mm, and then hot perforated to obtain the specifications It is a waste pipe of ⁇ 70 ⁇ 7mm, the outer diameter deviation of the pipe is (-1.50, +1.00)mm, and the wall thickness deviation is ⁇ 0.50mm;
  • step (3) The waste pipe obtained in step (2) is subjected to solution heat treatment, the heat treatment temperature is 1050°C, the heat preservation is 30min, and water cooling; the heat-treated alloy pipe is cold-rolled to the middle tube billet of ⁇ 38 ⁇ 4mm, the outer diameter of the pipe The deviation is ⁇ 0.15mm, and the wall thickness deviation is ⁇ 0.1mm;
  • the solution heat treatment temperature is 1050°C, holding for 10 minutes, water cooling, and then straightening, pickling, surface inspection, grinding, and cleaning;
  • step (5) Cold-roll the alloy tube treated in step (5) to a finished product specification of ⁇ 25 ⁇ 3mm alloy tube, the tube outer diameter deviation is ⁇ 0.05mm, the wall thickness deviation is ⁇ 0.05mm, and then pickling;
  • the acid-washed alloy tube is subjected to solution heat treatment, the heat treatment temperature is 1020°C, the heat preservation is 8min, and the air cooling;
  • High-temperature alloy seamless pipe including the following components by weight percentage: C: 0.042%, Si: 0.61%, Mn: 0.41%, P: 0.013%, S: 0.008%, Cr: 16.06%, Ni: 45.96%, Al : 3.02%, Ce: 0.019%, Ti: 0.16%, N: 0.06%, Fe: 33.48% and other impurity elements.
  • the preparation method of high temperature alloy seamless pipe is as follows:
  • step (2) The forging blank obtained in step (1) is finely peeled, and then cut into a certain length, namely 1200 ⁇ 1250mm, one end of each blank is drilled with a centering hole of ⁇ 12 ⁇ 1mm, and then hot perforated to obtain the specifications It is a waste pipe of ⁇ 70 ⁇ 7mm, the outer diameter deviation of the pipe is (-1.50, +1.00)mm, and the wall thickness deviation is ⁇ 0.50mm;
  • step (3) The waste pipe obtained in step (2) is subjected to solution heat treatment, the heat treatment temperature is 1050°C, the heat preservation is 30min, and water cooling; the heat-treated alloy pipe is cold-rolled to the middle tube billet of ⁇ 38 ⁇ 4mm, the outer diameter of the pipe The deviation is ⁇ 0.15mm, and the wall thickness deviation is ⁇ 0.1mm;
  • the solution heat treatment temperature is 1050°C, holding for 10 minutes, water cooling, and then straightening, pickling, surface inspection, grinding, and cleaning;
  • step (5) Cold-roll the alloy tube treated in step (5) to a finished alloy tube of ⁇ 25 ⁇ 3mm, the tube outer diameter deviation is controlled within ⁇ 0.05mm, the wall thickness deviation is controlled within ⁇ 0.05mm, and then pickled;
  • the acid-washed alloy tube is subjected to solution heat treatment, the heat treatment temperature is 1020°C, the heat preservation is 8min, and the air cooling;
  • Example 2 The only difference from Example 2 is that it does not contain Ti and N elements.
  • High-temperature alloy seamless pipe including the following components by weight percentage: C: 0.042%, Si: 0.61%, Mn: 0.41%, P: 0.013%, S: 0.008%, Cr: 16.06%, Ni: 45.96%, Al : 3.02%, Ce: 0.019%, Fe: 33.58% and other impurity elements.
  • the preparation method of high temperature alloy seamless pipe is as follows:
  • step (2) The forging blank obtained in step (1) is finely peeled, and then cut into certain lengths, namely 1200 ⁇ 1250mm.
  • One end of each blank is drilled with a centering hole of ⁇ 12 ⁇ 1mm, and then hot perforated to obtain specifications It is a waste pipe of ⁇ 70 ⁇ 7mm, the outer diameter deviation of the pipe is (-1.50, +1.00)mm, and the wall thickness deviation is ⁇ 0.50mm;
  • step (3) The waste pipe obtained in step (2) is subjected to solution heat treatment, the heat treatment temperature is 1050°C, the heat preservation is 30min, and water cooling; the heat-treated alloy pipe is cold-rolled to the middle tube billet of ⁇ 38 ⁇ 4mm, the outer diameter of the pipe The deviation is ⁇ 0.15mm, and the wall thickness deviation is ⁇ 0.1mm;
  • the solution heat treatment temperature is 1050°C, holding for 10 minutes, water cooling, and then straightening, pickling, surface inspection, grinding, and cleaning;
  • step (5) Cold-roll the alloy tube treated in step (5) to a finished alloy tube with a specification of ⁇ 25 ⁇ 3mm, the tube outer diameter deviation is controlled within ⁇ 0.05mm, the wall thickness deviation is controlled within ⁇ 0.05mm, and then pickled;
  • the acid-washed alloy tube is subjected to solution heat treatment, the heat treatment temperature is 1020°C, the heat preservation is 8min, and the air cooling;
  • Vickers hardness: HV 30 143; flattening and flaring tests are carried out according to ASME SA-1016/SA-1016M, without cracks and cracks; according to GB/T15260 B method (copper-copper sulfate-16% sulfuric acid) Carry out the intergranular corrosion test, exposed to the boiling solution for 72h, there is a tendency for intergranular corrosion.
  • the high temperature alloy seamless pipe prepared by the present invention has excellent high temperature resistance, oxidation corrosion resistance, high tensile strength and high yield strength, and the seamless pipe has low roughness, small wall thickness and outer diameter deviation.
  • the low degree of curvature indicates that it has good dimensional accuracy and surface quality, and can fully meet the requirements of aerospace engines for high-temperature alloy seamless tubes.

Abstract

提供了一种高温合金无缝管及其制备方法,按重量百分比,高温合金无缝管包括以下组分:C:0.01~0.06%,Si:0.40~1.00%,Mn:0.30~1.00%,P≤0.025%,S≤0.020%,Cr:15.00~17.00%,Ni:44.00~46.00%,Al:2.90~3.90%,Ce:0.01~0.03%,Ti:0.10~0.30%,N:0.03~0.08%,余量为Fe和不可避免的杂质。该高温合金无缝管具有耐高温、耐氧化腐蚀、高抗拉强度和高屈服强度,且具有良好的尺寸精度和表面质量,满足航天发动机对高温合金无缝管的力学性能要求。

Description

一种高温合金无缝管及其制备方法
本申请要求于2019年06月24日提交中国专利局、申请号为201910549138.X、发明名称为“一种高温合金无缝管及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及高温合金技术领域,尤其涉及一种高温合金无缝管及其制备方法。
背景技术
铁-镍基沉淀硬化型变形高温合金因其具有良好的高温强度、组织稳定性、高温抗氧化性和耐腐蚀性能,广泛用于航空航天、核电、石化、冶金等领域,如航空、航天发动机燃烧室高温抗氧化部件、工业用炉辊、传动装置、热电偶套管等耐高温部件。
目前,常用的铁-镍基沉淀硬化型变形高温合金为GH2747,但国内对GH2747的研究主要集中在理化性能方面的介绍,而对其无缝管的工业化生产鲜有报道。另一方面,伴随着对航空、航天发动机用铁镍基沉淀硬化型变形高温合金的使用要求越来越高,研发更多高温合金无缝管对材料的生产和应用具有重要的指导意义。
发明内容
本发明的目的在于提供一种高温合金无缝管及其制备方法,使高温合金无缝管具有耐高温、耐氧化腐蚀、高抗拉强度和高屈服强度、较小的表面粗糙度,以及良好的尺寸精度和表面质量,能够满足航天发动机用铁镍基沉淀硬化型变形高温合金无缝管的使用要求。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种高温合金无缝管,按重量百分比,包括以下组分:C:0.01~0.06%,Si:0.40~1.00%,Mn:0.30~1.00%,P≤0.025%,S≤0.020%,Cr:15.00~17.00%,Ni:44.00~46.00%,Al:2.90~3.90%,Ce:0.01~0.03%,Ti:0.10~0.30%,N:0.03~0.08%,余量为Fe和不可避免的杂质。
优选的,所述高温合金无缝管的内表面粗糙度Ra≤1.6μm,外表面粗糙度Ra≤1.0μm,外径为25±0.05mm,壁厚为3±0.05mm,弯曲度≤0.8mm/m;晶粒度≥5级。
优选的,所述高温合金无缝管的室温力学性能为:R m≥600MPa,R p0.2≥210MPa,A 50≥35%;
所述高温合金无缝管的高温力学性能为:100℃时,R m≥540MPa,R p0.2≥195MPa,A≥35%;200℃时,R m≥530MPa,R p0.2≥190MPa,A≥35%;300℃时,R m≥520MPa,R p0.2≥170MPa,A≥40%;400℃时,R m≥510MPa,R p0.2≥160MPa,A≥40%;500℃时,R m≥480MPa,R p0.2≥150MPa,A≥45%;600℃时,R m≥420MPa,R p0.2≥150MPa,A≥25%;700℃时,R m≥320MPa,R p0.2≥150MPa,A≥10%;800℃时,R m≥150MPa,R p0.2≥140MPa,A≥50%;900℃时,R m≥80MPa,R p0.2≥70MPa,A≥50%。
本发明提供了上述方案所述高温合金无缝管的制备方法,包括以下步骤:
(1)将对应上述方案所述高温合金无缝管组分的合金依次进行熔炼和锻造,得到管坯;
(2)将所述管坯进行热穿孔,得到荒管;
(3)将所述荒管依次进行第一固溶热处理和冷轧,得到中间管坯;
(4)将所述中间管坯依次进行第二固溶热处理和冷轧,得到初品合金管;
(5)将所述初品合金管进行第三固溶热处理,得到高温合金无缝管。
优选的,所述步骤(1)管坯的外径为70mm;
所述步骤(2)荒管的尺寸为Ф70×7mm,管外径偏差为(-1.50,+1.00)mm,壁厚偏差为±0.50mm;
所述步骤(3)中间管坯的尺寸为Ф38×4mm,管外径偏差为±0.15mm,壁厚偏差为±0.1mm;
所述步骤(4)初品合金管的尺寸为Ф25×3mm,合金管外径偏差为±0.05mm,壁厚偏差为±0.05mm。
优选的,所述步骤(3)中第一固溶热处理的温度为1000~1060℃,时间为25~30min,冷却方式为水冷。
优选的,所述步骤(3)和步骤(4)中冷轧的送进量独立地为2~3mm/次,冷轧速度独立地为20~30次/min。
优选的,所述步骤(4)中第二固溶热处理的温度为1000~1060℃,时间为8~12min,冷却方式为水冷。
优选的,所述步骤(4)中,对中间管坯进行第二固溶热处理前,还包括对所述中间管坯进行第一酸洗;第二固溶热处理后,还包括对热处理后的中间管坯进行第二酸洗。
优选的,所述第一酸洗采用的酸液为氢氟酸与硝酸的混合液;所述混合液中氢氟酸的质量浓度为1~3%;所述混合液中硝酸的质量浓度为10~15%。
优选的,所述第二酸洗采用的酸液优选为氢氟酸与硝酸的混合液;所述混合液中氢氟酸的质量浓度为5~8%;所述混合液中硝酸的质量浓度为10~15%。
优选的,所述步骤(5)中第三固溶热处理的温度为1000~1060℃,时间为5~10min,冷却方式为水冷。
优选的,所述步骤(5)中,对初品合金管进行第三固溶热处理前,还包括对初品合金管进行第三酸洗,所述所述第三酸洗采用的酸液为氢氟酸与硝酸的混合液;所述混合液中氢氟酸的质量浓度为1~3%;所述混合液中硝酸的质量浓度为10~15%。
优选的,所述第三固溶热处理后,还包括对第三固溶热处理后的合金管进行后处理和检验;所述后处理包括依次进行的轿直和精抛光;所述检验包括超声波检验、涡流检验、水压检验、表面检验、尺寸检验和理化检验。
本发明提供了一种高温合金无缝管,按重量百分比,包括以下组分:C:0.01~0.06%,Si:0.40~1.00%,Mn:0.30~1.00%,P≤0.025%,S≤0.020%,Cr:15.00~17.00%,Ni:44.00~46.00%,Al:2.90~3.90%,Ce:0.01~0.03%,Ti:0.10~0.30%,N:0.03~0.08%,余量为Fe和不可避免的杂质。本发明相对GH2747合金降低了C含量,以提高其耐晶间腐蚀性能;将Si、Mn含量控制在一定范围,增加一定含量的N元素,以弥补降低C含量导致的强度降低;此外,在高温合金无缝管中添加适量的Al和Ti,配合其他 成分,能够使晶界析出相减少,同时可产生一定量的Ti的碳化物,从而降低基体中的C含量,提高无缝管的耐晶间腐蚀性能;添加少量的稀土Ce,配合其他成分,能够减少合金中非金属夹杂物数量并降低其尺寸,净化了熔体,有助于改善加工使用性能;本发明各组分配合作用,得到的高温合金无缝管具有耐高温、耐氧化腐蚀、高抗拉强度和高屈服强度,完全能够满足航天发动机对高温合金无缝管的力学性能要求。
本发明提供了上述技术方案所述高温合金无缝管的制备方法,本发明的制备方法在确保无缝管性能的前提下,能够保证无缝管具有良好的尺寸精度和表面质量,且能够实现工业化生产。无缝管的一般要求:内外表面粗糙度Ra≤3.2μm,小口径精密管外径一般要求±0.10mm,壁厚偏差为±10%,弯曲度≤1.5mm/m;而本发明无缝管的内表面粗糙度Ra为≤1.6μm,外表面粗糙度Ra为≤1.0μm,外径偏差为±0.05mm,壁厚偏差为±0.05mm,弯曲度≤0.8mm/m,显著提高了无缝管的尺寸精度和表面质量。
具体实施方式
本发明提供了一种高温合金无缝管,按重量百分比,包括以下组分:C:0.01~0.06%,Si:0.40~1.00%,Mn:0.30~1.00%,P≤0.025%,S≤0.020%,Cr:15.00~17.00%,Ni:44.00~46.00%,Al:2.90~3.90%,Ce:0.01~0.03%,Ti:0.10~0.30%,N:0.03~0.08%,余量为Fe和不可避免的杂质。
按重量百分比计,本发明提供的高温合金无缝管包括0.01~0.06%的C,优选为0.03~0.06%,更优选为0.04~0.05%。
按重量百分比计,本发明提供的高温合金无缝管包括0.40~1.00%的Si,优选为0.50~0.90%,更优选为0.60~0.80%。
按重量百分比计,本发明提供的高温合金无缝管包括0.30~1.00%的Mn,优选为0.40~0.90%,更优选为0.50~0.80%。
按重量百分比计,本发明提供的高温合金无缝管包括≤0.025%的P,优选为0.005~0.02%,更优选为0.01~0.015%。
按重量百分比计,本发明提供的高温合金无缝管包括≤0.020%的S,优选为0.005~0.015%,更优选为0.07~0.012%。
按重量百分比计,本发明提供的高温合金无缝管包括15.00~17.00%的Cr,优选为15.5~16.5%,更优选为15.8~16.2%。
按重量百分比计,本发明提供的高温合金无缝管包括44.00~46.00%的Ni,优选为45.00~46.00%,更优选为45.50~46.00%。
按重量百分比计,本发明提供的高温合金无缝管包括2.90~3.90%的Al,优选为2.95~3.50%,更优选为3.00~3.30%。
按重量百分比计,本发明提供的高温合金无缝管包括0.01~0.03%的Ce,优选为0.015~0.025%,更优选为0.017~0.023%。
按重量百分比计,本发明提供的高温合金无缝管包括0.10~0.300%的Ti,优选为0.15~0.25%,更优选为0.18~0.23%。
按重量百分比计,本发明提供的高温合金无缝管包括0.03~0.08%的N,优选为0.03~0.07%,更优选为0.05~0.07%。
按重量百分比计,本发明提供的高温合金无缝管包括余量的Fe和不可避免的杂质。
本发明相对GH2747合金降低了C含量,以提高其耐晶间腐蚀性能;将Si、Mn含量控制在一定范围,增加一定含量的N元素,以弥补降低C含量导致的强度降低;此外,在高温合金无缝管中添加适量的Al和Ti,配合其他成分,能够使晶界析出相减少,同时可产生一定量的Ti的碳化物,从而降低基体中的C含量,提高无缝管的耐晶间腐蚀性能;添加少量的稀土Ce,配合其他成分,能够减少合金中非金属夹杂物数量并降低其尺寸,净化了熔体,有助于改善加工使用性能;本发明各组分配合作用,得到的高温合金无缝管具有耐高温、耐氧化腐蚀、高抗拉强度和高屈服强度,完全能够满足航天发动机对高温合金无缝管的力学性能要求。
在本发明中,所述高温合金无缝管的内表面粗糙度Ra优选≤1.6μm,外表面粗糙度Ra优选≤1.0μm,外径优选为25±0.05mm,更优选为25mm,壁厚优选为3±0.05mm,更优选为3mm;弯曲度优选≤0.8mm/m;晶粒度≥5级。
在本发明中,所述高温合金无缝管的室温力学性能优选为:R m≥600MPa,R p0.2≥210MPa,A 50≥35%;进一步优选R m为650MPa,R p0.2为280MPa,A 50为45%。
所述高温合金无缝管的高温力学性能优选为:100℃时,R m≥540MPa,R p0.2≥195MPa,A≥35%,进一步优选为R m为590MPa,R p0.2为235MPa,A 50为45%;
200℃时,R m≥530MPa,R p0.2≥190MPa,A≥35%;进一步优选为R m为580MPa,R p0.2为210MPa,A 50为46%;
300℃时,R m≥520MPa,R p0.2≥170MPa,A≥40%;进一步优选为R m为570MPa,R p0.2为180MPa,A 50为48%;
400℃时,R m≥510MPa,R p0.2≥160MPa,A≥40%;进一步优选为R m为560MPa,R p0.2为170MPa,A 50为50%;
500℃时,R m≥480MPa,R p0.2≥150MPa,A≥45%;进一步优选为R m为540MPa,R p0.2为160MPa,A 50为50%;
600℃时,R m≥420MPa,R p0.2≥150MPa,A≥25%;进一步优选为R m为450MPa,R p0.2为180MPa,A 50为20%;
700℃时,R m≥320MPa,R p0.2≥150MPa,A≥10%;进一步优选为R m为350MPa,R p0.2为210MPa,A 50为10%;
800℃时,R m≥150MPa,R p0.2≥140MPa,A≥50%;进一步优选为R m为180MPa,R p0.2为160MPa,A 50为60%;
900℃时,R m≥80MPa,R p0.2≥70MPa,A≥50%;进一步优选为R m为90MPa,R p0.2为80MPa,A 50为65%。
在本发明中,R m表示抗拉强度,R p0.2表示屈服强度,A 50表示断后伸长率。
本发明提供了上述技术方案所述高温合金无缝管的制备方法,包括以下步骤:
(1)将对应上述方案所述高温合金无缝管组分的合金进行熔炼和锻造,得到管坯;
(2)将所述管坯进行热穿孔,得到荒管;
(3)将所述荒管依次进行第一固溶热处理和冷轧,得到中间管坯;
(4)将所述中间管坯依次进行第二固溶热处理和冷轧,得到初品合金管;
(5)将所述初品合金管进行第三热处理,得到高温合金无缝管。
本发明将对应上述方案所述高温合金无缝管组分的合金进行熔炼和锻造,得到管坯。
本发明对对应上述方案所述高温合金无缝管组分的合金的来源没有特殊要求,采用本领域公知的制备方法制备得到即可。在本发明中,所述熔炼包括依次进行的真空感应熔炼和电渣重熔冶炼。本发明对所述真空感应熔炼和电渣重熔冶炼的具体实施方式没有特殊要求,采用本领域熟知的真空感应熔炼和电渣重熔冶炼即可。在本发明中,所述真空感应熔炼后得到的管料尺寸为Ф430×2800mm;所述电渣重熔冶炼后得到的电渣锭外径Ф优选为510mm。本发明采用本领域公知的方法得到管料和电渣锭。本发明对所述锻造的方式没有特殊要求,采用本领域熟知的管坯锻造方式即可。在本发明的具体实施例中,将电渣重熔冶炼后得到的电渣锭快锻开坯成220八角,快锻压缩比≥5,头部切除3%,尾部切除8%,检验磨修后再径锻成管坯即可。在本发明中,所述管坯的外径优选为70mm。
得到管坯后,本发明将所述管坯进行热穿孔,得到荒管。
所述热穿孔之前,本发明优选还包括对所述管坯进行精剥皮,以去除管坯表面的氧化皮及表面缺陷。本发明对所述精剥皮的具体实施方式没有特殊要求,采用本领域熟知的精剥皮方式即可。精剥皮之后,热穿孔之前,本发明优选将精剥皮之后的管坯进行分段切割,在每段坯料的一端钻Ф12±1mm的定心孔,以防止热穿孔时壁厚不均。本发明对所述每段坯料的长度没有特殊限定,本领域技术人员可根据实际需要进行调整。在本发明的具体实施例中,所述每段坯料的长度优选为1200~1300mm。本发明对所述热穿孔的具体实施方式没有特殊要求,采用本领域熟知的热穿孔方式即可。在本发明中,所述荒管的尺寸优选为Ф70×7mm。本发明在每段坯料的一端钻Ф12±1mm的定心孔,可以将管外径偏差控制在(-1.50,+1.00)mm,壁厚偏差控制在±0.50mm范围内。
得到荒管之后,本发明将所述荒管依次进行第一固溶热处理和冷轧,得到中间管坯。
在本发明中,所述第一固溶热处理的温度优选为1000~1060℃,更优选为1050℃;时间优选为25~30min,更优选为30min;冷却方式优选为水冷。本发明所述第一固溶处理能够提高荒管的塑性和韧性,并利于后期 冷轧变形。
在本发明中,对第一固溶热处理所得材料进行冷轧时,所述冷轧的变形量优选为60~70%,所述冷轧的送进量优选为2~3mm/次,进一步优选为3mm/次;轧制速度优选为20~30次/min,进一步优选为22~28次。本发明优选通过冷轧管机的孔型及芯棒的精密配合对荒管进行冷轧。本发明采用冷轧能够为荒管减径、减壁及延伸,使其外径和壁厚接近成品管尺寸,并消除纵向壁厚不均,提高合金管内外表面质量,控制其外径和不圆度。在本发明中,所述中间管坯的尺寸优选为Ф38×4mm,本发明通过控制冷轧参数在上述范围,有利于将管外径偏差控制在±0.15mm,壁厚偏差控制在±0.1mm范围内。
得到中间管坯后,本发明将所述中间管坯依次进行第二固溶热处理和冷轧,得到初品合金管。
在进行第二固溶热处理前,本发明优选对中间管坯进行第一酸洗。在本发明中,所述第一酸洗采用的酸液优选为氢氟酸与硝酸的混合液;所述混合液中氢氟酸的质量浓度优选为1~3%,进一步优选为1%;所述混合液中硝酸的质量浓度优选为10~15%,进一步优选为11~14%。本发明所述第一酸洗能够去除中间管坯表面的油污。
在本发明中,所述第二固溶热处理的温度优选为1000~1060℃,更优选为1050℃;时间优选为8~12min,更优选为10min;冷却方式优选为水冷。本发明所述第二固溶热处理可以改善中间管坯的塑性和韧性,消除冷轧产生的冷作硬化,且便于进一步冷加工。
得到热处理后的中间管坯后,本发明将所述热处理后的中间管坯进行冷轧,得到初品合金管。
在本发明中,所述冷轧的变形量优选为50~60%,所述冷轧的送进量优选为2~3mm/次,进一步优选为2mm/次;冷轧速度优选为20~30次/min,进一步优选为22~28次。本发明优选通过冷轧管机的孔型及芯棒的精密配合对荒管进行冷轧。本发明采用冷轧能够为中间管坯减径、减壁及延伸,使其外径和壁厚变为成品管尺寸,并消除纵向壁厚不均,提高合金管内外表面质量,控制其外径和不圆度。在本发明中,所述初品合金管的尺寸优选为Ф25×3mm。本发明的孔型及芯棒精密配合,并通过控制冷轧的参数 在上述范围,可以使合金管外径偏差控制在±0.05mm,壁厚偏差控制在±0.05mm范围内。
冷轧之前,本发明优选还包括对热处理后的中间管坯依次进行矫直、第二酸洗、表面检验修磨和清洗。本发明对所述矫直、第二酸洗、表面检验修磨和清洗的具体实施方式没有特殊要求,采用本领域技术人员熟知的矫直、酸洗、表面检验修磨和清洗方式即可。本发明优选采用多辊矫直机进行矫直,中间管坯直度优选控制在1.0mm/m以下。在本发明中,所述第二酸洗采用的酸液优选为氢氟酸与硝酸的混合液;所述混合液中氢氟酸的质量浓度优选为5~8%,进一步优选为6~7%;所述混合液中硝酸的质量浓度优选为10~15%,进一步优选为11~14%。
本发明采用两次冷轧,通过第一次冷轧,壁厚不均现象会有较大改善,但还有一定的偏差,然后采用第二次冷轧,变形量较小,壁厚不均现象进一步改善,可达到成品尺寸偏差范围。
得到初品合金管后,本发明将所述初品合金管进行第三固溶热处理,得到高温合金无缝管。
在本发明中,所述第三固溶热处理前,优选还包括对初品合金管进行第三酸洗,所述第三酸洗采用的酸洗液优选与第一酸洗采用的酸洗液相同,这里不再赘述。本发明所述第三酸洗能够去除合金管表面的油污。
在本发明中,所述第三固溶热处理的温度优选为1000~1060℃,更优选为1020℃;时间优选为5~10min,更优选为8min;冷却方式优选为水冷。本发明所述第三固溶热处理使合金管发生再结晶,从而改善合金管的塑性和韧性,最终得到良好的综合性能。
第三固溶热处理后,本发明优选还包括对第三固溶热处理后的合金管进行后处理和检验。
在本发明中,所述后处理包括依次进行的轿直和精抛光。本发明对所述轿直和精抛光的具体实施方式没有特殊要求,采用本领域技术人员熟知的轿直和精抛光方式即可。本发明优选通过多辊矫直机对经过后处理的成品管进行矫直,轿直后成品管直线度在0.8mm/m以下。
在本发明中,所述检验包括超声波检验、涡流检验、水压检验、表面检验、尺寸检验和理化检验。本发明所述检验的具体实施方式均为本领域公知的手段,这里不再赘述。
本发明的制备方法在确保无缝管性能的前提下,能够保证无缝管具有良好的尺寸精度和表面质量,且能够实现工业化生产。
下面结合实施例对本发明提供的高温合金无缝管及其制备方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
高温合金无缝管,按重量百分比包括以下组分:C:0.036%,Si:0.56%,Mn:0.42%,P:0.014%,S:0.012%,Cr:16.02%,Ni:45.92%,Al:3.11%,Ce:0.023%,Ti:0.18%,N:0.05%,Fe:33.52%及其他不可避免的杂质元素。
高温合金无缝管的制备方法如下:
(1)合金采用真空感应+电渣重熔冶炼,最终热锻成Ф70mm的管坯;
(2)将步骤(1)得到的锻坯进行精剥皮,然后分段切成一定长度,即1200~1250mm,每段坯料的一端钻Ф12±1mm的定心孔,然后进行热穿孔,得到规格为Ф70×7mm的荒管,管外径偏差为(-1.50,+1.00)mm,壁厚偏差为±0.50mm;
(3)将步骤(2)得到的荒管进行固溶热处理,热处理温度为1050℃,保温30min,水冷;将热处理后的合金管冷轧到规格为Ф38×4mm的中间管坯,管外径偏差为±0.15mm,壁厚偏差为±0.1mm;
(4)将步骤(3)处理后的中间管进行酸洗及固溶热处理,固溶热处理温度为1050℃,保温10min,水冷,然后进行矫直、酸洗、表面检验修磨、清洗;
(5)将步骤(5)处理后的合金管冷轧至成品规格为Ф25×3mm的合金管,管外径偏差为±0.05mm,壁厚偏差为±0.05mm,然后进行酸洗;
(6)将酸洗后的合金管进行固溶热处理,热处理温度为1020℃,保温8min,空冷;
对合金管进行矫直,最后对合金管内外表面进行精抛光;对精抛光后的合金管进行超声波检验、涡流检验、水压检验、表面检验及尺寸检验、理化检验等。
随意选取一支实施例1制备得到的高温合金无缝管,对该无缝管的不同部分进行随机测量,测得内表面粗糙度Ra:0.8~1.2μm,外表面粗糙度 Ra:0.5~0.8μm,外径在25±0.05mm范围内,壁厚在3±0.05mm,弯曲度≤0.8mm/m;晶粒度为5.5级;对该选取的无缝管进行力学性能测试,室温力学性能:R m=660MPa,R p0.2=286MPa,A=46.5%,R m表示抗拉强度,R p0.2表示屈服强度,A表示断后伸长率;高温力学性能:100℃时,R m=600MPa,R p0.2=241MPa,A=50.0%,200℃时,R m=586MPa,R p0.2=212MPa,A=50.5%,300℃时,R m=580MPa,R p0.2=189MPa,A=51.5%,400℃时,R m=576MPa,R p0.2=181MPa,A=54.5%,500℃时,R m=542MPa,R p0.2=170MPa,A=60.0%,600℃时,R m=460MPa,R p0.2=200MPa,A=28.5%,700℃时,R m=354MPa,R p0.2=238MPa,A=11.5%,800℃时,R m=182MPa,R p0.2=166MPa,A=71.5%,900℃时,R m=95MPa,R p0.2=84MPa,A=74.0%;维氏硬度:HV 30=136;按ASME SA-1016/SA-1016M的规定进行压扁、扩口试验,无开裂和裂纹;按GB/T 15260中B法(铜-硫酸铜-16%硫酸)进行晶间腐蚀试验,在沸腾溶液中暴露72h,无晶间腐蚀倾向。
实施例2
高温合金无缝管,按重量百分比包括以下组分:C:0.042%,Si:0.61%,Mn:0.41%,P:0.013%,S:0.008%,Cr:16.06%,Ni:45.96%,Al:3.02%,Ce:0.019%,Ti:0.16%,N:0.06%,Fe:33.48%及其他杂质元素。
高温合金无缝管的制备方法如下:
(1)合金采用真空感应+电渣重熔冶炼,最终热锻成Ф70mm的管坯;
(2)将步骤(1)得到的锻坯进行精剥皮,然后分段切成一定长度,即1200~1250mm,每段坯料的一端钻Ф12±1mm的定心孔,然后进行热穿孔,得到规格为Ф70×7mm的荒管,管外径偏差为(-1.50,+1.00)mm,壁厚偏差为±0.50mm;
(3)将步骤(2)得到的荒管进行固溶热处理,热处理温度为1050℃,保温30min,水冷;将热处理后的合金管冷轧到规格为Ф38×4mm的中间管坯,管外径偏差为±0.15mm,壁厚偏差为±0.1mm;
(4)将步骤(3)处理后的中间管进行酸洗及固溶热处理,固溶热处理温度为1050℃,保温10min,水冷,然后进行矫直、酸洗、表面检验修磨、清洗;
(5)将步骤(5)处理后的合金管冷轧至成品规格为Ф25×3mm的合 金管,管外径偏差控制在±0.05mm,壁厚偏差控制在±0.05mm,然后进行酸洗;
(6)将酸洗后的合金管进行固溶热处理,热处理温度为1020℃,保温8min,空冷;
对合金管进行矫直,最后对合金管内外表面进行精抛光;对精抛光后的合金管进行超声波检验、涡流检验、水压检验、表面检验及尺寸检验、理化检验等。
随意选取一支实施例2制备得到的高温合金无缝管,对该无缝管的不同部分进行随机测量,测得内表面粗糙度Ra:0.9~1.5μm,外表面粗糙度Ra:0.4~0.7μm,外径在25±0.05mm范围内,壁厚在3±0.05mm,弯曲度≤0.7mm/m;晶粒度为5.1级;对该选取的无缝管进行力学性能测试,室温力学性能:R m=655MPa,R p0.2=283MPa,A=46.0%,R m表示抗拉强度,R p0.2表示屈服强度,A表示断后伸长率;高温力学性能:100℃时,R m=603MPa,R p0.2=243MPa,A=49.5%,200℃时,R m=588MPa,R p0.2=219MPa,A=52.0%,300℃时,R m=574MPa,R p0.2=191MPa,A=51.5%,400℃时,R m=566MPa,R p0.2=182MPa,A=54.0%,500℃时,R m=539MPa,R p0.2=173MPa,A=59.5%,600℃时,R m=467MPa,R p0.2=201MPa,A=29.0%,700℃时,R m=356MPa,R p0.2=235MPa,A=13.5%,800℃时,R m=183MPa,R p0.2=162MPa,A=71.0%,900℃时,R m=98MPa,R p0.2=82MPa,A=72.5%;维氏硬度:HV 30=144;按ASME SA-1016/SA-1016M的规定进行压扁、扩口试验,无开裂和裂纹;按GB/T 15260中B法(铜-硫酸铜-16%硫酸)进行晶间腐蚀试验,在沸腾溶液中暴露72h,无晶间腐蚀倾向。
对比例1
与实施例2的不同之处仅在于不含Ti和N元素。
高温合金无缝管,按重量百分比包括以下组分:C:0.042%,Si:0.61%,Mn:0.41%,P:0.013%,S:0.008%,Cr:16.06%,Ni:45.96%,Al:3.02%,Ce:0.019%,Fe:33.58%及其他杂质元素。
高温合金无缝管的制备方法如下:
(1)合金采用真空感应+电渣重熔冶炼,最终热锻成Ф70mm的管坯;
(2)将步骤(1)得到的锻坯进行精剥皮,然后分段切成一定长度, 即1200~1250mm,每段坯料的一端钻Ф12±1mm的定心孔,然后进行热穿孔,得到规格为Ф70×7mm的荒管,管外径偏差为(-1.50,+1.00)mm,壁厚偏差为±0.50mm;
(3)将步骤(2)得到的荒管进行固溶热处理,热处理温度为1050℃,保温30min,水冷;将热处理后的合金管冷轧到规格为Ф38×4mm的中间管坯,管外径偏差为±0.15mm,壁厚偏差为±0.1mm;
(4)将步骤(3)处理后的中间管进行酸洗及固溶热处理,固溶热处理温度为1050℃,保温10min,水冷,然后进行矫直、酸洗、表面检验修磨、清洗;
(5)将步骤(5)处理后的合金管冷轧至成品规格为Ф25×3mm的合金管,管外径偏差控制在±0.05mm,壁厚偏差控制在±0.05mm,然后进行酸洗;
(6)将酸洗后的合金管进行固溶热处理,热处理温度为1020℃,保温8min,空冷;
对合金管进行矫直,最后对合金管内外表面进行精抛光;对精抛光后的合金管进行超声波检验、涡流检验、水压检验、表面检验及尺寸检验、理化检验等。
随意选取一支对比例1制备得到的高温合金无缝管,对该无缝管的不同部分进行随机测量,测得内表面粗糙度Ra:0.9~1.5μm,外表面粗糙度Ra:0.4~0.7μm,外径在25±0.05mm范围内,壁厚在3±0.05mm,弯曲度≤0.7mm/m;晶粒度为5.1级;对该选取的无缝管进行力学性能测试,室温力学性能:Rm=645MPa,Rp0.2=276MPa,A=42.0%,Rm表示抗拉强度,Rp0.2表示屈服强度,A表示断后伸长率;高温力学性能:100℃时,Rm=592MPa,Rp0.2=236MPa,A=47.5%,200℃时,Rm=576MPa,Rp0.2=205MPa,A=50.5%,300℃时,Rm=563MPa,Rp0.2=182MPa,A=50.5%,400℃时,Rm=552MPa,Rp0.2=174MPa,A=51.5%,500℃时,Rm=523MPa,Rp0.2=165MPa,A=55.5%,600℃时,Rm=452MPa,Rp0.2=196MPa,A=28.0%,700℃时,Rm=342MPa,Rp0.2=223MPa,A=12.0%,800℃时,Rm=175MPa,Rp0.2=156MPa,A=69.0%,900℃时,Rm=89MPa,Rp0.2=78MPa,A=70.5%。维氏硬度:HV 30=143;按ASME  SA-1016/SA-1016M的规定进行压扁、扩口试验,无开裂和裂纹;按GB/T15260中B法(铜-硫酸铜-16%硫酸)进行晶间腐蚀试验,在沸腾溶液中暴露72h,有晶间腐蚀倾向。
由对比例1和实施例2的结果可知,本发明通过在无缝管中添加适量的Ti和N,能够提高无缝管的耐晶间腐蚀性能,且无缝管的力学性能也有一定程度的提高。
由以上实施例可知,本发明制备的高温合金无缝管具有优良的耐高温、耐氧化腐蚀、高抗拉强度和高屈服强度,且无缝管的粗糙度低、壁厚及外径偏差小、弯曲度低,说明具有良好的尺寸精度和表面质量,完全能够满足航天发动机对高温合金无缝管的要求。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 一种高温合金无缝管,其特征在于,按重量百分比,包括以下组分:C:0.01~0.06%,Si:0.40~1.00%,Mn:0.30~1.00%,P≤0.025%,S≤0.020%,Cr:15.00~17.00%,Ni:44.00~46.00%,Al:2.90~3.90%,Ce:0.01~0.03%,Ti:0.10~0.30%,N:0.03~0.08%,余量为Fe和不可避免的杂质。
  2. 根据权利要求1所述的高温合金无缝管,其特征在于,所述高温合金无缝管的内表面粗糙度Ra≤1.6μm,外表面粗糙度Ra≤1.0μm,外径为25±0.05mm,壁厚为3±0.05mm,弯曲度≤0.8mm/m;晶粒度≥5级。
  3. 根据权利要求1所述的高温合金无缝管,其特征在于,所述高温合金无缝管的室温力学性能为:R m≥600MPa,R p0.2≥210MPa,A 50≥35%;
    所述高温合金无缝管的高温力学性能为:100℃时,R m≥540MPa,R p0.2≥195MPa,A≥35%;200℃时,R m≥530MPa,R p0.2≥190MPa,A≥35%;300℃时,R m≥520MPa,R p0.2≥170MPa,A≥40%;400℃时,R m≥510MPa,R p0.2≥160MPa,A≥40%;500℃时,R m≥480MPa,R p0.2≥150MPa,A≥45%;600℃时,R m≥420MPa,R p0.2≥150MPa,A≥25%;700℃时,R m≥320MPa,R p0.2≥150MPa,A≥10%;800℃时,R m≥150MPa,R p0.2≥140MPa,A≥50%;900℃时,R m≥80MPa,R p0.2≥70MPa,A≥50%。
  4. 权利要求1~3任一项所述高温合金无缝管的制备方法,包括以下步骤:
    (1)将对应权利要求1~3任一项所述高温合金无缝管组分的合金依次进行熔炼和锻造,得到管坯;
    (2)将所述管坯进行热穿孔,得到荒管;
    (3)将所述荒管依次进行第一固溶热处理和冷轧,得到中间管坯;
    (4)将所述中间管坯依次进行第二固溶热处理和冷轧,得到初品合金管;
    (5)将所述初品合金管进行第三固溶热处理,得到高温合金无缝管。
  5. 根据权利要求4所述的制备方法,其特征在于,所述步骤(1)管坯的外径为70mm;
    所述步骤(2)荒管的尺寸为Ф70×7mm,管外径偏差为(-1.50,+1.00) mm,壁厚偏差为±0.50mm;
    所述步骤(3)中间管坯的尺寸为Ф38×4mm,管外径偏差为±0.15mm,壁厚偏差为±0.1mm;
    所述步骤(4)初品合金管的尺寸为Ф25×3mm,合金管外径偏差为±0.05mm,壁厚偏差为±0.05mm。
  6. 根据权利要求4所述的制备方法,其特征在于,所述步骤(3)中第一固溶热处理的温度为1000~1060℃,时间为25~30min,冷却方式为水冷。
  7. 根据权利要求4所述的制备方法,其特征在于,所述步骤(3)和步骤(4)中冷轧的送进量独立地为2~3mm/次,冷轧速度独立地为20~30次/min。
  8. 根据权利要求4所述的制备方法,其特征在于,所述步骤(4)中第二固溶热处理的温度为1000~1060℃,时间为8~12min,冷却方式为水冷。
  9. 根据权利要求4所述的制备方法,其特征在于,所述步骤(4)中,对中间管坯进行第二固溶热处理前,还包括对所述中间管坯进行第一酸洗;第二固溶热处理后,还包括对热处理后的中间管坯进行第二酸洗。
  10. 根据权利要求9所述的制备方法,其特征在于,所述第一酸洗采用的酸液为氢氟酸与硝酸的混合液;所述混合液中氢氟酸的质量浓度为1~3%;所述混合液中硝酸的质量浓度为10~15%。
  11. 根据权利要求9所述的制备方法,其特征在于,所述第二酸洗采用的酸液优选为氢氟酸与硝酸的混合液;所述混合液中氢氟酸的质量浓度为5~8%;所述混合液中硝酸的质量浓度为10~15%。
  12. 根据权利要求4所述的制备方法,其特征在于,所述步骤(5)中第三固溶热处理的温度为1000~1060℃,时间为5~10min,冷却方式为水冷。
  13. 根据权利要求4或12所述的制备方法,其特征在于,所述步骤(5)中,对初品合金管进行第三固溶热处理前,还包括对初品合金管进行第三酸洗,所述所述第三酸洗采用的酸液为氢氟酸与硝酸的混合液;所述混合液中氢氟酸的质量浓度为1~3%;所述混合液中硝酸的质量浓度为 10~15%。
  14. 根据权利要求4所述的制备方法,其特征在于,所述第三固溶热处理后,还包括对第三固溶热处理后的合金管进行后处理和检验;所述后处理包括依次进行的轿直和精抛光;所述检验包括超声波检验、涡流检验、水压检验、表面检验、尺寸检验和理化检验。
PCT/CN2020/094389 2019-06-24 2020-06-04 一种高温合金无缝管及其制备方法 WO2020259246A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/251,935 US20210292879A1 (en) 2019-06-24 2020-06-04 Superalloy seamless tube and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910549138.XA CN110218940B (zh) 2019-06-24 2019-06-24 一种高温合金无缝管及其制备方法
CN201910549138.X 2019-06-24

Publications (1)

Publication Number Publication Date
WO2020259246A1 true WO2020259246A1 (zh) 2020-12-30

Family

ID=67814413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094389 WO2020259246A1 (zh) 2019-06-24 2020-06-04 一种高温合金无缝管及其制备方法

Country Status (3)

Country Link
US (1) US20210292879A1 (zh)
CN (1) CN110218940B (zh)
WO (1) WO2020259246A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218940B (zh) * 2019-06-24 2020-06-02 江苏大学 一种高温合金无缝管及其制备方法
CN115323153B (zh) * 2022-08-11 2023-12-05 江苏大学 一种高温合金无缝管的热处理方法、高温合金热处理无缝管及其应用
CN116408363A (zh) * 2023-04-06 2023-07-11 浙江久立特材科技股份有限公司 一种镍钼耐蚀合金无缝管的制备方法及制得的无缝管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1463296A (zh) * 2001-06-19 2003-12-24 住友金属工业株式会社 具有抗金属粉化性能的金属材料
JP2004197150A (ja) * 2002-12-18 2004-07-15 Sumitomo Metal Ind Ltd 高温強度に優れた耐メタルダスティング金属材料
JP2016132019A (ja) * 2015-01-21 2016-07-25 株式会社クボタ 耐熱管の溶接構造
CN108467973A (zh) * 2018-06-11 2018-08-31 江苏银环精密钢管有限公司 700℃超超临界锅炉用镍铬钨系高温合金无缝管及制造方法
CN110218940A (zh) * 2019-06-24 2019-09-10 江苏大学 一种高温合金无缝管及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102059271B (zh) * 2010-11-23 2012-11-28 攀钢集团钢铁钒钛股份有限公司 超(超)临界锅炉用无缝钢管的制造方法
RU2441089C1 (ru) * 2010-12-30 2012-01-27 Юрий Васильевич Кузнецов КОРРОЗИОННО-СТОЙКИЙ СПЛАВ НА ОСНОВЕ Fe-Cr-Ni, ИЗДЕЛИЕ ИЗ НЕГО И СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЯ
CN107779744B (zh) * 2016-08-30 2019-07-23 宝山钢铁股份有限公司 一种贝氏体型x100级无缝管线管及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1463296A (zh) * 2001-06-19 2003-12-24 住友金属工业株式会社 具有抗金属粉化性能的金属材料
JP2004197150A (ja) * 2002-12-18 2004-07-15 Sumitomo Metal Ind Ltd 高温強度に優れた耐メタルダスティング金属材料
JP2016132019A (ja) * 2015-01-21 2016-07-25 株式会社クボタ 耐熱管の溶接構造
CN108467973A (zh) * 2018-06-11 2018-08-31 江苏银环精密钢管有限公司 700℃超超临界锅炉用镍铬钨系高温合金无缝管及制造方法
CN110218940A (zh) * 2019-06-24 2019-09-10 江苏大学 一种高温合金无缝管及其制备方法

Also Published As

Publication number Publication date
US20210292879A1 (en) 2021-09-23
CN110218940B (zh) 2020-06-02
CN110218940A (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
CN107553074B (zh) 高温加热炉用uns n08810铁镍基合金大口径无缝管材的制造方法
WO2020259246A1 (zh) 一种高温合金无缝管及其制备方法
CN102282273B (zh) 双相不锈钢钢管的制造方法
JP6369662B1 (ja) 二相ステンレス鋼およびその製造方法
JP6197850B2 (ja) 二相ステンレス継目無鋼管の製造方法
JP5387073B2 (ja) 熱間プレス用鋼板およびその製造方法ならびに熱間プレス用鋼板部材の製造方法
JPH0436445A (ja) 耐食性チタン合金継目無管の製造方法
CN114749508B (zh) 一种大口径奥氏体不锈钢无缝管及其制造方法和用途
CN107983793A (zh) 钽2.5钨合金板材的制备方法
CN112317993A (zh) 一种Ti35HS钛合金焊丝材的制备方法
CN112756909A (zh) 一种大口径Ti35钛合金管材的制备方法
JP6229794B2 (ja) 油井用継目無ステンレス鋼管およびその製造方法
CN114653751B (zh) 一种双相不锈钢冷轧带肋钢筋的制备方法
CN105441713A (zh) 一种钛合金无缝管及其制备方法
CN110788141B (zh) 无缝钢管、制造方法及其高压气瓶
CN103981422A (zh) 825合金管材大变形加工工艺
RU2395356C1 (ru) Способ изготовления труб из алюминиевых сплавов
CN1721128A (zh) 高铬铁素体不锈钢无缝管的冷加工工艺
KR102631715B1 (ko) 지르코늄 합금 배관의 제조방법
CN112044979A (zh) 金属波纹管用低胀破率纯钛无缝管及其生产工艺
JP2002241843A (ja) 表面光沢および加工性に優れたフェライト系ステンレス鋼板の製造方法
JP2011012299A (ja) 内面溝付管の製造方法
JP2662485B2 (ja) 低温靭性の良い鋼板およびその製造方法
RU2110600C1 (ru) Способ получения изделий из циркониевых сплавов
AU2019251876A1 (en) Steel pipe and method for producing steel pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831513

Country of ref document: EP

Kind code of ref document: A1