WO2020259222A1 - 一种极化码重传方法及装置 - Google Patents

一种极化码重传方法及装置 Download PDF

Info

Publication number
WO2020259222A1
WO2020259222A1 PCT/CN2020/093771 CN2020093771W WO2020259222A1 WO 2020259222 A1 WO2020259222 A1 WO 2020259222A1 CN 2020093771 W CN2020093771 W CN 2020093771W WO 2020259222 A1 WO2020259222 A1 WO 2020259222A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
bit
bits
decoded
check
Prior art date
Application number
PCT/CN2020/093771
Other languages
English (en)
French (fr)
Inventor
张朝阳
张韵梅
郑灯
秦康剑
于天航
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20832093.7A priority Critical patent/EP3979530B1/en
Publication of WO2020259222A1 publication Critical patent/WO2020259222A1/zh
Priority to US17/562,743 priority patent/US12009920B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0052Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1845Combining techniques, e.g. code combining

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method and device for retransmission of a polarization code.
  • channel coding plays a vital role in ensuring the reliable transmission of data.
  • turbo codes low density parity check (LDPC) and polarization (Polar) codes are generally used for channel coding.
  • LDPC low density parity check
  • Poly polarization
  • the Polar code proposed by Professor Arikan is a good code that theoretically proves that it can reach Shannon's capacity and has relatively simple encoding and decoding complexity, and thus has been more and more widely used.
  • HARQ hybrid automatic repeat request
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ hybrid automatic repeat request
  • the polarization code using HARQ technology requires rate compatibility, that is, the code rate can be flexibly configured by changing the code length, and the transmitted bits can be flexibly adjusted with the desired code rate. Select. Therefore, when the channel changes dynamically, the HARQ polarized code has higher efficiency than the fixed-rate polarized code designed for the worst channel.
  • the code length of the polarization code proposed by Professor Arikan needs to meet the condition of an integer power of 2, which brings severe challenges to the realization of code length and code rate compatibility for the polarization code.
  • the existing HARQ scheme transmits the same codeword as the previous one during each retransmission, and the receiving end adds up the codewords received multiple times for decoding.
  • this HARQ scheme has a gain in the signal-to-noise ratio, it does not Coding gain, so the throughput rate is low.
  • the prior art proposes a HARQ polarization code transmission scheme with an extended generator matrix.
  • the transmitter uses the extended generator matrix to generate codewords with decreasing code rates for transmission, and the receiver combines multiple received codewords to grow The code is decoded and a larger coding gain is obtained.
  • this solution will cause too many redundant bits to be transmitted every time the same information bit is retransmitted, resulting in a low throughput rate.
  • the embodiments of the present application provide a method and device for retransmission of a polarized code, which are used to realize the coding gain and increase the throughput during the retransmission of the HARQ polarized code.
  • a polarization code retransmission method is provided, and the execution subject of the method is the sending end, or encoding device, or a chip, or a logic circuit.
  • the method includes the following steps: encoding the information bits of each transmission to generate the polarization code according to the configuration parameters for generating the polarization code for multiple transmissions generated offline.
  • Each retransmission can add new information bits.
  • the last information bit and the new information bit are encoded according to the structure parameters corresponding to this transmission.
  • After encoding transmit the different part of the polarization code this time and the polarization code transmitted last time. In this way, the decoding device merges the information to be decoded after several transmissions and decodes the merged codeword.
  • the codeword characteristics of the polarization code itself can be used to obtain coding gain in HARQ.
  • a part of information bits can be added during retransmission, thereby improving the system throughput.
  • the K first to-be-encoded bits are encoded by polarizing Polar codes according to the first configuration parameter to obtain the first codeword, where the first configuration parameter includes a first set of information bits, and The element in the first information bit set is used to indicate the position of the K first to-be-coded bits, and K is a positive integer;
  • the first codeword is sent to the decoding device;
  • the first codeword is received from the decoding device to indicate the Information about the decoding failure of the first codeword;
  • the K first to-be-encoded bits and K'second to-be-encoded bits are encoded in Polar code according to the second configuration parameter to obtain the second codeword, where K'is A positive integer
  • the second configuration parameter includes a second set of information bits, and elements in the second set of information bits are used to indicate the positions of the K first bits to be encoded and the K'second bits to be encoded
  • the position of the bit, the element used to indicate the position of the first bit to be encoded in the second set of information bits
  • the codeword characteristics of the polarization code itself can be used to obtain coding gain in HARQ.
  • a part of information bits can be added during retransmission, thereby improving the system throughput.
  • the first bit to be encoded includes a first information bit and a first check bit, and the first check bit is used to check the first information bit.
  • the decoding device can perform a check based on the check bit to determine whether the decoded information bit is correct.
  • the second bit to be coded includes a second information bit; or, the second bit to be coded includes the second information bit and a second check bit, and the second check bit Used to check the first information bit and/or the second information bit.
  • the second check bit is used to check the second information bit, by adding the second check bit, since the second information bit is positioned at the front, the second check bit can be used to check the second information bit to achieve early The effect of stopping and filtering paths.
  • the second bit to be coded is different from the first bit to be coded.
  • the second to-be-coded bit includes a part of the first to-be-coded bit, and the position of the part of the bit is located in the first information bit set in a descending order of reliability. The position of the previous one or more.
  • the information bit to be decoded corresponding to the coded bit is checked successfully, then the part of the second bit to be coded that is the same as the part of the first bit to be coded can be used as a known bit, and continue to check the later During the decoding process of the first information to be decoded, the part of the first information bit that is copied to the second to be encoded bit during encoding will not need to be decoded again, and it will be directly used as the frozen bit, and the signal-to-noise ratio is low. Under the circumstance, the bit rate can be further reduced, thereby improving throughput.
  • the first codeword is a subcode of the second codeword.
  • a polarization code retransmission method is provided.
  • the execution subject of the method is the receiving end, or decoding device, or a chip, or a logic circuit.
  • the method includes the following steps: receiving the first information to be decoded from an encoding device; when the decoding of the first information to be decoded fails, sending to the encoding device an instruction to decode the first information to be decoded Information about coding failure; receiving second information to be decoded from the encoding device; decoding the first information to be decoded and the second information to be decoded.
  • the codeword characteristics of the polarization code itself can be used to obtain coding gain in HARQ.
  • a part of information bits can be added during retransmission, thereby improving the system throughput.
  • the first check information is used to check the decoded information bits.
  • the decoding device can perform a check based on the check bit to determine whether the decoded information bit is correct.
  • the first check information is used to check the first information bit obtained by decoding the first information to be decoded
  • the second check information is used to check the first information bit and/ Or the second information bit obtained by decoding the second information to be decoded is checked.
  • the second information to be decoded and the first information to be decoded are a total information to be decoded
  • the decoding device decodes this total information to be decoded
  • the second information to be decoded Before the decoding order of the first information to be decoded, the second information bit obtained by decoding the second information to be decoded is first checked. If the check passes, the second information bit is checked.
  • the copy bits in the information bits are used as known bits, and the subsequent first to-be-decoded information continues to be decoded.
  • the copy bits are the same information bits as part of the first information bits placed at the newly added information bit positions during encoding.
  • the decoding device when the decoding device decodes, the information to be decoded corresponding to the second bit to be encoded is before the information to be decoded corresponding to the first bit to be encoded, and the decoding device performs a bit-by-bit verification.
  • the information bit to be decoded corresponding to the coded bit is checked successfully, then the part of the second bit to be coded that is the same as the part of the first bit to be coded can be used as a known bit if the check is successful In the process of continuing to decode the first information to be decoded later, the part of the first information bit that is copied into the second bit to be encoded during encoding will not need to be decoded again, and will be directly used as a frozen bit , Decoding, in the case of low signal-to-noise ratio, can further reduce the code rate, thereby improving throughput.
  • a polarization code retransmission device which has the function of realizing any one of the possible design methods of the first aspect and the first aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the polarization code retransmission device when part or all of the functions are realized by hardware, includes: an input interface circuit for obtaining K first bits to be coded and K'second bits Bits to be coded; logic circuit, used to implement any one of the possible design methods of the first aspect and the first aspect; output interface circuit, used to output the encoded first codeword and the second codeword divided by Subcodes other than the first codeword.
  • the polarization code retransmission device may be a chip or an integrated circuit.
  • the polarization code retransmission device when part or all of the function is realized by software, includes: a memory, used to store a program; a processor, used to execute the memory stored in the A program, when the program is executed, the polarization code retransmission apparatus can implement the method described in any one of the foregoing first aspect and the first aspect.
  • the foregoing memory may be a physically independent unit, or may be integrated with the processor.
  • the polarization code retransmission device when part or all of the functions are implemented by software, includes a processor.
  • the memory for storing the program is located outside the polarization code retransmission device, and the processor is connected to the memory through a circuit/wire for reading and executing the program stored in the memory.
  • a polarization code retransmission device in a fourth aspect, has a method in a possible design for realizing any one of the foregoing second aspect and the second aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the polarization code retransmission device when part or all of the function is realized by hardware, includes: an input interface circuit for obtaining the first information to be decoded and the second information to be decoded Logic circuit, used to implement the behavior of the decoding device in any possible design of the first aspect and the first aspect; Output interface circuit, used to output the decoding result.
  • the polarization code retransmission device may be a chip or an integrated circuit.
  • the polarization code retransmission device when part or all of the function is realized by software, includes: a memory, used to store a program; a processor, used to execute the memory stored in the A program, when the program is executed, the polarization code retransmission apparatus can implement the method described in any one of the foregoing first aspect and the first aspect.
  • the foregoing memory may be a physically independent unit, or may be integrated with the processor.
  • the polarization code retransmission device when part or all of the functions are implemented by software, includes a processor.
  • the memory for storing the program is located outside the encoding device, and the processor is connected to the memory through a circuit/wire for reading and executing the program stored in the memory.
  • a wireless communication system in a fifth aspect, includes an encoding device and a decoding device.
  • the encoding device executes the first aspect or various possible design methods, and/or the decoding device executes The above-mentioned second aspect or various possible design methods.
  • a computer storage medium for storing a computer program.
  • the computer program includes any one of the first aspect, the second aspect, any possible implementation manner of the first aspect, or any one of the second aspect.
  • a computer program product containing instructions which when run on a computer, causes the computer to execute the methods described in the above aspects.
  • FIG. 1 is a schematic diagram of the architecture of a wireless communication system in an embodiment of the application
  • FIG. 2 is one of the schematic flowcharts of the polarization code retransmission method in an embodiment of the application
  • FIG. 3 is the second schematic flowchart of the polarization code retransmission method in an embodiment of this application.
  • FIG. 4 is a schematic diagram of the four transmission processes in an embodiment of the application.
  • FIG. 5 is a schematic diagram of bit distribution of information transmitted four times in an embodiment of this application.
  • FIG. 6 is a schematic diagram of the information bit distribution of two retransmissions in an embodiment of the application.
  • FIG. 7 is one of the schematic structural diagrams of the polarization code retransmission apparatus in the embodiment of the application.
  • FIG. 8 is the second structural diagram of the polarization code retransmission device in the embodiment of the application.
  • FIG. 9 is the third structural diagram of the polarization code retransmission apparatus in an embodiment of the application.
  • FIG. 10 is the fourth structural diagram of the polarization code retransmission apparatus in the embodiment of this application.
  • the embodiments of the present application provide a polarization code retransmission method and device, which are used to add new information bits during each retransmission process during HARQ polarization code transmission, and combine the new information bits with the previously transmitted information bits Carry out joint coding to improve system throughput.
  • the method and the device are based on the same technical idea. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • "and/or" describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, and both A and B exist at the same time.
  • the communication method provided by the embodiments of the present application can be applied to a fifth generation (5th generation, 5G) communication system or various future communication systems.
  • 5G fifth generation
  • the three most typical communication scenarios of a 5G communication system include enhanced mobile broadband (eMBB), massive machine type communication (mMTC), and ultra-reliable low-latency communication. communication, URLLC).
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC ultra-reliable low-latency communication.
  • a wireless communication system 100 to which the embodiment of the present application can be applied includes a network device 101 and a terminal 102.
  • the network device 101 when the network device 101 is the sending end, the terminal 102 is the receiving end; when the terminal 102 is the sending end, the network device 101 is the receiving end.
  • the sending end can also be called an encoding device, and the receiving end can also be called a decoding device.
  • the network device may be a base station, a device integrated between a base station and a base station controller, or other devices with similar communication functions.
  • the network device 101 is a device with a wireless transceiver function or a chip that can be installed in the device.
  • the device includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), the access point (AP), wireless relay node, wireless backhaul node, and transmission point (transmission and reception point, TRP or transmission) in the wireless fidelity (WIFI) system point, TP), etc., it can also be a gNB in a 5G (such as NR) system, or a transmission point (TRP or TP), one or a group of (including multiple antenna panels) antenna panels of a base station in a 5G system, or It can also be a network node that constitutes a gNB or
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (RRC), packet data convergence protocol (PDCP) layer functions, and DU implements wireless link
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless link
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless link
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, and the CU can also be divided into network equipment in the core network CN, which is not limited here.
  • the terminal can also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent Or user device.
  • the terminal in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, virtual reality (VR) terminal, augmented reality (AR) terminal, industrial Wireless terminal in industrial control, wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety (transportation safety) Wireless terminals in the smart city (smart city), wireless terminals in the smart home (smart home), etc.
  • the embodiment of this application does not limit the application scenario.
  • a terminal with a wireless transceiver function and a chip that can be installed in the aforementioned terminal are collectively referred to as a terminal.
  • Polar code uses a noise-free channel to transmit useful information for users, and an all-noise channel transmits agreed information or no information.
  • Polar code is also a linear block code, its coding matrix is G N , and the coding process is among them Is a binary row vector with length N (ie code length); G N is an N ⁇ N matrix, and It is defined as the Kronecker product of log 2 N matrices F 2 .
  • N binary row vector with length
  • N is an N ⁇ N matrix
  • GN(A) is the set of GN The index corresponding to those rows in the sub-matrix
  • GN (AC) is the set of The index corresponding to those rows in the sub-matrix.
  • the construction process of Polar code is collection
  • the selection process determines the performance of the Polar code.
  • the construction process of the Polar code is usually, according to the code length N of the mother code, it is determined that there are N polarization channels, corresponding to the N rows of the coding matrix, and the reliability of the polarization channel is calculated, and the first K polarizations with higher reliability are calculated.
  • Channel index as a set
  • the index corresponding to the remaining (NK) polarized channels is used as the fixed bit index set Elements. set Determine the position of the information bit, the collection Determines the position of the fixed bit.
  • the generator matrix of the polarization code is a lower triangular matrix and has a highly recursive structure.
  • the generator matrix of the polarization code with length N is G N
  • the generator matrix G 2N of the polarization code with length 2N can be obtained from G N , namely
  • the N-length information bit sequence (u N ,...,u 1 ) and the 2N-length information bit sequence (u 2N ,...u N+1 ,u′ N ,...,u′ 1 ) are respectively subjected to polarization coding, respectively Obtain polarization codes (c N ,...,c 1 ) and (c 2N ,...,c N+1 ,c' N ,...,c' 1 ).
  • the method designed in this application uses the recursive characteristics of polarization codes, and also uses the PW offline construction algorithm to obtain the sequence The nesting characteristics of, as described in (3).
  • Corollary 1 The order of the split sub-channel subscripts (N+1 ⁇ 2N) of the second half of the polarization code with the code length of 2N is equal to the order of the polarization code split sub-channel subscripts with the code length of N plus N.
  • serial numbers 0 to N-1 are equivalent to serial numbers 1 to N, but the expression is different.
  • Corollary 2 The second half (N+1 ⁇ 2N) of the codeword C(K 2 , 2N) is used to place the set of subscripts of the split subchannels of the information bits The subscript set of the split sub-channel used to transmit information updated with the codeword C (K 1 , N) Consistent.
  • the sender will retransmit when the last transmission fails.
  • the codeword length of each transmission in 4 transmissions is the same.
  • the new codeword lengths constructed by 4 transmissions are respectively N 1 , N 2 , N 3 and N 4 .
  • This application has designed a series of codewords with decreasing code rates.
  • the polarization code parameters designed for four transmissions are According to the recursive characteristics of the polar code, the polar code with the optimal code rate is transmitted Start, construct the retransmission equivalent polarization code With this construction method, the sender is allowed to jointly encode new information bits and previously transmitted information bits each time it retransmits.
  • the number of new information bits each time retransmission is K 2 -K 1 , K 3 -K 2 and K 4 -K 3 .
  • the constructed four polarization code codewords have the following two important properties, respectively (1) and (2) below.
  • the standard polarization code under the algorithm is constructed for PW. That is to say, when the receiving end jointly decodes the codewords transmitted several times, it is all decoding the polarization code under a complete standard PW structure.
  • the second transmission equivalent polarization code rate R 2 K 2 /N 2
  • the third transmission equivalent polarization code rate R 3 K 3 /N 3
  • the fourth transmission equivalent pole Change the code rate R 4 K 4 /N 4 .
  • the construction parameters include a set of information bits.
  • the set of information bits for generating a polarization code for 4 transmissions are with The code rates R 1 , R 2 , R 3 and R 4 of the 4 transmissions can also be determined.
  • the idea of the embodiment of the present application is to encode the information bits of each transmission to generate the polarization code according to the configuration parameters used to generate the polarization code for multiple transmissions generated offline.
  • Each retransmission can add new information bits.
  • the last information bit and the new information bit are encoded according to the structure parameters corresponding to this transmission.
  • After encoding transmit the different part of the polarization code this time and the polarization code transmitted last time.
  • the decoding device merges and decodes the merged codeword. In this way, the codeword characteristics of the polarization code itself can be used to obtain coding gain in HARQ.
  • a part of information bits can be added during retransmission, thereby improving the system throughput.
  • the construction parameters can also be generated online.
  • the process of the polarization code retransmission method provided by the embodiment of the present application is as follows.
  • the execution bodies of the following methods are encoding equipment and decoding equipment.
  • the encoding device can be a terminal, and the decoding device is a network device. Or, if the encoding device is a network device, the decoding device is a terminal.
  • the method embodiment shown in FIG. 2 is a coding and decoding method for any two adjacent transmissions.
  • the first retransmission is carried out for the data decoding failure of the first transmission; or the second retransmission is carried out for the data decoding failure of the first retransmission; or the third retransmission is carried out for the data decoding failure of the second retransmission.
  • the retransmission system may specify the maximum number of retransmissions. When the maximum number of retransmissions is not reached, the encoding device can continue to encode and retransmit the data. If the maximum number of retransmissions is reached, the encoding device can send to the decoding device according to the initial transmission data. Or the decoding device notifies the decoding failure to end the process.
  • the encoding device encodes the K first to-be-encoded bits according to the first configuration parameter to perform polarization Polar code encoding to obtain a first codeword.
  • the K first to-be-coded bits include information bits and check bits, which are denoted as first information bits and first check bits here.
  • the total number of first information bits and first check bits is K.
  • K is a positive integer.
  • the first check bit is used to check the first information bit.
  • the construction parameter refers to the parameter used in the encoding process, for example, the construction parameter includes the information bit set A.
  • the information bit set A is used to indicate the position of the information bit.
  • the information bit set can be used to indicate the position of the bit to be encoded.
  • the construction parameter may also include the number of bits to be encoded or the length of the Polar code.
  • the first configuration parameter in step S201 includes a first information bit set, and the elements in the first information bit set are used to indicate the positions of the K first bits to be coded.
  • the parameter N is the length of the mother code encoded at the initial transmission, and N is an integer power of 2.
  • the length of the mother code after encoding the K first to-be-encoded bits is N, and N is an integer power of 2.
  • the length of the first codeword is less than or equal to N, and the first codeword may be a codeword after rate matching is performed on the mother code.
  • the first codeword is the data retransmitted for the first time
  • the length of the mother code after encoding of the K first to-be-encoded bits is 2N
  • the length of the first codeword is less than or equal to 2N.
  • the first codeword may be a codeword after rate matching is performed on the mother code.
  • the first codeword is data retransmitted for the second time
  • the length of the mother code encoded by the K first to-be-encoded bits is 3N
  • the length of the first codeword is less than or equal to 3N.
  • the first codeword may be a codeword after rate matching is performed on the mother code.
  • the encoding device sends the first codeword to the decoding device.
  • the decoding device receives the information to be decoded from the encoding device, which is recorded as the first information to be decoded.
  • the information to be decoded may be a log-likelihood ratio.
  • the decoding device decodes the first information to be decoded.
  • the decoding device decodes the first information to be decoded, and uses the first check bit to check the decoded information bits. If the check passes, the decoding is successful or the transmission is successful. If the check fails Pass, it means the decoding failed or the transmission failed.
  • the decoding device fails to decode the first information to be decoded, it sends to the encoding device information indicating the decoding failure of the first information to be decoded, and the encoding device receives from the decoding device the information used to indicate the first information to be decoded.
  • Decoding information The information that failed to decode.
  • NACK negative acknowledgement
  • the decoding device when the decoding device successfully decodes the first information to be decoded, it returns to the encoding device information indicating the successful decoding of the first information to be decoded, such as an acknowledgement (acknowledgement, ACK) response message.
  • acknowledgement acknowledgement
  • the encoding device After receiving the information indicating the decoding failure of the first information to be decoded, the encoding device re-encodes the K first to-be-coded bits and K'second to-be-coded bits to obtain the second codeword.
  • the encoding device After receiving the information indicating the failure of decoding the first information to be decoded, the encoding device will retransmit. In this application, the encoding device will carry new information bits during the retransmission process. The K first to-be-coded bits are carried during the last transmission, and the K first-to-be-coded bits and K'second to-be-coded bits are re-encoded during the retransmission.
  • the second bit to be coded is different from the first bit to be coded, or the information bits in the second bit to be coded are different from the information bits in the first bit to be coded. In this way, new information bits can be transmitted and the redundancy of retransmissions can be reduced.
  • the second to-be-coded bit includes a part of the first to-be-coded bit.
  • the position of the part of the bit is located at the first one or more of the first information bit set in descending order of reliability. s position.
  • the coding device obtains the configuration parameters stored offline, determines the configuration parameters that need to be used in this retransmission coding, and records them as the second configuration parameters.
  • the second configuration parameter includes a second set of information bits, and elements in the second set of information bits are used to indicate the positions of K first bits to be coded and K'positions of second bits to be coded.
  • the element used to indicate the position of the first bit to be coded in the second information bit set is: the sum of the element used to indicate the position of the first bit to be coded in the first information bit set and N, here The N refers to the length of the mother code after the initial transmission, and N is an integer power of 2.
  • the encoding device re-encodes the K first to-be-encoded bits and K'second to-be-encoded bits according to the second configuration parameter to obtain the second codeword.
  • the first codeword is a subcode of the second codeword.
  • the second bit to be coded may only include information bits.
  • the second bit to be encoded may also include information bits and check bits, which are recorded as second information bits and second check bits.
  • the second check bit may be used to check the first information bit and/or the second information bit.
  • the encoding device sends subcodes other than the first codeword in the second codeword to the decoding device, and the decoding device receives the second information to be decoded from the encoding device.
  • the encoding device can transmit subcodes other than the first codeword in the second codeword this time.
  • the decoding device After receiving the retransmitted second information to be decoded, the decoding device decodes the first information to be decoded and the second information to be decoded.
  • the encoding device Since on the encoding side, the encoding device jointly encodes the K first to-be-coded bits and K'second to-be-coded bits, and performs polarization code encoding according to the normal encoding method, so the decoding device can decode the last received
  • the first information to be decoded and the second information to be decoded received this time are jointly decoded. For example, the combined log-likelihood ratios received twice are decoded to obtain information bits.
  • the second bit to be encoded may or may not include the check bit.
  • the decoding device needs to clarify the verification relationship when decoding. If the second bit to be coded does not include the check bit, the decoding device uses the first check bit to check the information bits transmitted last time, but this does not bring a large loss to the decoding performance, because Compared with the second information bit transmitted this time, the first information bit transmitted last time occupies most. If the second bit to be coded includes a check bit, the decoding device uses the first check bit to check the first information bit transmitted last time, and can also use the second check bit to check the first information bit and/or The second information bit transmitted this time is checked.
  • the second check bit is only used to check the second information bit, by adding the second check bit, since the second information bit is positioned at the front, the second check bit can be used to check the second information bit to achieve Early stop and filter path effect.
  • the decoding device When decoding fails, when the decoding device determines that the maximum number of retransmissions has not been reached, it can continue to return the decoding failure information to the encoding device. The encoding device will continue to retransmit after receiving the decoding failure information. .
  • the method of retransmission is the same as the above method.
  • the HARQ system may have the maximum number of retransmissions. According to the maximum number of retransmissions, the encoding device and the decoding device perform the retransmission of the polarization code according to the above method.
  • the first transmission refers to the initial transmission of the data to be sent, not the retransmission.
  • K 1 is the number of bits to be coded
  • N 1 is the length of the code word
  • a 1 is the set of information bits.
  • the first transmission adopts the optimal code rate polarization code that matches the current channel state, and the code rate is K 1 /N 1 .
  • Part (a) in Figure 3 is a schematic diagram of the first transmission coding.
  • the first transmission coding includes K 1 -m information bits.
  • the coding device first performs check coding on K 1 -m information bits to generate m check bits. For example, performing cyclic redundancy check (CRC) check coding to generate m-bit CRC check bits.
  • CRC cyclic redundancy check
  • the generated m-bit parity bit is appended to the K 1 -m-bit information and sent to the polarization code encoder for encoding.
  • the code word obtained after encoding is Send it to the channel for transmission.
  • the receiving end uses a cyclic redundancy check auxiliary sequence continuous deletion (cyclic redundancy check aided success cancellation list, CA-SCL) decoder for decoding according to the received information to be decoded (such as log likelihood ratio). And perform CRC check on the decoded information bits. If the CRC check is passed, it means that the decoding is successful or the transmission is successful, and the receiving end returns an ACK response. If the CRC check fails, the receiving end will discard the received data and return a negative NACK message, and the sending end will retransmit the NACK message received.
  • CA-SCL cyclic redundancy check aided success cancellation list
  • Part (b) in Figure 3 is a schematic diagram of the coding of the second transmission, that is, the first retransmission.
  • the sender will transmit the polarization code information bit set for the first time Add N 1 to each element in to get the updated subscript set, denoted as The second transmission places the new information bits in the set Where, the size is K 2 -K 1 bit. And keep the information bits of the N 1 +1 to 2N 1 part of the second transmission the same as the information bits of the first transmission.
  • a 2 is the construction parameter for encoding in the second transmission, and is the information bit and the correction of the first transmission. Check the bit and the position set of the newly added information bit for the second transmission.
  • the codeword is obtained after polarization encoding according to A 2 numbers
  • the length is 2N 1 .
  • the codeword Codeword Same, the sender only needs to transmit codewords
  • the first half (0 ⁇ N 1 -1) is enough.
  • the codeword length of the second transmission and the codeword length of the first transmission are both N 1 , and the codeword of the second transmission is the newly added part corresponding to TX 2 . It can be seen that the polarization code obtained by this encoding method satisfies the nesting property.
  • the subsequent retransmission equivalent polarization code code rate and information bit set are retransmitted, so that the receiving end can combine the pair received by two transmissions (Tx1, Tx2) Number-likelihood ratio forms polarization code
  • the corresponding information to be decoded is decoded by CA-SCL.
  • the CRC check bit in this embodiment only checks the information bits transmitted for the first time, and does not check the newly transmitted information bits. Therefore, the receiving end needs to clarify the verification relationship when decoding.
  • the CRC only checks the information bits transmitted in the first transmission, but this does not bring a large loss to the decoding performance. Because, compared with the new information bits of the second transmission, the information bits of the first transmission occupies the vast majority.
  • the encoding and decoding processes of the first transmission and the second transmission shown in FIG. 3 are actually similar in the third transmission and the fourth transmission.
  • the following four transmission processes are described below through FIG. 4.
  • the code words transmitted four times are code word C (K 1 , N 1 , A 1 ), code word C (K 2 , N 2 , A 2 ), code word C (K 3 , N 3 , A 3 ) and Code word C (K 4 , N 4 , A 4 ).
  • Fig. 4 is a schematic diagram of a scheme of four HARQ transmissions of the polarization code. Due to codeword Is the subcode of code word C (K 2 , N 2 , A 2 ), Contains codewords All codeword bits in.
  • the sender only needs to retransmit the codeword Neutral codeword Different parts, namely When decoding, the receiving end needs to combine the code word of the second transmission with the code word of the first transmission to form a polarization code Decoding.
  • the code will be transmitted the third time Neutral codeword Different parts, namely The receiving end will jointly transmit all the code words received three times to form a polarization code Decoding.
  • the third transmission fails the code will be transmitted the fourth time And codeword The different parts in The receiving end will jointly transmit all the code words received four times to form a polarization code Decoding.
  • the code word C (K 3 , N 3 , A 3 ) obtained after the third transmission is equivalent to the first 1 of a code word C (K 3 , N 4 , A 3′ ) with a length of N 4
  • the /4 part is punched, and the first 1/4 part is removed by punching. among them
  • For right Add N 1 to each element in, and then the code rate is K 3 /N 4 .
  • the third transmission does not transmit C(K 3 , N 3 , A 3 )-C(K 2 , N 2 , A 2 ) but transmits At this time, although it is equivalent to puncturing an N 4 long codeword (punching out the first 1/4 to 1/2 part), this N 4 long codeword is
  • the code rate is K 4 /N 4 , which is higher than the one considered before. So the third transmission can be transmitted
  • the part is a program with a higher bit rate.
  • the receiving end forms a codeword between the information to be decoded this time and the information to be decoded that has been received but failed to decode, and then performs joint decoding.
  • the retransmitted codeword may include new information bits that are different from the information bits transmitted last time, or may include check bits for checking the new information bits.
  • the information bits and parity bits carried in 4 transmissions are shown.
  • the longest code word shown in Figure 5 is the code word encoded in the fourth transmission. From a hierarchical point of view, the part shown in 3N 1 to 4N 1 -1 in Figure 5 is transmitted for the first time.
  • the decoding device performs decoding after receiving the information to be decoded for the first transmission, and uses check bits to check the decoded information bits. When the verification fails, it returns the decoding failure information to the sender. After receiving the encoding device fails to decode the information, the encoding device constructed according to the re-encoding parameters to obtain a codeword shown 2N 1 ⁇ 4N 1 -1 and carries new information bits 2N 1 ⁇ 4N 1 -1 portion and Check bit.
  • the arrows in Fig. 5 indicate the check relationship, and the check bits are used to check the information bits pointed by the arrows.
  • the second transmission only the part that is different from the first time is transmitted, that is, the codeword of the part 2N 1 ⁇ 4N 1 -1.
  • the decoding device After the decoding device receives the retransmitted (that is, the second transmission) information to be decoded, it performs joint decoding with the information to be decoded the first time received. Two sets of check bits are used to check the decoded information bits. The verification result is obtained, and when the verification result is a decoding failure, the decoding failure information is returned to the encoding device. After the encoding device receives the information that the decoding failed, the encoding device re-encodes according to the construction parameters to obtain the code words shown in N 1 -1 ⁇ 4N 1 -1, and carry new information in the part of N 1 ⁇ 2N 1 -1 Bit and parity bit. The arrows in Fig.
  • the decoding device receives the retransmitted (that is, the third transmission) information to be decoded, it performs joint decoding with the information to be decoded for the first and second receptions. Three sets of check bits are used to check the decoded information bits. The verification result is obtained, and when the verification result is a decoding failure, the decoding failure information is returned to the encoding device.
  • the encoding device After the encoding device receives the information that the decoding failed, the encoding device re-encodes according to the construction parameters to obtain the codeword shown in 0 ⁇ 4N 1 -1, and the new information bit and check are carried in the part 0 ⁇ N 1 -1 Bits.
  • the arrows in Fig. 5 indicate the check relationship, and the check bits are used to check the information bits pointed by the arrows.
  • the fourth transmission only the part that is different from the previous three transmissions is transmitted, that is, the codewords of the 0-N 1 -1 part. After the decoding device receives the retransmitted (that is, the fourth transmission) information to be decoded, it will jointly decode the information to be decoded for the first, second and third times.
  • new check bits are added for each retransmission.
  • the check bits may not be transmitted, and only new information bits are transmitted. Due to the addition of new check bits, the number of newly transmitted valid information bits will decrease. When multiple retransmissions and the number of newly added information bits is smaller than that of the first transmission, you can consider not using new check bits, or you can consider retransmissions without adding new information bits (of course, no new check bits are needed) ).
  • the new information bits retransmitted each time refer to information bits that are different from the information bits transmitted one or more times before.
  • another possible implementation manner is also provided. That is, place part of the information bits (denoted as copy bits) of the information bits transmitted one or several times in a part of the information bits of each retransmission, and place a part of the information bits that are different from the information bits of the previous one or more transmissions.
  • New information bits The encoding device performs CRC encoding on the copied bits and the new information bits, and then performs polarization code encoding, and retransmits the encoded codeword. As shown in Fig. 6, taking two transmissions as an example, the longest code word shown in Fig.
  • 6 is the code word encoded in the second transmission.
  • the check bit may not be placed in a new check bit.
  • Decoding in decoding apparatus will first bits 0 ⁇ N 1 -1 portion verify, the verification is successful if the bit 0 ⁇ N 1 -1 portion, can be 0 ⁇ N 1 -1 bit portion
  • the copied bits in are used as known bits for the decoding of the part N 1 -1 to 2N 1 -1. In this way, when the decoding device decodes, the information to be decoded corresponding to the second bit to be encoded is before the information to be decoded corresponding to the first bit to be encoded, and the decoding device performs a bit-by-bit verification.
  • the information bit translated from the information to be decoded corresponding to the encoded bit is successfully verified, and the copy bit in the second to-be-encoded bit can be used as a known bit if the verification is successful.
  • the part of the first information bit that is copied to the second bit to be encoded during encoding will not need to be decoded again, and will be directly used as a frozen bit, in the case of low signal-to-noise ratio , Can further reduce the bit rate, thereby improving throughput.
  • an embodiment of the present application also provides a polarization code retransmission device 700, which can be used to execute the encoding device or the decoding device in the foregoing method embodiment Action performed.
  • the polarization code retransmission device 700 includes: a processing unit 701, a sending unit 702, and a receiving unit 703.
  • the processing unit 701 is configured to perform polarization Polar code encoding on the K first to-be-coded bits according to the first configuration parameter to obtain the first codeword, where the first configuration parameter includes a first information bit set, and a first information bit set
  • the element in is used to indicate the position of the K first bits to be coded, and K is a positive integer;
  • the sending unit 702 is configured to send the first codeword to the decoding device
  • the receiving unit 703 is configured to receive information used to indicate the failure of decoding the first codeword from the decoding device;
  • the processing unit 701 is further configured to perform Polar code encoding on the K first to-be-coded bits and K'second to-be-coded bits according to the second construction parameter to obtain a second codeword, where K'is a positive integer, and the second
  • the construction parameters include a second set of information bits.
  • the elements in the second set of information bits are used to indicate the positions of K first bits to be coded and K'positions of second bits to be coded, and the second information bit set is used to indicate The element of the first bit position to be coded is: the sum of the element used to indicate the first bit position to be coded in the first information bit set and N, where N is the length of the mother code to be coded during initial transmission, and N is an integer power of 2. ;
  • the sending unit 702 is further configured to send subcodes in the second codeword except the first codeword to the decoding device.
  • the first bit to be encoded includes a first information bit and a first check bit, and the first check bit is used to check the first information bit.
  • the second bit to be coded includes second information bits
  • the second bit to be encoded includes a second information bit and a second check bit, and the second check bit is used to check the first information bit and/or the second information bit.
  • the second bit to be coded is different from the first bit to be coded.
  • the second to-be-coded bit includes a part of the first to-be-coded bit, and the position of the part of the bit is located in the first one or more positions of the first information bit set in descending order of reliability.
  • the first codeword is a subcode of the second codeword.
  • the receiving unit 703 is configured to receive the first information to be decoded from the encoding device
  • the processing unit 701 is configured to decode the first information to be decoded
  • the sending unit 702 is configured to send information indicating the decoding failure of the first information to be decoded to the encoding device when the processing unit fails to decode the first information to be decoded;
  • the receiving unit 703 is configured to receive second information to be decoded from the encoding device
  • the processing unit 701 is further configured to decode the first information to be decoded and the second information to be decoded.
  • processing unit 701 is further configured to: use the first check information to check the decoded information bits.
  • the processing unit 701 is further configured to: use the first check information to check the first information bit obtained by decoding the first information to be decoded, and use the second check information to check the first information bit and/ Or check the second information bit obtained by decoding the second information to be decoded.
  • the processing unit 701 is further configured to: check the second information bit obtained by decoding the second information to be decoded, and if the check passes, remove the same part of the second information bit as the first information bit
  • the information bits are used as known bits; and the first information to be decoded is decoded according to the known bits.
  • an embodiment of the present application also provides a polarization code retransmission device 800.
  • the polarization code retransmission device 800 is used to execute the encoding device or the decoding device of the foregoing method embodiment. Operation. Part or all of the polarization code retransmission method of the foregoing embodiment can be implemented by hardware or software.
  • the polarization code retransmission device 800 includes: an input interface circuit 801, logic Circuit 802 and output interface circuit 803.
  • the input interface circuit 801 is used to obtain K first to-be-encoded bits and K'second to-be-encoded bits; the logic circuit 802 is used to execute the foregoing method embodiment
  • the output interface circuit 803 is used to output the encoded first codeword and the second codeword except for the first code Sub-code outside the word.
  • the input interface circuit 801 is used to obtain the first information to be decoded and the second information to be decoded; the logic circuit 802 is used to perform the decoding in the foregoing method embodiment
  • the output interface circuit 803 is used to output the decoding result.
  • the Polar code transmission device 800 may be a chip or an integrated circuit in specific implementation.
  • the polarization code retransmission apparatus 800 when part or all of the polarization code retransmission method of the foregoing embodiment is implemented by software, as shown in FIG. 9, the polarization code retransmission apparatus 800 includes: a memory 901 for storing a program; and processing; The device 902 is configured to execute a program stored in the memory 901, and when the program is executed, the polarization code retransmission apparatus 800 can implement the polarization code retransmission method provided in the foregoing embodiment.
  • the foregoing memory 901 may be a physically independent unit, or as shown in FIG. 10, the memory 901 and the processor 902 are integrated.
  • the polarization code retransmission apparatus 800 may also only include the processor 902.
  • the memory 901 for storing programs is located outside the polarization code retransmission device 1800, and the processor 902 is connected to the memory 901 through a circuit/wire for reading and executing the programs stored in the memory 901.
  • the embodiment of the present application provides a computer storage medium for storing a computer program, and the computer program includes a method for performing polarization code retransmission.
  • the embodiment of the present application provides a computer program product containing instructions, which when running on a computer, causes the computer to execute the polarization code retransmission method.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请公开了一种极化码重传方法及装置,用以实现极化码重传过程中的编码增益并提高吞吐率。该方法包括:将K个第一待编码比特按照第一信息位集合进行极化码编码,第一信息位集合中的元素用于指示K个第一待编码比特的位置;向译码设备发送编码后的第一码字;在第一码字译码失败时,将K个第一待编码比特和K'个第二待编码比特按照第二信息位集合进行极化码编码,获得第二码字,第二信息位集合中的元素用于指示K个第一待编码比特的位置和K'个第二待编码比特的位置,向译码设备发送第二码字中除第一码字之外的子码。

Description

一种极化码重传方法及装置
相关申请的交叉引用
本申请要求在2019年06月28日提交中国专利局、申请号为201910580513.7、申请名称为“一种极化码重传方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种极化码重传方法及装置。
背景技术
信道编码作为最基本的无线接入技术,在保证数据的可靠性传输方面起到至关重要的作用。在现有的无线通信系统中,一般采用Turbo码、低密度奇偶校验码(low density parity check,LDPC)和极化(Polar)码进行信道编码。其中,Arikan教授提出的极化(Polar)码是理论上证明可以达到香农容量,且具有相对简单的编译码复杂度的好码,因而得到了越来越广泛的应用。
对时延不敏感的时变信道,通常需要使用自适应的传输方法—混合自动请求重传(hybrid automatic repeat request,HARQ)协议。它是一种将前向纠错(forward error correction,FEC)与自动请求重传(automatic repeat request,ARQ)协议结合起来以实现可靠通信、提高系统吞吐率的技术。相比于固定码率的极化码,采用HARQ技术的极化码要求速率兼容,即编码的码率可以通过改变码长而进行灵活的配置,发送的比特可以随期望的码率进行灵活的选取。因此,在信道动态变化的时候,HARQ极化码比针对最差信道设计的固定码率的极化码,具有更高的效率。而Arikan教授提出的极化码的码长需要满足2的整数次幂的条件,这对极化码在实现码长、码率兼容方面带来了严峻的挑战。
现有的HARQ方案,每次重传时传输与上一次相同的码字,接收端将多次接收的码字相加进行译码,这种HARQ方案虽然在信噪比上有增益,但是没有编码增益,因此吞吐率较低。基于此,现有技术提出一种扩展生成矩阵的HARQ极化码传输方案,发送端利用扩展生成矩阵,产生码率不断降低的码字进行传输,接收端是将多次接收的码字组合成长码进行译码,获得了较大的编码增益。但是该方案在真实物理信道的信噪比相对来说比较高的情况下,会由于每次重传相同的信息比特导致传输过多的冗余比特造成吞吐率较低。
发明内容
本申请实施例提供一种极化码重传方法及装置,用以实现HARQ极化码重传过程中的编码增益以及提高吞吐率。
本申请实施例提供的具体技术方案如下:
第一方面,提供一种极化码重传方法,该方法的执行主体为发送端,或者说编码设备,或者说是一个芯片,或者说是一个逻辑电路。该方法包括以下步骤:根据离线生成的多次传输的用于生成极化码的构造参数,对各次传输的信息比特进行编码,生成极化码。每一 次重传都可以加入新的信息比特。将上一次的信息比特与新的信息比特按照本次传输对应的构造参数进行编码。编码后,传输本次极化码与上一次传输的极化码中不同的部分。这样,译码设备在接收到几次传输的待译码信息后,进行合并,并对合并后的码字进行译码。这样,能够利用极化码本身的码字特性,在HARQ中获得编码增益,相比于现有的极化码HARQ方案,能够在重传时新增一部分信息比特,从而能提高系统吞吐率。
在一个可能的设计中,将K个第一待编码比特按照第一构造参数进行极化Polar码编码,获得第一码字,其中,所述第一构造参数包括第一信息位集合,所述第一信息位集合中的元素用于指示所述K个第一待编码比特的位置,K为正整数;向译码设备发送第一码字;从所述译码设备接收用于指示所述第一码字译码失败的信息;将所述K个第一待编码比特和K’个第二待编码比特按照第二构造参数进行Polar码编码,获得第二码字,其中,K’为正整数,所述第二构造参数包括第二信息位集合,所述第二信息位集合中的元素用于指示所述K个第一待编码比特的位置和所述K’个第二待编码比特的位置,所述第二信息位集合中用于指示所述第一待编码比特位置的元素为:所述第一信息位集合中用于指示所述第一待编码比特位置的元素与N的和,所述N为初传时编码的母码长度,所述N为2的整数次幂;向所述译码设备发送所述第二码字中除所述第一码字之外的子码。这样,能够利用极化码本身的码字特性,在HARQ中获得编码增益,相比于现有的极化码HARQ方案,能够在重传时新增一部分信息比特,从而能提高系统吞吐率。
在一个可能的设计中,所述第一待编码比特包括第一信息比特和第一校验比特,所述第一校验比特用于校验所述第一信息比特。这样译码设备可以根据校验比特进行校验,从而判断译码的信息比特是否正确。
在一个可能的设计中,所述第二待编码比特包括第二信息比特;或,所述第二待编码比特包括所述第二信息比特和第二校验比特,所述第二校验比特用于校验所述第一信息比特和/或所述第二信息比特。当第二校验比特用于校验第二信息比特时,通过增加第二校验比特,由于第二信息比特位置靠前,可以通过第二校验比特对第二信息比特校验,达到早停和筛选路径的效果。
在一个可能的设计中,所述第二待编码比特与所述第一待编码比特不同。通过重传时新增一部分信息比特,从而能提高系统吞吐率。
在一个可能的设计中,所述第二待编码比特包括所述第一待编码比特中的部分比特,所述部分比特的位置位于所述第一信息位集合中可靠度由低到高排列的前一个或多个的位置。这样,译码设备在译码时,第二待编码比特对应的待译码信息在第一待编码比特对应的待译码信息之前,译码设备按照逐比特校验的方式,若第二待编码比特对应的待译码信息译出来的信息比特校验成功,则第二待编码比特中与第一待编码比特中的部分比特相同的部分,可以作为已知比特,在继续对靠后的第一待译码信息进行译码的过程中,第一信息比特在编码时被拷贝到第二待编码比特中的部分将不需要再译码一次,直接作为冻结比特,在信噪比较低的情况下,可以进一步降低码率,从而提升吞吐。
在一个可能的设计中,所述第一码字为所述第二码字的子码。
第二方面,提供一种极化码重传方法,该方法的执行主体为接收端,或者说译码设备,或者说是一个芯片,或者说是一个逻辑电路。该方法包括以下步骤:从编码设备接收第一待译码信息;在对所述第一待译码信息译码失败时,向所述编码设备发送用于指示所述第一待译码信息译码失败的信息;从所述编码设备接收第二待译码信息;对所述第一待译码 信息与所述第二待译码信息进行译码。这样,能够利用极化码本身的码字特性,在HARQ中获得编码增益,相比于现有的极化码HARQ方案,能够在重传时新增一部分信息比特,从而能提高系统吞吐率。
在一个可能的设计中,用第一校验信息对译码得到的信息比特进行校验。这样译码设备可以根据校验比特进行校验,从而判断译码的信息比特是否正确。
在一个可能的设计中,用第一校验信息对所述第一待译码信息译码得到的第一信息比特进行校验,以及用第二校验信息对所述第一信息比特和/或所述第二待译码信息译码得到的第二信息比特进行校验。通过增加第二校验比特,由于第二信息比特位置靠前,可以通过第二校验比特对第二信息比特校验,达到早停和筛选路径的效果。
在一个可能的设计中,第二待译码信息和第一待译码信息为一个总的待译码信息,译码设备对这个总的待译码信息进行译码,第二待译码信息的译码顺序在第一待译码信息的译码顺序之前,先对所述第二待译码信息译码得到的第二信息比特进行校验,若校验通过,则将所述第二信息比特中的拷贝比特作为已知比特,继续对后面的第一待译码信息进行译码。拷贝比特为编码时在新增的信息比特位置上放置的与部分所述第一信息比特相同的信息比特。这样,译码设备在译码时,第二待编码比特对应的待译码信息在第一待编码比特对应的待译码信息之前,译码设备按照逐比特校验的方式,若第二待编码比特对应的待译码信息译出来的信息比特校验成功,则第二待编码比特中与第一待编码比特中的部分比特相同的部分在校验成功的情况下,可以作为已知比特,在继续对靠后的第一待译码信息进行译码的过程中,第一信息比特在编码时被拷贝到第二待编码比特中的部分将不需要再译码一次,直接作为冻结比特,进行译码,在信噪比较低的情况下,可以进一步降低码率,从而提升吞吐。
第三方面,提供一种极化码重传装置,该装置具有实现上述第一方面和第一方面的任一种可能的设计中方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,当所述功能的部分或全部通过硬件实现时,所述极化码重传装置包括:输入接口电路,用于获取K个第一待编码比特和K’个第二待编码比特;逻辑电路,用于执行上述第一方面和第一方面的任一种可能的设计中的方法;输出接口电路,用于输出编码后的第一码字和第二码字中除所述第一码字之外的子码。
可选的,所述极化码重传装置可以是芯片或者集成电路。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述极化码重传装置包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述极化码重传装置可以实现如上述第一方面和第一方面的任一种可能的设计中所述的方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述极化码重传装置包括处理器。用于存储程序的存储器位于所述极化码重传装置之外,处理器通过电路/电线与存储器连接,用于读取并执行所述存储器中存储的程序。
第四方面,提供一种极化码重传装置,该装置具有实现上述第二方面和第二方面的任一种可能的设计中的方法。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,当所述功能的部分或全部通过硬件实现时,所述极化码重传装置包括:输入接口电路,用于获取第一待译码信息和第二待译码信息;逻辑电路,用于执行上述第一方面和第一方面的任一种可能的设计中译码设备的行为;输出接口电路,用于输出译码结果。
可选的,所述极化码重传装置可以是芯片或者集成电路。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述极化码重传装置包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述极化码重传装置可以实现如上述第一方面和第一方面的任一种可能的设计中所述的方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述极化码重传装置包括处理器。用于存储程序的存储器位于所述编码装置之外,处理器通过电路/电线与存储器连接,用于读取并执行所述存储器中存储的程序。
第五方面,提供了一种无线通信系统,该系统包括编码设备和译码设备,所述编码设备执行上述第一方面或各种可能的设计的方法,和/或,所述译码设备执行上述第二方面或各种可能的设计的方法。
第六方面,提供了一种计算机存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面、第二方面、第一方面的任一可能的实施方式或第二方面的任一可能的实施方式中的方法的指令。
第七方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1为本申请实施例中无线通信系统架构示意图;
图2为本申请实施例中极化码重传方法的流程示意图之一;
图3为本申请实施例中极化码重传方法的流程示意图之二;
图4为本申请实施例中4次传输流程示意图;
图5为本申请实施例中4次传输信息比特分布示意图;
图6为本申请实施例中2次重传信息比特分布示意图;
图7为本申请实施例中极化码重传装置结构示意图之一;
图8为本申请实施例中极化码重传装置结构示意图之二;
图9为本申请实施例中极化码重传装置结构示意图之三;
图10为本申请实施例中极化码重传装置结构示意图之四。
具体实施方式
本申请实施例提供一种极化码重传方法及装置,用于在HARQ极化码传输时,在每次重传过程中加入新的信息比特,将新的信息比特和之前传输的信息比特进行联合编码,提升系统吞吐率。其中,方法和装置是基于同一技术构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。本申请实施例的描述 中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的至少一个是指一个或多个;多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
下面将结合附图,对本申请实施例进行详细描述。
本申请实施例提供的通信方法可以应用于第五代(5th generation,5G)通信系统或未来的各种通信系统。具体的,例如5G通信系统最典型的三个通信场景包括增强型移动互联网(enhance mobile broadband,eMBB)、海量机器连接通信(massive machine type communication,mMTC)和高可靠低延迟通信(ultra reliable low latency communication,URLLC)。
如图1所示,本申请实施例可以应用到的一种无线通信系统100,其中包括网络设备101和终端102。其中,网络设备101为发送端时,终端102为接收端;当终端102为发送端时,网络设备101为接收端。发送端也可以叫做编码设备,接收端也可以叫做译码设备。该网络设备可以是基站,也可以是基站与基站控制器集成后的设备,还可以是具有类似通信功能的其它设备。
网络设备101为具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G(如NR)系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息(即通过PHY层发送),或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PDCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
终端也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(Pad)、 带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端及可设置于前述终端的芯片统称为终端。
为方便对本申请实施例的理解,下面对Polar码以及Polar码的一些特性作简单介绍,在介绍过程中引出对本申请设计思想的描述。
(一)Polar码的基本介绍
Polar码的编码策略利用无噪信道传输用户有用的信息,全噪信道传输约定的信息或者不传信息。Polar码也是一种线性块码,其编码矩阵为G N,编码过程为
Figure PCTCN2020093771-appb-000001
其中
Figure PCTCN2020093771-appb-000002
是一个二进制的行矢量,长度为N(即码长);G N是一个N×N的矩阵,且
Figure PCTCN2020093771-appb-000003
定义为log 2N个矩阵F 2的克罗内克(Kronecker)乘积。上述矩阵
Figure PCTCN2020093771-appb-000004
Polar码的编码过程中,
Figure PCTCN2020093771-appb-000005
中的一部分比特用来携带信息,称为信息比特集合,这些比特的索引的集合记作
Figure PCTCN2020093771-appb-000006
另外的一部分比特设置为接收端和发送端预先约定的固定值,称之为固定比特集合或冻结比特集合(frozen bits),其索引的集合用
Figure PCTCN2020093771-appb-000007
的补集
Figure PCTCN2020093771-appb-000008
表示。Polar码的编码过程相当于:
Figure PCTCN2020093771-appb-000009
这里,GN(A)是GN中由集合
Figure PCTCN2020093771-appb-000010
中的索引对应的那些行得到的子矩阵,GN(AC)是GN中由集合
Figure PCTCN2020093771-appb-000011
中的索引对应的那些行得到的子矩阵。
Figure PCTCN2020093771-appb-000012
Figure PCTCN2020093771-appb-000013
中的信息比特集合,数量为K;
Figure PCTCN2020093771-appb-000014
Figure PCTCN2020093771-appb-000015
中的固定比特集合,其数量为(N-K),是已知比特。这些固定比特通常被设置为0,但是只要接收端和发送端预先约定,固定比特可以被任意设置。从而,Polar码的编码输出可简化为:
Figure PCTCN2020093771-appb-000016
这里
Figure PCTCN2020093771-appb-000017
Figure PCTCN2020093771-appb-000018
中的信息比特集合,
Figure PCTCN2020093771-appb-000019
为长度K的行矢量,即
Figure PCTCN2020093771-appb-000020
|·|表示集合中元素的个数,K为信息块大小,
Figure PCTCN2020093771-appb-000021
是矩阵G N中由集合
Figure PCTCN2020093771-appb-000022
中的索引对应的那些行得到的子矩阵,
Figure PCTCN2020093771-appb-000023
是一个K×N的矩阵。
Polar码的构造过程即集合
Figure PCTCN2020093771-appb-000024
的选取过程,决定了Polar码的性能。Polar码的构造过程通常是,根据母码码长N确定共存在N个极化信道,分别对应编码矩阵的N个行,计算极化信道可靠度,将可靠度较高的前K个极化信道的索引作为集合
Figure PCTCN2020093771-appb-000025
的元素,剩余(N-K)个极化信道对应的索引作为固定比特的索引集合
Figure PCTCN2020093771-appb-000026
的元素。集合
Figure PCTCN2020093771-appb-000027
决定了信息比特的位置,集合
Figure PCTCN2020093771-appb-000028
决定了固定比特的位置。
(二)极化码的递归特性
极化码的生成矩阵是一个下三角矩阵,并且具有高度的递归结构。长度为N的极化码的生成矩阵为G N,并且长度为2N的极化码的生成矩阵G 2N可以由G N得到,即
Figure PCTCN2020093771-appb-000029
对N长的信息比特序列(u N,…,u 1)和2N长的信息比特序列 (u 2N,…u N+1,u′ N,…,u′ 1)分别进行极化编码,分别得到极化码(c N,…,c 1)和(c 2N,…,c N+1,c′ N,…,c′ 1)。若(u′ N,…,u′ 1)=(u N,…,u 1),则(c′ N,…,c′ 1)=(c N,…,c 1),即2N长码字的最后N长码字比特本身就是长度为N的子极化码。
本申请设计的方法利用了极化码的递归特性,还利用了PW离线构造算法得到序列
Figure PCTCN2020093771-appb-000030
的嵌套特性,如(三)所述。
(三)极化码的极化重量(polarization weight,PW)构造序列的嵌套特性
PW离线构造算法所得到的序列
Figure PCTCN2020093771-appb-000031
的嵌套特性。为了获得更为灵活实用的极化码构造方法,一般会直接计算一个较长的PW序列。假设极化码的最长码长为N max,分裂子信道的下标为{1,2,…,N max}。首先,将分裂子信道i,i∈{1,2,…,N max}的下标采用二进制方式展开,即
i=B n-1B n-2…B 1B 0+1,B j∈{0,1},j∈{0,1,…,n-1}      (1)
其中n=log 2(N max),并采用以下公式(2)计算第i个子信道的可靠性:
Figure PCTCN2020093771-appb-000032
将各个分裂子信道的可靠性记录在权重序列
Figure PCTCN2020093771-appb-000033
中。再按照可靠性从大到小对各个分裂子信道进行排序,并用序列
Figure PCTCN2020093771-appb-000034
存储排序过后的分裂子信道的下标值。例如N max=8,按照PW方法构造出来的
Figure PCTCN2020093771-appb-000035
序列为:{8,7,6,4,5,3,2,1}。
根据PW离线构造算法计算得到的分裂子信道的可靠性排序满足下面关系:
推论1:码长为2N的极化码的后半部分分裂子信道下标(N+1~2N)的排序等于码长为N的极化码分裂子信道下标的排序加上N。
本申请中,序号0~N-1等价于序号1~N,只是表达方式不同。
采用
Figure PCTCN2020093771-appb-000036
构造C(K 2,2N)的极化码,选取序列
Figure PCTCN2020093771-appb-000037
中前K 2个元素用来传输信息,将满足条件的元素放入集合
Figure PCTCN2020093771-appb-000038
中。并统计
Figure PCTCN2020093771-appb-000039
位于N+1~2N范围内的元素的个数,记为K 1,将相应的元素放入集合
Figure PCTCN2020093771-appb-000040
中。接着,我们采用
Figure PCTCN2020093771-appb-000041
构造获取C(K 1,N)的极化码,其用来传输信息比特的分裂子信道集合为
Figure PCTCN2020093771-appb-000042
Figure PCTCN2020093771-appb-000043
中的每个元素均加上N,得到更新后的下标集合,记为
Figure PCTCN2020093771-appb-000044
则根据推论1,可以推出推论2。
推论2:码字C(K 2,2N)的后半部分(N+1~2N)用来放置信息比特的分裂子信道的下标的集合
Figure PCTCN2020093771-appb-000045
与码字C(K 1,N)更新后的用来传输信息的分裂子信道的下标集合
Figure PCTCN2020093771-appb-000046
一致。
假设HARQ系统的最大传输次数为T max=4。发送端在上一次传输失败时,会进行重传。4次传输中每次传输的码字长度均相同。4次传输构造的新的码字长度分别为N 1、N 2、N 3和N 4。N 4=4N 1,N 3=3N 1,N 2=2N 1。本申请设计了一系列码率不断降低的码字。设四次传输所设计的极化码参数为
Figure PCTCN2020093771-appb-000047
根据极化码的递归特性从初次传输最优码率的极化码
Figure PCTCN2020093771-appb-000048
出发,构造出重传等效极化码
Figure PCTCN2020093771-appb-000049
采用这种构造方式,允许发送端每次重传时可以将新的信息比特和之前已传输的信息比特进行联合编码,每次重传的新信息比特的数目分别为K 2-K 1、K 3-K 2以及K 4-K 3。构造出的四个极化码码字具有以下两个重要的性质,分别为以下(1)和(2)。
(1)满足嵌套性质
Figure PCTCN2020093771-appb-000050
即码字
Figure PCTCN2020093771-appb-000051
Figure PCTCN2020093771-appb-000052
的子码,码字
Figure PCTCN2020093771-appb-000053
Figure PCTCN2020093771-appb-000054
的子码,
Figure PCTCN2020093771-appb-000055
)是
Figure PCTCN2020093771-appb-000056
的子码。这样,发送端在传输时,只需重传当前次传输构造的码字与前一次传输构造的码字中的不同部分即可。若每次传输的码字长度均相同,N 4=4N 1,N 3=3N 1,N 2=2N 1,那么第一次传输码字长度为N 1,第二次传输码字长度为N 2-N 1,第二次传输码字长度为N 3-N 2,第二次传输码字长度为N 4-N 3
(2)
Figure PCTCN2020093771-appb-000057
均为采用PW离线构造算法所得到的信息位的集合
码字
Figure PCTCN2020093771-appb-000058
为PW构造算法下标准的极化码。也就是说,接收端联合若干次传输的码字进行译码,都是在对一个完整标准PW构造下的极化码进行译码的。
为得到满足上述性质(1)和(2)的极化码,需要对各次传输极化码的码率进行合理的设计。
已知条件:第一次传输采用最优码率为R 1=K 1/N 1的极化码
Figure PCTCN2020093771-appb-000059
进行发送。假设HARQ系统的最大传输次数为T max=4,每次传输的码字长度均相同,N 4=4N 1,N 3=3N 1,N 2=2N 1
求解参数:第二次传输等效极化码码率R 2=K 2/N 2、第三次传输等效极化码码率R 3=K 3/N 3、第四次传输等效极化码码率R 4=K 4/N 4
根据推论2,本申请采用以下表1所示的方法进行参数设计。
表1
Figure PCTCN2020093771-appb-000060
Figure PCTCN2020093771-appb-000061
按照上述描述,本申请实施例设计HARQ极化码的构造参数,例如,对于HARQ系统的最大传输次数为T max=4,则根据上述方法,确定4次传输时用于生成极化码的构造参数。其中构造参数包括信息位集合,例如,4次传输生成极化码的信息位集合分别为
Figure PCTCN2020093771-appb-000062
Figure PCTCN2020093771-appb-000063
Figure PCTCN2020093771-appb-000064
还可以确定4次传输的码率R 1、R 2、R 3和R 4
本申请实施例的思想是,根据离线生成的多次传输的用于生成极化码的构造参数,对各次传输的信息比特进行编码,生成极化码。每一次重传都可以加入新的信息比特。将上一次的信息比特与新的信息比特按照本次传输对应的构造参数进行编码。编码后,传输本次极化码与上一次传输的极化码中不同的部分。译码设备在接收到几次传输的待译码信息后,进行合并,并对合并后的码字进行译码。这样,能够利用极化码本身的码字特性,在HARQ中获得编码增益,相比于现有的极化码HARQ方案,能够在重传时新增一部分信息比特,从而能提高系统吞吐率。当然也可以在线生成构造参数。
基于上述描述,下面对本申请实施例提供的极化码重传方法做详细介绍。
如图2所示,本申请实施例提供的极化码重传方法的流程如下所述。以下方法的执行主体为编码设备和译码设备。编码设备可以是终端,译码设备为网络设备。或者,编码设备为网络设备,则译码设备为终端。
编码设备在初次传输之后,若译码设备译码失败,则编码设备将会进行重传。图2所示的方法实施例为任意两次相邻传输的编码译码方法。如对于初传的数据译码失败进行第一次重传;或者对于第一次重传的数据译码失败进行第二次重传;或者对于第二次重传的数据译码失败进行第三次重传。重传系统可能规定最大重传次数,在未达到最大重传次数时,编码设备可以继续进行编码,重传数据。如果到达了最大重传次数,则编码设备可以按照初传数据向译码设备发送。或者译码设备通知译码失败即结束流程。
S201、编码设备将K个第一待编码比特按照第一构造参数进行极化Polar码编码,获得第一码字。
其中,K个第一待编码比特包括信息比特和校验比特,这里记为第一信息比特和第一校验比特。第一信息比特和第一校验比特的总数为K。K为正整数。第一校验比特用于校验第一信息比特。
构造参数是指在编码过程中用到的参数,例如构造参数包括信息位集合A。基于上述第(一)点所述,信息位集合A用表示信息比特的位置,本申请中,信息位集合可以用于表示待编码比特的位置。
构造参数还可以包括待编码比特的数目或Polar码码长。
S201步骤中的第一构造参数包括第一信息位集合,第一信息位集合中的元素用于指示K个第一待编码比特的位置。
以下描述中参数N为初传时编码的母码长度,N为2的整数次幂。
例如,如果第一码字是初传数据,则K个第一待编码比特编码后的母码长度为N,N为2的整数次幂。第一码字的长度小于等于N,第一码字可能是对母码进行速率匹配后的码字。
又例如,如果第一码字是第一次重传的数据,则K个第一待编码比特编码后的母码长度为2N,第一码字的长度小于或等于2N。第一码字的长度小于2N的情况下,第一码字可能是对母码进行速率匹配后的码字。
又例如,如果第一码字是第二次重传的数据,则K个第一待编码比特编码后的母码长度为3N,第一码字的长度小于或等于3N。第一码字的长度小于3N的情况下,第一码字可能是对母码进行速率匹配后的码字。
S202、编码设备向译码设备发送第一码字。译码设备从编码设备接收待译码信息,记为第一待译码信息。
例如,待译码信息可以是对数似然比。
S203、译码设备对第一待译码信息进行译码。
译码设备对第一待译码信息进行译码,并采用第一校验比特对译码得到的信息比特进行校验,若校验通过,则说明译码成功或传输成功,若校验不通过,则说明译码失败或传输失败。
S204、译码设备在对第一待译码信息译码失败时,向编码设备发送用于指示第一待译码信息译码失败的信息,编码设备从译码设备接收用于指示第一待译码信息译码失败的信息。
在译码失败时,返回指示消息,例如,该用于指示第一待译码信息译码失败的信息为否认字符(negative acknowledgement,NACK)信息。
相反的,译码设备在对第一待译码信息译码成功时,向编码设备返回用于指示第一待译码信息译码成功的信息,例如确认字符(acknowledgement,ACK)应答消息。
S205、编码设备在接收到用于指示第一待译码信息译码失败的信息后,对K个第一待编码比特和K’个第二待编码比特重新编码,获得第二码字。
编码设备在接收到用于指示第一待译码信息译码失败的信息后,将进行重传。本申请中,编码设备在进行重传的过程中将携带新的信息比特。在上一次传输时携带K个第一待编码比特,在重传时将对K个第一待编码比特和K’个第二待编码比特重新编码。
第二待编码比特与第一待编码比特不同,或者说第二待编码比特中的信息比特与第一待编码比特中的信息比特是不同的。这样就可以传输新的信息比特,降低重传的冗余。
第二待编码比特包括第一待编码比特中的部分比特,在上一次传输的编码过程中,该部分比特的位置位于第一信息位集合中可靠度由低到高排列的前一个或多个的位置。
编码设备获取离线存储的构造参数,确定本次重传编码需要采用的构造参数,记为第二构造参数。第二构造参数包括第二信息位集合,第二信息位集合中的元素用于指示K个第一待编码比特的位置和K’个第二待编码比特的位置。按照上述嵌套特性的描述,第二信息位集合中用于指示第一待编码比特位置的元素为:第一信息位集合中用于指示第一待编 码比特位置的元素与N的和,这里的N是指初传是编码后母码长度,N为2的整数次幂。
编码设备按照第二构造参数对K个第一待编码比特和K’个第二待编码比特重新编码,获得第二码字。实际上,第一码字是第二码字的子码。
第二待编码比特中可以只包括信息比特。
或者,第二待编码比特中也可以包括信息比特和校验比特,记为第二信息比特和第二校验比特。
第二校验比特可以用于对第一信息比特和/或第二信息比特进行校验。
S206、编码设备向译码设备发送第二码字中除第一码字之外的子码,译码设备从编码设备接收第二待译码信息。
因为第一码字已经在上次传输了,因此编码设备在本次可以传输第二码字中除第一码字之外的子码即可。
S207、译码设备在接收到重传的第二待译码信息后,对第一待译码信息和第二待译码信息进行译码。
由于在编码侧,编码设备是对K个第一待编码比特和K’个第二待编码比特联合编码的,按照正常的编码方式进行极化码编码,所以译码设备可以将上一次接收到的第一待译码信息和本次接收到的第二待译码信息进行联合译码。例如,将联合两次接收到的对数似然比进行译码,获得信息比特。
由于编码设备在编码过程中,第二待编码比特中可能包括校验比特也可能不包括校验比特。译码设备在译码时需要明确校验关系。如果第二待编码比特不包括校验比特,则译码设备采用第一校验比特对上一次传输的信息比特进行校验,但这对译码性能并没有带来较大的损失,因为相比于这一次传输的第二信息比特,上一次传输的第一信息比特占据了绝大部分。如果第二待编码比特包括校验比特,则译码设备采用第一校验比特对上一次传输的第一信息比特进行校验,还可以采用第二校验比特对第一信息比特和/或本次传输的第二信息比特进行校验。根据两个校验的校验结果,若校验通过,则说明译码成功,否则译码失败。当第二校验比特只用于校验第二信息比特时,通过增加第二校验比特,由于第二信息比特位置靠前,可以通过第二校验比特对第二信息比特校验,达到早停和筛选路径的效果。
在译码失败时,译码设备在确定没有到达最大重传次数时,还可以继续向编码设备返回译码失败的信息,编码设备在收到译码失败的信息后,还会继续进行重传。重传的方法与上述方法相同。
上述描述的实施例说明了相邻的两次传输的过程。实际应用中,HARQ系统可能具有最大重传次数。按照该最大重传次数,编码设备和译码设备按照上述方法进行极化码的重传。
下面结合具体的应用场景对本申请的极化码重传方法做进一步详细说明。
如图3所示,以下介绍发送端第一次传输时进行编码和译码的过程。第一次传输是指对于待发送的数据进行初次传输,而非重传。
以HARQ系统的最大传输次数为T max=4为例,第一次传输采用最优码率为R 1=K 1/N 1的极化码
Figure PCTCN2020093771-appb-000065
进行传输,K 1为待编码比特的数目,N 1为编码码字的长度,A 1为信息位集合。根据表1所示的嵌套码字构造方法确定后续重传等效极化码的码率,得到各次 重传的信息位的集合
Figure PCTCN2020093771-appb-000066
图3表示第一次传输和第二次传输编译码示意图。图3中的发送端即编码设备,接收端即译码设备。
第一次传输采用与当前信道状态较匹配的最优码率极化码,码率为K 1/N 1。图3中的(a)部分是第一次传输编码示意图。第一次传输编码中包括K 1-m个信息比特。编码设备先将K 1-m个信息比特进行校验编码,生成m个校验比特。例如进行循环冗余校验(cyclic redundancy check,CRC)校验编码,产生m比特CRC校验位。将产生的m比特校验位附加在K 1-m比特信息后面,送入极化码编码器进行编码,进行编码后得到的码字为
Figure PCTCN2020093771-appb-000067
送入信道进行发送。其中
Figure PCTCN2020093771-appb-000068
为第一次传输极化码的信息位集合。信息比特、冻结比特、校验比特的位置如图3的(a)部分所示。发送端用TX表示,第一次传输的码字用TX1表示。
接收端根据接收到的待译码信息(如对数似然比),采用循环冗余校验辅助序列连续删除(cyclic redundancy check aided success cancellation list,CA-SCL)译码器进行译码。并对译码得到的信息比特进行CRC校验。如果CRC校验通过,则说明此次译码成功或传输成功,接收端返回确认字符ACK应答。如果CRC校验不通过,接收端将丢弃接收到的数据,返回否认字符NACK信息,发送端接收到NACK信息将进行重传。
以下介绍重传时的编码和译码过程。
图3中的(b)部分是第二次传输即第一次重传的编码示意图。发送端将第一次传输极化码信息位集合
Figure PCTCN2020093771-appb-000069
中的每个元素加上N 1,得到更新后的下标集合,记为
Figure PCTCN2020093771-appb-000070
第二次传输将新的信息比特放置于集合
Figure PCTCN2020093771-appb-000071
处,大小为K 2-K 1比特。并保持第二次传输N 1+1到2N 1部分的信息比特和第一次传输的信息比特相同,A 2为第二次传输进行编码的构造参数,为第一次传输的信息比特和校验比特以及第二次传输新增加的信息比特的位置集合。按照A 2进行极化编码后得到码字
Figure PCTCN2020093771-appb-000072
码字
Figure PCTCN2020093771-appb-000073
的长度为2N 1。根据极化码递归结构可知,码字
Figure PCTCN2020093771-appb-000074
的后半部分与码字
Figure PCTCN2020093771-appb-000075
相同,发送端只需要传输码字
Figure PCTCN2020093771-appb-000076
的前半部分(0~N 1-1)即可。第二次传输的码字长度与第一次传输的码字长度均为N 1,第二次传输的码字为TX 2对应的新增部分。可见,采用这种编码方式得到的极化码满足嵌套性质。
根据表1所示的嵌套码字构造方法确定的后续重传等效极化码的码率和信息位集合进行重传,使得接收端可以联合两次传输(Tx1、Tx2)接收到的对数似然比形成极化码
Figure PCTCN2020093771-appb-000077
对应的待译码信息进行CA-SCL译码。值得注意的是,此实施例中CRC校验比特只对第一次传输的信息比特进行了检验,并没有对新传输的信息比特进行校验。因此接收端在译码时,需要明确校验关系。虽然,第二次传输译码时,CRC只对第一次传输的信息比特进行了校验,但这对译码性能并没有带来较大的损失。因为,相比于第二次传输的新信息比特,第一次传输的信息比特占据了绝大部分。
上述图3所示的第一次传输和第二次传输的编码和译码过程,实际上在第三次传输以及第四次传输的编码和译码方法是类似的。下面通过图4描述以下4次传输的过程。4次传输的码字分别为码字C(K 1,N 1,A 1)、码字C(K 2,N 2,A 2)、码字C(K 3,N 3,A 3)和码字C(K 4,N 4,A 4)。
图4为极化码HARQ传输4次的方案示意图。由于码字
Figure PCTCN2020093771-appb-000078
是码字 C(K 2,N 2,A 2)的子码,
Figure PCTCN2020093771-appb-000079
包含了码字
Figure PCTCN2020093771-appb-000080
中所有的码字比特。当第一次传输失败时,发送端只需要重传码字
Figure PCTCN2020093771-appb-000081
中与码字
Figure PCTCN2020093771-appb-000082
不同的部分,即
Figure PCTCN2020093771-appb-000083
接收端在译码的时候需要将第二次传输的码字和第一次传输的码字联合起来,形成极化码
Figure PCTCN2020093771-appb-000084
进行译码。如果第二次传输失败,第三次将传输码字
Figure PCTCN2020093771-appb-000085
中与码字
Figure PCTCN2020093771-appb-000086
不同部分,即
Figure PCTCN2020093771-appb-000087
接收端将联合三次传输接收到的所有码字,形成极化码
Figure PCTCN2020093771-appb-000088
进行译码。如果第三次传输失败,第四次将传输码字
Figure PCTCN2020093771-appb-000089
和码字
Figure PCTCN2020093771-appb-000090
中不同的部分,即
Figure PCTCN2020093771-appb-000091
接收端将联合四次传输接收到的所有码字,形成极化码
Figure PCTCN2020093771-appb-000092
进行译码。
考虑一种情况,第三次传输后得到的码字C(K 3,N 3,A 3)相当于对一个N 4长的码字C(K 3,N 4,A 3′)的前1/4部分进行打孔,打孔即去掉前1/4部分。其中
Figure PCTCN2020093771-appb-000093
为对
Figure PCTCN2020093771-appb-000094
中的每个元素加上N 1,此时码率为K 3/N 4。考虑另一种情况,第三次传输不传C(K 3,N 3,A 3)-C(K 2,N 2,A 2)而是传
Figure PCTCN2020093771-appb-000095
此时虽然也相当于对一个N 4长的码字进行打孔(打孔掉前1/4到1/2的部分),但是此N 4长的码字为
Figure PCTCN2020093771-appb-000096
码率为K 4/N 4,较之前考虑的一种情况码率更高。因此第三次传输可以传
Figure PCTCN2020093771-appb-000097
的部分,是一种码率更高的方案。
接收端对本次接收到的待译码信息与之前接收到的但是译码失败的待译码信息,组成一个码字,进行联合译码。对译码后得到的信息比特进行校验。本申请实施例中,对于重传的码字,可以包含与上次传输的信息比特不同的新的信息比特,也可以包含对新的信息比特进行校验的校验比特。如图5所示,示出了4次传输携带的信息比特和校验比特的情况。图5所示的最长码字为第4次传输时编码的码字。分层来看,第一次传输图5中的3N 1~4N 1-1所示的部分。译码设备在接收到第一次传输的待译码信息后,进行译码,采用校验比特对译码得到的信息比特进行校验。校验失败时向发送端返回译码失败的信息。编码设备在接收到译码失败的信息后,编码设备按照构造参数进行重新编码,获得2N 1~4N 1-1所示的码字,在2N 1~4N 1-1部分携带新的信息比特和校验比特。图5中箭头指向表示校验关系,校验比特用于校验按照箭头指向的信息比特。在第二次传输时仅传输与第一次不同的部分,即2N 1~4N 1-1部分的码字。译码设备在收到重传(即第二次传输)的待译码信息后,将与第一次接收到的待译码信息进行联合译码。用两组校验比特对译码的信息比特进行校验。获得校验结果,在校验结果为译码失败时,向编码设备返回译码失败的信息。编码设备在接收到译码失败的信息后,编码设备按照构造参数进行重新编码,获得N 1-1~4N 1-1所示的码字,在N 1~2N 1-1部分携带新的信息比特和校验比特。图5中箭头指向表示校验关系,校验比特用于校验按照箭头指向的信息比特。在第三次传输时仅传输与前两次传输不同的部分,即N 1~2N 1-1部分的码字。译码设备在收到重传(即第三次传输)的待译码信息后,将与第一次和第二次接收到的待译码信息进行联合译码。用三组校验比特对译码的信息比特进行校验。获得校验结果,在校验结果为译码失败时,向编码设备返回译码失败的信息。编码设备在接收到译码失败的信息后,编码设备按照构造参数进行重新编码,获得0~4N 1-1所示的码字,在0~N 1-1部分携带新的信息比特和校验比特。图5中箭头指向表示校验关系,校验比特用于校验按照箭头指向的信息比特。在第四次传输时仅传输与前 三次传输不同的部分,即0~N 1-1部分的码字。译码设备在收到重传(即第四次传输)的待译码信息后,将与第一次、第二次和第三次接收到的待译码信息进行联合译码。用四组校验比特对译码的信息比特进行校验。获得校验结果。如果系统限定最大传输4次,则校验不通过时确定译码失败。如果系统限定最大传输次数大于4次,那么在校验不通过时将继续向编码设备返回译码失败的信息,按照上述类似的方法重新编码和译码。本申请提供的方法可以适用的重传次数不限定。
图5所示的举例中,每次重传都加入了新的校验比特,当然也可以不传校验比特,只传输新的信息比特。由于增加了新的校验比特,新传输有效信息比特就会减少。当多次重传,较第一次传输新增加的信息比特数目较小时,可以考虑不采用新的校验比特,也可以考虑重传不增加新的信息比特(当然也不用新的校验比特)。
上述举例中每次重传的新的信息比特是指与前一次或多次传输的信息比特不同的信息比特。本申请实施例中,还提供另一种可能的实现方式。即,在每次重传的信息比特的一部分位置放置前一次或几次传输的信息比特中的部分比特(记为拷贝比特),另一部分位置放置与前一次或多次传输的信息比特不同的新信息比特。编码设备将拷贝比特和新信息比特一起进行CRC编码,再进行极化码编码,将编码后的码字进行重传。如图6所示,以两次传输为例,图6所示的最长码字为在第二次传输时编码的码字。在重传时,在0~N 1-1部分的信息比特位置放置上一次传输的可靠度较低子信道上的信息比特,另一部信息比特位置放置全新的信息比特,还可以放置新的校验比特,也可以不放置新的校验比特。对拷贝的上一次传输的信息比特和全新的信息比特以及新的校验比特放置好后,按照构造参数进行编码,生成2N 1长的码字,重传仅传输0~N 1-1部分的子码。译码设备在译码时,会先对0~N 1-1部分的比特进行校验,若对0~N 1-1部分的比特校验成功,可将0~N 1-1部分的比特中的拷贝比特作为已知比特用于N 1-1~2N 1-1部分的译码。这样,译码设备在译码时,第二待编码比特对应的待译码信息在第一待编码比特对应的待译码信息之前,译码设备按照逐比特校验的方式,若第二待编码比特对应的待译码信息译出来的信息比特校验成功,则第二待编码比特中的拷贝比特在校验成功的情况下,可以作为已知比特,在继续对靠后的第一待译码信息进行译码的过程中,第一信息比特在编码时被拷贝到第二待编码比特中的部分将不需要再译码一次,直接作为冻结比特,在信噪比较低的情况下,可以进一步降低码率,从而提升吞吐。
基于同一技术构思,如图7所示,本申请实施例还提供一种极化码重传装置700,该极化码重传装置700可以用于执行上述方法实施例中编码设备或译码设备执行的操作。该极化码重传装置700包括:处理单元701、发送单元702和接收单元703。
当执行上述方法实施例中编码设备执行的操作时:
处理单元701,用于将K个第一待编码比特按照第一构造参数进行极化Polar码编码,获得第一码字,其中,第一构造参数包括第一信息位集合,第一信息位集合中的元素用于指示K个第一待编码比特的位置,K为正整数;
发送单元702,用于向译码设备发送第一码字;
接收单元703,用于从译码设备接收用于指示第一码字译码失败的信息;
处理单元701,还用于将K个第一待编码比特和K’个第二待编码比特按照第二构造参数进行Polar码编码,获得第二码字,其中,K’为正整数,第二构造参数包括第二信息位集合,第二信息位集合中的元素用于指示K个第一待编码比特的位置和K’个第二待编码比特的位置,第二信息位集合中用于指示第一待编码比特位置的元素为:第一信息位集合 中用于指示第一待编码比特位置的元素与N的和,N为初传时编码的母码长度,N为2的整数次幂;
发送单元702,还用于向译码设备发送第二码字中除第一码字之外的子码。
可选的,第一待编码比特包括第一信息比特和第一校验比特,第一校验比特用于校验第一信息比特。
可选的,第二待编码比特包括第二信息比特;
或,第二待编码比特包括第二信息比特和第二校验比特,第二校验比特用于校验第一信息比特和/或第二信息比特。
可选的,第二待编码比特与第一待编码比特不同。
可选的,第二待编码比特包括第一待编码比特中的部分比特,部分比特的位置位于第一信息位集合中可靠度由低到高排列的前一个或多个的位置。
可选的,第一码字为第二码字的子码。
当执行上述方法实施例中编码设备执行的操作时:
接收单元703,用于从编码设备接收第一待译码信息;
处理单元701,用于对第一待译码信息进行译码;
发送单元702,用于在处理单元对第一待译码信息译码失败时,向编码设备发送用于指示第一待译码信息译码失败的信息;
接收单元703,用于从编码设备接收第二待译码信息;
处理单元701,还用于对第一待译码信息与第二待译码信息进行译码。
可选的,处理单元701还用于:用第一校验信息对译码得到的信息比特进行校验。
可选的,处理单元701还用于:用第一校验信息对第一待译码信息译码得到的第一信息比特进行校验,以及用第二校验信息对第一信息比特和/或第二待译码信息译码得到的第二信息比特进行校验。
可选的,处理单元701还用于:对第二待译码信息译码得到的第二信息比特进行校验,若校验通过,则将第二信息比特中与第一信息比特相同的部分信息比特作为已知比特;以及按照已知比特对第一待译码信息进行译码。
基于同一技术构思,如图8所示,本申请实施例中还提供一种极化码重传装置800,该极化码重传装置800用于执行上述方法实施例编码设备或译码设备执行的操作。上述实施例的极化码重传方法中的部分或全部可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,所述极化码重传装置800包括:输入接口电路801,逻辑电路802和输出接口电路803。
在执行上述方法实施例中编码设备执行的操作时,输入接口电路801用于获取K个第一待编码比特和K’个第二待编码比特;逻辑电路802,用于执行上述方法实施例中编码设备执行的方法,具体请见前面方法实施例中的描述,此处不再赘述;输出接口电路803,用于输出编码后的第一码字和第二码字中除所述第一码字之外的子码。
在执行上述方法实施例中译码设备执行的操作时,输入接口电路801用于获取第一待译码信息和第二待译码信息;逻辑电路802,用于执行上述方法实施例中译码设备执行的方法,具体请见前面方法实施例中的描述,此处不再赘述;输出接口电路803,用于输出译码结果。
可选的,Polar码传输装置800在具体实现时可以是芯片或者集成电路。
可选的,当上述实施例的极化码重传方法中的部分或全部通过软件来实现时,如图9所示,极化码重传装置800包括:存储器901,用于存储程序;处理器902,用于执行存储器901存储的程序,当程序被执行时,使得极化码重传装置800可以实现上述实施例提供的极化码重传方法。
可选的,上述存储器901可以是物理上独立的单元,也可以如图10所示,存储器901与处理器902集成在一起。
可选的,当上述实施例的方法中的部分或全部通过软件实现时极化码重传装置800也可以只包括处理器902。用于存储程序的存储器901位于极化码重传装置1800之外,处理器902通过电路/电线与存储器901连接,用于读取并执行存储器901中存储的程序。
本申请实施例提供了一种计算机存储介质,用于存储计算机程序,该计算机程序包括用于执行极化码重传方法。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行极化码重传方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (26)

  1. 一种极化码重传方法,其特征在于,包括:
    将K个第一待编码比特按照第一构造参数进行极化Polar码编码,获得第一码字,其中,所述第一构造参数包括第一信息位集合,所述第一信息位集合中的元素用于指示所述K个第一待编码比特的位置,K为正整数;
    向译码设备发送第一码字;
    从所述译码设备接收用于指示所述第一码字译码失败的信息;
    将所述K个第一待编码比特和K’个第二待编码比特按照第二构造参数进行Polar码编码,获得第二码字,其中,K’为正整数,所述第二构造参数包括第二信息位集合,所述第二信息位集合中的元素用于指示所述K个第一待编码比特的位置和所述K’个第二待编码比特的位置,所述第二信息位集合中用于指示所述第一待编码比特位置的元素为:所述第一信息位集合中用于指示所述第一待编码比特位置的元素与N的和,所述N为初传时编码的母码长度,所述N为2的整数次幂;
    向所述译码设备发送所述第二码字中除所述第一码字之外的子码。
  2. 如权利要求1所述的方法,其特征在于,所述第一待编码比特包括第一信息比特和第一校验比特,所述第一校验比特用于校验所述第一信息比特。
  3. 如权利要求1或2所述的方法,其特征在于,所述第二待编码比特包括第二信息比特;或,
    所述第二待编码比特包括所述第二信息比特和第二校验比特,所述第二校验比特用于校验所述第一信息比特和/或所述第二信息比特。
  4. 如权利要求1~3任一项所述的方法,其特征在于,所述第二待编码比特与所述第一待编码比特不同。
  5. 如权利要求1~3任一项所述的方法,其特征在于,所述第二待编码比特包括所述第一待编码比特中的部分比特,所述部分比特的位置位于所述第一信息位集合中可靠度由低到高排列的前一个或多个的位置。
  6. 如权利要求1~5任一项所述的方法,其特征在于,所述第一码字为所述第二码字的子码。
  7. 一种极化码重传方法,其特征在于,包括:
    从编码设备接收第一待译码信息;
    在对所述第一待译码信息译码失败时,向所述编码设备发送用于指示所述第一待译码信息译码失败的信息;
    从所述编码设备接收第二待译码信息;
    对所述第一待译码信息与所述第二待译码信息进行译码。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    用第一校验信息对译码得到的信息比特进行校验。
  9. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    用第一校验信息对所述第一待译码信息译码得到的第一信息比特进行校验,以及用第二校验信息对所述第一信息比特和/或所述第二待译码信息译码得到的第二信息比特进行校验。
  10. 如权利要求7~9任一项所述的方法,其特征在于,所述方法还包括:
    所述第二待译码信息的译码顺序在所述第一待译码信息之前。
  11. 一种极化码重传装置,其特征在于,包括:
    处理单元,用于将K个第一待编码比特按照第一构造参数进行极化Polar码编码,获得第一码字,其中,所述第一构造参数包括第一信息位集合,所述第一信息位集合中的元素用于指示所述K个第一待编码比特的位置,K为正整数;
    发送单元,用于向译码设备发送第一码字;
    接收单元,用于从所述译码设备接收用于指示所述第一码字译码失败的信息;
    所述处理单元,还用于将所述K个第一待编码比特和K’个第二待编码比特按照第二构造参数进行Polar码编码,获得第二码字,其中,K’为正整数,所述第二构造参数包括第二信息位集合,所述第二信息位集合中的元素用于指示所述K个第一待编码比特的位置和所述K’个第二待编码比特的位置,所述第二信息位集合中用于指示所述第一待编码比特位置的元素为:所述第一信息位集合中用于指示所述第一待编码比特位置的元素与N的和,所述N为初传时编码的母码长度,所述N为2的整数次幂;
    所述发送单元,还用于向所述译码设备发送所述第二码字中除所述第一码字之外的子码。
  12. 如权利要求11所述的装置,其特征在于,所述第一待编码比特包括第一信息比特和第一校验比特,所述第一校验比特用于校验所述第一信息比特。
  13. 如权利要求11或12所述的装置,其特征在于,所述第二待编码比特包括第二信息比特;或,
    所述第二待编码比特包括所述第二信息比特和第二校验比特,所述第二校验比特用于校验所述第一信息比特和/或所述第二信息比特。
  14. 如权利要求11~13任一项所述的装置,其特征在于,所述第二待编码比特与所述第一待编码比特不同。
  15. 如权利要求11~13任一项所述的装置,其特征在于,所述第二待编码比特包括所述第一待编码比特中的部分比特,所述部分比特的位置位于所述第一信息位集合中可靠度由低到高排列的前一个或多个的位置。
  16. 如权利要求11~15任一项所述的装置,其特征在于,所述第一码字为所述第二码字的子码。
  17. 一种极化码重传装置,其特征在于,包括:
    接收单元,用于从编码设备接收第一待译码信息;
    处理单元,用于对所述第一待译码信息进行译码;
    发送单元,用于在所述处理单元对第一待译码信息译码失败时,向所述编码设备发送用于指示所述第一待译码信息译码失败的信息;
    所述接收单元,用于从所述编码设备接收第二待译码信息;
    所述处理单元,还用于对所述第一待译码信息与所述第二待译码信息进行译码。
  18. 如权利要求17所述的装置,其特征在于,所述处理单元还用于:
    用第一校验信息对译码得到的信息比特进行校验。
  19. 如权利要求17所述的装置,其特征在于,所述处理单元还用于:
    用第一校验信息对所述第一待译码信息译码得到的第一信息比特进行校验,以及用第 二校验信息对所述第一信息比特和/或所述第二待译码信息译码得到的第二信息比特进行校验。
  20. 如权利要求17~19任一项所述的装置,其特征在于,所述第二待译码信息的译码顺序在所述第一待译码信息之前。
  21. 一种极化码重传装置,其特征在于,包括:
    输入接口电路,用于获取K个第一待编码比特和K’个第二待编码比特;
    逻辑电路,用于执行上述如权利要求1~6任一项所述的方法;
    输出接口电路,用于输出编码后的第一码字和第二码字中除所述第一码字之外的子码。
  22. 一种极化码重传装置,其特征在于,包括:
    输入接口电路,用于获取第一待译码信息和第二待译码信息;
    逻辑电路,用于执行上述如权利要求7~10任一项所述的方法;
    输出接口电路,用于输出译码结果。
  23. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当其在计算机上运行时,使得如权利要求1-6中任意一项所述的方法或如权利要求7-10中任意一项所述的方法被执行。
  24. 一种极化码重传装置,其特征在于,包括:处理器和存储器,其中所述存储器用于存储指令,所述处理器用于执行所述指令,使得如权利要求1-6中任意一项所述的方法或如权利要求7-10中任意一项所述的方法被执行。
  25. 如权利要求24所述的极化码重传装置,其特征在于,所述处理器和所述存储器集成在一起。
  26. 一种无线通信系统,其特征在于,包括如权利要求11-16中任一项所述的通信极化码重传装置和如权利要求17-20中任一项所述的通信极化码重传装置。
PCT/CN2020/093771 2019-06-28 2020-06-01 一种极化码重传方法及装置 WO2020259222A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20832093.7A EP3979530B1 (en) 2019-06-28 2020-06-01 Polar code retransmission method and device
US17/562,743 US12009920B2 (en) 2019-06-28 2021-12-27 Polar code retransmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910580513.7 2019-06-28
CN201910580513.7A CN112152754B (zh) 2019-06-28 2019-06-28 一种极化码重传方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/562,743 Continuation US12009920B2 (en) 2019-06-28 2021-12-27 Polar code retransmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2020259222A1 true WO2020259222A1 (zh) 2020-12-30

Family

ID=73891797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093771 WO2020259222A1 (zh) 2019-06-28 2020-06-01 一种极化码重传方法及装置

Country Status (4)

Country Link
US (1) US12009920B2 (zh)
EP (1) EP3979530B1 (zh)
CN (1) CN112152754B (zh)
WO (1) WO2020259222A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022222726A1 (zh) * 2021-04-21 2022-10-27 华为技术有限公司 一种数据处理的方法以及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022007503A (ja) * 2020-06-26 2022-01-13 富士通株式会社 受信装置及び復号化方法
CN116980070A (zh) * 2022-04-15 2023-10-31 华为技术有限公司 一种编码方法和装置
CN117200940A (zh) * 2022-05-26 2023-12-08 华为技术有限公司 一种信息传输方法和装置
WO2024147363A1 (ko) * 2023-01-02 2024-07-11 엘지전자 주식회사 인코딩을 수행하는 방법, 통신 기기, 프로세싱 장치, 및 저장 매체, 그리고 디코딩을 수행하는 방법 및 통신 기기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018126906A1 (en) * 2017-01-06 2018-07-12 Qualcomm Incorporated Techniques for hybrid chase combining and incremental redundancy harq with polar codes
CN108886421A (zh) * 2016-03-18 2018-11-23 高通股份有限公司 具有极化编码传输的混合自动重复请求(harq)重传中的新数据传输
CN109863705A (zh) * 2016-10-21 2019-06-07 华为技术有限公司 用于递增冗余混合自动重传请求重传的方法和设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9191256B2 (en) * 2012-12-03 2015-11-17 Digital PowerRadio, LLC Systems and methods for advanced iterative decoding and channel estimation of concatenated coding systems
CN104079370B (zh) * 2013-03-27 2018-05-04 华为技术有限公司 信道编译码方法及装置
CA2972642C (en) * 2014-03-21 2020-05-26 Huawei Technologies Co., Ltd. Polar code retransmission method and apparatus
US10461779B2 (en) * 2015-08-12 2019-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Rate-compatible polar codes
CN105227189B (zh) * 2015-09-24 2019-01-01 电子科技大学 分段crc辅助的极化码编译码方法
WO2017176309A1 (en) * 2016-04-08 2017-10-12 Intel Corporation Polar codes for harq transmissions
CN107819545B (zh) * 2016-09-12 2020-02-14 华为技术有限公司 极化码的重传方法及装置
WO2018201481A1 (en) * 2017-05-05 2018-11-08 Huawei Technologies Co., Ltd. Method and device for incremental redundancy hybrid automatic repeat request (ir-harq) re-transmission
CN107612561B (zh) * 2017-09-30 2021-02-02 武汉虹信科技发展有限责任公司 一种编码、译码方法及装置
WO2019095190A1 (en) * 2017-11-16 2019-05-23 Qualcomm Incorporated Reduced overhead error detection code design for decoding a codeword
CN108092742B (zh) * 2017-12-17 2019-11-22 华中科技大学 一种基于极化码的通信方法
WO2019191944A1 (en) * 2018-04-04 2019-10-10 Qualcomm Incorporated Polar coded harq scheme over time-varying channel
US10312948B1 (en) * 2018-04-30 2019-06-04 Polaran Yazilim Bilisim Danismanlik Ithalat Ihracat Sanayi Ticaret Limited Sirketi Method and system for retransmitting data using systematic polar coding
CN109639395B (zh) * 2018-12-06 2021-02-02 东南大学 一种适用于极化码编码递增码长重传方案的接收方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886421A (zh) * 2016-03-18 2018-11-23 高通股份有限公司 具有极化编码传输的混合自动重复请求(harq)重传中的新数据传输
CN109863705A (zh) * 2016-10-21 2019-06-07 华为技术有限公司 用于递增冗余混合自动重传请求重传的方法和设备
WO2018126906A1 (en) * 2017-01-06 2018-07-12 Qualcomm Incorporated Techniques for hybrid chase combining and incremental redundancy harq with polar codes

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
See also references of EP3979530A4 *
ZTE ET AL.: "HARQ Performance of Rate-compatible Polar codes", 3GPP TSG RAN WG1 #86BIS R1-1611110, 5 November 2016 (2016-11-05), XP051189695, DOI: 20200811162003X *
ZTE ET AL.: "HARQ Performance of Rate-compatible Polar codes", 3GPP TSG RAN WG1 #86BIS R1-1611110, 5 November 2016 (2016-11-05), XP051189695, DOI: 20200811162025X *
ZTE ET AL.: "HARQ Performance of Rate-compatible Polar codes", 3GPP TSG RAN WG1 #87 R1-1613267, 19 November 2016 (2016-11-19), XP051191139, DOI: 20200811162158A *
ZTE ET AL.: "HARQ Performance of Rate-compatible Polar codes", 3GPP TSG RAN WG1 #87 R1-1613267, 19 November 2016 (2016-11-19), XP051191139, DOI: 20200811162213X *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022222726A1 (zh) * 2021-04-21 2022-10-27 华为技术有限公司 一种数据处理的方法以及装置

Also Published As

Publication number Publication date
EP3979530A4 (en) 2022-07-27
EP3979530B1 (en) 2024-08-21
US12009920B2 (en) 2024-06-11
US20220123862A1 (en) 2022-04-21
CN112152754B (zh) 2021-12-28
EP3979530A1 (en) 2022-04-06
CN112152754A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2020259222A1 (zh) 一种极化码重传方法及装置
JP7017627B2 (ja) 通信システムにおける冗長バージョン設計ソリューション
CN105306165B (zh) 数据发送方法及装置
CN112187403B (zh) 信息处理的方法、装置、通信设备和通信系统
CN108347295B (zh) 一种数据传输方法及装置
CN108282259B (zh) 一种编码方法及装置
CN107819545A (zh) 极化码的重传方法及装置
US11695435B2 (en) Data transmission method, apparatus, and system
CN108173621A (zh) 数据传输的方法、发送设备、接收设备和通信系统
WO2018196875A1 (zh) 数据处理方法和数据处理装置
CN112636879B (zh) 基于混合自动重传请求的码块处理的方法和装置
KR101600406B1 (ko) 코드 블록 저장 방법 및 장치
WO2020147527A1 (zh) 一种极化编译码方法及装置
US11539470B2 (en) Re-transmission control method, radio terminal, and radio base station
CN109756307A (zh) 数据重传方法及装置
WO2021136539A1 (zh) 卷积码的速率匹配的方法和无线通信装置
CN115885491B (zh) 用于混合自动重传请求的置换扩展和缩短的低密度奇偶校验码
Lin et al. An adaptive hybrid ARQ scheme with constant packet lengths
WO2018196725A1 (zh) 数据处理方法和数据处理装置
WO2024152760A1 (zh) 一种数据传输方法及装置
WO2023226702A1 (zh) 一种通信方法及装置
US20230327800A1 (en) Information processing device and decoding method
TWI784732B (zh) 利用harq使能資料傳輸的方法及裝置
CN118018158A (zh) 数据传输方法、装置及存储介质
JP2010028770A (ja) 通信システム、受信装置、送信装置、通信方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020832093

Country of ref document: EP

Effective date: 20211227